Mostrar el registro sencillo del ítem
Análisis comparativo de algoritmos de aprendizaje automático para identificar ataques de inyección SQL a base de datos en aplicaciones web
dc.contributor.advisor | Chirinos Mundaca, Carlos Alberto | |
dc.contributor.author | Castro Fernández, Levi Ronald | |
dc.date.accessioned | 2022-03-12T15:56:26Z | |
dc.date.available | 2022-03-12T15:56:26Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12802/9320 | |
dc.description.abstract | Un alto porcentaje de las organizaciones públicas como privadas actualmente han migrado sus actividades del mundo del papel hacia lo digital, implicando que la información se encuentre disponible en la red. Personas con propósitos mal intencionados con intereses de conocer o apoderarse de la información, se aprovechan de las vulnerabilidades de las aplicaciones implementadas por las organizaciones, para lograr su objetivo aplican diversos tipos de técnicas y métodos para lograr acceder a la información contenida en base de datos aprovechando las deficiencias de las aplicaciones web, apoyados de inyección de código SQL desde los elementos de un formulario o a través de la URL. Por lo tanto, en esta investigación se plantea un análisis comparativo de los algoritmos de aprendizaje automático para la mitigación de los ataques de inyección SQL, comprende las etapas de clasificación de los algoritmos según su rendimiento en cuanto a precisión, luego la clasificación de los ataques de inyección SQL, extracción de los datos para su procesamiento y aplicación de los algoritmos de aprendizaje automático seleccionados para el análisis de los datos clasificados. La clasificación de los ataques de inyección SQL a base de datos, se construyó una tabla de clasificación por tipo de ataque y el nivel de riesgo que significan las firmas, para la implementación de los algoritmos de aprendizaje automático se realizó en el entorno de trabajo de Phyton, se utilizó librerías para la implementación de los algoritmos de aprendizaje automático AdaBoost, SVM y Decision Tree, Phyton en el entorno de trabajo Jupiter Notebook y scikit-learn demostraron ser un buen entorno para la implementación de los algoritmos por la existencia de múltiples librerías. Se evaluó la precisión de tres algoritmos de aprendizaje automático poniendo a prueba con la data extraída después de recogerlo de los ataques realizados en un entorno de un sitio web, se encontró que el algoritmo Decision Tree demostró una mejor precisión obteniendo el 100% al momento de realizar el análisis. | es_PE |
dc.description.uri | Tesis | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | spa | es_PE |
dc.publisher | Universidad Señor de Sipán | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ | * |
dc.source | Repositorio Institucional - USS | es_PE |
dc.source | Repositorio Institucional USS | es_PE |
dc.subject | Algoritmos de aprendizaje automático | es_PE |
dc.subject | AdaBoost | es_PE |
dc.subject | Árbol de Decisiones | es_PE |
dc.subject | Inyección SQL | es_PE |
dc.subject | Support Vector Machines | es_PE |
dc.title | Análisis comparativo de algoritmos de aprendizaje automático para identificar ataques de inyección SQL a base de datos en aplicaciones web | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | es_PE |
thesis.degree.grantor | Universidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismo | es_PE |
thesis.degree.name | Ingeniero de Sistemas | es_PE |
thesis.degree.discipline | Ingeniería de Sistemas | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.04 | es_PE |
renati.advisor.dni | 16721607 | |
renati.advisor.orcid | https://orcid.org/0000-0002-6733-8992 | es_PE |
renati.author.dni | 43301249 | |
renati.discipline | 612076 | es_PE |
renati.juror | Vásquez Leyva, Oliver | es_PE |
renati.juror | Bances Saavedra, David Enrique | es_PE |
renati.juror | Sialer Rivera, María Noelia | es_PE |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_PE |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_PE |
dc.description.lineadeinvestigacion | Infraestructura, Tecnología y Medio Ambiente | es_PE |
dc.publisher.country | PE | es_PE |