Mostrar el registro sencillo del ítem

dc.contributor.advisorMejia Cabrera, Heber Ivan
dc.contributor.authorFlores Tello, Jaime Nicolas
dc.date.accessioned2022-11-03T02:30:50Z
dc.date.available2022-11-03T02:30:50Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/20.500.12802/10220
dc.description.abstractLa Palta es una fruta muy importante debido a los nutrientes que posee y a los beneficios que trae a la salud, crece en zonas con climas tropicales y subtropicales, es atacado por plagas y enfermedades. Siendo Lasiodiplodia Theobromae la enfermedad más recurrente. Realizar la identificación usando la experticia humana genera complicaciones, la presente investigación propuso detectar la enfermedad de manera automática haciendo uso de las redes neuronales convolucionadas. La investigación tuvo 4 etapas. La primera etapa siguió un riguroso protocolo para realizar la toma de imágenes, en la segunda etapa se caracterizó la enfermedad visualmente. En la tercera etapa las imágenes se sometieron a un pre procesamiento. En la etapa quinta se realizó la clasificación automática de la enfermedad. Obteniendo como resultados un 98% de precisión, 96% de exactitud, 96% de sensibilidad y 98% de especificidad. Concluyéndose que las redes neuronales convolucionales fueron efectivas para la clasificación digital, sin embargo, para la obtención de mejores resultados es necesario que el repositorio de imágenes se más grande.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectDetección automáticaes_PE
dc.subjectLasiodiplodia Theobromaees_PE
dc.subjectRedes Neuronaleses_PE
dc.subjectBinarizaciónes_PE
dc.subjectRGBes_PE
dc.subjectHSVes_PE
dc.subjectLABes_PE
dc.titleDetección automática de la enfermedad lasiodiplodia theobromae del palto utilizando imágenes digitales con redes neuronales convolucionaleses_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni41639565
renati.advisor.orcidhttps://orcid.org/0000-0002-0007-0928es_PE
renati.author.dni72178651
renati.discipline612076es_PE
renati.jurorForero Vargas, Manuel Guillermoes_PE
renati.jurorDiaz Vidarte, Miguel Orlandoes_PE
renati.jurorMejia Cabrera, Heber Ivanes_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.description.lineadeinvestigacionInfraestructura, Tecnología y Medio Ambientees_PE
dc.publisher.countryPEes_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess