Mostrar el registro sencillo del ítem
Clasificación automática de citrus aurantifolia usando visión artificial
dc.contributor.advisor | Tuesta Monteza, Victor Alexci | |
dc.contributor.author | Alcarazo Ibáñez, Freddy Daniel | |
dc.date.accessioned | 2021-12-13T15:51:08Z | |
dc.date.available | 2021-12-13T15:51:08Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12802/8934 | |
dc.description.abstract | Diversos mercados del mundo importan el Limón Sutil (Citrus Aurantifolia) peruano el cual es fuente importante de vitamina C para las personas recomendado por la Organización Mundial de la Salud (OMS). Las provincias que mayor Limón producen en el Perú son Lambayeque y Piura mientras que Chile es el principal país importador de Citrus Aurantifolia peruano, tan solo en el 2018 importo 3352106 toneladas métricas de Citrus Aurantifolia. La clasificación manual de frutas en general es un proceso de reconocimiento de aspecto continuo y consistente el cual requiere de personal experto, en dicho proceso de manera indirecta suceden clasificaciones incorrectas debido al factor del error humano lo cual convierte al proceso impreciso el cual depende de factores subjetivos como es el estado de salud en general de la persona y la experticia de la misma. En esta investigación se propuso un método basado en la aplicación de técnicas de visión artificial para clasificar de manera automática Citrus Aurantifolia por color. Se realizó la adquisición de imágenes para cada una de las clases de Citrus Aurantifolia (Maduro, Pintón y Verde) caracterizadas en base a Experto. Se obtuvo un dataset de 1050 imágenes de Citrus Aurantifolia (350 imágenes por clase). Se aplicaron las técnicas de pre-procesado de imágenes (corrección gamma, filtro pasa bajo, conversión a espacio de color HSV y escala de grises) y segmentación por el método de Otsu. Las características de Momentos de Color de las imágenes de Citrus Aurantifolia son utilizados para entrenar las técnicas de clasificación automática de Máquina de Vectores de Soporte (SVM) y K-Vecinos más Cercanos (KNN). Utilizando las características del Momento de Color de la media del canal R (rojo) de las imágenes de Citrus Aurantifolia en RGB, la técnica SVM obtuvo una tasa precisión del 98%, mientras que al convertir las imágenes de Citrus Aurantifolia al espacio de color CIELAB utilizando las características de las coordenadas a* y b* la tasa de precisión obtenida por las técnicas SVM y KNN fue del 100% con un tiempo de ejecución de 0.029801 sg (SVM) y 0.0074096 sg (KNN) respectivamente. | es_PE |
dc.description.uri | Tesis | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | spa | es_PE |
dc.publisher | Universidad Señor de Sipán | es_PE |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_PE |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ | * |
dc.source | Repositorio Institucional - USS | es_PE |
dc.source | Repositorio Institucional USS | es_PE |
dc.subject | Momentos de Color | es_PE |
dc.subject | Visión Artificial | es_PE |
dc.subject | SVM | es_PE |
dc.subject | Clasificación Automática | es_PE |
dc.subject | Prototipo | es_PE |
dc.title | Clasificación automática de citrus aurantifolia usando visión artificial | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | es_PE |
thesis.degree.grantor | Universidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismo | es_PE |
thesis.degree.name | Ingeniero de Sistemas | es_PE |
thesis.degree.discipline | Ingeniería de Sistemas | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.04 | es_PE |
renati.advisor.dni | 42722929 | |
renati.advisor.orcid | https://orcid.org/0000-0002-5913-990X | es_PE |
renati.author.dni | 75852413 | |
renati.discipline | 612076 | es_PE |
renati.juror | Ramos Moscol, Mario Fernando | es_PE |
renati.juror | Mejía Cabrera, Heber Ivan | es_PE |
renati.juror | Díaz Vidarte, Miguel Orlando | es_PE |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_PE |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_PE |
dc.description.lineadeinvestigacion | Infraestructura, Tecnología y Medio Ambiente | es_PE |
dc.publisher.country | PE | es_PE |