Mostrar el registro sencillo del ítem

dc.contributor.advisorBravo Ruiz, Jaime Arturo
dc.contributor.authorCoronel Caján, Erick Arturo
dc.date.accessioned2022-03-10T02:26:45Z
dc.date.available2022-03-10T02:26:45Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/20.500.12802/9278
dc.description.abstractEn la actualidad, el presente tema de investigación, “El reconocimiento de expresiones faciales”, está copando muchos ámbitos de la ciencia. Puesto que, se está aplicando para mejorar muchos tipos de campos. En mención a ello, tenemos ejemplos como: la predicción de actividades emocionales del ser humano a partir de los comportamientos que expresa el mismo, predicción de relaciones interpersonales, en medicina con los tratamientos médicos, en juegos online con la realidad virtual y aumentada. Si ahondamos un poco más, el vocablo “expresionesemociones humanas”, significa desde una vista general el modo universal para interactuar. Por ello, se precisa que, la identificación automática de expresiones faciales humanas tiene sus propias ventajas. El meollo puntualmente, en este tema tan interesante, radica en el rostro, ya que, por su naturaleza conlleva una estructura compleja en términos de formas, variación de redondez, género, edad, tipo de raza o etnia, y claro, las simetrías. Empero, con la llegada de la nueva tecnología y los avances del Deep Learning, es posible el reconocimiento facial y la clasificación de imágenes. En razón a ello, se tiene que delimitar que, existen algoritmos y métodos para detectar y reconocer rostros. Ante el problema suscitado, se plantea reutilizar una Red Neuronal Convolucional configurando ciertos parámetros, para que sea capaz de identificar y detectar expresiones de tristeza en un rostro. Por tal motivo, se usará el dataset FER2013 de la plataforma Kaggle. Luego, se empleará la librería Face Recognition para el reconocimiento facial. En alusión a lo anterior, indicar que, el sistema estará basado en el lenguaje de programación Python, lo cual nos será útil para trabajar de la mano con la herramienta OpenCV, que sería algo clave en este proceso. El designio es, reconocer las expresiones faciales de tristeza de manera eficiente, y optimizando el tiempo de entrenamiento.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectReconocimiento faciales_PE
dc.subjectExpresiones facialeses_PE
dc.subjectAprendizaje profundoes_PE
dc.titleReconocimiento de expresiones faciales de tristeza utilizando aprendizaje profundoes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni17610253
renati.advisor.orcidhttps://orcid.org/0000-0003-1929-3969es_PE
renati.author.dni41604689
renati.discipline612076es_PE
renati.jurorRamos Moscol, Mario Fernandoes_PE
renati.jurorSialer Rivera, Maria Noeliaes_PE
renati.jurorBravo Ruíz, Jaime Arturoes_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.description.lineadeinvestigacionInfraestructura, Tecnología y Medio Ambientees_PE
dc.publisher.countryPEes_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess