Mostrar el registro sencillo del ítem

dc.contributor.advisorRamos Moscol, Mario Fernando
dc.contributor.authorGonzalez Flores, Paul Gustavo
dc.date.accessioned2022-10-28T21:36:11Z
dc.date.available2022-10-28T21:36:11Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/20.500.12802/10143
dc.description.abstractMundialmente el cáncer afecta en gran proporción a la niñez, en el 2020 se reportaron a nivel mundial más de 400 mil casos nuevos de leucemias, siendo el cáncer más frecuente en la niñez. En Perú, el Instituto Nacional de Enfermedades Neoplásicas, realizó un informe estadístico de los pacientes que residen en Lima Metropolitana entre los años 2010 y 2012, donde se reportaron 1604 pacientes diagnosticados con leucemia, representando más del 40% de todas las neoplasias. La influencia del aprendizaje automático en la medicina ha sido muy importante hoy en día, siendo aplicado para diagnosticar diferentes enfermedades, destacando entre ellas el diagnóstico de diferentes tipos de cáncer. La elección de los algoritmos de clasificación a implementar se realizó mediante una revisión de la literatura científica, donde se seleccionaron los algoritmos Regresión logística y Árboles de decisión por haber obtenido mejores resultados de exactitud. Los datos utilizados para desarrollar la presente investigación se obtuvieron del Hospital Regional Docente “Las Mercedes”, siguiendo criterios de inclusión y exclusión se recolectaron 75 datos de pacientes diagnosticados con tipos de leucemia infantil. Posteriormente, se consideró utilizar 60 datos de pacientes que representa el 80% para realizar el entrenamiento y 15 datos de pacientes que representa el 20% para las pruebas. La evaluación del desempeño de los algoritmos de clasificación se realizó mediante la matriz de confusión. Los resultados mostraron que el algoritmo de clasificación Árboles de decisión obtuvo una exactitud de 100%, precisión 100%, especificidad 100%, F1 Score 100% y tiempo de respuesta de 0.02 segundos, mientras que el algoritmo de clasificación Regresión logística obtuvo una exactitud de 93.3%, precisión 92.9%, sensibilidad 100%, F1 Score 96.3% y un tiempo de respuestas de 0.05 segundos. La comparación de los resultados obtenidos mostró que el algoritmo de clasificación Árboles de decisión, es el mejor para diagnosticar los tipos de leucemia infantil, considerando el desempeño obtenido al evaluarse todos los indicadores propuestos en esta investigación.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Señor de Sipánes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourceRepositorio Institucional - USSes_PE
dc.sourceRepositorio Institucional USSes_PE
dc.subjectAprendizaje supervisadoes_PE
dc.subjectLeucemia infantiles_PE
dc.subjectÁrboles de decisiónes_PE
dc.subjectRegresión logísticaes_PE
dc.subjectAlgoritmos de clasificaciónes_PE
dc.subjectPredicciónes_PE
dc.subjectDiagnósticoes_PE
dc.titleAnálisis comparativo de algoritmos de clasificación para diagnosticar tipos de leucemia infantiles_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismoes_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.dni02659781
renati.advisor.orcidhttps://orcid.org/0000-0003-3812-7384es_PE
renati.author.dni46434261
renati.discipline612076es_PE
renati.jurorVásquez Leyva, Oliveres_PE
renati.jurorBravo Ruiz, Jaime Arturoes_PE
renati.jurorAtalaya Urrutia, Carlos Williames_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.description.lineadeinvestigacionInfraestructura, Tecnología y Medio Ambientees_PE
dc.publisher.countryPEes_PE


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess