Mostrar el registro sencillo del ítem
Aplicación de técnicas de aprendizaje automático para la reconstrucción de registros hidrometeorológicos en la Cuenca Chancay Lambayeque
dc.contributor.advisor | Salinas Vasquez, Nestor Raul | |
dc.contributor.author | Carrion Peña, Jheraldy Fiorela | |
dc.date.accessioned | 2024-02-02T20:21:54Z | |
dc.date.available | 2024-02-02T20:21:54Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12802/12109 | |
dc.description.abstract | La presente investigación tuvo como objetivo de estudio emplear técnicas de aprendizaje automático para la reconstrucción de registros hidrometeorológicos en la cuenca Chancay Lambayeque. La cual fue de tipo “Básica” - “No experimental”, con un enfoque Cuantitativo – Participativo, de diseño Transversal. Se tomaron datos de una estación hidrológica y dos meteorológicas las cuales conformaron la muestra. La observación y el análisis documental fueron las técnicas utilizadas, en la que se empleó como instrumento a la ficha técnica para recopilar información hidrometeorológica. Esta investigación se justifica en la reconstrucción de registros hidrometeorológicos de la cuenca Chancay Lambayeque para así contribuir con las instituciones que consideren pertinente en el planteamiento de proyectos hidráulicos e hidrológicos. Respecto a resultados, para la completación de registros hidrometeorológicos se evaluó la información a escala diaria en la que se empleó Redes Neuronales Artificiales del tipo Retropropagación, las cuales con un 80% de los registros se entrenó y calibró, y con un 20% se validó los datos de temperatura, caudal, y precipitación; por tanto, en la etapa que se validó los modelos alcanzaron coeficientes MSE cercanos a 0, el cual lo califica como “Bueno”. | es_PE |
dc.description.uri | Tesis | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | spa | es_PE |
dc.publisher | Universidad Señor de Sipán | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ | * |
dc.source | Repositorio Institucional - USS | es_PE |
dc.source | Repositorio Institucional USS | es_PE |
dc.subject | Caudal | es_PE |
dc.subject | Temperatura | es_PE |
dc.subject | Precipitación | es_PE |
dc.subject | Redes neuronales | es_PE |
dc.subject | Cuenca | es_PE |
dc.title | Aplicación de técnicas de aprendizaje automático para la reconstrucción de registros hidrometeorológicos en la Cuenca Chancay Lambayeque | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | es_PE |
thesis.degree.grantor | Universidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismo | es_PE |
thesis.degree.name | Ingeniero Civil | es_PE |
thesis.degree.discipline | Ingeniería Civil | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.01.01 | es_PE |
renati.advisor.dni | 16577244 | |
renati.advisor.orcid | https://orcid.org/0000-0001-5431-2737 | es_PE |
renati.author.dni | 74687165 | |
renati.discipline | 732016 | es_PE |
renati.juror | Villegas Granados, Luis Mariano | es_PE |
renati.juror | Salinas Vásquez, Nestor Raul | es_PE |
renati.juror | Chávez Cotrina, Carlos Ovidio | es_PE |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_PE |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_PE |
dc.description.lineadeinvestigacion | Infraestructura, Tecnología y Medio Ambiente | es_PE |
dc.publisher.country | PE | es_PE |