Mostrar el registro sencillo del ítem

dc.contributor.advisorMejia Cabrera, Heber Ivan
dc.contributor.authorArcila Diaz, Liliana Nataly
dc.date.accessioned2024-09-23T20:27:44Z
dc.date.available2024-09-23T20:27:44Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/20.500.12802/13018
dc.description.abstractLa estimación precisa de la producción de cultivos frutales es crucial para mejorar la planificación agrícola, optimizando la cosecha, el almacenamiento y la distribución, y, en última instancia, gestionando de manera más eficiente la cadena de suministro agrícola. Este estudio presenta una revisión sistemática sobre el uso de métodos de inteligencia artificial (IA) y machine learning (ML) en la estimación de la producción de cultivos frutales. Aplicando la metodología PRISMA, se identificaron 266 documentos en las bases de datos Scopus y Web of Science, de los cuales se analizaron 21 tras aplicar criterios de inclusión y exclusión. La investigación examina qué cultivos frutales utilizan técnicas de machine learning para la estimación de producción y qué técnicas muestran el mejor desempeño en la estimación o conteo de cultivos. Se identificaron tendencias emergentes, como la integración de variables climáticas, el uso de imágenes multiespectrales y la implementación de sistemas en tiempo real. Se propone una agenda de investigación para abordar las lagunas existentes, enfocándose en el desarrollo de soluciones ligeras y escalables para su implementación práctica en la agricultura.es_PE
dc.description.uriTrabajo de investigaciónes_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectFruit productiones_PE
dc.subjectProduction estimationes_PE
dc.subjectMachine learninges_PE
dc.subjectPRISMA Statementes_PE
dc.subjectPrecision agriculturees_PE
dc.titleUso de Machine Learning para estimar la producción de cultivos frutales: análisis de tendencias y agenda de investigaciónes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameBachiller en Ingeniería de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni41639565
renati.advisor.orcidhttps://orcid.org/0000-0002-0007-0928es_PE
renati.author.dni48085003
renati.discipline612076es_PE
renati.levelhttps://purl.org/pe-repo/renati/level#bachilleres_PE
renati.typehttps://purl.org/pe-repo/renati/type#trabajoDeInvestigaciones_PE
dc.description.lineadeinvestigacionCiencias de la información como herramientas multidisciplinares y estratégicas en el contexto industrial y de organizacioneses_PE
dc.publisher.countryPEes_PE
dc.description.sublineadeinvestigacionInformática y transformación digital en el contexto industrial y organizacional.es_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess