Mostrar el registro sencillo del ítem

dc.contributor.advisorMejía Cabrera, Heber Ivan
dc.contributor.authorVasquez Cercado, Darwin Alain
dc.date.accessioned2025-02-19T16:23:54Z
dc.date.available2025-02-19T16:23:54Z
dc.date.issued2025
dc.identifier.urihttps://hdl.handle.net/20.500.12802/14483
dc.description.abstractEl riesgo crediticio es un desafío clave en el sector financiero, especialmente en entidades como cooperativas y microfinancieras, donde la falta de información precisa dificulta la toma de decisiones y afecta la estabilidad económica. A corto plazo, la morosidad genera problemas de liquidez y, a largo plazo, puede comprometer la solvencia institucional. En este contexto, la predicción efectiva de la morosidad es fundamental para mitigar pérdidas y optimizar la gestión del crédito. Este estudio aborda el problema de la predicción de morosidad en clientes de la entidad financiera San Francisco de Mocupe mediante un análisis comparativo de los algoritmos de machine learning XGBoost, LightGBM y Random Forest. Se utilizó un enfoque cuantitativo con datos históricos que incluyeron variables sociodemográficas, crediticias y de comportamiento de pago. Se aplicaron técnicas de depuración como el rango intercuartil (IQR) para tratar valores atípicos y estrategias de imputación para datos faltantes. Además, se implementó la codificación de etiquetas para variables categóricas y se generaron nuevas variables para mejorar la capacidad predictiva. Los modelos fueron desarrollados en Python y optimizados con ajuste de hiperparámetros. La evaluación de desempeño mostró que LightGBM obtuvo la mayor precisión (95%), seguido de XGBoost (94%) y Random Forest (93%). Además, los modelos lograron un buen equilibrio entre precisión, recall y F1-score, evidenciando su capacidad para identificar clientes morosos y no morosos de manera efectiva. En conclusión, LightGBM se posiciona como la mejor alternativa para la predicción de morosidad en la entidad analizada. Estos hallazgos refuerzan el valor de la inteligencia artificial en la gestión financiera moderna.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectMachine learninges_PE
dc.subjectMorosidades_PE
dc.subjectGestión de riesgoses_PE
dc.subjectLightGBMes_PE
dc.subjectXGBoostes_PE
dc.subjectRandom Forestes_PE
dc.titleAnálisis comparativo de algoritmos de machine learning para predecir morosidad en clientes afiliados a la entidad financiera San Francisco de Mocupees_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni41639565
renati.advisor.orcidhttps://orcid.org/0000-0002-0007-0928es_PE
renati.author.dni70433349
renati.discipline612076es_PE
renati.jurorAsenjo Carranza, Enrique David
renati.jurorAlva Zapata, Juliana Del Pilar
renati.jurorMinguillo Rubio, Cesar Augusto
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.description.lineadeinvestigacionCiencias de la información como herramientas multidisciplinares y estratégicas en el contexto industrial y de organizacioneses_PE
dc.publisher.countryPEes_PE
dc.description.sublineadeinvestigacionNuevas tendencias digitales orientadas al análisis y uso estratégico de la información.es_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess