Mostrar el registro sencillo del ítem

dc.contributor.advisorRequejo Chaname, Walter Juan
dc.contributor.authorJhong Guillen, Shirley Julissa
dc.date.accessioned2020-02-25T23:09:57Z
dc.date.available2020-02-25T23:09:57Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/20.500.12802/6768
dc.description.abstractLa investigación denominada “Análisis comparativo de las técnicas de minería de datos para la estimación de consumos de energía eléctrica en la empresa ELECTRONORTE S.A.” tiene como objetivo analizar los diversos algoritmos de aprendizaje de minería de datos para el diseño de modelos con tendencia predictiva en los sistemas de Inteligencia de Negocios. La minería de datos es una herramienta que permita a través de la exploración y análisis de datos extraer patrones de comportamiento en el histórico de datos de determinado fenómeno (Institución, Empresa, etc.), según la naturaleza del fenómeno y los datos se aplican diversas técnicas, siendo relevante mencionar a técnicas como Regresión, Clasificación, Asociación y Agrupación; esta exploración se realiza mediante algoritmos computacionales de aprendizaje. El ámbito de aplicación de éstas técnicas, en esta investigación se localiza en los datos de los clientes de la empresa ELECTRONORTE S.A., empresa del rubro eléctrico de servicios públicos, siendo el objetivo de la misma analizar los datos con respecto al comportamiento de consumo eléctrico de los clientes para determinados periodos comerciales. Por lo tanto, el tipo de modelo se asocia con las técnicas de Regresión o series de tiempo, ya que se pretende realizar estimaciones de los consumos de energía eléctrica de los clientes. Evidentemente es un caso de pronósticos de series de tiempo, para lo cual se conocen diversos algoritmos como es el caso de Holtwinters, ARIMA, ETS, Redes Neuronales, entre otros, con los cuales se puede realizar el pronóstico según el análisis histórico de la serie de tiempo. Se sabe también que cada algoritmo puede ser aplicado a una realidad específica, siendo el ámbito energético al cual se someterán a evaluación los mencionados algoritmos para establecer cual tiene mejor precisión en el desarrollo de modelos predictivos orientado a este problema.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectMinería de datoses_PE
dc.subjectPronósticoses_PE
dc.titleAnálisis comparativo de las técnicas de minería de datos para la estimación de consumos de energía eléctrica en la empresa Electronorte S.A.es_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.discipline612076es_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.publisher.countryPEes_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess