Mostrar el registro sencillo del ítem

dc.contributor.advisorTuesta Monteza, Victor Alexci
dc.contributor.authorDíaz Bernilla, Nataly Marlene
dc.date.accessioned2021-07-27T18:04:08Z
dc.date.available2021-07-27T18:04:08Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/20.500.12802/8386
dc.description.abstractEn la actualidad el cáncer es una de las primeras causas de muerte a nivel mundial, en la ingeniería el aprendizaje automático se está utilizando para analizar datos y aprender de ellos, consecuentemente son capaces de predecir o sugerir, y está teniendo un alto impacto en los avances tecnológicos médicos. El objetivo de este trabajo es realizar un análisis comparativo para la detección de los subtipos de un cáncer, la investigación inicia con la selección del tipo de cáncer, el cual se seleccionó el cáncer de mama, posteriormente se caracterizó los subtipos del cáncer obteniendo 4 subtipos los cuales son, Luminal A, Luminal B, Basal o triple negativo y el tipo de cáncer enriquecido con Her2. Posteriormente se realizó la clasificación siendo los clasificadores Support Vector Machines, K-Nearest Neighbor y Naive Bayes los seleccionados, además se utilizaron los datos obtenidos del bioproyecto GSE10886 que contiene 200 muestras de tejido tumorosos generados en GEO2R (Herramienta que analiza datos genómicos). Los resultados obtenidos de los indicadores precisión, error, sensibilidad y especificidad de los clasificadores son SVM (97%, 3%, 95%, 99%) , siendo el que obtuvo mejor performance en comparación al clasificador KNN(88%, 12%, 89%, 96%) y del clasificador NB (90%, 10%, 89% y 98%) respectivamente, demás se obtuvo el tiempo de respuesta de la ejecución de los clasificadores siendo del clasificador SVM 0.36 segundos, 2.79 segundos del clasificador KNN y 0.33 segundos del clasificador Naive Bayes. Finalmente se concluyó que el clasificador que obtuvo mejor performance en los resultados evaluados es el clasificador SVM con un 97% de precisión, 3% de error , 95% de sensibilidad y un 99% de especificidad y por último el clasificador con menos tiempo de respuesta fue el clasificador Naive Bayes con 0.33 segundos.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectClasificación automáticaes_PE
dc.subjectSubtipos de Cánceres_PE
dc.subjectSupport Vector Machineses_PE
dc.subjectK-Nearest Neighbores_PE
dc.subjectNaive Bayeses_PE
dc.titleAnálisis comparativo de clasificadores para la detección de subtipos de cánceres_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni42722929
renati.advisor.orcidhttps://orcid.org/0000-0002-5913-990Xes_PE
renati.author.dni75008762
renati.discipline612076es_PE
renati.jurorMejía Cabrera, Heber Ivánes_PE
renati.jurorSialer Rivera, Maria Noeliaes_PE
renati.jurorTuesta Monteza, Víctor Alexcies_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.description.lineadeinvestigacionInfraestructura, Tecnología y Medio Ambientees_PE
dc.publisher.countryPEes_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess