Mostrar el registro sencillo del ítem

dc.contributor.advisorBravo Ruiz, Jaime Arturo
dc.contributor.authorMuñoz Bravo, Gean Marco
dc.contributor.authorMuñoz Guevara, Cristhian Jhair
dc.date.accessioned2025-04-01T21:32:14Z
dc.date.available2025-04-01T21:32:14Z
dc.date.issued2025
dc.identifier.urihttps://hdl.handle.net/20.500.12802/14638
dc.description.abstractEl aprendizaje profundo demostró ser una herramienta efectiva en la detección de patologías en hormigón estructural, permitiendo mejorar los procesos de inspección y mantenimiento. Esta revisión sistemática tiene como objetivo analizar los métodos basados en aprendizaje profundo utilizados en la evaluación de patologías en estructuras de hormigón, identificando sus ventajas, limitaciones y aplicaciones prácticas. El estudio se llevó a cabo siguiendo la metodología PRISMA, realizando una búsqueda exhaustiva en bases de datos académicas como IEEE Xplore, ScienceDirect y Scopus. Tras la aplicación de criterios de inclusión y exclusión, se seleccionaron 99 artículos relevantes. Se analizó la eficacia de los modelos utilizados, los conjuntos de datos empleados, las métricas de evaluación y los desafíos existentes en su implementación. Los resultados indican que las Redes Neuronales Convolucionales (CNN), como YOLOv8, Faster R-CNN y U-Net, son ampliamente utilizadas y han demostrado ser eficaces en la detección de grietas y defectos en hormigón. Sin embargo, la falta de estandarización en los criterios de evaluación y la necesidad de grandes volúmenes de datos etiquetados siguen siendo retos importantes. El aprendizaje profundo tiene un gran potencial en la inspección estructural, pero su implementación efectiva requiere mejoras en la calidad de los datos, optimización computacional y estandarización de métricas, con el fin de facilitar su aplicación a gran escala en la industria de la construcción.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectAprendizaje profundoes_PE
dc.subjectPatologías en hormigónes_PE
dc.subjectRedes neuronales convolucionaleses_PE
dc.subjectDetección de grietases_PE
dc.titleMétodos basados en aprendizaje profundo para la evaluación de patologías en hormigón estructural: una revisión sistemáticaes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni17610253
renati.advisor.orcidhttps://orcid.org/0000-0003-1929-3969es_PE
renati.author.dni71852476
renati.author.dni77140522
renati.discipline612076es_PE
renati.levelhttps://purl.org/pe-repo/renati/level#bachilleres_PE
renati.typehttps://purl.org/pe-repo/renati/type#trabajoDeInvestigaciones_PE
dc.description.lineadeinvestigacionCiencias de la información como herramientas multidisciplinares y estratégicas en el contexto industrial y de organizacioneses_PE
dc.publisher.countryPEes_PE
dc.description.sublineadeinvestigacionInformática y transformación digital en el contexto industrial y organizacional.es_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess