Mostrar el registro sencillo del ítem

dc.contributor.advisorBravo Ruiz, Jaime Arturo
dc.contributor.authorCrisanto Matallana, Jesus Elmer
dc.contributor.authorVilchez Chaname, Loisabett
dc.date.accessioned2024-11-26T16:48:25Z
dc.date.available2024-11-26T16:48:25Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/20.500.12802/13555
dc.description.abstractLa enfermedad del cáncer del cuello uterino requiere de un diagnóstico certero y anticipado por consiguiente que el objetivo de la investigación fue evaluar la efectividad de algoritmos de aprendizaje automático en la detección de cáncer cervical a partir de imágenes de Papanicolaou. Para ello, se implementaron redes neuronales convolucionales (CNN), DenseNet121 con capas de CNN, CNN con dropout y SVM con extracción de características, sin utilizar transferencia de aprendizaje. El datasetda utilizado constó de 4049 imágenes, de las cuales el 80% se destinó al entrenamiento y el 20% a la validación. Se llevó a cabo un exhaustivo análisis del consumo de CPU, el uso de RAM y el tiempo de respuesta para cada clasificador de aprendizaje automático. Además, se documentó detalladamente el proceso de implementación de los algoritmos, incluyendo la construcción de una matriz de confusión y el cálculo de métricas de desempeño como precisión, sensibilidad, especificidad y F1-score. Los resultados obtenidos demostraron que CNN combinado con dropout fue altamente efectiva en la detección de cáncer cervical, con altos niveles de precisión (90%), exactitud (90.5%) y puntuación F1 (90.5%). Estos hallazgos respaldan la efectividad de los algoritmos de aprendizaje automático en la detección precisa de cáncer cervical. En conclusión, el estudio evidenció que los algoritmos de aprendizaje automático son una herramienta prometedora para la detección temprana y precisa del cáncer de cáncer cervical, lo que podría tener un impacto significativo en la mejora de los cuidados de salud para las mujeres.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectAprendizaje profundoes_PE
dc.subjectPapanicolaoues_PE
dc.subjectCáncer cervicales_PE
dc.subjectDetecciónes_PE
dc.titleAnálisis de algoritmos de aprendizaje automático para la detección de cáncer de cuello uterino utilizando imágenes de papanicolaoues_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni17610253
renati.advisor.orcidhttps://orcid.org/0000-0002-5913-990Xes_PE
renati.author.dni74769194
renati.author.dni48431457
renati.discipline612076es_PE
renati.jurorAtalaya Urrutia, Carlos William
renati.jurorBances Saavedra, David Enrique
renati.jurorBravo Ruiz, Jaime Arturo
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.description.lineadeinvestigacionCiencias de la información como herramientas multidisciplinares y estratégicas en el contexto industrial y de organizacioneses_PE
dc.publisher.countryPEes_PE
dc.description.sublineadeinvestigacionInformática y transformación digital en el contexto industrial y organizacional.es_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess