Mostrar el registro sencillo del ítem

dc.contributor.advisorArcila Diaz, Juan Carlos
dc.contributor.authorSeclen Roque, Marco Antonio
dc.date.accessioned2025-05-02T16:59:26Z
dc.date.available2025-05-02T16:59:26Z
dc.date.issued2025
dc.identifier.urihttps://hdl.handle.net/20.500.12802/14735
dc.description.abstractLa presente investigación propone un método automatizado basado en Redes Neuronales Convolucionales para la lectura automática del consumo de agua en medidores mediante el análisis de imágenes RGB. Ante la creciente demanda de agua y las limitaciones inherentes a la lectura manual de medidores, se ha desarrollado un sistema que permite optimizar la gestión de recursos hídricos complementando el proceso de lectura tradicional. Se conformó inicialmente un conjunto de datos compuesto por 100 imágenes de medidores de la marca Zenner, capturadas en entornos reales con variaciones en iluminación y condiciones ambientales. Posteriormente, mediante técnicas de aumento de datos, específicamente rotaciones leves de ±5° aplicadas de forma reiterada, se amplió el dataset hasta un total de 809 imágenes, lo que permitió incrementar la variabilidad y robustez del modelo. El entrenamiento se realizó utilizando dos arquitecturas de la familia YOLO, concretamente YOLOv8 y YOLOv11, configuradas para identificar y clasificar los dígitos numéricos presentes en los medidores en 10 clases (dígitos del 0 al 9). Los resultados del modelo evidenciaron una precisión y un F1-score superiores al 99.68%, lo que demuestra la alta eficacia del sistema en la detección de dígitos. Además, se integró el modelo en una aplicación web desarrollada con Flask, facilitando así su despliegue en entornos operativos y permitiendo la lectura automática en tiempo real. Los resultados obtenidos validan la hipótesis de que el uso de CNN mejora significativamente la precisión y eficiencia de la lectura de medidores, ofreciendo una solución escalable y robusta para la gestión moderna de recursos hídricos.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectRedes neuronales convolucionaleses_PE
dc.subjectLectura automáticaes_PE
dc.subjectMedidores de aguaes_PE
dc.subjectYOLOes_PE
dc.subjectGestión hídricaes_PE
dc.titleMétodo basado en Redes Neuronales Convolucionales para la lectura automática del consumo de agua en imágenes de medidoreses_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni47715777
renati.advisor.orcidhttps://orcid.org/0000-0002-7788-951Xes_PE
renati.author.dni16722904
renati.discipline612076es_PE
renati.jurorMejia Cabrera, Heber Ivan
renati.jurorBances Saavedra, David Enrique
renati.jurorArcila Diaz, Juan Carlos
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.description.lineadeinvestigacionCiencias de la información como herramientas multidisciplinares y estratégicas en el contexto industrial y de organizacioneses_PE
dc.publisher.countryPEes_PE
dc.description.sublineadeinvestigacionInformática y transformación digital en el contexto industrial y organizacional.es_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess