Mostrar el registro sencillo del ítem

dc.contributor.advisorTuesta Monteza, Víctor Alexci
dc.contributor.authorAlcantara Calderon, Gianmarco
dc.contributor.authorArica Guerrero, Lauren David
dc.date.accessioned2024-11-19T16:05:59Z
dc.date.available2024-11-19T16:05:59Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/20.500.12802/13440
dc.description.abstractEl brote de la viruela del mono es una enfermedad causada por el virus Orthopox, es el más cercano al virus de la viruela, cuyos contagios siguen aumentando a nivel mundial. La presente investigación busca comparar el desempeño de tres modelos de aprendizaje profundo para clasificar dicha enfermedad. Para ello se empleó un conjunto de datos de un total de 1577 imágenes. Mediante una revisión de la literatura se seleccionaron los modelos de aprendizaje profundo empleados en el estudio, siendo estos una CNN personalizada, VGG16 y ResNet50. Posteriormente se dividió el dataset en 70% para el entrenamiento, 15% para la validación y 15% para la prueba. Los resultados indicaron que el modelo ResNet50 tuvo mejor desempeño con 98.00% en exactitud, 98.50% en precisión, 98.25% en recall y 98.50% en f1-score. Los hallazgos destacan la importancia del aprendizaje profundo para el desarrollo de herramientas diagnosticas, evidenciando la eficacia de ResNet50 para la clasificación de la enfermedad de la virtual del mono.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectViruela del monoes_PE
dc.subjectAprendizaje profundoes_PE
dc.subjectModeloses_PE
dc.subjectClasificadoreses_PE
dc.titleClasificación de la viruela del mono mediante aprendizaje profundo y técnicas de procesamiento de imágeneses_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni42722929
renati.advisor.orcidhttps://orcid.org/0000-0002-5913-990Xes_PE
renati.author.dni74727547
renati.author.dni73581496
renati.discipline612076es_PE
renati.jurorTuesta Monteza, Victor Alexci
renati.jurorGuevara Alburqueque, Laurita Belen
renati.jurorArcila Diaz, Juan Carlos
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.description.lineadeinvestigacionCiencias de la información como herramientas multidisciplinares y estratégicas en el contexto industrial y de organizacioneses_PE
dc.publisher.countryPEes_PE
dc.description.sublineadeinvestigacionInformática y transformación digital en el contexto industrial y organizacional.es_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess