Mostrar el registro sencillo del ítem

dc.contributor.advisorSamillan Ayala, Alberto Enrique
dc.contributor.authorRoque Terrones, Bebsy
dc.date.accessioned2020-02-24T16:03:58Z
dc.date.available2020-02-24T16:03:58Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/20.500.12802/6730
dc.description.abstractEn los últimos años, el estudio de técnicas para el reconocimiento de texto sea por carácter o palabras han ido creciendo, al igual que las publicidades que usan palabras, frases o imágenes al mismo tiempo con significado publicitario, estas publicidades lo vemos incluso en cualquier página web o correos electrónicos. La presente revisión bibliográfica científica tiene como objetivo la recopilación de las diferentes técnicas de reconocimiento de texto sea por imágenes de texto publicitarios en web, imágenes tomadas por cámaras o por otros campos de investigación. Trabajos anteriores desarrollaron diferentes técnicas de reconocimiento de textos en imágenes como Reconocimiento Óptico de Caracteres (OCR), en la cual solo utilizaron técnicas para el reconocimiento de texto teniendo algunas complicaciones en donde los resultados no eran satisfactorias y consumía muchos recursos ya sea la memoria de la CPU; otros investigadores aportaron técnicas de reconocimiento de imágenes en texto en donde obtuvieron casi resultados satisfactorios, sin embargo el estudio algunos investigadores decidieron en combinar estas técnicas con diferentes clasificadores de inteligencia artificial y Deep Learning como es redes neuronales donde observaron que los resultados eran satisfactorios en el campo que se estudiaba, otra técnica es el Espacio de características para el reconocimiento de imágenes con proyección de imágenes utilizando un Preprocesamiento de imágenes y un clasificador Bayer para la detección en sola las áreas de imágenes en rostro humano y texto a la vez encontraron que los espacios de características diseñados mejoran el reconocimiento de precisión y eficiencia; también se optó por otras técnicas para obtener nuevas características de nitidez para la clasificación del tipo de imagen basada en información textual utilizaron Canny edge utilizando espacios de color H,S y I y un clasificador Máquina de Soporte de Vectores (SVM); sin embargo otros artículos hablan en técnicas mediante el análisis de todo el contenido, es decir la imagen y Texto, procesándolo a través de clasificadores independientes usando Redes neuronales convolucionales (CNN) . Esta revisión bibliográfica científica permite ofrecer los aportes de las diferentes técnicas de reconocimiento de texto en imágenes sea publicitarias en web, digitales o en otros campos.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectReconocimiento de Imágeneses_PE
dc.subjectProcesamiento de Textoes_PE
dc.subjectReconocimiento Óptico de Caractereses_PE
dc.subjectImágenes de Texto Publicitario Webes_PE
dc.subjectAprendizaje Profundoes_PE
dc.subjectRedes Neuronales Convolucionaleses_PE
dc.titleRevisión bibliográfica de técnicas para el reconocimiento de textos publicitarios en imágenes de páginas web.es_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.discipline612076es_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.publisher.countryPEes_PE


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess