

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

ANÁLISIS REGIONAL DE CAUDALES PARA DETERMINAR UMBRALES DE INUNDACIÓN EN LA REGIÓN HIDROLÓGICA VI DEL PACÍFICO DEL PERÚ

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autor:

Bach. Cruz Chanta Joern Caleb https://orcid.org/0000-0002-3651-8624

Asesor:

Mg. Idrogo Pérez César Antonio https://orcid.org/0000-0003-4232-0144

Línea de Investigación: Infraestructura, Tecnología y Medio Ambiente

> Pimentel - Perú 2020

"ANÁLISIS REGIONAL DE CAUDALES PARA DETERMINAR UMBRALES DE INUNDACIÓN EN LA REGIÓN HIDROLÓGICA VI DEL PACÍFICO DEL PERÚ"

Aprobaci	ón de Tesis
Mg. Ing. Idrogo P	érez Cesar Antonio
	esor
	Vásquez Néstor Raúl Jurado de Tesis
Mag. Ing. Marín Bardales Noé	Mag. Ing. Villegas Granados Luis
Humberto	Mariano
Secretario del Jurado de Tesis	Vocal del Jurado de Tesis

DEDICATORIA

A la mujer que dio todo y deposito su confianza en mi persona para ser un profesional con éxito, que me enseñó a amar la vida y está en todo momento dándome su amor y las fuerzas para seguir adelante y jamás darme por vencido. Mi madre Eva Chanta Guarnizo y mi Padre Luis Cruz Guerrero por su amor y apoyo incondicional durante toda mi carrera, con el cariño de brindarles mi apoyo incondicional por su enorme esfuerzo, a mis hermanos que estuvieron presentes con sus consejos y aportes para seguir adelante.

Joern Caleb Cruz Chanta

AGRADECIMIENTO

A Dios por guiarme por el buen sendero en la vida, por darme las fuerzas necesarias para seguir adelante ante los problemas que día a día se presentan.

A la escuela de Ingeniería Civil de la Universidad Señor de Sipán, por la formación profesional brindada y su excelente plana docente, de la cual estoy orgulloso de haber egresado.

A mi asesor Ing. Cesar Idrogo Pérez, por su atención, ayuda y motivación sobre la investigación que me brindo para la realización de la presente tesis.

Joern Caleb Cruz Chanta

RESUMEN

La presente investigación propone realizar un análisis regional de caudales que permite determinar los umbrales de inundación en la región hidrológica VI del Pacífico de Perú, como etapa inicial se determinaron 18 cuencas hidrográficas y 78 sub cuencas que pertenecen a la región hidrológica VI, cuya clasificación y codificación como unidades hidrográficas ya se encuentra prestablecida por la Autoridad Nacional del Agua del Perú. Luego se analizó a las sub cuencas como elementos hidrológicos aportantes bajo el proceso lluvia – caudal; en la siguiente etapa tanto a las precipitaciones y a los caudales máximos se les aplicaron distribuciones teóricas de mejor ajuste para los períodos de retorno de 2, 5, 10, 20, 50, 100 y 200 años, que permitieron generar los hietogramas, desarrollar el modelamiento hidrológico y calcular los caudales máximos para cada cuenca, posteriormente se establecieron las zonas homogéneas de la región hidrológica VI, por medio del análisis regional de caudales basado en la relación caudal área para los diferentes períodos de retorno conformándose 4 grupos homogéneos y 4 niveles de clasificación para las alertas amarilla, naranja y roja. Finalmente se determinaron los umbrales de inundación para las cuencas y sub cuencas de la región hidrológica VI empleando para ello el análisis regional de caudales y se concluye que el método es aplicable para períodos de retorno de 2 a 500 años, para cuencas de nuestro país con al menos una estación dentro de su área y que disponga de 10 años de longitud de registro como mínimo.

Palabras clave:

Análisis regional, caudales, cuenca, región hidrológica, umbrales de inundación.

ABSTRACT

This research proposes to carry out a regional analysis of flows that allows determining the flood thresholds in the hydrological region VI of the Pacific of Peru, as an initial stage, 18 hydrographic basins and 78 sub-basins that belong to the hydrological region VI were determined, whose classification and coding as hydrographic units is already established by the National Water Authority of Peru. Subsequently, the sub-basins were analyzed as contributing hydrological elements under the rain-flow process; In the next stage, both the rainfall and the maximum flows were applied theoretical distributions of best fit for the return periods of 2, 5, 10, 20, 50, 100 and 200 years, which allowed to generate the hietograms, develop the modeling hydrological and calculate the maximum flows for each basin, subsequently the homogeneous zones of the hydrological region VI were established, through the regional analysis of flows based on the flowarea relationship for the different return periods, forming 4 homogeneous groups and 4 levels of classification for yellow, orange and red alerts. Finally, the flood thresholds for the basins and sub-basins of hydrological region VI were determined using the regional flow analysis and it is concluded that the method is applicable for return periods of 2 to 500 years, for basins of our country with at least one station within your area and that has a minimum record length of 10 years.

Keywords:

Regional analysis, flows, basin, hydrological region, flood thresholds.

INDICE

I.	INT	ROD	DUCCIÓN	1
	1.1.	Rea	alidad problemática	1
	1.2.	Ant	ecedentes de estudio	11
	1.2.	1.	A nivel internacional	11
	1.2.	2.	A nivel nacional	15
	1.2.	3.	A nivel local	20
	1.3.	Tec	orías relacionadas al tema	20
	1.3.	1.	Análisis regional de caudales	20
	1.3.	1.1.	Análisis probabilístico y estadístico de precipitaciones y caudal 24	es
	1.3.	2.	Umbral de inundaciones	27
	1.3.	3.	Normativa	28
	1.3.	3.1.	Técnica	28
	1.3.	3.2.	Ambiental.	28
	1.3.	3.3.	Seguridad y salud ocupacional	29
	1.3.	4.	Gestión ambiental	29
	1.3.	5.	Gestión de Riesgos y Prevención de Desastres	30
	1.3.	6.	Impacto Ambiental	31
	1.3.	7.	Estado del Arte	32
	1.3.	8.	Definición de Términos	36
	1.4.	For	mulación del problema	38
	1.5.	Jus	tificación e importancia del estudio	38
	1.6.	Hip	ótesis	39
	1.7.	Obj	etivos	39
	1.7.	1.	Objetivo general	39
	1.7.	2.	Objetivos Específicos	39
II	. IV	later	ial Y Método	40
	2.1.	Tip	o y diseño de investigación	40
	2.2.	Pok	olación y Muestra	40
	2.2.	1.	Población	40
	2.2.	2.	Muestra.	41
	2.2.	3.	Unidad de Análisis.	41
	2.2.	4.	Criterios de Inclusión	41
	2.2	5	Criterios de Exclusión	48

2	.3.	Varial	oles y Operacionalización	48
2	.3.1.	Var	iable independiente	48
2	.3.2.	Var	iable dependiente	48
2	.3.3.	Оре	eracionalización de variables	49
	.4. onfia		cas e instrumentos de recolección de datos, validez y d	51
2	.4.1.	Téc	nicas de Recolección de Datos	51
2	.4.2.	Inst	rumentos de recolección de datos, validez y confiabilidad	51
2	.4.3.	Vali	dez	51
2	.5.	Proce	dimientos de análisis de datos	52
2	.5.1.	Dia	grama de procesos	52
2	.5.2.	Des	scripción de Procesos	52
	2.5.2	2.1.	Región hidrológica VI del pacifico del Perú	52
	2.5.2 cau		Realización del modelamiento hidrológico para obtener los máximos en un determinado periodo de retorno	53
	2.5.2 hidr		Establecimiento de las zonas homogéneas de la región a VI del Pacífico del Perú	53
		2.4. cuend	Determinación de los umbrales de inundación para las cuenca cas que pertenecen a la región hidrológica VI del Pacífico del P 54	•
2	.6.	Criter	ios éticos	54
	6. 7.		ios éticosios de rigor científico	
	.7.	Criter		55
2 III.	.7.	Criter esulta	ios de rigor científico	55 56
2 III. 3	.7. R .1.	Criter esulta Resul Sel	ios de rigor científicodos	55 56 56
2 III. 3	.7. R .1.	Criter esulta Resul Sele rimien	ios de rigor científicodostados en tablas y figurasección de las cuencas y sub cuencas de acuerdo a los	55 56 56
2 III. 3	.7. R .1. .1.1. eque	Criter esulta Resul Sele rimien	ios de rigor científicodostados en tablas y figurasección de las cuencas y sub cuencas de acuerdo a los tos técnicos de la investigación.	55 56 56 56
2 III. 3	2.7. R 3.1. .1.1. eque	Criter esulta Resul Sele rimien 1.1.	ios de rigor científicodostados en tablas y figurasección de las cuencas y sub cuencas de acuerdo a los tos técnicos de la investigación	55 56 56 56 57
2 III. 3	2.7. R 3.1. .1.1. eque 3.1.1	Criter esulta Resul Sele rimien 1.1. 1.2.	ios de rigor científicodostados en tablas y figurasección de las cuencas y sub cuencas de acuerdo a los tos técnicos de la investigación	55 56 56 57 65
2 III. 3	2.7. R 3.11.1. eque 3.1.1 3.1.1	Criter esulta Resul Sele rimien 1.1. 1.2. 1.3.	ios de rigor científicodos	55 56 56 57 65 67
2 III. 3	2.7. R 3.1.1. eque 3.1.1 3.1.1 3.1.1	Criter esulta Resul Sele rimien 1.1. 1.2. 1.3. 1.4.	ios de rigor científico	55 56 56 57 65 67 70
2 III. 3	2.7. R 3.1.1. eque 3.1.1 3.1.1 3.1.1	Criter esulta Resul Sele rimien 1.1. 1.2. 1.3. 1.4. 1.5.	ios de rigor científico	55 56 56 67 67 70 73
2 III. 3	2.7. R 3.1.1. eque 3.1.1 3.1.1 3.1.1 3.1.1	Criter esulta Resul Selerimien 1.1. 1.2. 1.3. 1.4. 1.5. 1.6.	ios de rigor científico	55 56 56 65 67 70 73 75
2 III. 3	2.7. R 5.11.1. eque 3.1.1 3.1.1 3.1.1 3.1.1	Criter esulta Resul Selerimien 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7.	ios de rigor científico	55 56 56 57 67 70 73 75 77
2 III. 3	3.1.1 3.1.1 3.1.1 3.1.1 3.1.1 3.1.1	Criter esulta Resul Selerimien 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. 1.8.	ios de rigor científico	55 56 56 57 67 73 75 77 80 86
2 III. 3	3.1.1 3.1.1 3.1.1 3.1.1 3.1.1 3.1.1 3.1.1	Criter esulta Resulta Seld rimien 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. 1.8. 1.9. 1.10.	ios de rigor científico dos tados en tablas y figuras ección de las cuencas y sub cuencas de acuerdo a los tos técnicos de la investigación. Cuenca Tumbes Intercuenca 137779 Cuenca Cascajal Intercuenca 13779 Intercuenca 1379 Cuenca Bocapán Intercuenca 13939 Cuenca Zarumilla Intercuenca 13951	55 56 56 57 65 70 73 75 75 80 86

3.1.1.13.	Cuenca Fernández	106
3.1.1.14.	Intercuenca 13933	107
3.1.1.15.	Cuenca Quebrada Seca	107
3.1.1.16.	Intercuenca 13935	108
3.1.1.17.	Intercuenca 1391	108
3.1.1.18.	Cuenca Pariñas	109
3.1.1.19.	Registros disponibles de caudales máximos	109
3.1.1.20.	Análisis en base al objetivo n° 1	113
máximos e	alizar el modelamiento hidrológico para obtener los caudales n un determinado periodo de retorno, de las cuencas que a la región hidrológica VI del Pacífico del Perú	116
3.1.2.1. A	nálisis en base al Objetivo Específico nº 2	116
del Perú po	elecer las zonas homogéneas de la región hidrológica VI del Pa er medio del análisis regional de caudales basado en la relación ea para los diferentes períodos de retorno	า
	nálisis en Base al Objetivo Especifico Nº 3	
	minar los umbrales de inundación para las cuencas y sub cue ecen a la región hidrológica VI del Pacífico del Perú	
3.1.4.1. A	nálisis en base al Objetivo №. 4	139
3.2. Discusi	ión de resultados	145
3.3. Aporte	práctico	147
IV. Conclusio	nes y Recomendaciones	148
4.1. Conclu	siones	148
42 Recom	endaciones	150

ÍNDICE DE TABLAS

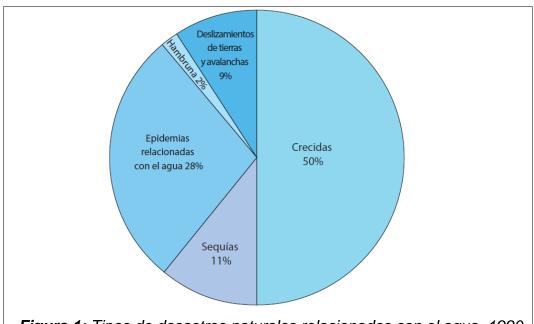
Tabla 1:	24
Tabla 2:	42
Tabla 3:	44
Tabla 4:	49
Tabla 5:	49
Tabla 6:	49
Tabla 7:	58
Tabla 8:	59
Tabla 9:	60
Tabla 10:	63
Tabla 11:	65
Tabla 12:	
Tabla 13:	
Tabla 14:	
Tabla 15:	
Tabla 16:	
Tabla 17:	
Tabla 18:	
Tabla 19:	
Tabla 20:	
Tabla 21:	
Tabla 22:	
Table 23:	
Tabla 24:	
Table 25:	
Tabla 26:	
Tabla 27:	
Tabla 28:	
Tabla 29:	
Tabla 30:	
Tabla 31:	
Tabla 32:	
Tabla 33:	92
Tabla 34:	
Tabla 35:	97
Tabla 36:	101
Tabla 37:	102
Tabla 38:	102
Tabla 39:	104
Tabla 40:	105
Tabla 41:	106
Tabla 42:	107
Tabla 43:	
Tabla 44:	
Tabla 45:	
Tabla 46:	

Tabla 47:	114
Tabla 48:	115
Tabla 49:	117
Tabla 50:	117
Tabla 51:	117
Tabla 52:	118
Tabla 53:	118
Tabla 54:	118
Tabla 55:	119
Tabla 56:	119
Tabla 57:	119
Tabla 58:	120
Tabla 59:	120
Tabla 60:	120
Tabla 61:	121
Tabla 62:	122
Tabla 63:	123
Tabla 64:	124
Tabla 65:	125
Tabla 66:	126
Tabla 67:	128
Tabla 68:	130
Tabla 69:	132
Tabla 70:	137
Tabla 71:	138
Tabla 72:	139
Tabla 73:	141

ÍNDICE DE FIGURAS

Figura 1: Tipos de desastres naturales relacionados con el agua, 1990–2001 1
Figura 2: Umbral de peligro bajo para lluvias y nieve en la zona sur de Inglaterra 4
Figura 3: Pronóstico de umbrales de inundación para diferentes períodos de retorno a
partir de un análisis de 30 días7
Figura 4: Rio cascajal se desbordó e inundo 80 viviendas de los caseríos de olmos 8
Figura 5: Umbrales de niveles de agua – Estación Santo Domingo10
Figura 6: Mapa obtenido del análisis regional para los umbrales de inundación de la
vertiente del Pacífico del Perú22
Figura 7: Parámetros y cuantiles regionales para las distribuciones con mejor ajuste
para la región hidrológica del Pacífico de Perú23
Figura 8: Curva de crecimiento regional para las distribuciones con mejor ajuste para la
región hidrológica del Pacífico de Perú24
Figura 9: Umbrales de inundación según niveles de alerta establecidos por el
SENAMHI
Figura 10: Precipitaciones máximas obtenidas por las diferentes distribuciones teóricas
mediante el análisis de extremos
Figura 11: Caudales máximos obtenidos por las diferentes distribuciones teóricas
mediante el análisis de extremos
Figura 12:: Regiones hidrológicas del Pacífico del Perú
Figura 13: Región hidrológica VI de la Vertiente del Pacífico41
Figura 14: Cuenca Tumbes (en base a la cuenca transfronteriza Puyango - Tumbes) 57
Figura 15: Estaciones pluviométricas de Ecuador según demarcación hidrográfica 63
Figura 16: Correlación de intensidad máxima versus período de retorno para la
estación pluviométrica Zaruma 64
Figura 17: Correlación de intensidad máxima versus período de retorno para la
estación pluviométrica Alamor
Figura 18: Correlación de intensidad máxima versus período de retorno para la
estación pluviométrica Piñas
Figura 19: Correlación de intensidad máxima versus período de retorno para la
estación pluviométrica Chacras
Figura 20: Correlación de intensidad máxima versus período de retorno para la
estación pluviométrica Arenillas
Figura 21: Dispersión de valores en función a la relación Qmax / Área de cuenca (en
m3/s / Km²)
Figura 22: Curva de mejor correlación del tipo potencial para el grupo 1
Figura 23: Curva de mejor correlación del tipo potencial para el grupo 2
Figura 24: Curva de mejor correlación del tipo potencial para el grupo 3
Figura 25: Curva de mejor correlación del tipo potencial para el grupo 4
Figura 26: Curvas de regionalización de caudales para la región hidrológica VI 136
Figura 27: Zonas monitoreadas (color rojo y verde) por el SENAMHI
Figura 28: Relación de período de retorno versus área para los porcentajes de cambio
de los caudales máximos en un evento de hasta 6 semanas
Figura 29: Umbrales de inundación para cuatro ríos con niveles de alerta de 146

ÍNDICE DE ECUACIONES


Ecuación 1: Fórmula regional para una distribución GEV	23
Ecuación 2: Fórmula regional para el grupo 1 – Región Hidrológica VI del Pa Perú	
Ecuación 3: Fórmula regional para el grupo 2 – Región Hidrológica VI del Pa Perú	acífico del
Ecuación 4: Fórmula regional para el grupo 3 – Región Hidrológica VI del Pa Perú	acífico del
Ecuación 5: Fórmula regional para el grupo 4 – Región Hidrológica VI del Pa Perú	acífico del

I. INTRODUCCIÓN

1.1. Realidad problemática

Ambito Internacional

(OMM, 2011), el impacto a nivel mundial de las crecidas no puede sobreestimarse ni subestimarse a pesar de que tenemos un gran avance tecnológico pues como menciona el Programa Mundial de Evaluación de los Recursos Hídricos de la Organización de las Naciones Unidas para la Ciencia y la Cultura (UNESCO) presenta un enunciado claro a este problema, por ejemplo se muestra en la Figura 1 el significado de las crecidas en el contexto de todos los riesgos naturales causados por el agua; cabe destacar que las crecidas son responsables del 15 % de todas las muertes relacionadas con desastres naturales y, por ejemplo, entre 1987 y 1997, el 44 % de todos los desastres ocurridos por crecidas tuvo lugar en Asia, causando la pérdida de 228 000 vidas, aproximadamente el 93 % todas las muertes están relacionadas con crecidas a nivel mundial.

Figura 1: Tipos de desastres naturales relacionados con el agua, 1990-2001.

Fuente: OMM, (2011).

En las dos últimas décadas han ocurrido muchas muertes en países de la Unión Europea (UE) causadas tanto por crecidas repentinas como por crecidas pluviales, además de las resultantes de causas más comunes, como son las crecidas fluviales. Más del 12 % de la población del Reino Unido de Gran Bretaña

y de Irlanda del Norte habita en llanuras de inundación fluvial sujetas al riesgo de crecidas costeras, y cerca de la mitad de la población de los Países Bajos vive por debajo del nivel medio del mar. En Hungría, del orden del 25 % de la población está radicada en terrenos extensos donde se inundan por la salida del río Danubio.

Sayama et al., (2019). En Japón la teledetección por satélite se ha utilizado de forma eficaz para estimar la extensión de los desbordes en grandes cuencas hidrográficas por ejemplo en el caso de desbordamientos repentinos en cuencas montañosas, sin embargo es difícil utilizar información de teledetección y pues para compensar esta situación, se deberían obtener las precipitaciones máximas para elaborar modelos de crecidas propias de una zona en estudio y pues independientemente de los recientes avances tecnológicos en simulaciones ha habido una falta significativa de datos para validar tales modelos particularmente con respecto a las profundidades de las inundaciones locales.

Andrade y Ríos, (2014). En ecuador Los cambios climáticos son diferentes a las zonas donde hay las precipitaciones mayores en una zona y menor en otra, en el país de Ecuador sus precipitaciones se dan en un mayor tiempo hasta el mes de junio y de julio hasta septiembre en periodo cálido, de octubre a noviembre periodo seco, en el Perú las precipitaciones dan inicio a partir mes de diciembre hasta aproximadamente el mes de abril, del mes de junio hasta septiembre se presenta un periodo cálido, y de octubre a diciembre periodo seco sin precipitaciones en la zona costa norte del Perú.

Milanesi et al., (2015). Los mapas de peligro y riesgo de inundaciones son herramientas fundamentales establecidas para los países europeos por la directiva de inundaciones 2007/60 / CE. En los EE. UU., el Programa Nacional de Seguro contra Inundaciones (NFIP en sus siglas en inglés) se introdujo en 1968 para proteger financieramente a los propietarios de la violencia destructiva de las crecidas. NFIP requiere viviendas seguras ante desbordamientos que se encuentran en áreas de alto riesgo y lo sugiere como opcional en áreas de riesgo moderado a bajo. Al mismo tiempo, las comunidades deben estar de acuerdo en hacer cumplir las ordenanzas que según los requisitos de FEMA (Agencia

Federal para el Manejo de Emergencias) para mitigar el riesgo de inundaciones. En consecuencia, está claro que la zonificación de riesgo tiene fuertes implicaciones en el valor económico de las propiedades, establece severas restricciones para la ordenación territorial y debe basarse en los modelos y criterios más actualizados y racionales. Esto es cierto cuando el objetivo principal es la reducción del riesgo para la vida humana y para ello la elección de los criterios de vulnerabilidad adecuados, cuyo significado físico sea claramente comprensible para las partes interesadas y formuladores de políticas, es fundamental.

Napolitano et al. (2018), en Italia manifiestan que la información sobre deslizamientos de tierra e inundaciones históricas denominados colectivamente como peligros geohidrológicos son la clave para comprender la dinámica compleja de estos eventos eventos, pues de esta manera se podrá estimar la frecuencia temporal y espacial de eventos dañinos y cuantificar su impacto. Destacan además que varias bases de datos sobre peligros geohidrológicos y sus consecuencias se han desarrollado en todo el mundo a diferentes escalas geográficas y temporales y que de las pocas estructuras de base de datos disponibles que puedan manejar información tanto sobre deslizamientos de tierra como sobre inundaciones, algunas son obsoletas y otras no están diseñadas para almacenar, organizar y administrar información sobre fenómenos individuales, sobre el tipo y valor monetario de los daños y las acciones de remediación.

Wahid et al. (2016), Manifiestan que las llanuras costeras con un entorno geográfico único y recursos naturales renovables son prometedoras para el desarrollo sostenible, sin embargo estas áreas pueden estar sujetas a algunos peligros ambientales debido a su entorno geológico ya que uno de esos peligros es la inundación repentina estacional que puede amenazar los proyectos de desarrollo existentes y futuros en áreas tan críticas, tal es el caso abordado en su investigación que analizaron el suroeste del Sinaí en Egipto, ya que es una llanura costera que se caracteriza por un entorno geológico complejo y un clima árido con lluvias estacionales que pueden resultar en una gran escorrentía.

Alfieri et al. (2017), indican que el aumento de la temperatura global ha ejercido una presión cada vez mayor sobre la comprensión del vínculo entre el calentamiento atmosférico y la aparición de peligros naturales. Sostienen también que si bien el acuerdo de París ha fijaron el ambicioso objetivo de limitar el calentamiento global a 1.50°C en comparación con los niveles preindustriales, en ese sentido los científicos instan a explorar los escenarios para diferentes umbrales de calentamiento y cuantificar niveles de impactos socioeconómicos.

Según Kvocka et al. (2017), señalan que los hallazgos clave proporcionados por la MET OFFICE del Reino Unido han indicado aumentos en intensidad de lluvia extrema casi el 30 % durante los próximos 20 a 30 años. Por lo tanto, existe una necesidad creciente de más herramientas precisas de modelado de crecidas en el futuro para gestionar mejor el riesgo de inundaciones. Indican además que existe un aviso diario online de peligros alto (color rojo), medio (color naranja) y bajo (color amarillo) de probables eventos de lluvia, nieve y posibles inundaciones tal y como se muestra en la figura 2.

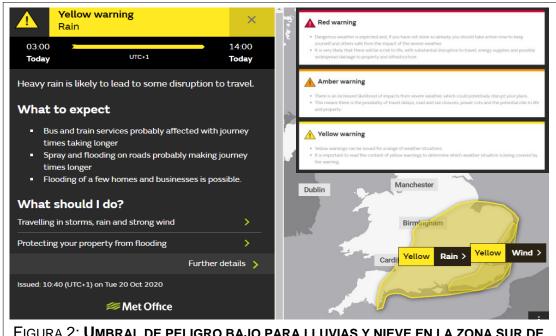


FIGURA 2: **Umbral de Peligro Bajo para lluvias y nieve en la zona sur de Inglaterra.**

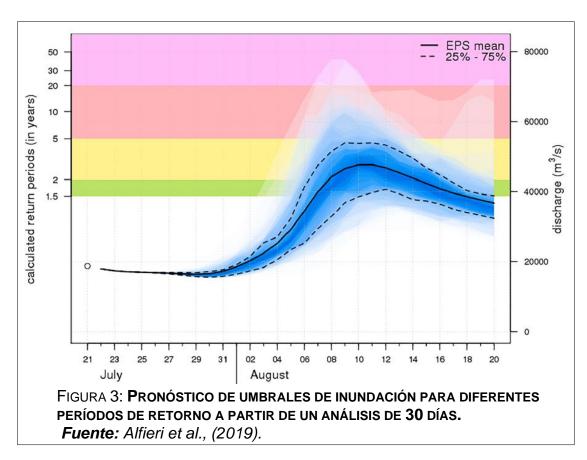
Fuente: Obtenido de https://www.metoffice.gov.uk

Ámbito Nacional

Díaz, (2013). En Puno, Los cambios de temperatura y precipitación afectan la comodidad de la población y a las actividades que se desarrollan como es la agricultura y la ganadería que son algunas de las más importantes y los productos que se ofrecen como la quinua, papa, kiwicha, habas, lana de camélidos, carnes y productos derivados de la leche y demás pueden verse alterados por los cambios en el clima local y regional, al igual que resultan afectadas las actividades de la pesca y el comercio. Las temperaturas extremas ocasionan en algunos casos alteraciones físicas en las personas que afectan el crecimiento, desarrollo y rendimiento de los cultivos y animales de granja, así como afectar el desarrollo de la flora y fauna silvestre; la precipitación sin duda, afecta el contenido de agua del suelo, el transporte de fertilizantes y es fundamental al momento de desarrollar obras hidráulicas; así mismo, durante las lluvias las precipitaciones pueden generar deslizamientos en las zonas altas de la cuenca e inundaciones en las partes bajas de la misma, lo cual causan impactos en la salud del poblador, destrucción de viviendas, cultivos, afecta además el tema de trasporte de buses, camiones, productos agrícolas y pecuarios, en el abastecimiento de productos de primera necesidad, medicamentos, entre otros (p.4-5).

Montesinos, (2018). Las constantes inundaciones perjudican de manera importante en varios países y representan un riesgo constante, este peligro de inundaciones se transforma en muchas zonas en patente riesgo, como consecuencias del uso inadecuado del territorio y de las invasiones de población que la sociedad realiza en zonas potencialmente inundables. Los efectos catastróficos que los torrentes originan hacen que resulte necesario desarrollar planes que nos brinden información adecuada con respecto a umbrales de inundación. En Lima, Las estructuras de gran magnitud como puentes, represas, alcantarillado, sistemas de drenaje, entre otros, requieren información idónea sobre flujos de caudal de diseño, que están relacionados con eventos de flujo del caudal máximo asociados con períodos de retorno predefinidos ó para posibles frecuencias asociadas a los valores máximos del registro de datos en una cuenca, debido a ello en la gestión de los recursos hídricos, la comprensión del comportamiento hidrológico de una cuenca dada en relación con los eventos de

inundación ayudará a mitigar el impacto de los desastres naturales y el manejo del área inundada en el mediano y largo plazo (p.1).


Varona, (2018). Las personas buscamos crear planes, herramientas o construcciones que nos permitan atender nuestras necesidades como sociedad ya que cuando no se tiene una buena infraestructura como vivienda suceden lo vivido en la ciudad de Piura el pasado 27 de marzo del 2017, donde el caudal que trajo consigo el rio Piura supero los limites permitidos y al no tener una infraestructura ideal para el cauce del rio, sirviendo de regulador este invadió la ciudad entera ocasionando daños a la población irreparables. A comparación con este rio, el rio chira si tiene una infraestructura que funciona como regulador del caudal que proviene de la parte alta de la sierra y es el reservorio Poechos. Es muy importante que una infraestructura este en buen estado para que pueda estar en funcionamiento. Para ello se de be realizar constantes trabajos de monitoreos de las riveras del rio ya que el problema hoy en día es la colmatación de los embalses quedando de esta manera sin cumplir su función que es regular el caudal de las grandes avenidas (p.1).

Robinson y Wounter (2019), sostienen que se sabe poco acerca del por qué las personas otorgan un valor alto o todo lo contrario muy bajo a la mitigación de los riesgos de eventos de tipo desastre como las inundaciones, en ese contexto estudiaron algunos métodos para explorar los factores psicológicos que afectan la probabilidad de negligencia del riesgo de inundación relevantes para el punto final cero de la función de ponderación de probabilidad en la teoría de perspectivas, la disposición a pagar por el seguro contra inundaciones en particular análisis con las variables explicativas de las emociones anticipadas y en el umbral de preocupación.

Wieland y Martinis (2019), manifiestan que los socorristas solicitan con frecuencia información de crisis basada en los satélites para el monitoreo de inundaciones pues los recursos a menudo son limitados y pues en ese entendido se debe priorizar las acciones de respuesta ante estas situaciones de desastres y emergencias, por lo que sugieren un monitoreo operativo de inundaciones a partir de datos satelitales multi espectrales que incluye búsqueda de datos,

ingreso de datos y preparación, segmentación de flujos y mapeo de áreas inundadas.

Alfieri et al. (2019), indican que los sistemas de alerta temprana para inundaciones de ríos son herramientas estratégicas para la indagación eficaz del riesgo de desastres en muchos regiones del mundo y cuando se maneja mediante predicciones meteorológicas numéricas las respuestas ante una probable inundación puede proporcionar pronósticos del caudal más allá de la escala de tiempo mensual en grandes cuencas fluviales, sin embargo la detección eficaz de inundaciones se ve desafiada por una estimación precisa que podría indicar cierta incertidumbre de los umbrales de advertencia que identifican niveles de peligro específicos a lo largo de todo el río red y horizonte de previsión. Para el caso estudiado por Alfieri et al. (2019), se muestra la figura 3, la cual indica los distintos umbrales de inundación para distintos períodos de retorno a partir de una estimación de 30 días.

Las lluvias extremas ocurridas en el verano austral del 2017 en el centro y norte del Perú, han evidenciado que aún falta entender los procesos dinámicos que ocurren en esta zona, ya que no pudo ser pronosticado con antelación. Por

otro lado, las ciudades costeras de Piura, Chiclayo, Trujillo y Lima, que tienen gran densidad poblacional y con alto desarrollo económico, están diseñadas para un clima de costa sin muchas Iluvias (Ticse y Moya, 2019, p.10).

Figura 4: Rio cascajal se desbordó e inundo 80 viviendas de los caseríos de olmos.

Fuente: RPP noticias, 2017.

Callañaupa, (2019). El Perú es un país con una gran diversidad hídrica, una gran cantidad de ríos que desembocan en 3 vertientes y nuestro potencial hídrico nos permite realizar proyectos de gran envergadura que garanticen el bienestar y desarrollo de los peruanos y está también mostrado según varios estudios que el calentamiento global afectará de manera más intensamente a algunos países entre los cuales se encuentra el Perú, de esta manera es importante que el país apunte como una prioridad al mejoramiento de su sistema hídrico para garantizar no solo el desarrollo y su bienestar sino la mejor administración de recursos ante eventuales crisis. El diseño de represas y estaciones hidroeléctricas nos garantizará que los recursos sean administrados eficientemente y se obtengan grandes réditos por ellos (p.14-15).

(ANDINA, Agencia peruana de noticias, 2019), menciona que en la víspera las zonas altas del distrito de San Jacinto, en la provincia y región Tumbes, registraron lluvias, generando un incremento del caudal del río Tumbes, que superó su nivel crítico de inundación (1000 m³/s) afectando las zonas agrícolas cercanas a la ribera del río. Así lo precisaron los técnicos del Servicio Nacional

de Meteorología e Hidrología (SENAMHI) y añadieron que en otras localidades de la zona norte también se reportaron precipitaciones localizadas que activaron algunas quebradas como Marmas en Ayabaca (Piura), San Idelfonso en Trujillo (La Libertad), entre otros. Conforme al Aviso 42 emitido previamente por el SENAMHI que menciona lluvias para Tumbes, Piura, Lambayeque, La Libertad y Cajamarca, estas se intensificarán entre el sábado 16 y lunes 18 de marzo y estarían acompañadas de descargas eléctricas y ráfagas de viento. Según el último comunicado ENFEN 05, se espera el arribo de dos ondas Kelvin cálidas entre la quincena de marzo y abril. Ello contribuiría al calentamiento de la superficie marina frente a la costa norte y centro del Perú, con lo cual persistiría el panorama de lluvia de fuerte intensidad en lo que resta de marzo.

Según el reporte de (RPP, 2019), el 29 de diciembre del 2019 se precipitó una lluvia de regular intensidad que sorprendió a los piuranos, afectando varios sectores de la región, como Tambo grande, Las Lomas, Castillas y la parte de sierra del departamento. La lluvia inició en horas de la madrugada y se prolongó hasta aproximadamente las 7:30 de la mañana, generando un acumulamiento de agua que sobrepasa los 10 milímetros. En diferentes puntos de la ciudad se observa la formación de aniegos, grandes charcos y, en consecuencia, calles que se han tornado intransitables. Pese a que en el centro de Piura se han ejecutado trabajos de mejora en un drenaje ubicado en la calle Ayacucho, los exteriores de la Fiscalía y de la Corte de Justicia han terminado inundados. Asimismo, aniegos han sido registrados en la urbanización Ignacio Merino.

La publicación de (ANDINA, Agencia peruana de noticias, 2019) indica que la sociedad civil organizada en especial la población cuyas viviendas y áreas de cultivo fueron afectadas por las lluvias e inundaciones por el Fenómeno El Niño costero participan en la elaboración del plan integral para el control de desbordes y movimientos de masa en la cuenca del río La Leche, región Lambayeque. Para recoger sus aportes y conocer sus prioridades, el Programa Subsectorial de Irrigaciones (PSI) del Ministerio de Agricultura y Riego (Minagri) y Técnica y Proyectos S.A. Sucursal del Perú (TYPSA) se efectuó un taller de diagnóstico participativo en la ciudad de Chiclayo. Los pobladores, organizados en grupos de trabajo, desarrollaron la caracterización del diagnóstico sobre inundaciones y

movimientos de masa, e identificaron y alcanzaron propuestas que serán evaluadas para su incorporación en el Plan Integral de Control de Inundaciones. La exposición estuvo a cargo de Gilmer García Pisfil, especialista en diseño hidráulico, quien explicó la problemática por resolver, avances y resultados de los estudios elaborados hasta la fecha. Participaron representantes del PSI, Proyecto Especial Olmos Tinajones (PEOT), Museo de Sitio Sicán, Sernanp, Indeci, Serfor, Senamhi, Universidad Pedro Ruiz Gallo, Colegio de Ingenieros de Lambayeque, Cámara de Comercio, gobierno regional. También estuvieron representantes de organizaciones civiles como el Frente de Defensa de los Intereses de Mochumí Viejo, Asociación del Proyecto La Calzada, autoridades de centros poblados del Valle La Leche, comunidades campesinas de Uyurpampa y Marayhuaca de Incahuasi, juntas de usuarios y comités de regantes.

En este contexto, la regionalización hidrológica se puede aplicar en sitios medidos y con muchos y pocos datos con el fin de agregar información a las series existentes, así como transferirlas a lugares no monitoreados para satisfacer las demandas de datos y de esa manera se puedan estimar los valores máximos denominados como "umbrales" que superan los máximos registrados en una cuenca y que puedan provocar inundaciones, aquí es donde radica la importancia del presente tema de investigación.

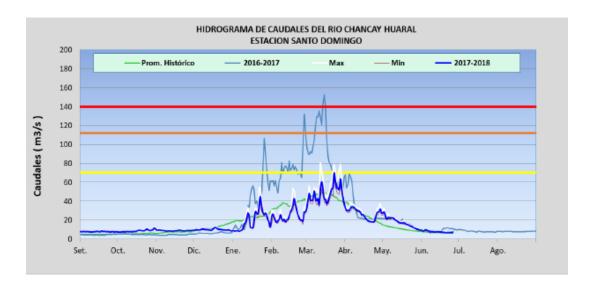


Figura 5: Umbrales de niveles de agua – Estación Santo Domingo.

Fuente: SENAMHI.

1.2. Antecedentes de estudio

1.2.1. A nivel internacional

Waylen et al. (2018), En Escocia, mediante la investigación titulada "CHALLENGES TO ENABLING AND IMPLEMENTING NATURAL FLOOD MANAGEMENT IN SCOTLAND", plantean como objetivo explorar los factores que limitan la implementación de la gestión de inundaciones naturales (NFM en sus siglas en inglés), empleando para ello una metodología del tipo cualitativa basada en encuestas y entrevistas a quienes influyen directa e indirectamente en la gestión del riesgo de inundaciones en Escocia. Los resultados indican que las percepciones de riesgo y los impactos sociales de las crecidas pueden complicar o impulsar la acción debido a que no sólo involucra a actores políticos y sociales, sino también a entidades académicas y empresas involucradas, por lo tanto concluyen que el trabajo futuro enfocado en el presente y con acciones concretas para comprender e introducir cambios en la gestión del riesgo de inundaciones siempre debe permanecer sensible tanto a las similitudes como a las diferencias a lo largo del tiempo, los entornos y con otros campos de la naturaleza de la administración, dirección y gestión de los recursos.

Bonasia et al. (2018), en México según su investigación titulada "FLOODING HAZARD ASSESSMENT AT TULANCINGO (HIDALGO, MEXICO)", mencionan que en las últimas décadas el municipio de Tulancingo en México, ha sido afectado por numerosos fenómenos meteorológicos extremos que causaron grandes desbordamientos con daños severos a la propiedad, a las personas y la mayoría de los fenómenos meteorológicos pusieron varias presas en riesgo hidrológico pues no cuenta actualmente con una regulación específica que establezca umbrales críticos para la construcción de mapas de peligro de inundaciones, entonces debido a ello se plantearon como objetivo proporcionar una herramienta para la evaluación del peligro de inundaciones realizando para tal fin un estudio de las profundidades de los torrentes mediante el software IBER. La metodología que desarrollaron es la construcción de diferentes escenarios de inundaciones tomando como zona de estudio la cuenca del embalse La Esperanza a partir del análisis de la precipitación regional y los diferentes periodos de retorno. Los resultados muestran la generación de mapas de peligro y vulnerabilidad que son una herramienta útil para estimar el peligro de futuros escenarios de desbordes y puede representan un punto de partida para establecer planes de contingencia para mitigar el riesgo de crecidas. Las conclusiones de esta investigación indican que la evaluación de la probabilidad de inundaciones puede respaldar a largo plazo la planificación y monitoreo de cuencas en embalses y zonas aledañas a ellos pues esto ayudaría a minimizar el impacto de tales eventos.

Speckhann et al. (2018), en Brasil según la investigación titulada "FLOOD" HAZARD MAPPING IN SOUTHERN BRAZIL: A COMBINATION OF FLOW FREQUENCY ANALYSIS AND THE HAND MODEL", mencionan que los mapas de peligro de inundaciones basados en modelos digitales de elevación (DEM) y las características geomórficas (por ejemplo, pendientes, distancia a la división más cercana y al índice topográfico) se han desarrollado como una alternativa rápida de bajo costo en ausencia de datos hidrológicos e hidráulicos y para regiones de gran extensión, en ese sentido su investigación tuvo como objeto de estudio la cuenca del río Itajaí, que es una de las áreas más afectadas por inundaciones en Brasil. Desarrollaron una metodología de mapeo de peligros de inundaciones combinando el análisis de frecuencia con el modelo altura sobre el drenaje más cercano denominado HAND y se aplicó en tres municipios de la cuenca del río Itajaí. Los resultados muestran que las inundaciones a partir del mapeo de peligros coincidieron con el 92% del evento de inundación del año 2011, así mismo el modelo desarrollado tiene baja sensibilidad a la resolución DEM y alta sensibilidad al umbral de área de inicio del canal. Finalmente concluyen en la capacidad del modelo HAND logra coincidir con la extensión de la inundación y fue similar al que utilizaron el mismo clasificador morfológico de trabajos anteriores en otras partes del mundo.

Kvocka et al. (2018), en Inglaterra en la investigación titulada "PREDICTING FLOOD HAZARD INDICES IN TORRENTIAL OR FLASHY RIVER BASINS AND CATCHMENTS", sostienen que los mapas de peligro de inundaciones son uno de los componentes principales de cualquier gestión de riesgo de inundaciones, además se predice que el grado de riesgo de inundación aumentará significativamente en el futuro debido a los cambios climáticos y ambientales, por lo que es cada vez más importante que se implementen

métodos de última generación para evaluar la estabilidad humana en las inundaciones. Plantean como objetivo proponer directrices más precisas y detalladas para predecir índices de peligro de desbordamientos en cuencas hidrográficas pequeñas empinadas y en captaciones, propensas a la ocurrencia de inundaciones repentinas. Los resultados obtenidos en este estudio indican para las cuencas hidrográficas con un gradiente medio del lecho superior al 1% que los índices de peligro de inundaciones deben predecirse utilizando criterios que se basan en la interpretación física de los procesos que afectan la estabilidad humana en las inundaciones, es decir métodos de evaluación del peligro de inundación basados en la mecánica y calibrados experimentalmente. Sus conclusiones afirman que los resultados obtenidos en esta investigación son sólo una estimación aproximada de valor de la pendiente del lecho que podría usarse como una referencia sobre cuándo usar tipos específicos de umbrales de inundación, criterios de evaluación de peligros y por lo tanto se necesitan más investigaciones exhaustivas para especificar directrices de modelado más detalladas que podrían utilizar las autoridades reguladoras y el riesgo ante posibles crecidas.

Piacentini et al. (2020), en Italia según la investigación titulada "GEOMORPHOLOGY-BASED ANALYSIS OF FLOOD CRITICAL AREAS IN SMALL HILLY CATCHMENTS FOR CIVIL PROTECTION PURPOSES AND EARLY WARNING SYSTEMS: THE CASE OF THE FELTRINO STREAM AND THE LANCIANO URBAN AREA (ABRUZZO, CENTRAL ITALY)", estudiaron el análisis geomorfológico a escala de una cuenca de drenaje combinada con un modelado de inundaciones, con un mayor énfasis en la evaluación de áreas críticas de las inundaciones para la creación de un sistema de alarma temprana urbano basado en geomorfología de la zona de estudio, investigaron además la combinación de datos geológicos, geomorfológicos, de peligros preexistentes, nuevos estudios de campo detallados y un mapeo de características geomorfológicas e hidrográficas. El objetivo se enfoco en el estudio de un modelo numérico bidimensional de inundaciones para verificar las áreas inundadas esperadas y calibrar las áreas críticas. La metodología que desarrollaron implico integrar los datos recopilados a una geo data base con un enfoque basado en expertos a través de una matriz basada en geomorfología que permitió definir las principales categorías de áreas críticas para inundaciones. Los resultados obtenidos proporcionan alertas combinadas basadas en pronósticos, umbrales de lluvia y monitoreo de inundaciones. Finalmente, concluyeron que el modelado realizado proporciona una herramienta para fines de protección civil, para la gestión de áreas críticas, para inundaciones y mitigación de los riesgos relacionados por parte de las autoridades locales.

Musolino et al. (2020), en Reino Unido en su publicación titulada "MAPPING THE DANGER TO LIFE IN FLASH FLOOD EVENTS ADOPTING A MECHANICS BASED METHODOLOGY AND PLANNING EVACUATION ROUTES", señalan que los eventos de inundaciones extremas son cada vez más frecuentes y desafiantes debido al cambio climático, en ese sentido plantearon como objetivo principal evaluar los diferentes criterios utilizados en la evaluación del peligro para las personas durante las inundaciones, también utilizan la metodología más adecuada para evaluar el peligro e incluyen las rutas más seguras para la evacuación durante una crecida, considerando como caso de aplicación el desborde que ocurrió el 16 de agosto de 2004 en Boscastle (Reino Unido). Los resultados de la aplicación de dichas evaluaciones se analizan en términos del peligro de inundación con los dos criterios basados en un enfoque empírico ampliamente utilizado y un enfoque basado en la mecánica. Las conclusiones de su estudio radican en vincular la calificación de peligro de inundaciones con las características del cuerpo humano, al determinar la ruta más segura y con una fórmula revisada en desarrollo que incluye los efectos del suelo y la pendiente y que pueden aplicarse a otras zonas de estudios con sus propios parámetros.

Para Chen et al. (2020), en Asia según su investigación titulada "FLOOD IMPACT ON MAINLAND SOUTHEAST ASIA BETWEEN 1985 AND 2018 - THE ROLE OF TROPICAL CYCLONES", indican que las inundaciones son desastres naturales fatales que han provocado muchas pérdidas de vidas humanas, tal es el caso del sudeste asiático continental que a menudo se ha visto afectado por inundaciones, debido a ello consideraron abordar dicha problemática en su estudio. El procedimiento para el desarrollo de su investigación se basó en generar un archivo de datos de grandes inundaciones a partir de los registros

disponibles en los países del sudeste asiático. Se plantearon como objetivo evaluar la tendencia de ocurrencia de inundaciones en la mencionada zona de estudio para el período 1985-2018, y a partir de ello cuantificar los impactos asociados en la población más vulnerable. Los resultados muestran que la ocurrencia y magnitud máxima de las inundaciones por todas las causas aumentó significativamente, sin embargo, hacen una crítica de las normas actuales de protección para posibles modificaciones de los niveles de peligro en base a estándares más altos de seguridad cuyo fin sea el de mitigar los impactos potenciales pues el desborde en estos países ha provocado altas mortalidades. En las conclusiones de este estudio se señalan evidencias científicas para una mejor gestión del riesgo de inundaciones y recomiendan que los países de la zona analizada deben tomar otras medidas, políticas e invertir en alertas tempranas de inundaciones en el corto y mediano plazo para el alto nivel de protección contra inundaciones con mayor atención en las áreas vulnerables como el delta del río Mekong.

1.2.2. A nivel nacional

Alfaro (2014), en su investigación titulada "ESTIMACIÓN DE UMBRALES DE PRECIPITACIONES EXTREMAS PARA LA EMISIÓN DE AVISOS METEOROLÓGICOS", en la ciudad de lima indica que las advertencias meteorológicas tienen un fin de informar a las autoridades y publico de la manera más detallada y clara, sobre lo peligroso que puede ser un fenómeno meteorológico previsto o en desarrollo y para este efecto se deben establecer umbrales con criterios climatológicos que faciliten un criterio común de clasificar la peligrosidad de un evento meteorológico. El objetivo de este informe es comunicar la predicción de un fenómeno meteorológico a través de las advertencias meteorológicas como es el caso de eventos extremos de precipitación y es sin lugar a dudas una de las responsabilidades más importantes que le corresponde al SENAMHI. En esta nota técnica se propone la utilización de un método práctico y reconocido internacionalmente sin conocer la distribución de probabilidad de una serie de datos diarios de precipitación, deducir sus estadísticos con el fin de establecer un criterio común para determinar la "rareza" de los valores de precipitación acumulados en 24 horas y de este modo determinar umbrales de precipitaciones extremas. Los resultados obtenidos para la caracterización climatológica de precipitación del Perú, pues la ventaja práctica de esta propuesta es que puede ser aplicada fácilmente y permite deducir sus estadísticos en base a los cuartiles de umbral de precipitación. Concluye en que se debe de hacer una evaluación del impacto de la variabilidad estacional en la función empírica de probabilidad para cada caso a efectos de evaluar la pertinencia de establecer umbrales estacionales de precipitación en todo el país.

Elizalde et al. (2016), en la ciudad de tumbes sostienen que el dren Correntoso y el dren El Piojo son cauces antiguos del río Tumbes; estos podrían aprovecharse como cauces de alivio durante períodos de crecida para reducir los efectos de las inundaciones en la parte baja del valle, por lo que su investigación tuvo como objetivo desarrollar un modelo hidrodinámico bidimensional, empleando mallas flexibles, con el software MIKE 21, que representó el valle del Rio Tumbes considerado desde la estación El Tigre (Caserío Higuerón) hasta la desembocadura del río en el Océano Pacífico. Sus resultados de las simulaciones permitieron determinar el caudal mínimo que genera desbordes en el tramo de estudio, siendo su valor aproximadamente igual a 723 m³/s y respecto al cauce de alivio se diseñó considerando las dimensiones actuales del tramo que cruza por el puente El Piojo. Concluyen finalmente en que la habilitación de un cauce de alivio permite reducir considerablemente el efecto de las inundaciones aguas abajo del sector San Jacinto y por tanto reducirá las pérdidas económicas de las actividades productivas y los daños en las infraestructuras que año a año se generan por el desborde del Río Tumbes.

Montesinos (2018), según su estudio hidrológico titulado "ESTIMACIÓN DE UMBRALES DE INUNDACIÓN EN LA REGIÓN HIDROGRÁFICA DEL PACÍFICO", en la ciudad de lima señala que el objetivo principal de esta publicación fue desarrollar una herramienta que determine los umbrales de inundación basado en los L-momentos para generar funciones regionales destinada a estimar caudales máximos de corriente asociados con períodos de retorno de interés en cuencas de la Vertiente del Pacífico. Los resultados de dicho estudio estuvieron en función de las series de datos anuales de caudales

máximos diarios para todas las estaciones, luego se realizó el análisis exploratorio para detectar los datos atípicos, verificar los supuestos del análisis regional principalmente para determinar la estacionariedad, homogeneidad e independencia serial de los datos, realizar el análisis regional de frecuencias aplicando la técnica de L-moments, la obtención de los cuantiles de inundación para diferentes periodos de retorno y finalmente se determinaron los umbrales de inundación en función del área de drenaje de las cuencas y la frecuencia (periodo de retorno). Finalmente, en sus conclusiones afirma que el método de L-moments a través de la medida de heterogeneidad, permite definir objetivamente que la vertiente del Pacífico conforma cuatro regiones hidrológicamente homogéneas y que, para la estimación de cuantiles de inundación de los períodos de retorno deseados para cuencas hidrográficas no monitoreadas del área de estudio, se recomienda utilizar la fórmula de inundación regional desarrollada en el presente documento en su forma tabular.

Meléndez (2019), publicó una investigación titulada "LA IDENTIFICACIÓN DE LAS CABECERAS DE CUENCAS HIDROGRÁFICAS: MÉTODOS Y APLICACIONES", en el departamento de Arequipa menciona que las cuencas hidrográficas son grandes unidades naturales donde se plasma el ciclo hidrológico en los continentes, siendo el agua el elemento central, pues normalmente esas unidades se delimitan de manera cualitativa considerando una línea divisoria continua que aproximadamente une los puntos de las partes altas de geo formas positivas como por ejemplo montañas, colinas o lomas teniendo en cuenta el criterio natural del drenaje. Se planteó como objetivo evaluar los problemas de delimitación de cabeceras de cuencas hidrográficas en el Perú y a su vez se pueden clasificar u ordenar, a partir del criterio de que la cuenca hidrográfica está estructurada por una red de corrientes o cauces. Los resultados muestran que la mencionada red de drenaje se subdivide en sub cuencas y una de ellas puede dar origen a la corriente principal que normalmente es un río y en ese sentido la clasificación de cuencas de drenaje es uno de los métodos conocidos universalmente para delimitar unidades y subunidades y que se debería tener en cuenta. Concluye en que independientemente del criterio que se utilice para identificar cabeceras de cuenca se requiere previamente disponer de una base de datos estandarizada a nivel nacional, por ejemplo, la información geoespacial que debe contener esa base de datos entre otros es la red de drenaje, cuerpos de agua y líneas de isohietas a diferentes escalas espaciales.

Arriola et al. (2020), en su publicación titulada "ANÁLISIS DE LAS CURVAS DE INFILTRACIÓN PARA DETERMINAR CAUDALES MÁXIMOS EN ZONAS DE ESCASA INFORMACIÓN ANTE EVENTOS EXTREMOS", en la ciudad de Chiclayo tuvieron como fin la determinación de los caudales máximos en las zonas alejadas de una cuenca donde no se cuenta con información pluviométrica ni hidrométrica empleando el análisis de las curvas de infiltración considerando como primer dato de entrada el método del número de curva. La metodología que se empleó consideró todos los valores de infiltración obtenidos en ciertas partes de la cuenca a partir del muestreo de campo de los diversos tipos de suelos y de los pocos registros históricos de las estaciones pluviométricas, llamadas, así como sub cuencas para el análisis hidrológico. Los resultados obtenidos permitieron determinar los caudales máximos en las zonas donde no se dispone de información hidrométrica ni pluviométrica, sin embargo, se contrastaron los datos con las estaciones disponibles en la cuenca de estudio para un mejor análisis, además la clasificación del suelo permitió a través del programa New Loc Clim v.1.10, obtener las características de uso, grupo hidrológico, condición de humedad antecedente. Las conclusiones a las que llegaron es que se determinaron las funciones de mejor ajuste teórico y gráfico para los diferentes períodos de retorno, escogiéndose los métodos Gumbel Tipo I y Logaritmo Pearson Tipo III y al evaluar el nivel de aproximación que brinda el método de número de curva se puede concluir que para estimar los caudales máximos adecuados que permitan diseñar las diferentes obras hidráulicas en la cuenca del río Chancay es necesario conocer al menos 25 años de registros históricos para poder realizar pronósticos de caudales máximos adecuados y que se ajusten a la realidad.

Zubieta et al. (2020), en su investigación "CONCENTRACIÓN DE LLUVIA DIARIA Y SU ASOCIACIÓN CON EVENTOS HIDROCLIMÁTICOS EXTREMOS EN LA CUENCA AMAZÓNICA", en el departamento de lima establecen que el análisis de datos anuales, estacionales o mensuales de precipitación puede

conducir a una interpretación limitada de la distribución espacial y temporal de la lluvia diaria debido a que grandes porcentajes del total anual pueden ocurrir en pocos días. Esta alta concentración de lluvia diaria puede causar erosión de suelos, deslizamientos o inundaciones. El objetivo de su investigación se centró en caracterizar la concentración de lluvia diaria para toda la cuenca amazónica empleando un índice de concentración, el cual es estimado a partir de un producto grillado de precipitación observada para el periodo 1980-2009. Sus hallazgos proveen nueva información acerca de la distribución espacial de la lluvia diaria sobre dicho índice. Los resultados indican que la concentración de lluvia diaria es relativamente baja en Colombia, Ecuador, el norte de Perú y los Andes sobre los 1500 m s. n. m., no obstante, es muy alta en regiones del estado de Roraima en el norte de Brasil y la Amazonía boliviana. Finalmente concluyen en el por qué algunas regiones de Brasil y Bolivia son más frecuentemente afectadas por eventos de lluvia extrema que conllevan a inundaciones.

Portella y Villafuerte (2020), En su tesis titulada "EVALUACION DEL RIESGO DE INUNDACION DEL RÍO CASCAJAL EN EL ENTORNO DEL CASERIO DE SINCAPE (DISTRITO DE OLMOS) Y ANÂLISIS DE ALTERNATIVAS DE SOLUCIÓN", Para optar el título de Ingeniero Civil de la Universidad Señor de Sipán en la ciudad de Chiclayo, se centra en el estudio del valle del río Cascajal, que se caracteriza por presentar un nivel topográfico llano, conformado por terrenos para la agricultura, el cual en años de Fenómenos El Niño se registran caudales de hasta 80 m³/s, siendo el caserío de Sincape una de las localidades del valle con alto riesgo de inundaciones, en tal sentido plantean una metodología que se pueda cuantificar el nivel de riesgo por inundación existente en la zona de estudio. Luego el objetivo de la tesis es dotar de mapas de inundación de la localidad de Sincape, permitiendo así, evaluar el nivel de riesgo inundación del río Cascajal en el entorno de dicho caserío, identificando las áreas vulnerables y planteando alternativas de solución. Como resultados de su tesis, llegaron a elaborar los mapas de inundación en el río Cascajal, analizando los caudales con diferentes tiempos de retorno de 100 y 200 años, asimismo para la localidad de Sincape se obtuvo un riesgo de inundación alto. En las conclusiones, proponen que la mejor alternativa de solución para mitigar el riesgo es la colocación de enrocados en los tramos críticos de la zona de estudio.

1.2.3. A nivel local

En cuanto a estudios e investigaciones específicos sobre análisis regional de umbrales de inundación en el ámbito local no se ha podido encontrar información alguna referente a ello, debido a ello este trabajo será un gran aporte para otras investigaciones.

1.3. Teorías relacionadas al tema

1.3.1. Análisis regional de caudales

El análisis regional de caudales se basa en un enfoque probabilístico a partir de series de caudales máximos anuales para un área geográfica definida previamente como una región homogénea. Las series temporales consideradas en el análisis regional deben cumplir indispensablemente con ciertas características, entre las que resaltan la longitud de datos, la completación, consistencia, homogeneidad e independencia. El objetivo de este análisis es estimar factores de frecuencia (asociados a diversos períodos de retorno), para cada modelo probabilístico. En tal sentido, al obtener resultados consistentes, se puede estimar caudales máximos en cualquier sitio de interés de la cuenca donde no se disponga de información. El factor de frecuencia se estima para las series de caudales máximos instantáneos, ajustando a las curvas teóricas de frecuencia los valores ponderados, es decir, la longitud de cada serie sobre el total. Uno de los objetivos es generar información de utilidad para el análisis y propuestas del sistema de alerta temprana contra inundaciones, para lo cual se realizan comparaciones entre las crecidas a partir de períodos de retorno de 2 años. La selección del modelo probabilístico de mejor ajuste a las series de tiempo se realiza mediante estimación de indicadores de eficiencia, en este caso, el error cuadrático y el error estándar de ajuste. En tal sentido, se procede a asignar la posición relativa de cada modelo, para lo cual el modelo probabilístico que posee el menor error (Fuentes, 2018, p. 28).

La regionalización es una herramienta utilizada para predecir el comportamiento futuro de los caudales en un sitio de interés, a partir de la información histórica de caudales. Es un método basado en procedimientos

estadísticos, que permite calcular la magnitud del caudal asociado a un período de retorno. Su confiabilidad depende de la longitud y calidad de la serie histórica, además de la incertidumbre propia de la distribución de probabilidades seleccionada. Cuando se pretende realizar extrapolaciones a períodos de retorno mayores que la longitud de la serie disponible, el error relativo asociado a la distribución de probabilidades utilizada es más importante, mientras que, en interpolaciones, la incertidumbre está asociada principalmente a la calidad de los datos a modelar; en ambos casos la incertidumbre es alta dependiendo de la cantidad de datos disponibles (Briceño y Yamit, 2018, p. 28).

Es importante tomar en cuenta que el análisis de frecuencia es importante en la regionalización de caudales pues a partir de la estimación de la frecuencia con la que ocurre un evento determinado a lo largo del tiempo los resultados del análisis sean teóricamente válidos, las series de datos deberán satisfacer determinados criterios estadísticos, como los de aleatoriedad, independencia, homogeneidad y estacionalidad según la Organización Meteorológica Mundial (OMM), en ese sentido su guía de prácticas hidrológicas indica que distribuciones de probabilidades son las de mayor uso en hidrología, pero depende además del método de estimación de parámetros. Tradicionalmente, el método de momentos ordinarios ha sido muy usado en hidrología a pesar de que se ha reconocido que es ineficiente en comparación con el método de máxima verosimilitud (Lujano, 2019, p. 3).

No existe una base teórica sólida para justificar la elección de una función específica de distribución de probabilidades, tampoco hay un procedimiento teórico para determinar a un modelo probabilístico como el mejor en un análisis de frecuencia, comparando diferentes modelos probabilísticos. Es por esto que comúnmente se verifica la conveniencia o conformidad entre distintas distribuciones para seleccionar entre estas a una, basándose en el ajuste de datos disponibles, facilidad de cómputo o cálculo y la consistencia con diferentes tamaños de muestra (Montesinos, 2018, p. 4).

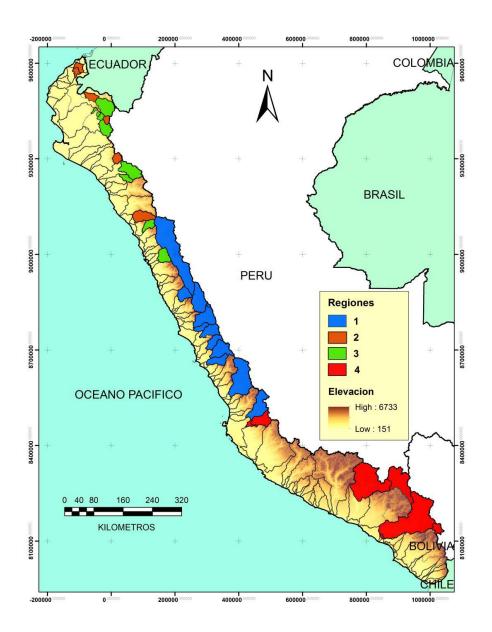


FIGURA 6: MAPA OBTENIDO DEL ANÁLISIS REGIONAL PARA LOS UMBRALES DE INUNDACIÓN DE LA VERTIENTE DEL PACÍFICO DEL PERÚ.

Fuente: Montesinos, (2018).

Con los resultados parciales obtenidos por Montesinos (2018) por medio de un análisis regional de caudales para los umbrales de inundación con el previo tratamiento de datos, nos muestra la figura 4, el cual es válido para toda la vertiente del Pacífico del Perú. Sugiere, además considerar las regiones de color azul como región 1, color naranja como región 2, color verde como región 3 y color rojo como región 4.

A partir del estudio realizado por (Montesinos, 2018, p. 38) para la región hidrológica del Pacífico del Perú, plantea la ecuación 1, basada en una distribución generalizada de valores extremos (GEV en sus siglas en inglés) como la distribución más robusta para dicha región.

$$\frac{Q_T}{\overline{O}} = \frac{\varepsilon + \alpha \left[1 - \left\{-\ln\left(1 - \frac{1}{T}\right)\right\}^k\right]}{k}$$

ECUACIÓN 1: FÓRMULA REGIONAL PARA UNA DISTRIBUCIÓN GEV

Donde Q_T es la estimación de los cuantiles del periodo de retorno (T) en años, \bar{Q} es el caudal máximo medio anual de la cuenca, ξ , α y k son los parámetros de la distribución generalizada de valores extremos adimensionales.

Así mismo (Montesinos, 2018, p. 38), estableció los parámetros para la ecuación 1 de toda la región del Pacífico, pero quedando aún la incertidumbre para el análisis localizado para cada una de las regiones hidrológicas del Pacífico del Perú. Dichos resultados se muestran en la figura 7 y figura 8.

	Parámetros			Cuantiles regionales para probabilidades de no excedencia F								
Distrib	Xi	Alpha	ı.	F=0.5	0.8	0.9	0.95	0.98	0.99	0.995	0.998	0.999
	(x)	(a)	k	TR=2	5	10	20	50	100	200	500	1000
	1					Región 1				1		
GEV	0.7860	0.3225	-0.0804	0.906	1.300	1.581	1.868	2.264	2.581	2.915	3.386	3.765
Región 2												
GNO	0.7976	0.5027	-0.7083	0.797	1.376	1.847	2.363	3.128	3.775	4.488	5.539	6.423
	Región 3											
GLO	0.7403	0.3261	-0.3974	0.740	1.343	1.885	2.564	3.774	5.017	6.647	9.615	12.695
	Región 4											
GNO	0.8874	0.5671	-0.3826	0.887	1.450	1.825	2.186	2.657	3.015	3.376	3.864	4.240

Figura 7: Parámetros y cuantiles regionales para las distribuciones con mejor ajuste para la región hidrológica del Pacífico de Perú. Fuente: Montesinos, (2018).

23

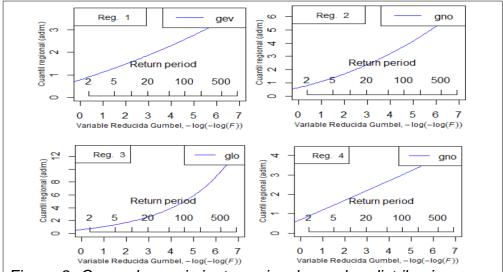


Figura 8: Curva de crecimiento regional para las distribuciones con mejor ajuste para la región hidrológica del Pacífico de Perú.

FUENTE: MONTESINOS, (2018).

1.3.1.1. Análisis probabilístico y estadístico de precipitaciones y caudales

Tal y como lo señala el MTC (2014), England et al. (2018) y Carhuatocto (2019), el análisis probabilístico y estadístico se basa en el análisis de frecuencias y tiene como fin la estimación de precipitaciones, caudales máximos o intensidades según sea el caso, para los diferentes periodos de retorno, mediante la aplicación de modelos probabilísticos. Según la estadística hay diferentes funciones de distribución de probabilidad teórica, recomendándose utilizar las funciones de distribución según lo señalado en la tabla 1.

TABLA 1: DISTRIBUCIONES TEÓRICAS DE MEJOR AJUSTE PARA EL ANÁLISIS DE EXTREMOS

Tipo de distribución teórica	Función numérica de la distribución teórica	Consideraciones
Normal	$f(x) = \frac{e^{-\frac{1}{2}\left[\left(\frac{X-\bar{X}}{S}\right)^{2}\right]}}{\sqrt{2\pi}S}$	Expresión válida para un ajuste similar para la prueba de bondad de ajuste Kolmogorov – Smirnov
Logaritmo Normal de 2 parámetros	$f(x) = \frac{e^{-\frac{1}{2} \left[\left(\frac{\ln X - \sigma_y}{\sigma_y} \right)^2 \right]}}{X(\sqrt{2\pi}\sigma_y)}$	Expresión válida para una distribución normal pero aplicando logaritmos a la variable X

Logaritmo Normal de 3 parámetros	$f(x) = \frac{e^{-\frac{1}{2} \left[\left\{ \frac{\ln(X - X_0) - u_y}{\sigma_y} \right\}^2 \right]}}{(X - X_0) \left(\sqrt{2\pi} \sigma_y \right)}$	Expresión válida para una distribución normal pero aplicando logaritmos a la variable X, pero ajustadas a un parámetro de escala en el dominio de X
Gamma de 2 parámetros	$f(x) = \frac{\left[x^{(\gamma-1)}\right] \left[e^{-\left(\frac{X}{\beta}\right)}\right]}{(\beta^{\gamma})[r(\gamma)]}$	Expresión válida para un análisis de parámetros de forma y escala ajustados a una función gamma
Gamma de 3 parámetros	$f(x) = \frac{(X - X_0)^{(\gamma - 1)} \left[e^{-\left(\frac{X - X_0}{\beta}\right)} \right]}{(\beta^{\gamma})[r(\gamma)]}$	Expresión válida para un análisis de parámetros de forma, escala y posición ajustados a una función gamma
Logaritmo Pearson tipo III	$f(x) = \frac{(\ln X - X_0)^{(\gamma - 1)} \left[e^{-\left(\frac{\ln X - X_0}{\beta}\right)} \right]}{X(\beta^{\gamma})[r(\gamma)]}$	Expresión válida para un análisis de parámetros de forma, escala y posición ajustados a una variable reducida logaritmo Pearson tipo III
Gumbel	$f(x) = \left(\frac{1}{\alpha}\right) \left(e^{\left[-\left(\frac{X-u}{\alpha}\right) - e^{\left\{-\left(\frac{X-u}{\alpha}\right)\right\}}\right]}\right)$	Expresión válida para un análisis de parámetros de escala, posición y variable aleatoria reducida Gumbel
Logaritmo Gumbel ó Frechet	$f(x) = e^{-e\left\{-\left(\frac{\ln x - u}{\alpha}\right)\right\}}$	Expresión válida cuando el análisis de la variable aleatoria reducida es logaritmo Gumbel cuyo ajuste se asocia ala función acumulada reducida Gumbel

Goodrich	$f(x) = 1 - \left[e^{-a\{(x-x_1)^{1/p}\}}\right]$	Expresión válida para el análisis cuando se requiere contrastar los valores extremos con los saltos que pueda presentar la variable X
Galton	$f(x) = \frac{e^{-\frac{1}{2}\left[\left(\frac{X-\bar{X}}{S}\right)^2\right]}}{\sqrt{2\pi}S}$	Expresión válida cuando existen muchos valores de la variable X ó cuya muestra es amplia aproximándose su distribución binomial a una distribución del tipo normal
Pearson tipo III	$f(x) = \frac{\left[\left(\frac{x - r}{\beta} \right)^{(\alpha - 1)} \right] \left[e^{-\left(\frac{x - r}{\beta} \right)} \right]}{ \beta [r(\alpha)]}$	Expresión muy similar a la distribución del tipo gamma de 2 parámetros, con la diferencia de emplear el valor absoluto del parámetro de escala
Pearson tipo V	$f(x) = \left[\frac{\beta^{\alpha}}{r(\alpha)}\right] \left[\left(\frac{1}{x}\right)^{\alpha+1}\right] \left(e^{-\frac{\beta}{x}}\right)$	Expresión inversa de la distribución del tipo gamma de 2 parámetros
Nash	$f(x) = a + b \left[log \left\{ log \left(\frac{T}{T-1} \right) \right\} \right]$ Donde las variables a y b son: $a = \bar{X} - b \left[\frac{\sum_{i=1}^{N} \left(log \left\{ log \left(\frac{T}{T-1} \right) \right\} \right)}{N} \right]$ $b = \frac{\sum_{i=1}^{N} (Xi * Qi) - N(\bar{X})(Xi)}{\sum_{i=1}^{N} (Xi^2 - N * Qi^2)}$	Expresión que representa la variación estadística de la variable X en función de la cantidad de valores, mientras más valores X existan, mejor será la aproximación de esta función al valor futuro esperado

Fuente: Elaboración propia adaptada del MTC (2014), England et al. (2018) y Carhuatocto (2019).

1.3.1.2. Sistema de modelamiento hidrológico

El modelamiento hidrológico desarrollado y propuesto por el Cuerpo de Ingenieros de los Estados Unidos a través del software Hydrologic Modeling System (HEC-HMS v.3.50) permite simular los procesos del tipo Iluvia – caudal a partir de procesos de transferencia de datos de entrada tales como infiltración, hietogramas, hidrograma, evapotranspiración, deshielo y humedad del suelo, por último el software ofrece diferentes maneras de resolución de estos procesos empleando métodos como el número de curva, hidrograma unitario de Clark e hidrograma unitario de Snyder.

1.3.1.3. Método IILA – SENAMHI

La obtención de intensidades de lluvia para diferentes tiempos de retorno es posible mediante el Método IILA-SENAMHI-UNI que, mediante el convenio del año 1983, se realizó la regionalización del Perú en zonas y sub zonas con diferentes precipitaciones, permitiendo así la creación de intensidades de diseño en lugares donde se cuente con muy poca o escaza información pluviométrica. (Manual de Hidrología, Hidráulica y Drenaje, 2017, p.58).

1.3.2. Umbral de inundaciones

Los umbrales de inundación son niveles de flujo que permiten emitir advertencias y alertas de inundación en ciertos puntos de una cuenca hidrográfica.

Finalmente se muestra un caso práctico del desarrollo de los umbrales de inundación el cual tomó como referencia los valores de niveles de alerta establecidos por la Sub Dirección de Predicción Hidrológica – SPH del Servicio Nacional de Meteorología e Hidrología del Perú – SENAMHI (ver figura 9), las mismas que se encuentran clasificadas en tres niveles de alerta y dicha información está disponible para las estaciones monitoreadas por el SENAMHI, así mismo se detallan los hidrogramas de los diferentes niveles de alerta, para la estación hidrométrica Santo Domingo que se encuentra ubicada en la cuenca Chancay – Huaral dentro de la región homogénea 1 (Montesinos, 2018, p.42-43).

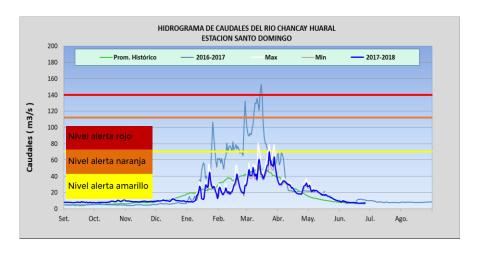


FIGURA 9: UMBRALES DE INUNDACIÓN SEGÚN NIVELES DE ALERTA ESTABLECIDOS POR EL SENAMHI.

Fuente: Montesinos, (2018)

1.3.3. Normativa

1.3.3.1. Técnica.

Ley N^a 24031, ley de servicio nacional de meteorología e hidrología del Perú – SENAMHI. Modificada por la ley N^o 27188 Establece que dicha entidad es un organismo público descentralizado con personería jurídica de derecho público interno y autonomía técnica, administrativa y económica.

Que, el artículo 60 del reglamento de organización y funciones del SENAMHI, aprobado por el decreto supero Nº 003-2016-MINAM, señala que la dirección de hidrología "Es el órgano de línea responsable de conducir, normar, formular, proponer y ejecutar planes, programas, proyectos, estudios e investigaciones en el área de hidrología, así como realizar monitoreo y la predicción hidrológica en las diferentes escalas de tiempo. Realiza estudios del impacto del clima en los recursos hídricos.

Manual de Hidrología, Hidráulica y Drenaje – MTC

Manual técnico Nº 001-SENAMHI-DHI-2016 "MANUAL DE HIDROMETRIA".

1.3.3.2. Ambiental.

Normas que rigen al Perú de acuerdo al proyecto de investigación planteado, estas son:

Ley 29338, Ley de Recursos Hídricos. - ANA

LEY 28221 Ley que regula el derecho por extracción de materiales de los cauces de los ríos por la Municipalidades.

Ley N^a 27867, ley orgánica de gobiernos regionales.

Ley Na 27972, ley orgánica de municipalidades

Resolución ministerial Nº 46-2013-PCM, donde aprueban la directiva "lineamientos que definen el marco de responsabilidades en gestión del riesgo de desastres, de las entidades del estado en los tres niveles del gobierno y su anexo.

Resolución ministerial Nº 180-2013, aprueban los Lineamientos para la organización, constitución y funcionamiento de las plataformas de defensa civil en los tres niveles del gobierno.

Resolución ministerial Nº 173-2015-PCM, aprueban los lineamientos para la conformación y funcionamiento de la red nacional de alerta temprana – RNAT y la conformación, funcionamiento y fortalecimiento de los sistemas de alerta temprana – SAT.

1.3.3.3. Seguridad y salud ocupacional.

Ley n^a 29783. Ley de seguridad y salud en el trabajo.

1.3.4. Gestión ambiental

Los cauces o lechos son los caminos de las aguas durante sus máximas avenidas. Los lechos que están inactivos por diferentes cambios del su trayecto de las aguas, son de dominio del estado y no pueden ser usados con fines humanos o agrícolas.

Las riveras son las áreas de los ríos, arroyos, lagos y lagunas que se encuentran en su mínimo o en su nivel de máximas avenidas o crecientes. Las fajas marginales son de dominio nacional hidráulico conformada por las áreas inmediatas a las riveras de las aguas naturales.

Por lo tanto, se prohíbe que los usos de las fajas marginales sean usados para fines de asentamientos humanos (invasiones) o cualquier otra actividad que las afecte (agrícolas, etc.).

1.3.5. Gestión de Riesgos y Prevención de Desastres.

La simplicidad de la naturaleza y los diversos peligros que se dan en nuestro país, deben ser tomadas en cuenta para incorporar los criterios de prevención y atención de los desastres en la formulación de nuevos Planes de Desarrollo y Programas de Inversión, en los distintos niveles (nacional, regional o local) y para diversos horizontes (largo, mediano y corto plazo). Un ejemplo muy claro, ante la presencia del Fenómeno "El Niño", entre los años 1997 y 1998, se pronosticó que su severidad sería mayor al registrado durante el período 1982 y 1983, así mismo se estimaron pérdidas del orden a los 10 mil millones de dólares; sin embargo, debido al apoyo del Consejo Consultivo Científico-Tecnológico de Defensa Civil y la ejecución de un conjunto de obras y acciones de prevención, desarrolladas entre las regiones de Tumbes y La Libertad, el impacto fue menor y las pérdidas llegaron aproximadamente a 3 mil 500 millones de dólares. Los resultados que se obtuvieron en aquella experiencia, afirmo que la prevención es la orientadora de los resultados positivos en materia de reducción de los desastres naturales. El diseño de las medidas de prevención, precisamente está basado en la Estimación del Riesgo, a cargo de los organismos integradores de la función ejecutiva del Sistema Nacional de Defensa Civil- SINADECI- como son los Comités de Defensa Civil en sus niveles Regionales, Provinciales y Distritales, bajo la normatividad del Instituto Nacional de Defensa Civil -INDECI. (INDECI, MANUAL BÁSICO PARA LA ESTIMACIÓN DE RIESGO, 2006)

Según la Ley Na 29664, ley que crea el sistema nacional de gestión del riesgo de desastres.

Decreto supremo Nº 034-2014-pcm, decreto supremo que aprueba el plan nacional de gestión del riesgo de desastres – PLANAGERD 2014-2021. Sistema Nacional de Gestión del Riesgo de Desastres, cuya finalidad es identificar y reducir los riesgos asociados a peligros, minimizar sus efectos y atender situaciones de peligro mediante lineamientos de gestión.

R. M. Nº 463-2019-PCM, publicada el 01ENE2020, LINEAMIENTOS PARA LA ELABORACIÓN DEL INFORME DE ESTIMACIÓN DEL

RIESGO POR PELIGRO INMINENTE. Tiene como finalidad orientar a los integrantes del SINAGERD respecto a la elaboración de informes de estimación del riesgo por peligro inminente.

RM N° 049-2020-PCM que aprueba el Protocolo para la emisión de avisos, alertas y alarmas ante lluvias intensas y peligros asociados, publicado el 14FEB20, permitiendo orientar respecto a la emisión de avisos, alertas, alarmas a fin de que los gobiernos regionales, gobiernos locales generen protocolos en su jurisdicción, uniéndolos con las acciones cargo de las entidades a nivel nacional competente en el monitoreo de las lluvias intensas y sus peligros asociados.

1.3.6. Impacto Ambiental

Una inundación es un evento devastador que causa graves dificultades para las personas, afecta tanto la zona productiva como el área natural del territorio. El impacto ambiental que tiene una inundación puede ser difícil de recuperar, ya que al igual que las personas, los animales son desplazados de su hábitat natural. Algunas veces su única alternativa es abandonar el área e intentar adaptarse a un nuevo hábitat. Pero el "desastre" natural no es la inundación sino sus consecuencias, y depende de un eficiente Plan de Gestión Ambiental reducir muchos de los problemas ambientales, económicos y sociales que se producen, después de que la inundación ha retrocedido.

Las inundaciones, así como los incendios forestales, la tala de árboles y los deslaves entre otros desastres naturales alteran el paisaje de un territorio de forma permanente y ocasionan, en algunos casos, la destrucción de una especie local.

Desde lo ambiental, por ejemplo, las áreas planas de las costas peruanas que no tienen árboles o rocas para evitar la erosión son a menudo barridas. Los campos agrícolas, que por lo general se ubican en las zonas planas, se destiñen y los cultivos se pierden. Los contaminantes de los alcantarillados y otros residuos puede que se arruinen en el suministro de agua, lo que produce un agua que no es segura para su uso por los residentes. En el caso de la sierra y selva, los hábitats de la fauna silvestre

en zona de los bosques afectados por las aguas también tienen consecuencias, muchos animales se trasladan o quedan sin hogar. También pueden desplazar a los animales tales como roedores y serpientes, llevando condiciones potencialmente peligrosas tanto para los seres humanos como para los animales.

Desde lo económico, las inundaciones golpean a las provincias de una manera muy fuerte. Los residentes que viven en las áreas afectadas con más índice de lluvias torrenciales e inundaciones experimentan una carga financiera en la sustitución de los artículos perdidos y en la reparación de sus hogares. Las empresas también sufren, no sólo por la pérdida de propiedad, sino por la falta de clientes durante la inundación y por un tiempo después de la recuperación. Los agricultores también sufren la pérdida de sus cultivos. Los pueblos y ciudades que se ven afectados por una inundación llevan la carga financiera de la reparación de los edificios públicos, carreteras y otras estructuras dañadas por las aguas de la inundación. Las personas que se ven afectadas por las inundaciones también pueden perder los salarios porque el negocio para el cual trabajan puede sufrir daños o porque son incapaces de llegar al trabajo.

Con respecto al presente trabajo esta investigación desde el punto de vista ambiental pretende tomar consciencia, que nuestros actos están perjudicando el ecosistema o la región hidrográfica local que después de un fenómeno natural tardamos años en reponernos en los diferentes aspectos.

En esta etapa del proyecto ningún impacto es negativo, sino que proporcionara información para que las municipalidades tomen cartas en el asunto y fomenten planes de contingencia contra posibles inundaciones mejorando la calidad de vida del ser humano en sus diferentes aspectos.

1.3.7. Estado del Arte

A. Investigaciones

Según el análisis realizado por Arriola et al. (2020), nos manifiestan que aplicaron algunas de las distribuciones mencionadas tanto para precipitaciones (ver figura 10) como para caudales máximos (ver figura 11). Explican también los investigadores que un criterio acertado consiste en

comparar cada uno de las variables analizadas con cada uno de los métodos para una adecuada elección de la distribución de mejor ajuste por medio del análisis de extremos.

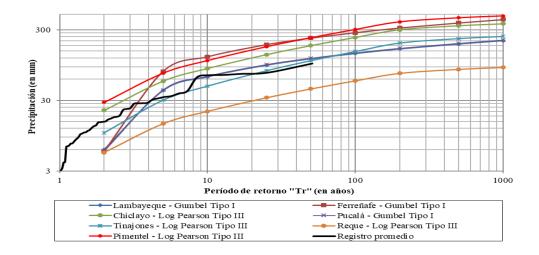


FIGURA 10: PRECIPITACIONES MÁXIMAS OBTENIDAS POR LAS DIFERENTES DISTRIBUCIONES TEÓRICAS MEDIANTE EL ANÁLISIS DE EXTREMOS. Fuente: Arriola et al., (2020).

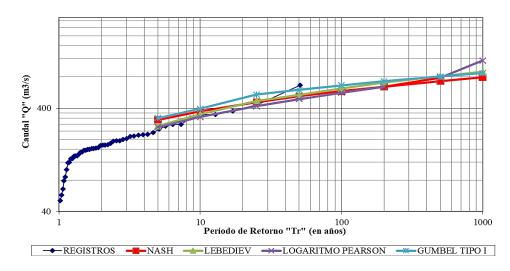


FIGURA 11: CAUDALES MÁXIMOS OBTENIDOS POR LAS DIFERENTES DISTRIBUCIONES TEÓRICAS MEDIANTE EL ANÁLISIS DE EXTREMOS. Fuente: Arriola et al., (2020).

B. Software.

B.1. HEC - HMS 3.5.

El Sistema de Modelado Hidrológico es una aplicación desarrollado por el Centro de Ingeniería Hidrológica (HEC-Hydrologic Engineering Center) del Cuerpo de Ingenieros del Ejército de los Estados Unidos (US Army Corps of Engineers).

Con el modelo HEC-HMS, se puede simular la respuesta que tendrá la cuenca de un río en su escurrimiento superficial, como producto de la precipitación, mediante la representación de la cuenca como un sistema interconectado de componentes hidrológicos e hidráulicos.

Cada componente modela un aspecto del proceso de escurrimiento por precipitaciones dentro de una parte de la cuenca comúnmente referida como una sub cuenca. Un componente puede representar una identidad de escurrimiento superficial, un canal de flujo o embalse.

La representación de un componente requiere un conjunto de parámetros que especifiquen las características particulares del componente y las relaciones matemáticas que describen el proceso físico. El resultado del proceso del modelaje es el cálculo de los hidrógrafos del flujo en sitios elegidos de la cuenca del río.

Para poder utilizar este programa se debe disponer de la siguiente información:

- Características de la precipitación, la intensidad se obtiene de las curvas Id-f (Intensidad, duración, frecuencia), o puede ajustarse utilizando los procedimientos mencionados anteriormente. Es importante señalar que las precipitaciones parciales deben introducirse en intervalos fijos.
- Características de la cuenca (Área, forma, Longitud del cauce principal, centro de gravedad, pendiente media del terreno, cobertura vegetal, tipo de prácticas de pastoreo, tipos de precipitación, etc.).

B.2. HEC-GeoRAS 5.0.6

HEC-GeoRAS es una extensión para ArcView desarrollada conjuntamente por el Hydrologic Engineering Center (HEC) del United States Army Corp of Engineers y el Environmental System Research Institute

(ESRI). Básicamente es un conjunto de procedimientos, herramientas y utilidades especialmente diseñadas para procesar datos georreferenciados que permiten bajo el entorno de los Sistemas de Información Geográfica (SIG), facilitar y complementar el trabajo con HEC-RAS. HEC-GeoRAS crea un archivo para importar a HEC-RAS datos de geometría del terreno incluyendo el cauce del río, secciones transversales, etc. Posteriormente los resultados obtenidos de calados y velocidades se exportan desde HEC-RAS a ArcView y pueden ser procesados para obtener mapas de inundación y riesgo.

B.3. Hidroesta 2

Representa una contribución de suma importancia a los cálculos hidrológicos.

HidroEsta 2, software para cálculos hidrológicos, la primera versión es el producto obtenido en dos años de trabajo, como un proyecto de investigación, patrocinado por la Vicerrectoría de Investigación y Extensión del Instituto Tecnológico de Costa Rica y ahora se continúa el trabajo para continuas actualizaciones.

Los datos recopilados, solo representan una información en bruto, pero si éstos se organizan y analizan en forma adecuada, proporcionan al hidrólogo una herramienta de gran utilidad, que le permite tomar decisiones en el diseño de estructuras hidráulicas.

HidroEsta, es una herramienta que facilita y simplifica los cálculos laboriosos, y el proceso del análisis de la abundante información que se deben realizar en los estudios hidrológicos.

B.4. HYDRACCESS

Hidracces es un software completo, homogéneo y de fácil manejo, que permite importar y almacenar varios tipos de datos hidrológicos en una base de datos en formato Microsoft Access 2000, y realizar los procesamientos básicos que un hidrólogo pueda necesitar. Fue desarrollado por un hidrólogo para hidrólogos. Su desarrollo empezó en el año 2000, y se ha continuado con regularidad desde esta fecha. Su autor es Philippe Vauchel, Hidrólogo

del IRD (Instituto Francés de Investigación para el Desarrollo), y el software pertenece al IRD.

Hydraccess se destina a los investigadores, ingenieros, técnicos o estudiantes que deseen administrar, visualizar y procesar datos hidrológicos. Hydraccess hace uso del administrador de bases de datos Access y de la hoja de cálculo Excel, y utiliza ampliamente sus posibilidades de automación. Como resultado de muchos de sus tratamientos, crea archivos Word o Excel. Eso permite al usuario obtener, en el idioma de su elección, tablas de datos y gráficos elaborados que puede personalizar e incluir directamente en informes.

Hydraccess conviene al procesamiento de datos desde las microcuencas hasta los grandes ríos. Para las pequeñas cuencas, puede tratar los datos a nivel del evento (tormenta o crecida) gracias a funciones de separación de los eventos en forma automática o interactiva.

1.3.8. Definición de Términos

Análisis Regional De Caudales: Es un enfoque probabilístico a partir de series de caudales máximos anuales para un área geográfica definida previamente como una región homogénea. Las series temporales consideradas en el análisis regional deben cumplir indispensablemente con ciertas características, entre las que resaltan la longitud de datos, la completación, consistencia, homogeneidad e independencia.

Cuenca Hidrográfica: es el área drenada por un rio, la cuenca es una unidad natural hidrológica y geofísica con limites definidos que facilitan la planificación y el aprovechamiento de sus recursos.

Hidrometría: Proviene del griego HYDRO- Agua y METRIA-Medición; se entiende como la técnica de medición del agua, sea el agua que corre en un riachuelo, en un rio o canal. La hidrometría se encarga de tomar y proveer datos relacionados con la distribución espacial y temporal del agua sobre la tierra.

Estación Hidrométrica: estación en la cual se obtienen datos del agua, en los ríos, lagos y embalses de uno o varios de los elementos siguientes: niveles, flujo de las corrientes, transporte y depósito de sedimentos, temperatura del agua.

Para instalar y operar adecuadamente se debe seguir el protocolo de instalación y operación de estaciones meteorológicas e hidrológicas.

Caudal: Es la descarga liquida de un rio, representa el volumen de agua que pasa por una sección transversal o sección de control en un intervalo de tiempo. Sus unidades de medición se expresan en m3/seg.

Región Hidrológica: Está conformada en función de sus características morfológicas, orográficas e hidrológica. En ella se considera la cuenca hidrológica como la unidad básica para la gestión de los recursos hídricos.

Umbrales de Inundación: Niveles de flujo que permiten emitir advertencias y alertas de inundación en ciertos puntos de una cuenca hidrográfica, teniendo como parámetros Los Caudales y el tiempo.

Periodo de Retorno: En varias áreas de la ingeniería, el período de retorno (T) es una representación usada comúnmente para presentar un estimativo de la probabilidad de ocurrencia de un evento determinado en un periodo determinado; por ejemplo, en ingeniería hidráulica se utiliza para mostrar la probabilidad de que se presente una avenida con determinado caudal o superior en un año cualquiera.

Inundación: Ocupación por parte del agua de zonas o regiones que habitualmente se encuentran secas. Normalmente es consecuencia de la aportación inusual y más o menos repentina de un caudal de agua superior a la que puede drenar el propio cauce del río.

Crecidas: Conocida en algunos lugares también como crecida de un río, arroyo, etc., creciente, riada o aguas altas es la elevación del nivel de un curso de agua significativamente mayor que el flujo medio de este.

1.4. Formulación del problema

¿Cómo el análisis regional de caudales determina los umbrales de inundación en la región hidrológica VI del Pacífico del Perú?

1.5. Justificación e importancia del estudio

El estudio de inundaciones por medio de análisis regionales actualmente en nuestro país es abordado sólo por instituciones gubernamentales como el SENAMHI, ANA, INDECI, CENEPRED, algunos municipios y ministerios del Perú, limitando sus estudios a algunas zonas del Perú pero como se sabe nuestro país cuenta con 14 regiones hidrológicas y dentro de ellas 159 cuencas lo cual implica la necesidad de conocer el potencial de inundaciones con fines de prevención y mitigación a mediano y largo plazo, pese a ello con la presente investigación se pretende dar un aporte en el análisis regional de caudales para determinar umbrales de inundación en la región hidrológica VI.

1.5.1. Justificación Social

Esta investigación, tiene mucha importancia desde el punto de vista social porque la mayoría de los casos se presentan en las ciudades ocasionando pérdidas humanas, los pobladores tendrán que tomar conciencia y mayor seriedad los riesgos y desastres que puede producir una crecida; dicha investigación contribuirá a una mejor calidad de vida.

1.5.2. Justificación Económica

Esta investigación permitirá que todas las municipalidades distritales de alto riesgo por inundaciones, minimicen costos ante la ocurrencia del desastre natural obteniendo como resultado la prevención de gastos a largo plazo.

1.5.3. Justificación Ambiental

La presente investigación dará realce a la población en el sentido de tomar conciencia sobre los problemas que aquejan el medio ambiente, de esta manera se valorara los recursos naturales, hídricos contribuyendo de esta forma al cambio climático.

1.5.4. Justificación Técnica

El presente proyecto de investigación tendrá importancia en los temas importantes en las municipalidades distritales, designando personal técnico calificado para la toma de muestras, datas, etc. Siendo monitoreados y capacitados por entidades públicas importantes en temas hidrológicos como son SENAMHI, ANA, MINIST. DE AGRICULTURA Y RIEGO, permitiendo así el desarrollo de dicho lugar.

1.6. Hipótesis

El análisis regional de caudales determina los umbrales de inundación en la región hidrológica VI del Pacífico del Perú.

1.7. Objetivos

1.7.1. Objetivo general

Realizar el análisis regional de caudales para determinar los umbrales de inundación en la región hidrológica VI del Pacífico del Perú.

1.7.2. Objetivos Específicos

Seleccionar las cuencas y sub cuencas de acuerdo a los requerimientos técnicos de la investigación.

Realizar el modelamiento hidrológico para obtener los caudales máximos en un determinado periodo de retorno de las cuencas que pertenecen a la región hidrológica VI del Pacífico del Perú.

Establecer las zonas homogéneas de la región hidrológica VI del Pacífico del Perú por medio del análisis regional de caudales basado en la relación caudal - área para los diferentes períodos de retorno.

Determinar los umbrales de inundación para las cuencas y sub cuencas que pertenecen a la región hidrológica VI del Pacífico del Perú.

II. Material Y Método

2.1. Tipo y diseño de investigación

El tipo de investigación es correlacional, debido a que se va a emplear el análisis regional de caudales para determinar los umbrales de inundación. El diseño es no experimental, de tipo longitudinal, porque se va a trabajar en un periodo de 56 años: 1965 – 2020, sin embargo, hay estaciones de menor cantidad de datos las cuales se completaron sus datos y se validaron con los parámetros estadísticos respectivos.

2.2. Población y Muestra

La población vendría a ser un conjunto que está formado por varias unidades de análisis o características que son relevantes para el investigador, mientras que la muestra se define como un conjunto extraído mediante un proceso técnico de la población.

2.2.1. Población.

En total existen catorce regiones hidrológicas (ver figura 12), sin embargo, como parte de la presente tesis la población correspondió sólo a las seis regiones hidrológicas de la Vertiente del Pacífico del Perú que se encuentran ubicadas en la costa norte del Perú.

FIGURA 12:: REGIONES HIDROLÓGICAS DEL PACÍFICO DEL PERÚ.

Fuente: Sabino et al., (2017).

2.2.2. Muestra.

En cuanto a la muestra, se escogió la región hidrológica VI (seis) cuya representatividad de las cuencas que se analizaran será importante para determinar los umbrales de inundación en la zona norte de nuestro país (ver figura 13, tabla 2 y tabla 3). En total existen 18 cuencas dentro del ámbito de la región hidrológica VI, dicha consideración se basó en el análisis del estudio realizado por Sabino et al. (2017) para todas las cuencas y sub cuentas del Perú, cuya clasificación, codificación y delimitación ya está preestablecida para todo el país.

2.2.3. Unidad de Análisis.

Para esta investigación la unidad de análisis son los caudales.

2.2.4. Criterios de Inclusión

Se consideró para esta región hidrológica en eventos de máximas avenidas sufre fuertes inundaciones sobre todo en eventos como el Fenómeno El Niño causando el colapso de carreteras, viviendas, servicios básicos y hasta la muerte de la población; además de ello es que las cuencas hidrográficas de estas zonas están en permanente monitoreo y la información está disponible y actualizada de forma gratuita en el portal online del SENAMHI.

FIGURA 13: REGIÓN HIDROLÓGICA VI DE LA VERTIENTE DEL PACÍFICO. Fuente: Sabino et al., (2017).

TABLA 2: CUENCAS DE LA REGIÓN HIDROLÓGICA VI DE LA VERTIENTE DEL PACÍFICO DEL PERÚ

1 TUM 1394 Cuenca Tumbes 1806.15 13925 Cuenca Bajo Tumbes 1139.29 1 TUM 1394 Cuenca Tumbes 1806.15 13925 Cuenca Medio Bajo Tumbes 154.09 2 Z80 137779 Intercuenca 13779 2633.40 Ninguno Ninguna Ninguna 2633.40 3 CAC 13778 Cuenca Cascajal 3942.36 Ninguno Ninguna 3942.36 4 Z81 13779 Intercuenca 13779 4708.17 Ninguno Ninguna 4708.17 5 Z82 1379 Intercuenca 13779 913.27 Ninguno Ninguna 913.27 6 BOC 13936 Cuenca Bocapán 900.62 Ninguno Ninguna 900.62 7 Z83 13939 Intercuenca 13939 187.94 Ninguno Ninguna 187.94 8 ZAR 13952 Cuenca Zarumilla 373.00 Ninguno Ninguna 373.00 9 Z84 13951 Intercuenca 13951 339.69 Ninguno
1 TUM 1394 Cuenca Tumbes 1806.15 13923 Tumbes Cuenca Medio Bajo Tumbes 154.09 2 Z80 137779 Intercuenca 137779 2633.40 Ninguno Ninguno Ninguna 2633.40 3 CAC 13778 Cuenca Cascajal 3942.36 Ninguno Ninguna 3942.36 4 Z81 13779 Intercuenca 13779 4708.17 Ninguno Ninguna 4708.17 5 Z82 1379 Intercuenca 1379 913.27 Ninguno Ninguna 913.27 6 BOC 13936 Cuenca Bocapán 900.62 Ninguno Ninguna 900.62 7 Z83 13939 Intercuenca 13939 187.94 Ninguno Ninguno Ninguna 187.94 8 ZAR 13952 Cuenca Zarumilla 373.00 Ninguno Ninguna 373.00 9 Z84 13951 Intercuenca 13951 339.69 Ninguno Ninguno Ninguna 339.69
Tumbes 154.09 13923 Cuenca Medio Bajo Tumbes 154.09 13922 Cuenca Cazaderos 349.53 2 Z80 137779 Intercuenca 13779 2633.40 Ninguno Ninguno Ninguna 2633.40 3 CAC 13778 Cuenca Cascajal 3942.36 Ninguno Ninguna 3942.36 4 Z81 13779 Intercuenca 13779 4708.17 Ninguno Ninguna 4708.17 5 Z82 1379 Intercuenca 1379 913.27 Ninguno Ninguna 913.27 6 BOC 13936 Cuenca Bocapán 900.62 Ninguno Ninguna 900.62 7 Z83 13939 Intercuenca 13939 187.94 Ninguno Ninguno Ninguna 187.94 8 ZAR 13952 Cuenca Zarumilla 373.00 Ninguno Ninguno Ninguna 333.00 9 Z84 13951 Intercuenca 13951 339.69 Ninguno <t< td=""></t<>
2 Z80 137779 Intercuenca 13779 2633.40 Ninguno Ninguna 2633.40 3 CAC 13778 Cuenca Cascajal 3942.36 Ninguno Ninguna 3942.36 4 Z81 13779 Intercuenca 13779 4708.17 Ninguno Ninguna 4708.17 5 Z82 1379 Intercuenca 1379 913.27 Ninguno Ninguna 913.27 6 BOC 13936 Cuenca Bocapán 900.62 Ninguno Ninguna 900.62 7 Z83 13939 Intercuenca 13939 187.94 Ninguno Ninguna 187.94 8 ZAR 13952 Cuenca Zarumilla 373.00 Ninguno Ninguna 373.00 9 Z84 13951 Intercuenca 13951 339.69 Ninguno Ninguna 339.69
2 Z80 137779 2633.40 Ninguno Ninguna 2633.40 3 CAC 13778 Cuenca Cascajal 3942.36 Ninguno Ninguna 3942.36 4 Z81 13779 Intercuenca 13779 4708.17 Ninguno Ninguna 4708.17 5 Z82 1379 Intercuenca 1379 913.27 Ninguno Ninguna 913.27 6 BOC 13936 Cuenca Bocapán 900.62 Ninguno Ninguna 900.62 7 Z83 13939 Intercuenca 13939 187.94 Ninguno Ninguna 187.94 8 ZAR 13952 Cuenca Zarumilla 373.00 Ninguno Ninguna 373.00 9 Z84 13951 Intercuenca 13951 339.69 Ninguno Ninguna 339.69
4 Z81 13779 Intercuenca 13779 4708.17 Ninguno Ninguna 4708.17 5 Z82 1379 Intercuenca 1379 913.27 Ninguno Ninguna 913.27 6 BOC 13936 Cuenca Bocapán 900.62 Ninguno Ninguna 900.62 7 Z83 13939 Intercuenca 13939 187.94 Ninguno Ninguna 187.94 8 ZAR 13952 Cuenca Zarumilla 373.00 Ninguno Ninguna 373.00 9 Z84 13951 Intercuenca 13951 339.69 Ninguno Ninguna 339.69
5 Z82 1379 Intercuenca 1379 913.27 Ninguno Ninguna 913.27 6 BOC 13936 Cuenca Bocapán 900.62 Ninguno Ninguna 900.62 7 Z83 13939 Intercuenca 13939 187.94 Ninguno Ninguna 187.94 8 ZAR 13952 Cuenca Zarumilla 373.00 Ninguno Ninguna 373.00 9 Z84 13951 Intercuenca 13951 339.69 Ninguno Ninguna 339.69
6 BOC 13936 Cuenca Bocapán 900.62 Ninguno Ninguna 900.62 7 Z83 13939 Intercuenca 13939 187.94 Ninguno Ninguna 187.94 8 ZAR 13952 Cuenca Zarumilla 373.00 Ninguno Ninguna 373.00 9 Z84 13951 Intercuenca 13951 339.69 Ninguno Ninguna 339.69
7 Z83 13939 Intercuenca 13939 187.94 Ninguno Ninguna 187.94 8 ZAR 13952 Cuenca Zarumilla 373.00 Ninguno Ninguna 373.00 9 Z84 13951 Intercuenca 13951 339.69 Ninguno Ninguna 339.69
8 ZAR 13952 Cuenca Zarumilla 373.00 Ninguno Ninguna 373.00 9 Z84 13951 Intercuenca 13951 339.69 Ninguno Ninguna 339.69
9 Z84 13951 Intercuenca 13951 339.69 Ninguno Ninguna 339.69
13781 Cuenca Baio Piura 4721 48
13782 Cuenca San Francisco 455.43
13783 Cuenca Medio Bajo 1789.10
10 PIU 1378 Cuenca Piura 10872.09 Unidad Hidrográfica 913.46
13785 Cuenca Medio Piura 73.31
13786 Cuenca Corrales 586.58

					13787	Cuenca Medio Alto Piura	505.80
				-	13789	Cuenca Alto Piura	1152.07
				-	13788	Cuenca Bigote	674.86
11	CHR	138	Cuenca Chira**	10534.76			10534.76
12	Z85	13931	Intercuenca 13931	328.31	Ninguno	Ninguna	328.31
13	FER	13932	Cuenca Fernández	740.27	Ninguno	Ninguna	740.27
14	Z86	13933	Intercuenca 13933	6.07	Ninguno	Ninguna	6.07
15	QSE	13934	Cuenca Quebrada Seca	483.88	Ninguno	Ninguna	483.88
16	Z87	13935	Intercuenca 13935	447.87	Ninguno	Ninguna	447.87
					139119	Unidad Hidrográfica 139119	82.92
				·	139114	Cuenca Acholada	129.26
17	Z88	1391	Intercuenca 1391	791.40	139113	Unidad Hidrográfica 139113	78.56
				-	139112	Cuenca Ancha	219.64
				•	139111	Unidad Hidrográfica 139111	281.02
				_	139122	Cuenca Honda***	643.32
					139123	Cuenca Medio Bajo Pariñas	146.59
				·	139125	Cuenca Medio Pariñas	153.98
18	PAR	1392	Cuenca Pariñas	1704.86	139124	Cuenca Mogollon	137.19
					139127	Cuenca Medio Alto Pariñas	56.62
				-	139126	Cuenca Saman***	278.89
				-	139128	Cuenca Cancha	110.48

	139129	Cuenca Alto Pariñas	177.79
Área total de las cuencas de la Región Hidrológica VI del Pacífico Norte =			41714.11

Nota: *La denominación UH corresponde a la codificación por Unidad Hidrográfica.

FUENTE: ELABORACIÓN PROPIA.

TABLA 3:

DETALLE DE LA CUENCA CHIRA PERTENECIENTE A LA REGIÓN HIDROLÓGICA VI DE LA VERTIENTE DEL PACÍFICO.

N°	Código general	Código de Cuenca (UH*)	Cuenca hidrográfica	Área de cuenca (Km²)	Código de Subcuenca (UH*)	Subcuenca	Área de subcuenca (Km²)	
					13841	Cuenca Bajo Alamor	9.49	
					13842	Cuenca Pilares	96.23	
					13814	Cuenca La Soledad	595.24	
					13813	Unidad Hidrográfica 13813	34.54	
					13817	Unidad Hidrográfica 13817	553.52	
11	CHR	138	Cuenca Chira	10534.76	13815	Unidad Hidrográfica 13815	140.10	
						13811	Unidad Hidrográfica 13811	708.94
					13812	Cuenca Honda**	153.86	
					13818	Cuenca Chipillico	1177.26	
				_	13819	Unidad Hidrográfica 13819	423.51	

^{**}El detalle de la cuenca Chira y sus respectivas subcuencas se detalla en la tabla 2.

^{***}Parte de estas subcuencas corresponden también a la cuenca Chira, tal y como se muestra en la tabla 2.

13816	Cuenca Saman**	814.48
13823	Cuenca Medio Bajo La Solana	15.94
13821	Cuenca Bajo La Solana	40.66
13822	Cuenca Tamarindo	175.32
13825	Cuenca Medio La Solana	105.03
13824	Cuenca La Encantada	199.93
13827	Cuenca Medio Alto La Solana	54.90
13826	Cuenca Quebrada Seca	296.14
13829	Cuenca Alto La Solana	187.55
13828	Cuenca Jabonillos	123.90
13886	Cuenca La Villa	185.37
13888	Cuenca Chico	86.09
13884	Unidad Hidrográfica 13884	157.27
13885	Cuenca Medio Macara	238.94
13883	Cuenca Medio Bajo Macara	63.25
13881	Cuenca Bajo Macara	246.33
13873	Unidad Hidrográfica 13873	9.86
13875	Unidad Hidrográfica 13875	10.31
13874	Cuenca Remolinos	174.44
13876	Cuenca Teodora	17.87
13877	Unidad Hidrográfica 13877	11.49
13878	Cuenca Chiqueros	47.04

13834 Cuenca Huasimal 19.79 13836 Cuenca Peñitas 11.55 13838 Cuenca Algarrobillo 9.32 13837 Unidad Hidrográfica 9.33 13832 Cuenca Durand 9.46 13833 Unidad Hidrográfica 11.90 13851 Unidad Hidrográfica 9.22 13853 Unidad Hidrográfica 13.853 13854 Cuenca Totumo 137.58 13855 Unidad Hidrográfica 13.855 13856 Cuenca Noria 14.83 13859 Unidad Hidrográfica 9.90 13869 Cuenca Alto Quiroz 753.95 13860 Cuenca Alto Quiroz 753.95 13867 Cuenca Medio Alto 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Medio Bajo 907.25 13862 Cuenca Suyo 190.22	13831	13831 Unidad Hidrográfica 13831	
13838 Cuenca Algarrobillo 9.32 13837 Unidad Hidrográfica 9.33 13832 Cuenca Durand 9.46 13833 Unidad Hidrográfica 11.90 13851 Unidad Hidrográfica 9.22 13853 Unidad Hidrográfica 11.99 13854 Cuenca Totumo 137.58 13855 Unidad Hidrográfica 11.17 13856 Cuenca Noria 14.83 13859 Unidad Hidrográfica 9.90 13869 Cuenca Alto Quiroz 753.95 13866 Cuenca Tulman 277.30 13867 Cuenca Medio Alto 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Medio Bajo 007.25	13834	Cuenca Huasimal	19.79
13837 Unidad Hidrográfica 13837 9.33 13832 Cuenca Durand 9.46 13833 Unidad Hidrográfica 13833 11.90 13851 Unidad Hidrográfica 13851 9.22 13853 Unidad Hidrográfica 13853 11.99 13854 Cuenca Totumo 137.58 13855 Unidad Hidrográfica 13855 11.17 13856 Cuenca Noria 14.83 13859 Unidad Hidrográfica 13859 9.90 13869 Cuenca Alto Quiroz 753.95 13866 Cuenca Tulman 277.30 13867 Cuenca Medio Alto Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Medio Bajo Quiroz 907.25 13863 Cuenca Medio Bajo Quiroz 907.25	13836	Cuenca Peñitas	11.55
13837 9.33 13832 Cuenca Durand 9.46 13833 Unidad Hidrográfica 13833 11.90 13851 Unidad Hidrográfica 13851 9.22 13853 Unidad Hidrográfica 13853 11.99 13854 Cuenca Totumo 137.58 13855 Unidad Hidrográfica 13855 11.17 13856 Cuenca Noria 14.83 13859 Unidad Hidrográfica 13859 9.90 13869 Cuenca Alto Quiroz 753.95 13866 Cuenca Tulman 277.30 13867 Cuenca Medio Alto Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Medio Bajo Quiroz 907.25 13863 Cuenca Medio Bajo Quiroz 907.25	13838	Cuenca Algarrobillo	9.32
13833 Unidad Hidrográfica 13833 11.90 13851 Unidad Hidrográfica 13851 9.22 13853 Unidad Hidrográfica 13853 11.99 13854 Cuenca Totumo 137.58 13855 Unidad Hidrográfica 13855 11.17 13856 Cuenca Noria 14.83 13859 Unidad Hidrográfica 13859 9.90 13869 Cuenca Alto Quiroz 753.95 13866 Cuenca Tulman 277.30 Cuenca Medio Alto Quiroz 13867 Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Medio Bajo Quiroz 172.92 Cuenca Medio Bajo Quiroz 1863 Quiroz 907.25	13837		9.33
13833 11.90 13851 Unidad Hidrográfica 13851 9.22 13853 Unidad Hidrográfica 13853 11.99 13854 Cuenca Totumo 137.58 13855 Unidad Hidrográfica 13855 11.17 13856 Cuenca Noria 14.83 13859 Unidad Hidrográfica 13859 9.90 13869 Cuenca Alto Quiroz 753.95 753.95 13866 Cuenca Tulman 277.30 277.30 13867 Cuenca Medio Alto Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Medio Bajo Quiroz 907.25 13863 Cuenca Medio Bajo Quiroz 907.25	13832	Cuenca Durand	9.46
13851 13851 13853 Unidad Hidrográfica 13853 13854 Cuenca Totumo 137.58 13855 Unidad Hidrográfica 13855 13856 Cuenca Noria 14.83 13859 Unidad Hidrográfica 13859 13869 Cuenca Alto Quiroz 753.95 13866 Cuenca Tulman 277.30 Cuenca Medio Alto Quiroz 13867 Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Medio Bajo Quiroz 142.92 13863 Cuenca Medio Bajo Quiroz 1907.25	13833	<u> </u>	11.90
13853 13853 11.99 13854 Cuenca Totumo 137.58 13855 Unidad Hidrográfica 13855 11.17 13856 Cuenca Noria 14.83 13859 Unidad Hidrográfica 13859 9.90 13869 Cuenca Alto Quiroz 753.95 13866 Cuenca Tulman 277.30 Cuenca Medio Alto Quiroz 13867 Guiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Medio Bajo Quiroz 172.92 Cuenca Medio Bajo Quiroz 1907.25 13863	13851		9.22
13855 Unidad Hidrográfica 13855 11.17 13856 Cuenca Noria 14.83 13859 Unidad Hidrográfica 13859 9.90 13869 Cuenca Alto Quiroz 753.95 13866 Cuenca Tulman 277.30 Cuenca Medio Alto Quiroz 13867 Guiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Medio Bajo Quiroz 13863 Cuenca Medio Bajo Quiroz 13863 Ouenca Medio Bajo Quiroz 141.52	13853		11.99
13855 11.17 13856 Cuenca Noria 14.83 13859 Unidad Hidrográfica 13859 9.90 13869 Cuenca Alto Quiroz 753.95 13866 Cuenca Tulman 277.30 13867 Cuenca Medio Alto Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Mangos 172.92 Cuenca Medio Bajo Quiroz 907.25	13854	Cuenca Totumo	137.58
13859 Unidad Hidrográfica 13859 9.90 13869 Cuenca Alto Quiroz 753.95 13866 Cuenca Tulman 277.30 13867 Cuenca Medio Alto Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Mangos 172.92 13863 Cuenca Medio Bajo Quiroz 907.25	13855		11.17
13859 9.90 13869 Cuenca Alto Quiroz 753.95 13866 Cuenca Tulman 277.30 13867 Cuenca Medio Alto Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Mangos 172.92 Cuenca Medio Bajo Quiroz 907.25	13856	Cuenca Noria	14.83
13866 Cuenca Tulman 277.30 13867 Cuenca Medio Alto Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Mangos 172.92 Cuenca Medio Bajo Quiroz 907.25	13859	13859	9.90
13867 Cuenca Medio Alto Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Mangos 172.92 Cuenca Medio Bajo Quiroz 907.25	13869	Cuenca Alto Quiroz	753.95
13867 Quiroz 69.18 13868 Cuenca Parcuchacha 290.44 13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Mangos 172.92 Cuenca Medio Bajo 907.25 Quiroz 907.25	13866	Cuenca Tulman	277.30
13865 Cuenca Medio Quiroz 141.52 13864 Cuenca Mangos 172.92 13863 Cuenca Medio Bajo Quiroz 907.25	13867		69.18
13864 Cuenca Mangos 172.92 13863 Cuenca Medio Bajo Quiroz 907.25	13868	Cuenca Parcuchacha	290.44
13863 Cuenca Medio Bajo 907.25	13865	Cuenca Medio Quiroz	141.52
Quiroz 907.25	13864	Cuenca Mangos	172.92
13862 Cuenca Suyo 190.22	13863		907.25
	13862	Cuenca Suyo	190.22

 13861	Cuenca Bajo Quiroz	299.46
Área to	otal de la cuenca Chira =	10534.76

Nota: *La denominación UH corresponde a la codificación por Unidad Hidrográfica. **Áreas de subcuencas complementarias a la cuenca Pariñas.

2.2.5. Criterios de Exclusión.

No se encuentra considerado dentro de esta información:

- ✓ Cuencas hidrológicas con eventos de avenidas mínimas.
- ✓ Cuencas hidrológicas que no forman parte de la región hidrológica Nº
 VI.

2.3. Variables y Operacionalización

2.3.1. Variable independiente

Región hidrológica VI del Pacífico del Perú: corresponde a una de las seis (6) regiones hidrológicas del Pacífico del Perú y dentro de ella corresponden dieciocho (18) cuencas hidrográficas de la Vertiente del Pacífico Norte.

2.3.2. Variable dependiente

Variable dependiente 1:

Análisis regional de caudales: consiste en caracterizar zonas específicas de cuencas hidrográficas con disponibilidad de registros de caudales de sus estaciones hidrométricas, a partir de criterios de homogenización tales como ubicación, altitud, períodos de medición de caudales, parámetros geomorfológicos de la cuenca, pendiente, así como también los criterios de aceptación tales como el vector regional y el de distribución de frecuencias.

Variable dependiente 2:

Umbrales de inundación: establece un valor(es) de caudal(es) a partir de la determinación del percentil(es) tomando como referencia los niveles de alerta en función a tres criterios propuestos por el SENAMHI (nivel amarillo: valor máximo del registro de caudal diario; nivel naranja: valor del caudal máximo ordinario; nivel rojo: nivel de desborde del río).

2.3.3. Operacionalización de variables

TABLA 4: **OPERACIONALIZACIÓN DE LA VARIABLE INDEPENDIENTE.**

Variable	Dimensiones	Indicadores	Ítem	Técnicas de recolección de datos	Instrumentos de recolección de datos
		Área	Km ²	Documental	
Región hidrológica VI del Pacífico del Perú	Cuenca hidrográfica	Perímetro	Km	Documental	Guía de análisis documental
		Longitud mayor del río	Km	Documental	
		Pendiente	%	Documental	
		Parámetros geomorfológicos	Adimensional	Documental	documental
		Tiempo de concentración	Horas	Documental	

Fuente: Elaboración propia.

TABLA 5: **OPERACIONALIZACIÓN DE VARIABLE DEPENDIENTE 1.**

Variable	Dimensiones	Indicadores	Ítem	Técnicas de recolección de datos	Instrumentos de recolección de datos
Análisis regional	Registro de caudales de	Criterio de homogenización	Adimensional	Documental	Guía de
de caudales	estaciones hidrométricas	Criterio de aceptación	Adimensional	Documental	análisis documental

Fuente: Elaboración propia.

TABLA 6: OPERACIONALIZACIÓN DE VARIABLE DEPENDIENTE 2.

Variable	Dimensione s	Indicadore s	Ítem	Técnicas de recolecció n de datos	Instrumento s de recolección de datos
Umbrales de inundació n	Nivel de alerta color amarillo	Caudal máximo diario registrado	m3/s	Documental	Guía de análisis documental

Nivel de alerta color naranja	Caudal máximo ordinario	m3/s	Documental
Nivel de alerta color rojo	Caudal máximo de desborde del río	m3/s	Documental

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad.

2.4.1. Técnicas de Recolección de Datos Análisis Documental.

Técnica utilizada para la recolección de datos de información registrada manual o automatizada por entidades estatales enfocadas en temas hidrológicos. Las bases de datos de los caudales obtenidos al pasar los años se analizarán de tal manera que se use adecuadamente.

2.4.2. Instrumentos de recolección de datos, validez y confiabilidad Guía de análisis documental:

Se consideró las guías de libros, tesis, revistas, artículos de investigación de los principales repositorios académicos, las normas técnicas, manuales vigentes en nuestro país con el propósito es sistematizar los fundamentos de la investigación y seleccionar con el debido criterio los datos necesarios para discutir y validar los resultados que se obtengan con la presente investigación, destacando su confiabilidad de los datos procesados que servirán para otras investigaciones.

2.4.3. **Validez**

Todos los instrumentos que se aplicaron a la investigación se pueden aplicar con rigurosidad obteniendo resultados factibles. Todos los instrumentos que se presentaron en este trabajo están validados por profesionales que presentan un amplio conocimiento de calidad en temas hidrológicos.

2.5. Procedimientos de análisis de datos.

2.5.1. Diagrama de procesos

Selección de cuencas y sub cuencas de acuerdo a los requerimientos técnicos de la investigación.

Realización del modelamiento hidrológico para obtener los caudales máximos en un determinado periodo de retorno.

Establecimiento de las zonas homogeneas de la región hidrológica VI del Pacífico del Perú.

Determinación de los umbrales de inundación para las cuencas y sub cuencas que pertenecen a la región hidrológica VI del Pacífico del Perú.

2.5.2. Descripción de Procesos.

2.5.2.1. Región hidrológica VI del pacifico del Perú.

Para este objetivo se aplicó el instrumento de recolección de datos como es la guía de análisis documental con la finalidad de reunir información referente a las cuencas y sub cuencas que pertenecen a la región hidrológica VI, dicha información se encuentra en el portal web del SENAMHI (Servicio Nacional de Meteorología e Hidrología del Perú)

De esta manera se procedió a la verificación de las fuentes de información para el análisis de datos, tomando como referencia el criterio de Montesinos (2018), dicho autor señala que para la creación de una base de datos que sea confiable y precisa, la longitud de registros como mínimo debería ser mayor a 15 años, a pesar de ello, se creyó

conveniente ampliar la longitud mínima de registros considerándose finalmente un rango de 10 años, esto en consideración a que varias estaciones tienen como mínimo 10 años de registros y la idea al realizar esta investigación es la de abarcar la mayor cantidad de estaciones climáticas e hidrométricas que permitan determinar adecuadamente los umbrales de inundación para los diferentes períodos de retorno.

2.5.2.2. Realización del modelamiento hidrológico para obtener los caudales máximos en un determinado periodo de retorno.

En este objetivo específico igualmente tiene como instrumento de recolección de datos la guía de análisis documental con la intención de tener información esencial de los registros de los caudales de las cuencas y sub cuencas de la región hidrológica VI.

Además dicho modelamiento hidrológico desarrollado y propuesto por el Cuerpo de Ingenieros de los Estados Unidos a través del software Hydrologic Modeling System (HEC-HMS v.3.50) permite simular los procesos del tipo lluvia – caudal a partir de procesos de transferencia de datos de entrada tales como infiltración, hietogramas, hidrograma, evapotranspiración, deshielo y humedad del suelo, por último el software ofrece diferentes maneras de resolución de estos procesos empleando métodos como el número de curva, hidrograma unitario de Clark e hidrograma unitario de Snyder.

2.5.2.3. Establecimiento de las zonas homogéneas de la región hidrológica VI del Pacífico del Perú.

En este objetivo el instrumento de recolección de datos es la guía de análisis documental que fue esencial ya que se obtuvo información necesaria para poder homogenizar las cuencas y sub cuencas con datos acordes a la investigación.

El criterio de homogenización se basó en hacer un agrupamiento de los caudales máximos divididos entre las respectivas áreas de sub cuencas para cada una de las estaciones pluviométricas, climáticas y/o meteorológicas considerando tres criterios de comparación: el promedio,

la desviación estándar y el coeficiente de variación; en cuanto a éste último parámetro es importante rescatar que si el valor del coeficiente de variación es menor a 1.00 nos indica que es adecuado el agrupamiento para homogenizar los grupos de estaciones (sub cuencas) de cada cuenca, es decir mientras más se acerque a cero mejor será la homogenización y aceptación de valores para la regionalización de un grupo de sub cuencas.

2.5.2.4. Determinación de los umbrales de inundación para las cuencas y sub cuencas que pertenecen a la región hidrológica VI del Pacífico del Perú.

Para este objetivo específico se utilizó la guía de análisis documental como instrumento de recolección de datos y de esta manera determinar los umbrales de inundación se consideró los niveles de alerta de nuestro país establecidos por el Servicio Nacional de Hidrología y Meteorología y específicamente en la región hidrológica VI del Pacífico presenta 13 estaciones hidrométricas de las cuales solo 8 estaciones indican los umbrales de inundación ante posibles inundaciones y desbordes de río (ver figura 25). Los umbrales según cada nivel de alerta se muestran en la tabla 71.

2.6. Criterios éticos

Se presentó los fundamentos de la investigación actualizados y confidenciales, permitiendo así ser una guía para recopilar la información hidrológica del tema en estudio.

Desde el punto de vista ético toda la información que se presenta en esta investigación es veraz, la data recolectada es real, obtenida por medio del portal web de la entidad técnica como es SENAMHI con el propósito de buscar una solución a la problemática planteada.

En el presente trabajo respeta la autoría y propiedad intelectual, citando en su totalidad a las tesis, artículos científicos, trabajos de investigación, normativas y artículos de opinión, de las diferentes bases de datos científicas, repositorios y revistas científicas periódicas, por ser el soporte teórico de esta investigación.

Esta investigación se realizó con la aprobación de la información obtenida, por parte del asesor especialista, así como también por el director de la escuela.

En la intención de promover una buena conducta de los ingenieros guiada por la universidad, se empleará un análisis con carácter de responsabilidad sabiendo que el presente trabajo puede servir de información de ayuda para los futuros investigadores, todo esto mediante el respeto y honestidad que se merece el investigador que aporto su conocimiento para guiar el presente estudio.

Los criterios éticos que guiarán nuestros pasos como profesionales serán:

Respeto

La honestidad.

La responsabilidad.

Inclusión Social.

Se está considerando la responsabilidad desde el punto de vista social y ambiental como aspectos de una economía circular que contribuyan con la sostenibilidad del planeta.

2.7. Criterios de rigor científico

Los resultados que se obtengan con la presente investigación serán válidos para otras investigaciones relacionadas al tema en estudio, así como también para comparar y discutir los valores que se obtengan.

La fiabilidad se refiere a la posibilidad de replicar estudios, esto es, que un investigador emplee los mismos métodos o estrategias de recolección de datos que otro, y obtenga resultados similares. Este criterio asegura que los resultados representan algo verdadero e inequívoco, y que las respuestas que dan son independientes de las circunstancias de la investigación.

La validez concierne a la interpretación correcta de los resultados y se convierte en un soporte fundamental de las investigaciones cualitativas.

Se ha tomado en cuanto a criterio metodológico además de claridad objetividad, actualidad, consistencia, coherencia y pertinencia.

III. Resultados

3.1. Resultados en tablas y figuras

La presente investigación los resultados que se obtuvieron fueron los siguientes.

3.1.1. Selección de las cuencas y sub cuencas de acuerdo a los requerimientos técnicos de la investigación.

La zona en estudio abarcó 18 cuencas hidrográficas que pertenecen a la región hidrológica VI de la vertiente del Pacífico, así mismo incluyó 78 sub cuencas tal y como se mostraron en la tabla 2 y 3 de la presente tesis.

Así mismo estas áreas de drenaje toman en cuenta la ubicación y dispersión de las estaciones pluviométricas, meteorológicas e hidrométricas en cada una de ellas.

Los ríos generalmente fluyen de este a oeste desde los andes hacia el Océano Pacífico y presentan pendientes no muy empinadas y empinadas de 4.00% a 9.00% con cascadas intermedias de entre 500.00 Km² y 16000.00 Km², que provocan un aumento significativo, inundaciones y erosión durante grandes episodios de lluvia.

Esta región presenta una amplia gama de tipos climáticos desde clima árido-tropical a tundra, lo que da como resultado gradientes inalterados y latitudinales en las condiciones climáticas (Montesinos, 2018, p.18).

3.1.1.1. Cuenca Tumbes

ANA (2019), indica que el río Puyango - Tumbes tiene una superficie total de 4850.00 Km², de los cuales 1806.15 Km² pertenecen a Perú (ver figura 14).

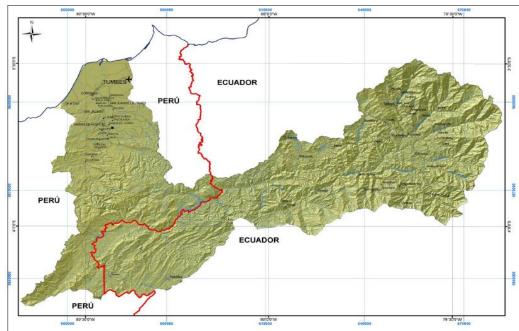


FIGURA 14: CUENCA TUMBES (EN BASE A LA CUENCA TRANSFRONTERIZA PUYANGO - TUMBES)

FUENTE: ANA, (2019).

En cuanto a la distribución de estaciones pluviométricas la cuenca presenta un total de 16 estaciones del tipo convencional – climática (ver tabla 7) de las cuales dos estaciones no presentan registros (NP) y además existe una estación hidrométrica (ver tabla 8).

TABLA 7: ESTACIONES CLIMÁTICAS DE LA CUENCA TUMBES (ABARCA LAS ESTACIONES DE LA CUENCA PUYANGO PERTENECIENTE A ECUADOR)

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	Puerto Pizarro	Convencional - Climática	103038	3.503° S	80.395° W	6.00	**SENAMHI	1963-2017
2	Los Cedros	Convencional - Climática	000101	3.518° S	80.502° W	5.00	SENAMHI	1993-1998
3	GR2M_ID_588	*NP	*NP	3.546° S	80.477° W	*NP	*NP	*NP
4	Campamento Sede	Convencional - Climática	150103	3.55° S	80.433° W	19.00	SENAMHI	1993-1998 / 2015
5	Tumbes Coloma	Convencional - Climática	000131	3.55° S	80.384° W	25.00	SENAMHI	*NP
6	Chacritas	Convencional - Climática	150111	3.70° S	80.367° W	85.00	SENAMHI	1993-1996
7	Rica Playa	Convencional - Climática	000130	3.805° S	80.500° W	98.00	SENAMHI	1963-2017
8	El Tigre	Convencional - Climática	151100	3.764° S	80.459° W	45.00	SENAMHI	1963-2017
9	Quebrada Angostura	Convencional - Climática	150105	3.767° S	80.400° W	70.00	SENAMHI	1993-1996

10	Cabo Inga	Convencional - Climática	000139	3.967° S	80.433° W	205.00	SENAMHI	1993-2017
11	Capitán Hoyle	Convencional - Climática	150107	4.067° S	80.483° W	235.00	***IRH	1966-2002
12	Hito Bocana	Convencional - Climática	151102	3.917° S	80.183° W	246.00	SENAMHI	1963-1981
13	Condor Flores	Convencional - Climática	150106	3.885° S	80.148° W	320.00	SENAMHI	1993-1996
14	Piñas	Pluviométrica	M0773	3.677° S	79.703° W	1126.00	****INAMHI	1982-2011
15	Zaruma	Pluviométrica	M0180	3.699° S	79.611° W	1100.00	INAMHI	1970-2006
16	Alamor	Pluviométrica	M0435	4.019° S	80.028° W	1250.00	INAMHI	1982-2011

Nota: *El identificador NP indica que la estación no presenta registro de ninguna fuente oficial de datos.

Fuente: Elaboración propia.

TABLA 8:

ESTACIÓN HIDROMÉTRICA DE LA CUENCA TUMBES

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	El Tigre	Convencional - Hidrométrica	200202	3.769° S	80.457° W	44.00	*PEBPT	1963- 2020

^{**}En donde se indique el identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

^{***} En donde se indique el identificador IRH corresponde a la fuente de datos de la Intendencia de Recursos Hídricos del Perú.

^{****} En donde se indique el identificador INAMHI corresponde a la fuente de datos del Instituto Nacional de Meteorología e Hidrología de Ecuador.

Nota: *El identificador PEBPT corresponde a la fuente de datos del Proyecto Especial Binacional Puyango Tumbes. Fuente: Elaboración propia.

A continuación, se muestran los registros de las precipitaciones máximas de 24 horas de las estaciones climáticas de la cuenca Tumbes (ver tabla 9), que servirán de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste. En el caso de las tres estaciones pertenecientes a Ecuador (ver figura 13) según el estudio de Guachamín y García (2019), nos muestran las intensidades máximas para diferentes períodos de retorno (ver tabla 10) ya preestablecidas por el Instituto Nacional de Meteorología e Hidrología (INAMHI), con lo que finalmente se transformarán a precipitaciones máximas de 24 horas para la duración equivalente de 1440.00 minutos.

TABLA 9: REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS - CUENCA TUMBES (PERÚ)

AÑO	Puerto Pizarro	Los Cedros	Campamento Sede	Chacritas	Rica Playa	El Tigre	Quebrada Angostura	Cabo Inga	Capitán Hoyle	Hito Bocana	Condor Flores
1963	2.50	*NP	NP	NP	0.00	0.00	NP	NP	NP	6.90	NP
1964	32.00	NP	NP	NP	30.10	52.00	NP	NP	NP	73.00	NP
1965	23.00	NP	NP	NP	60.00	40.00	NP	NP	NP	90.00	NP
1966	16.50	NP	NP	NP	17.00	20.00	NP	NP	29.00	72.50	NP
1967	18.00	NP	NP	NP	33.00	36.20	NP	NP	216.00	30.10	NP
1968	0.50	NP	NP	NP	1.50	1.10	NP	NP	19.00	26.40	NP
1969	47.10	NP	NP	NP	25.00	83.50	NP	NP	191.00	33.40	NP
1970	31.00	NP	NP	NP	38.00	50.80	NP	NP	149.00	34.00	NP
1971	20.20	NP	NP	NP	53.00	40.00	NP	NP	135.00	106.90	NP

1972	60.30	NP	NP	NP	64.00	60.80	NP	NP	250.00	115.00	NP
1973	28.00	NP	NP	NP	76.50	60.80	NP	NP	258.00	77.10	NP
1974	35.60	NP	NP	NP	7.00	10.50	NP	NP	25.00	37.50	NP
1975	35.80	NP	NP	NP	9.00	60.30	NP	NP	247.00	160.00	NP
1976	75.20	NP	NP	NP	20.00	60.80	NP	NP	139.00	10.00	NP
1977	17.00	NP	NP	NP	13.00	36.70	NP	NP	576.00	0.70	NP
1978	8.00	NP	NP	NP	0.00	28.50	NP	NP	74.00	37.00	NP
1979	10.00	NP	NP	NP	0.00	24.00	NP	NP	53.50	50.30	NP
1980	41.00	NP	NP	NP	35.00	20.00	NP	NP	130.10	NP	NP
1981	17.80	NP	NP	NP	24.60	30.10	NP	NP	87.20	62.10	NP
1982	44.00	NP	NP	NP	36.10	12.30	NP	NP	143.00	NP	NP
1983	166.00	NP	NP	NP	105.00	82.40	NP	NP	497.00	NP	NP
1984	54.00	NP	NP	NP	52.00	35.20	NP	NP	376.00	NP	NP
1985	10.00	NP	NP	NP	36.40	3.70	NP	NP	56.00	NP	NP
1986	33.00	NP	NP	NP	25.60	40.00	NP	NP	42.00	NP	NP
1987	89.00	NP	NP	NP	48.60	72.00	NP	NP	658.00	NP	NP
1988	15.00	NP	NP	NP	11.50	8.50	NP	NP	46.00	NP	NP
1989	110.00	NP	NP	NP	58.40	67.50	NP	NP	548.00	NP	NP
1990	65.00	NP	NP	NP	9.90	11.90	NP	NP	57.40	NP	NP
1991	49.00	NP	NP	NP	40.20	NP	NP	NP	153.50	NP	NP
1992	2.40	NP	NP	NP	119.20	NP	NP	NP	741.70	NP	NP
1993	34.50	14.50	6.80	3.80	44.50	45.60	11.30	67.10	NP	NP	6.10
1994	36.20	56.40	54.80	56.70	51.80	47.70	48.90	59.80	NP	NP	52.50
1995	53.20	17.40	54.80	19.30	16.50	29.20	31.90	67.60	NP	NP	100.50
1996	34.40	22.50	16.90	12.40	19.60	19.20	12.80	22.10	NP	NP	38.90
1997	143.00	110.00	120.80	NP	120.80	106.00	NP	69.70	548.00	NP	NP
1998	131.10	192.60	145.50	NP	160.80	185.00	NP	104.10	741.70	NP	NP

1999	129.20	NP	NP	NP	100.40 1	11.80	NP	81.40	548.00	NP	NP
2000	24.80	NP	NP	NP	56.00 4	12.40	NP	48.60	191.00	NP	NP
2001	67.60	NP	NP	NP	75.50 5	53.10	NP	89.50	258.00	NP	NP
2002	130.00	NP	NP	NP	60.00	97.60	NP	88.00	548.00	NP	NP
2003	33.30	NP	NP	NP	19.40 2	25.30	NP	81.30	NP	NP	NP
2004	43.10	NP	NP	NP	51.60 4	18.20	NP	39.70	NP	NP	NP
2005	64.20	NP	NP	NP	39.80 4	11.60	NP	56.00	NP	NP	NP
2006	85.50	NP	NP	NP	73.50 4	19.30	NP	42.80	NP	NP	NP
2007	34.40	NP	NP	NP	66.30 7	70.20	NP	57.00	NP	NP	NP
2008	73.00	NP	NP	NP	139.50 8	30.70	NP	59.00	NP	NP	NP
2009	55.70	NP	NP	NP	108.40 5	50.20	NP	110.00	NP	NP	NP
2010	75.00	NP	NP	NP	83.70 6	55.20	NP	71.70	NP	NP	NP
2011	13.20	NP	NP	NP	48.40 4	19.90	NP	78.90	NP	NP	NP
2012	34.00	NP	NP	NP	69.20 10	01.20	NP	96.60	NP	NP	NP
2013	66.00	NP	NP	NP	43.00 3	31.00	NP	37.40	NP	NP	NP
2014	12.00	NP	NP	NP	22.60 2	25.40	NP	19.50	NP	NP	NP
2015	52.00	NP	78.60	NP	94.60 7	72.40	NP	116.80	NP	NP	NP
2016	104.00	NP	NP	NP	128.20	0.00	NP	71.90	NP	NP	NP
2017	192.80	NP	NP	NP	88.20 7	73.90	NP	90.00	NP	NP	NP

Nota: *El identificador NP indica que la estación no presenta registro en ese año de ninguna fuente oficial de datos. Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

TABLA 10:
REGISTROS HISTÓRICOS DE LAS INTENSIDADES MÁXIMAS DE 24 HORAS - CUENCA
TUMBES (PARTE DE LA CUENCA DE PUYANGO EN ECUADOR)

Período de retorno	Zaruma	Alamor	Piñas
(Tr) en años	Intensidad	as (mm/h)	
2.00	2.66	3.87	2.80
5.00	3.25	4.91	3.83
10.00	3.60	5.50	4.37
25.00	3.88	5.91	4.68
50.00	4.33	6.64	5.31
100.00	4.62	7.06	5.65

Fuente: Elaboración propia adaptada de los resultados de Guachamín y García (2019).

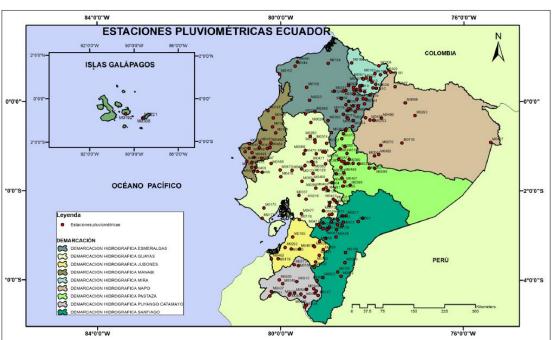


FIGURA 15: ESTACIONES PLUVIOMÉTRICAS DE ECUADOR SEGÚN DEMARCACIÓN HIDROGRÁFICA.

FUENTE: GUACHAMÍN Y GARCÍA (2019).

Luego se procedió a realizar la correlación de los valores de intensidad máxima con respecto a sus períodos de retorno para determinar la ecuación de mejor correlación y ajuste (ver figura 14, 15 y 16), cuya finalidad es de determinar las precipitaciones máximas para los períodos de retorno de 2, 5, 10, 20, 50, 100, 200 y 500 años. (ver tabla

11). El criterio de elección de mejor ajuste de cada correlación se basó en el análisis del coeficiente de correlación cuadrático el cual en cada caso fue muy cercano a 1.00, es decir mientras más cercano sea a la unidad mejor será el ajuste a la dispersión de valores.

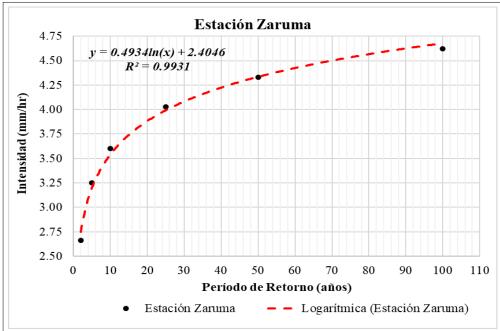


FIGURA 16: CORRELACIÓN DE INTENSIDAD MÁXIMA VERSUS PERÍODO DE RETORNO PARA LA ESTACIÓN PLUVIOMÉTRICA ZARUMA.

FUENTE: ELABORACIÓN PROPIA.

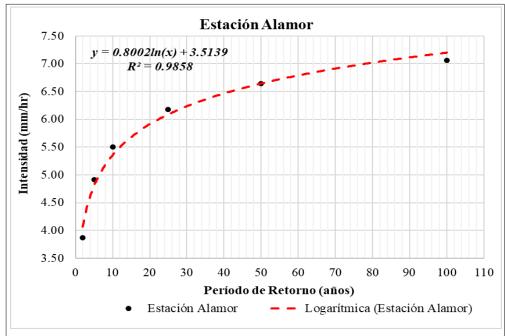


FIGURA 17: CORRELACIÓN DE INTENSIDAD MÁXIMA VERSUS PERÍODO DE RETORNO PARA LA ESTACIÓN PLUVIOMÉTRICA ALAMOR.

FUENTE: ELABORACIÓN PROPIA.

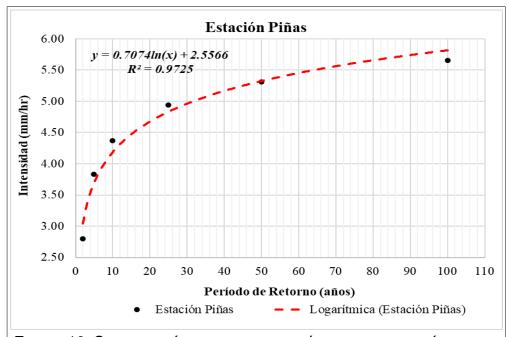


FIGURA 18: **Correlación de intensidad máxima versus período de RETORNO PARA LA ESTACIÓN PLUVIOMÉTRICA PIÑAS.**

FUENTE: ELABORACIÓN PROPIA.

TABLA 11:

REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS - CUENCA

TUMBES (PARTE DE LA CUENCA DE PUYANGO EN ECUADOR)

Período de retorno	Zaruma	Alamor	Piñas			
(Tr) en años	Precipitaciones máximas (mm)					
2.00	63.84	92.88	67.20			
5.00	78.00	117.84	91.92			
10.00	86.40	132.00	104.88			
20.00	93.18	141.87	112.22			
50.00	103.92	159.36	127.44			
100.00	110.88	169.44	135.60			
200.00	120.45	186.09	151.31			
500.00	131.30	203.68	166.87			

Fuente: Elaboración propia.

3.1.1.2. Intercuenca 137779

Es una intercuenca que se ubica al sur de la cuenca Cascajal, al norte de la cuenca Olmos y al este del océano Pacífico. Presenta un área de 2633.40 Km². No presente ninguna estación meteorológica, ni pluviométrica, ni tampoco hidrométrica.

3.1.1.3. Cuenca Cascajal

La cuenca se ubica al sur de la cuenca Piura y al este de la intercuenca 13779. Tiene un área de 3942.36 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta un total de 4 estaciones del tipo convencional – climática (ver tabla 12) y además existe una estación hidrométrica (ver tabla 13).

TABLA 12: ESTACIONES CLIMÁTICAS DE LA CUENCA CASCAJAL

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	Cerro de Arena	Convencional - Climática	105122	5.921° S	80.199° W	59.00	*SENAMHI	2008-2020
2	Pasaje Sur	Convencional - Climática	105121	5.917° S	79.972° W	85.00	SENAMHI	2008-2020
3	Pasabar	Convencional - Climática	262	5.834° S	79.817° W	124.00	SENAMHI	2006-2018
4	Virrey	Convencional - Climática	152107	5.533° S	79.983° W	230.00	SENAMHI	1964-2017

Nota: *En donde se indique el identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

TABLA 13: ESTACIÓN HIDROMÉTRICA DE LA CUENCA CASCAJAL

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	Zapatero	Convencional - Hidrométrica	1377810009	5.930° S	79.766° W	115.00	*JU Olmos	1993- 2020

Nota: *El identificador JU Olmos corresponde a la fuente de datos de la Junta de Usuarios de Olmos.

Fuente: Elaboración propia.

A continuación, se muestran los registros de las precipitaciones máximas de 24 horas de las estaciones climáticas de la cuenca Cascajal (ver tabla 14) que servirán de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 14:
REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS — CUENCA
CASCAJAL

AÑO	Cerro de Arena	Pasaje Sur	Pasabar	Virrey
1963	*NP	NP	NP	NP
1964	NP	NP	NP	13.50
1965	NP	NP	NP	50.20
1966	NP	NP	NP	4.00
1967	NP	NP	NP	14.40
1968	NP	NP	NP	5.30
1969	NP	NP	NP	43.00
1970	NP	NP	NP	1.60
1971	NP	NP	NP	68.40
1972	NP	NP	NP	85.00
1973	NP	NP	NP	32.00
1974	NP	NP	NP	16.00
1975	NP	NP	NP	8.80
1976	NP	NP	NP	40.50
1977	NP	NP	NP	40.00
1978	NP	NP	NP	80.00
1979	NP	NP	NP	10.00
1980	NP	NP	NP	44.10
1981	NP	NP	NP	44.10
1982	NP	NP	NP	2.70
1983	NP	NP	NP	170.00
1984	NP	NP	NP	20.00
1985	NP	NP	NP	30.80
1986	NP	NP	NP	5.00
1987	NP	NP	NP	40.00
1988	NP	NP	NP	1.00
1989	NP	NP	NP	40.00
1990	NP	NP	NP	0.60
1991	NP	NP	NP	0.00
1992	NP	NP	NP	10.00
1993	NP	NP	NP	70.00
1994	NP	NP	NP	80.30
1995	NP	NP	NP	40.00
1996	NP	NP	NP	5.30
1997	NP	NP	NP	45.60
1998	NP	NP	NP	230.70
1999	NP	NP	NP	42.70
2000	NP	NP	NP	40.00
2001	NP	NP	NP	85.80

2002	NP	NP	NP	91.00
2003	NP	NP	NP	20.50
2004	NP	NP	NP	8.10
2005	NP	NP	NP	46.80
2006	NP	NP	15.10	103.40
2007	NP	NP	42.20	18.70
2008	1.90	1.00	84.90	90.00
2009	9.50	50.30	27.90	102.60
2010	19.20	20.00	31.10	50.70
2011	5.70	9.00	30.00	50.00
2012	59.30	30.00	80.00	330.00
2013	7.00	10.00	8.80	33.80
2014	6.70	5.00	9.60	9.50
2015	12.50	10.00	52.00	90.00
2016	8.50	20.80	32.60	0.00
2017	153.20	80.20	98.50	141.00
2018	1.80	10.00	5.60	NP
2019	27.00	20.00	NP	NP

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

3.1.1.4. Intercuenca 13779

Es una intercuenca que se ubica al sur de la cuenca Piura, al oeste de la cuenca Cascajal y al este del océano Pacífico. Presenta un área de 4708.17 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta 1 estación del tipo convencional – climática (ver tabla 15) y además existe una estación hidrométrica (ver tabla 16).

En cuanto a los registros de las precipitaciones máximas de 24 horas de la estación climática de la intercuenca 13779 se muestran en la tabla 17, que a la vez servirán de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 15: ESTACIÓN CLIMÁTICA DE LA INTERCUENCA 13779

N°							Fuente de obtención de datos	Período de registro
1	Bernal	Convencional - Climática	152100	5.633° S	80.75° W	30.00	*SENAMHI	1963- 2017

Nota: *En donde se indique el identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

Fuente: Elaboración propia.

TABLA 16: ESTACIÓN HIDROMÉTRICA DE LA INTERCUENCA 13779

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	
1	Canal Sechura	Convencional - Hidrométrica	200411	5.550° S	80.833° W	10.00	*ANA - SENAMHI	1970- 1975

Nota: *El identificador ANA - SENAMHI corresponde a la fuente de datos de la Autoridad Nacional del Agua y del Servicio Nacional de Meteorología e Hidrología del Perú.

TABLA 17:

REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS – INTERCUENCA 13779

AÑO	Bernal
1963	1.50
1964	2.60
1965	15.20
1966	1.30
1967	14.00
1968	2.00
1969	3.00
1970	0.90
1971	9.30
1972	29.00
1973	15.20
1974	2.10
1975	6.50
1976	18.00

1977	18.50
1978	5.60
1979	1.80
1980	2.90
1981	1.20
1982	0.80
1983	45.00
1984	*NP
1985	0.30
1986	3.80
1987	41.60
1988	5.10
1989	6.50
1990	4.50
1991	3.50
1992	25.20
1993	6.30
1994	9.40
1995	3.90
1996	2.20
1997	9.20
1998	123.20
1999	9.10
2000	2.80
2001	24.00
2002	61.50
2003	4.60
2004	3.30
2005	4.40
2006	16.00
2007	3.20
2008	11.60
2009	14.90
2010	22.30
2011	6.30
2012	9.10
2013	42.20
2014	3.80
2015	6.20
2016	12.80
2017	121.70
indica que la	a estación no nr

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

3.1.1.5. Intercuenca 1379

Es una intercuenca que se ubica al suroeste de la cuenca Chira, al oeste de la cuenca Piura y al este del océano Pacífico. Presenta un área de 913.27 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta 2 estaciones del tipo convencional – climática (ver tabla 18) y además no presenta ninguna estación hidrométrica. En cuanto a los registros de las precipitaciones máximas de 24 horas de las estaciones climáticas de la intercuenca 1379 se muestran en la tabla 19, que a la vez servirán de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 18: ESTACIONES CLIMÁTICAS DE LA INTERCUENCA 1379

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	La Esperanza	Convencional - Climática	000230	4.918° S	81.061° W	12.00	*SENAMHI	1967- 2017
2	Paita	Convencional - Climática	000204	5.117° S	81.134° W	40.00	SENAMHI	1971- 1998

Nota: *En donde se indique el identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

TABLA 19:
REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS – INTERCUENCA 1379

AÑO	La Esperanza	Paita
1967	2.00	*NP
1968	2.80	NP
1969	20.00	NP
1970	0.90	NP
1971	0.00	9.50
1972	115.20	NP
1973	22.00	0.60
1974	1.70	0.00
1975	18.90	1.50
1976	18.80	24.30

1977	13.90	20.60
1978	8.70	13.00
1979	2.00	2.20
1980	10.70	0.10
1981	3.20	4.50
1982	1.80	4.30
1983	132.00	126.00
1984	4.60	36.00
1985	11.30	19.50
1986	3.80	20.00
1987	32.80	0.90
1988	3.20	4.00
1989	9.30	0.00
1990	2.10	0.00
1991	1.50	NP
1992	53.30	NP
1993	4.90	NP
1994	3.80	0.15
1995	8.80	15.00
1996	2.90	3.80
1997	24.70	71.00
1998	96.60	131.00
1999	18.50	NP
2000	6.20	NP
2001	14.50	NP
2002	22.40	NP
2003	8.40	NP
2004	5.30	NP
2005	1.50	NP
2006	10.00	NP
2007	3.70	NP
2008	72.00	NP
2009	8.70	NP
2010	59.50	NP
2011	4.70	NP
2012	32.20	NP
2013	29.20	NP
2014	7.00	NP
2015	11.80	NP
2016	18.50	NP
2017	65.90	NP
or NP indica	nua la astación	no presenta

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

3.1.1.6. Cuenca Bocapán

Es una cuenca que se ubica al sur del océano Pacífico y la intercuenca 13939, al oeste de la cuenca Tumbes y al este de la intercuenca 13935 y la cuenca Quebrada Seca. Presenta un área de 900.62 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta 5 estaciones del tipo convencional – climática (ver tabla 20) y además no presenta ninguna estación hidrométrica. En cuanto a los registros de las precipitaciones máximas de 24 horas de las estaciones climáticas de la cuenca Bocapán se muestran en la tabla 21, que a la vez servirán de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 20: ESTACIONES CLIMÁTICAS DE LA CUENCA BOCAPÁN

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	Cherrelique	Convencional - Climática	150110	4.033° S	80.683° W	165.00	*IRH	1966- 2002
2	Cañaveral	Convencional - Climática	000136	3.933° S	80.65° W	145.00	IRH - SENAMHI	1966- 2011
3	Los Pinos	Convencional - Climática	000129	3.843° S	80.641° W	1.00	**SENAMHI	1974- 1980
4	Huasimo	Automática - Meteorológica	472F43AC / 000137	3.999° S	80.504° W	667.00	SENAMHI	1974- 1982
5	San Lorenzo	Convencional - Climática	152102	4.006° S	50.529° W	667.00	SENAMHI	1999- 2011

Nota: *En donde se indique el identificador IRH corresponde a la fuente de datos de la Intendencia de Recursos Hídricos.

^{**}En donde se indique el identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

TABLA 21:

REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS – CUENCA

BOCAPÁN

AÑO	Cherrelique	Cañaveral	Los Pinos	Huasimo	San Lorenzo
1966	235.00	79.00	*NP	NP	NP
1967	34.00	70.00	NP	NP	NP
1968	7.00	7.00	NP	NP	NP
1969	213.00	167.00	NP	NP	NP
1970	39.00	30.00	NP	NP	NP
1971	93.00	87.00	NP	NP	NP
1972	377.00	185.00	NP	NP	NP
1973	155.00	97.00	NP	NP	NP
1974	28.00	19.00	2.50	5.00	NP
1975	175.00	173.70	26.10	80.00	NP
1976	105.00	204.00	118.10	74.50	NP
1977	100.00	223.00	30.30	29.00	NP
1978	27.00	61.20	20.20	37.20	NP
1979	44.50	22.00	50.80	20.50	NP
1980	151.40	101.80	0.00	25.50	NP
1981	56.80	42.00	NP	20.20	NP
1982	57.50	78.00	NP	23.60	NP
1983	615.00	491.00	NP	NP	NP
1984	144.00	216.00	NP	NP	NP
1985	92.00	33.00	NP	NP	NP
1986	62.00	19.00	NP	NP	NP
1987	385.00	360.00	NP	NP	NP
1988	29.10	16.00	NP	NP	NP
1989	237.80	129.00	NP	NP	NP
1990	22.50	24.00	NP	NP	NP
1991	81.80	717.00	NP	NP	NP
1992	672.00	306.00	NP	NP	NP
1993	94.10	104.50	NP	NP	NP
1994	113.20	103.80	NP	NP	NP
1995	101.80	32.00	NP	NP	NP
1996	30.00	63.00	NP	NP	NP
1997	409.00	729.20	NP	NP	NP
1998	672.00	150.00	NP	NP	NP
1999	237.80	100.10	NP	NP	56.30
2000	213.00	334.80	NP	NP	101.40
2001	377.00	63.00	NP	NP	91.20
2002	237.80	129.00	NP	NP	79.20
2003	NP	44.50	NP	NP	54.30
2004	NP	24.20	NP	NP	212.00

2005	NP	14.00	NP	NP	82.00
2006	NP	59.70	NP	NP	55.30
2007	NP	57.50	NP	NP	88.80
2008	NP	53.50	NP	NP	52.80
2009	NP	52.50	NP	NP	70.30
2010	NP	41.00	NP	NP	34.00
2011	NP	40.00	NP	NP	0.00

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos

3.1.1.7. Intercuenca 13939

Es una cuenca que se ubica al norte de la cuenca Bocapán, al sur del océano Pacífico y al oeste de la cuenca Tumbes. Presenta un área de 187.94 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta 1 estación del tipo convencional – climática (ver tabla 22) y además no presenta ninguna estación hidrométrica. En cuanto a los registros de las precipitaciones máximas de 24 horas de las estaciones climáticas de la cuenca Bocapán se muestran en la tabla 23, que a la vez servirán de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 22: ESTACIONES CLIMÁTICAS DE LA INTERCUENCA 13939

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	La Cruz	Convencional - Climática	000179	3.625° S	80.539° W	7.00	*SENAMHI	1995- 2020

Nota: *En donde se indique el identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

TABLA 23:
REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS — INTERCUENCA 13939

AÑO	La Cruz
1966	*NP
1967	NP NP
1968	NP
1969	NP
1970	NP NP
1971	NP
1972	NP NP
1973	NP
1974	NP
1975	NP
1976	NP
1977	NP
1978	NP
1979	NP
1980	NP
1981	NP
1982	NP
1983	NP
1984	NP
1985	NP
1986	NP
1987	NP
1988	NP
1989	NP
1990	NP
1991	NP
1992	NP
1993	NP
1994	NP
1995	0.00
1996	NP
1997	NP
1998	51.10
1999	80.80
2000	29.10
2001	64.20
2002	55.90
2003	10.90
2004	21.70

2005	14.00
2006	67.70
2007	37.70
2008	76.00
2009	57.10
2010	69.50
2011	20.10
2012	46.20
2013	41.10
2014	22.90
2015	41.80
2016	0.90
2017	82.20
2018	20.80
2019	36.50
2020	31.50

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos

3.1.1.8. Cuenca Zarumilla

Ubicada entre los países de Perú y Ecuador, limita al norte con el océano Pacífico, al sur con la zona centro de la cuenca Tumbes (Perú) y la cuenca Puyango (Ecuador), al oeste con Ecuador y al oeste con la intercuenca 13951 y la zona norte de la cuenca Tumbes. Presenta un área de 373.00 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta 6 estaciones del tipo convencional – climática en Perú y 2 estaciones pluviométricas en Ecuador (ver tabla 24) y además existe una estación hidrométrica en Perú (ver tabla 25).

Tabla 24: ESTACIONES CLIMÁTICAS DE LA CUENCA ZARUMILLA

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	Papayal	Convencional - Climática	000134	3.567° S	80.233° W	50.00	**SENAMHI	1963-2017
2	Matapalo	Convencional - Climática	150112	3.667° S	80.200° W	56.00	SENAMHI	1975-2019
3	El Caucho	Convencional - Climática	000128	3.817° S	80.267° W	438.00	SENAMHI	1977-1996
4	Hito Cotrina	Convencional - Climática	150104	3.817° S	80.167° W	413.00	SENAMHI	1993-1996
5	Hito Bocana	Convencional - Climática	*NP	3.917° S	80.184° W	333.00	SENAMHI	1975-1981
6	Condor Flores	Convencional - Climática	NP	3.890° S	80.139° W	384.00	SENAMHI	1993-1996
7	Chacras	Pluviométrica	M0482	3.544° S	80.198° W	60.00	***SENAMHI	1982-2011

8 Arenillas Pluviométrica M0179 3.541° S 80.054° W 26.00 INAMHI 1965-2010

Nota: *El identificador NP indica que la estación no presenta ningún nombre y/o número de código de ninguna fuente oficial de datos.

**En donde se indique el identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

*** En donde se indique el identificador INAMHI corresponde a la fuente de datos del Instituto Nacional de Meteorología e Hidrología de Ecuador. Fuente: Elaboración propia.

TABLA 25: ESTACIÓN HIDROMÉTRICA DE LA CUENCA ZARUMILLA

N°	Nombre	Tipo	Códig o	Latitud	Longitu d	Altitud (m.s.n. m.)	Fuente de obtenció n de datos	Período de registro
1	Canal Internacio nal	Convencion al - Hidrométrica	20010 1	3.469° S	80.243° W	43.00	*SENAMH I	1957- 1990

Nota: *El identificador SENAMHI corresponde a la fuente de datos del Servicio

Nacional de Meteorología e Hidrología del Perú.

Fuente: Elaboración propia.

En cuanto a los registros de las precipitaciones máximas de 24 horas de las estaciones climáticas de la cuenca Zarumilla se muestran en la tabla 26, que a la vez servirán de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 26:
REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS — CUENCA ZARUMILLA

AÑO	Papaya I	Matapal o	EI Caucho	Hito Cotrina	Hito Bocana	Condor Flores
1963	1.00	*NP	NP	NP	NP	NP
1964	19.80	NP	NP	NP	NP	NP
1965	25.00	NP	NP	NP	NP	NP
1966	27.00	NP	NP	NP	NP	NP
1967	22.20	NP	NP	NP	NP	NP
1968	5.20	NP	NP	NP	NP	NP
1969	24.90	NP	NP	NP	NP	NP
1970	21.80	NP	NP	NP	NP	NP
1971	15.20	NP	NP	NP	NP	NP
1972	29.60	NP	NP	NP	NP	NP
1973	63.20	NP	NP	NP	NP	NP
1974	31.00	0.00	NP	NP	NP	NP
1975	47.60	1.50	NP	NP	78.00	NP
1976	65.20	53.00	NP	NP	10.00	NP
1977	28.40	NP	5.90	NP	0.70	NP
1978	16.60	2.50	12.80	NP	37.00	NP
1979	30.00	22.80	7.00	NP	50.30	NP
1980	50.50	11.00	28.00	NP	0.00	NP
1981	60.40	85.40	NP	NP	62.10	NP

1982	70.50	NP	0.00	NP	NP	NP
1983	120.80	NP	NP	NP	NP	NP
1984	20.60	NP	NP	NP	NP	NP
1985	0.00	NP	NP	NP	NP	NP
1986	6.80	22.30	NP	NP	NP	NP
1987	98.40	78.00	NP	NP	NP	NP
1988	58.00	42.20	NP	NP	NP	NP
1989	NP	45.60	NP	NP	NP	NP
1990	NP	47.40	NP	NP	NP	NP
1991	NP	42.90	NP	NP	NP	NP
1992	NP	NP	9.70	NP	NP	NP
1993	51.20	29.40	117.20	15.60	NP	6.10
1994	38.80	85.10	40.50	75.60	NP	52.50
1995	70.50	90.80	65.60	85.50	NP	100.50
1996	36.70	20.80	26.40	78.40	NP	38.90
1997	115.60	77.00	NP	NP	NP	NP
1998	211.20	188.00	NP	NP	NP	NP
1999	81.90	79.30	NP	NP	NP	NP
2000	28.00	64.60	NP	NP	NP	NP
2001	93.30	71.00	NP	NP	NP	NP
2002	103.70	61.00	NP	NP	NP	NP
2003	28.00	38.70	NP	NP	NP	NP
2004	34.20	64.50	NP	NP	NP	NP
2005	17.00	26.00	NP	NP	NP	NP
2006	131.60	69.20	NP	NP	NP	NP
2007	37.70	93.30	NP	NP	NP	NP
2008	95.00	76.10	NP	NP	NP	NP
2009	46.20	36.90	NP	NP	NP	NP
2010	130.30	107.90	NP	NP	NP	NP
2011	47.00	70.80	NP	NP	NP	NP
2012	76.00	45.40	NP	NP	NP	NP
2013	27.20	74.80	NP	NP	NP	NP
2014	56.00	45.10	NP	NP	NP	NP
2015	35.20	88.10	NP	NP	NP	NP
2016	104.70	NP	NP	NP	NP	NP
2017	62.40	102.90	NP	NP	NP	NP
2018	NP	32.50	NP	NP	NP	NP
2019	NP	88.80	NP	NP	NP	NP

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

Para el caso de las dos estaciones pertenecientes a Ecuador según el estudio de Guachamín y García (2019), nos muestran las

intensidades máximas para diferentes períodos de retorno (ver tabla 27) ya preestablecidas por el Instituto Nacional de Meteorología e Hidrología (INAMHI), con lo que finalmente se transformarán a precipitaciones máximas de 24 horas para la duración equivalente de 1440.00 minutos, este procedimiento también se aplicó con anterioridad en esta investigación para la cuenca Tumbes.

TABLA 27:

REGISTROS HISTÓRICOS DE LAS INTENSIDADES MÁXIMAS DE 24 HORAS —

CUENCA ZARUMILLA (PARTE DE ECUADOR)

Período de retorno	orno Intensidades máxima			
(Tr) en años 2.00	(n 2.62	<u>1m/n)</u> 2.25		
5.00	4.04	3.58		
10.00	4.98	4.51		
25.00	6.17	5.73		
50.00	7.06	6.67		
100.00	7.93	7.64		

Fuente: Elaboración propia adaptada de los resultados de Guachamín y García (2019).

Luego se procedió a realizar la correlación de los valores de intensidad máxima con respecto a sus períodos de retorno para determinar la ecuación de mejor correlación y ajuste (ver figura 19 y 20), cuya finalidad es de determinar las precipitaciones máximas para los períodos de retorno de 2, 5, 10, 20, 50, 100, 200 y 500 años. (ver tabla 28). El criterio de elección de mejor ajuste de cada correlación se basó en el análisis del coeficiente de correlación cuadrático el cual en cada caso fue muy cercano a 1.00, es decir mientras más cercano sea a la unidad mejor será el ajuste a la dispersión de valores.

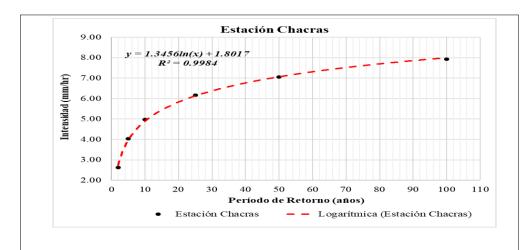


FIGURA 19: CORRELACIÓN DE INTENSIDAD MÁXIMA VERSUS PERÍODO DE RETORNO PARA LA ESTACIÓN PLUVIOMÉTRICA CHACRAS.
FUENTE: ELABORACIÓN PROPIA.

Estación Arenillas 8.50 y = 1.3675ln(x) + 1.3397.50 $R^2 = 0.9998$ Intensidad (mm/hr) 6.50 5.50 4.50 3.50 2.50 1.50 0 10 20 30 40 50 60 90 100 110 Período de Retorno (años) Estación Arenillas - - Logarítmica (Estación Arenillas)

FIGURA 20: CORRELACIÓN DE INTENSIDAD MÁXIMA VERSUS PERÍODO DE RETORNO PARA LA ESTACIÓN PLUVIOMÉTRICA ARENILLAS.
FUENTE: ELABORACIÓN PROPIA.

TABLA 28:

REGISTROS HISTÓRICOS DE LAS PRECIPITACIONES MÁXIMAS DE 24 HORAS —

CUENCA ZARUMILLA (PARTE DE ECUADOR)

Período de	Chacras	Arenillas		
retorno (Tr) en años	Precipitaciones máxima (mm)			
2.00	62.88	54.00		
5.00	96.96	85.92		
10.00	119.52	108.24		
20.00	139.99	130.46		
50.00	169.44	160.08		
100.00	190.32	183.36		
200.00	214.35	206.03		
500.00	243.94	236.10		

Fuente: Elaboración propia adaptada de los resultados de Guachamín y García (2019).

3.1.1.9. Intercuenca 13951

Limita al norte con el océano Pacífico, al suroeste con la zona norte de la cuenca Tumbes, al sureste con la cuenca Zarumilla. Presenta un área de 339.69 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta 3 estaciones del tipo convencional – climática (ver tabla 29) y una estación hidrométrica (ver tabla 30).

TABLA 29: ESTACIONES CLIMÁTICAS DE LA INTERCUENCA 13951

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	El Salto	Convencional - Climática	000135	3.433° S	80.317° W	4.00	*SENAMHI	1971- 2020
2	Cia Tumpis	Convencional - Climática	000138	3.517° S	80.322° W	15.00	SENAMHI	1991- 1997
3	Zarumilla	Convencional - Climática	000133	3.500° S	80.283° W	21.00	SENAMHI	1964- 1983

Nota: *El identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

TABLA 30: ESTACIÓN HIDROMÉTRICA DE LA INTERCUENCA 13951

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	Puente Bolsico	Convencional - Hidrométrica	200103	3.450° S	80.250° W	8.00	*SENAMHI	1987- 2017

Nota: *El identificador SENAMHI corresponde a la fuente de datos del Servicio

Nacional de Meteorología e Hidrología del Perú.

Fuente: Elaboración propia.

En cuanto a los registros de las precipitaciones máximas de 24 horas de las estaciones climáticas de la cuenca Zarumilla se muestran en la tabla 31, que a la vez servirán de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 31:
REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS – INTERCUENCA 13951

AÑO	El Salto	Cia Tumpis	Zarumilla
1963	*NP	NP	NP
1964	NP	NP	31.00
1965	NP	NP	38.00
1966	NP	NP	21.00
1967	NP	NP	43.00
1968	NP	NP	13.00
1969	NP	NP	28.00
1970	NP	NP	25.00
1971	22.00	NP	18.00
1972	110.00	NP	67.00
1973	60.10	NP	60.00
1974	38.00	NP	30.00
1975	21.30	NP	48.00
1976	58.30	NP	68.30
1977	24.30	NP	20.50
1978	10.00	NP	11.70
1979	10.00	NP	16.70
1980	53.00	NP	52.00
1981	40.00	NP	90.30
1982	56.00	NP	6.50

1983	148.00	NP	0.00
1984	32.00	NP	NP
1985	0.00	NP	NP
1986	57.00	NP	NP
1987	77.00	NP	NP
1988	22.00	NP	NP
1989	7.80	NP	NP
1990	1.80	NP	NP
1991	2.50	108.80	NP
1992	121.00	178.30	NP
1993	98.00	47.10	NP
1994	32.00	46.70	NP
1995	33.50	91.10	NP
1996	60.00	13.40	NP
1997	162.70	127.20	NP
1998	313.70	NP	NP
1999	58.80	NP	NP
2000	21.40	NP	NP
2001	38.50	NP	NP
2002	94.60	NP	NP
2003	32.50	NP	NP
2004	19.30	NP	NP
2005	40.20	NP	NP
2006	54.00	NP	NP
2007	33.30	NP	NP
2008	51.50	NP	NP
2009	67.20	NP	NP
2010	59.00	NP	NP
2011	46.50	NP	NP
2012	58.00	NP	NP
2013	62.50	NP	NP
2014	41.80	NP	NP
2015	49.40	NP	NP
2016	135.00	NP	NP
2017	0.00	NP	NP
2018	0.00	NP	NP
2019	17.70	NP	NP
2020	46.40	NP	NP
rador NP i	indica que la	a estación no	nrosonta ro

Nota: *El identificador NP indica que la estación no presenta registro en ese año de ninguna fuente oficial de datos.
Fuente: Elaboración propia adaptada a partir de los registros históricos de cada

fuente disponible de datos.

3.1.1.10. Cuenca Piura

Limita al norte con la cuenca Chira, al oeste con la intercuenca 1379, al sur con la intercuenca 13779 y con la cuenca Cascajal y al este con la región hidrológica 10 de la vertiente del Atlántico del Perú. La cuenca Piura tiene una extensión de 10872.69 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta 33 estaciones del tipo convencional – climática (ver tabla 32) y 3 estaciones hidrométricas que para efectos de la presente tesis sólo se considerará la estación hidrométrica Puente Sánchez Cerro que es la que si presenta registros oficiales por parte del SENAMHI y el PECHP (ver tabla 31).

TABLA 32: ESTACIONES CLIMÁTICAS DE LA CUENCA PIURA

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	Laguna Ramon	Convencional - Climática	150004	5.550° S	80.667° W	15.00	*SENAMHI	1964-1990
2	Chusis	Convencional - Climática	000231	5.517° S	80.833° W	8.00	SENAMHI	1963-2020
3	Montegrande	Convencional - Climática	000249	5.355° S	80.733° W	13.00	SENAMHI	1972-1992
4	San Miguel	Convencional - Climática	000247	5.243° S	80.681° W	24.00	**PECHP- SENAMHI	1953-2016
5	Piura	Convencional - Climática	140203	5.207° S	80.617° W	***NPA	SENAMHI	****NP

6	San Joaquin	Convencional - Climática	152160	5.133° S	80.350° W	223.00	PECHP	1973-1987
7	El Tablazo	Convencional - Climática	000201	4.883° S	80.467° W	106.00	SENAMHI	1963-1974
8	Hualtaco	Convencional - Climática	152155	4.850° S	80.317° W	112.00	SENAMHI	1970-1973
9	San Isidro	Convencional - Climática	152152	4.784° S	80.267° W	160.00	SENAMHI	1970-1973
10	Tejedores	Convencional - Climática	000202	4.750° S	80.233° W	211.00	PECHP	1958-1981
11	Cruzeta	Convencional - Climática	000217	4.867° S	80.267° W	135.00	SENAMHI	1964-1970
12	Curvan	Convencional - Climática	000233	4.950° S	80.300° W	61.00	SENAMHI	1963-1975
13	Malingas	Convencional - Climática	000218	4.967° S	80.267° W	80.00	SENAMHI	****NP
14	Chulucanas	Convencional - Climática	000255	5.100° S	80.167° W	89.00	PECHP- SENAMHI	1942-2017
15	Hacienda Yapatera	Convencional - Climática	000213	5.067° S	80.133° W	117.00	SENAMHI	****NP
16	San Pedro	Convencional - Climática	150001	5.083° S	80.033° W	240.00	PECHP- SENAMHI	1973-2017
17	Miraflores	Convencional - Meteorológica	105100	5.175° S	80.616° W	34.00	SENAMHI	1971-2020
18	Hacienda Pabur	Convencional - Climática	214	5.217° S	80.034° W	98.00	SENAMHI	****NP
19	Morropon	Convencional - Climática	000235	5.179° S	79.978° W	128.00	PECHP- SENAMHI	1965-2020
20	Corral del Medio	Convencional - Climática	150301	5.183° S	79.883° W	221.00	SENAMHI	1985-1994

21	Paltashaco	Convencional - Climática	152138	5.117° S	79.867° W	1210.00	PECHP	1971-1992
22	Santo Domingo	Convencional - Climática	152110	5.033° S	79.883° W	1457.00	SENAMHI	1963-2020
23	Huarmaca	Convencional - Climática	000248	5.566° S	79.525° W	2178.00	SENAMHI	1963-2020
24	Malacasi	Convencional - Climática	002122	5.323° S	79.891° W	153.00	SENAMHI	2008-2020
25	Chalaco	Convencional - Climática/Meteorológica	152112	5.037° S	79.792° W	2296.00	SENAMHI	1963-2020
26	Altamiza	Convencional - Climática	152159	5.067° S	79.733° W	2527.00	SENAMHI	1972-1994
27	Pasapampa	Convencional - Climática	152117	5.117° S	79.600° W	2339.00	SENAMHI	1963-1994
28	Palo Blanco	Convencional - Climática	152136	5.173° S	79.564° W	2736.00	SENAMHI	1971-1994
29	Hacienda Bigote	Convencional - Climática/Meteorológica	152111	5.333° S	79.783° W	200.00	SENAMHI	1963-2020
30	Huancabamba	Convencional - Climática/Meteorológica	000239	5.250° S	79.717° W	1950.00	SENAMHI	1959-2020
31	Canchaque	Convencional - Climática/Automática - Meteorológica	152118 / 472F86B2	5.367° S	79.600° W	1200.00	SENAMHI	1963-1994 / 2015- 2020
32	Chignia	Convencional - Climática	152146	5.600° S	79.700° W	360.00	PECHP	1972-1992
33	Pirgas	Convencional - Climática	152161	5.667° S	79.617° W	1510.00	PECHP	1972-1983

Nota: *El identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

**El identificador PECHP corresponde a la fuente de datos del Proyecto Especial Chira Piura.

^{***}El identificador NPA indica que la estación climatológica no presenta altitud de ninguna fuente oficial de datos.

****El identificador NP indica que la estación climatológica no presenta registros de ninguna fuente oficial de datos. Fuente: Elaboración propia.

TABLA 33: Estación hidrométrica de la cuenca Piura

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m.s.n.m.)	Fuente de obtención de datos	Período de registro
1	Puente Sánchez	Convencional -	201200	5.183°	80.617°	NP	*SENAMHI -	1996-
	Cerro	Hidrométrica		S	W		PECHP	2020

Nota: *El identificador SENAMHI – PECHP corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú y del Proyecto Especial Chira Piura.

Fuente: Elaboración propia.

En cuanto a los registros de las precipitaciones máximas de 24 horas de las estaciones climáticas de la cuenca Piura se muestran en la tabla 34 y 35, que a la vez servirán de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 34:
REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS – CUENCA PIURA (PARTE 1)

AÑO	Laguna Ramon	Chusis	Monte grande	San Mig uel	San Joaquin	El Tablazo	Hualtaco	San Isidro	Teje dores	Cruzeta	Curvan	Chulu canas	San Pedro	Miraflores
1942	*NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	25.80	NP	NP
1943	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	859.8 0	NP	NP
1944	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	108.3 0	NP	NP
1945	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	76.30	NP	NP
1946	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	44.50	NP	NP
1947	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	99.10	NP	NP
1948	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	30.40	NP	NP
1949	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	371.0 0	NP	NP
1950	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	20.00	NP	NP
1951	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	15.70	NP	NP
1952	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	73.10	NP	NP
1953	NP	NP	NP	62.6 0	NP	NP	NP	NP	NP	NP	NP	284.0 0	NP	NP
1954	NP	NP	NP	2.50	NP	NP	NP	NP	NP	NP	NP	69.00	NP	NP
1955	NP	NP	NP	1.50	NP	NP	NP	NP	NP	NP	NP	49.00	NP	NP
1956	NP	NP	NP	4.80	NP	NP	NP	NP	NP	NP	NP	83.00	NP	NP
1957	NP	NP	NP	42.7 0	NP	NP	NP	NP	NP	NP	NP	159.0 0	NP	NP

1958	NP	NP	NP	112. 10	NP	NP	NP	NP	74.00	NP	NP	117.0 0	NP	NP
1959	NP	NP	NP	28.0 0	NP	NP	NP	NP	198.0 0	NP	NP	131.0 0	NP	NP
1960	NP	NP	NP	3.00	NP	NP	NP	NP	39.00	NP	NP	43.50	NP	NP
1961	NP	NP	NP	4.80	NP	NP	NP	NP	95.00	NP	NP	47.00	NP	NP
1962	NP	NP	NP	NP	NP	NP	NP	NP	106.0 0	NP	NP	59.00	NP	NP
1963	NP	0.00	NP	NP	NP	6.60	NP	NP	20.00	NP	5.50	93.40	NP	NP
1964	19.50	2.00	NP	NP	NP	6.40	NP	NP	16.00	5.50	6.00	42.00	NP	NP
1965	NP	23.00	NP	0.00	NP	40.90	NP	NP	290.0 0	79.40	68.70	649.4 0	NP	NP
1966	NP	2.50	NP	0.70	NP	9.90	NP	NP	65.00	45.00	18.00	54.00	NP	NP
1967	NP	18.00	NP	104. 80	NP	3.90	NP	NP	68.00	2.80	40.70	78.00	NP	NP
1968	NP	7.00	NP	1.70	NP	5.00	NP	NP	5.40	3.80	3.60	NP	NP	NP
1969	NP	10.50	NP	4.60	NP	19.00	NP	NP	109.7 0	44.30	41.50	NP	NP	NP
1970	NP	2.00	NP	4.10	NP	3.00	3.50	3.40	13.60	13.00	6.10	NP	NP	NP
1971	NP	9.00	NP	46.1 0	NP	44.10	40.50	40.40	188.7 0	NP	53.40	NP	NP	1.60
1972	NP	43.00	57.00	1.80	NP	82.60	91.20	120.40	604.3 0	NP	69.20	557.6 0	NP	66.20
1973	NP	12.00	15.40	26.0 0	80.30	33.70	84.30	53.10	183.0 0	NP	98.70	185.5 0	39.70	29.80
1974	NP	4.00	2.00	2.00	14.70	5.20	NP	NP	17.00	NP	4.80	25.40	49.10	2.40
1975	2.90	9.00	12.40	6.40	80.30	NP	NP	NP	103.1 0	NP	18.40	102.0 0	248.40	7.00

1976	14.50	25.00	29.00	49.9 0	72.30	NP	NP	NP	78.70	NP	NP	94.30	232.80	18.80
1977	5.80	15.20	27.00	19.6 0	114.80	NP	NP	NP	128.4 0	NP	NP	152.3 0	203.40	14.10
1978	3.00	2.50	7.40	30.0 0	56.20	NP	NP	NP	56.50	NP	NP	56.60	91.50	31.90
1979	3.30	4.30	2.90	3.50	9.80	NP	NP	NP	17.90	NP	NP	39.80	125.20	4.50
1980	2.80	7.60	8.70	8.00	25.90	NP	NP	NP	65.70	NP	NP	73.40	143.20	30.30
1981	6.00	5.40	4.30	12.0 0	66.70	NP	NP	NP	264.1 0	NP	NP	223.3 0	511.60	18.40
1982	2.80	4.00	3.90	7.50	62.20	NP	NP	NP	NP	NP	NP	104.9 0	174.60	6.70
1983	130.80	86.20	110.00	95.5 0	1025.70	NP	NP	NP	NP	NP	NP	1150. 70	772.00	151.40
1984	1.30	9.20	6.90	6.20	147.50	NP	NP	NP	NP	NP	NP	105.0 0	205.90	13.00
1985	1.80	0.00	6.00	9.50	20.50	NP	NP	NP	NP	NP	NP	59.70	139.10	15.90
1986	1.80	NP	6.10	5.80	23.40	NP	NP	NP	NP	NP	NP	17.80	100.50	6.10
1987	11.30	0.00	21.50	22.0 0	144.90	NP	NP	NP	NP	NP	NP	239.4 0	382.40	34.90
1988	0.00	5.00	3.00	8.20	NP	NP	NP	NP	NP	NP	NP	16.10	31.90	4.60
1989	4.20	6.00	5.50	12.5 0	NP	NP	NP	NP	NP	NP	NP	225.6 0	320.70	10.10
1990	0.00	0.60	1.00	3.50	NP	NP	NP	NP	NP	NP	NP	19.80	68.10	2.40
1991	NP	0.80	0.00	2.80	NP	NP	NP	NP	NP	NP	NP	NP	70.30	3.50
1992	NP	30.00	64.00	100. 30	NP	NP	NP	NP	NP	NP	NP	NP	571.10	107.10
1993	NP	NP	NP	23.0 0	NP	NP	NP	NP	NP	NP	NP	NP	150.00	0.00

1994	NP	11.00	NP	20.0 0	NP	12.00	0.00	
1995	NP	3.20	NP	3.20	NP	35.40	6.80	
1996	NP	1.20	NP	4.50	NP	0.00	37.00	1.80
1997	NP	17.00	NP	37.2 0	NP	23.70	47.50	49.50
1998	NP	116.30	NP	81.9 0	NP	52.10	142.30	173.60
1999	NP	13.00	NP	10.8 0	NP	51.60	75.00	16.00
2000	NP	10.70	NP	10.0 0	NP	47.80	59.70	12.80
2001	NP	14.90	NP	77.4 0	NP	82.60	80.50	61.50
2002	NP	45.10	NP	68.0 0	NP	79.60	180.30	91.50
2003	NP	7.40	NP	5.50	NP	26.20	60.50	16.00
2004	NP	2.40	NP	5.20	NP	25.50	20.50	4.10
2005	NP	3.80	NP	6.00	NP	44.00	60.20	9.50
2006	NP	20.70	NP	11.7 0	NP	43.60	56.60	13.00
2007	NP	3.00	NP	3.30	NP	14.00	35.00	6.20
2008	NP	13.50	NP	36.8 0	NP	135.0 0	95.30	33.00
2009	NP	10.80	NP	12.9 0	NP	46.40	90.10	18.30
2010	NP	5.80	NP	30.1 0	NP	50.80	55.30	35.00
2011	NP	5.50	NP	7.00	NP	35.60	140.00	9.00

| 2012 | NP | 17.00 | NP | 14.7
0 | NP | 116.0
0 | 110.30 | 25.00 |
|------|----|--------|----|------------|----|----|----|----|----|----|----|------------|--------|-------|
| 2013 | NP | 42.80 | NP | 25.7
0 | NP | 31.80 | 94.50 | 22.60 |
| 2014 | NP | 2.10 | NP | 5.60 | NP | 9.80 | 20.80 | 0.00 |
| 2015 | NP | 5.60 | NP | 28.8
0 | NP | 59.40 | 107.20 | 18.00 |
| 2016 | NP | 6.00 | NP | 32.2
0 | NP | 37.40 | 62.10 | 62.30 |
| 2017 | NP | 140.60 | NP | 126.
10 | NP | 103.1
0 | 159.50 | 81.50 |
| 2018 | NP | 2.30 | NP | 6.10 | NP | NP | 3.50 |
| 2019 | NP | 4.80 | NP | 17.8
0 | NP | NP | 7.50 |
| 2020 | NP | 2.60 | NP | 0.01 | NP | NP | 0.30 |

Nota: *El identificador NP indica que la estación no presenta registro en ese año de ninguna fuente oficial de datos.

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

TABLA 35: REGISTROS HISTÓRICOS DE PRECIPITACIONES MÁXIMAS DE 24 HORAS — CUENCA PIURA (PARTE 2)

AÑO	Morro pón	Corral del Medio	Palta shaco	Santo Domingo	Huar maca	Malacasi	Chalaco	Altamiza	Pasa pampa	Palo Blanco	Hacienda Bigote	Huanca bamba	Can chaque
1956	224.00	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
1957	216.00	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP

1958	135.00	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
1959	162.00	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	30.00	NP
1960	33.00	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	24.00	NP
1961	61.40	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
1962	73.40	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP
1963	22.00	NP	NP	7.00	11.80	NP	10.00	NP	12.90	NP	3.60	14.00	13.00
1964	27.50	NP	NP	20.00	38.00	NP	23.00	NP	30.00	NP	9.10	NP	28.00
1965	436.50	NP	NP	42.30	51.10	NP	38.50	NP	33.60	NP	42.50	NP	72.00
1966	68.00	NP	NP	39.30	21.30	NP	40.00	NP	36.90	NP	26.30	NP	61.00
1967	1.00	NP	NP	64.60	30.40	NP	30.60	NP	20.50	NP	67.70	NP	47.80
1968	13.20	NP	NP	18.40	20.50	NP	17.20	NP	26.60	NP	18.20	NP	33.20
1969	113.00	NP	NP	48.20	70.60	NP	40.30	NP	100.10	NP	14.80	21.50	98.20
1970	7.00	NP	NP	36.90	20.80	NP	32.00	NP	38.20	NP	2.90	NP	37.50
1971	100.10	NP	362.10	82.60	36.00	NP	36.20	NP	45.90	19.60	81.40	26.20	55.20
1972	275.40	NP	521.90	98.40	52.20	NP	46.60	20.00	30.20	35.00	78.20	27.50	56.90
1973	191.50	NP	425.90	91.20	47.60	NP	44.40	45.00	48.60	32.50	86.00	23.00	77.10
1974	21.80	NP	122.50	42.60	33.60	NP	24.90	70.50	26.30	24.40	25.00	25.60	30.70
1975	223.90	NP	244.80	30.40	38.60	NP	38.60	30.00	33.90	77.30	80.70	30.00	33.70
1976	86.50	NP	217.70	75.40	27.90	NP	40.50	36.00	42.90	23.30	41.30	48.00	54.70
1977	195.70	NP	349.20	48.70	54.20	NP	36.00	60.00	32.70	26.70	60.90	26.00	56.10
1978	55.40	NP	169.60	32.40	68.20	NP	30.20	60.00	33.90	32.80	95.70	33.90	55.90
1979	85.90	NP	243.60	41.20	40.10	NP	40.00	60.10	28.60	43.20	12.90	18.00	52.10
1980	91.60	NP	182.10	34.60	33.80	NP	23.80	28.70	37.60	29.90	60.20	18.40	43.40
1981	577.20	NP	380.20	71.40	57.20	NP	27.30	38.10	50.60	34.20	1.00	27.90	51.30
1982	110.20	NP	461.40	62.40	54.90	NP	55.00	15.40	33.80	45.90	74.90	24.40	78.40
1983	1030.70	NP	765.10	99.40	107.30	NP	80.80	25.30	43.40	30.20	75.20	34.50	112.00
1984	206.40	NP	367.80	48.30	42.20	NP	50.20	16.40	33.60	35.80	6.30	42.60	80.20

1985	88.40	1.30	191.10	36.90	40.20	NP	18.40	10.20	23.70	21.10	30.20	23.50	38.00
1986	34.00	8.60	133.30	39.50	54.80	NP	30.00	8.70	40.60	20.20	20.50	19.20	32.50
1987	396.70	38.60	332.00	40.00	41.60	NP	30.40	8.90	37.80	28.50	100.50	24.40	96.60
1988	20.40	10.80	111.70	23.50	27.70	NP	34.00	13.20	28.20	38.50	19.80	22.80	35.80
1989	155.00	36.50	442.30	55.50	77.60	NP	48.40	6.90	49.70	16.40	30.70	21.30	96.00
1990	11.50	10.10	70.40	28.50	36.80	NP	35.00	11.20	12.10	NP	9.10	12.90	18.80
1991	45.60	12.80	131.60	60.30	38.50	NP	40.20	8.50	48.50	12.10	11.90	10.70	31.70
1992	90.40	60.10	0.00	60.30	76.80	NP	58.00	3.20	NP	28.00	77.20	14.30	28.40
1993	47.40	43.30	NP	60.20	35.20	NP	29.00	4.20	31.90	30.00	100.00	42.60	59.40
1994	76.60	7.80	NP	60.30	34.10	NP	53.50	9.50	78.10	37.30	88.00	43.40	66.20
1995	65.60	NP	NP	75.10	68.00	NP	49.00	NP	NP	NP	40.00	34.80	NP
1996	60.00	NP	NP	50.10	20.60	NP	21.00	NP	NP	NP	20.20	34.80	NP
1997	61.10	NP	NP	59.40	64.80	NP	55.60	NP	NP	NP	54.00	24.40	NP
1998	167.00	NP	NP	95.60	86.30	NP	60.00	NP	NP	NP	240.00	28.10	NP
1999	73.00	NP	NP	51.40	67.50	NP	51.90	NP	NP	NP	50.00	29.10	NP
2000	78.00	NP	NP	61.40	56.30	NP	39.40	NP	NP	NP	93.80	27.20	NP
2001	71.50	NP	NP	27.00	56.90	NP	42.70	NP	NP	NP	66.70	23.50	NP
2002	80.00	NP	NP	42.60	79.10	NP	43.50	NP	NP	NP	89.70	33.50	NP
2003	33.00	NP	NP	35.60	32.00	NP	46.80	NP	NP	NP	70.00	25.20	NP
2004	46.00	NP	NP	63.30	37.70	NP	26.00	NP	NP	NP	40.90	24.60	NP
2005	56.00	NP	NP	80.80	43.20	NP	28.30	NP	NP	NP	54.80	27.80	NP
2006	73.70	NP	NP	76.80	45.20	NP	47.90	NP	NP	NP	90.90	34.60	NP
2007	33.40	NP	NP	60.30	35.80	NP	39.10	NP	NP	NP	37.20	35.00	NP
2008	95.10	NP	NP	58.90	79.80	11.80	51.40	NP	NP	NP	79.00	35.40	NP
2009	55.40	NP	NP	127.30	42.70	NP	49.80	NP	NP	NP	57.70	31.40	NP
2010	58.90	NP	NP	68.60	84.00	NP	55.80	NP	NP	NP	73.80	25.00	NP
2011	76.30	NP	NP	10.60	40.70	NP	42.10	NP	NP	NP	71.60	40.00	NP

2012	99.50	NP	NP	65.80	50.40	NP	48.50	NP	NP	NP	107.50	35.00	NP
2013	36.20	NP	NP	35.80	25.80	NP	32.20	NP	NP	NP	22.00	40.00	NP
2014	14.00	NP	NP	44.00	30.90	NP	46.50	NP	NP	NP	28.00	43.00	NP
2015	99.50	NP	NP	58.70	79.80	0.00	37.30	NP	NP	NP	55.00	21.50	1.10
2016	58.30	NP	NP	54.50	39.80	0.00	57.60	NP	NP	NP	42.30	31.50	15.60
2017	150.00	NP	NP	70.80	54.40	108.70	50.80	NP	NP	NP	113.20	31.40	41.80
2018	55.00	NP	NP	32.70	106.20	58.50	35.50	NP	NP	NP	47.80	40.00	20.10
2019	80.50	NP	NP	34.20	58.20	81.60	57.20	NP	NP	NP	109.80	31.20	29.40
2020	5.60	NP	NP	49.10	51.80	12.40	39.50	NP	NP	NP	14.00	20.80	20.80

Nota: *El identificador NP indica que la estación no presenta registro en ese año de ninguna fuente oficial de datos. Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

3.1.1.11. Cuenca Chira

Limita al norte con las cuencas Tumbes, Puyango (Ecuador) y Fernández, al sur limita con la intercuenca 1379 y la cuenca Piura, al este limita con Ecuador y la región hidrológica 10 de la vertiente del Atlántico del Perú y al oeste limita con la cuenca Pariñas y la intercuenca 1391. La cuenca Chira tiene una extensión de 10872.69 Km².

En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta 52 estaciones de entre el tipo convencional – climática e hidrométricas – limnigráficas, sin embargo para efectos del análisis de la presente tesis se consideró analizar por subcuencas aportantes ya que los puntos de medición de caudales existentes permiten realizar la simulación adecuadamente para cada una de las subcuencas. Las estaciones consideradas como elementos aportantes se muestran en la tabla 36. Respecto a las estaciones hidrométricas consideradas en la presente investigación fueron cuatro, éstas se muestran en la tabla 37.

TABLA 36:
ESTACIONES AUTOMÁTICAS — HIDROLÓGICAS Y CONVENCIONAL — CLIMÁTICA DE LA CUENCA CHIRA

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m)	Fuente de obtención de datos	Período de registro
1	El Ciruelo	Automática - Hidrológica	47E9177A	4.299° S	80.167° W	243.00	SENAMHI	1976- 2020
2	Alamor	Convencional - Climática	152153	4.489° S	80.387° W	202.00	SENAMHI	1997- 2017
3	Paraje Grande	Convencional - Climática	150113	4.630° S	79.913° W	555.00	**PECHP- SENAMHI	1972- 1996
4	Puente Internacional	Convencional - Climática	150002	4.389° S	79.962° W	250.00	SENAMHI	1977- 1996

Nota: **El identificador PECHP – SENAMHI corresponde a la fuente de datos del Proyecto Especial Chira Piura y del Servicio Nacional de Meteorología e Hidrología.

TABLA 37: ESTACIONES HIDROMÉTRICAS – LIMNIGRÁFICAS Y LIMNIMÉTRICA DE LA CUENCA CHIRA

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m)	Fuente de obtención de datos	Período de registro
1	Puente Internacional	Hidrométrica - Limnigráfica	200309	4.389° S	79.962° W	250.00	*PECHP	1973- 2019
2	Ciruelo	Hidrométrica - Limnigráfica	200312	4.300° S	80.150° W	202.00	PECHP	1975- 2019
3	Paraje Grande	Hidrométrica - Limnigráfica	200311	4.630° S	79.913° W	555.00	PECHP	1973- 2016
4	Ardilla	Hidrométrica - Limnimétrica	NP	4.494° S	80.396° W	106.00	PECHP	1976- 2020

Nota: *El identificador PECHP corresponde a la fuente de datos del Proyecto

Especial Chira Piura.

Fuente: Elaboración propia.

En cuanto a los registros de las precipitaciones máximas de 24 horas de las estaciones automáticas – hidrológicas y convencional – climática de la cuenca Chira se muestran en la tabla 38, que a la vez servirán de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 38: Registros históricos de precipitaciones máximas de 24 horas — Cuenca Chira

AÑO	El Ciruelo	Alamor	Paraje Grande	Puente Internacional
1963	*NP	NP	NP	NP
1964	NP	NP	NP	NP
1965	NP	NP	NP	NP
1966	NP	NP	NP	NP
1967	NP	NP	NP	NP
1968	NP	NP	NP	NP
1969	NP	NP	NP	NP
1970	NP	NP	NP	NP
1971	NP	NP	NP	NP
1972	NP	NP	250.50	NP
1973	NP	NP	149.30	NP
1974	NP	NP	45.20	NP

1976 2.30 NP 131.60 NP 1977 99.30 NP 158.30 48.90 1978 19.70 NP 122.10 16.90 1979 20.30 NP 22.80 30.80 1980 40.40 NP 37.20 48.20 1981 74.80 NP 121.40 88.00 1982 97.50 NP 30.00 95.00 1983 209.10 NP 114.00 84.70 1984 82.50 NP 46.60 73.20 1986 71.90 NP 21.10 31.80 1986 71.90 NP 23.10 27.40 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1995 83.40 NP 35.00 71.90 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP NP 1998 NP 120.70 NP NP NP 1998 NP 120.70 NP NP NP 1999 NP 85.30 NP NP NP 1990 NP 45.40 NP NP NP 1900 NP 44.30 NP NP NP 2001 NP 48.20 NP NP NP 2004 NP 48.20 NP NP NP 2006 NP 48.20 NP NP NP 2006 NP 48.20 NP NP NP 2006 NP 48.20 NP NP NP 2007 NP 48.20 NP NP NP 2008 NP 96.80 NP NP NP 2009 NP 37.90 NP NP NP 2000 NP 48.20 NP NP NP 2011 NP 48.20 NP NP NP 2011 NP 48.20 NP NP NP 2011 NP 48.60 NP	1975	0.00	NP	215.50	NP
1978 19.70 NP 122.10 16.90 1979 20.30 NP 22.80 30.80 1980 40.40 NP 37.20 48.20 1981 74.80 NP 121.40 88.00 1982 97.50 NP 30.00 95.00 1983 297.50 NP 30.00 95.00 1984 82.50 NP 146.60 73.20 1985 49.70 NP 11.10 31.80 1986 71.90 NP 28.00 46.00 1987 152.10 NP 87.00 78.00 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 1	1976	2.30	NP	131.60	NP
1979 20.30 NP 22.80 30.80 1980 40.40 NP 37.20 48.20 1981 74.80 NP 121.40 88.00 1982 97.50 NP 30.00 95.00 1983 209.10 NP 114.00 84.70 1984 82.50 NP 46.60 73.20 1985 49.70 NP 11.10 31.80 1986 71.90 NP 28.00 46.00 1987 152.10 NP 87.00 78.00 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP NP 1999 NP 85.30 NP NP NP 2000 NP 45.40 NP NP NP 2000 NP 44.30 NP NP NP 2000 NP 48.20 NP NP NP 2001 NP 96.80 NP NP NP 2001 NP 96.80 NP NP NP 2010 NP 96.80 NP NP NP 2011 NP 15.80 NP NP NP 2011 NP 15.80 NP NP NP 2011 NP 15.80 NP NP NP 2011 NP 50.30 NP NP 2011 NP 50.30 NP NP NP 2011 NP 50.30 NP NP	1977	99.30	NP	158.30	48.90
1980 40.40 NP 37.20 48.20 1981 74.80 NP 121.40 88.00 1982 97.50 NP 30.00 95.00 1983 209.10 NP 114.00 84.70 1984 82.50 NP 46.60 73.20 1985 49.70 NP 11.10 31.80 1986 71.90 NP 28.00 46.00 1987 152.10 NP 87.00 78.00 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 10.53 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 3	1978	19.70	NP	122.10	16.90
1981 74.80 NP 121.40 88.00 1982 97.50 NP 30.00 95.00 1983 209.10 NP 114.00 84.70 1984 82.50 NP 46.60 73.20 1985 49.70 NP 11.10 31.80 1986 71.90 NP 28.00 46.00 1987 152.10 NP 87.00 78.00 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 1	1979	20.30	NP	22.80	30.80
1982 97.50 NP 30.00 95.00 1983 209.10 NP 114.00 84.70 1984 82.50 NP 46.60 73.20 1985 49.70 NP 11.10 31.80 1986 71.90 NP 28.00 46.00 1987 152.10 NP 87.00 78.00 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.	1980	40.40	NP	37.20	48.20
1983 209.10 NP 114.00 84.70 1984 82.50 NP 46.60 73.20 1985 49.70 NP 11.10 31.80 1986 71.90 NP 28.00 46.00 1987 152.10 NP 87.00 78.00 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP	1981	74.80	NP	121.40	88.00
1984 82.50 NP 46.60 73.20 1985 49.70 NP 11.10 31.80 1986 71.90 NP 28.00 46.00 1987 152.10 NP 87.00 78.00 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP	1982	97.50	NP	30.00	95.00
1985 49.70 NP 11.10 31.80 1986 71.90 NP 28.00 46.00 1987 152.10 NP 87.00 78.00 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1998 NP 120.70 NP NP 2000 NP 45.40 NP	1983	209.10	NP	114.00	84.70
1986 71.90 NP 28.00 46.00 1987 152.10 NP 87.00 78.00 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 32.60 69.80 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 45.40 NP	1984	82.50	NP	46.60	73.20
1987 152.10 NP 87.00 78.00 1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 32.60 69.80 1991 105.30 NP 32.60 69.80 1991 105.30 NP 32.60 69.80 1992 180.00 NP 32.60 69.80 1993 20.60 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP	1985	49.70	NP	11.10	31.80
1988 15.90 NP 23.10 27.40 1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP	1986	71.90	NP	28.00	46.00
1989 53.10 NP 70.00 84.70 1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP	1987	152.10	NP	87.00	78.00
1990 17.80 NP 32.60 69.80 1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP	1988	15.90	NP	23.10	27.40
1991 105.30 NP 22.20 61.40 1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP <td< td=""><td>1989</td><td>53.10</td><td>NP</td><td>70.00</td><td>84.70</td></td<>	1989	53.10	NP	70.00	84.70
1992 180.00 NP 34.00 82.20 1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 </td <td>1990</td> <td>17.80</td> <td>NP</td> <td>32.60</td> <td>69.80</td>	1990	17.80	NP	32.60	69.80
1993 20.60 NP 12.90 13.20 1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2010	1991	105.30	NP	22.20	61.40
1994 116.50 NP 52.20 72.60 1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2010 NP 37.90 NP NP 2011 <	1992	180.00	NP	34.00	82.20
1995 83.40 NP 35.00 71.90 1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2010 NP 37.90 NP NP 2011 NP 15.80 NP NP 2012 NP </td <td>1993</td> <td>20.60</td> <td>NP</td> <td>12.90</td> <td>13.20</td>	1993	20.60	NP	12.90	13.20
1996 66.50 NP 19.80 84.40 1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2010 NP 37.90 NP NP 2011 NP 15.80 NP NP 2011 NP 15.80 NP NP 2013 NP	1994	116.50	NP	52.20	72.60
1997 NP 59.50 NP NP 1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP	1995	83.40	NP	35.00	71.90
1998 NP 120.70 NP NP 1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP	1996	66.50	NP	19.80	84.40
1999 NP 85.30 NP NP 2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP	1997	NP	59.50	NP	NP
2000 NP 45.40 NP NP 2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20	1998	NP	120.70	NP	NP
2001 NP 99.40 NP NP 2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20	1999	NP	85.30	NP	NP
2002 NP 66.40 NP NP 2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70	2000	NP	45.40	NP	NP
2003 NP 37.70 NP NP 2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2001	NP	99.40	NP	NP
2004 NP 21.90 NP NP 2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2002	NP	66.40	NP	NP
2005 NP 44.30 NP NP 2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2003	NP	37.70	NP	NP
2006 NP 92.40 NP NP 2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2004	NP	21.90	NP	NP
2007 NP 48.20 NP NP 2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2005	NP	44.30	NP	NP
2008 NP 96.80 NP NP 2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2006	NP	92.40	NP	NP
2009 NP 37.90 NP NP 2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2007	NP	48.20	NP	NP
2010 NP 94.60 NP NP 2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2008	NP	96.80	NP	NP
2011 NP 15.80 NP NP 2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2009	NP	37.90	NP	NP
2012 NP 123.40 NP NP 2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2010	NP	94.60	NP	NP
2013 NP 50.30 NP NP 2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2011	NP	15.80	NP	NP
2014 NP 9.20 NP NP 2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2012	NP	123.40	NP	NP
2015 NP 107.80 NP NP 2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2013	NP	50.30	NP	NP
2016 14.20 NP NP NP 2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2014	NP	9.20	NP	NP
2017 47.20 151.70 NP NP 2018 17.70 0.00 NP NP	2015	NP	107.80	NP	NP
2018 17.70 0.00 NP NP	2016	14.20	NP	NP	NP
	2017	47.20	151.70	NP	NP
2019 23.60 0.00 NP NP	2018	17.70	0.00	NP	NP
	2019	23.60	0.00	NP	NP

2020 26.10 NP NP NP

Nota: *El identificador NP indica que la estación no presenta registro en ese año de ninguna fuente oficial de datos.

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

3.1.1.12. Intercuenca 13931

Limita al norte y al oeste con el océano Pacífico, al sur con la cuenca Pariñas y al este con la cuenca Fernández. Presenta un área de 328.31 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta 2 estaciones del tipo convencional – climática (ver tabla 39) pero una estación no presenta ningún registro y por último la intercuenca no presenta ninguna estación hidrométrica.

TABLA 39: ESTACIONES CLIMÁTICA Y METEOROLÓGICA DE LA INTERCUENCA 13931

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m)	Fuente de obtención de datos	Período de registro
1	El Alto	Convencional - Climática	209	4.271° S	81.220° W	291.00	*SENAMHI	1965- 2020
2	Lobitos	Convencional - Meteorológica	**NPC	4.450° S	81.267° W	25.00	SENAMHI	***NP

Nota: *El identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

**El identificador NPC indica que la estación meteorológica no presenta código en ninguna de las fuentes oficiales de datos.

***El identificador NP indica que no existe ningún registro de precipitaciones en ninguna de las fuentes oficiales de datos. Fuente: Elaboración propia.

En cuanto a los registros de las precipitaciones máximas de 24 horas de la estación climática de la intercuenca 13931 se muestra en la tabla 40, que a la vez servirá de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste

TABLA 40: Registros históricos de precipitaciones máximas de 24 horas – Intercuenca 13931

El Alto
0.50
0.50
0.00
*NP
0.70
22.30
22.20
125.00
40.00
4.00
46.00
33.00
14.00
10.00
4.00
12.00
2.00
NP
2.40
30.80
26.00
44.00
7.80

2004	3.30
2005	4.60
2006	53.80
2007	13.00
2008	35.00
2009	9.80
2010	38.60
2011	19.50
2012	64.70
2013	61.90
2014	6.40
2015	10.00
2016	10.00
2017	75.50
2018	6.00
2019	15.70
2020	10.10

Nota: *El identificador NP indica que la estación no presenta registro en ese año de ninguna fuente oficial de datos.

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

3.1.1.13. Cuenca Fernández

Es una cuenca que se ubica al sur de la cuenca Quebrada Seca, al norte de la cuenca Pariñas y cuenca Chira, al este limita con la cuenca Tumbes y al oeste con la intercuenca 13931. Tiene un área de 740.27 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta una estación del tipo convencional – climática (ver tabla 41) y por último la cuenca no presenta ninguna estación hidrométrica.

TABLA 41: ESTACIÓN CLIMÁTICA DE LA CUENCA FERNÁNDEZ

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m)	Fuente de obtención de datos	Período de registro
1	Hacienda	Convencional	150100	4.167°	80.950°	102.00	*SENAMHI	1993-
ı	Fernández	 Climática 	130106	S	W	102.00	SENAMINI	1996

Nota: *El identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

En cuanto a los registros de las precipitaciones máximas de 24 horas de la estación climática de la cuenca Fernández se muestra en la tabla 42, que a la vez servirá de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 42:
Registros históricos de precipitaciones máximas de 24 horas – Cuenca Fernández

AÑO	Hacienda Fernández
1993	3.20
1994	13.90
1995	11.20
1996	12.10

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

3.1.1.14. Intercuenca 13933

Es una intercuenca que limita al norte con el océano Pacífico y la intercuenca 13935, al sur limita con la cuenca Fernández, al este limita con la cuenca Quebrada Seca y al oeste limita también con el océano Pacífico. Presenta un área de 6.07 Km². Por último, esta intercuenca no tiene ninguna estación meteorológica, ni pluviométrica, ni tampoco hidrométrica.

3.1.1.15. Cuenca Quebrada Seca

La cuenca limita al norte con la intercuenca 13955, al oeste con la cuenca Bocapán, al sur limita con la cuenca Fernández y al oeste limita con la intercuenca 13933 y el océano Pacífico. Tiene un área de 483.88 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta una estación del tipo convencional – climática (ver tabla 43) y por último la cuenca no presenta ninguna estación hidrométrica.

TABLA 43: ESTACIÓN CLIMÁTICA DE LA CUENCA QUEBRADA SECA

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m)	Fuente de obtención de datos	Período de registro
1	Negritos	Convencional - Climática	150109	4.050° S	80.883° W	100.00	*SENAMHI	1993- 1996

Nota: *El identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

Fuente: Elaboración propia.

En cuanto a los registros de las precipitaciones máximas de 24 horas de la estación climática de la cuenca Quebrada Seca se muestra en la tabla 44, que a la vez servirá de base para el análisis de extremos, así como la elección de la distribución teórica de mejor ajuste.

TABLA 44:
Registros históricos de precipitaciones máximas de 24 horas – Intercuenca 13933

AÑO	Negritos
1993	1.70
1994	35.10
1995	13.60
1996	13.50

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

3.1.1.16. Intercuenca 13935

Es una intercuenca que se limita al noroeste con el océano Pacífico, al sur con la Quebrada Seca, al oeste con la cuenca Bocapán. Presenta un área de 447.87 Km². No tiene ninguna estación meteorológica, ni pluviométrica, ni tampoco hidrométrica.

3.1.1.17. Intercuenca 1391

Limita al norte con la cuenca Pariñas, al suroeste con el océano Pacífico y al este con la cuenca Chira. Tiene un área de 791.40 Km². No tiene ninguna estación meteorológica, ni pluviométrica, ni tampoco hidrométrica.

3.1.1.18. Cuenca Pariñas

La cuenca Pariñas limita al norte con la intercuenca 13931 y la cuenca Fernández, al sur con la intercuenca 1391, al este con la cuenca Chira y al oeste con el océano Pacífico. Tiene un área de 1704.86 Km². En cuanto a la distribución de estaciones pluviométricas y/o meteorológicas la cuenca presenta una estación del tipo convencional – climática (ver tabla 45) y por último la cuenca no presenta ninguna estación hidrométrica.

TABLA 45: ESTACIÓN CLIMÁTICA DE LA CUENCA PARIÑAS

N°	Nombre	Tipo	Código	Latitud	Longitud	Altitud (m)	Fuente de obtención de datos	Período de registro
1	Pananga	Convencional - Meteorológica	*NPC	4.156° S	80.739° W	360.00	**SENAMHI	1963-2020

Nota: * El identificador NPC indica que no presenta ningún código de identificación en ninguna de las fuentes oficiales de datos.

*El identificador SENAMHI corresponde a la fuente de datos del Servicio Nacional de Meteorología e Hidrología del Perú.

Fuente: Elaboración propia.

3.1.1.19. Registros disponibles de caudales máximos

Respecto a los registros disponibles de caudales máximos de las estaciones hidrométricas se indicaron previamente en cada una de las cuencas e intercuenca la fuente de datos y rango de años de dichos registros.

TABLA 46:

CAUDALES MÁXIMOS DISPONIBLES EN LAS CUENCAS DE LA REGIÓN HIDROLÓGICA VI DE LA VERTIENTE DEL PACÍFICO DEL PERÚ

Año	El Tigre	Zapatero	Canal Sechura	Canal Internacional	Puente Bolsico	Puente Sánchez Cerro	Puente Internacional	Ciruelo	Paraje Grande	Ardilla
1957	NP	NP	NP	5.00	NP	NP	NP	NP	NP	NP
1958	NP	NP	NP	9.00	NP	NP	NP	NP	NP	NP
1959	NP	NP	NP	3.60	NP	NP	NP	NP	NP	NP
1960	NP	NP	NP	3.80	NP	NP	NP	NP	NP	NP
1961	NP	NP	NP	0.47	NP	NP	NP	NP	NP	NP
1962	NP	NP	NP	1.50	NP	NP	NP	NP	NP	NP
1963	553.00	NP	NP	0.00	NP	NP	NP	NP	NP	NP
1964	537.00	NP	NP	2.00	NP	NP	NP	NP	NP	NP
1965	669.30	NP	NP	1.20	NP	NP	NP	NP	NP	NP
1966	427.50	NP	NP	0.80	NP	NP	NP	NP	NP	NP
1967	582.00	NP	NP	2.14	NP	NP	NP	NP	NP	NP
1968	278.80	NP	NP	0.00	NP	NP	NP	NP	NP	NP
1969	866.70	NP	NP	3.00	NP	NP	NP	NP	NP	NP
1970	370.10	NP	16.25	0.50	NP	NP	NP	NP	NP	NP
1971	1370.20	NP	16.89	1.00	NP	NP	NP	NP	NP	NP
1972	1286.60	NP	17.48	35.00	NP	NP	NP	NP	NP	NP
1973	1191.40	NP	17.61	250.00	NP	NP	116.10	NP	22.90	NP
1974	416.50	NP	18.74	1.00	NP	NP	63.70	NP	30.20	NP
1975	1224.60	NP	12.99	128.74	NP	197.02	106.60	37.60	64.30	NP
1976	645.60	NP	NP	100.00	NP	NP	121.40	392.30	63.20	477.10
1977	723.00	NP	NP	5.00	NP	NP	94.40	213.70	47.60	321.00

1978	371.40	NP	NP	0.50	NP	163.20	65.10	150.40	17.80	128.80
1979	578.20	NP	NP	0.00	NP	106.08	57.20	124.40	11.90	111.60
1980	358.60	NP	NP	0.00	NP	15.00	61.50	127.60	23.70	142.80
1981	1360.70	NP	NP	2.00	NP	542.42	57.80	132.90	19.20	145.00
1982	406.00	NP	NP	0.00	NP	310.00	60.00	134.80	19.90	141.80
1983	2950.30	NP	NP	30.00	NP	NP	190.40	495.50	130.10	1035.50
1984	1095.90	NP	NP	40.00	NP	12.80	143.80	274.50	78.40	432.50
1985	320.40	NP	NP	1.28	NP	0.00	57.70	113.90	16.60	125.20
1986	896.40	NP	NP	0.00	NP	NP	69.20	168.70	10.70	138.40
1987	1605.70	NP	NP	80.00	290.00	NP	99.00	186.10	27.70	398.60
1988	500.60	NP	NP	0.00	6.00	NP	60.10	110.40	15.40	116.30
1989	1251.70	NP	NP	0.00	2.44	NP	112.50	278.40	35.60	302.70
1990	344.60	NP	NP	0.06	25.78	NP	65.40	143.90	9.30	139.50
1991	452.00	NP	NP	NP	2.00	45.00	85.20	201.80	29.40	176.20
1992	1378.10	NP	NP	NP	4.70	NP	78.00	183.20	22.30	507.70
1993	1128.80	0.16	NP	NP	50.78	NP	138.40	421.40	40.70	407.40
1994	752.10	1.54	NP	NP	11.31	NP	191.40	428.50	69.70	348.70
1995	373.70	0.19	NP	NP	22.80	NP	43.00	108.90	11.10	113.70
1996	690.30	0.06	NP	NP	0.26	5.30	68.10	128.70	9.80	111.10
1997	914.60	0.05	NP	NP	32.40	546.80	69.50	112.10	12.30	240.30
1998	1916.10	73.24	NP	NP	102.31	3367.00	349.30	469.60	79.40	1108.60
1999	1418.80	10.51	NP	NP	22.04	1418.00	108.70	394.40	115.60	486.00
2000	813.10	4.72	NP	NP	29.83	1516.00	94.10	315.60	108.60	362.40
2001	1477.70	4.13	NP	NP	45.51	17.00	129.00	379.40	49.50	540.60
2002	1694.50	20.60	NP	NP	44.03	3204.00	85.00	606.30	57.30	922.20
2003	432.90	0.58	NP	NP	10.05	135.00	41.00	114.00	44.00	90.80
2004	500.00	0.10	NP	NP	7.97	10.00	99.00	337.00	35.00	293.80

2005	622.60	0.08	NP	NP	3.02	118.50	164.80	670.50	73.00	629.00
2006	1010.50	1.12	NP	NP	34.59	306.38	265.50	667.30	153.10	1089.90
2007	575.50	0.14	NP	NP	15.53	62.00	97.50	357.80	26.10	431.10
2008	1401.60	10.65	NP	NP	65.08	1826.00	354.30	1383.30	255.30	3142.00
2009	1287.42	9.18	NP	NP	23.37	480.00	407.50	1214.70	400.00	2387.90
2010	1001.20	0.14	NP	NP	40.21	333.54	143.70	416.30	151.70	899.90
2011	1005.58	0.10	NP	NP	5.56	166.62	236.00	417.00	163.00	539.10
2012	1339.33	10.66	NP	NP	69.78	1207.88	354.40	949.60	284.80	2011.30
2013	428.10	0.11	NP	NP	44.77	235.71	102.50	165.20	34.20	199.70
2014	634.10	0.00	NP	NP	14.19	51.00	191.40	335.80	106.00	366.80
2015	1887.70	13.00	NP	NP	62.74	662.20	225.90	639.50	161.50	1845.70
2016	1196.10	1.79	NP	NP	818.76	644.00	263.80	1016.40	155.00	2264.40
2017	1317.70	65.00	NP	NP	591.82	3468.00	546.00	1187.25	NP	3613.00
2018	610.20	2.82	NP	NP	NP	172.00	226.00	152.00	NP	407.00
2019	1347.10	32.50	NP	NP	NP	1503.00	49.00	661.59	NP	920.00
2020	671.40	0.65	NP	NP	NP	86.00	NP	NP	NP	125.88

Fuente: Elaboración propia adaptada a partir de los registros históricos de cada fuente disponible de datos.

3.1.1.20. Análisis en base al objetivo nº 1.

En esta etapa de la presente tesis se procedió a la verificación de las fuentes de información para la conformación de la base de datos, tomando como referencia el criterio de Montesinos (2018), dicho autor señala que para la creación de una base de datos que sea confiable y precisa, la longitud de registros como mínimo debería ser mayor a 15 años, a pesar de ello, se creyó conveniente ampliar la longitud mínima de registros considerándose finalmente un rango de 10 años, esto en consideración a que varias estaciones tienen como mínimo 10 años de registros y la idea al realizar esta investigación es la de abarcar la mayor cantidad de estaciones climáticas e hidrométricas que permitan determinar adecuadamente los umbrales de inundación para los diferentes períodos de retorno.

En ese sentido de las 70 estaciones pluviométricas, climáticas y/o meteorológicas disponibles, se utilizaron sólo 48 estaciones que cumplieron con el criterio de longitud de registro mínimo de 10 años (ver tabla 47), descartándose finalmente 22 estaciones; el mismo criterio fue aplicado a las estaciones hidrométricas con lo que de descarta la estación Canal Sechura, quedando finalmente 9 estaciones para el análisis de caudales máximos (ver tabla 48).

Cabe indicar que se descartó el uso de completación, generación, extensión y/o correlación de datos para los registros, pues al realizar alguno de estos procesos provocaría la corrección serial alterando en la mayoría de casos el registro completo de cada estación aumentando los valores que están por debajo del promedio y también aumentando los valores extremos o denominados comúnmente como "atípicos" lo cual afectaría por completo los valores de los umbrales en cada una de las cuencas en estudio.

TABLA 47:
ESTACIONES PLUVIOMÉTRICAS, CLIMÁTICAS Y/O METEOROLÓGICAS SELECCIONADAS
PARA LA PRESENTE TESIS CON LONGITUD DE REGISTRO MÍNIMA DE 10 AÑOS
IV.

N° de orden de cuenca	Cuenca hidrográfica	N° de estación	Estación	Longitud de registro (años)
	_	1	Piñas	30
	_	2	Zaruma	37
		3	Alamor	30
		4	Hito Bocana	18
1	Tumbes _	5	Capitán Hoyle	33
	_	6	Cabo Inga	25
	_	7	El Tigre	53
		8	Rica Playa	55
	_	9	Puerto Pizarro	55
	_	10	Cerro de Arena	12
3	Cascajal _	11	Pasabar	13
		12	Pasaje Sur	12
		13	Virrey	54
4	Intercuenca 13779	14	Bernal	54
5	Intercuenca 1379 -	15	La Esperanza	51
	1379	16	Paita	24
	_	17	Cherrelique	37
6	Bocapán _	18	San Lorenzo	13
		19	Cañaveral	46
7	Intercuenca 13939	20	La Cruz	24
	_	21	Arenillas	46
	_	22	Chacras	30
8	Zarumilla	23	El Caucho	10
		24	Matapalo	39
		25	Papayal	51
	Intercuenca	26	El Salto	50
9	13951	27	Zarumilla	20
		28	Alto Piura	25
10	Dives	29	Bajo Piura 1	27
10	Piura -	30	Bajo Piura 2	31
		31	Bigote	28

		32	Chusis	25
		33	Corrales	29
		34	Laguna Ramon	17
		35	Medio Alto Piura	40
		36	Medio Bajo Piura 1	35
		37	Medio Bajo Piura 2	42
	_	38	Medio Piura	29
	_	39	Montegrande	21
		40	San Francisco	39
		41	San Miguel	65
	-	42	Unidad 13784	37
		43	El Ciruelo	27
11	Chira –	44	Puente Internacional	20
11	Gillia —	45	Paraje Grande	25
		46	Alamor	22
12	Intercuenca 13931	47	El Alto	38
18	Pariñas	48	Pananga	58

TABLA 48:

ESTACIONES HIDROMÉTRICAS SELECCIONADAS PARA LA PRESENTE TESIS UNA LONGITUD DE REGISTRO MÍNIMA DE 10 AÑOS

V.

N° de orden de cuenca	Cuenca	N° de estación	Estación	Longitud de registro (años)
1	Tumbes	1	El Tigre	58
3	Cascajal	2	El Zapatero	28
8	Zarumilla	3	Canal Internacional	34
9	Intercuenca 13951	4	Puente Bolsico	31
10	Piura	5	Puente Sánchez Cerro	34
11	Chira	6	El Ciruelo	45

7	Puente Internacional	47
8	Paraje Grande	44
9	Ardilla	45

3.1.2. Realizar el modelamiento hidrológico para obtener los caudales máximos en un determinado periodo de retorno, de las cuencas que pertenecen a la región hidrológica VI del Pacífico del Perú.

El modelamiento hidrológico desarrollado y propuesto por el Cuerpo de Ingenieros de los Estados Unidos a través del software Hydrologic Modeling System (HEC-HMS v.3.50) permite simular los procesos del tipo Iluvia – caudal a partir de procesos de transferencia de datos de entrada tales como infiltración, hietogramas, hidrogramas, evapotranspiración, deshielo y humedad del suelo, por último el software ofrece diferentes maneras de resolución de estos procesos empleando métodos como el número de curva, hidrograma unitario de Clark e hidrograma unitario de Snyder.

En ese sentido se aplicó el modelamiento hidrológico a cada una de las cuencas que disponen datos de al menos una estación del tipo pluviométrica, climática y/o meteorológica que permitan simular el proceso lluvia – caudal, esto con la finalidad de obtener los caudales máximos para los diferentes períodos de retorno y por ende los umbrales de inundación.

3.1.2.1. Análisis en base al Objetivo Específico nº 2.

Simulación hidrológica Iluvia - caudal

Se realizó la simulación hidrológica para cada una de las cuencas tomando también en consideración los hietogramas previamente ingresados al software HEC-HMC v.3.50. En total fueron 12 cuencas (ver tabla 47) simuladas para los períodos de retorno de 2, 5, 10, 20, 50, 100, 200 y 500 años, cuyos resultados se muestran desde la tabla 49 hasta la tabla 60.

