Mostrar el registro sencillo del ítem
Reconocimiento de expresiones faciales de tristeza utilizando aprendizaje profundo
dc.contributor.advisor | Bravo Ruiz, Jaime Arturo | |
dc.contributor.author | Coronel Caján, Erick Arturo | |
dc.date.accessioned | 2022-03-10T02:26:45Z | |
dc.date.available | 2022-03-10T02:26:45Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12802/9278 | |
dc.description.abstract | En la actualidad, el presente tema de investigación, “El reconocimiento de expresiones faciales”, está copando muchos ámbitos de la ciencia. Puesto que, se está aplicando para mejorar muchos tipos de campos. En mención a ello, tenemos ejemplos como: la predicción de actividades emocionales del ser humano a partir de los comportamientos que expresa el mismo, predicción de relaciones interpersonales, en medicina con los tratamientos médicos, en juegos online con la realidad virtual y aumentada. Si ahondamos un poco más, el vocablo “expresionesemociones humanas”, significa desde una vista general el modo universal para interactuar. Por ello, se precisa que, la identificación automática de expresiones faciales humanas tiene sus propias ventajas. El meollo puntualmente, en este tema tan interesante, radica en el rostro, ya que, por su naturaleza conlleva una estructura compleja en términos de formas, variación de redondez, género, edad, tipo de raza o etnia, y claro, las simetrías. Empero, con la llegada de la nueva tecnología y los avances del Deep Learning, es posible el reconocimiento facial y la clasificación de imágenes. En razón a ello, se tiene que delimitar que, existen algoritmos y métodos para detectar y reconocer rostros. Ante el problema suscitado, se plantea reutilizar una Red Neuronal Convolucional configurando ciertos parámetros, para que sea capaz de identificar y detectar expresiones de tristeza en un rostro. Por tal motivo, se usará el dataset FER2013 de la plataforma Kaggle. Luego, se empleará la librería Face Recognition para el reconocimiento facial. En alusión a lo anterior, indicar que, el sistema estará basado en el lenguaje de programación Python, lo cual nos será útil para trabajar de la mano con la herramienta OpenCV, que sería algo clave en este proceso. El designio es, reconocer las expresiones faciales de tristeza de manera eficiente, y optimizando el tiempo de entrenamiento. | es_PE |
dc.description.uri | Tesis | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | spa | es_PE |
dc.publisher | Universidad Señor de Sipán | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ | * |
dc.source | Repositorio Institucional - USS | es_PE |
dc.source | Repositorio Institucional USS | es_PE |
dc.subject | Reconocimiento facial | es_PE |
dc.subject | Expresiones faciales | es_PE |
dc.subject | Aprendizaje profundo | es_PE |
dc.title | Reconocimiento de expresiones faciales de tristeza utilizando aprendizaje profundo | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | es_PE |
thesis.degree.grantor | Universidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismo | es_PE |
thesis.degree.name | Ingeniero de Sistemas | es_PE |
thesis.degree.discipline | Ingeniería de Sistemas | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.04 | es_PE |
renati.advisor.dni | 17610253 | |
renati.advisor.orcid | https://orcid.org/0000-0003-1929-3969 | es_PE |
renati.author.dni | 41604689 | |
renati.discipline | 612076 | es_PE |
renati.juror | Ramos Moscol, Mario Fernando | es_PE |
renati.juror | Sialer Rivera, Maria Noelia | es_PE |
renati.juror | Bravo Ruíz, Jaime Arturo | es_PE |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_PE |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_PE |
dc.description.lineadeinvestigacion | Infraestructura, Tecnología y Medio Ambiente | es_PE |
dc.publisher.country | PE | es_PE |