Mostrar el registro sencillo del ítem
Procesamiento de imágenes digitales utilizando descriptores de forma para la identificación de deficiencias nutricionales a nivel foliar del cafeto
dc.contributor.advisor | Beltrán Castañón, Cesar Armando | |
dc.contributor.author | Vassallo Barco, Marcelo Jesús | |
dc.date.accessioned | 2017-01-11T13:31:33Z | |
dc.date.available | 2017-01-11T13:31:33Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12802/311 | |
dc.description.abstract | La evaluación del estado nutricional de las plantas de café se hace generalmente mediante el análisis químico del suelo o por la visualización síntomas en las hojas de las planta, hecho generalmente por los mismos agricultores basados en la experiencia, lo cual puede ser susceptible a errores. Las dificultades que presentan el proceso de evaluación del estado nutricional de las plantas de café y su importancia en la agricultura y economía nacional, crean la necesidad de la búsqueda de automatizar estos procesos. Las deficiencias nutricionales en plantas de café afectan la producción y por tanto es importante identificar en forma temprana estas deficiencias. La presente investigación se centra en identificar automáticamente deficiencias nutricionales de Boro (B), Calcio (Ca), Hierro (Fe) y Potasio (K) usando descriptores de forma y textura en imágenes de hojas de cafeto. Luego de la adquisición de imágenes de hojas de café, estas son sometidas a un proceso de segmentación utilizando el método de Otsu. A las imágenes resultantes se aplicaron los descriptores Blurred Shape Model (BSM), Square Model Shape Matrix (SMSM), Gray-Level Co-occurrence Matrix (GLCM) para la extracción de características de forma y textura. Finalmente, se implementaron los clasificadores 1-NN, Naive Bayes y Neural Network que, usando las características extraídas, los cuales permiten inferir en el tipo de deficiencia que presente en cada imagen analizada. | es_PE |
dc.description.uri | Tesis | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | spa | es_PE |
dc.publisher | Universidad Señor de Sipán | es_PE |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_PE |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Repositorio Institucional - USS | es_PE |
dc.source | Universidad Señor de Sipán | es_PE |
dc.subject | Visión artificial | es_PE |
dc.subject | Procesamiento de imágenes | es_PE |
dc.subject | Descriptores de forma | es_PE |
dc.subject | Reconocimiento de patrones | es_PE |
dc.title | Procesamiento de imágenes digitales utilizando descriptores de forma para la identificación de deficiencias nutricionales a nivel foliar del cafeto | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | es_PE |
thesis.degree.level | Título Profesional | es_PE |
thesis.degree.grantor | Universidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismo | es_PE |
thesis.degree.name | Ingeniero de Sistemas | es_PE |
thesis.degree.discipline | Ingeniería de Sistemas | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.04 | es_PE |
renati.discipline | 612076 | es_PE |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_PE |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_PE |
dc.publisher.country | PE | es_PE |