TABLA 49: CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA CUENCA TUMBES

Fotosián	C	audales r	náximos p	ara difere	ntes perío	dos de ret	orno en ar	ios
Estación	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=100	Tr=200	Tr=500
Piñas	1304.50	2117.40	2576.70	2845.40	3417.30	3731.00	4349.30	4972.10
Zaruma	447.90	625.80	739.40	834.40	993.30	1099.00	1249.50	1425.00
Alamor	1759.70	2558.40	3042.50	3393.20	4030.00	4406.00	5041.10	5730.80
Hito Bocana	254.60	600.20	864.90	1139.40	1522.90	1826.10	2141.90	2574.20
Capitán Hoyle	3439.80	9164.70	11474.50	11742.40	11950.70	12706.20	12913.80	13826.70
Cabo Inga	392.60	675.60	869.00	1053.80	1290.30	1466.10	1638.00	1861.50
El Tigre	558.10	1189.20	1782.00	2430.40	3085.00	3747.90	4437.10	5375.30
Rica Playa	135.50	425.90	681.10	954.50	1331.90	1627.80	1930.90	2337.90
Puerto Pizarro	99.80	320.60	560.80	879.20	1439.30	1988.90	2663.90	3793.40

TABLA 50: CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA CUENCA CASCAJAL

	Cau	dales r	náximo	s para d		s período	s de retoi	rno en
Estación					años			
	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=100	Tr=200	Tr=500
Cerro de	12.20	112.1	416.9	1703.8	7819.9	19537.6	19976.6	20569.9
Arena	12.20	0	0	0	0	0	0	0
Doochor	154.9	545.8	892.6	1609.4	2667.9	2670.60	4882.80	6704 40
Pasabar	0	0	0	0	0	3079.00	4002.00	6/91.10
Pasaje	5.40	34.60	79.50	188.60	425.90	715.80	1128.20	1907.30
Sur	0.40	J-1.00	7 3.30	100.00	720.50	7 13.00	1120.20	1507.50
Virrov	33.10	222.3	491.6	1111.6	2322.1	2676 20	4333.60	E004 20
Virrey	33.10	0	0	0	0	3070.20	4333.00	5904.20

Fuente: Elaboración propia.

TABLA 51:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA INTERCUENCA 13779

Estación	Cau	udales	máxim	os para o	diferente años	s período	os de reto	rno en
	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=100	Tr=200	Tr=500
Bernal	16.1	125.	434.3	1176.9	2695.7	6257.4	14316.8	15412.8
Demai	0	9	0	0	0	0	0	0

TABLA 52:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA INTERCUENCA 1379

Estación	Cau	ıdales	máximo	s para d	diferente años	s período	s de reto	rno en
LStacion	Tr= 2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=100	Tr=200	Tr=500
La	3.70	32.8	118.5	374.7	1465.5	3684.3	3794.0	4749.6
La Esperanza	3.70	0	0	0	0	0	0	0
Paita	1.90	42.9	152.1	373.0	892.30	1482.3	1577.8	2485.4
Falla	1.90	0	0	0	092.30	0	0	0

TABLA 53:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA CUENCA BOCAPÁN

Estación	Caud	dales má	áximos p		rentes p ĭos	eríodos	de retor	no en
EStacion	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=10 0	Tr=20 0	Tr=50 0
Cherreliqu e	246.3 0	1107.8 0	2259.8 0	2420.2 0	2493.4 0	2540.1 0	2945.3 0	3105.2 0
San Lorenzo	101.5 0	266.00	404.10	554.10	768.50	941.70	1020.5 0	1250.1 0
Cañaveral	111.2 0	530.10	1246.4 0	2565.8 0	2609.1 0	2615.3 0	2785.2 0	2966.2 0

Fuente: Elaboración propia.

TABLA 54:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA INTERCUENCA 13939

Estación	Cauc	lales má	áximos _I		erentes ños	períodos	s de reto	rno en
	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=100	Tr=200	Tr=500
La Cruz	86.00	200.20	289.50	382.60	510.80	611.30	714.40	854.10

TABLA 55:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA CUENCA ZARUMILLA

Estación	Caud	lales m	náximos	•	ferentes años	período	s de reto	orno en
	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=100	Tr=200	Tr=500
Arenillas	30.60	75.00	95.00	126.20	170.60	279.30	329.40	397.70
Chacras	39.60	90.10	110.60	140.20	185.10	294.60	348.10	507.70
El Caucho	4.00	24.60	57.00	108.40	211.30	433.30	623.60	947.90
Matapalo	29.80	68.00	97.60	128.30	170.60	274.60	320.80	383.70
Papayal	20.80	57.00	91.30	132.00	324.30	458.50	703.20	1081.80

TABLA 56:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA INTERCUENCA 13951

Estación	Cau	dales m	áximos	•	ferentes años	s período	s de reto	rno en
	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=100	Tr=200	Tr=500
El Salto	56.6	167.7	274.7	404.0	705.7	1336.7	2051.9	3560.6
El Sallo	0	0	0	0	0	0	0	0
Zarumilla	35.6	94.20	213.8	367.7	704.5	1010.0	1583.8	1922.6
Zarumilla	0	94.20	0	0	0	0	0	0

Fuente: Elaboración propia.

TABLA 57:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA CUENCA PIURA

Estación	Cauc	lales máx	cimos pa	ra diferer	ntes períc	dos de r	etorno er	n años
Estacion	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=100	Tr=200	Tr=500
Alto Piura	295.70	377.10	451.20	538.10	683.70	808.30	934.40	1173.40
Bajo Piura 1	300.40	1071.60	1995.90	2825.90	4184.00	5532.40	7150.30	9555.90
Bajo Piura 2	156.20	257.60	372.30	532.80	845.90	1174.10	1610.00	2421.90
Bigote	158.30	184.30	206.30	230.60	270.40	301.80	325.50	383.00
Chusis	2.00	14.80	44.90	118.60	367.60	787.90	1574.10	2964.50
Corrales	196.60	245.70	289.60	340.80	424.90	495.50	566.00	699.40
Laguna Ramon	0.30	2.20	7.60	22.70	86.60	221.70	533.00	1525.40
Medio Alto Piura	171.20	222.60	270.10	327.00	422.00	504.30	592.50	754.60
Medio Bajo Piura 1	170.30	274.30	389.60	547.70	852.20	1168.60	1586.20	2356.40
Medio Bajo Piura 2	378.60	540.90	703.90	910.00	1275.30	1618.00	2026.60	2758.70
Medio Piura	44.50	60.70	76.30	95.60	129.50	160.10	194.10	258.10

Montegrande	4.60	37.70	104.60	229.90	522.90	869.80	1350.10	2229.70
San Francisco	65.20	101.80	141.40	195.20	297.00	400.30	532.40	779.50
San Miguel	8.10	54.00	135.00	274.60	578.10	917.70	1370.20	2169.70

TABLA 58:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA CUENCA CHIRA

Estación	Cau	dales ma	áximos _l		rentes p ños	períodos	de reto	rno en
EStacion	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=10 0	Tr=20 0	Tr=500
El Ciruelo	374.6	1276.4	2210.2	3359.0	5205.4	6862.5	8752.8	11629.4
El Cilueio	0	0	0	0	0	0	0	0
Puente Internacion al	330.5 0	541.60	664.20	771.70	897.60	985.40	1067.2 0	1169.30
Paraje	252.6	891.40	1671.7	2738.3	4648.8	5177.0	5688.8	5886.60
Grande	0	091.40	0	0	0	0	0	3000.00
Alamor	406.0	1301.5	2072.3	2881.9	3985.2	6188.4	7772.8	11211.9
Aiaiiioi	0	0	0	0	0	0	0	0

Fuente: Elaboración propia.

TABLA 59:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA INTERCUENCA 13931

	Cau	s período	s de reto	orno en				
Estación					años			
	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=100	Tr=200	Tr=500
El Alto	5.50	49.30	145.50	336.90	810.30	1391.60	2223.20	2880.30

Fuente: Elaboración propia.

TABLA 60:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA SIMULACIÓN HIDROLÓGICA PARA LA CUENCA PARIÑAS

Estació	Cauda	Caudales máximos para diferentes períodos de retorno en años										
n	Tr=2	Tr=5	Tr=10	Tr=20	Tr=50	Tr=100	Tr=200	Tr=500				
Pananga	89.8	371.6	750.9	1368.2	2651.9	4127.9	6189.5	10115.1				
rananga ————	0	0	0	0	0	0	0	0				

Fuente: Elaboración propia.

Esta etapa comprendió la aplicación de las distribuciones de mejor ajuste que previamente se describieron en el análisis probabilístico y estadístico de precipitaciones y caudales en la presente tesis, así mismo las expresiones matemáticas de cada distribución teórica se señalan en la tabla 1 de la presente investigación. Se procedió entonces a aplicar cada una de las distribuciones teóricas de mejor ajuste con la ayuda de los softwares Hidroesta 2 y Hydracces v.6., cuyas distribuciones que tiene cada software se señalan en la tabla 61. Finalmente se muestran los resultados de las precipitaciones máximas (ver tabla 62, 63, 64, 65) y caudales máximos (ver tabla 66) para cada período de retorno.

TABLA 61:

DISTRIBUCIONES TEÓRICAS APLICADAS CON LOS RESPECTIVOS SOFTWARES A LAS ESTACIONES PLUVIOMÉTRICAS, CLIMÁTICAS, METEOROLÓGICAS E HIDROMÉTRICAS

N°	Nombre de distribución	Siglas	Software que se aplicó
1	Normal		Hidroesta 2
2	Logaritmo normal de 2 parámetros	LN 2P	Hidroesta 2
3	Logaritmo normal de 3 parámetros	LN 3P	Hidroesta 2
4	Gamma de 2 parámetros	GM 2P	Hidroesta 2
5	Gamma de 3 parámetros	GM 3P	Hidroesta 2
6	Logaritmo Pearson tipo 3	LPT3	Hidroesta 2
7	Gumbel		Hidroesta 2
8	Logaritmo Gumbel	LogGumbel	Hidroesta 2
9	Goodrich		Hydraccses v.6.2
10	Galton		Hydraccses v.6.2
11	Pearson Tipo III		Hydraccses v.6.2
12	Pearson Tipo V		Hydraccses v.6.2
13	Nash		Hidroesta 2

Tabla 62:

Distribuciones de mejor ajuste elegidas para cada una de las estaciones pluviométricas, climáticas y/o meteorológicas de las cuencas de la región hidrológica VI del Pacífico del Perú (parte 1)

Doríodo				Cue	nca Tum		Cu	enca C	ascajal		Intercuen ca 13779			
Período de retorno	Puerto Pizarro	Rica Playa	El Tigre	Cabo Inga	Capitá n Hoyle	Hito Bocan a	Zarum a	Alam or	Piña s	Cerro Arena	Pasaj e Sur	Pasab ar	Virre y	Bernal
(Tr) en años	Pearso n tipo V	Pearso n tipo III	Nash	GM 2P	LN 3P	GM 2P	NP	NP	NP	LogGumb el	LN 2P	Galton	Galto n	Pearson tipo V
2	40.30	41.10	43.38	65.33	193.27	42.86	63.84	92.88	67.20	9.15	13.74	28.80	28.30	6.40
5	77.30	80.40	75.21	90.82	402.52	89.44	78.00	117.8 4	91.92	28.54	35.78	59.90	78.10	18.10
10	107.40	107.80	96.29	106.4 1	574.03	123.21	86.40	132.0 0	104.8 8	60.61	59.04	87.60	130.3 0	34.40
20	141.40	134.20	116.5 0	120.4 9	762.71	156.37	93.18	141.8 7	112.2 2	124.83	89.26	119.90	198.0 0	62.50
50	193.80	168.10	142.6 7	137.6 9	1043.0 2	199.59	103.92	159.3 6	127.4 4	318.04	142.1 3	170.70	315.9 0	133.00
100	240.60	193.30	162.2 8	149.9 6	1281.1 5	231.94	110.88	169.4 4	135.6 0	640.99	193.8 0	216.00	430.9 0	232.80
200	294.60	218.30	181.8 2	161.7 0	1543.8 7	263.97	120.45	186.0 9	151.3 1	1288.56	257.3 7	267.90	572.1 0	405.10
500	380.20	251.00	207.6 0	176.5 7	1932.1 6	305.73	131.30	203.6 8	166.8 7	3237.35	362.9 7	347.70	806.2 0	835.20

Tabla 63:

Distribuciones de mejor ajuste elegidas para cada una de las estaciones pluviométricas, climáticas y/o meteorológicas de las cuencas de la región hidrológica VI del Pacífico del Perú (parte 2)

Período	Intercuen	Intercuenca 1379		Cuenca Bocapán			Cuenca Zarumilla				
de retorno (Tr) en	La Esperanz a	Paita	Cherreliqu e	Cañaver al	San Lorenz o	La Cruz	Papaya I	Matapal o	El Caucho	Chacra s	Arenilla s
años	Pearson tipo V	Goodric h	LN 2P	Pearson tipo V	Nash	Nash	Pearso n tipo V	Nash	Galton	ecua	ste a ación ítmica
2	8.40	6.00	111.28	72.60	69.11	37.28	43.20	53.19	17.60	62.88	54.00
5	25.40	29.20	275.05	177.30	118.29	61.88	78.50	87.46	47.60	96.96	85.92
10	49.70	56.80	441.61	302.50	150.85	78.16	105.50	110.15	78.50	119.52	108.24
20	92.80	92.60	652.83	492.70	182.09	93.78	134.50	131.92	118.00	139.99	130.46
50	204.50	152.10	1013.47	905.70	222.52	114.00	177.10	160.09	186.00	169.44	160.08
100	367.50	205.90	1358.70	1415.20	252.81	129.15	213.20	181.20	251.50	190.32	183.36
200	655.70	267.10	1776.76	2194.60	283.00	144.24	253.40	202.24	331.30	214.35	206.03
500	1402.30	359.10	2459.24	3879.30	322.83	164.16	313.50	229.99	462.30	243.94	236.10

Tabla 64:

Distribuciones de mejor ajuste elegidas para cada una de las estaciones pluviométricas, climáticas y/o meteorológicas de las cuencas de la región hidrológica VI del Pacífico del Perú (parte 3)

Daríada	Intercue	nca 13951		Cuer	Intercuenca 13931	Cuenca Pariñas		
Período de retorno (Tr) en	El Salto	Zarumilla	El Ciruelo	Alamor	Paraje Grande	Puente Internacional	El Alto	Pananga
años	Pearson tipo V	Nash	Galton	Goodrich	Galton	Galton	Galton	Pearson tipo V
2	40.70	31.01	45.80	51.00	47.70	60.16	11.60	27.40
5	80.10	55.46	97.00	96.10	108.40	81.54	36.90	58.00
10	111.70	71.65	139.80	124.90	170.90	92.89	67.40	85.80
20	146.90	87.18	187.80	151.20	250.70	102.35	110.60	119.60
50	200.60	107.29	260.10	183.20	388.00	113.09	193.10	176.50
100	247.90	122.35	322.40	205.90	520.30	120.31	279.80	231.60
200	302.30	137.36	391.90	227.60	681.40	126.97	392.90	300.10
500	386.20	157.16	495.70	255.00	945.90	135.08	592.60	417.20

Tabla 65:

Distribuciones de mejor ajuste elegidas para cada una de las estaciones pluviométricas, climáticas y/o meteorológicas de las cuencas de la región hidrológica VI del Pacífico del Perú (parte 4)

	Cuenca Piura														
Período de retorno (Tr) en	San Francisco	Bajo Piura 2	Medio Bajo Piura 1	Bajo Piura 1	Corrales	Medio Piura	Medio Bajo Piura 2	Bigote	Unidad 13784	Medio Alto Piura	Alto Piura	Bajo Piura 6 (Laguna Ramon)	Bajo Piura 5 (Chusis)	Bajo Piura 4 (Monte grande)	Bajo Piura 3 (San Miguel)
años				Aj	uste a ecu	ıación p	otencial					Pearson tipo V	Pearson tipo V	Galton	Galton
2	62.07	60.22	64.92	48.00	63.02	83.15	76.99	39.21	64.52	67.77	55.53	3.10	6.80	8.40	11.20
5	79.77	80.27	85.07	67.74	72.39	99.36	95.31	42.78	79.66	79.60	64.43	9.20	18.80	25.60	31.20
10	96.44	99.76	104.36	87.91	80.39	113.68	112.01	45.69	93.43	89.91	72.10	17.30	34.10	45.40	52.70
20	116.60	124.00	128.03	114.09	89.27	130.07	131.63	48.80	109.59	101.56	80.68	30.60	58.40	72.60	81.10
50	150.47	165.88	168.25	161.51	103.21	156.45	163.73	53.66	135.81	120.05	94.23	62.50	114.00	123.00	131.60
100	181.48	205.63	205.88	209.12	114.45	178.61	191.93	57.28	158.85	135.29	105.31	105.50	186.00	174.70	181.50
200	218.12	254.77	251.93	270.77	125.34	201.84	223.95	60.01	185.76	151.01	116.12	176.90	301.10	240.80	243.50
500	281.48	340.36	330.80	382.71	145.24	243.11	278.57	66.28	229.84	178.79	135.98	346.90	566.60	355.10	347.50

Tabla 66:

Distribuciones de mejor ajuste elegidas para cada una de las estaciones hidrométricas de las cuencas de la región hidrológica VI del Pacífico del Perú

Período	Cuenca Tumbes	Cuenca Cascajal	Cuenca Zarumilla	Intercuenca 13951	Cuenca Piura		Cuenca C	Chira	
de retorno (Tr) en	El Tigre	Zapatero	Canal Internacional	Puente Bolsico	Puente Sánchez Cerro	Puente Internacional	El Ciruelo	Paraje Grande	Ardilla
años	Pearson tipo V	Goodrich	Goodrich	LN 2P	Goodrich	LogGumbel	Pearson tipo V	Galton	LN 3P
2	774.01	1.50	1.30	22.57	270.50	104.17	274.70	38.90	359.97
5	1247.85	11.00	16.60	90.85	1019.10	184.86	543.40	107.90	911.48
10	1634.91	25.40	49.70	188.25	1789.40	270.25	804.60	192.30	1528.10
20	2070.06	47.20	111.10	343.53	2705.70	389.02	1140.20	313.70	2361.18
50	2741.97	88.20	251.10	675.93	4114.80	623.38	1741.80	548.50	3875.00
100	3341.06	129.30	413.40	1061.24	5316.50	887.57	2358.80	798.20	5403.14
200	4036.40	179.70	634.40	1603.60	6626.10	1262.10	3164.00	1126.80	7332.12
500	5125.74	261.30	1032.80	2644.47	8512.60	2008.20	4627.40	1713.10	10624.70

Luego de realizado este análisis se procedió a generar los hietogramas por medio de bloques alternos que permitirán realizar el modelamiento hidrológico para cada período de retorno.

3.1.3. Establecer las zonas homogéneas de la región hidrológica VI del Pacífico del Perú por medio del análisis regional de caudales basado en la relación caudal - área para los diferentes períodos de retorno.

El criterio de homogenización se basó en hacer un agrupamiento de los caudales máximos divididos entre las respectivas áreas de sub cuencas para cada una de las estaciones pluviométricas, climáticas y/o meteorológicas considerando tres criterios de comparación: el promedio, la desviación estándar y el coeficiente de variación; en cuanto a éste último parámetro es importante rescatar que si el valor del coeficiente de variación es menor a 1.00 nos indica que es adecuado el agrupamiento para homogenizar los grupos de estaciones (sub cuencas) de cada cuenca, es decir mientras más se acerque a cero mejor será la homogenización y aceptación de valores para la regionalización de un grupo de sub cuencas.

3.1.3.1. Análisis en Base al Objetivo Especifico Nº 3.

Una vez obtenidos los caudales máximos para cada una de las cuencas y sub cuencas se procedió a establecer un criterio de relación entre el caudal y el área tomando como criterio lo señalado por Montesinos (2018), pues en su estudio menciona que se necesita establecer una adecuada relación entre los caudales máximos con alguna de las características fisiográficas de las cuencas en donde se desea estimar el umbral de inundación, sus resultados mostraron que la ecuación de mejor ajuste y/o correlación fue la que relaciona el caudal, el área y el período de retorno.

Entonces considerando este criterio se obtuvieron la relación caudal – área para cada período de retorno agrupando convenientemente las sub cuencas de cada cuenca de la región hidrológica VI del Pacífico del Perú.

TABLA 67:

RELACIONES DE CAUDAL MÁXIMO ENTRE ÁREA DE SUBCUENCA PARA LOS DIFERENTES PERÍODOS DE RETORNO — REGIÓN HIDROLÓGICA VI DEL PACÍFICO DEL PERÚ

Estación						subcue etorno e	nca) para en años	3
	2	5	10	20	50	100	200	500
Piñas	1.23	1.99	2.42	2.67	3.21	3.51	4.09	4.67
Zaruma	0.88	1.23	1.45	1.64	1.95	2.15	2.45	2.79
Alamor	1.63	2.37	2.82	3.14	3.73	4.08	4.67	5.31
Hito Bocana	0.45	1.07	1.54	2.03	2.71	3.25	3.81	4.58
*Capitán Hoyle	4.93	13.12	16.43	16.81	17.11	18.19	18.49	19.80
Cabo Inga	0.91	1.57	2.02	2.45	3.00	3.41	3.81	4.33
El Tigre	1.12	2.38	3.56	4.86	6.17	7.49	8.87	10.74
Rica Playa	0.41	1.29	2.06	2.89	4.03	4.93	5.84	7.08
Puerto Pizarro	0.28	0.90	1.58	2.48	4.06	5.61	7.51	10.70
Cerro de Arena	0.01	0.06	0.21	0.86	3.97	9.91	10.13	10.44
Pasabar	0.16	0.55	0.91	1.63	2.71	3.73	4.95	6.89
Pasaje Sur	0.01	0.09	0.20	0.48	1.08	1.82	2.86	4.84
Virrey	0.06	0.38	0.83	1.88	3.93	6.22	7.33	9.98
Bernal	0.00	0.03	0.09	0.25	0.57	1.33	3.04	3.27
La Esperanza	0.01	0.07	0.26	0.82	3.21	8.07	8.31	10.40
Paita	0.00	0.09	0.33	0.82	1.95	3.25	3.46	5.44
Cherrelique	0.80	3.62	7.38	7.90	8.14	8.30	9.62	10.14
San Lorenzo	0.34	0.90	1.36	1.86	2.59	3.17	3.43	4.21
Cañaveral	0.37	1.78	4.19	8.63	8.78	8.80	9.37	9.98
La Cruz	0.46	1.07	1.54	2.04	2.72	3.25	3.80	4.54
Arenillas	0.41	1.01	1.27	1.69	2.29	3.74	4.42	5.33
Chacras	0.53	1.21	1.48	1.88	2.48	3.95	4.67	6.81
El Caucho	0.05	0.33	0.76	1.45	2.83	5.81	8.36	12.71
Matapalo	0.40	0.91	1.31	1.72	2.29	3.68	4.30	5.14
Papayal	0.28	0.76	1.22	1.77	4.35	6.15	9.43	14.50
El Salto	0.33	0.99	1.62	2.38	4.15	7.87	12.08	20.96
Zarumilla	0.21	0.55	1.26	2.16	4.15	5.95	9.32	11.32
Alto Piura	0.25	0.32	0.39	0.46	0.59	0.69	0.80	1.01
Bajo Piura 1	0.37	1.32	2.46	3.48	5.15	6.81	8.80	11.75
Bajo Piura 2	0.22	0.37	0.53	0.76	1.21	1.68	2.30	3.46
Bigote	0.23	0.27	0.30	0.34	0.39	0.44	0.47	0.56
Chusis	0.00	0.02	0.06	0.15	0.46	0.98	1.97	3.71
Corrales	0.34	0.43	0.51	0.60	0.74	0.87	0.99	1.22
Laguna Ramon	0.00	0.00	0.01	0.03	0.11	0.28	0.67	1.91
Medio Alto Piura	0.34	0.44	0.53	0.64	0.83	0.99	1.16	1.48
Medio Bajo Piura 1	0.20	0.32	0.45	0.63	0.98	1.35	1.83	2.72
Medio Bajo Piura 2	0.38	0.55	0.71	0.92	1.29	1.64	2.05	2.79
Medio Piura	0.41	0.55	0.70	0.87	1.18	1.46	1.77	2.36
Montegrande	0.01	0.05	0.13	0.29	0.65	1.09	1.69	2.79
	J. J.			J. _	0.00			

San Francisco	0.17	0.27	0.37	0.51	0.77	1.04	1.39	2.03
San Miguel	0.01	0.07	0.17	0.34	0.72	1.15	1.71	2.71
Unidad 13784	0.15	0.22	0.29	0.38	0.55	0.72	0.93	1.31
El Ciruelo	0.08	0.28	0.48	0.74	1.14	1.51	1.92	2.55
Puente	0.13	0.21	0.26	0.30	0.35	0.39	0.42	0.46
Internacional	0.13	0.21	0.20	0.30	0.55	0.59	0.42	0.40
Paraje Grande	0.11	0.39	0.73	1.20	2.03	2.26	2.48	2.57
Alamor	0.27	0.87	1.39	1.93	2.67	4.15	5.22	7.52
El Alto	0.02	0.15	0.44	1.03	2.47	4.24	6.77	8.77
Pananga	0.05	0.22	0.44	0.80	1.56	2.42	3.63	5.93

Nota: *La estación climática Capitán Hoyle aparece en esta tabla como referencia ya que en el agrupamiento final de la homogenización no se consideró debido a que presenta un coeficiente de variación mayor a la unidad.

Fuente: Elaboración propia.

El proceso inicial consistió en agrupar convenientemente las estaciones pluviométricas, climáticas y/o meteorológicas por grupos cuyo coeficiente de variación sea menor a 1.00 (ver tabla 67), en tal sentido la estación climática Capitán Hoyle se descartó analizarla en el agrupamiento puesto que los valores obtenidos presentaban un coeficiente de variación mayor a 1.00 y por ende como se aprecia en la figura 21 la zona remarcada con líneas punteadas corresponde a esta estación donde sus valores se alejan considerablemente de las demás relaciones para cada período de retorno.

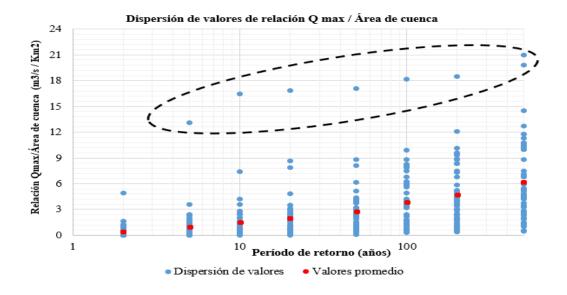


FIGURA 21: DISPERSIÓN DE VALORES EN FUNCIÓN A LA RELACIÓN QMAX / ÁREA DE CUENCA (EN M3/S / KM²).

FUENTE: ELABORACIÓN PROPIA.

El siguiente paso fue comenzar a agrupar las estaciones de semejantes valores de relaciones caudal máximo entre área de sub cuenca, este proceso fue iterativo de tal manera que se logró un buen coeficiente de variación. Luego se obtuvieron los resultados respectivos del agrupamiento con lo cual se determinaron cuatro grupos homogéneos los cuales se muestran en la tabla 68 y los parámetros de promedio, desviación estándar y coeficiente de variación para cada grupo se indican en la tabla 69.

TABLA 68: GRUPOS HOMOGÉNEOS PARA LA REGIÓN HIDROLÓGICA VI DEL PACÍFICO DEL PERÚ

N° Grupo homogéne	Estación	•						uenca) o en ar	•
o		2	5	10	20	50	100	200	500
	Alto Piura	0.25	0.3	0.39	0.46	0.5 9	0.69	0.80	1.01
	Bigote	0.23	0.2 7	0.30	0.34	0.3 9	0.44	0.47	0.56
	Corrales	0.34	0.4 3	0.51	0.60	0.7 4	0.87	0.99	1.22
1	Laguna Ramon	0.00	0.0	0.01	0.03	0.1 1	0.28	0.67	1.91
	Medio Alto Piura	0.34	0.4 4	0.53	0.64	0.8 3	0.99	1.16	1.48
	Unidad 13784	0.15	0.2	0.29	0.38	0.5 5	0.72	0.93	1.31
	Puente Internacional	0.13	0.2	0.26	0.30	0.3 5	0.39	0.42	0.46
	Piñas	1.23	1.9 9	2.42	2.67	3.2 1	3.51	4.09	4.67
	Zaruma	0.88	1.2 3	1.45	1.64	1.9 5	2.15	2.45	2.79
	Alamor	1.63	2.3 7	2.82	3.14	3.7 3	4.08	4.67	5.31
2	Hito Bocana	0.45	1.0 7	1.54	2.03	2.7 1	3.25	3.81	4.58
2	Cabo Inga	0.91	1.5 7	2.02	2.45	3.0	3.41	3.81	4.33
	Pasaje Sur	0.01	0.0 9	0.20	0.48	1.0 8	1.82	2.86	4.84
	Bernal	0.00	0.0 3	0.09	0.25	0.5 7	1.33	3.04	3.27
	Paita	0.00	0.0 9	0.33	0.82	1.9 5	3.25	3.46	5.44

	San Lorenzo	0.34	0.9 0	1.36	1.86	2.5 9	3.17	3.43	4.21
	La Cruz	0.46	1.0 7	1.54	2.04	2.7 2	3.25	3.80	4.54
	Arenillas	0.41	1.0 1	1.27	1.69	2.2 9	3.74	4.42	5.33
	Matapalo	0.40	0.9 1	1.31	1.72	2.2 9	3.68	4.30	5.14
	Bajo Piura 2	0.22	0.3 7	0.53	0.76	1.2 1	1.68	2.30	3.46
	Chusis	0.00	0.0	0.06	0.15	0.4 6	0.98	1.97	3.71
	Medio Bajo Piura 1	0.20	0.3	0.45	0.63	0.9 8	1.35	1.83	2.72
	Medio Bajo Piura 2	0.38	0.5 5	0.71	0.92	1.2 9	1.64	2.05	2.79
	Medio Piura	0.41	0.5 5	0.70	0.87	1.1 8	1.46	1.77	2.36
	Montegrande	0.01	0.0 5	0.13	0.29	0.6 5	1.09	1.69	2.79
	San Francisco	0.17	0.2 7	0.37	0.51	0.7 7	1.04	1.39	2.03
	San Miguel	0.01	0.0 7	0.17	0.34	0.7	1.15	1.71	2.71
	El Ciruelo	0.08	0.2	0.48	0.74	1.1 4	1.51	1.92	2.55
	Paraje Grande	0.11	0.3 9	0.73	1.20	2.0	2.26	2.48	2.57
	El Tigre	1.12	2.3	3.56	4.86	6.1 7	7.49	8.87	10.7 4
	Rica Playa	0.41	1.2 9	2.06	2.89	4.0 3	4.93	5.84	7.08
	Puerto Pizarro	0.28	0.9	1.58	2.48	4.0 6	5.61	7.51	10.7 0
	Cerro de Arena	0.01	0.0 6	0.21	0.86	3.9 7	9.91	10.1 3	10.4 4
2	Pasabar	0.16	0.5 5	0.91	1.63	2.7 1	3.73	4.95	6.89
3	Virrey	0.06	0.3 8	0.83	1.88	3.9 3	6.22	7.33	9.98
	La Esperanza	0.01	0.0 7	0.26	0.82	3.2 1	8.07	8.31	10.4 0
	Cherrelique	0.80	3.6 2	7.38	7.90	8.1 4	8.30	9.62	10.1 4
	Cañaveral	0.37	1.7 8	4.19	8.63	8.7 8	8.80	9.37	9.98
	Chacras	0.53	1.2 1	1.48	1.88	2.4 8	3.95	4.67	6.81

	– Alamor	0.27	0.8 7	1.39	1.93	2.6 7	4.15	5.22	7.52
	El Alto	0.02	0.1 5	0.44	1.03	2.4 7	4.24	6.77	8.77
	Pananga	0.05	0.2	0.44	0.80	1.5 6	2.42	3.63	5.93
	El Caucho	0.05	0.3	0.76	1.45	2.8 3	5.81	8.36	12.7 1
	Papayal	0.28	0.7 6	1.22	1.77	4.3 5	6.15	9.43	14.5 0
4	El Salto	0.33	0.9 9	1.62	2.38	4.1 5	7.87	12.0 8	20.9 6
	Zarumilla	0.21	0.5 5	1.26	2.16	4.1 5	5.95	9.32	11.3 2
	Bajo Piura 1	0.37	1.3 2	2.46	3.48	5.1 5	6.81	8.80	11.7 5

Fuente: Elaboración propia.

TABLA 69:

PARÁMETROS ESTADÍSTICOS DE LOS GRUPOS HOMOGÉNEOS PARA LA REGIÓN HIDROLÓGICA VI DEL PACÍFICO DEL PERÚ

N°			Р	eríod	o de r	etorn	o (añ	os)	
Grupo	Parámetros estadísticos –		5	10	20	50	100	200	500
	Promedio	0.21	0.27	0.33	0.39	0.51	0.62	0.78	1.14
	Desviación estándar	0.12	0.15	0.18	0.21	0.25	0.26	0.27	0.51
1	Coeficiente de variación (Cv)	0.60	0.55	0.54	0.52	0.48	0.42	0.35	0.45
	Promedio de Cv				0	.49			
	Promedio	0.38	0.69	0.94	1.24	1.75	2.31	2.87	3.73
	Desviación estándar	0.43	0.66	0.79	0.86	0.96	1.06	1.04	1.12
2	Coeficiente de variación (Cv)	1.14	0.96	0.84	0.70	0.55	0.46	0.36	0.30
	Promedio de Cv				0	.66			
	Promedio	0.31	1.04	1.90	2.89	4.17	5.99	7.09	8.88
	Desviación estándar	0.34	1.05	2.05	2.63	2.22	2.33	2.11	1.77
3	Coeficiente de variación (Cv)	1.08	1.01	1.08	0.91	0.53	0.39	0.30	0.20
	Promedio de Cv				0	.69			
	Promedio	0.25	0.79	1.46	2.25	4.13	6.52	9.60	14.25
	Desviación estándar	0.12	0.38	0.63	0.77	0.83	0.85	1.45	3.95
4	Coeficiente de variación (Cv)	0.50	0.48	0.43	0.34	0.20	0.13	0.15	0.28
-	Promedio de Cv				0	.32			

Fuente: Elaboración propia.

Curvas de regionalización de caudales máximos para la región hidrológica VI del Pacífico del Perú

Una vez definidos los grupos homogéneos se determinaron las curvas de regionalización de caudales máximos en función de la relación del caudal máximo entre el área de sub cuenca y/o cuenca para cada período de retorno obteniéndose las figuras 22, 23, 24 y 25 con las ecuaciones 2, 3, 4 y 5 de mejor ajuste del tipo potencial superando la muy buena confiabilidad y certeza del 90.00%, es decir el grupo 1 tuvo una certeza de 99.53%, el grupo 2 con 98.40%, el grupo 3 con 91.53% y el grupo 4 tuvo 97.31%.

También a manera de resumen se muestran las curvas obtenidas (ver figura 26) por medio del análisis regional de caudales máximos para los cuatros grupos conformados pertenecientes a la región hidrológica VI del Pacífico del Perú.



FIGURA 22: **CURVA DE MEJOR CORRELACIÓN DEL TIPO POTENCIAL PARA EL GRUPO 1.**

FUENTE: ELABORACIÓN PROPIA.

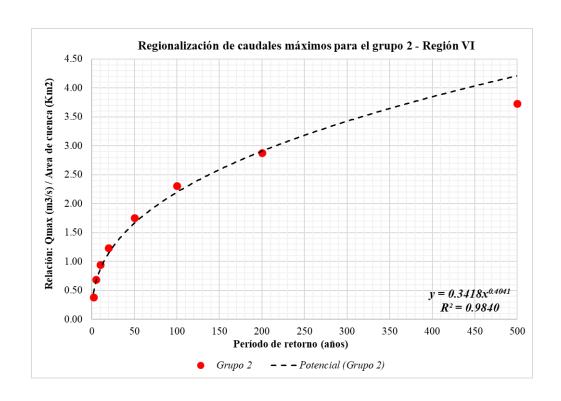


FIGURA 23: **CURVA DE MEJOR CORRELACIÓN DEL TIPO POTENCIAL PARA EL GRUPO 2.**

FUENTE: ELABORACIÓN PROPIA.

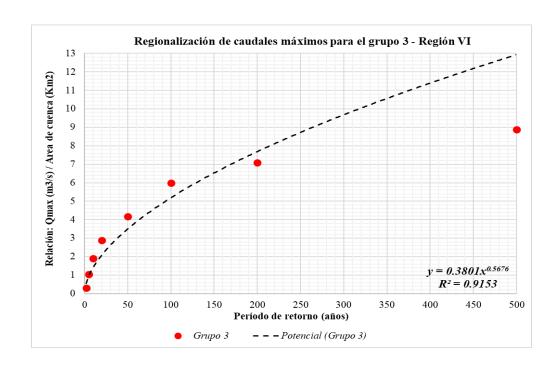


FIGURA 24: **Curva de mejor correlación del tipo potencial para el grupo 3.**

FUENTE: ELABORACIÓN PROPIA.

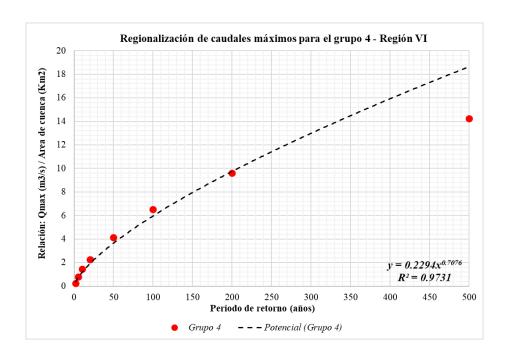


FIGURA 25: **CURVA DE MEJOR CORRELACIÓN DEL TIPO POTENCIAL PARA EL GRUPO 4.**

FUENTE: ELABORACIÓN PROPIA.

$$\frac{Q \max}{\text{Área de cuenca}} = 0.1633 * T^{0.2998}$$

ECUACIÓN 2: FÓRMULA REGIONAL PARA EL GRUPO 1 – REGIÓN HIDROLÓGICA VI DEL PACÍFICO DEL PERÚ

$$\frac{Q\ max}{\acute{A}rea\ de\ cuenca} = 0.3418*T^{0.4041}$$

ECUACIÓN 3: FÓRMULA REGIONAL PARA EL GRUPO 2 – REGIÓN HIDROLÓGICA VI DEL PACÍFICO DEL PERÚ

$$\frac{Q \ max}{\acute{A}rea \ de \ cuenca} = 0.3801 * T^{0.5676}$$

ECUACIÓN 4: FÓRMULA REGIONAL PARA EL GRUPO 3 – REGIÓN HIDROLÓGICA VI DEL PACÍFICO DEL PERÚ

$$\frac{Q\ max}{\acute{A}rea\ de\ cuenca} = 0.2294*T^{0.7076}$$

ECUACIÓN 5: FÓRMULA REGIONAL PARA EL GRUPO 4 – REGIÓN HIDROLÓGICA VI DEL PACÍFICO DEL PERÚ

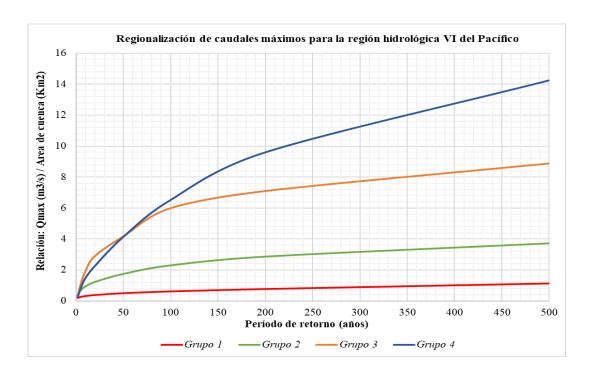


FIGURA 26: CURVAS DE REGIONALIZACIÓN DE CAUDALES PARA LA REGIÓN

HIDROLÓGICA VI.

FUENTE: ELABORACIÓN PROPIA.

Con respecto a las cuencas que no presentan ninguna información ó que su información preliminar se descartó por tener poca longitud de registro ya que el criterio mínimo fue de 10 años, se creyó conveniente estimar sus caudales máximos a partir de las ecuaciones de correlación potencial de mejor ajuste obtenidas con la presente tesis considerando la cercanía a alguna cuenca que si se encuentra dentro de los grupos homogéneos que se han determinado con el análisis regional de caudales máximos.

Cabe indicar que las cuencas se agruparon de la siguiente manera: Intercuenca 137779 con la cuenca Cascajal (grupo 2) y las cuencas Fernández, intercuenca 13933, Quebrada Seca, intercuenca 13935 y la intercuenca 1391 se homogenizaron con la cuenca Pariñas (grupo 3). Los resultados se muestran en la tabla 70.

TABLA 70:

CAUDALES MÁXIMOS OBTENIDOS POR MEDIO DE LA APLICACIÓN DE LAS ECUACIONES DE CORRELACIÓN POTENCIAL DE MEJOR DE AJUSTE PARA LAS CUENCAS QUE NO CUENTAN CON INFORMACIÓN

Cuenca	Área	Cauc	Caudales máximos para diferentes períodos de retorno en años										
Cuenca	(Km²)	2	5	10	20	50	100	200	500				
Intercuenca 137779	2633.40	1191.06	1724.82	2282.38	3020.20	4373.64	5787.47	7658.35	11090.28				
Fernández	740.27	417.02	701.49	1039.65	1540.82	2591.93	3841.39	5693.15	9576.87				
Intercuenca 13933	6.07	3.42	5.75	8.52	12.63	21.25	31.50	46.68	78.53				
Quebrada Seca	483.88	272.58	458.53	679.57	1007.16	1694.22	2510.94	3721.35	6259.95				
Intercuenca 13935	447.87	252.30	424.41	629.00	932.21	1568.14	2324.07	3444.41	5794.09				
Intercuenca 1391	791.40	445.82	749.94	1111.46	1647.25	2770.95	4106.71	6086.37	10238.33				

Fuente: Elaboración propia.

3.1.4. Determinar los umbrales de inundación para las cuencas y sub cuencas que pertenecen a la región hidrológica VI del Pacífico del Perú.

Para determinar los umbrales de inundación se consideró los niveles de alerta de nuestro país establecidos por el Servicio Nacional de Hidrología y Meteorología y específicamente en la región hidrológica VI del Pacífico presenta 13 estaciones hidrométricas de las cuales solo 8 estaciones indican los umbrales de inundación ante posibles inundaciones y desbordes de río (ver figura 27). Los umbrales según cada nivel de alerta se muestran en la tabla 71.

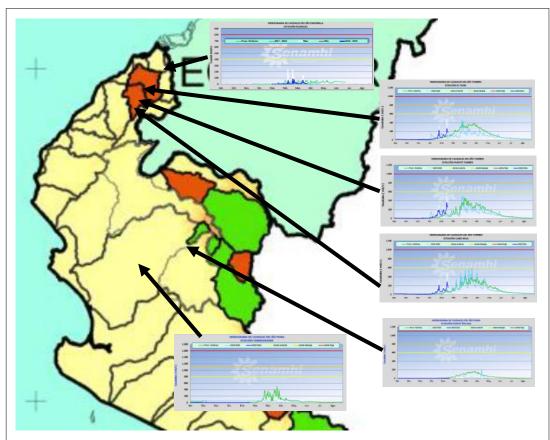


FIGURA 27: ZONAS MONITOREADAS (COLOR ROJO Y VERDE) POR EL SENAMHI. FUENTE: MONTESINOS (2018).

Tabla 71:

Umbrales de inundación con los niveles de alerta para las estaciones hidrométricas monitoreadas por el SENAMHI en la región hidrológica VI del Pacífico

Cuenca	Estación hidrométrica	Niveles de alerta	Umbral de inundación (caudal máximo) en m3/s
	Duanta -	Amarilla	600.00
	Puente - Tumbes -	Naranja	800.00
	Tullibes	Roja	1000.00
		Amarilla	600.00
Tumbes	El Tigre	Naranja	800.00
	_	Roja	1000.00
		Amarilla	600.00
	Cabo Inga	Naranja	800.00
	_	Roja	1000.00
Zarumilla	Palmales (La	Amarilla	400.00
Zarumilia	Palma)	Naranja	600.00
-			

		Roja	800.00
	_	Amarilla	600.00
Chira	El Ciruelo	Naranja	800.00
		Roja	1000.00
	Duanta -	Amarilla	600.00
	Puente Ñacara Puente	Naranja	800.00
		Roja	1100.00
		Amarilla	1100.00
Piura	Sánchez	Naranja	1600.00
	Cerro	Roja	2000.00
		Amarilla	800.00
	Tambogrande	Naranja	1100.00
		Roja	1600.00

Fuente: Datos recopilados del SENAMHI actualizados a enero del 2021.

3.1.4.1. Análisis en base al Objetivo Nº. 4.

Una vez conocidos los niveles de alerta que presenta el SENAMHI en base a los umbrales de inundación, se procedió a establecerlos ahora para la región hidrológica VI del Pacífico, considerando cuatro clasificaciones: nivel bajo para las sub cuencas del grupo 1, nivel medio para las subcuencas del grupo 2, nivel alto para las subcuencas del grupo 3 y muy alto para las subcuencas del grupo 4 considerando siempre las alertas del tipo amarilla, naranja y roja, tal y como se detalla en la tabla 72.

TABLA 72:

UMBRALES DE INUNDACIÓN CON LOS NIVELES DE ALERTA ESTABLECIDOS PARA LOS GRUPOS HOMOGÉNEOS DE LA REGIÓN HIDROLÓGICA VI DEL PACÍFICO

N° de grupo	Nivel de clasificación	Nivel de alerta	Umbral de inundación (caudal máximo) en m3/s			
		Amarilla	400.00			
1	Bajo	Naranja	600.00			
	•	Roja	800.00			
	Amarilla		600.00			
2	Medio	Naranja	800.00			
		Roja	1000.00			
		Amarilla	800.00			
3	Alto	Naranja	1100.00			
		Roja	1600.00			
4	Muy alto	Amarilla	1100.00			

Naranja	1600.00
 Roja	2000.00

FUENTE: ELABORACIÓN PROPIA.

Finalmente se muestran los umbrales de inundación para cada una de las cuencas de la región VI del Pacífico (ver tabla 73 con sus respectivos niveles de alerta establecidos previamente en la tabla 72).

TABLA 73:

Umbrales de inundación para las cuencas de la región hidrológica VI del Pacífico

N°			Área	Caudales máximos para diferentes períodos de retorno en años									
orde n	Cuenca	Estación	(Km²)	2	5	10	20	50	100	200	500		
		Piñas	1064.30	1304.5 0	2117.4	2576.70	2845.40	3417.30	3731.00	4349.30	4972.10		
		Zaruma	510.02	447.90	625.80	739.40	834.40	993.30	1099.00	1249.50	1425.00		
		Alamor	1080.25	1759.7 0	2558.4 0	3042.50	3393.20	4030.00	4406.00	5041.10	5730.80		
		Hito Bocana	561.76	254.60	600.20	864.90	1139.40	1522.90	1826.10	2141.90	2574.20		
1	Tumbes	Capitan Hoyle	698.34	3439.8 0	9164.7 0	11474.5 0	11742.4 0	11950.7 0	12706.2 0	12913.8 0	13826.7 0		
		Cabo Inga	429.93	392.60	675.60	869.00	1053.80	1290.30	1466.10	1638.00	1861.50		
		El Tigre	500.29	558.10	1189.2 0	1782.00	2430.40	3085.00	3747.90	4437.10	5375.30		
		Rica Playa	330.44	135.50	425.90	681.10	954.50	1331.90	1627.80	1930.90	2337.90		
		Puerto Pizarro	354.68	99.80	320.60	560.80	879.20	1439.30	1988.90	2663.90	3793.40		
2	Intercuenc a 137779	*NP	2633.40	1191.0 6	1724.8 2	2282.38	3020.20	4373.64	5787.47	7658.35	11090.2 8		
		Cerro de Arena	1971.18	12.20	112.10	416.90	1703.80	7819.90	19537.6 0	19976.6 0	20569.9		
3	Cascajal	Pasabar	985.59	154.90	545.80	892.60	1609.40	2667.90	3679.60	4882.80	6791.10		
	•	Pasaje Sur	394.24	5.40	34.60	79.50	188.60	425.90	715.80	1128.20	1907.30		
-		Virrey	591.35	33.10	222.30	491.60	1111.60	2322.10	3676.20	4333.60	5904.20		
4	Intercuenc a 13779	Bernal	4708.17	16.10	125.9	434.30	1176.90	2695.70	6257.40	14316.8 0	15412.8 0		

5	Intercuenc	La Esperanza	456.64	3.70	32.80	118.50	374.70	1465.50	3684.30	3794.00	4749.60
	a 1379	Paita	456.64	1.90	42.90	152.10	373.00	892.30	1482.30	1577.80	2485.40
0	D	Cherrelique	306.21	246.30	1107.8 0	2259.80	2420.20	2493.40	2540.10	2945.30	3105.20
6	Bocapán	San Lorenzo	297.20	101.50	266.00	404.10	554.10	768.50	941.70	1020.50	1250.10
		Cañaveral	297.20	111.20	530.10	1246.40	2565.80	2609.10	2615.30	2785.20	2966.20
7	Intercuenc a 13939	La Cruz	187.94	86.00	200.20	289.50	382.60	510.80	611.30	714.40	854.10
		Arenillas	74.60	30.60	75.00	95.00	126.20	170.60	279.30	329.40	397.70
		Chacras	74.60	39.60	90.10	110.60	140.20	185.10	294.60	348.10	507.70
8	Zarumilla	El Caucho	74.60	4.00	24.60	57.00	108.40	211.30	433.30	623.60	947.90
		Matapalo	74.60	29.80	68.00	97.60	128.30	170.60	274.60	320.80	383.70
		Papayal	74.60	20.80	57.00	91.30	132.00	324.30	458.50	703.20	1081.80
9	Intercuenc	El Salto	169.85	56.60	167.70	274.70	404.00	705.70	1336.70	2051.90	3560.60
	a 13951	Zarumilla	169.85	35.60	94.20	213.80	367.70	704.50	1010.00	1583.80	1922.60
		Alto Piura	1165.40	295.70	377.10	451.20	538.10	683.70	808.30	934.40	1173.40
		Bajo Piura 1	812.97	300.40	1071.6 0	1995.90	2825.90	4184.00	5532.40	7150.30	9555.90
		Bajo Piura 2	699.93	156.20	257.60	372.30	532.80	845.90	1174.10	1610.00	2421.90
		Bigote	686.51	158.30	184.30	206.30	230.60	270.40	301.80	325.50	383.00
10	Piura	Chusis	800.12	2.00	14.80	44.90	118.60	367.60	787.90	1574.10	2964.50
		Corrales	572.16	196.60	245.70	289.60	340.80	424.90	495.50	566.00	699.40
		Laguna Ramon	800.12	0.30	2.20	7.60	22.70	86.60	221.70	533.00	1525.40
		Medio Alto Piura	508.95	171.20	222.60	270.10	327.00	422.00	504.30	592.50	754.60
		Medio Bajo Piura 1	867.28	170.30	274.30	389.60	547.70	852.20	1168.60	1586.20	2356.40

		Medio Bajo Piura 2	987.15	378.60	540.90	703.90	910.00	1275.30	1618.00	2026.60	2758.70
		Medio Piura	109.58	44.50	60.70	76.30	95.60	129.50	160.10	194.10	258.10
	_	Montegrande	800.12	4.60	37.70	104.60	229.90	522.90	869.80	1350.10	2229.70
	_	San Francisco	383.52	65.20	101.80	141.40	195.20	297.00	400.30	532.40	779.50
	_	San Miguel	800.12	8.10	54.00	135.00	274.60	578.10	917.70	1370.20	2169.70
		Unidad 13784	878.77	129.30	189.90	252.40	334.30	483.70	630.50	816.90	1151.60
		El Ciruelo	4557.42	374.60	1276.4 0	2210.20	3359.00	5205.40	6862.50	8752.80	11629.4 0
11	Chira	Puente Internacional	2535.00	330.50	541.60	664.20	771.70	897.60	985.40	1067.20	1169.30
	-	Paraje Grande	2290.00	252.60	891.40	1671.70	2738.30	4648.80	5177.00	5688.80	5886.60
		Alamor	1490.27	406.00	1301.5 0	2072.30	2881.90	3985.20	6188.40	7772.80	11211.9 0
12	Intercuenc a 13931	El Alto	328.31	5.50	49.30	145.50	336.90	810.30	1391.60	2223.20	2880.30
13	Fernández	*NP	740.27	417.02	701.49	1039.65	1540.82	2591.93	3841.39	5693.15	9576.87
14	Intercuenc a 13933	*NP	6.07	3.42	5.75	8.52	12.63	21.25	31.50	46.68	78.53
15	Quebrada Seca	*NP	483.88	272.58	458.53	679.572	1007.16	1694.22	2510.94	3721.35	6259.95
16	Intercuenc a 13935	*NP	447.87	252.3	424.41	628.999	932.21	1568.14	2324.07	3444.41	5794.09
17	Intercuenc a 1391	*NP	791.4	445.82	749.94	1111.46	1647.25	2770.95	4106.71	6086.37	10238.3
18	Pariñas	Pananga	1704.86	89.80	371.60	750.90	1368.20	2651.90	4127.90	6189.50	10115.1 0

Nota: * El identificador NP indica que no presenta ninguna información de estaciones y/o no cumple con la longitud mínima de 10 años en sus registros históricos.

Fuente: Elaboración propia.

Tal y como se muestra en la tabla 73 los resultados finales de la presente tesis, los valores que no llevan ningún color sea amarillo, naranja y/o rojo no les corresponde ningún umbral de inundación, sin embargo, se recomienda tomar las precauciones del caso a las entidades pertinentes y a la población alejarse de las zonas potenciales ante un probable riesgo de inundación.

3.2. Discusión de resultados

Con respecto a los resultados obtenidos en la presente tesis, se establecieron los umbrales de inundación para todas las cuencas (ver tabla 73), excepto para la cuenca Zarumilla, para la intercuenca 13933 y dos sub cuencas de la cuenca Piura (Bigote y Medio Piura) pues sus valores en cada caso y períodos de retorno no llegan a superar los niveles de alerta correspondientes, esto en concordancia con los umbrales de inundación y niveles de alerta del Servicio Nacional de Hidrología y Meteorología del Perú (SENAMHI) y de manera análoga también se determinaron los niveles de alerta y de clasificación bajo, medio, alto y muy alto para los cuatro grupos homogéneos de la región hidrológica VI del Pacífico del Perú (ver tabla 72), todos estos resultados son compatibles con el estudio realizado por Montesinos (2018) pues hasta el momento de la culminación de la presente investigación no hay más antecedentes de estudio en cuanto a la estimación de umbrales de inundación en las regiones hidrológicas del Perú, ni tampoco de manera específica en la región hidrológica VI del Perú.

De los trabajos previos citados en la presente tesis la mayoría de investigaciones están orientadas a la estimación de riesgo y probabilidad de inundaciones, muy pocas investigaciones versan sobre umbrales de inundación, sin embargo la investigación más relevante y que se adecúa para la contratación de los resultados que se han obtenido es la de Alfieri et al.(2019), pues dicha investigación describe un enfoque novedoso para estimar los umbrales de inundación que mantiene una coherencia estadística con las previsiones a futuro, además utiliza un conjunto de datos vinculados con el pronóstico de una longitud mayor a 10 años de registros históricos para la obtención de umbrales cuyo rango de pronóstico se desarrolló para diferentes períodos de retorno y en función al área de cuenca (ver figura 28 y 29).

Así mismo los resultados de Alfieri et al. (2019) y Montesinos (2018) sustentan lo realizado con la presente tesis de investigación en cuanto a la longitud mínima de registro empleados, la relación caudal – área para establecer

zonas homogéneas y los niveles de alerta para los umbrales de inundación obtenidos.

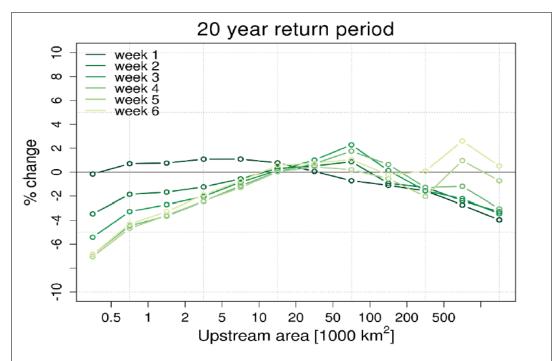


FIGURA 28: **Relación de período de retorno versus área para los porcentajes de cambio de los caudales máximos en un evento de hasta 6 SEMANAS.**

FUENTE: ALFIERI ET AL. (2019).

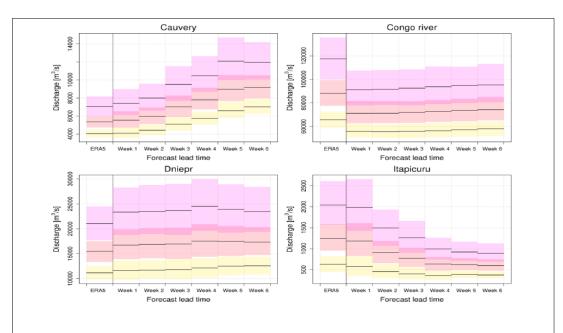


FIGURA 29: **Umbrales de inundación para cuatro ríos con niveles de alerta de**

COLOR AMARILLO PARA 2 AÑOS, NARANJA PARA 5 AÑOS Y MORADO PARA 20 AÑOS.

FUENTE: ALFIERI ET AL. (2019).

3.3. Aporte práctico

El aporte de la presente tesis estuvo orientado a la estimación de los umbrales de inundación para los períodos de retorno de 2, 5, 10, 20, 50, 100, 200 y 500 años, determinación de los niveles de clasificación, niveles de alerta y las curvas regionales para los grupos homogéneos de una región hidrológica del Pacífico del Perú, sin embargo se cree adecuada la aplicación de la presente investigación para todas las regiones hidrológicas de al menos 10 años como mínimo de registros históricos en sus estaciones meteorológicas, climáticas, pluviométricas e hidrométricas y no es recomendable la completación y/o corrección de datos debido a que esto afectaría considerablemente la estimación de los umbrales de inundación de las respectivas zonas de estudio.

IV. Conclusiones y Recomendaciones

4.1. Conclusiones

Se seleccionaron un total de 18 cuencas hidrográficas y 78 sub cuencas que pertenecen a la región hidrológica VI del Pacífico del Perú, sin embargo para el análisis de caudales máximos se creyó conveniente analizar a las sub cuencas como elementos hidrológicos lluvia — caudal, es decir cada cuenca tuvo estaciones meteorológicas, climáticas y/o pluviométricas siendo en total 70, de las cuales se descartaron 22 que no cumplieron con el criterio de longitud de registro mínimo de 10 años, finalmente se emplearon 46 estaciones del tipo meteorológicas, climáticas y/o pluviométricas para el respectivo análisis de las distribuciones teóricas de mejor ajuste para cada período de retorno, generación de hietogramas de bloques alternos y modelamiento hidrológico.

Se obtuvieron un total 10 estaciones hidrométricas con registros de caudales máximos anuales que pertenecen a la región hidrológica VI del Pacífico del Perú, pero una estación no cumple con la longitud mínima de 10 años, con lo que se concluye que sólo se emplearon 9 estaciones hidrométricas para el respectivo análisis de las distribuciones teóricas de mejor ajuste para cada período de retorno.

En ese sentido se aplicó el modelamiento hidrológico a cada una de las cuencas que disponen datos de al menos una estación del tipo pluviométrica, climática y/o meteorológica que permitió simular el proceso lluvia – caudal, esto con la finalidad de obtener los caudales máximos para los diferentes períodos de retorno y por ende los umbrales de inundación.

Se establecieron las zonas homogéneas de la región hidrológica VI del Pacífico del Perú por medio del análisis regional de caudales basado en la relación caudal - área para los diferentes períodos de retorno, concluyéndose en 4 grupos homogéneos y 4 niveles de clasificación para las alertas amarilla, naranja y roja.

Se determinaron los umbrales de inundación para las cuencas y sub cuencas empleando para ello el análisis regional de caudales por medio de la conformación de grupos homogéneos cuyos coeficientes de variación son menores a 1.00, además los grupos son válidos para la región hidrológica VI del Pacífico del Perú y se concluye en que el método del análisis regional es aplicable para períodos de retorno desde 2 años hasta 500 años.

4.2. Recomendaciones

Ampliar el monitoreo de caudales, no sólo en las cuencas y sub cuencas de la región hidrológica VI del Pacífico, sino en todo el Perú que permitan la validación de los umbrales de inundación para los diferentes períodos de retorno, pues la mayoría de cuencas y sub cuencas en nuestro país no presentan ninguna estación hidrométrica.

Emplear otros procesos de transferencia para el modelamiento hidrológico del tipo lluvia – caudal, tales como infiltración, evapotranspiración y humedad del suelo que validen los resultados obtenidos con esta tesis, pues los caudales al transitar a lo largo de un río en una cuenca hidrográfica intervienen las diferentes etapas del ciclo hidrológico provocando cambios a corto plazo y que pueden subestimar el umbral de inundación.

Evaluar y establecer otras relaciones de zonas homogéneas como la estudiada en la presente tesis para diferentes períodos de retorno en base a un sustento estadístico que permitan cuantificar adecuadamente los umbrales de inundación.

Ampliar el análisis regional de caudales máximos no sólo para la estimación de umbrales de inundación, sino también en los estudios de peligro y riesgo de inundaciones, socavación de puentes, desborde de embalses y demás obras civiles que se ven afectadas por los fenómenos naturales.

REFERENCIAS

- Alfaro, L. (2014). Estimación de umbrales de precipitaciones extremas para la emisión de avisos meteorológicos. Nota técnica 001, Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), Lima. Obtenido de https://hdl.handle.net/20.500.12542/345
- Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., De Roo, A., Salamon, P. W., & Feyen, L. (Febrero de 2017). Global projections of river flood risk in a warmer world. *Earth's Future*, *5*(2), 171-182. doi:10.1002/2016EF000485
- Alfieri, L., Zsoter, E., Harrigan, S., Aga, F., Lavaysse, C., Prudhomme, C., & Salamon,
 P. (Julio de 2019). Range-dependent thresholds for global flood early warning.
 Journal of Hydrology X, 4, 1-10. doi:10.1016/j.hydroa.2019.100034
- ANA. (2014). Tratamiento del cauce del río Piura para el control de inundaciones. Estudio, Autoridad Nacional del Agua, Dirección de Estudios de Proyectos Hidráulicos Multisectoriales, Lima. Obtenido de https://hdl.handle.net/20.500.12543/2254
- ANA. (2019). Consejo de Recursos Hídricos de cuenca Tumbes. Recuperado el Noviembre de 2020, de https://www.ana.gob.pe/2019/consejo-de-cuenca/tumbes/Hidrograf%c3%ada
- ANDINA. (14 de Marzo de 2019). *Agencia peruana de noticias*. Obtenido de https://andina.pe/agencia/noticia-rio-tumbes-supero-nivel-critico-inundacion-y-afecto-cultivos-745465.aspx
- ANDINA. (24 de Junio de 2019). *Agencia peruana de noticias*. Obtenido de https://andina.pe/agencia/noticia-lambayeque-poblacion-formula-propuestas-para-evitar-inundaciones-756511.aspx
- Andrade, L., & Ríos, C. (2014). Variabilidad climática y caudales mínimos en los andes ecuatorianos. *Revista Politécnica*, *33*(1). doi:10.33333/RP.V33I1.89
- Arriola, G., Villegas, L., & Sotomayor, G. (2020). Análisis de las curvas de infiltración para determinar caudales máximos en zonas de escasa información ante eventos extremos. *Revista científica Ingeniería: Ciencia, Tecnología e Innovación*, 7(1), 15. doi:10.26495/icti.v7i1.1352
- Bonasia, R., Areu-Rangel, O., Tolentino, D., Mendoza-Sanchez, I., González-Cao, J., & Klapp, J. (2018). Flooding hazard assessment at Tulancingo (Hidalgo, Mexico). *Journal Flood Risk Management*, 11(2), S1116–S1124. doi:10.1111/jfr3.12312
- Briceño, K., & Yamit, E. (2018). *Investigación de la regionalización de caudales máximos en las cuencas de la provincia Gualivá por medio del método estadístico índice de creciente*. Tesis de pregrado, Universidad Católica de Colombia, Facultad de Ingeniería, Bogotá. Recuperado el 22 de Octubre de 2020, de https://repository.ucatolica.edu.co/bitstream/10983/23861/1/1.%20TRABAJO% 20DE%20GRADO.pdf

- Callañaupa, O. (2019). Medición de caudales máximos en los ríos Chancay y Piura y, su influencia en el dimensionamiento de estructuras hidráulicas. Tesis para optar el título profesional de Ingeniero Civil, Universidad Peruana de Ciencias Aplicadas, Programa Académico de Ingeniería Civil, Lima. Obtenido de http://hdl.handle.net/10757/628200
- Carhuatocto, M. (2019). Análisis de la variabilidad climática de las estaciones pluviométricas e hidrométricas de la cuenca del río Chancay al 2017. Tesis de pregrado, Universidad Señor de Sipán, Facultad de Ingeniería, Arquitectura y Urbanismo, Pimentel. Obtenido de http://repositorio.uss.edu.pe/handle/uss/6154
- Chen, A., Giese, M., & Chen, D. (2020). Flood impact on Mainland Southeast Asia between 1985 and 2018 The role of tropical cyclones. *Journal of Flood Risk Management*, 13(2), 1-19. doi:10.1111/jfr3.12598
- Díaz, R. (2013). Estudio de determinación de umbrales de temperatura y precipitación pluvial para las cuencas de los ríos Coata e Ilave-región Puno. Estudio técnico desarrollado en el marco del Programa Presupuestal de Reducción de la Vulnerabilidad y Atención de Emergencias por desastres PREVAED, Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), Dirección Regional de Puno SENAMHI y Dirección General de Meteorología, Puno. Recuperado el Noviembre de 2020, de https://hdl.handle.net/20.500.12542/449
- Elizalde, K., Escobar, F., & Puño, N. (Abril de 2016). Control de las inundaciones en el valle del Río Tumbes mediante la habilitación de un cauce de alivio Simulación hidráulica. *Manglar*, 13(1), 41-52. doi:10.17268/manglar.2016.006
- England, J., Cohn, T., Faber, B., Stedinger, J., Thomas, W., Veilleux, A., . . . Mason, R. (2018). *Guidelines for determining flood flow frequency—Bulletin 17C (ver. 1.1, May 2019)* (Book 4, Hydrologic Analysis and Interpretation ed., Vol. Chapter 5). Virginia, Estados Unidos. Obtenido de https://pubs.usgs.gov/tm/04/b05/tm4b5.pdf
- Fuentes, J. (2018). Caudal específico y su aplicación en el análisis regional de series máximas. *Revista de la Escuela de Estudios de Postgrado*, 9(1), 26-29. Obtenido de https://core.ac.uk/download/pdf/228879602.pdf
- Guachamín, W., & García, F. (2019). Determinación de ecuaciones para el cálculo de intensidades máximas de precipitación. Actualización del estudio de lluvias intensas Quito - Ecuador 2016, Instituto Nacional de Meteorología e Hidrología Dirección de Investigación (INAMHI), Estudios, Desarrollo Hidrometeorológico, Ouito. Recuperado el Noviembre de 2020, http://www.serviciometeorologico.gob.ec/Publicaciones/Hidrologia/ESTUDIO_ DE_INTENSIDADES_V_FINAL.pdf
- Kvocka, D., Ahmadian, R., & Falconer, R. (2017). Flood inundation modelling of flash floods in steep river basins and catchments. *Water*, *9*(9), 705. doi:10.3390/W9090705

- Kvocka, D., Ahmadian, R., & Falconer, R. (2018). Predicting flood hazard indices in torrential or flashy river basins and catchments. *Water Resources Management*, 32(7), 2335-2352. doi:https://doi.org/10.1007/s11269-018-1932-6
- Lujano, E. (2019). Análisis regional de frecuencia para la estimación de caudales máximos en la cuenca amazónica del Perú. Tesis doctoral, Universidad Nacional del Altiplano, Escuela de Posgrado, Puno. Obtenido de http://repositorio.unap.edu.pe/handle/UNAP/12328
- Meléndez, J. (2019). La identificación de las cabeceras de cuencas hidrográficas: métodos y aplicaciones. *Investigaciones sociales*, 22(40), 111-120. doi:10.15381/is.v22i40.15890
- Milanesi, L., Pilotti, M., & Ranzi, R. (2015). A conceptual model of people's vulnerability to floods. *Water Resources Research*, 51(1), 182-197. doi:10.1002/2014WR016172
- Montesinos, C. (2018). Estimación de umbrales de inundación en la región hidrográfica del Pacífico. Estudio hidrológico, Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), Dirección de Hidrología (DHI), Lima. Obtenido de https://hdl.handle.net/20.500.12542/241
- MTC. (2014). *Manual de Carreteras: Hidrología, Hidráulica y Drenaje*. Manual, Ministerio de Transportes y Comunicaciones (MTC), Lima. Obtenido de https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/manuales/MANUALES%20DE%20CARRETERAS%202019/MC-07-11%20Hidrolog%C3%ADa,%20Hidr%C3%A1ulica%20y%20Drenaje.pdf
- Musolino, G., Ahmadian, R., Xia, J., & Falconer, R. (2020). Mapping the danger to life in flash flood events adopting a mechanics based methodology and planning evacuation routes. *Journal of Flood Risk Management*, 1-19. doi:https://doi.org/10.1111/jfr3.12627
- Napolitano, E., Marchesini, I., Salvati, P., Donnini, M., Bianchi, C., & Guzzetti, F. (Febrero de 2018). LAND-deFeND e An innovative database structure for landslides and floods and their consequences. *Journal of Environmental Management*, 207, 203-218. doi:10.1016/j.jenvman.2017.11.022
- OMM. (2011). World Meteorological Organization. Recuperado el 20 de Octubre de 2020, de https://library.wmo.int/?lvl=notice_display&id=20099#.X48mCdBKjIU
- Piacentini, T., Carabella, C., Boccabella, F., Ferrante, S., Gregori, C., Mancinelli, V., . . . Miccadei, E. (Agosto de 2020). Geomorphology-based analysis of flood critical areas in small hilly catchments for civil protection purposes and early warning systems: The case of the Feltrino stream and the Lanciano urban area (Abruzzo, central Italy). *Water*, 12(8). doi:10.3390/w12082228
- Portella, C., & Villafuerte, C. (2020). Evaluación del riesgo de inundación del río Cascajal en el entorno del caserío de Sincape (distrito de Olmos) y análisis de alternativas de solución. Tesis de pregrado, Universidad Señor de Sipán, Facultad

- de Ingeniería, Arquitectura y Urbanismo, Pimentel. Obtenido de http://repositorio.uss.edu.pe/handle/uss/6954
- Robinson, P., & Wounter, W. (2019). Determinants of probability neglect and risk attitudes for disaster risk: An online experimental study of flood insurance demand among homeowners. *Risk Analysis*, 39(11), 2514-2527. doi:10.1111/risa.13361
- RPP. (29 de Diciembre de 2019). *RPP Noticias*. Obtenido de https://rpp.pe/peru/actualidad/piura-lluvia-de-regular-intensidad-genera-inundaciones-en-varios-sectores-video-noticia-1236828
- Sabino, E., Felipe, O., & Lavado, W. (2017). Atlas de erosión de suelos por regiones hidrológicas del Perú. Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). Lima: Dirección de Hidrología. Recuperado el Diciembre de 2020, de https://hdl.handle.net/20.500.12542/261
- Sayama, T., Matsumoto, K., Kuwano, Y., & Takara, K. (2019). Application of backpack-mounted mobile mapping system and rainfall—runoff—inundation model for flash flood analysis. *Water*, 11(5), 963. doi:10.3390/w11050963
- Senamhi, (2017). Manual de Hidrología, Hidráulica y Drenaje
- Speckhann, G., Borges, P., Fabris, R., Josina, J., & Altamirano, J. (2018). Flood hazard mapping in Southern Brazil: a combination of flow frequency analysis and the HAND model. *Hydrological Sciences Journal*, 63(1), 87-100. doi:10.1080/02626667.2017.1409896
- Ticse, J., & Moya, A. (2019). Dinámica de lluvias extremas en el centro y norte del Perú, vertiente del Pacífico para febrero y marzo de 2017. Instituto Geofísico del Perú (IGP), Lima. Obtenido de http://hdl.handle.net/20.500.12816/4756
- Vargas, A. (2018). Mapa de caudales máximos en cuencas de la zona centro de la Vertiente del Pacífico (Subregión hidrológica 5a4 IILA). Tesis para optar el grado de Magíster en Ingenier´1a Civil, Pontificia Universidad Católica del Perú, Escuela de Posgrado, Lima. Obtenido de http://hdl.handle.net/20.500.12404/15296
- Varona, M. (2018). *Modelo hidrológico de la cuenca Catamayo-Chira hasta el ingreso al reservorio Poechos usando Hec-Hms*. Tesis para optar el título de Ingeniero Civil, Universidad de Piura, Programa Académico de Ingeniería Civil, Piura. Obtenido de https://hdl.handle.net/11042/3629
- Wahid, A., Madden, M., Khalaf, F., & Fathy, I. (Enero de 2016). Geospatial analysis for the determination of hydro-morphological characteristics and assessment of flash flood potentiality in arid coastal plains: a case in Southwestern Sinai, Egypt. Earth Sciences Research Journal, 20(1), E1-E9. doi:10.15446/esrj.v20n1.49624
- Waylen, K., Holstead, K., Colley, K., & Hopkins, J. (2018). Challenges to enabling and implementing natural flood. *Journal Flood Risk Management*, 11(2), S1078-S1089. doi:10.1111/jfr3.12301

- Wieland, M., & Martinis, S. (2019). A modular processing chain for automated flood monitoring from multi-spectral satellite data. *Remote Sensing*, 11(19). doi:10.3390/rs11192330
- Zubieta, R., Saavedra, M., Espinoza, J., Ronchail, J., Sulca, J., Drapeau, G., & Martín, J. (2020). *Concentración de lluvia diaria y su asociación con eventos hidroclimáticos extremos en la cuenca amazónica*. Boletín científico El Niño, Instituto Geofísico del Perú (IGP), Lima. Obtenido de http://hdl.handle.net/20.500.12816/4865