Mostrar el registro sencillo del ítem
ANÁLISIS COMPARATIVO DE MÉTODOS DE RECONOCIMIENTO FACIAL EN PLATAFORMA ANDROID PARA RESOLVER PROBLEMAS DE SEGURIDAD E ILUMINACION EN AMBIENTES NO CONTROLADOS
dc.contributor.advisor | Tuesta Monteza, Víctor Alexci | |
dc.contributor.author | Culquichicón Vílchez, Luis German | |
dc.date.accessioned | 2019-02-15T17:03:07Z | |
dc.date.available | 2019-02-15T17:03:07Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12802/5368 | |
dc.description.abstract | El presente trabajo de investigación tiene como objetivo principal realizar el análisis comparativos de métodos de reconocimiento facial en sistemas operativos Android para resolver problemas de seguridad e iluminación en ambientes no controlados, esta investigación surge debido al estudio realizado en las bases teóricas científicas, estado del arte y los diversos problemas que existen en trabajos anteriores con la implementación de métodos de reconocimiento facial donde existen métodos que son muy efectivos y procesan el resultado rápidamente pero solo en ambientes controlados, es por esta razón que se plantea realizar un análisis comparativo de dos métodos de reconocimiento facial para saber que método funciona mejor en tiempo real y teniendo en cuenta la iluminación y la seguridad. Para realizar el trabajo de esta investigación se utilizaron 450 fotos faciales de personas adquiridas de manera propia como muestra para la puesta a prueba de los 2 métodos seleccionados los cuales son el FisherFaces y el Patrón de Binario Local (LBP), además se creó un propio protocolo de adquisición de imágenes, para luego almacenarlas en una base de datos para que de esta manera sean procesadas por los métodos seleccionados. Para la emisión de resultados se implementó una aplicación móvil en Android Studio con lenguaje Java y con ayuda de los módulos de OpenCv en donde se mide el tiempo de respuesta de cada prueba realizada con ambos métodos y además el porcentaje de éxito y error de cada método. Al término de los experimentos se concluyó que para evitar problemas de seguridad es más conveniente usar el método FisherFaces debido a que su porcentaje de error es de 40% por lo que es más bajo que el método LBP que emitió un porcentaje de 60%. En cuanto a la iluminación se concluyó que el método LBP es más eficiente y preciso para detectar caras con luz de día debido a que los experimentos arrojaron un 100% como tasa de éxito, mientras que con luz de tarde y luz nocturna un porcentaje de 90%. | es_PE |
dc.description.uri | Tesis | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | spa | es_PE |
dc.publisher | Universidad Señor de Sipán | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Repositorio Institucional - USS | es_PE |
dc.source | Repositorio Institucional USS | es_PE |
dc.subject | Reconocimiento facial | es_PE |
dc.subject | Ambientes no controlados | es_PE |
dc.subject | FisherFaces | es_PE |
dc.subject | Patrón binario local | es_PE |
dc.subject | Seguridad | es_PE |
dc.subject | Iluminación | es_PE |
dc.title | ANÁLISIS COMPARATIVO DE MÉTODOS DE RECONOCIMIENTO FACIAL EN PLATAFORMA ANDROID PARA RESOLVER PROBLEMAS DE SEGURIDAD E ILUMINACION EN AMBIENTES NO CONTROLADOS | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | es_PE |
thesis.degree.level | Título Profesional | es_PE |
thesis.degree.grantor | Universidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismo | es_PE |
thesis.degree.name | Ingeniero de Sistemas | es_PE |
thesis.degree.discipline | Ingeniería de Sistemas | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.04 | es_PE |
renati.discipline | 612076 | es_PE |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_PE |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_PE |
dc.publisher.country | PE | es_PE |