Mostrar el registro sencillo del ítem

dc.contributor.advisorVásquez Leyva, Oliver
dc.contributor.authorGonzales Inoñan, Oscar Eduardo
dc.contributor.authorLopez Cruz, Alex Fabian
dc.date.accessioned2024-11-25T14:17:26Z
dc.date.available2024-11-25T14:17:26Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/20.500.12802/13520
dc.description.abstractEl objetivo de la investigación consiste en analizar algoritmos de aprendizaje automático para la detección de roya de café. En este contexto, se emplearon algoritmos supervisados, entre los cuales se incluyen Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM) y Custom Convolutional Neural Networks (CNN). Para llevar a cabo el entrenamiento de dichos algoritmos, se utilizó un conjunto de datos compuesto por 6260 imágenes de hojas de café, tanto saludables como no saludables. Es importante señalar que se implementó un proceso de preprocesamiento inicial que implicó la eliminación del fondo de las imágenes. Dentro de la metodología empleada, se asignó el 80% de las imágenes al conjunto de entrenamiento, mientras que el 20% restante se destinó a la validación del modelo. Asimismo, se documenta detalladamente el proceso de selección e implementación de cada algoritmo, acompañado de las correspondientes métricas de precisión, exactitud, sensibilidad y la puntuación F1. Los resultados obtenidos indican que el algoritmo Decision Tree se destaca como el más eficaz en la detección del patógeno en cuestión, alcanzando un rendimiento del 99%. En conclusión, este estudio demuestra de manera concluyente que los algoritmos de aprendizaje automático representan una herramienta sumamente prometedora para la detección de la roya del cafées_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectAprendizaje automáticoes_PE
dc.subjectAlgoritmos de detecciónes_PE
dc.subjectHemileia Vastratixes_PE
dc.subjectCoffee Rustes_PE
dc.titleAnálisis de algoritmos de aprendizaje automático para detectar la roya de cafées_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni40283413
renati.advisor.orcidhttps://orcid.org/0000-0003-4425-0688es_PE
renati.author.dni71934306
renati.author.dni75463065
renati.discipline612076es_PE
renati.jurorArcila Diaz, Juan Carlos
renati.jurorAsenjo Carranza, Enrique David
renati.jurorMejia Cabrera, Heber Ivan
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.description.lineadeinvestigacionCiencias de la información como herramientas multidisciplinares y estratégicas en el contexto industrial y de organizacioneses_PE
dc.publisher.countryPEes_PE
dc.description.sublineadeinvestigacionInformática y transformación digital en el contexto industrial y organizacional.es_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess