Mostrar el registro sencillo del ítem

dc.contributor.advisorMejia Cabrera, Heber Ivan
dc.contributor.authorGuevara Barreto, José Alberto
dc.date.accessioned2020-02-26T16:03:06Z
dc.date.available2020-02-26T16:03:06Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/20.500.12802/6789
dc.description.abstractEl presente proyecto de investigación denominado “COMPARACIÓN DE KVECINOS MÁS CERCANOS Y SUAVIZAMIENTO EXPONENCIAL EN LA PREDICCION DE MOROSIDAD DE CUOTAS SOCIALES DEL COLEGUIO DE INGENIEROS DEL PERÚ CONSEJO DEPARTAMENTAL LAMBAYEQUE” se propone utilizar dos técnicas de predicción, donde se utiliza una computacional K-Vecinos más Cercanos, una estadística Suavizamiento Exponencial donde lo que se espera es saber que algoritmo es el más eficaz para predecir la morosidad, donde se utilizaran los datos de los Colegiados del Colegio de Ingenieros CDL. Donde se toma como guía estudios realizados en otros campos ya que en morosidad no hay hasta el momento un estudio que determine cualquier tipo de medición en el campo de morosidad. El objetivo principal es saber que algoritmo es el mejor para predecir la morosidad, donde se evaluara la precisión, especificidad y tiempo y así saber que técnica tiene mayor performance para un problema determinado, donde se empleara el proceso ETL para la extracción de los datos de los colegiados donde se tomara en cuenta los datos más relevantes para ser procesados con los algoritmos, donde se espera obtener un porcentaje aceptable, ya que no será lo mismos resultados que en las investigaciones anteriores planteadas en otros campos de investigación, done una vez obtenidos los resultados estos servirá para mejorar la toma de decisiones en el colegio de ingenieros, donde se estimara el nivel de morosidad según sea el volumen que se genere mensual u anual.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectPredicciónes_PE
dc.subjectSuavizamiento Exponenciales_PE
dc.subjectk vecinos más cercanoses_PE
dc.subjectmétodoses_PE
dc.titleComparación de k-vecinos más cercanos y suavizamiento exponencial en la predicción de morosidad de cuotas sociales del colegio de ingenieros del Perú consejo departamental Lambayequees_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.discipline612076es_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.publisher.countryPEes_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess