

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

TESIS

"DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autor:

Bach. Ramos Fernández, Christian Silvestre

Asesor:

Dra. Sotomayor Nunura, Gioconda del Socorro

Línea de Investigación:

Desarrollo de Nuevos Materiales Materiales Compuestos

Pimentel – Perú

2019

TESIS

DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ

Dr. Coronado Zuloeta Omar Presidente de jurado	
Presidente de jurado Msc. Ing. Ballena del Río Pedro Manue	Dra. Sotomayor Nunura Gioconda del Soco. Asesor
Msc. Ing. Ballena del Río Pedro Manue	
	Presidente de jurado
	Msc. Ing. Ballena del Río Pedro Manuel Secretario de jurado

DEDICATORIA

Esta tesis va dedicada a mis queridos padres, José Ramos y Dalila Fernández; por darme la vida, esforzarse diariamente para lograr realizarme personal y profesionalmente y ser ejemplos de superación.

A mis hermanos, Alain Ramos y Nadia Ramos, por ser de alguna manera mi motivación para alcanzar mis metas.

A la memoria de mis abuelitos, Silvestre Ramos, Oferlinda Vásquez y Clotilde Idrogo, quienes fueron ejemplos de vida y familia. Y de manera especial a mi abuelito Grimaniel Fernández para que aún en vida pueda sentirse orgulloso de mis logros.

A mis tías, Mavila Fernández, Armandina Fernández, Norma Ramos y Olga Ramos, por el gran cariño y consideración que tienen hacia mi persona.

AGRADECIMIENTO

A Dios por ser mi fortaleza y guía en todas las etapas de mi vida, y sobre todo por darme una hermosa familia.

A mis padres, por inculcarme valores, brindarme ayuda moral y económica y en especial ser el motivo por el cual seguir adelante frente a los obstáculos que se puedan presentar en el trayecto de mi vida.

A mis familiares y amigos, que de alguna u otra manera contribuyeron con el desarrollo de mi investigación.

Al Dr. Omar Coronado Zuloeta, a los técnicos Wilson Olaya Aguilar y Carlos Orellana, y a la Dra. Ana María Guerrero Millones por los conocimientos otorgados durante la realización de esta investigación.

DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ MORTAR DESIGN USING ASHES OF RICE HUSKS

RESUMEN

Christian Silvestre Ramos Fernández¹

El arroz es considerado un alimento básico en muchas culturas culinarias, por lo que a nivel mundial abundan residuos de su cáscara; debido a esta problemática la presente investigación se centra en el aprovechamiento de este material incinerado, empleando porcentajes de cenizas de cáscara de arroz para mejorar las propiedades físico – mecánicas y determinar el mejor comportamiento del mortero modificado para emplearse en albañilería y revoques.

La finalidad de esta investigación experimental y tecnológica está orientada a la fabricación de 525 muestras de morteros patrón (cemento, arena y agua potable), adicionado y sustituido con 5%, 10% y 15% de cenizas de cáscara de arroz respecto al peso del cemento; de las cuales 462 muestras con proporciones de 1:3.5, 1:4, 1:5 y 1:6 se destinaron a la evaluación de las propiedades físicas (mortero en estado fresco) y mecánicas (mortero en estado endurecido) en un periodo de 7, 14 y 28 días; y las muestras restantes se utilizaron para determinar las propiedades mecánicas de la albañilería simple (pilas y muretes) a los 28 días, en donde se utilizó un mortero de 1:4 para el asentado de las unidades de albañilería con juntas de 1.5 cm.

Los resultados obtenidos indican que se alcanzaron mejores resistencias en base al mortero patrón con 10% de sustitución teniendo un ahorro de S/. 0.17 por m² de muro en comparación con el mortero convencional y 5% de adición con cenizas de cáscaras de arroz el cual tiene un gasto mayor por m².

Palabras clave: albañilería, cenizas de cáscaras de arroz, diseño, mortero, propiedades.

MORTAR DESIGN USING ASHES OF RICE HUSKS

¹ Adscrito a la Escuela Académico Profesional de Ingeniería Civil Pregrado, Universidad Señor de Sipán, Pimentel, Perú, email: RFERNANDEZCHRIS@crece.uss.edu.pe

V

ABSTRACT

Christian Silvestre Ramos Fernández²

Rice is considered a staple in many culinary cultures, so at the global level waste abound its shell; due to this problem the present research focuses on the use of this material, using percentages of cremated ashes of rice husk to improve physical properties - mechanical and determine the best behavior of the polymer-modified mortar for use in masonry and plaster.

The purpose of this experimental research and technological is oriented to the manufacture of 525 samples of mortars pattern (cement, sand and water), added and replaced with 5%, 10% and 15% of rice husk ash with respect to the weight of cement; of which 462 samples with proportions of 1:3.5, 1:4, 1:5 and 1:6 went to the evaluation of physical properties (fresh mortar) and mechanical (mortar in hardened state) over a period of 7, 14 and 28 days; and the remaining samples were used to determine the mechanical properties of the simple (batteries and masonry walls) to the 28 days, where we used a 1:4 mortar for the seated of the Masonry units with seals of 1.5 cm.

The results obtained indicate that attained better resistance on the basis of the pattern with 10% mortar of substitution taking a savings of S/. 0.17 per m2 of wall in comparison with the conventional mortar and 5% of addition with ashes of rice husks, which has a higher spending for m2.

Keywords: masonry, ashes of rice hulls, design, mortar, properties.

_

² Assigned to the Professional Academic School of Undergraduate Civil Engineering, Universidad Señor de Sipán, Pimentel, Perú, email: RFERNANDEZCHRIS@crece.uss.edu.pe

ÍNDICE DE CONTENIDO

DEDICATO	ORIA	iii
AGRADEC	IMIENTO	iv
RESUMEN		v
ARSTRAC	Γ	vi
	E CONTENIDO	
I. INTRO	DDUCCIÓN	17
1.1. Re	alidad Problemática	
1.1.1.	A nivel internacional.	
1.1.2.	A nivel nacional.	
1.1.3.	A nivel local.	
	tecedentes de estudio	
1.2.1.	A nivel internacional.	
1.2.2.	A nivel nacional.	
1.2.3.	A nivel local.	
	orías relacionadas al tema	
1.3.1.	Mortero empleando cenizas de cáscaras de arroz	
1.3.2.	Diseño de mortero.	
1.3.3.	Impacto ambiental.	
1.3.4. 1.3.5.	Seguridad y salud ocupacional.	
	Gestión de riesgos y prevención de desastres Estimación de costos.	
1.3.6. 1.3.7.		
1.3.7.	Normativa empleada. Estado de Arte.	
1.3.8. 1.3.9.	Definición de términos.	
	rmulación del Problema	
	stificación	
1.5.1.	Justificación tecnológica.	
1.5.2.	Justificación socio – económica.	
1.5.2.	Justificación ambiental.	
-10.00	pótesis	
	jetivos	
1.7.1.	Objetivo general.	
1.7.2.	Objetivos específicos.	
	FERIAL Y MÉTODO	
11. MAT	TERIAL Y METODO	58
2.1. Ti ₁	oo y diseño de Investigación	59
2.1.1.	Tipo de Investigación.	
2.1.2.	Diseño de Investigación.	
	blación y muestra	
2.2.1.	Población	
2.2.2.	Muestra	
2.2.3.	Muestreo de ensayos.	
	riables, Operacionalización	
2.3.1.	Variable Independiente.	
2.3.2.	Variable Dependiente.	
2.3.3.	Operacionalización.	
	cnicas e instrumentos de recolección de datos, validez y confiabilidad	
2.4.1. 2.4.2.	Técnicas para la recolección de datos.	
	Instrumentos para la recolección de datos	
2.5. Pro 2.5.1.	Diagrama de flujo de procesos.	
2.5.1. 2.5.2.	Diagrama de flujo de procesos. Descripción de procesos.	
4.J.4.	Descripcion de procesos	00

2.6. C	Criterios éticos	105
2.6.1.	Sub Capítulo I: DE LA RELACIÓN CON LA SOCIEDAD.	105
2.6.2.	Sub Capítulo II: DE LA RELACIÓN CON EL PÚBLICO.	
2.6.3.	Sub Capítulo III: DE LA COMPETENCIA Y PERFECCIONAMIENTO PRO)FESIONAL.
2.6.4.	105 Sub Capítulo IV: DE LA PROMOCIÓN Y PUBLICIDAD	105
	Sub Capítulo V: DE LA PROMOCION Y PUBLICIDAD. Sub Capítulo V: DE LA CONCERTACIÓN DE LOS SERVICIOS	
2.6.5.		
2.6.6.	Sub Capítulo VI: DE LA PRESTACIÓN DE SERVICIOS	
2.6.7. 2.6.8.	Sub Capítulo VII: DE LAS RELACIONES CON EL PERSONAL.	
	Sub Capítulo VIII: DE LA RELACIÓN CON LOS COLEGAS Criterios de rigor científico	
2.7. C	•	
2.7.1.	Validez interna.	
2.7.2.	Validez externa	
	Fiabilidad.	
	SULTADOS	
	Resultados en tablas y figuras	
3.1.1.	Composición química de las cenizas de cáscaras de arroz.	
3.1.2.	Ensayos de agregado fino y unidades de albañilería.	
3.1.3.	Diseño de mezcla del mortero.	
3.1.4.	Propiedades físico – mecánicas de la mezcla del mortero patrón y modificado c	
	as de arroz (CCA).	
3.1.5.	Propiedades mecánicas de la albañilería simple	
3.1.6.	Propuesta económica.	
	Discusión de resultados	
3.2.1.	Composición química de las cenizas de cáscaras de arroz.	
3.2.2.	Ensayos del agregado fino y unidades de albañilería.	
3.2.3.	Diseño de mezcla del mortero.	
3.2.4.	Propiedades físico – mecánicas de la mezcla del mortero patrón y modificado c	
	as de arroz (CCA).	
3.2.5.	Propiedades mecánicas de la albañilería simple.	
3.2.6.	Propuesta económica.	
	NCLUSIONES Y RECOMENDACIONES	
4.1. C	Conclusiones	
4.1.1.	Composición química de las cenizas de cáscaras de arroz.	
4.1.2.	Ensayos de agregado fino y unidades de albañilería.	
4.1.3.	Diseño de mezcla del mortero.	
4.1.4.	Propiedades físico - mecánicas de la mezcla del mortero patrón y modificado c	
	as de arroz (CCA).	
4.1.5.	Propiedades mecánicas de la albañilería simple	
4.1.6.	Propuesta económica.	
	Recomendaciones	
4.2.1.	Composición química de las cenizas de cáscaras de arroz.	
4.2.2.	Ensayos de agregado fino y unidades de albañilería.	
4.2.3.	Diseño de mezcla del mortero.	
4.2.4.	Propiedades físico – mecánicas de la mezcla del mortero patrón y modificado c	
	as de arroz (CCA).	
4.2.5.	Propiedades mecánicas de la albañilería simple	
4.2.6.	Propuesta económica.	183
REFEREN	NCIAS	185
Anovos		100

ÍNDICE DE FIGURAS

F igura 1. Horno de fundición del molino "Los Ángeles" de donde se extrajeron las cenizas de cáso erroz	
F igura 2 . Extracción de la Ceniza de cáscaras de arroz en el Molino "Los Ángeles" de Lambayeq	ue, Perú.
Figura 3. Modelo de Weymouth para partículas de interferencia	
Figura 4. Producción y superficie mundiales de arroz en cáscara	
Figura 5. Equipos de protección individual necesarios para realizar ensayos de materiales	
Figura 6. Clasificación de los Principales Peligros según INDECI	
Figura 7. Proceso para la estimación de costos de un proyecto	
Figura 8. Barril con escoria procedente de la fundición.	
Figura 9. Estado final dela escoria molida	
Figura 10. Símbolo para identificar envases de PET	
Figura 11. Proceso de obtención del agregado PET reciclado	
Figura 12. Diagrama de flujo de procesos.	
Figura 13. Cenizas de cáscaras de arroz obtenido directo del horno de fundición	
Figura 14. Cenizas de las cáscaras de arroz después de ser tamizada por la Malla Nº 200	
Figura 15. Descarga de las cenizas de cáscaras de arroz en el recipiente	
Figura 16. Enrasado del material para ser nivelado y posteriormente pesado	
Figura 17. Apisonamiento de las cenizas de cáscaras de arroz utilizando la varilla	
Figura 18. Compactando la capa de cenizas de cáscaras de arroz usando la comba de goma	
Figura 19. Material y equipo utilizado para realizar el ensayo de peso específico de las CCA	
Figura 20. Extracción del aire atrapado en el frasco Le Chatelier	
Figura 21. Baño maría del frasco Le Chatelier y tomando la temperatura para obtener la Lf	
Figura 22. Cenizas de cáscaras de arroz colocado en el horno durante 24h	
Figura 23. Cenizas de cáscaras de arroz extraído del horno después de 24 h	
Figura 24. Análisis granulométrico por las distintas mallas normalizadas	
Figura 25. Saturación del agregado fino durante 24h.	
Figura 26. Muestra del agregado fino saturada superficialmente seca	
Figura 27. Volumen del agregado fino por el método gravimétrico	
Figura 28. Agregado fino seco después de 24 horas de colocado en el horno	
Figura 29. Descarga del agregado fino en el recipiente.	
Figura 30. Enrasado del recipiente.	
Figura 31. Apisonamiento del agregado fino utilizando la varilla	
Figura 32. Compactando la capa del agregado fino usando la comba de goma	
Figura 33. Muestra colocada en el horno durante 24 horas.	
Figura 34. Tomando medidas de las caras del ladrillo utilizando el vernier electrónico	
Figura 35. Colocación de la arena Ottawa en los orificios del ladrillo	
Figura 36. Se pesa la arena retenida en los orificios para poder obtener su densidad	82
Figura 37. Secado de los ladrillos en el horno a 110 °C durante 24 horas	
Figura 38. Ladrillos sumergidos en agua durante 24 horas	
Figura 39. Medición de la superficie de asiento usando el vernier electrónico	
Figura 40. Ensayo de succión de los ladrillos.	
Figura 41. Cortando los ladrillos por la mitad para ser ensayados	
Figura 42. Colocación de capping a los distintos ladrillos a ensayar	
Figura 43. Muestras listas para ser ensayadas en la compresora hidráulica	
Figura 44. Muestra instalada en la máquina de ensayo.	
Figura 45. Materiales a emplear en las dosificaciones del diseño de mezcla del mortero	
Figura 46. Mezcladora de mortero.	
Figura 47. Mezcla de mortero colocada adentro del tronco cónico en la mesa de fluidez	
Figura 48. Mezcla de mortero coloctada ademiro del tronco comico en la mesa de flatalez Figura 48. Mezcla de mortero después de retirar el recipiente tronco cónico	
Figura 49. Tomando las 4 medidas diametrales para determinar la fluidez del mortero	
Figura 50. Peso del recipiente metálico con la muestra para calcular el contenido de aire	
Figura 51. Llenado y compactado del recipiente con mortero.	
Figura 51. Orden del apisonado en el moldeo de los especímenes de ensayo	
-3 a = 1. a : a c : a	

Figura 53.	Elaboración de los especímenes de mortero en los moldes cúbicos	. 96
	Curado de los especímenes para ser ensayados a compresión a los 7,14 y 28 días	
	Resistencia a la compresión de los especímenes de mortero de 50 mm x 50 mm.	
	Compactación de la 1era capa de los especímenes para ser ensayados a flexión	
	Curado de los especímenes para ser ensayados a flexión a los 7,14 y 28 días	
	Resistencia a la flexión de los especímenes de mortero	
	Verificación de nivelación de pilas para el ensayo de adherencia	
	Ensayo de resistencia a la adherencia por flexión de elementos de albañilería	
-	Pilas de albañilería con su capping en ambas caras de sus superficies	
-	Ensayo de resistencia a la compresión de elementos de albañilería	
-	Comportamiento del murete a compresión diagonal	
-	Prensa hidráulica en donde los muretes fueron ensayados	
-	Ensayo de compresión diagonal en muretes de albañilería	
-	Curva granulométrica del agregado fino	
	Resultado en barras del ensayo de variación dimensional (Dispersión máxima)	
-	Resultado en barras del ensayo de porcentaje de área de vacíos	
-	Resultado en barras del ensayo de absorción	
-	Resultado en barras del ensayo de succión.	
-	Resultado en barras del ensayo de resistencia a la compresión f'b	119
-	Resultado en barras del ensayo de fluidez de la dosificación P1 (1:3.5), mortero patrón y	
	con CCA	
-	Resultado en barras del ensayo de fluidez de la dosificación P2 (1:4), mortero patrón y sustitu	
		124
-	Resultado en barras del ensayo de fluidez de la dosificación P2 (1:5), mortero patrón y	
	con CCA	125
-	Resultado en barras del ensayo de fluidez de la dosificación NP (1:6), mortero patrón y	
	con CCA	126
-	Resultado en barras del ensayo de fluidez de la dosificación P1 (1:3.5), mortero patrón y	
	o con CCA.	127
-	Resultado en barras del ensayo de fluidez de la dosificación P2 (1:4), mortero patrón y	120
	o con CCA.	128
	Resultado en barras del ensayo de fluidez de la dosificación P2 (1:5), mortero patrón y	120
	o con CCA.	129
_	Resultado en barras del ensayo de fluidez de la dosificación NP (1:6), mortero patrón y	120
	o con CCA.	130
-	Resultado en barras del ensayo de contenido de aire en la dosificación P1 (1:3.5), mortero	121
	ustituido con CCA	
	Resultado en barras del ensayo de contenido de aire en la dosificación P2 (1:4), mortero patr	
	o con CCA.	
-	Resultado en barras del ensayo de contenido de aire en la dosificación P2 (1:5), mortero patr	
~	o con CCA.	
-	Resultado en barras del ensayo de contenido de aire en la dosificación NP (1:6), mortero patr	
-	o con CCA.	134
0	Resultado en barras del ensayo de contenido de aire en la dosificación P1 (1:3.5), mortero	125
	dicionado con CCA.	
0	Resultado en barras del ensayo de contenido de aire en la dosificación P2 (1:4), mortero patr	
•	do con CCA	
0	Resultado en barras del ensayo de contenido de aire en la dosificación P2 (1:5), mortero patr	
•	do con CCA	
0	Resultado en barras del ensayo de contenido de aire en la dosificación NP (1:6), mortero patr	
•	do con CCA	138
	Resultado en barras del ensayo de peso unitario compactado en la dosificación P1 (1:3.5),	120
	etrón y sustituido con CCA	
0	Resultado en barras del ensayo de peso unitario compactado en la dosificación P2 (1:4), mortantivido con CCA	
	ustituido con CCA	
0	Resultado en barras del ensayo de peso unitario compactado en la dosificación P2 (1:5), mor astituido con CCA.	
Darron V St	ISHIHIAO CON C.C.A	141

Figura 91. Resultado en barras del ensayo de peso unitario compactado en la dosificación NP (1:6),
mortero patrón y sustituido con CCA
Figura 92. Resultado en barras del ensayo de peso unitario compactado en la dosificación P1 (1:3.5),
mortero patrón y adicionado con CCA
Figura 93. Resultado en barras del ensayo de peso unitario compactado en la dosificación P2 (1:4), mortero
patrón y adicionado con CCA
Figura 94. Resultado en barras del ensayo de peso unitario compactado en la dosificación P2 (1:5), mortero
patrón y adicionado con CCA
Figura 95. Resultado en barras del ensayo de peso unitario compactado en la dosificación NP (1:6),
mortero patrón y adicionado con CCA
Figura 96. Resistencia a la compresión del mortero patrón y sustituido con CCA.: Dosificación P1 (1:3.5).
Figura 97. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P1 (1:3.5),
mortero patrón y sustituido con CCA
Figura 98. Resistencia a la compresión del mortero patrón y sustituido con CCA.: Dosificación P2 (1:4). 149
Figura 99. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P2 (1:4),
mortero patrón y sustituido con CCA
Figura 100. Resistencia a la compresión del mortero patrón y sustituido con CCA.: Dosificación P2 (1:5).
Figura 101. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P2 (1:5),
mortero patrón y sustituido con CCA
Figura 102. Resistencia a la compresión del mortero patrón y adicionado con CCA.: Dosificación P1
(1:3.5)
Figura 103. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P1 (1:3.5),
mortero patrón y adicionado con CCA
Figura 104. Resistencia a la compresión del mortero patrón y adicionado con CCA.: Dosificación P2 (1:4).
Figura 105. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P2 (1:4),
mortero patrón y adicionado con CCA
Figura 106. Resistencia a la compresión del mortero patrón y adicionado con CCA.: Dosificación P2 (1:5).
Figura 107. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P2 (1:5),
mortero patrón y adicionado con CCA
Figura 108. Resistencia a la flexión del mortero patrón y sustituido con CCA.: Dosificación P1 (1:3.5) 156
Figura 109. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P1 (1:3.5), mortero
patrón y sustituido con CCA
Figura 110. Resistencia a la flexión del mortero patrón y sustituido con CCA.: Dosificación P2 (1:4) 158
Figura 111. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P2 (1:4), mortero
patrón y sustituido con CCA
Figura 112. Resistencia a la flexión del mortero patrón y sustituido con CCA.: Dosificación P2 (1:5) 159
Figura 113. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P2 (1:5), mortero
patrón y sustituido con CCA
Figura 114. Resistencia a la flexión del mortero patrón y adicionado con CCA.: Dosificación P1 (1:3.5). 161
Figura 115. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P1 (1:3.5), mortero
patrón y adicionado con CCA
Figura 116. Resistencia a la flexión del mortero patrón y adicionado con CCA.: Dosificación P2 (1:4) 162
Figura 117. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P2 (1:4), mortero
patrón y adicionado con CCA
Figura 118. Resistencia a la flexión del mortero patrón y adicionado con CCA.: Dosificación P2 (1:5) 164
Figura 119. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P2 (1:5), mortero
patrón y adicionado con CCA
Figura 120. Resultado en barras del ensayo de adherencia del mortero – ladrillo arcilla en la dosificación
P2 (1:4), mortero patrón y sustituido con CCA
Figura 121. Resultado en barras del ensayo de adherencia del mortero – ladrillo arcilla en la dosificación
P2 (1:4), mortero patrón y adicionado con CCA
Figura 122. Resultado en barras del ensayo de resistencia a la compresión en pilas de albañilería en la
dosificación P2 (1:4), mortero patrón y sustituido con CCA

Figura 123. Resultado en barras del ensayo de resistencia a la compresión en pilas de albañilería en la	
dosificación P2 (1:4), mortero patrón y adicionado con CCA	168
Figura 124. Resultado en barras del ensayo de resistencia a la compresión diagonal en muretes de	
albañilería en la dosificación P2 (1:4), mortero patrón y sustituido con CCA	170
Figura 125. Resultado en barras del ensayo de resistencia a la compresión diagonal en muretes de	
albañilería en la dosificación P2 (1:4), mortero patrón y adicionado con CCA	171

ÍNDICE DE TABLAS

Tabla 1 Regiones con mayor producción en el 2016.	
Tabla 2 Perú- Principales regiones productoras de arroz en cáscara 2016	22
Tabla 3 Composición mineral de ceniza en la cascarilla de arroz.	
Tabla 4 Características físicas de la cáscara de arroz	29
Tabla 5 Proceso de los Morteros.	
Tabla 6 Granulometría de la arena gruesa	33
Tabla 7 Clase de unidad de albañilería para fines estructurales	
Tabla 8 Limitaciones en el uso de la unidad de albañilería para fines estructurales	
Tabla 9 Número de muestras a ensayar en mortero en estado fresco	
Tabla 10 Número de muestras a ensayar en mortero en estado endurecido	
Tabla 11 Variable independiente.	
Tabla 12 Variable dependiente.	
Tabla 13 Guía de Normas Técnicas utilizas en la presente investigación.	
Tabla 14. Composición química de las cenizas de cáscaras de arroz.	
Tabla 15. Comparación de la composición química de las cenizas de cáscaras de arroz con el ceme	
Pórtland Tipo I – Pacasmayo	
Tabla 16 Peso específico de las cenizas de cáscaras de arroz	
Tabla 17 Peso unitario suelto de las cenizas de cáscaras de arroz.	
Tabla 18 Peso unitario compactado de las cenizas de cáscaras de arroz.	
Tabla 19 Contenido de humedad de las cenizas de cáscaras de arroz.	
Tabla 20 Conglomerado de resultados de las cenizas de cáscaras de arroz.	
Tabla 21 Granulometría del agregado fino por tamizado.	
Tabla 22 Peso específico y absorción del agregado fino.	
Tabla 23 Peso unitario suelto del agregado fino.	
Tabla 24 Peso unitario compactado del agregado fino.	
Tabla 25 Contenido de humedad del agregado fino.	
Tabla 26 Conglomerado de resultados del agregado fino.	
Tabla 27 Resumen de la variabilidad dimensional para determinar el Tipo de ladrillo	
Tabla 28 Dispersión máxima en los ladrillos seleccionados para la investigación	
Tabla 29 Cuadro comparativo de porcentaje (%) de vacíos	
Tabla 30 Cuadro comparativo de porcentaje (%) de absorción	117
Tabla 31 Cuadro comparativo de succión.	
Tabla 32 Cuadro comparativo de resistencia a la compresión F b.	
Tabla 33 Conglomerado de resultados de la unidad de albañilería.	
Tabla 34 Diseño de mezclas del mortero patrón	
Tabla 35 Diseño de mezcla del mortero sustituido con CCA	
Tabla 36 Diseño de mezcla del mortero adicionado con CCA.	121
Tabla 37 Fluidez del mortero patrón P1 (1:3.5) y mortero sustituido con CCA	
Tabla 38 Fluidez del mortero patrón P2 (1:4) y mortero sustituido con CCA.	
Tabla 39 Fluidez del mortero patrón P2 (1:5) y mortero sustituido con CCA.	
Tabla 40 Fluidez del mortero patrón NP (1:6) y mortero sustituido con CCA.	
Tabla 41 Fluidez del mortero patrón P1 (1:3.5) y mortero adicionado con CCA.	
Tabla 42 Fluidez del mortero patrón P2 (1:4) y mortero adicionado con CCA.	
Tabla 43 Fluidez del mortero patrón P2 (1:5) y mortero adicionado con CCA	
Tabla 44 Fluidez del mortero patrón NP (1:6) y mortero adicionado con CCA	
Tabla 45 Contenido de aire en el mortero patrón P1 (1:3.5) y mortero sustituido con CCA.	
Tabla 46 Contenido de aire en el mortero patrón P2 (1:4) y mortero sustituido con CCA	
Tabla 47 Contenido de aire en el mortero patrón P2 (1:5) y mortero sustituido con CCA.	
Tabla 48 Contenido de aire en el mortero patrón NP (1:6) y mortero sustituido con CCA.	
Tabla 49 Contenido de aire en el mortero patrón P1 (1:3.5) y mortero adicionado con CCA	
Tabla 50 Contenido de aire en el mortero patrón P2 (1:4) y mortero adicionado con CCA	
Tabla 51 Contenido de aire en el mortero patrón P2 (1:5) y mortero adicionado con CCA	
Tabla 52. Contenido de aire en el mortero patrón NP (1:6) y mortero adicionado con CCA	
Tabla 53 Peso unitario compactado del mortero patrón P1 (1:3.5) y mortero sustituido con CCA	138

Tabla 54 Peso unitario compactado del mortero patrón P2 (1:4) y mortero sustituido con CCA	139
Tabla 55 Peso unitario compactado del mortero patrón P2 (1:5) y mortero sustituido con CCA	140
Tabla 56 Peso unitario compactado del mortero patrón NP (1:6) y mortero sustituido con CCA	141
Tabla 57 Peso unitario compactado del mortero patrón P1 (1:3.5) y mortero adicionado con CCA	142
Tabla 58 Peso unitario compactado del mortero patrón P2 (1:4) y mortero adicionado con CCA	143
Tabla 59 Peso unitario compactado del mortero patrón P2 (1:5) y mortero adicionado con CCA	144
Tabla 60 Peso unitario compactado del mortero patrón NP (1:6) y mortero adicionado con CCA	145
Tabla 61 Resistencia a la compresión del mortero patrón P1 (1:3.5) y mortero sustituido con CCA	146
Tabla 62 Resistencia a la compresión del mortero patrón P2 (1:4) y mortero sustituido con CCA	148
Tabla 63 Resistencia a la compresión del mortero patrón P2 (1:5) y mortero sustituido con CCA	150
Tabla 64 Resistencia a la compresión del mortero patrón P1 (1:3.5) y mortero adicionado con CCA	151
Tabla 65 Resistencia a la compresión del mortero patrón P2 (1:4) y mortero adicionado con CCA	153
Tabla 66 Resistencia a la compresión del mortero patrón P2 (1:5) y mortero adicionado con CCA	154
Tabla 67 Resistencia a la flexión del mortero patrón P1 (1:3.5) y mortero sustituido con CCA	156
Tabla 68 Resistencia a la flexión del mortero patrón P2 (1:4) y mortero sustituido con CCA	157
Tabla 69 Resistencia a la flexión del mortero patrón P2 (1:5) y mortero sustituido con CCA	159
Tabla 70 Resistencia a la flexión del mortero patrón P1 (1:3.5) y mortero adicionado con CCA	160
Tabla 71 Resistencia a la flexión del mortero patrón P2 (1:4) y mortero adicionado con CCA	
Tabla 72 Resistencia a la flexión del mortero patrón P2 (1:5) y mortero adicionado con CCA	163
Tabla 73 Ensayo de adherencia del mortero patrón P2 (1:4) y mortero sustituido con CCA	165
Tabla 74 Ensayo de adherencia del mortero patrón P2 (1:4) y mortero adicionado con CCA	166
Tabla 75 Ensayo de resistencia a la compresión en pilas de albañilería del mortero patrón P2 (1:4) y	
mortero sustituido con CCA	167
Tabla 76 Ensayo de resistencia a la compresión en pilas de albañilería del mortero patrón P2 (1:4) y	
mortero adicionado con CCA	168
Tabla 77 Ensayo de resistencia a la compresión diagonal en muretes de albañilería del mortero patrón	P2
(1:4) y mortero sustituido con CCA	169
Tabla 78 Ensayo de resistencia a la compresión diagonal en muretes de albañilería del mortero patrón	
(1:4) y mortero adicionado con CCA	170
Tabla 79 Resumen de costo por m² de asentado de muro de Soga para un mortero de 1:3.5.	171
Tabla 80 Resumen de costo por m² de asentado de muro de Soga para un mortero de 1:4	171
Tabla 81 Resumen de costo por m² de asentado de muro de Soga para un mortero de 1:5.	
Tabla 82 Resumen de costo por m² de asentado de muro de Soga para un mortero de 1:6	172

ÍNDICE DE ANEXOS

Anexo 1.	Análisis de documentos	191
Anexo 1.1.	Ficha técnica del cemento	192
Anexo 2.	Análisis químico de CCA	193
Anexo 2.1.	Composición química de CCA	194
Anexo 3.	Guías de observación	
Anexo 3.1.	Formatos para ensayos de agregado fino	196
Anexo 3.1.1.	Análisis granulométrico	197
Anexo 3.1.2.	Peso específico y absorción	198
Anexo 3.1.3.	Peso unitario y contenido de humedad	199
Anexo 3.2.	Formatos para ensayos de unidades de albañilería	
Anexo 3.2.1.	Variación dimensional del ladrillo	
Anexo 3.2.2.	Succión del ladrillo	202
Anexo 3.2.3.	Absorción del ladrillo	203
Anexo 3.2.4.	Porcentaje de vacíos	204
Anexo 3.2.5.	Resistencia a la compresión (F´ _b)	205
Anexo 3.3.	Formato para ensayos de Diseño de Mezcla del mortero	
Anexo 3.3.1.	Diseño de mezcla	207
Anexo 3.4.	Formatos para ensayos de mortero	208
Anexo 3.4.1.	Mortero en estado fresco	209
Anexo 3.4.1.1	l. Fluidez	210
Anexo 3.4.1.2	Peso unitario	211
Anexo 3.4.1.3	3. Contenido de aire	212
Anexo 3.4.2.	Mortero en estado endurecido	213
Anexo 3.4.2.1	l. Resistencia a la compresión en cubos de 50mm de lado	214
Anexo 3.4.2.2	<u>.</u>	
Anexo 3.5.	Formatos para ensayos de albañilería simple	
Anexo 3.5.1.	Resistencia a la adherencia por flexión	
Anexo 3.5.2.	Resistencia a la compresión en pilas	
Anexo 3.5.3.	Resistencia a la compresión diagonal en muretes	
Anexo 3.6.	Formato para ensayo de cenizas de cáscaras de arroz	
Anexo 3.6.1.	Peso específico	
Anexo 4.	Resultados de los ensayos elaborados a las cenizas de cáscaras de arroz	
Anexo 4.1.	Peso específico	
Anexo 4.2.	Peso unitario y contenido de humedad	
Anexo 5.	Resultados de los ensayos elaborados al agregado fino	
Anexo 5.1.	Análisis Granulométrico y módulo de fineza	
Anexo 5.2.	Peso específico y absorción	
Anexo 5.3.	Peso unitario y contenido de humedad	
Anexo 6.	Resultados de los ensayos elaborados a las unidades de albañilería	
Anexo 6.1.	Variación dimensional	
Anexo 6.2.	Succión	
Anexo 6.3.	Absorción	
Anexo 6.4.	Porcentaje de vacíos	
Anexo 6.5.	Resistencia a la compresión (F'b)	
Anexo 7.	Diseño de mortero patrón y con sustitución con CCA	
Anexo 7.1.	Dosificación 1:3.5	
Anexo 7.2.	Dosificación 1:4	
Anexo 7.3.	Dosificación 1:5	
Anexo 7.4.	Dosificación 1:6	
Anexo 8.	Diseño de mortero patrón y con adición con CCA	
Anexo 8.1.	Dosificación 1:3.5	
Anexo 8.2.	Dosificación 1:4	
Anexo 8.3.	Dosificación 1:5	
Anexo 8.4.	Dosificación 1:6	

Anexo 9.	Resultados de los ensayos del mortero en estado fresco	248
Anexo 9.1.	Fluidez	249
Anexo 9.1.1.	Dosificación 1:3.5	250
Anexo 9.1.2.	Dosificación 1:4	257
Anexo 9.1.3.	Dosificación 1:5	264
Anexo 9.1.4.	Dosificación 1:6	271
Anexo 9.2.	Contenido de aire	278
Anexo 9.2.1.	Dosificación 1:3.5	279
Anexo 9.2.2.	Dosificación 1:4	282
Anexo 9.2.3.	Dosificación 1:5	285
Anexo 9.2.4.	Dosificación 1:6	288
Anexo 9.3.	Peso unitario compactado	
Anexo 9.3.1.	Dosificación 1:3.5	
Anexo 9.3.2.	Dosificación 1:4	
Anexo 9.3.3.	Dosificación 1:5	298
Anexo 9.3.4.	Dosificación 1:6	
Anexo 10.	Resultados de los ensayos del mortero en estado endurecido	
Anexo 10.1.	Resistencia a la compresión de mortero	305
Anexo 10.1.1	. Dosificación 1:3.5	306
Anexo 10.1.2	· · · · · · · · · · · · · · · · · · ·	
Anexo 10.1.3	y	
Anexo 10.2.	Resistencia a la flexión de mortero	
Anexo 10.2.1	y	
Anexo 10.2.2	· · · · · · · · · · · · · · · · · · ·	
Anexo 10.2.3	· · · · · · · · · · · · · · · · · · ·	
Anexo 11.	Resultados de los ensayos de albañilería simple	
Anexo 11.1.	Adherencia del mortero – ladrillo arcilla	
Anexo 11.1.1	· · · · · · · · · · · · · · · · · · ·	
Anexo 11.2.	Resistencia a la compresión axial en pilas de albañilería	
Anexo 11.2.1	· · · · · · · · · · · · · · · · · · ·	
Anexo 11.3.	Resistencia a la compresión diagonal en muretes de albañilería	
Anexo 11.3.1.	· · · · · · · · · · · · · · · · · · ·	
Anexo 12.	Análisis de costos	
Anexo 12.1.	Volumen de mortero para 1m² de muro de soga	
Anexo 12.2.	Análisis del precio unitario del Kg. de cenizas de cáscaras de arroz	
Anexo 12.3. CCA.	Análisis de costos unitarios para un mortero patrón de 1:3.5, adicionado y sustituido cor 374	n
Anexo 12.4.	Análisis de costos unitarios para un mortero patrón de 1:4, adicionado y sustituido con	
CCA.	377	
Anexo 12.5.	Análisis de costos unitarios para un mortero patrón de 1:5, adicionado y sustituido con	
CCA.	380	
Anexo 12.6.	Análisis de costos unitarios para un mortero patrón de 1:6, adicionado y sustituido con	
CCA.	384	
Anexo 13.	Panel fotográfico	<i>388</i>
Anexo 13.1.	Elaboración de las pilas y muretes de albañilería en el Laboratorio de Ensayo de Materi	iales
de la Univers	ridad Señor de Sipán	
Anexo 13.2.	Ensayo de adherencia del mortero – ladrillo arcilla	390
Anexo 13.3.	Ensayo de compresión axial en pilas de albañilería y sus tipos de fallas	392
Anexo 13.4.	Compresión diagonal en muretes de albañilería realizado en Laboratorio de Ensayo de	
Materiales de	e la Universidad Nacional Pedro Ruíz Gallo	396
Anero 14	Presunuesto	397

I. INTRODUCCIÓN

1.1. Realidad Problemática

1.1.1. A nivel internacional.

Según el artículo "Contribution of Rice Husk Ash to the Properties of Mortar and Concrete: A Review"; el empleo de materiales como reemplazo parcial del cemento en Malasia, en la última década, es considerado como parte integral del diseño de mezcla de concreto de alto rendimiento y alta resistencia. Pueden ser materiales naturales, subproductos o desechos industriales, aquellos que no necesitan de mucha energía y tiempo para producir. Algunos de los materiales utilizados comúnmente para la adición parcial en el cemento son cenizas volantes, humo de sílice (SF), escoria de alto horno granulada molida (GGBFS) y ceniza de cáscara de arroz (RHA), etc. La RHA es un material obtenido de la incineración de la cáscara de arroz que contiene dióxido de silicio no cristalino con una superficie específica alta y alta reactividad puzolánica. Éste es aprovechado como material puzolánico en mortero y hormigón, demostrando que tiene una gran influencia en la mejora de las propiedades mecánicas y de durabilidad del mortero y el hormigón. (Naji Givi et al, 2010)

En Colombia, estudios acerca del aprovechamiento de la cascarilla de arroz incinerada, indican que sus cenizas producto de un procedimiento inspeccionado por expertos, es empleado como elemento de adición para mezclas de concreto en donde reemplazará un porcentaje al cemento. Sin embargo, los mercados para la utilización de la cáscara de arroz incinerada en cemento no están muy bien evolucionados como en el acero. Hay una enorme capacidad para su empleo debido a la existencia de toneladas del residuo, de manera que se reduciría la contaminación e impacto ambiental. (Sierra, 2009)

En Uruguay, el informe del Ministerio de Ganadería, Agricultura y Pesca señala que el arroz es una de las plantas que contiene gran cantidad de sílice, principalmente en la cáscara, lo que determina una composición no apta para la alimentación de animales debido a sus débiles propiedades nutritivas.

Está demostrado que si la cáscara de arroz es quemada a cielo abierto como la ceniza está compuesta mayoritariamente por sílice cristalina, la cual contamina el aire y puede ser causante de silicosis, producir modificaciones del genoma y cáncer.

Diversos autores de este país han enfocado sus estudios en cómo incinerar la cáscara de arroz sin que afecte la salud humana, y por otro lado el beneficio de esa ceniza como suplemento en la elaboración de cemento y hormigón, así como materia prima de otros materiales de construcción. (MGAP, 2016)

En Chile, según la revista "Ingeniería de Construcción" publicada por el Departamento de Ingeniería y Gestión de la Construcción de la Escuela de Ingeniería de la Universidad de Chile, informa que el incremento de la producción agrícola e industrial en este país trae consigo el aumento de desechos, por lo que sería complicado, caro y ambientalmente poco sustentable en su procedimiento y destino final. De ahí, el ascendente aprovechamiento en la utilización de los diversos residuos y adquirir así beneficios ambientales y económicos. Una de esas iniciativas apunta a los pavimentos, a emplear materia desechable como estabilizantes de suelos para la construcción de subrasantes y capas de base.

En la producción agrícola, la cáscara de arroz es el residuo de gran cantidad que se desecha, siendo uno de los más grandes dilemas de los países con mayor producción de arroz. Cada cuatro toneladas de arroz producidas, una tonelada es de cáscara. Estudios realizados estiman que cada año se generan más de 50 000 mil toneladas de cáscara de arroz en Chile. El destino final de tales cantidades de cáscara es, por el momento, un problema sin solución definitiva.

Debido a esta problemática están elaborando un plan de utilizar la ceniza de la cascarilla de arroz como parte de reemplazo de materiales para el mejoramiento de suelos. Los materiales de mejor calidad se encuentran lejos de caminos vecinales donde se produce el arroz, y su uso resulta una alternativa elevada al costo de transporte.

Una alternativa de interés es la evaluación de la estabilización de suelos arenosos locales con adición de ceniza de cáscara de arroz y cal, puesto que ésta ceniza está compuesta entre 90 y 96% de sílice, compuesto necesario para proporcionar al suelo reacciones con la cal y formar productos puzolánicos, obteniéndose materiales más resistentes, menos deformables y más durables. (MINEDUC, 2008)

En Venezuela, según la revista "Evaluación físico química de cenizas de cascarilla de arroz, bagazo de caña y hoja de maíz y su influencia en mezclas de mortero, como materiales puzolánicos", de la Facultad de Ingeniería de la Universidad

Central de Venezuela, se demuestra que la ceniza de cascarilla de arroz, adquirida bajo condiciones determinadas, constituye un sustituto potencial del agregado fino, cuyo comportamiento óptimo, por lo cual este tema está siendo objeto de estudio en muchos países.

Este país es un productor de arroz importante, generador de una gran cantidad de cascarilla como desecho de producción arrocera; al no existir el aprovechamiento y/o explotación de este residuo, se distingue un área de desarrollo potencial que merece ser explotado.

Las posibilidades de trabajar con la cascarilla del arroz calcinada, con el fin de sustituir parte del agregado fino para utilizarla en la industria de la construcción, es de interés social en Venezuela. Sin embargo, para producir a una escala que permita su empleo efectivo en este sector, era necesario profundizar su estudio. Así, a partir de la experiencia adquirida en la etapa experimental de obtención del material, el Ing. Idalberto Águila Arboláez propone en la revista un estudio comparativo usando diferentes residuos agrícolas (cenizas de cascarilla de arroz, bagazo de caña y hoja de maíz).

Los resultados indicaron que la ceniza de la cáscara de arroz alcanzó en su composición un 80% de sílice; la ceniza de hoja de maíz obtuvo un 48% de sílice; y por último, la ceniza de bagazo de caña alcanzó la menor cantidad de sílice. Por lo tanto, la incorporación de ceniza de cascarilla de arroz en la mezcla, produce un aumento de la resistencia a la compresión, siendo el porcentaje perfecto de reemplazo de 20%.

Después de haberse realizado dicho estudio, concluye que es importante para los morteros contener mayores porcentajes de sílice, por lo que este compuesto proporciona calidad necesaria y obtiene las características esenciales para su uso. Además se pudo apreciar que cuando se añade ceniza de cascarilla de arroz, se observan mejoras en la durabilidad y consistencia química del cemento, incrementando la posibilidad del uso de estos elementos propensos a ambientes agresivos. (Águila y Sosa, 2008)

1.1.2. A nivel nacional.

En el Perú, en vista al incremento de la producción de arroz, procesado aproximadamente por 500 molinos, de los cuales el 80% se encuentran en el Norte, siendo las zonas de mayor producción los departamentos de San Martín (22%), Piura (18%), Lambayeque (13%), La Libertad (11%), Amazonas (10%), Cajamarca (6%) y otros (20%);

se genera cierta problemática en referencia a las elevadas cantidades de residuos de cáscara.

Se estima que anualmente se generan 3 millones de toneladas de arroz, de las cuales se desechan 600 000 toneladas de cáscara, que solamente se utiliza alrededor del 25 % del total como combustible para hornos de secado de ladrillos en varios departamentos; otros porcentajes en la fabricación de adobes y ladrillos artesanales; y el resto es quemado o arrojado a los ríos aledaños. Debido a estos factores, se busca el aprovechamiento de estos residuos para su uso en la industria de la construcción. (MINAGRI, 2016)

Tabla 1Regiones con mayor producción en el 2016.

Región	Sup. Cosechada (ha)	Producción (t)	Rendimiento (t/ha)	Precio en chacra (S/ x kg)
San Martín	101 255	710 287	7.01	1.03
Piura	67 373	589 687	8.75	1.24
Lambayeque	49 831	399 038	8.01	1.28
La Libertad	32 857	334 920	10.19	1.29
Amazonas	41 567	307 947	7.41	1.03
Arequipa	19 939	250 051	12.54	1.22
Cajamarca	24 886	195 641	7.86	1.13
Nacional	419 563	3 165 749	7.55	1.15

Fuente: MINAGRI – DGESEP (2016)

Ingenieros expertos en la construcción investigan poder reemplazar gran parte del concreto convencional con la ceniza de cáscara de arroz, se sabe que a mayor porcentaje de sustitución de cemento, mayor sería la disminución de la cantidad de emisiones de dióxido de carbono al ambiente.

Se destaca la potencialidad de este residuo para ser usado en cementos compuestos y adiciones debido a su composición química rica en sílice; debido a las propiedades que tiene la cáscara de arroz al ser calcinado es adherida con el cemento para lograr mejorar la calidad, y por lo tanto se reduciría los residuos de la agroindustria. Es así que el proceso de producción se torna más sustentable desde el punto de vista técnico, económico y ambiental.

Comparando la resistencia según estudios de la Universidad Nacional de Ingeniería – UNI, un concreto con cenizas de cáscara de arroz aumenta en un 25% la

resistencia en cuanto al concreto convencional puro. Por lo que es importante explotar el residuo anual que es de 600 mil toneladas de cascarilla lo que equivale a un aproximado de 3 millones de toneladas de concreto ecológico. (Villegas, 2012)

1.1.3. A nivel local.

Según MINAGRI (2016), Lambayeque es uno de los principales departamentos de la producción de arroz en el Perú, actualmente cuenta con 41 molinos que producen aproximadamente 399,038 toneladas de arroz, lo que trae consigo una gran cantidad de residuos de cáscara de arroz, causando un impacto ambiental negativo para la región; por lo que se busca lograr un manejo adecuado y sostenible de este residuo agrícola; de tal manera no afecte la salud de las comunidades ni aumente la contaminación ambiental. En comparación con el año pasado, la producción de arroz aumentó considerablemente.

Tabla 2 *Perú- Principales regiones productoras de arroz en cáscara 2016.*

Departamento	Porcentaje (%)
San Martín	22%
Piura	19%
Lambayeque	13%
La Libertad	11%
Amazonas	10%
Arequipa	8%
Cajamarca	6%
Otros	11%

Fuente: MINAGRI-DGESEP

Conociendo también que los agregados pétreos están disminuyendo en nuestro departamento por el aprovechamiento desmesurado de las canteras, se propone emplear la ceniza de la cáscara de arroz como una adición y sustitución en la composición de mortero en porcentajes (5%, 10% y 15%) de acuerdo al peso del cemento.

En zonas rurales en donde la escasez de material de construcción (cemento y agregados) o el sobrecosto de transportarlas hasta la zona, hace que sea muy costoso la obtención de estos materiales, por ello se busca aprovechar este tipo de recurso que son las cenizas de cáscara de arroz para emplearlas en la construcción.

En zonas urbanas no se ha realizado hasta el momento un análisis económico entre el mortero patrón (cemento - arena), con el mortero modificado a base de cenizas de cáscara de arroz.

Se sabe que para obtener la materia prima de mi proyecto, se necesita someter las cáscaras de arroz a 600° C aproximadamente, en un horno de fundición automático en un lapso de 2 a 3 horas.

Debido al aprovechamiento de este residuo en los diferentes usos que se le puede aplicar, las empresas agroindustriales han establecido un precio equivalente a S/. 150 por tonelada.

Horno de fundición.

Figura 1. Horno de fundición del molino "Los Ángeles" de donde se extrajeron las cenizas de cáscaras de arroz.

Fuente: Elaboración propia.

Para fines de esta investigación la muestra obtenida fue proporcionada por el Molino "Los Ángeles", ubicado en la Carretera Auxiliar Panamericana Norte 778, Departamento de Lambayeque, Perú.

Extracción de la Ceniza.

Figura 2. Extracción de la Ceniza de cáscaras de arroz en el Molino "Los Ángeles" de Lambayeque, Perú.

Fuente: Elaboración propia.

1.2. Antecedentes de estudio

1.2.1. A nivel internacional.

Chur (2010); a través de su tesis "Evaluación del uso de la cascarilla de arroz como agregado orgánico en morteros de mampostería", determinó el beneficio de la cascarilla de arroz formando parte en la mezcla de morteros de mampostería dada las virtudes que propone, por ello se producen morteros con distintas cantidades de cáscara llevando a cabo las técnicas y definiciones de las normas establecidas.

En conclusión, obtuvo que en los ensayos a compresión, tensión y adherencia que a más proporción de cáscara de arroz, las características mecánicas de los morteros se deprecian, por ello se considera implantar un nivel intermedio en la utilización de este elemento; y por otro lado se obtuvo que el empleo de la cáscara de arroz actúa como aislador térmico de los morteros analizados.

Sierra (2009); en su tesis "Alternativas de aprovechamiento de la cascarilla de arroz en Colombia", durante el desarrollo de dicho estudio se concentró en el interés que hay en la cáscara de arroz para ser tomado como una opción de empleo en niveles energéticos y constructivos gracias a una de las características que tiene, como es la de aislador térmico. Se origina una alusión a todos los acercamientos tecnológicos e investigativas en Colombia, y se tiene la misma problemática que resulta del uso final que se le da al residuo.

Como conclusión estima que hoy en día gracias a las investigaciones realizadas, se tiene que mezclando la cáscara de arroz con otros materiales naturales le da una alta conductividad térmica y se puede aplicar en lugares como aislador térmico; y también señala que el aprovechamiento de este residuo como sistema de estufas, en lugares donde no tienen la disposición de cocinas a gas natural o gas propano, radica en el uso este material abundante y de bajo costo, que además tiene un menor peligro de incendio.

Hidalgo (2015), mediante su tesis de "Evaluación de las emisiones de carbono del cemento Pórtland compuesto con ceniza de cáscara de arroz durante el proceso de fabricación", deduce que se hallan diferentes alternativas de reducción de las emisiones de dióxido de carbono durante el proceso de fabricación del cemento. Para ello, optó por reducir la relación clínker/cemento de muestras elaboradas en base a cemento Pórtland compuesto con un desecho de la agroindustria: la ceniza de cáscara de arroz y filler calcáreo.

El autor concluye que a mayor porcentaje de sustitución de clínker, disminuye la cantidad de emisiones de dióxido de carbono al ambiente. Por lo tanto la incorporación de cenizas de cáscara de arroz no sólo reduce las emisiones de dióxido de carbono sino que, debido a sus propiedades puzolánicas, también logra mejorar las calidades de los materiales en los cuales estos cementos son empleados y contribuye a disminuir los residuos de la agroindustria. Es así que el proceso de producción se torna más sustentable desde el punto de vista ambiental, técnico y económico.

Allauca, Amen y Lung (2009), en su tesis "Uso de sílice en hormigones de alto desempeño", estudiaron el empleo de sílice como reemplazo de una cierta parte del cemento Pórtland para la elaboración de hormigones de gran desempeño.

Orientaron su investigación en la utilización de puzolana, cáscara de arroz incinerada que tiene como materia principal el dióxido de sílice Si_2O que tiene una reacción con el Clinker cuando empieza la hidratación del cemento; como conclusión tenemos que el empleo de hoy en día, de adiciones que presenten dióxido de silicio ha impulsado a mejorar el procedimiento de creación de cristales cuando empieza el tiempo de fraguado.

Por lo tanto, concluyen que el uso de sílice es una alternativa de uso para el diseño de concretos de alta resistencia, ya que por sus características ayuda al hormigón obtener mayor durabilidad.

Molina (2010), en su tesis acerca de la "Evaluación del uso de la cascarilla de arroz en la fabricación de bloques de concreto", señala que la inclusión de cáscara de arroz en la elaboración de bloques de concreto pretende ser un paso más que lleve al aprovechamiento de recursos reutilizables con la finalidad de crear productos de comprobada necesidad para el ser humano, como lo son los bloques de mampostería, pero esta vez con el valor agregado de la sostenibilidad ambiental.

Como conclusión tiene que el aumento de la cascarilla de arroz que se fue introduciendo gradualmente en las mezclas provocó, como era de esperar, una disminución en la densidad de los bloques, pues elevó su porosidad, lo cual, a su vez tuvo, como consecuencia directa una ganancia en cuanto a capacidad de absorción para los bloques.

1.2.2. A nivel nacional.

Villegas (2012); en su tesis "Utilización de puzolanas naturales en la elaboración de prefabricados con base cementicia destinados a la construcción de viviendas de bajo costo", tuvo como objetivo comprobar el aprovechamiento del uso de puzolanas en la elaboración de morteros y concretos para recubrimientos y producción de elementos constructivos con base cementicia, con el fin de satisfacer la necesidad de una vivienda de bajo costo en los países en desarrollo.

La conclusión que se tuvo al final de la investigación resultó que la cáscara de arroz incinerada es una puzolana que por su particularidad podría sustituir provechosamente una cierta parte de cemento en la elaboración de morteros que se aplicarán en la construcción de viviendas de bajo costo.

1.2.3. A nivel local.

Inoñan y Vega (2012).; en su tesis Obtención de dióxido de silicio vía calcinación de la cascarilla de arroz como alternativa para reducir costos en la elaboración del cemento Pórtland, estudia el contenido de Dióxido de Silicio (SiO_2) en la cascarilla de arroz y su relevo en la estructura del cemento Pórtland en suplencia de la puzolana, en conclusión tenemos que con el aprovechamiento de este residuo en la construcción

ayudaría en la parte económica y reduciría el impacto ambiental de la región de Lambayeque.

1.3. Teorías relacionadas al tema

Fue publicado en 1933 por C.A.G. Weymouth titulada "Effect of particle interference in mortars and concrete", donde se explica el resultado de interferencia de los requisitos de agua y trabajabilidad, incorporando la preferencia de las distintas dimensiones de las partículas a la segregación. Weymouth ilustró su teoría en términos de mezcla seca de agregados, como se detalla en la siguiente figura:

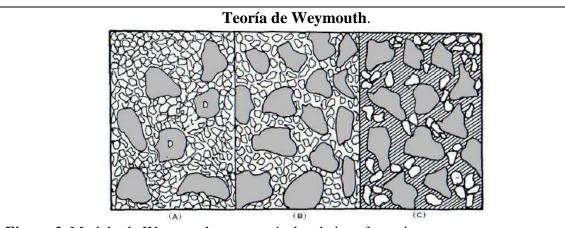


Figura 3. Modelo de Weymouth para partículas de interferencia.

Fuente: Tecnología del concreto de alto desempeño. Portugal. P. (2004).

En la figura 2 se muestra dos dimensiones una mezcla de dos tamaños de partículas.

(A): Las partículas de mayor tamaño no destacan y se encuentran separados por varias partículas pequeñas, por ello la separación entre estas será más del diámetro de una partícula pequeña.

(B): La proporción de partículas de mayor tamaño es mayor y la separación entre estas será igual al diámetro de una partícula pequeña.

(C): La proporción de partículas de mayor tamaño es mucho mayor, por ello las partículas de menor tamaño no cubren todos los poros, por lo tanto su separación entre partículas de mayor tamaño será menor que el diámetro de una partícula pequeña.

Weymouth (2013), concluyó en su teoría que existe una ley de gradación de tal modo que las distintas dimensiones de agregados puedan tener espacio para poder moverse entre las partículas más grandes, eludiendo la interferencia de las partículas.

1.3.1. Mortero empleando cenizas de cáscaras de arroz.

1.3.1.1. Residuo de ceniza de cáscaras de arroz.

1.3.1.1.1. Definición de la cascarilla de arroz.

La cascarilla de arroz representa un sub-producto del procedimiento agroindustrial, que en el ambiente se considera un elemento residual (por una tonelada de arroz se producen 200 kg. de cascarilla). (Sierra, 2009)

1.3.1.1.2. Cáscara de arroz a nivel mundial.

En el año 2016 se produjeron mundialmente alrededor de 751,9 millones de toneladas de arroz. En la figura 3 se muestra un aumento sostenido de la producción mundial de este cereal a partir del año 2008 al 2017, así como los millones de hectáreas plantadas.

Según la FAO (2017), para este año se pronostica un aumento de producción de arroz a 780 millones de toneladas (518,3 millones de toneladas de arroz elaborado).

La manera más habitual de disminuir el volumen de la cáscara es mediante la quema a cielo abierto. De este procedimiento se obtiene la ceniza que tiene el problema de contaminar el aire, el suelo y los manantiales acuíferos y por lo tanto es muy dañino para la salud. (Sierra, 2009)

1.3.1.1.3. Principales características y clasificación.

La cáscara de arroz, por su peso y volumen que tiene, origina el crecimiento de costo de su acopio y traslado para la industria. Así mismo, por ser poco digestible no se emplea en la preparación de alimento balanceado para animales, su uso es condicionado.

Cuando sale del descascarador, su contenido de humedad se encuentra en un intervalo entre el 5% y 40% luego de haber estado el aire libre (en tiempos no lluviosos por sus propiedades químicas muestra un 10% de humedad). (Chur, 2010)

Tabla 3Composición mineral de ceniza en la cascarilla de arroz.

Elemento	Composición %
(K ₂ O) Oxido de Potasio	1.10
(Na ₂ O) Oxido de Sodio	0.78
(CaO) Oxido de Calcio	0.25
(MgO) Oxido de Magnesio	0.23
(SO ₄) Sulfatos	1.13
(SiO ₂) Sílice	96.51
Total	100.00

Fuente: Chur, G. (2010). Evaluación del uso de la cascarilla de arroz como agregado orgánico en morteros de mampostería.

De acuerdo a Chur (2010), el provecho del uso como elemento en construcción se puede mencionar:

- Elevada capacidad de cenizas (sustancia sólida no combustible por kg. del elemento $\pm 20\%$).
- Gran volumen de sílice en las cenizas (90%).
- Estructura física de la sílice (estructura alveolar de mayor superficie específica).
- Existencia todo el año.
- Retención de humedad.
- Material liviano.
- Material abrasivo.

Tabla 4 *Características físicas de la cáscara de arroz.*

Parámetro		Valor	
Parametro	Perú	Argentina	

		Tratada	Sin tratar
Peso específico (kg/m³)	780.00	980.00	1290.00
Densidad aparente sin compactar (kg/m³)	110.00	102.00	125.00
Densidad aparente compactada (kg/m³)	140.00	142.00	220.00
Diámetro máximo (mm)			2.3
Módulo de finura		3	3.74

Fuente: Chur, G. (2010). Evaluación del uso de la cascarilla de arroz como agregado orgánico en morteros de mampostería.

1.3.1.1.4. Usos.

Del cultivo de arroz se obtiene un desecho llamado cascarilla, de lo que sólo se aprovecha un 7%, destinando su empleo en combustión a campo, colocación del material en rellenos, generando un dilema en el impacto ambiental.

La cáscara de arroz origina elevada cantidad de cenizas, RHA, del inglés "*Rice Husk Ash*", que tiene una cuantiosa proporción de sílice. Se aprecia que por una tonelada de arroz se producen 200 kg. de cáscara, lo cual origina 40 kg. de cenizas con un gran contenido de sílice en un 90 %. (Chur, 2010)

A. Combustible

La intensidad calorífica de la cascarilla de arroz es semejante al de la madera y al de otros desechos agrícolas; por ello se ha utilizado en algunos casos como alternativa para el empleo doméstico. Para la construcción de hornos con cereales que la usan como combustible, el desecho luego de incinerarlo podría ser utilizado para este proceso; motivo por el cual obtiene un destacado provecho.

B. Abono

De acuerdo a su peculiaridad físico-químico en diferentes países la emplean para rehabilitar suelos como compost (abono).

C. Adición mineral en mezclas de concreto y morteros

El residuo de la cascarilla de arroz es una posibilidad para su utilización como adición de mineral, contribuyendo a enriquecer las propiedades del concreto en estado fresco y endurecido, reduciendo la absorción del concreto y ampliando sus cualidades mecánicas.

D. Agregado orgánico en mezclas de concretos y morteros

Considerado especialmente en los elementos conglomerados (concretos y morteros) de cemento Pórtland con cáscara de arroz en estado natural o con procesamiento previo como agregado granular, compuesto con partículas silíceas. Planteando diferentes dosificaciones y establecidas las características geológicas en estado fresco y mecánicas en estado endurecido, de las combinaciones surgidas.

El uso de cascarilla de arroz (material de desecho común en la zona) como elemento granular y el empleo de este residuo no requiere de tecnología y de mano de obra especializada o equipos sofisticados de compactación y colocación, acercando esta propuesta a los usuarios de menores recursos, y la utilización de estos materiales en la construcción de viviendas de bajo costo.

1.3.2. Diseño de mortero.

1.3.2.1. El mortero.

1.3.2.1.1. Preámbulo.

En la carrera de Ingeniería Civil, la innovación en los materiales de construcción ha dado un salto considerable para el crecimiento de la tecnología del concreto en las últimas décadas. Este material gracias a los niveles de resistencia obtenidos se alcanzó un progreso en las técnicas constructivas, por lo que sí es trabajado en condiciones inspeccionadas técnicamente, resulta un material de excelente durabilidad.

El mortero, considerado inmerecidamente como de "clase inferior", por lo que no ha desarrollado el mismo nivel experimental del concreto, a pesar de su incuestionable beneficio y de su generalidad de empleo en las obras. (Salamanca, 2001)

1.3.2.1.2. Definición general.

El mortero, en su definición más explícita es toda combinación de cemento, arena y agua; puede tener un comportamiento estructural o no estructural. Por ejemplo, los morteros empleados en mampostería (pega o relleno), o los utilizados para moldear elementos estructurales, si adquieren función estructural; sin embargo cuando se usa como pañetes no tiene función estructural. (Salamanca, 2001)

Tabla 5Proceso de los Morteros.

Fases del mortero	Componente
rases del mortero	Componente

Pasta
Aglomerante
Agua
Aditivo
Agregado Fino
Arena
Aire
Aire incorporado naturalmente
Aire incorporado intencionalmente

Fuente: Departamento de enseñanza de las Tecnologías de la Construcción

1.3.2.1.3. Propiedades.

El autor del libro "La tecnología de los morteros", Salamanca (2001), menciona que el mortero tiene cuatro propiedades fundamentales, indicadas a continuación.

A. Manejabilidad

Básicamente importante en morteros de relleno de celdas. Principalmente depende del volumen de agua, del empleo de aditivos, de la apariencia y textura de los agregados y de la finura del cemento. Se determina mediante el ensayo de mesa de flujo o método del cono de penetración.

B. Retención de agua

Para prevenir la reducción de la resistencia y agrietamientos, tiene que ser elevada la retención de agua. Se consigue con el empleo de la cal o aditivos.

C. Retracción de secado

Es elevada en morteros (gran volumen de pasta) y por ello se debe intentar reducir. Se aconseja utilizar baja cantidad de finos, poca cantidad de cemento y en lo factible cementos adicionados. Su curado deberá ser estrictamente como el hormigón.

D. Resistencias mecánicas

Principalmente a la compresión. Según la relación A/C y de la adición empleada, y básicamente de la granulometría de la arena, la cual se constituye mediante el módulo de fineza. La arcilla reduce la resistencia, por ello es esencial controlar su incorporación a través de las arenas contaminadas.

1.3.2.1.4. Mortero de Cemento.

El más empleado. Está compuesto por arena y cemento Pórtland. Tiene alta resistencia y sus características de trabajabilidad son variables de acuerdo a la relación de cemento y arena a usar. Para la realización del mortero designado a obras de albañilería, se deberá tener en cuenta lo indicado en las Normas NTP 399.607 y 399.610. (INACAL, 2013)

1.3.2.1.5. Componentes.

Los componentes del mortero son principalmente tres: Aglomerante (cemento), arena y agua; y aditivos que se utiliza eventualmente, según Marín (2014-2015).

A. Aglomerante

Material que en aspecto pastoso y con una resistencia alterable, poseen características las cuales son de poderse moldear, unirse sencillamente con diferentes materiales, protegerlos, endurecerse y obtener altas resistencias mecánicas. El cemento Pórtland otorga al mortero sus principales propiedades físico – químicas, en lo que destacan:

La finura del Molido: Influye en la resistencia a la compresión del mortero en su estado inicial.

Dosificación en Cemento: La relación agua/cemento es un parámetro que determina de manera inversa la resistencia a la compresión del mortero.

Los elementos aglomerantes del mortero son:

- Cemento Pórtland tipo I y II, NTP 334.009
- Cemento Adicionado IP, NTP 334.830
- Combinación de cemento adicionado o Pórtland normalizada de acuerdo a la NTP 339.002.

B. Arena

Los agregados finos generalmente constan de arena natural o piedra triturada cuyas partículas sean menores que los 5mm, para seleccionar el agregado fino correcto procedemos a utilizar la malla N° 4, pues tiene una medida de 4.75 mm ya que es la más adecuada para el mortero. (**RNE E.070, 2016**)

Granulometría: La norma E-070 del Reglamento Nacional de Edificaciones (RNE) recomienda:

Tabla 6 *Granulometría de la arena gruesa.*

Malla ASTM	% Que pasa
N° 4 (4.75 mm)	100
$N^{\circ} 8 (2.36 \text{ mm})$	95 a 100
N° 16 (1.18 mm)	70 a 100

N° 30 (0.60 mm)	40 a 75
N° 50 (0.30 mm)	10 a 35
N° 100 (0.15 mm)	2 a 15
N° 200 (0.075 mm)	Menos de 2

Fuente: Reglamento Nacional de edificaciones E.070. (2016)

- Entre dos mallas sucesivas no debe quedar renetido más del 50% de arena.
- El módulo de fineza estará en un intervalo de 1.6 y 2.5.
- El porcentaje máximo de partículas quebradizas será: 1% en peso.
- No deberá utilizarse arena de mar.

C. Agua

Tiene como prioridad que debe ser agua potable, y deberá cumplir con los requerimientos de la NTP 334.088 en la elaboración y curado del mortero.

D. Aditivos

Es un elemento químico, normalmente su dosificación es menor al 5% del volumen del cemento, diferente de los agregados, del agua y el cemento, que se emplea como integrantes de la pasta, del mortero o del concreto, se añade durante el procedimiento del mezclado, entre las funciones más usuales tenemos:

- **Plastificante:** Ayuda a reducir la cantidad de agua necesaria para conseguir una determinada resistencia del mortero.
- **Retardador:** Retarda el fraguado en el mortero.
- **Acelerante:** Acelera el fraguado y hace que el mortero obtenga alta resistencia a temprana edad.

1.3.2.1.6. Usos.

Los morteros tienen una función estructural, y por ello se emplean en la construcción de elementos estructurales, o en la albañilería estructural en donde puede ser de pega o de relleno en las celdas de los muros.

No tienen función estructural en cuanto al recubrimiento como pañetes, repellos o revoques.

Salamanca (2001), clasifica de manera tripartita al mortero:

- **Mortero de pega:** Debe tener características particulares, distinto a los morteros usado para otros fines ya que es propuesto a los requisitos especiales del sistema

constructivo, y una resistencia apropiada ya que debe absorber esfuerzos de tensión y compresión.

- Morteros de relleno: Se utilizan para relleno de celdas de los elementos en la albañilería estructural, deberá tener una apropiada resistencia igual que el mortero de pega.
- **Morteros de recubrimiento:** No tiene función estructural sino de embellecimiento, facilita una superficie uniforme para aplicar la pintura; la plasticidad es una característica muy importante en este tipo de mortero.

1.3.2.1.7. Clasificación.

El autor del libro "La tecnología de los morteros", Salamanca (2001), clasifica al mortero en 4 tipos.

A. Mortero Tipo "M"

- De alta resistencia a la compresión.
- Comparando con los otros tipos de mortero, éste ofrece mayor durabilidad.
- Está destinado para uso en mampostería sometida a grandes fuerzas de compresión, acompañadas de congelamiento, elevadas cargas laterales de tierra, viernes fuertes y temblores.
- Se sugiere emplearlo para estructuras en roce con la cimentación, el suelo, muros de contención, etc.
- Su resistencia mínima a la Compresión a los 28 días es de 175 kg/cm^2 .

B. Mortero Tipo "S"

- Este tipo de mortero tiene una considerable adherencia que diferentes morteros.
- Destinado para el empleo en estructuras sometidas a carga de compresión normales,
 y a su vez soliciten alta resistencia.
- Se usa para el revestimiento de cerámicos, por ello tenemos que el único elemento adherente con la pared es el mortero.

C. Mortero Tipo "N"

- Empleado en estructuras encima del nivel del suelo.
- Es adecuado en enchapes, paredes internas y divisiones.
- Simboliza la mejor combinación entre resistencia, trabajabilidad y economía.

- Este tipo de mortero alcanza una resistencia a la compresión de aproximadamente $125 \ kg/cm^2$.

D. Mortero Tipo "O"

- Este tipo de mortero se utiliza para viviendas de uno o dos pisos.
- Favorito de los albañiles por el bajo costo y su trabajabilidad.
- Tiene poca resistencia y elevada capacidad de cal.

1.3.2.2. Unidad de Albañilería.

Todos lo mencionado en este acápite es referente al RNE E.070 (2016).

1.3.2.2.1. Características Generales.

Se conoce como ladrillo a aquella unidad cuya dimensión y peso permite ser manipulado por una sola mano.

Se conoce como bloque a aquella unidad cuya dimensión y peso requiere de las dos manos para su manipulación.

La norma E – 070, se refiere a las unidades de albañilería a los ladrillos y bloques cuya fabricación se emplea arcilla, sílice-cal o concreto, como materia prima. Estas unidades pueden ser sólidas, huecas, alveolares o tubulares y podrán ser fabricadas de manera artesanal o industrial.

Las unidades de albañilería de concreto serán empleadas después de obtener su resistencia especificada y su estabilidad volumétrica.

En el caso de unidades curadas con agua, el tiempo mínimo para ser utilizadas será de 28 días, que se verificará de acuerdo a la NTP 399.602.

1.3.2.2.2. Clasificación para Fines Estructurales.

Para el producto de diseño estructural, las unidades de albañilería tendrán las características indicadas en la Tabla 7.

- Bloque usado en la construcción de muros portantes
- Bloque usado en la construcción de muros no portantes

Tabla 7

Clase de unidad de albañilería para fines estructurales.

CLASE DE UNIDAD DE ALBAÑILERÍA PARA FINES ESTRUCTURALES

Clase]	RIACIÓN I DIMENSIÓ kima en porc	N	ALABEO (máximo en	RESISTENCIA CARACTERÍSTICA A COMPRESIÓN F' _b mínimo en Mpa (kg/cm ²) sobre área bruta		
	Hasta 100 mm	Hasta 150 mm	Más de 150 mm	mm)			
Ladrillo I	± 8	±6	±4	10	4,9 (50)		
Ladrillo II	±7	±6	± 4	8	6,9 (70)		
Ladrillo III	±5	± 4	±3	6	9,3 (95)		
Ladrillo IV	± 4	±3	±2	4	12,7 (130)		
Ladrillo V	±3	± 2	±1	2	17,6 (180)		
Bloque P	±4	±3	±2	4	4,9 (50)		
Bloque NP	±7	±6	<u>±</u> 4	8	2,0 (20)		

Fuente: RNE E-070. Albañilería

1.3.2.2.3. Limitaciones en su Aplicación.

La aplicación de las unidades de albañilería estará limitada a la tabla 8. Las zonas sísmicas son las indicadas en la NTE E.030 Diseño Sismo resistente.

Tabla 8 *Limitaciones en el uso de la unidad de albañilería para fines estructurales.*

LIMITACIONES EN EL USO DE LA UNIDAD DE ALBAÑILERÍA PARA FINES ESTRUCTURALES

	ZONA SÍS	ZONA SÍSMICA 1	
TIPO	Muro portante en edificios de 4 pisos a más Muro portante en edificios de 1 a 3 pisos		Muro portante en todo edificio
Sólido Artesanal *	No	Sí, hasta dos pisos	Sí
Sólido Industrial	Sí	Sí	Sí
	Sí	Sí	Sí
Alveolar	Celdas totalmente rellenas con grout	Celdas parcialmente rellenas con grout	Celdas parcialmente rellenas con grout
Hueca	No	No	Sí
Tubular	No	No	Sí, hasta dos pisos

Fuente: RNE E-070. Albañilería

* La restricción mostrada establece cualidades mínimas que pueden ser exceptuadas con el respaldo de un informe y memoria de cálculo sustentada por un ingeniero civil.

1.3.2.2.4. Pruebas.

A. Muestreo

El muestreo será efectuado a pie de obra. Por cada lote compuesto por hasta 50 millares de unidades se elegirá al azar una muestra de 10 unidades, sobre las que se efectuarán las pruebas de variación de dimensiones y de alabeo. Cinco de estas unidades se ensayarán a compresión y las otras cinco a absorción.

B. Resistencia a la Compresión

Para el cálculo de la resistencia a la compresión de las unidades de albañilería, se efectúan ensayos de laboratorio correspondientes, de acuerdo a lo señalado en las Normas NTP 399.613 y 339.604.

La resistencia característica a compresión axial de la unidad de albañilería (f'_b) se calculará restando una desviación estándar al valor promedio de la muestra.

C. Variación Dimensional

Para la determinación de la variación dimensional de las unidades de albañilería, se seguirá el procedimiento indicado en las Normas NTP 399.613 y 399.604.

D. Alabeo

Para la determinación del alabeo de las unidades de albañilería, se seguirá el método sugerido en la Norma NTP 399.613.

E. Absorción

Los ensayos de absorción se harán de acuerdo a lo señalado en las Normas NTP 399.604 y 399.I613.

1.3.2.2.5. Tipos de Ladrillo.

Con el procedimiento de elaboración pueden ser maquinados (tratamiento de fabricación inspeccionada) o artesanales (elaborados en lugares campestres con herramientas mínimos y caseros y que no tienen ninguna inspección de calidad).

Su constitución puede ser de arcilla o concreto.

Por su tamaño: Designación que se da por las dimensiones de la unidad. El más usado en la albañilería confinada es la de tipo King Kong 09 x 13 x 23 cm (espesor x ancho x largo), también hay semi – King Kong, entre otros.

Por su porcentaje de vacíos. Tenemos:

- Unidad de Albañilería Hueca: El área de los huecos con respecto al área total de la unidad en cualquier plano paralelo a la superficie de asiento es mayor al 30%.
- Unidad de Albañilería Sólida (o Maciza): El área de los huecos relación al área total de la unidad en cualquier plano paralelo a la superficie de asiento es mínimo al 30%.
- Unidad de Albañilería Pandereta: Unidad tubular, cuyos alveolos son paralelas a la superficie del asiento, son empleados en la construcción de muros no portantes (tabiquerías).

1.3.2.2.6. Procedimiento de construcción.

A. Especificaciones Generales

La construcción de albañilería debe ser con mano de obra calificada, y se debe cumplir las siguientes exigencias básicas:

- La construcción de los muros será a plomo y en línea. No se infringirá contra la integridad del muro recién asentado.
- En la albañilería con unidades asentadas con mortero, todas las juntas horizontales y verticales quedarán completamente llenas de mortero. El espesor de las juntas de mortero será como mínimo 10 mm y el espesor máximo será 15 mm o dos veces la tolerancia dimensional en la altura de la unidad de albañilería más 4mm, lo que sea mayor. En las juntas que contengan refuerzo horizontal, el espesor mínimo de la junta será 6 mm más el diámetro de la barra.
- Se mantendrá el temple del mortero mediante la sustitución del agua que se pueda haber evaporado, por una sola vez. El plazo del retemplado no superará al de fragua inicial del cemento.
- Las unidades de albañilería se asentarán con las superficies limpias de polvo y sin agua libre. El asentado se realizará presionando verticalmente las unidades, sin bambolearlas. El tratamiento de las unidades de albañilería previo al asentado será el siguiente:

- a. Para concreto y sílico-calcáreo: pasar una brocha húmeda sobre las caras de asentado o rociarlas.
- b. Para arcilla: de acuerdo a las condiciones climatológicas donde se encuentra ubicadas la obra, regarlas durante media hora, entre 10 y 15 horas antes de asentarlas. Se sugiere que la succión al instante de asentarlas esté comprendida entre 10 a 20 gr/200 cm²- min.
- Para el asentado de la primera hilada, la superficie de concreto que servirá de asiento (losa o sobrecimiento según sea el caso), se preparará con anterioridad de forma que quede rugosa; luego se limpiará de polvo u otro material suelto y se la humedecerá, antes de asentar la primera hilada.
- No se asentará más de 1,30 m de altura de muro en una jornada de trabajo. En el caso de utilizarse unidades totalmente sólidas (sin perforaciones), la primera jornada de trabajo culminará sin llenar la junta vertical de la primera hilada, este llenado se realizará al iniciarse la segunda jornada. En el caso de la albañilería con unidades apilables, se podrá levantar el muro en su altura total y en la misma jornada deberá colocarse el concreto líquido.
- Las juntas de construcción entre jornadas de trabajos estarán limpias de partículas sueltas y serán previamente humedecidas.
- El tipo de aparejo a utilizar será de soga, cabeza o el amarre americano, traslapándose las unidades entre las hiladas consecutivas.
- El procedimiento de colocación y consolidación del concreto líquido dentro de las celdas de las unidades, como en los elementos de concreto armado, deberá garantizar la ocupación total del espacio y la ausencia de cangrejeras. No se permitirá el vibrado de las varillas de refuerzo.
- Las vigas peraltadas serán vaciadas de una sola vez en conjunto con la losa de techo.

1.3.3. Impacto ambiental.

La "Ley del Sistema Nacional de Evaluación del Impacto Ambiental y su Reglamento" - N° 27446, tiene como objeto prevenir, mitigar y restaurar daños ambientales producidos en proyectos públicos y privados que involucren acciones, construcciones u obras que puedan ocasionar impactos ambientales negativos. (MINAM, 2011)

1.3.3.1. Impacto ambiental positivo.

Para la naturaleza, el proyecto de cemento con cenizas de cascarilla de arroz añade beneficios, entre ellos:

- El uso de este residuo genera ahorro de energía no renovable, al utilizar menos cemento, por ende, menor energía, favoreciendo la protección, preservación y sostenibilidad del medio ambiente.
- Reducción de la emisión de contaminantes al ser incinerada.
- Disminución del uso de agregados en el concreto al utilizar puzolanas, frenando así la extracción de este material de los ríos.
- Desarrollo de una industria amigable con el ambiente está orientada al reciclaje, transporte y almacenamiento de la cascarilla de arroz para su aprovechamiento.
- Ejercer una política de disposición final de residuos que impidan y minimicen los riesgos para los seres humanos y el medio ambiente, contribuye a la protección ambiental eficaz y al crecimiento económico sustentable.

1.3.3.2. Impacto ambiental negativo.

El almacenamiento o arrojo de la cascarilla de arroz en pampas aledañas a las plantas agroindustriales, al descomponerse contamina el ambiente y afecta la salud de la población.

Los gases producidos por la incineración de estas cáscaras son principalmente dióxido de carbono (CO₂), metano (CH₄) y otros como óxido nitroso (N₂O), monóxido de carbono (CO), hidrocarburos (HC), óxidos de nitrógeno, óxidos de azufre y agua.

La elevada concentración temporal de las emisiones de gases y partículas producidas por la incineración, causa afectaciones respiratorias y molestias en los pobladores residentes.

1.3.4. Seguridad y salud ocupacional.

La Norma G.050 Seguridad Durante la Construcción, del Reglamento Nacional de Edificaciones (2016), indica que toda obra de construcción debe detallar un Plan de Seguridad y Salud en el Trabajo (PSST) que comprenda mecanismos técnicos y administrativos necesarios para garantizar la integridad física y salud de los trabajadores, con el fin de generar un ambiente laboral seguro para el personal expuesto durante la ejecución de las actividades.

Cabe resaltar que en toda obra se debe contar con las opciones necesarias que aseguren la atención inmediata y traslado a centros médicos, de las personas heridas o súbitamente enfermas.

Es importante disponer de medidas para precaver la generación de polvo en el área de trabajo y en caso de no ser posible disponer de protección colectiva e individual.

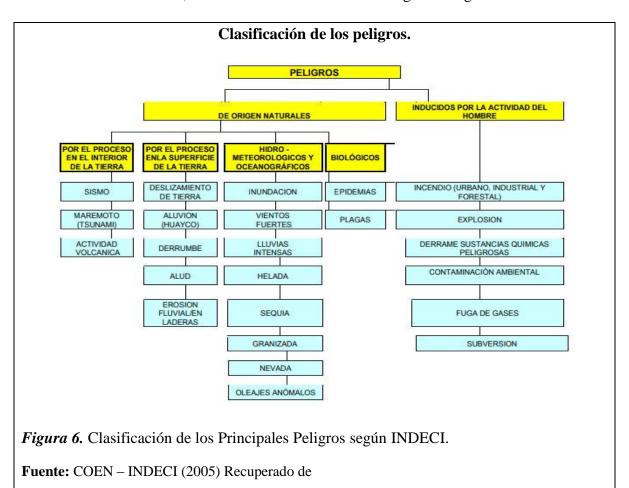
Para el tamizado de las cenizas de cáscara de arroz y demás ensayos realizados en el Laboratorio de Ensayos de Materiales, de la Universidad Señor de Sipán, en este informe de investigación, se utilizaron los siguientes equipos de protección personal: guantes, mascarillas, zapatos de seguridad; como se muestran en la siguiente figura.

Uso de EPP durante procedimiento de tamizado de cenizas de cáscaras de arroz.

Figura 5. Equipos de protección individual necesarios para realizar ensayos de materiales.

Fuente: Elaboración propia.

1.3.5. Gestión de riesgos y prevención de desastres.


Un desastre es un suceso que produce daño o destrucción. Por ello, el Instituto Nacional de Defensa Civil (2006), propone una Gestión del Riesgo de Desastres, orientada a la planificación de programas o actividades para evitar, reducir y prevenir los efectos y peligros de los desastres.

Esta gestión se basa en conocimientos, medidas, acciones y procedimientos que, conjuntamente con el uso racional de recursos humanos y materiales permitan a la

población afectada recuperar su nivel de funcionamiento después un impacto; y consta de tres fases:

- La Prevención (Antes): la Estimación del Riesgo y la Reducción del Riesgo;
- **La Respuesta** (Durante): ante las Emergencias (incluye la atención propiamente dicha, la evaluación de daños y la rehabilitación);
- La Reconstrucción (Después).

Así mismo, el INDECI manifiesta que existen 2 tipos de peligros que afectan a un área o población; el peligro natural que es generado por un fenómeno natural, por ejemplo, los terremotos, maremotos, inundaciones, entre otros; y el peligro tecnológico que es provocado por la actividad humana, como incendios urbanos o forestales, explosión y contaminación ambiental, etc. Todo ello se sintetiza en la siguiente figura:

http://sinpad.indeci.gob.pe/UploadPortalSINPAD/man_bas_est_riesgo.pdf

1.3.6. Estimación de costos.

La estimación de costos se define como la evaluación cuantitativa de todos los recursos monetarios asignados para completar las fases de un proyecto. Dichos recursos pueden ser humanos, materiales, de servicios e instalaciones y probables costos por emergencias y/o eventualidades.

Esta evaluación es un proceso iterativo; su precisión aumenta conforme avanza el proyecto. Para ello, puede necesitar de información relacionadas a los procesos de planificación de otras áreas, entre ellos el cronograma de avance del proyecto, registro de riesgos y las asignaciones de personal.

Algunas organizaciones ejecutantes de proyectos no cuentan con estimadores formales de costos. En estos casos, será necesario que el equipo encargado del proyecto aporte los recursos y la experiencia necesarios para realizar este proceso. (Gbegnedji, 2017)

Figura 7. Proceso para la estimación de costos de un proyecto.

Fuente: Gbegnedji (2017)

Recuperado de https://www.gladysgbegnedji.com/estimar-los-costos-del-proyecto/

1.3.7. Normativa empleada.

1.3.7.1. Agregado fino.

1.3.7.1.1. Método de ensayo para determinar el Análisis granulométrico del agregado fino, grueso y global (NTP 400.012).

La presente Norma Técnica Peruana establece el método para la determinación de la distribución por tamaño de partículas del agregado fino.

La finalidad del ensayo granulométrico es diseñar la curva granulométrica y el Módulo de Fineza del agregado fino por tamizado.

A. Curva Granulométrica

Representación gráfica de la granulometría y Proporciona una visión objetiva de la distribución de tamaños del agregado. Se obtiene llevando en las abscisas (eje X) los logaritmos de las aberturas de los tamices y en las ordenadas (eje Y) los porcentajes que pasan o sus complementos a 100, que vienen hacer los retenidos acumulados. (INDECOPI, 2013)

B. Módulo de finura (MF)

Se obtiene por la suma de los Porcentajes acumulados de material de una muestra de agregado en cada uno de los Tamices de la serie especificada y dividido por 100. (INDECOPI, 2013)

Módulo de Finura (M. F.) =
$$x = \frac{\sum \% \text{ retenido acumulado}}{100}$$

1.3.7.1.2. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino (NTP 400.022).

Se basa en la norma ASTM C 127, que tiene por objetivo determinar el peso específico y la absorción del agregado fino. El peso específico es la característica generalmente usada para el cálculo del volumen ocupado por el agregado en diferentes mezclas que contienen agregados incluyendo el concreto de cemento Pórtland. Los valores de absorción se usan para calcular el cambio en la masa de un agregado debido al agua absorbida en los espacios de los poros dentro de las partículas constituyentes. (INDECOPI, 2013)

1.3.7.1.3. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados (NTP 400.017).

Basado en la norma ASTM C-29, establece la determinación de la densidad de masa ("Peso unitario") del agregado en condición suelto o compactado, y calcula los vacíos entre partículas en agregados finos, gruesos o mezcla de ambos basados en la misma determinación. (INDECOPI, 2011)

1.3.7.1.4. Método de ensayo para determinar el contenido de humedad total evaporable de agregados por secado (NTP 339.185).

Se basa en la Norma ASTM C-535 y determina el porcentaje total de humedad en una muestra de agregado fino o grueso por secado. La humedad evaporable incluye la humedad superficial y la contenida en los poros del agregado, pero no considera el agua que se combina químicamente con los minerales de algunos agregados y que no es susceptible de evaporación, por lo que no está incluida en el porcentaje determinado por este método. (INDECOPI, 2013)

1.3.7.2. Unidad de albañilería.

Todos los ensayos del presente acápite se encuentran en la norma de UNIDADES DE ALBAÑILERÍA. **Métodos de muestreo y ensayo de ladrillos de arcilla usados en albañilería – NTP 399.613**, basado en la Norma ASTM C 67:2003, y es aplicada para el control de calidad de los ladrillos de arcilla cocida usados como unidades de albañilería. (INDECOPI, 2017)

- Método de ensayo para determinar la variación dimensional de la unidad de albañilería.
- Método de ensayo para determinar el porcentaje del área de vacíos en la unidad de albañilería.
- Método de ensayo para determinar la absorción de la unidad de albañilería.
- Método de ensayo para determinar la succión de la unidad de albañilería.
- Método de ensayo para determinar la resistencia a la compresión de la unidad de albañilería (F´_b) de la unidad de albañilería.

1.3.7.3. *Mortero*.

La especificación normalizada para morteros NTP 399.610, se basa en la Norma ASTM C270 y establece las especificaciones para morteros empleados en la construcción de obras de albañilería reforzada y no reforzada. (INDECOPI, 2013)

1.3.7.3.1. Mortero en estado fresco.

A. Procedimiento para la obtención de pastas y morteros de consistencia plástica por mezcla mecánica (NTP 334.003)

Establece las características geométricas de las partes de la mezcladora, su configuración y régimen de trabajo. Se establecen las condiciones ambientales y el procedimiento a seguir para las mezclas de pastas y morteros. (INDECOPI, 2017)

B. Método de ensayo para determinar la fluidez de morteros de cemento Pórtland (NTP 334.057)

Se fundamenta en la Norma ASTM C1437; tiene como objetivo determinar la fluidez de morteros de cemento Pórtland y de otros materiales cementosos.

Como la fluidez no se incorpora generalmente en las especificaciones del cemento Pórtland, es habitual emplearla en ensayos estandarizados que necesiten un mortero con contenido de agua adecuado que proporcione un nivel especificado de fluidez. (INDECOPI, 2011)

C. Método de ensayo para la determinación del contenido de aire en morteros de cemento hidráulico (NTP 334.048)

Se basa en la Norma ASTM C 185; su objetivo es evaluar si el cemento hidráulico cumple los requerimientos de inclusión de aire de la especificación de cemento hidráulico aplicable. (INDECOPI, 2014)

D. Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del hormigón (concreto). (NTP 339.046)

Se fundamenta en la Norma ASTM C138 y determinar el peso compactado del mortero fresco que ocupa un volumen unitario, además se utiliza para determinar o

comprobar el rendimiento de las mezclas, la capacidad de materiales en la mezcla; el contenido de aire. Asimismo, proporcionarnos una percepción de la calidad del mortero y de su grado de compactación. (INDECOPI, 2008)

1.3.7.3.2. Mortero en estado endurecido.

A. Método de ensayo para determinar la resistencia a la compresión de morteros de cemento Pórtland usando especímenes cúbicos de 50 mm de lado (NTP 334.051)

Basado en la Norma ASTM C109; tiene como objetivo determinar la resistencia del mortero empleando especímenes cúbicos de 50 mm, los resultados se emplean para comprobar el cumplimiento de requisitos. (INDECOPI, 2013)

B. Método de prueba estándar para la resistencia a la flexión de los morteros de cemento hidráulico (ASTM C348)

La NTP 334.120, basada en esta norma internacional, establece el método de ensayo normalizado para determinar la resistencia a la flexión de mortero de cemento hidráulico. (ASTM, 2002)

1.3.7.4. Albañilería simple.

1.3.7.4.1. Método de ensayo en laboratorio para la determinación de la resistencia a la adherencia por flexión de elementos de albañilería (NTP 334.129).

Basado en la Norma ASTM C1072; método para la determinación de la resistencia de unión a la flexión de la albañilería no reforzada mediante el ensayo físico de cada junta del prisma. (INDECOPI, 2016)

1.3.7.4.2. Método de prueba estándar para la Resistencia a la compression de prismas de albañilería (ASTM C1314).

En base a esta norma, la NTP 399.605 especifica el método para comprobar que los materiales (prismas) de albañilería empleados en la construcción proporcionan resultados que cumplen con la resistencia a la compresión especificada. (ASTM, 2014)

1.3.7.4.3. Método de ensayo de compresión diagonal en muretes de albañilería (NTP 399.621).

Se fundamenta en la Norma ASTM E519, determinar la resistencia a la compresión diagonal (corte) en muretes de albañilería, produciendo una grieta por tracción diagonal. (INDECOPI, 2004)

1.3.7.5. Ceniza de la cáscara de arroz (CCA).

1.3.7.5.1. Especificación estándar para cenizas volantes de carbón y puzolanas naturales en bruto o calcinadas para su uso en Concreto (ASTM C618).

Esta especificación cubre cenizas volantes de carbón y en bruto o puzolana natural incinerada para aprovechar en el concreto el cual sea cementoso o acción puzolánica, o ambas, es deseable, en el que distintas propiedades habitualmente atribuidas a las cenizas volantes o puzolanas alcanzan ser deseadas, o donde ambos objetivos se lograrán. (ASTM, 2012)

1.3.7.5.2. Método de prueba estándar para la densidad del cemento hidráulico (ASTM C188).

Esta norma fue empleada para determinar la densidad de las cenizas de cáscaras de arroz. (ASTM, 2003)

1.3.8. Estado de Arte.

1.3.8.1. Mortero con escorias siderúrgicas.

La escoria siderúrgica es un material fundido producto de reacciones químicas entre la materia prima, materiales añadidos al horno e impurezas oxidadas durante el refinado del metal. La más empleada en el campo de la construcción proviene de la fabricación del hierro y el acero.

A pesar de tener distintas procedencias (hierro, acero, níquel, manganeso, cobre, entre otros), los numerosos tipos de escorias poseen funciones metalúrgicas semejantes, resultando ser la suma de tres propiedades: bajo punto de fusión, actividad química y baja densidad.

Díez (2017) mediante un estudio intenta demostrar la capacidad de la escoria de hornos de cubilote como sustitución del cemento en distintas proporciones, para formar morteros empleados en revestimientos interiores de tubos de fundición.

Estas escorias presentan una masa más o menos vidriosa, relativamente inerte y una estructura química compleja. Compuesta de óxidos metálicos del proceso de fusión, refractarios fundidos procedentes de las paredes del horno, arena y otros materiales. Su

valoración es la única solución para impedir que se cataloguen como desecho y se arrojen en vertederos.

Escoria procedente de la fundición.

Figura 8. Barril con escoria procedente de la fundición.

Fuente: Díez, J. (2017). Estudio de investigación de morteros con sustitución de escorias siderúrgicas utilizados en revestimientos interiores de tubos de fundición. Santander, España.

Para emplear este residuo en la composición de un mortero, se requiere procesar mediante trituración y molienda, reduciendo el tamaño de sus partículas hasta el tamaño adecuado.

Escoria molida.

Figura 9. Estado final dela escoria molida.

Fuente: Díez, J. (2017). Estudio de investigación de morteros con sustitución de escorias siderúrgicas utilizados en revestimientos interiores de tubos de fundición. Santander, España.

Los resultados obtenidos fueron favorables en relación al 20 % de sustitución, superando notablemente las exigencias resistentes del mortero patrón. Sin embargo,

aunque el 50 % de sustitución cumple con las exigencias resistentes a la edad de 28 días, las resistencias obtenidas fueron inferiores a las del mortero patrón.

1.3.8.2. Mortero con tereftalato de polietileno (plástico).

Más conocido por sus siglas en inglés PET (polyethylene terephthalate) es un tipo de plástico muy usado en envases de bebidas y textiles, que se caracteriza por su pureza, alta resistencia y tenacidad.

Símbolo de PET.

Figura 10. Símbolo para identificar envases de PET.

Fuente: Secretaría del Medio Ambiente.

EL PET se encuentra en envases muy transparentes, delgados, verdes o cristal; por ejemplo: envases de refresco, aceite combustible, agua purificada, alimentos y aderezos, medicinas, agroquímicos, entre otros.

La utilización del PET como adición en la mezcla del mortero, trae consigo importantes ventajas las cuales son: material de construcción de muy bajo costo, construcciones térmicas y de menor peso, uso eficiente de recursos disponibles y la construcción de viviendas para personas de bajos recursos económicos. (Morales, 2016)

Figura 11. Proceso de obtención del agregado PET reciclado.

Fuente: Morales, M. (2016). Estudio del comportamiento del concreto incorporando PET

reciclado (tesis de pregrado). Universidad Nacional de Ingeniería, Lima, Perú.

Estudios como el de Edquén y Mera (2015), en donde reemplazan el PET con

10%, 20% y 30% respecto al peso de la arena; tienen como resultado que la proporción

ideal de sustitución es el 20%, debido a que las características obtenidas cumplen con los

parámetros establecidos por las Normas Técnicas.

1.3.9. Definición de términos.

Absorción: Acción de absorber.

Adición: Acción de añadir.

Adherencia: Propiedad de la materia por la cual se unen y plasman dos superficies.

Albañilería: Técnica para construir edificios y otras obras en las que se usan piedras,

ladrillos, arena y materiales semejantes.

Análisis: Investigación detallada de un objeto para conocer sus características o

cualidades, o su estado, y extraer conclusiones.

Arcilla: La arcilla es una roca sedimentaria descompuesta constituida por agregados de

silicatos de aluminio hidratados.

Arroz: Se trata de un cereal considerado alimento básico en muchas culturas culinarias.

ASTM: American Society for Testing and Materials (sociedad Americana). Organización

de normas internacionales que desarrolla y publica acuerdos voluntarios de normas

técnicas para una amplia gama de materiales, productos, sistemas y servicios.

Cantera: Una cantera es una explotación minera, generalmente a cielo abierto, en la que se

obtienen rocas industriales, ornamentales o áridos.

Cenizas: Producto de la combustión y/o incineración de algún material.

Cemento: Conglomerante formado a partir de una mezcla de caliza y arcilla calcinadas y

posteriormente molidas, que tiene la propiedad de endurecerse después de ponerse en

contacto con el agua.

Cáscaras: Capa protectora de una fruta o vegetal, del cual puede desprenderse.

52

Comparar: Examinar (una o más cosas) con otra u otras para establecer sus relaciones, diferencias o semejanzas.

Compresión: Acción de comprimir o comprimirse.

Conglomerado: Material constituido por fragmentos o polvo de una o varias sustancias (arena, arcilla, madera, etc.) prensadas y endurecidas con un aglutinante, como cemento o cal, que se emplea en la construcción.

Construcción: En los campos de la arquitectura e ingeniería, la construcción es el arte o técnica de fabricar edificios e infraestructuras.

Curado: Término relacionado a mantener el hormigón o el mortero a una temperatura y humedad adecuadas para asegurar su hidratación y endurecimiento adecuados.

Desecho: Residuo del que se prescinde por no tener utilidad.

Diseño: Actividad creativa que tiene por fin proyectar objetos que sean útiles y estéticos.

Ensayo: Prueba que se hace para determinar si una cosa funciona o resulta como se desea.

Estándar: Que sirve de patrón, modelo o punto de referencia para medir o valorar cosas de la misma especie.

Flexión: Tipo de deformación que presenta un elemento estructural alargado en una dirección perpendicular a su eje longitudinal.

Granulometría: Medición y graduación que se lleva a cabo de los granos de una formación sedimentaria.

Humedad: Condición o estado de húmedo.

Incineración: Combustión completa de la materia orgánica hasta su conversión en cenizas.

Junta: Espacio que queda entre las dos superficies de los sillares o ladrillos inmediatos unos a otros de una construcción que se llena de mortero o de cemento a fin de unirlos y ligarlos sólidamente.

Ladrillo: Pieza de arcilla cocida, generalmente con forma de prisma rectangular, que se usa en la construcción de muros, paredes, pilares, etc.

Método: Conjunto de pasos ordenados que se emplea principalmente para hallar nuevos

conocimientos en las ciencias.

Mezcla: Cosa que resulta de mezclar distintas materias o elementos.

Mezcladora: Aparato o máquina que sirve para mezclar diversas sustancias.

Mortero: Mezcla de diversos materiales, como cal o cemento, arena y agua, que se usa en

la construcción para fijar ladrillos y cubrir paredes.

Muestra: Parte o cantidad pequeña de una cosa que se considera representativa del total y

que se toma o se separa de ella con ciertos métodos para someterla a estudio, análisis o

experimentación.

Murete: Muro bajo o pequeño.

Pila: Son prismas compuestos por dos o más hiladas de unidades enteras (ladrillos o

bloques) asentadas una sobre la otra mediante mortero.

Puzolana: Las puzolanas son materiales silíceos o alumino-silíceos a partir de los cuales

se producía históricamente el cemento.

Resistencia: Es la capacidad de los cuerpos para resistir las fuerzas aplicadas sin romperse.

Residuo: Materia inservible que resulta de la descomposición o destrucción de una cosa.

Succión: Absorción de algo, especialmente de un líquido o un gas.

Sustitución: Acción de sustituir.

Variación: Acción de variar.

1.4. Formulación del Problema

¿En qué contribuirá el empleo de cenizas de cáscara de arroz (CCA) como adición

y sustitución de un cierto porcentaje del cemento para la preparación de mortero

modificado?

54

1.5. Justificación

1.5.1. Justificación tecnológica.

Indicar que porcentaje de cenizas de cáscara de arroz (CCA), se debe adicionar o sustituir al cemento para la preparación del mortero, el cual debe cumplir con las propiedades Físico – Mecánicas del mortero tradicional o las propiedades exigidas por las normas.

Al implementar las cenizas de la cáscara de arroz en la elaboración del mortero con los elementos tradicionales (agua, agregado fino y cemento Pórtland), el producto de esta combinación será muy importante porque es algo innovador, con un precio muy accesible por lo que es un material de residuo.

Las empresas constructoras y las comunidades tendrán la facilidad de construir con seguridad sus propios proyectos que cumpla con la calidad y la disponibilidad económica.

Por ello es esencial el estudio de las propiedades principales del mortero cuando se agrega la ceniza de la cáscara de arroz, y como podría contribuir éste a la mezcla, en cuanto a la resistencia, durabilidad, trabajabilidad y uso en la construcción.

1.5.2. Justificación socio – económica.

El fin de esta investigación, es de colaborar a mejorar la calidad de vida de la población en zonas rurales donde su economía es baja y se encuentran alejados, lo que les impide la obtención de cemento o agregados pétreos, ya sea por el costo o por la localización de éstos.

Con lo descrito anteriormente, el empleo de las cenizas de la cáscara de arroz (CCA) adicionando y sustituyendo cierta cantidad del cemento cumpliría una función importante en la construcción, colaborando en el ahorro de materia prima. Al ser más ligero, perfecciona el proceso de operación y la productividad (horas hombre por m²).

1.5.3. Justificación ambiental.

En las últimas décadas, se ha buscado el aprovechamiento del uso de residuos no utilizados por las personas, por ello el desecho de las mismas causan el deterioro y contaminación ambiental. Debido al apogeo de la construcción que existe en la actualidad la demanda de materiales ha incrementado de manera acelerada. Esta práctica produce la

apertura de grandes agujeros de diferentes superficies y profundidades, por lo que cuando se gasta todo este recurso (agregados), son abandonados e inmediatamente buscan otro sitio para explotar, ocasionando un gran impacto ambiental: varía, daña y modifica severamente el medio natural.

En la actualidad muchas industrias arroceras que generan como desecho la cascarilla del arroz no aprovechan este material y dejan tirado o abandonado en la intemperie, éstos podrían ser usados en el campo de la construcción y a la vez reducir costos en la obra, adicionando y sustituyendo un porcentaje del cemento en la mezcla de mortero modificado; ayudando así a disminuir el impacto ambiental producido por estos residuos.

1.6. Hipótesis

Si empleamos un porcentaje de cenizas de cáscara de arroz como adición y sustitución del cemento, entonces mejoraremos las propiedades físico – mecánicas del mortero modificado.

1.7. Objetivos

1.7.1. Objetivo general.

Determinar las propiedades físico – mecánicas del mortero modificado con cenizas de cáscara de arroz (CCA), para ser empleado en elementos estructurales y no estructurales.

1.7.2. Objetivos específicos.

- 1. Determinar composición química da las Cenizas de Cáscaras de Arroz.
- 2. Realizar ensayos de agregado fino y unidades de albañilería.
- 3. Realizar el diseño de mezcla del mortero patrón y morteros con sustitución y adición de cenizas de cáscaras de arroz.
- 4. Determinar y analizar las propiedades físico mecánicas de la mezcla del mortero patrón y modificado con cenizas de cáscara de arroz (CCA) empleando cemento Pórtland tipo I.
- 5. Determinar las propiedades mecánicas de la albañilería simple mediante los ensayos correspondientes.

6.	Elaborar la	propuesta	económica	de	diseño	de	mortero	empleando	cenizas	de
	cáscara de a	rroz.								

II.	MATERIAL Y MÉTODO	

2.1. Tipo y diseño de Investigación

2.1.1. Tipo de Investigación.

Debido a que se llevó a cabo un análisis de datos, con en el que se contestó las preguntas de la investigación y se comprobó la hipótesis, implicando el diseño de un nuevo producto, el tipo de investigación es Cuantitativa – Tecnológica.

2.1.2. Diseño de Investigación.

Según Borja (2012), existen dos diseños de investigación científica para demostrar la hipótesis, los cuales son: diseño no experimental y diseño experimental.

En este caso, la hipótesis planteada se verificará mediante la manipulación deliberada de la variable independiente, convirtiéndose así en un diseño experimental.

Como se trata de un diseño experimental, se menciona que existen tres tipos de investigación experimental: pre- experimentos, cuasi experimentos y experimentos puros.

Debido a los ensayos que fueron realizados se comprobó la hipótesis, por ello, se determinó que esta investigación es tipo experimental puro.

2.2. Población y muestra

2.2.1. Población.

La población de esta investigación queda determinada por los elementos principales que participan en la elaboración del mortero, adicionalmente los ladrillos y los residuos originados por la agricultura, en este caso la cáscara de arroz incinerada (CCA), teniendo en cuenta las normas NTP 399.613 y la NTP 399.610.

2.2.2. Muestra.

La muestra está conformada por los ensayos realizados en el Laboratorio de Materiales de la USS; en estado fresco y endurecido del mortero, considerando porcentajes de sustitución y adición de 5%, 10% y 15% de cenizas de cáscaras de arroz respecto al peso del cemento para distintas proporciones, tales como 1:3.5; 1:4; 1:5; 1:6.

2.2.3. Muestreo de ensayos.

Tabla 9 *Número de muestras a ensayar en mortero en estado fresco.*

		s al mortero en estad			
Tipo de	Muestras	Contenido de	Peso unitario	Fluidez	Total
mortero		aire			
Mortero patrón	1:3.5	1	1	1	3
	1:4	1	1	1	3
	1:5	1	1	1	3
	1:6	1	1	1	3
Mortero	Sust. 5% de cca.	4	4	4	12
modificado	Sust. 10% de cca.	4	4	4	12
	Sust. 15% de cca.	4	4	4	12
	Adic. 5% de cca.	4	4	4	12
	Adic. 10% de cca.	4	4	4	12
	Adic. 15% de cca.	4	4	4	12
		Total de	ensavos en estado	o fresco	84

Fuente: Elaboración propia.

Tabla 10Número de muestras a ensayar en mortero en estado endurecido.

				Ensay	os al mo	rtero en e	estado en	durecido			
Tipo de	Muestras		esistencia resión de p cúbicas	probetas		encia a la t idulo de re		Adherencia del Mortero - Ladrillo	Resistencia a la compresión axial	Resistencia a la compresión diagonal en muretes	TOTAL
mortero		Tiempo de curado		Tiempo de curado		Muestra 1:4 Tiempo de curado	Muestra 1:4 Tiempo de curado	Muestra 1:4 Tiempo de curado			
		7 días	14 días	28 días	7 días	14 días	28 días	28 días	28 días	28 días	
	1:3.5	3	3	3	3	3	3	0	0	0	18
Mortero	1:4	3	3	3	3	3	3	3	3	3	27
patrón	1:5	3	3	3	3	3	3	0	0	0	18
	Sust. 5% de cca.	9	9	9	9	9	9	3	3	3	63
	Sust. 10% de cca.	9	9	9	9	9	9	3	3	3	63
Mortero	Sust. 15% de cca.	9	9	9	9	9	9	3	3	3	63
modificado	Adic. 5% de cca.	9	9	9	9	9	9	3	3	3	63
	Adic. 10% de cca.	9	9	9	9	9	9	3	3	3	63
	Adic. 15% de cca.	9	9	9	9	9	9	3	3	3	63
	ccu.						To	otal de ensayos	en estado end	lurecido	441

Fuente: Elaboración propia.

En la presente investigación la muestra está conformada por un total de 525 ensayos a elaborar, los cuales son 84 ensayos para mortero en estado fresco y 441 ensayos para mortero en estado endurecido; lo que permitió realizar un análisis de las propiedades Físico – Mecánico del mortero modificado a base de residuo agrícola (CCA).

2.3. Variables, Operacionalización

2.3.1. Variable Independiente.

Mortero empleando cenizas de cáscaras de arroz

2.3.2. Variable Dependiente.

Diseño de Mortero

2.3.3. Operacionalización.

Tabla 11 *Variable independiente.*

Variable independiente	Dimensiones	Indicadores	Sub-índices	Índice	Técnicas de recolección de datos	Instrumentos de recolección de datos	Instrumentos de medición
	Diseño de Mezclas	Dosificación de Agregado fino	Proporción	m^3			Balanza
	Patrón	Dosificación de Agua	Proporción	Lt			Balanza
	ration	Dosificación de Cemento	Proporción	Bolsas			Balanza
	Diseño de Mezclas	Porcentaje de cenizas de cáscaras de					
	con porcentaje de	arroz como adición y sustitución del	Proporción	%			Balanza
	cenizas de cáscaras de	cemento					
	arroz como adición y	Dosificación de Agregado fino	Proporción	m^3		Planilla de observación (Formatos LEM- USS)	Balanza
	sustitución del	Dosificación de Agua	Proporción	Lt	Observación		Balanza
	cemento	Dosificación de Cemento	Proporción	Bolsas	directa y		Balanza
		Fluidez	Porcentaje	%	análisis de		Mesa de Fluidez
Mortero empleando	Evaluación de propiedades físicas	Contenido de aire	Relación entre masa y volumen	%	documentos		Recipiente cilíndrico
cenizas de cáscaras de arroz (CCA)		Peso unitario	Relación entre masa y volumen	kg/m^3			Recipiente cilíndrico
, ,		Resistencia a la compresión	Relación de fuerza sobre área	kg/cm ²			Prensa
	Evaluación de	Resistencia a la flexión	Relación de fuerza sobre área	kg/cm ²			Prensa
	propiedades	Resistencia a la adherencia por flexión	Relación de fuerza sobre área	kg/cm ²			Prensa
	mecánicas	Resistencia a la compresión de prismas	Relación de fuerza sobre área	kg/cm ²			Prensa
		Resistencia a la compresión diagonal	Relación de fuerza sobre área	kg/cm ²			Prensa
		Óxido de Silicio	${ m SiO_2}$	%			
	Análisis químico de	Óxido de Aluminio	Al_2O_3	%	Análisis de		
	las cenizas de cáscaras	Óxido de Fierro	Fe_2O_3	%	documentos -		
	de arroz	Óxido de Potasio	K_2O	%	Normas		
		Óxido de Calcio	CaO	%			
	Evaluación económica	Costos	Metro cubico	s/.	Observación		Balanza, muretes

Tabla 12 *Variable dependiente.*

Variable dependiente	Dimensiones	Indicadores	Sub-índices	Índice	Técnicas de recolección de datos	Instrumentos de recolección de datos	Instrumentos de medición
	Diseño de	Dosificación de Agregado fino	Proporción	m^3			Balanza
	Mezclas de	Dosificación de Agua	Proporción	Lt			Balanza
	Mortero Patrón	Dosificación de Cemento	Proporción	Bolsas			Balanza
	Evaluación	Fluidez	Porcentaje	%			Mesa de Fluidez
Diseño de	de propiedades físicas	Contenido de aire	Relación entre masa y volumen	%	01	DI	Recipiente cilíndrico
		Peso unitario	Relación entre masa y volumen	kg/m ³	Observación directa y	Planilla de observación	Recipiente cilíndrico
mortero	Evaluación de propiedades	Resistencia a la compresión	Relación de fuerza sobre área	kg/cm ²	análisis de documentos	(Formatos LEM-USS)	Prensa
		Resistencia a la flexión	Relación de fuerza sobre área	kg/cm ²			Prensa
		Resistencia a la adherencia por flexión	Relación de fuerza sobre área	kg/cm ²			Prensa
	mecánicas	Resistencia a la compresión de prismas	Relación de fuerza sobre área	kg/cm ²			Prensa
		Resistencia a la compresión diagonal	Relación de fuerza sobre área	kg/cm ²			Prensa
Fuente:		<i>-</i>	Elaboración				propia.

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

2.4.1. Técnicas para la recolección de datos.

Para recopilar toda la información de campo, existen las siguientes técnicas principales que son la observación y el análisis documental. (Borja, 2012, p.33)

2.4.1.1. Observación directa.

Técnica que permitió evaluar el comportamiento de las mezclas de mortero durante su elaboración, vaciado, curado y posterior ensayo de las unidades cúbicas, compresión diagonal en muretes y compresión axial en pilas.

2.4.1.2. Análisis documental.

A través de uso de distintas fuentes de información como lo son: revistas, textos, tesis, artículos, noticias y revisión de Normas Técnicas Internacionales y Peruanas que rigen la construcción, en especial el Reglamento Nacional de Edificaciones (RNE).

2.4.2. Instrumentos para la recolección de datos.

Para registrar observaciones, datos y resultados de las mediciones de las variables, se hizo uso de Guía de observación y de análisis documental.

2.4.2.1. Guías de observación.

Formatos proporcionados por el Laboratorio de Ensayos de Materiales de la Universidad Señor de Sipán, donde se puede registrar todos los datos obtenidos de los ensayos y llevar a cabo un control eficiente de los resultados, y así analizar de forma correcta para llegar a las conclusiones verídicas de la investigación.

2.4.2.1.1. Agregado fino.

- Formato para el análisis granulométrico. Ver anexo 3.1.1
- Formato para la determinación del peso específico y absorción. Ver anexo 3.1.2
- Formato para determinar el contenido de humedad. Ver anexo 3.1.3
- Formato para determinar el peso unitario suelto y compactado. Ver anexo 3.1.3

2.4.2.1.2. Unidad de Albañilería.

- Formato para determinar la variación dimensional del ladrillo. Ver anexo 3.2.1
- Formato para determinar la succión del ladrillo. Ver anexo 3.2.2
- Formato para determinar la absorción del ladrillo. Ver anexo 3.2.3
- Formato para determinar el porcentaje de vacíos. Ver anexo 3.2.4

- Formato para determinar la resistencia a la compresión (F'_b). Ver anexo 3.2.5

2.4.2.1.3. *Mortero*.

A. Mortero en estado fresco

- Formato para determinar la fluidez del mortero. Ver anexo 3.4.1.1
- Formato para determinar el peso unitario. Ver anexo 3.4.1.2
- Formato para determinar el contenido de aire. Ver anexo 3.4.1.3

B. Mortero en estado endurecido

- Formato para determinar la resistencia a la compresión. Ver anexo 3.4.2.1
- Formato para determinar la resistencia a la flexión. Ver anexo 3.4.2.2

2.4.2.1.4. Albañilería simple.

- Formato para determinar la resistencia a la adherencia por flexión. Ver anexo 3.5.1
- Formato para determinar la resistencia a la compresión en pilas. Ver anexo 3.5.2
- Formato para determinar la resistencia a la compresión diagonal en muretes. Ver anexo 3.5.3

2.4.2.1.5. Cenizas de cáscaras de arroz.

- Formato para determinar el peso específico. Ver anexo 3.6.1
- Formato para determinar el peso unitario suelto y compactado. Ver anexo 3.1.3
- Formato para determinar el contenido de humedad. Ver anexo 3.1.3

2.4.2.2. Guía de análisis documental.

Tabla 13Guía de Normas Técnicas utilizas en la presente investigación.

Normativa empleada y descripción	Norma	
I. Agregados		
Método de ensayo para determinar el Análisis granulométrico	NTP 400.012	
del agregado fino, grueso y global.	NITTO 400 000	
Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino.	NTP 400.022	
Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en	NTP 400.017	
los agregados.		
Método de ensayo para determinar el contenido de humedad	NTP 339.185	
total evaporable de agregados por secado.		
II Unidad de albañilería		

Unidades de albañilería. Métodos de muestreo y ensayo de ladrillos de arcilla usados en albañilería.	NTP 399.613
III. Mortero	
Especificación normalizada para morteros. III.I Mortero en estado fresco	NTP 399.610
Procedimiento para la obtención de pastas y morteros de consistencia plástica por mezcla mecánica.	NTP 334.003
Método de ensayo para determinar la fluidez de morteros de cemento Pórtland.	NTP 334.057
Método de ensayo para la determinación del contenido de aire en morteros de cemento hidráulico.	NTP 334.048
Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del hormigón (concreto).	NTP 339.046
III. II. Mortero en estado endurecido	
Método de ensayo para determinar la resistencia a la compresión de morteros de cemento Pórtland usando especímenes cúbicos de 50 mm de lado.	NTP 334.051
Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars.	ASTM C348
IV. Albañilería simple	
Método de ensayo en laboratorio para la determinación de la resistencia a la adherencia por flexión de elementos de albañilería.	NTP 334.129
Standard Test Method for Compressive Strength of Masonry Prisms.	ASTM C1314
Método de ensayo de compresión diagonal en muretes de albañilería.	NTP 399.621
V. Análisis químico cenizas de cáscaras de ar	roz y ensayos
Especificación estándar para cenizas volantes de carbón y puzolanas naturales en bruto o calcinadas para su uso en Concreto.	ASTM C618
Método de prueba estándar para la densidad del cemento hidráulico.	ASTM C188

2.5. Procedimientos de análisis de datos

2.5.1. Diagrama de flujo de procesos.

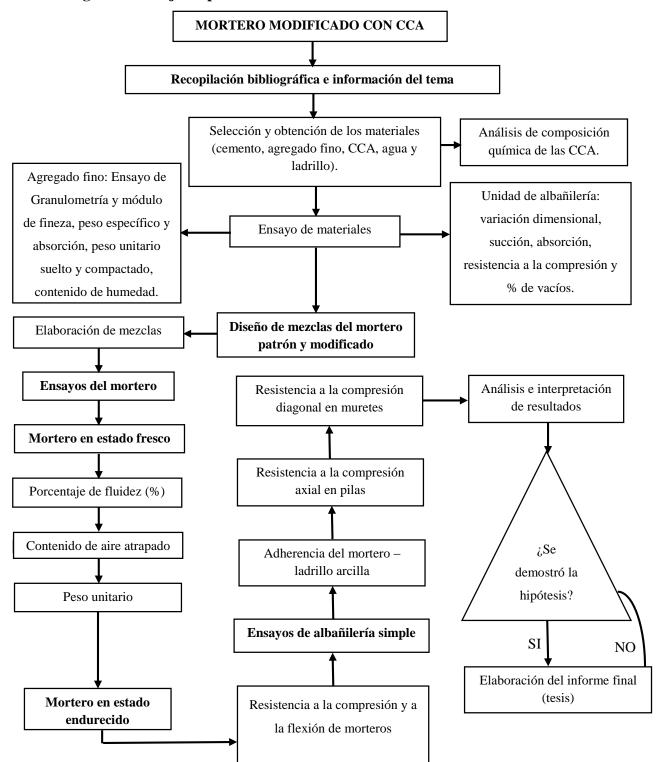


Figura 12. Diagrama de flujo de procesos.

2.5.2. Descripción de procesos.

2.5.2.1. Selección y obtención de los materiales.

- El cemento utilizado para la presente investigación fue Pórtland tipo I. Ver anexo
 1.1
- El agregado fino fue extraído de la cantera La Victoria Pátapo, Lambayeque.
- Las cenizas de cáscaras de arroz fueron obtenidas del Molino "Los Ángeles", ubicado en la Carretera Auxiliar Panamericana Norte 778 del Departamento de Lambayeque. Para utilizarlas en el diseño de mezclas del mortero, estas cenizas se tamizaron por la malla N° 200 (0.075 mm).

Cenizas de cáscaras de arroz.

Figura 13. Cenizas de cáscaras de arroz obtenido directo del horno de fundición.

Fuente: Elaboración propia.

Ceniza de cáscaras de arroz tamizada por la malla N° 200 (0.075mm).

Figura 14. Cenizas de las cáscaras de arroz después de ser tamizada por la Malla Nº 200.

Fuente: Elaboración propia.

- El agua potable utilizada fue proveniente de las instalaciones de la Universidad Señor de Sipán.
- Para los ensayos de la unidad de albañilería, se analizaron 3 marcas de ladrillos: Cerámicos Lambayeque, Ital y Lark. Debido a los resultados obtenidos, para su uso en los ensayos de albañilería simple, se escogió a ladrillos Lark por sus características presentadas en comparación con las otras dos marcas.

2.5.2.2. Ensayo de materiales.

2.5.2.2.1. Cenizas de cáscaras de arroz

A. Peso unitario suelto y compactado

El siguiente ensayo fue determinado mediante la NTP 400.017 AGREGADOS. Este método de ensayo cubre la determinación del peso unitario suelto y compactado.

Donde el procedimiento es igual que para la determinación del peso unitario suelto y compactado del agregado fino, el cual está descrito en el capítulo **2.5.2.2.** – **C.** A continuación se mostrarán fotos del ensayo realizado.

Vaciado de las cenizas de cáscaras de arroz en el molde metálico.

A.1. Peso unitario suelto

Figura 15. Descarga de las cenizas de cáscaras de arroz en el recipiente.

Enrasado del recipiente usando una varilla metálica.

Figura 16. Enrasado del material para ser nivelado y posteriormente pesado.

Fuente: Elaboración propia.

A.2. Peso unitario Compactado

Compactación de la muestra dentro del recipiente.

Figura 17. Apisonamiento de las cenizas de cáscaras de arroz utilizando la varilla.

Compactación de la 1era capa usando martillo de goma.

Figura 18. Compactando la capa de cenizas de cáscaras de arroz usando la comba de goma.

Fuente: Elaboración propia.

B. Peso específico

El ensayo se realizó en base a la norma ASTM C188, la cual describe método a seguirse para la determinación del peso específico. A continuación se describe el procedimiento:

Llenar el frasco Le Chatelier entre las marcas de 0 y 1 ml utilizando kerosene libre de agua. Se hace la primera lectura Lo (lectura inicial).

Luego, se introduce de forma cuidadosa los 54.4 gr de cenizas de cáscaras de arroz al frasco. Se coloca el tapón en el frasco y se hace girar éste suavemente en círculo con una posición inclinada, con la finalidad de liberar el aire atrapado.

Finalmente el frasco es situado en baño maría, hasta alcanzar la temperatura inicial, y se tomó la lectura final (Lf).

Material y equipo utilizado:

- Frasco de Le Chatelier
- Balanza electrónica

- Recipiente para baño de maría, hielo
- Termómetro, embudo
- Cenizas de cáscaras de arroz
- Kerosene

Material y equipo utilizado.

Figura 19. Material y equipo utilizado para realizar el ensayo de peso específico de las CCA.

Fuente: Elaboración propia.

Extracción del aire atrapado.

Figura 20. Extracción del aire atrapado en el frasco Le Chatelier.

Baño maría del frasco Le Chatelier.

Figura 21. Baño maría del frasco Le Chatelier y tomando la temperatura para obtener la Lf.

Fuente: Elaboración propia.

C. Contenido de humedad

El ensayo de contenido de humedad se realizó teniendo en cuenta la NTP 339.185 AGREGADOS. Este método sirve para determinar el contenido de humedad de las cenizas de cáscaras de arroz.

Donde el procedimiento es igual que para la determinación del contenido de humedad del agregado fino, el cual está descrito en el capítulo **2.5.2.2.2.** – **D.** A continuación se mostrarán fotos del ensayo realizado.

Muestra colocada en el horno durante 24 horas.

Figura 22. Cenizas de cáscaras de arroz colocado en el horno durante 24h.

Muestra extráida del horno después de 24h transcurridas.

Figura 23. Cenizas de cáscaras de arroz extraído del horno después de 24 h.

Fuente: Elaboración propia.

2.5.2.2. Agregado fino.

A. Granulometría y módulo de fineza

El ensayo de granulometría del agregado fino se ejecutó teniendo en cuenta la NTP 400.012 y el RNE 070.

Se preparó una muestra de agregado fino en estado seco procedente de la cantera La Victoria. Se realizó un cuarteo de forma manual en partes aproximadamente iguales, de las cuales se extrajeron 600 gramos (gr) de muestra de dos partes opuestas representativas para ser ensayada. Esta última porción de muestra es separada a través de una serie de mallas normalizadas o tamices ordenados en forma descendente, desde una abertura mayor a una abertura menor (3/8", #4, #8, #16, #30, #50, #100 y #200, incluyendo el fondo). En este orden, se determinó el tamaño de partículas que pasan y quedan retenidos en cada tamiz.

Tamizado del agregado fino.

Figura 24. Análisis granulométrico por las distintas mallas normalizadas.

Material y equipo utilizado:

- Tamices estándar
- Balanza
- Cepillo de cerdas o escobilla
- Taras
- Agregado fino
- Espátula

B. Peso específico y absorción

El ensayo se realizó en base a la norma NTP 400.022 AGREGADOS, la cual describe método a seguirse para la determinación del peso específico aparente y real.

Cierta muestra de agregado fino es saturada en agua alrededor 24 h con el fin de llenar los poros. Al término de ese tiempo, se elimina o retira el agua de la muestra, para exponerla a una corriente suave de aire tibio y remover con frecuencia hasta obtener una muestra saturada superficialmente seca. Luego, una muestra de 500 gr es introducida en un recipiente graduado (fiola), que se llena de agua hasta alcanzar casi la marca de 500 cm3, para así determinar el volumen por el método gravimétrico o volumétrico. Una vez realizado el método, esa muestra se vierte en un recipiente que será sometido a horno por 24h para determinar el nuevo peso específico de masa.

Usando los valores obtenidos y mediante las fórmulas de este método de ensayo, es posible calcular la gravedad específica, y la absorción del agregado fino

Saturación del agregado fino.

Figura 25. Saturación del agregado fino durante 24h.

Muestra saturada superficialmente seca.

Figura 26. Muestra del agregado fino saturada superficialmente seca.

Fuente: Elaboración propia.

Método gravimétrico.

Figura 27. Volumen del agregado fino por el método gravimétrico.

Muestra extraída del horno.

Figura 28. Agregado fino seco después de 24 horas de colocado en el horno.

Fuente: Elaboración propia.

Material y equipo utilizado:

- Fiola de 500 cm3
- Balanza
- Molde cónico
- Pistón para compactar
- Horno de 110 °C \pm 5 °C
- Pipeta, embudo
- Recipiente
- Agregado fino

C. Peso unitario suelto y compactado

El ensayo del peso unitario del agregado fino se realizó teniendo como base la NTP 400.017 AGREGADOS. Este método de ensayo cubre la determinación del peso unitario suelto y compactado.

C.1. Peso unitario suelto

El recipiente es llenado con un cucharón hasta rebosar, arrojando el agregado desde una altura no mayor de 50 mm por encima de la parte superior del recipiente. Se deben tomar precauciones para impedir en lo posible la segregación de partículas. El agregado excesivo se elimina con una brocha.

Se determina el peso neto del agregado en el recipiente. Y se obtiene el peso unitario suelto dividiendo el peso neto del agregado entre el volumen del recipiente.

Vaciado del agregado fino en el molde metálico.

Figura 29. Descarga del agregado fino en el recipiente.

Fuente: Elaboración propia.

Enrasado del recipiente usando una varilla metálica.

Figura 30. Enrasado del recipiente.

Fuente: Elaboración propia.

C.2. Peso unitario compactado

Se llena el recipiente en 3 partes proporcionada, cada una de estas partes es apisonado con una varilla, mediante 25 golpes distribuidos uniformemente sobre la superficie, luego se golpea con una comba de goma en la parte exterior del molde. Por último, usando la varilla el recipiente es enrasado de tal manera el agregado sobrante se elimine.

El peso unitario compactado se halla dividiendo el peso del material compactado entre el volumen del recipiente.

Compactación de la muestra dentro del recipiente.

Figura 31. Apisonamiento del agregado fino utilizando la varilla.

Fuente: Elaboración propia.

Compactación de la 1era capa usando martillo de goma.

Figura 32. Compactando la capa del agregado fino usando la comba de goma.

Fuente: Elaboración propia.

Material y equipo utilizado:

- Balanza
- Molde cilíndrico
- Pistón para compactar o varilla para compactar de 5/8" y 60 cm de largo
- Cucharon metálico
- Martillo de goma
- Agregado fino

D. Contenido de humedad

El ensayo de contenido de humedad se realizó teniendo en cuenta la NTP 339.185 AGREGADOS. Este método de ensayo determina el porcentaje total de humedad evaporable en una muestra de agregado fino por secado.

Pesar una cierta cantidad de material en estado natural (Wn), luego es colocado en el horno un tiempo de 24 horas, para obtener el peso en estado seco (Ws), con la finalidad de obtener el contenido de humedad.

Agregado fino colocado en el horno durante 24h.

Figura 33. Muestra colocada en el horno durante 24 horas.

Fuente: Elaboración propia.

Material y equipo utilizado:

- Balanza
- Horno de 110 °C \pm 5 °C
- Guantes
- Taras
- Agregado fino

2.5.2.2.3. Unidades de albañilería

En el presente acápite, se van a desarrollar todos los ensayos que concierne a las unidades de albañilería de acuerdo como indica la NTP 399.613 y el RNE E.070.

Con el propósito de comparación y elección de la marca de unidad de ladrillo a utilizar en esta investigación, se tuvo en cuenta resultados de los diferentes ensayos realizados en laboratorio a ladrillos de arcilla King Kong 18 huecos estándar de las siguientes marcas: Cerámicos Lambayeque, Lark e Ital.

A. Variación dimensional

Las dimensiones Largo x Ancho x Altura se tomaron como el promedio de 4 medidas (en milímetros) hechas en la parte intermedia de las superficies correspondientes.

Según el RNE E.070, la variación dimensional (en porcentaje) de cada arista de la unidad de albañilería se obtendrá como el cociente entre la desviación estándar y el valor promedio de la muestra, multiplicado por 100 (coeficiente de variación). Este ensayo se efectuó en una muestra representativa de 10 unidades en cada una de las ladrilleras seleccionadas.

Medición de los ladrillos usando el vernier electrónico.

Figura 34. Tomando medidas de las caras del ladrillo utilizando el vernier electrónico.

Fuente: Elaboración propia.

De este ensayo depende el espesor de la junta: a mayor variación, mayor espesor de junta y mientras mayor sea el espesor de la junta, menor será la resistencia a compresión y la fuerza cortante del muro de la albañilería.

Material y equipo utilizado:

- Vernier electrónico
- Guantes
- Ladrillos (Cerámicos Lambayeque, Lark e Ital)

B. Porcentaje de área de vacíos

En este ensayo se utilizaron 5 ladrillos enteros por cada marca de ladrillo en total 15 y el procedimiento fue el siguiente: utilizando la arena Ottawa que cumple con los requerimientos técnicos para el presente ensayo, se pasó a llenar los orificios con la arena y después a limpiar el contorno. Finalmente se procedió a sacar la arena de los orificios del ladrillo para luego pesarla y obtener su densidad.

Ensayo de porcentaje de área de vacíos en la unidad de albañilería.

Figura 35. Colocación de la arena Ottawa en los orificios del ladrillo.

Figura 36. Se pesa la arena retenida en los orificios para poder obtener su densidad.

Fuente: Elaboración propia.

Material y equipo utilizado:

- Balanza
- Embudo
- Taras
- Recipiente
- Molde plano
- Guantes
- Cucharon metálico
- Arena Ottawa
- Ladrillos (Cerámicos Lambayeque, Lark e Ital)

C. Absorción

Para este ensayo se utilizaron 5 ladrillos enteros por cada marca de ladrillo. A continuación se describe el procedimiento: Se secaron los ladrillos en el horno a 110°C,

luego de 24 horas fueron retirados, se dejaron enfriar a temperatura ambiente y se pesaron. Se registró el peso seco.

Finalmente se sumergieron los ladrillos en un recipiente con agua durante 24 horas, asegurando que la temperatura del agua esté entre 15°C y 30°C. Se registró la temperatura al inicio y al final del periodo de inmersión. Se registró el peso de inmersión.

Ladrillos en el horno a 110 °C durante 24h.

Figura 37. Secado de los ladrillos en el horno a 110 °C durante 24 horas.

Fuente: Elaboración propia.

Ladrillos sumergidos en agua para calcular su porcentaje de absorción.

Figura 38. Ladrillos sumergidos en agua durante 24 horas.

Fuente: Elaboración propia.

Material y equipo utilizado:

- Balanza, horno de 110 °C \pm 5 °C
- Guantes, franela y poza para sumergirlas
- Ladrillos (Cerámicos Lambayeque, Lark e Ital)

D. Succión

La succión en albañilería es la extracción de agua en la cara de asiento del ladrillo, por lo tanto, cuando la succión es excesiva no se logra adherencias apropiadas entre el mortero y el ladrillo.

Para este ensayo se utilizaron 5 ladrillos enteros por cada una de las marcas, se calculó la succión en las dos superficies de asiento (lisa y rugosa). El procedimiento fue el siguiente: Usando un vernier se midió el ancho y el largo de las dos superficies de asiento (lisa y rugosa).

Medición de las caras de los ladrillos usando el vernier electrónico.

Figura 39. Medición de la superficie de asiento usando el vernier electrónico.

Fuente: Elaboración propia.

Luego se secaron los ladrillos en el horno a una temperatura de 110 °C \pm 5°C durante 24 horas, se dejaron enfriar y se pesaron. Se registró el peso seco.

En un recipiente se colocó la muestra con agua nivelada a nivel de burbuja y, teniendo un tiempo de contacto de 1 minuto el ladrillo con el agua.

Luego se retiró la muestra de la bandeja, se secó el agua superficial con un paño húmedo y se pesó. El pesaje se realizó en un lapso no mayor de 2 minutos. Se registró el peso húmedo.

Succión del ladrillo.

Figura 40. Ensayo de succión de los ladrillos.

Material y equipo utilizado:

- Balanza
- Vernier electrónico
- Franela
- Horno de 110 °C \pm 5 °C
- Recipiente para ser sumergida
- Ladrillos (Cerámicos Lambayeque, Lark e Ital)

E. Resistencia a la compresión F'_b

En este ensayo se utilizaron 5 ladrillos secos enteros por cada marca de ladrillo, a los cuales se les corto por la mitad para ser ensayados.

Luego se midió el largo y ancho de las dos superficies de asiento, posteriormente se colocó el capping de yeso-cemento en ambas caras.

Se utilizó la máquina de compresión axial hidráulica, donde la carga de compresión se aplica perpendicular a las caras de asiento, con una velocidad de desplazamiento entre los cabezales de la máquina de ensayos de 1.25 mm/min; o en otro caso, se controla la velocidad de carga de manera que se llegue a la rotura en unos 3 a 5 minutos.

La resistencia característica a compresión axial de la unidad de albañilería (f'_b) se obtuvo restando una desviación estándar al valor promedio de la muestra.

Ladrillos cortados usando la amoladora.

Figura 41. Cortando los ladrillos por la mitad para ser ensayados.

Fuente: Elaboración propia.

Ladrillos por la mitad con su capping (yeso y cemento).

Figura 42. Colocación de capping a los distintos ladrillos a ensayar.

Fuente: Elaboración propia.

Mitades de ladrillos listos para ser ensayados a compresión.

Figura 43. Muestras listas para ser ensayadas en la compresora hidráulica.

Mitad de ladrillo instalado en el equipo de compresión.

Figura 44. Muestra instalada en la máquina de ensayo.

Fuente: Elaboración propia.

Material y equipo utilizado:

- Amoladora
- Máquina de compresión hidráulica
- Vernier electrónico
- Capping (cemento y yeso)
- Ladrillos (Cerámicos Lambayeque, Lark e Ital)

2.5.2.3. Diseño y elaboración de mezclas de mortero patrón y modificado.

2.5.2.3.1. Diseño de mezclas.

Para trabajar, elaborar y diseñar las mezclas se tuvo en cuenta la fluidez del mortero, que según norma el resultado adecuado debe ser de $110 \pm 5\%$. Por ello se buscó encontrar la relación agua/cemento óptimo para cada dosificación (1:3.5; 1:4; 1:5; 1:6) usada en el mortero patrón, mortero adicionado y sustituido con cenizas de cáscaras de arroz en porcentajes del 5 %, 10% y 15% respecto al peso del cemento, cumpliendo con los requerimientos especificados en la NTP 339.610. "Especificación normalizada para morteros"

Materiales empleados en la preparación del mortero.

Figura 45. Materiales a emplear en las dosificaciones del diseño de mezcla del mortero.

Fuente: Elaboración propia.

2.5.2.3.2. Elaboración de diseño de mezclas.

En base al "Procedimiento para la obtención de pastas y morteros de consistencia plástica por mezcla mecánica", establecido en la NTP 334.003, se ensayaron los materiales previamente a la elaboración de las mezclas de mortero, con la finalidad de verificar su calidad y realizar los ajustes del diseño respecto al peso del agregado fino.

Para la preparación del mortero se utilizó el equipo "Mezcladora de mortero".

Mezcladora de mortero.

Figura 46. Mezcladora de mortero.

Fuente: Elaboración propia.

Material y equipo utilizado:

- Mezcladora de mortero
- Recipientes
- Espátula
- Guantes
- Probeta graduada
- Materiales: Cemento, agua, agregado fino y cenizas de cáscaras de arroz

2.5.2.4. Ensayos del mortero.

2.5.2.4.1. Mortero en estado fresco.

A. Ensayo de fluidez

Se efectuó mediante la NTP 334.057 CEMENTOS, este ensayo fue necesario para determinar las características del mortero en cuanto a consistencia y trabajabilidad se refieren, también influye en la resistencia a la compresión y la adherencia entre las unidades de albañilería.

Para que el mortero obtenga una trabajabilidad adecuada y sea de buena consistencia debe tener una fluidez de $110 \pm 5\%$. El procedimiento es el siguiente:

Sobre la mesa de sacudidas, se instaló un molde metálico tronco - cónico de 101.60 mm de diámetro en la base mayor y de 50 mm de altura, que se rellenó de mortero en dos capas de 25 mm. de altura; apisonadas con 20 golpes, a una presión que cerciore el llenado uniforme del molde.

- Después de retirar el molde verticalmente, se efectúa un movimiento giratorio leve en la base de la mesa de sacudidas, dando 25 golpes durante 15 segundos, dejando caer desde una altura alrededor de 12.70 mm.
- En seguida, se tomaron cuatro medidas diametrales formadas por el mortero en la mesa de sacudidas para obtener el promedio final (Dp) de estas y la fluidez o consistencia del mortero.

Material y equipo utilizado:

- Mezcladora de mortero
- Mesa de flujo o de sacudidas
- Compactador
- Tronco cónico
- Vernier
- Balanza
- Taras
- Espátula
- Guantes
- Probeta graduada
- Materiales: Cemento, agua, agregado fino y cenizas de cáscaras de arroz

Mesa de fluidez con la muestra colocada en el recipiente tronco cónico.

Figura 47. Mezcla de mortero colocada adentro del tronco cónico en la mesa de fluidez.

Fuente: Elaboración propia.

Mortero en la mesa de sacudidas.

Figura 48. Mezcla de mortero después de retirar el recipiente tronco cónico.

Fuente: Elaboración propia.

Con el vernier se tomaron las medidas diametrales que determinaran la fluidez.

Figura 49. Tomando las 4 medidas diametrales para determinar la fluidez del mortero.

Fuente: Elaboración propia.

B. Contenido de aire

Este ensayo se realizó como está especificado en la NTP 334.048 CEMENTOS, fue necesario para determinar el contenido de aire atrapado en el mortero. A continuación, se indica su procedimiento:

- En un recipiente metálico en forma de cilindro con un diámetro interior (Di) de 76 mm ± 2 mm y una profundidad aproximada de 88 mm para contener 400 ml ± 1 ml de agua.
- Para la eliminación de vacíos dentro en la mezcla, se procedió a llenar el molde con mortero en 3 capas iguales compactadas 20 veces usando del pisón y golpeando levemente los laterales del recipiente para eliminar el aire no considerado. Posteriormente se excluyó el mortero sobrante y se niveló con la espátula.
- Finalmente se pesó el recipiente y su contenido.

Material y equipo utilizado:

- Mezcladora de mortero
- Recipiente metálico, compactador
- Balanza, probeta graduada
- Taras, espátula
- Guantes
- Materiales: Cemento, agua, agregado fino y cenizas de cáscaras de arroz

Ensayo de contenido de aire en el mortero.

Figura 50. Peso del recipiente metálico con la muestra para calcular el contenido de aire.

Fuente: Elaboración propia.

C. Peso unitario

Para el presente ensayo se utilizó como referencia la NTP 339.046 CONCRETO, que determina la densidad (peso unitario) por metro cúbico, rendimiento y contenido de aire (método gravimétrico) del concreto. El procedimiento es el siguiente:

- El molde metálico se llenó de mortero en 3 capas equitativas, compactadas con 25 golpes distribuidos uniformemente sobre la sección, cuidando que ésta última tenga un exceso.
- Después, con el fin de impedir que el aire sea atrapado en el interior de la muestra, esta se golpea lateralmente entre 10 a 15 veces con un martillo de goma, al finalizar el llenado de cada capa.
- Para obtener el resultado del Peso Unitario Compactado se divide el peso de la muestra compactada entre el volumen interior del molde.

Material y equipo utilizado:

- Mezcladora de mortero
- Recipiente metálico
- Pistón para compactar o varilla para compactar de 5/8" y 60 cm de largo
- Balanza
- Probeta graduada
- Taras
- Cucharon metálico, espátula
- Martillo de goma, guantes
- Materiales: Cemento, agua, agregado fino y cenizas de cáscaras de arroz

Peso unitario compactado del mortero.

Figura 51. Llenado y compactado del recipiente con mortero.

2.5.2.4.2. Mortero en estado endurecido.

A. Resistencia a la compresión

Este método establece la forma de determinar la resistencia a la compresión en morteros de cemento, usando cubos de 50 mm, de lado, los cuales estarán preparados y curados según los procedimientos indicados en la NTP 334.051. El procedimiento es el siguiente:

- La mezcla se preparó con las proporciones derivadas del Ensayo de Fluidez, de acuerdo a la NTP 334.003.
- El mortero resultante se situó en moldes metálicos previamente engrasados.
- El vaciado de la mezcla fue en dos capas, compactadas con 32 golpes, específicamente en cuatro etapas de 8 golpes cada una, durante 10 segundos por capa. En la siguiente figura se puede observar el orden de este proceso.

Proceso de apisonado del mortero.

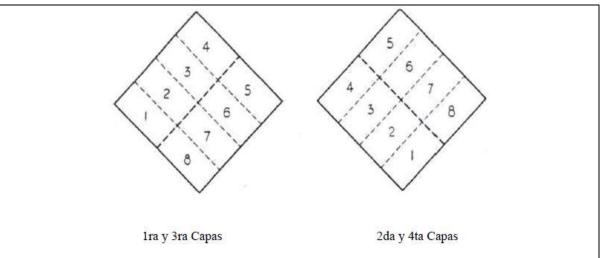


Figura 52. Orden del apisonado en el moldeo de los especímenes de ensayo.

- Los moldes metálicos se taparon con un trapo húmedo en un periodo de 24 horas, tras desmoldarlos y curarlos en agua limpia.
- Una vez colocado el mortero en dichos moldes, este se retiró de la muestra de la zona de curado.
- El ensayo de compresión fue realizado a tres especímenes por cada indicador de muestra a los 7, 14 y 28 días de edad.

Material y equipo utilizado:

- Mezcladora de mortero
- Máquina de compresión hidráulica
- Molde para especímenes
- Pisón compactador
- Taras
- Balanza
- Espátula, lubricante
- Guantes, franelas
- Probeta graduada
- Materiales: Cemento, agua, agregado fino y cenizas de cáscaras de arroz

Preparación de los especímenes cúbicos para una dosificación de 1: 3.5.

Figura 53. Elaboración de los especímenes de mortero en los moldes cúbicos.

Curado de los especímenes en el recipiente.

Figura 54. Curado de los especímenes para ser ensayados a compresión a los 7,14 y 28 días.

Fuente: Elaboración propia.

Especímenes ensayados a compresión.

Figura 55. Resistencia a la compresión de los especímenes de mortero de 50 mm x 50 mm.

Fuente: Elaboración propia.

B. Resistencia a la flexión

En la NTP 334.120 se establece la forma de determinar la resistencia a la flexión del mortero cuando se someten cargas al centro de la luz. A continuación, se indican los pasos a seguir:

- La mezcla de mortero fue preparada usando las proporciones obtenidas en el Ensayo de Fluidez y de acuerdo al procedimiento establecido por la NTP 334.003.
- A diferencia del ensayo de compresión, el mortero elaborado y colocado en moldes metálicos previamente engrasados, se vertió en dos capas compactadas con 60 golpes en 60 segundos por capa, enrasando la última de estas con la arista de una regla metálica hasta nivelarlo.
- Para desmoldar y curar los moldes, primero fueron tapados con trapo húmedo durante 24 horas.

 El ensayo de flexión se le realizó tres especímenes a 15 min después de retenida la muestra de la zona de curado, durante los 7, 14 y 28 días después de haber sido elaborada la muestra.

Material y equipo utilizado:

- Mezcladora de mortero
- Máquina de compresión hidráulica
- Molde para especímenes
- Pisón compactador
- Taras
- Balanza
- Espátula, lubricante
- Guantes, franelas
- Probeta graduada
- Materiales: Cemento, agua, agregado fino y cenizas de cáscaras de arroz

Elaboración de especímenes para ser ensayados a flexión.

Figura 56. Compactación de la 1era capa de los especímenes para ser ensayados a flexión.

Curado de los especímenes.

Figura 57. Curado de los especímenes para ser ensayados a flexión a los 7,14 y 28 días.

Fuente: Elaboración propia.

Especímenes ensayados a flexión.

Figura 58. Resistencia a la flexión de los especímenes de mortero.

2.5.2.5. Ensayos de albañilería simple.

2.5.2.5.1. Adherencia de mortero – ladrillo arcilla.

Mediante la NTP 334.129, los especímenes elaborados fueron 3 para la dosificación 1:4 en los diferentes porcentajes de adición y sustitución de cenizas de cáscaras de arroz. El ladrillo utilizado fue King Kong 18 huecos – estándar 23 x 12 x 9 cm de la marca Lark; y el espesor de junta fue 1.5 cm.

- Los ladrillos seleccionados fueron aquellos que no presentaban defectos o rajaduras en su interior y exterior.
- Durante media hora se regaron los ladrillos seleccionados con una anterioridad de
 15 horas previas a la construcción de las pilas.
- Las unidades limpias de polvo sin agua libre, fueron asentadas verticalmente con una plomada y un nivel.
- El grosor se controló con una regla de madera (escantillón).
- Después de elaborar las pilas, fueron humedecidas durante dos semanas, para ser ensayadas a los 28 días.

Material y equipo utilizado:

- Recipiente para la mezcla del mortero
- Máquina de compresión hidráulica
- Plomada, nivel
- Balanza
- Guantes, cordel
- Badilejos, espátula
- Probeta graduada
- Materiales: Ladrillos, Cemento, agua, agregado fino y cenizas de cáscaras de arroz

Elaboración de las pilas para ser ensayados por adherencia.

Figura 59. Verificación de nivelación de pilas para el ensayo de adherencia.

Ensayo de adherencia por flexión en la compresora hidráulica.

Figura 60. Ensayo de resistencia a la adherencia por flexión de elementos de albañilería.

Fuente: Elaboración propia.

2.5.2.5.2. Resistencia a la compresión axial en pilas de albañilería.

Para la determinación de la resistencia característica (F´m), se construyeron 21 pilas considerando las indicaciones mencionadas en la ASTM C1314, que fueron sometidas a cargas axiales en la compresora del Laboratorio de Ensayo de Materiales de la Universidad Señor de Sipán. El procedimiento fue igual al de la elaboración de muestras para el ensayo de adherencia, así como también los equipos y materiales utilizados; lo

diferente fue que se añadió a estas una mezcla cemento, yeso y agua en las dos caras de su superficie; de tal manera que ambas caras estén niveladas para ser ensayadas a compresión.

Pilas de albañilería con una capa de mezcla de cemento, yeso y agua.

Figura 61. Pilas de albañilería con su capping en ambas caras de sus superficies.

Fuente: Elaboración propia.

Figura 62. Ensayo de resistencia a la compresión de elementos de albañilería.

Fuente: Elaboración propia.

2.5.2.5.3. Resistencia a la compresión diagonal en muretes.

Teniendo en cuenta la NTP 399.621, los especímenes utilizados para determinar la resistencia a compresión diagonal de la albañilería, son muretes de dimensiones cuadradas de 600 mm de lado, se construyeron 21 muretes que fueron sometidos a una carga de compresión diagonal, para determinar la resistencia al corte (V´m).

. El ensayo consiste en aplicar una carga de compresión diagonal al murete que produce esfuerzos de compresión en la diagonal vertical y al mismo tiempo produce esfuerzos de tracción en la diagonal perpendicular.

Comportamiento de un murete sometido a una carga de compresión diagonal.

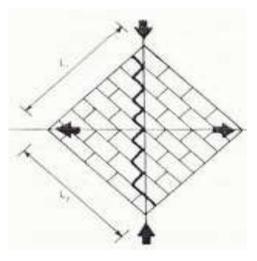


Figura 63. Comportamiento del murete a compresión diagonal.

Fuente: Elaboración propia.

Material y equipo utilizado:

- Recipiente para la mezcla del mortero
- Prensa hidráulica Rusa
- Plomada
- Nivel
- Balanza
- Guantes, cordel
- Badilejos
- Espátula
- Probeta graduada
- Materiales: Ladrillos, Cemento, agua, agregado fino y cenizas de cáscaras de arroz

El equipo de ensayo para la compresión diagonal en muretes fue facilitado por la Universidad Nacional Pedro Ruiz Gallo, a través de su Laboratorio de Ensayo de Materiales.

Prensa hidráulica Rusa.

Figura 64. Prensa hidráulica en donde los muretes fueron ensayados.

Ensayo de compresión diagonal.

Figura 65. Ensayo de compresión diagonal en muretes de albañilería.

Fuente: Elaboración propia.

2.6. Criterios éticos

De acuerdo al Capítulo III del Código de Ética del Colegio de Ingenieros del Perú (2012), todo ingeniero debe saber el código ético de la profesión.

2.6.1. Sub Capítulo I: DE LA RELACIÓN CON LA SOCIEDAD.

Los ingenieros deben poner sus conocimientos al servicio de la vida, salud y bienes de la población y público en general, de manera que no afecta su paz y bienestar. De esta manera, cuidarán los recursos humanos, económicos, naturales y materiales.

Así mismo, tienen la obligación de defender el territorio de trabajo de la ingeniería peruana e impulsar el desarrollo tecnológico del país.

2.6.2. Sub Capítulo II: DE LA RELACIÓN CON EL PÚBLICO.

Todo ingeniero debe actuar con seriedad y convicción al explicar su trabajo o expresar opiniones sobre temas de ingeniería, sin crear conflictos de intereses y esforzándose para interactuar de manera clara con el público acerca los servicios prestados a la sociedad.

2.6.3. Sub Capítulo III: DE LA COMPETENCIA Y PERFECCIONAMIENTO PROFESIONAL.

Para que realicen trabajos de ingeniería, será necesario que tengan estudios y/o experiencia en el campo específico de la ingeniería del que se trata. En caso de que se presenten problemas u ocurrencias en la obra a cargo, el ingeniero puede sugerir o consultar con especialistas.

2.6.4. Sub Capítulo IV: DE LA PROMOCIÓN Y PUBLICIDAD.

Los ingenieros podrán publicar avisos profesionales e incluir sus nombres en listas o directorios en órganos reconocidos, formales y responsables.

2.6.5. Sub Capítulo V: DE LA CONCERTACIÓN DE LOS SERVICIOS.

Los ingenieros deben competir leal y justamente. Su reputación profesional debe ser formada en base a sus servicios y experiencia.

2.6.6. Sub Capítulo VI: DE LA PRESTACIÓN DE SERVICIOS.

El servicio que brinden los ingenieros a sus empleadores y clientes debe ser fiel. Evitarán todo tipo de conflicto con ellos y reservarán datos o circunstancias relacionados a ellos. En caso que no se haya culminado con éxito el trabajo encomendado, pueden notificarlos.

2.6.7. Sub Capítulo VII: DE LAS RELACIONES CON EL PERSONAL.

Ningún ingeniero debe manifestar un trato discriminatorio en materia de condiciones de trabajo, oportunidades y relaciones humanas hacia su personal a cargo. Todo esto con el fin de cuidar, velar y respetar la seguridad de sus vidas y salud.

2.6.8. Sub Capítulo VIII: DE LA RELACIÓN CON LOS COLEGAS.

Respecto a la opinión referente al trabajo de otros ingenieros para el mismo cliente, no revisarán ni emitirán pareceres. Pueden hacerlo siempre y cuando hayan concluido los acuerdos para la realización de los trabajos y salvo que los colegas tengan conocimiento de ello.

2.7. Criterios de rigor científico

2.7.1. Validez interna.

La evaluación de análisis y resultados de los datos, características y alcances de la presente investigación fue realizado con plena idoneidad, autenticidad y originalidad, teniendo en cuenta la solidez en el diseño de investigación. Dichos resultados fueron validados por el responsable del Laboratorio de Ensayos de Materiales de la casa de estudios.

2.7.2. Validez externa.

La presente investigación por su amplio abordaje podrá generalizar los resultados del estudio en otros contextos sociales, sobre todo para mejor la calidad de infraestructuras, ambientes y condiciones de las poblaciones.

2.7.3. Fiabilidad.

Su objetivo es evaluar la estabilidad de las puntuaciones entre los diferentes elementos que componen el instrumento de medición. Por este motivo, la presente investigación incluye ensayos y métodos basados en parámetros propuestos por normas técnicas nacionales e internacionales.

III. RESULTADOS

3.1. Resultados en tablas y figuras

3.1.1. Composición química de las cenizas de cáscaras de arroz.

El análisis de composición química fue realizado mediante la Norma ASTM C618, por la empresa MASTERLEM S.A.C., ubicada en Huachipa, Lima, Perú.

Tabla 14. *Composición química de las cenizas de cáscaras de arroz.*

COMPUESTO	COMPOSICIÓN QUÍMICA	CONTENIDO (%)
Óxido de Silicio	SiO_2	95,18
Óxido de Aluminio	Al_2O_3	0,48
Óxido de Fierro	Fe_2O_3	0,08
Óxido de Sodio	Na_2O	0,12
Óxido de Potasio	K_2O	1,13
Óxido de Calcio	CaO	0,64
Óxido de Magnesio	MgO	0,44
	Otros	1,93

Fuente: MASTERLEM S.A.C.

En la tabla 14, se observa que el compuesto químico con mayor porcentaje de presencia en el material es el Óxido de silicio con un 95,18%. Ver anexo 2.1

Tabla 15.Comparación de la composición química de las cenizas de cáscaras de arroz con el cemento Pórtland Tipo I – Pacasmayo.

		CONTENIDO (%)	
COMPUESTO	COMPOSICIÓN QUÍMICA	CENIZAS DE CÁSCARAS DE ARROZ	CEMENTO PÓRTLAND TIPO I - PACASMAYO
Óxido de Silicio	${f SiO_2}$	95,18	21,00
Óxido de Aluminio	$\mathrm{Al}_2\mathrm{O}_3$	0,48	6,50
Óxido de Fierro	Fe_2O_3	0,08	2,50
Óxido de Sodio	$\mathrm{Na_{2}O}$	0,12	-
Óxido de Potasio	K_2O	1,13	-
Óxido de Calcio	CaO	0,64	62,50
Óxido de Magnesio	MgO	0,44	2,30
	Otros	1,93	5,20

Fuente: Elaboración propia.

Se observa en la tabla 15, que los minerales que prevalecen en la composición química del cemento Pórtland Tipo I son Óxido de Calcio (CaO) con 62,50% y el Óxido de

Silicio (SiO₂) con 21%, en comparación con la composición química de las cenizas de cáscaras de arroz que es comprendido en la mayoría de su estructura por Óxido de Silicio con un 95,18%.

Por lo que incorporando este residuo en la mezcla de mortero de manera sustitutoria y adicionada con respecto al peso del cemento en 5%, 10% y 15%; mejoraría las propiedades mecánicas del mortero gracias al gran porcentaje de sílice que contiene este residuo en su estructura.

3.1.1.1. Ensayos elaborados a la ceniza de cáscaras de arroz.

3.1.1.1.1. Método de ensayo normalizado para determinar el peso específico.

Tabla 16 *Peso específico de las cenizas de cáscaras de arroz.*

DETERMINACIÓN DEL PESO ESPECÍFICO DE LAS CCA.		
Peso de la muestra de las cenizas de cáscaras de arroz	(gr.)	54.40
Volumen inicial del líquido introducido al frasco Le Chatelier	(cm ³ .)	0.50
Volumen final del líquido (después de introducir el peso de las cenizas de cáscaras de arroz)	(cm ³ .)	23.00
PESO ESPECÍFICO DE MASA	(gr/cm ³)	2.418

Fuente: Elaboración propia.

Para el ensayo del peso específico de las cenizas de cáscaras de arroz se obtuvo como resultado 2418 (kg/m³), como se observa en la tabla 16. **Ver anexo 4.1**

3.1.1.1.2. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos de las cenizas de cáscara de arroz.

Tabla 17 *Peso unitario suelto de las cenizas de cáscaras de arroz.*

PESO UNITARIO SUELTO				
		A	В	
Peso de la muestra suelta + recipiente	(gr.)	4341	4355	
Peso del recipiente	(gr.)	3072	3072	
Peso de muestra	(gr.)	1269	1283	
Constante o Volumen	(m^3)	0.002796	0.002796	
Peso unitario suelto húmedo	(kg/m^3)	453.89	458.90	
Peso unitario suelto húmedo (Promedio)	(kg/m^3)	45	56	
Peso unitario suelto seco (Promedio)	(kg/m^3)	45	53	

Tabla 18 *Peso unitario compactado de las cenizas de cáscaras de arroz.*

PESO UNITARIO COMPACTADO			
		A	В
Peso de la muestra suelta + recipiente	(gr.)	4755	4772
Peso del recipiente	(gr.)	3072	3072
Peso de muestra	(gr.)	1683	1700
Constante o Volumen	(m3)	0.002796	0.002796
Peso unitario suelto húmedo	(kg/m3)	601.97	608.05
Peso unitario compactado húmedo (Promedio)	(kg/m3)	60	05
Peso unitario seco compactado (Promedio)	(kg/m3)	60	01

Para el ensayo de peso unitario de las cenizas de cáscaras de arroz se obtuvieron como resultados un peso unitario suelto seco de 453 (kg/m³) y un peso unitario compactado seco de 601 (kg/m³). Ver anexo 4.2

3.1.1.1.3. Método de ensayo para determinar el contenido de humedad total evaporable de las cenizas de cáscaras de arroz por secado.

Tabla 19Contenido de humedad de las cenizas de cáscaras de arroz.

CONTENIDO DE HUMEDAI)		
		A	В
1. Peso de muestra húmeda	(gr.)	338.60	335.98
2. Peso de muestra seca	(gr.)	336.88	334.34
3. Peso de recipiente	(gr.)	87.80	89.25
4. Contenido de humedad	(%)	0.69	0.67
5. Contenido de humedad (promedio)	(%)	0.	68

Fuente: Elaboración propia.

Luego de realizar el ensayo se obtuvo como resultado un porcentaje de 0.68 de contenido de humedad de las cenizas de cáscaras de arroz. Ver anexo 4.2

3.1.1.1.4. Resumen de análisis de resultados de las cenizas de cáscaras de arroz.

Tabla 20Conglomerado de resultados de las cenizas de cáscaras de arroz.

Datos de la ceniza de cáscara de arroz	Molino "Los Ángeles"	
1. Peso específico de masa	2418	kg/m3
2. Peso unitario suelto seco	453	kg/m3
3. Peso unitario compactado seco	601	kg/m3
4. Contenido de humedad	0.68	%

Fuente: Elaboración propia.

3.1.2. Ensayos de agregado fino y unidades de albañilería.

3.1.2.1. Ensayos del agregado fino de la Cantera La Victoria – Pátapo.

3.1.2.1.1. Granulometría y módulo de fineza.

Tabla 21Granulometría del agregado fino por tamizado.

MA	ALLAS	PESO	%	% RETENIDO	% QUE PASA	Parámetros
PULGADAS	MILÍMETROS	RETENIDO	RETENIDO	ACUMULADO	ACUMULADO	Arena Gruesa
3/8"	9.500	0	0	0	100	-
N°4	4.750	0	0.0	0.0	100.0	100
N°8	2.360	28.63	4.8	4.8	95.2	95-100
N°16	1.180	109.81	18.3	23.1	76.9	70-100
N°30	0.600	156.77	26.1	49.2	50.8	40-75
N°50	0.300	124.54	20.8	70.0	30.0	10-35
N°100	0.150	109.73	18.3	88.2	11.8	2-15
N°200	0.075	67.14	11.2	99.4	0.6	0-2
FC	ONDO	3.38	0.6	100.0	0.0	-

2.353

MÓDULO DE FINEZA

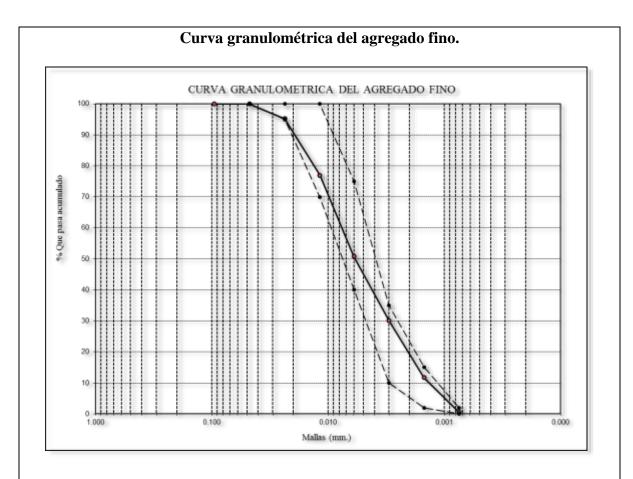


Figura 66. Curva granulométrica del agregado fino.

A través de la figura 66, se demuestra que el agregado fino cumple con los parámetros requeridos en la NTP 400.012 AGREGADOS. El resultado del módulo de fineza fue 2.353, visualizado en la tabla 21. **Ver anexo 5.1**

3.1.2.1.2. *Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino.*

Tabla 22 *Peso específico y absorción del agregado fino.*

I. DATOS		
1 Peso de la arena superficialmente seca	(gr)	500.0
2 Peso de la arena superficialmente seca + peso del frasco + peso del agua	(gr)	980.0
3 Peso de la arena superficialmente seca + peso del frasco	(gr)	670.0
4 Peso del agua	(gr)	310.0
5 Peso de la arena secada al horno + peso del frasco	(gr)	661.0
6 Peso del frasco	(gr)	170.0
7 Peso de la muestra secada al horno	(gr)	491.0

8 Volumen del frasco	(cm ³)	500.0
II RESULTADOS		
1 PESO ESPECIFICO DE MASA	(gr/cm ³)	2.584
2 PESO ESPECIFICO DE MASA SATURADO SUPERFICIALMENTE SECO	(gr/cm ³)	2.632
3 PESO ESPECIFICO APARENTE	(gr/cm ³)	2.713
4 PORCENTAJE DE ABSORCIÓN	%	1.83

Para el ensayo del peso específico y absorción del agregado fino se obtuvieron como resultados un peso específico de 2584 (kg/m³) y un % de absorción de 1.83, como se observa en la tabla 22. **Ver anexo 5.2**

3.1.2.1.3. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

Tabla 23 *Peso unitario suelto del agregado fino.*

PESO UNITARIO SUELTO			
		A	В
Peso de la muestra suelta + recipiente	(gr.)	7426	7497
Peso del recipiente	(gr.)	3038	3038
Peso de muestra	(gr.)	4388	4459
Constante o Volumen	(m^3)	0.00283	0.00283
Peso unitario suelto húmedo	(kg/m^3)	1550.32	1575.41
Peso unitario suelto húmedo (Promedio)	(kg/m^3)	15	63
Peso unitario suelto seco (Promedio)	(kg/m^3)	15	51

Fuente: Elaboración propia.

Tabla 24 *Peso unitario compactado del agregado fino.*

PESO UNITARIO COMPACTADO			
		\mathbf{A}	В
Peso de la muestra suelta + recipiente	(gr.)	7973	7995
Peso del recipiente	(gr.)	3038	3038
Peso de muestra	(gr.)	4935	4957
Constante o Volumen	(m^3)	0.002830	0.002830
Peso unitario suelto húmedo	(kg/m^3)	1743.58	1751.35
Peso unitario compactado húmedo (Promedio)	(kg/m^3)	17	47
Peso unitario seco compactado (Promedio)	(kg/m^3)	17	35

Para el ensayo de peso unitario del agregado fino se obtuvieron como resultados un peso unitario suelto seco de 1551 (kg/m³) y un peso unitario compactado seco de 1735 (kg/m³). Ver anexo 5.3

3.1.2.1.4. *Método de ensayo para determinar el contenido de humedad total evaporable de agregados por secado.*

Tabla 25 *Contenido de humedad del agregado fino.*

CONTENIDO DE HUMEDAD				
		A	В	
1. Peso de muestra húmeda	(gr.)	950.00	950.00	
2. Peso de muestra seca + recipiente	(gr.)	1037.00	1028.00	
3. Peso de recipiente	(gr.)	94.00	85.00	
4. Contenido de humedad	(%)	0.74	0.74	
5. Contenido de humedad (promedio)	(%)	0.	74	

Fuente: Elaboración propia.

Luego de realizar el ensayo se obtuvo como resultado un porcentaje de 0.74 de contenido de humedad del agregado fino. Ver anexo 5.3

3.1.2.1.5. Resumen de análisis de resultados del agregado fino.

Tabla 26Conglomerado de resultados del agregado fino.

Datos del agregado fino	Cantera la Victoria - Pátapo	
1. Módulo de fineza (adimensional)	2.353	
2. Peso específico de masa	2584	kg/m^3
3. Porcentaje de absorción	1.83	%
4. Peso unitario suelto seco	1551	kg/m^3
5. Peso unitario compactado seco	1735	kg/m^3
6. Contenido de humedad	0.74	%

Fuente: Elaboración propia.

3.1.2.2. Ensayos de las unidades de albañilería.

3.1.2.2.1. Variación Dimensional.

A continuación, se muestra en la tabla 27 el resumen de la variabilidad dimensional que fue comparado con la clasificación según el RNE E.070 y en la tabla 28 la dispersión máxima que existe en los ladrillos seleccionados para la investigación. **Ver anexo 6.1**

Tabla 27 *Resumen de la variabilidad dimensional para determinar el Tipo de ladrillo.*

Variabilidad dimensional								
$L(mm) L\left(\%\right) a(mm) a(\%) h(mm) h(\%)$							de norma	
Cerámicos Lambayeque 18 Huecos	237.38	0.21	118.90	0.49	89.35	0.81	TIPO IV	
Ladrillos Lark 18 Huecos	223.20	0.58	122.03	0.57	89.89	1.17	TIPO IV	
Ladrillos Ital 18 Huecos	230.83	0.24	117.83	0.34	89.59	1.92	TIPO III	

Según los resultados del ensayo de variabilidad dimensional, los ladrillos se clasifican como TIPO IV y TIPO III para la marca Ital.

Tabla 28Dispersión máxima en los ladrillos seleccionados para la investigación.

Ladrillos	Dispersión Máxima (%)
Cerámicos Lambayeque 18 huecos	0.994
Ladrillos Lark 18 huecos	0.689
Ladrillos Ital 18 huecos	1.232

Fuente: Elaboración propia.

En la tabla 28 se observa que la dispersión de los ladrillos para Cerámicos Lambayeque fue de 0.994%, Ladrillos Lark 0.689% y Ladrillos Ital 1.232%.

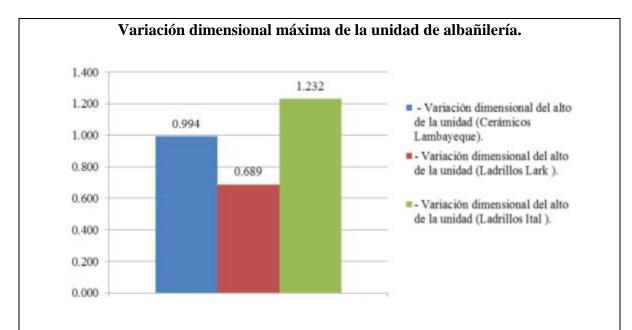
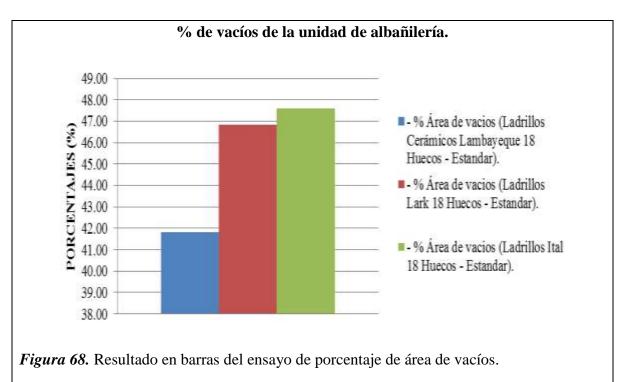


Figura 67. Resultado en barras del ensayo de variación dimensional (Dispersión máxima).

En la figura 67 se observa que la barra de color verde utilizada para Ladrillos Ital, representa la mayor dispersión a comparación de las otras dos marcas también ensayadas (Cerámicos Lambayeque y Ladrillos Lark).

3.1.2.2.2. Porcentaje de área de vacíos.


Tabla 29Cuadro comparativo de porcentaje (%) de vacíos.

Espécimen	% de Área de vacíos
Ladrillos Cerámicos Lambayeque.	41.80
Ladrillos Lark.	46.83
Ladrillos Ital.	47.58

Fuente: Elaboración propia.

Fuente: Elaboración propia.

En la tabla 29 se observa que el porcentaje de área de vacíos para Cerámicos Lambayeque fue de 41.80%, Ladrillos Lark 46.83% y Ladrillos Ital 47.58%. Ver anexo 6.4

Se observa en la figura 68 que la barra de color verde, utilizada para Ladrillos Ital, representa el mayor porcentaje de vacíos a comparación con las otras dos marcas ensayadas (Cerámicos Lambayeque y Ladrillos Lark).

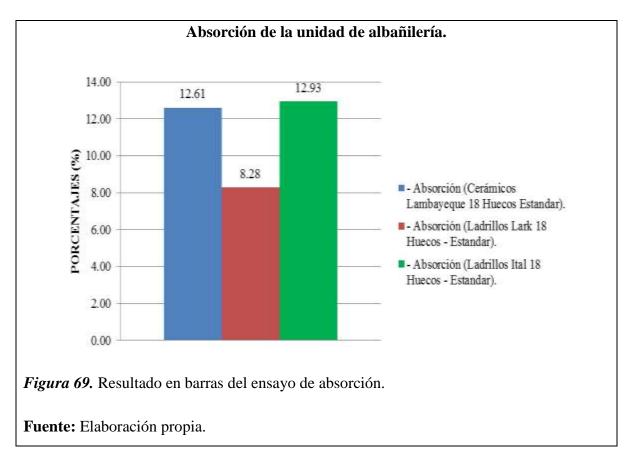

3.1.2.2.3. Absorción.

Tabla 30Cuadro comparativo de porcentaje (%) de absorción.

Espécimen	% ABSORCIÓN
Cerámicos Lambayeque	12.61
Ladrillos Lark	8.28
Ladrillos Ital	12.93

Fuente: Elaboración propia.

El porcentaje de absorción para Cerámicos Lambayeque fue de 12.61%, Ladrillos Lark 8.28% y Ladrillos Ital 12.93%, como se muestra en la tabla 30. **Ver anexo 6.3**

Se observa en la figura 69 que la barra de color verde, utilizada para Ladrillos Ital, representa la mayor absorción comparación con las otras dos marcas ensayadas (Cerámicos Lambayeque y Ladrillos Lark).

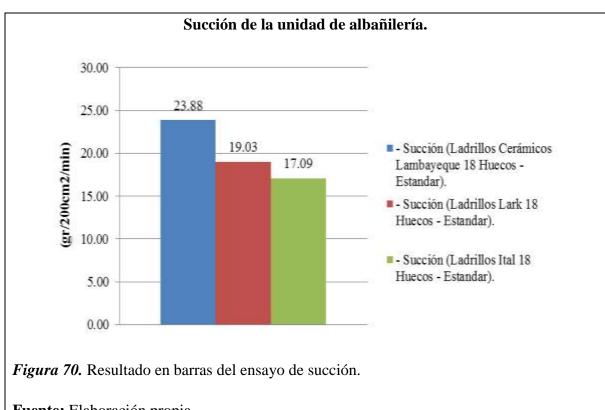

3.1.2.2.4. Succión.

Tabla 31 Cuadro comparativo de succión.

Espécimen	SUCCIÓN gr/ (200cm² x min)
Cerámicos Lambayeque	23.88
Ladrillos Lark	19.03
Ladrillos Ital	17.09

Fuente: Elaboración propia.

La succión para Cerámicos Lambayeque fue de 23.88 gr/ (200cm² x min), Ladrillos Lark 19.03 gr/ (200cm² x min) y Ladrillos Ital 17.09 gr/ (200cm² x min), como se muestra en la tabla 31. Ver anexo 6.2

Fuente: Elaboración propia.

Se observa en la figura 70 que la barra de color azul, utilizada para Ladrillos Cerámicos Lambayeque, representa la mayor succión en comparación con las otras dos marcas ensayadas (Ladrillos Lark y Ladrillos Ital).

3.1.2.2.5. Resistencia a la compresión F'b.

Tabla 32 *Cuadro comparativo de resistencia a la compresión F'b.*

Espécimen	F' _b (Kg/cm ²)	Clasificación según el RNE E.070
Cerámicos Lambayeque	136.62	TIPO IV
Ladrillos Lark	165.12	TIPO IV
Ladrillos Ital	95.78	TIPO III

Fuente: Elaboración propia.

Según los resultados obtenidos del ensayo de Resistencia a la compresión F'_b, ladrillos Cerámicos Lambayeque y Lark se clasifican como TIPO IV, y Ladrillos Ital se clasifica como TIPO III. Ver anexo 6.5

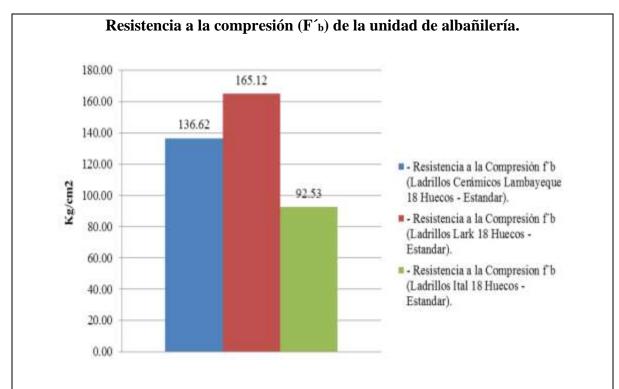


Figura 71. Resultado en barras del ensayo de resistencia a la compresión f'b.

Fuente: Elaboración propia.

Se observa en la figura 71 que la barra de color roja, utilizada para Ladrillos Lark, representa una mayor resistencia a la compresión F'_b en comparación con las otras dos marcas ensayadas (Cerámicos Lambayeque y Ladrillos Ital).

3.1.2.2.6. Resumen de análisis de resultados de la unidad de albañilería.

Tabla 33Conglomerado de resultados de la unidad de albañilería.

Ensayos a la unidad de albañilería	Ladrillos Lark	Ladrillos Cerámicos Lambayeque	Ladrillos Ital	
1. Variación dimensional				
1.1. Clasificación según el RNE E.070	Tipo V	Tipo V	Tipo V	
1.2. Dispersión máxima (%)	0.689	0.994	1.232	
2. Porcentaje de área de vacíos (%)	46.83	41.80	47.58	
3. Porcentaje de absorción (%)	8.28	12.61	12.93	
4. Succión (gr/ (200cm² x min))	19.03	23.88	17.09	
5. Resistencia a la compresión $\mathbf{F'}_{b}$				
5.1. Resistencia (kg/cm ²)	165.12	136.62	95.78	
5.2. Clasificación según el RNE E.070	Tipo IV	Tipo IV	Tipo III	

Fuente: Elaboración propia.

3.1.3. Diseño de mezcla del mortero.

3.1.3.1. Diseño de mezcla del mortero patrón.

Tabla 34Diseño de mezclas del mortero patrón.

	DISEÑO DE MEZCLA DE MORTERO PATRÓN								
TIPO	COMPO	NENT							
1110	Cemento		Arena	RELACIÓN AGUA/CEMENTO					
P1	1	:	3.5	0.77					
P2	1	:	4	0.83					
P2	1	:	5	1.05					
NP	1	:	6	1.25					

Fuente: Elaboración propia.

En la tabla 34 se observan las relaciones agua/cemento obtenidas para cada una de las dosificaciones estimadas en la presente investigación.

3.1.3.2. Diseño de mortero sustituido con CCA.

Tabla 35Diseño de mezcla del mortero sustituido con CCA.

DOSIFICACIÓN DE MEZCLA - MORTERO EN VOLUMEN							
			Cemento		Arena		CCA
MEZCLA PATRÓN	V:		1	:	3.5	:	0
MEZCLA CON	M-1	5%	0.95	:	3.5	:	0.05
	M-2	10%	0.90	:	3.5	:	0.10
CCA	M-3	15%	0.85	:	3.5	:	0.15
MEZCLA PATRÓN:			1	:	4	:	0
MEZCI A CON	M-1	5%	0.95	:	4	:	0.05
MEZCLA CON CCA	M-2	10%	0.90	:	4	:	0.10
	M-3	15%	0.85	:	4	:	0.15
MEZCLA PATRÓN	V:		1	:	5	:	0
MEZCI A CON	M-1	5%	0.95	:	5	:	0.05
MEZCLA CON	M-2	10%	0.90	:	5	:	0.10
CCA	M-3	15%	0.85	:	5	:	0.15
MEZCLA PATRÓN	N:		1	:	6	:	0
MEZCI A CON	M-1	5%	0.95	:	6	:	0.05
MEZCLA CON	M-2	10%	0.90	:	6	:	0.10
CCA	M-3	15%	0.85	:	6	:	0.15

Fuente: Elaboración propia.

En la tabla 35 se observan las proporciones para los porcentajes de sustitución 5%, 10% y 15% con CCA de acuerdo al peso del cemento para ser incluida en la mezcla de cada dosificación diseñada. Ver anexo 7

3.1.3.3. Diseño de mortero adicionado con CCA.

Tabla 36Diseño de mezcla del mortero adicionado con CCA.

DOSIFICACIÓN DE MEZCLA - MORTERO EN VOLUMEN							
			Cemento		Arena		CCA
MEZCLA PATRÓN	N:		1	:	3.5	:	0
MEZCLA CON	M-1	5%	1	:	3.5	:	0.05
CCA	M-2	10%	1	:	3.5	:	0.10
	M-3	15%	1	:	3.5	:	0.15
MEZCLA PATRÓN	N:		1	:	4	:	0
MEZCLA CON	M-1	5%	1	:	4	:	0.05
CCA	M-2	10%	1	:	4	:	0.10
CCA	M-3	15%	1	:	4	:	0.15

MEZCLA PATRÓN	N :		1	:	5	:	0
MEZCLA CON	M-1	5%	1	:	5	:	0.05
CCA	M-2	10%	1	:	5	:	0.10
CCA	M-3	15%	1	:	5	:	0.15
MEZCLA PATRÓN	V:		1	:	6	:	0
MEZCLA CON	M-1	5%	1	:	6	:	0.05
	M-2	10%	1	:	6	:	0.10
CCA	M-3	15%	1	:	6	:	0.15

Las proporciones de porcentajes de adición de CCA incluidas en la mezcla del mortero en 5%, 10% y 15%, de acuerdo al peso del cemento en cada dosificación diseñada se observan en la tabla 36. Ver anexo 8

3.1.4. Propiedades físico – mecánicas de la mezcla del mortero patrón y modificado con cenizas de cáscaras de arroz (CCA).

3.1.4.1. Propiedades físicas del mortero patrón y modificado con cenizas de cáscaras de arroz.

3.1.4.1.1. Fluidez.

A. Mortero patrón y mortero con sustitución de CCA

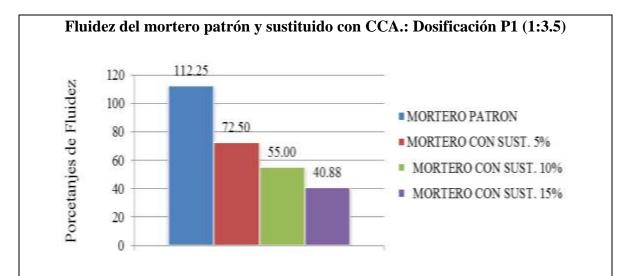

A.1. Dosificación 1:3.5

Tabla 37Fluidez del mortero patrón P1 (1:3.5) y mortero sustituido con CCA.

MUESTRA	DOSIF	FLUIDEZ (%)			
WIOESTRA	CEMENTO ARENA		CCA	FLUIDEZ (%)	
MORTERO PATRÓN	1	3.5	0	112.25	%
MORTERO CON SUST. 5%	0.95	3.5	0.05	72.50	%
MORTERO CON SUST. 10%	0.90	3.5	0.10	55.00	%
MORTERO CON SUST. 15%	0.85	3.5	0.15	40.88	%

Fuente: Elaboración propia.

La fluidez del mortero patrón (1:3.5) fue 112.25%, el mortero con 5% de sustitución con CCA obtuvo 72.50%, con 10% fue 55% y por último con 15% fue 40.88% como se observan en la tabla 37. **Ver anexo 9.1.1**

Figura 72. Resultado en barras del ensayo de fluidez de la dosificación P1 (1:3.5), mortero patrón y sustituido con CCA.

En la figura 72, los morteros sustituidos con CCA en proporciones 0.95 : 3.5 : 0.05, 0.90 : 3.5 : 0.10 y 0.85 : 3.5 : 0.15 presentan una disminución en la fluidez de 35%, 51% y 64% respectivamente, en relación al mortero patrón 1 : 3.5 (sin CCA).

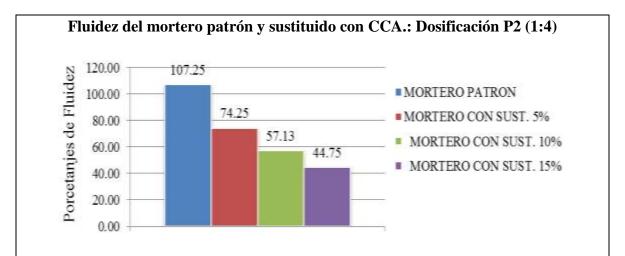

A.2. Dosificación 1:4

Tabla 38Fluidez del mortero patrón P2 (1:4) y mortero sustituido con CCA.

MUESTRA	DOSIF	EI LIIDEZ	(0/)		
	CEMENTO	ARENA	CCA	FLUIDEZ	(70)
MORTERO PATRÓN	1	4	0	107.25	%
MORTERO CON SUST. 5%	0.95	4	0.05	74.25	%
MORTERO CON SUST. 10%	0.90	4	0.10	57.13	%
MORTERO CON SUST. 15%	0.85	4	0.15	44.75	%

Fuente: Elaboración propia.

La fluidez del mortero patrón (1:4) fue 107.25%, el mortero con 5% de sustitución con CCA obtuvo 74.25%, con 10% fue 57.13% y por último con 15% fue 44.75% como se observan en la tabla 38. **Ver anexo 9.1.2**

Figura 73. Resultado en barras del ensayo de fluidez de la dosificación P2 (1:4), mortero patrón y sustituido con CCA.

En la figura 73, los morteros sustituidos con CCA en proporciones 0.95 : 4 : 0.05, 0.90 : 4 : 0.10 y 0.85 : 4 : 0.15 presentan una disminución en la fluidez de 31%, 47% y 58% respectivamente, en relación al mortero patrón 1 : 4 (sin CCA).

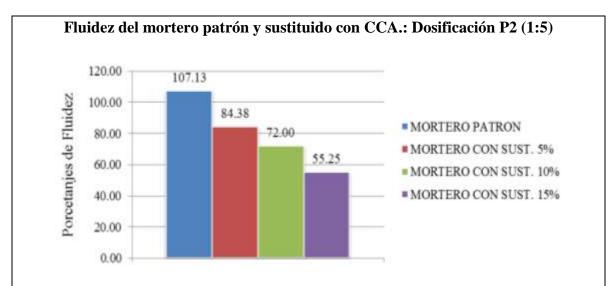

A.3. Dosificación 1:5

Tabla 39Fluidez del mortero patrón P2 (1:5) y mortero sustituido con CCA.

MUESTRA	DOSIF	FLUIDEZ (%)			
	CEMENTO	ARENA	CCA	FLUIDEZ	(70)
MORTERO PATRÓN	1	5	0	107.13	%
MORTERO CON SUST. 5%	0.95	5	0.05	84.38	%
MORTERO CON SUST. 10%	0.90	5	0.10	72.00	%
MORTERO CON SUST. 15%	0.85	5	0.15	55.25	%

Fuente: Elaboración propia.

La fluidez del mortero patrón (1:5) fue 107.13%, el mortero con 5% de sustitución con CCA obtuvo 84.38%, con 10% fue 72.00% y por último con 15% fue 55.25% como se observan en la tabla 39. **Ver anexo 9.1.3**

Figura 74. Resultado en barras del ensayo de fluidez de la dosificación P2 (1 : 5), mortero patrón y sustituido con CCA.

En la figura 74, los morteros sustituidos con CCA en proporciones 0.95: 5 : 0.05, 0.90 : 5 : 0.10 y 0.85 : 5 : 0.15 presentan una disminución en la fluidez de 21%, 33% y 48% respectivamente, en relación al mortero patrón 1 : 5 (sin CCA).

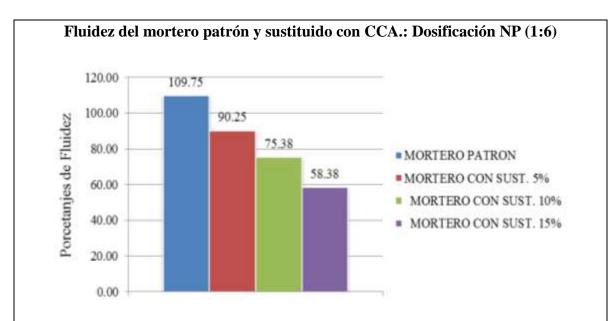

A.4. Dosificación 1:6

Tabla 40Fluidez del mortero patrón NP (1:6) y mortero sustituido con CCA.

MUESTRA	DOSIFICACIÓN			FLUIDEZ (%)	
	CEMENTO	ARENA	CCA	FLUIDEZ	(70)
MORTERO PATRÓN	1	6	0	109.75	%
MORTERO CON SUST. 5%	0.95	6	0.05	90.25	%
MORTERO CON SUST. 10%	0.90	6	0.10	75.38	%
MORTERO CON SUST. 15%	0.85	6	0.15	58.38	%

Fuente: Elaboración propia.

La fluidez del mortero patrón (1:6) fue 109.75%, el mortero con 5% de sustitución con CCA obtuvo 90.25%, con 10% fue 75.38% y por último con 15% fue 58.38% como se observan en la tabla 40. **Ver anexo 9.1.4**

Figura 75. Resultado en barras del ensayo de fluidez de la dosificación NP (1:6), mortero patrón y sustituido con CCA.

En la figura 75, los morteros sustituidos con CCA en proporciones 0.95 : 6 : 0.05, 0.90 : 6 : 0.10 y 0.85 : 6 : 0.15 presentan una disminución en la fluidez de 18%, 31% y 47% respectivamente, en relación al mortero patrón 1 : 6 (sin CCA).

B. Mortero patrón y mortero con adición de CCA

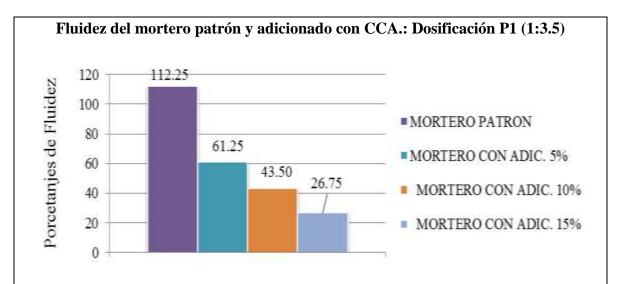

B.1. Dosificación 1:3.5

Tabla 41Fluidez del mortero patrón P1 (1:3.5) y mortero adicionado con CCA.

MUESTRA	DOSIF	EI IIIDE7	(0/)		
	CEMENTO	ARENA	CCA	FLUIDEZ	(70)
MORTERO PATRÓN	1	3.5	0	112.25	%
MORTERO CON ADIC. 5%	1	3.5	0.05	61.25	%
MORTERO CON ADIC. 10%	1	3.5	0.10	43.50	%
MORTERO CON ADIC. 15%	1	3.5	0.15	26.75	%

Fuente: Elaboración propia.

La fluidez del mortero patrón (1:3.5) fue 112.25%, el mortero con 5% de adición con CCA obtuvo 61.25%, con 10% fue 43.50% y por último con 15% fue 26.75% como se observan en la tabla 41. **Ver anexo 9.1.1**

Figura 76. Resultado en barras del ensayo de fluidez de la dosificación P1 (1:3.5), mortero patrón y adicionado con CCA.

En la figura 76, los morteros adicionados con CCA en proporciones 1 : 3.5 : 0.05, 1 : 3.5 : 0.10 y 1 : 3.5 : 0.15 presentan una disminución en la fluidez de 45%, 61% y 76% respectivamente, en relación al mortero patrón 1 : 3.5 (sin CCA).

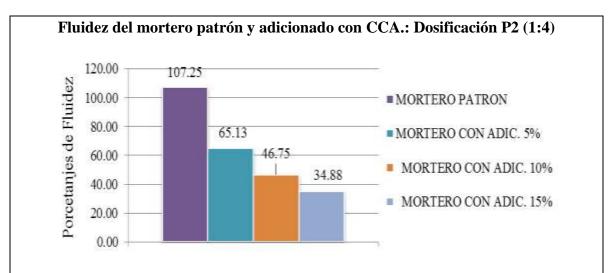

B.2. Dosificación 1:4

Tabla 42Fluidez del mortero patrón P2 (1:4) y mortero adicionado con CCA.

MUESTRA	DOSIF	FLUIDEZ (%)			
	CEMENTO	ARENA	CCA	FLUIDEZ	(/0)
MORTERO PATRÓN	1	4	0	107.25	%
MORTERO CON ADIC. 5%	1	4	0.05	65.13	%
MORTERO CON ADIC. 10%	1	4	0.10	46.75	%
MORTERO CON ADIC. 15%	1	4	0.15	34.88	%

Fuente: Elaboración propia.

La fluidez del mortero patrón (1:4) fue 107.25%, el mortero con 5% de adición con CCA obtuvo 65.13%, con 10% fue 46.75% y por último con 15% fue 34.88% como se observan en la tabla 42. **Ver anexo 9.1.2**

Figura 77. Resultado en barras del ensayo de fluidez de la dosificación P2 (1:4), mortero patrón y adicionado con CCA.

En la figura 77, los morteros adicionados con CCA en proporciones 1 : 4 : 0.05, 1 : 4 : 0.10 y 1 : 4 : 0.15 presentan una disminución en la fluidez de 39%, 56% y 67% respectivamente, en relación al mortero patrón 1 : 4 (sin CCA).

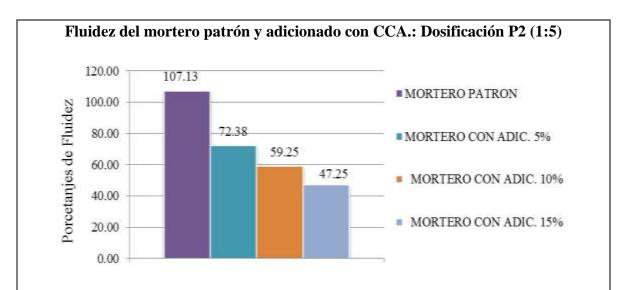

B.3. Dosificación 1:5

Tabla 43Fluidez del mortero patrón P2 (1:5) y mortero adicionado con CCA.

MUESTRA	DOSIF	FLUIDEZ	(0/)		
	CEMENTO	ARENA	CCA	FLUIDEZ	(/0)
MORTERO PATRÓN	1	5	0	107.13	%
MORTERO CON ADIC. 5%	1	5	0.05	72.38	%
MORTERO CON ADIC. 10%	1	5	0.10	59.25	%
MORTERO CON ADIC. 15%	1	5	0.15	47.25	%

Fuente: Elaboración propia.

La fluidez del mortero patrón (1:5) fue 107.13%, el mortero con 5% de adición con CCA obtuvo 72.38%, con 10% fue 59.25% y por último con 15% fue 47.25% como se observan en la tabla 43. **Ver anexo 9.1.3**

Figura 78. Resultado en barras del ensayo de fluidez de la dosificación P2 (1:5), mortero patrón y adicionado con CCA.

En la figura 78, los morteros adicionados con CCA en proporciones 1 : 5 : 0.05, 1 : 5 : 0.10 y 1 : 5 : 0.15 presentan una disminución en la fluidez de 32%, 45% y 56% respectivamente, en relación al mortero patrón 1 : 5 (sin CCA).

B.4. Dosificación 1:6

Tabla 44Fluidez del mortero patrón NP (1:6) y mortero adicionado con CCA.

MUESTRA	DOSIF	FLUIDEZ	(0/)		
	CEMENTO	ARENA	CCA	FLUIDEZ	(70)
MORTERO PATRÓN	1	6	0	109.75	%
MORTERO CON ADIC. 5%	1	6	0.05	77.75	%
MORTERO CON ADIC. 10%	1	6	0.10	61.25	%
MORTERO CON ADIC. 15%	1	6	0.15	51.50	%

Fuente: Elaboración propia.

La fluidez del mortero patrón (1:6) fue 109.75%, el mortero con 5% de adición con CCA obtuvo 77.75%, con 10% fue 61.25% y por último con 15% fue 51.50% como se observan en la tabla 44. **Ver anexo 9.1.4**

Figura 79. Resultado en barras del ensayo de fluidez de la dosificación NP (1:6), mortero patrón y adicionado con CCA.

En la figura 79, los morteros adicionados con CCA en proporciones 1 : 6 : 0.05, 1 : 6 : 0.10 y 1 : 6 : 0.15 presentan una disminución en la fluidez de 29%, 44% y 53% respectivamente, en relación al mortero patrón 1 : 6 (sin CCA).

3.1.4.1.2. Contenido de aire.

A. Mortero patrón y mortero con sustitución de CCA

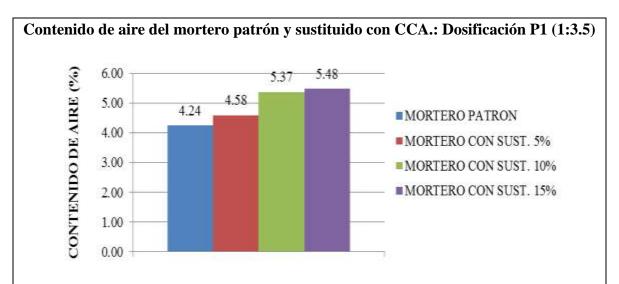

A.1. Dosificación 1:3.5

Tabla 45Contenido de aire en el mortero patrón P1 (1:3.5) y mortero sustituido con CCA.

	DOSIF	TCACIÓN	CONTENIDO DE		
MUESTRA	CEMENTO	A DENIA	CCA	AIRE ATI	RAPADO
	CEMENTO ARENA		CCA	EN EL MORTERO	
MORTERO PATRÓN	1	3.5	0	4.24	%
MORTERO CON SUST. 5%	0.95	3.5	0.05	4.58	%
MORTERO CON SUST. 10%	0.90	3.5	0.10	5.37	%
MORTERO CON SUST. 15%	0.85	3.5	0.15	5.48	%

Fuente: Elaboración propia.

El contenido de aire del mortero patrón (1:3.5) fue 4.24%, el mortero con 5% de sustitución con CCA obtuvo 4.58%, con 10% fue 5.37% y por último con 15% fue 5.48% como se observan en la tabla 45. **Ver anexo 9.2.1**

Figura 80. Resultado en barras del ensayo de contenido de aire en la dosificación P1 (1:3.5), mortero patrón y sustituido con CCA.

En la figura 80, los morteros sustituidos con CCA en proporciones 0.95 : 3.5 : 0.05, 0.90 : 3.5 : 0.10 y 0.85 : 3.5 : 0.15 presentan un incremento en el contenido de aire atrapado de 8%, 27% y 29% respectivamente, en relación al mortero patrón 1 : 3.5 (sin CCA).

A.2. Dosificación 1:4

Tabla 46Contenido de aire en el mortero patrón P2 (1:4) y mortero sustituido con CCA.

	DOSIFICACIÓN			CONTENIDO DE		
MUESTRA	CEMENTO	ADENIA	aa.	AIRE ATR	APADO	
	CEMENTO	ARENA	CCA	EN EL MORTERO		
MORTERO PATRÓN	1	4	0	5.09	%	
MORTERO CON SUST. 5%	0.95	4	0.05	5.20	%	
MORTERO CON SUST. 10%	0.90	4	0.10	5.89	%	
MORTERO CON SUST. 15%	0.85	4	0.15	6.34	%	

Fuente: Elaboración propia.

El contenido de aire del mortero patrón (1:4) fue 5.09%, el mortero con 5% de sustitución con CCA obtuvo 5.20%, con 10% fue 5.89% y por último con 15% fue 6.34% como se observan en la tabla 46. Ver anexo 9.2.2

Figura 81. Resultado en barras del ensayo de contenido de aire en la dosificación P2 (1:4), mortero patrón y sustituido con CCA.

En la figura 81, los morteros sustituidos con CCA en proporciones 0.95 : 4 : 0.05, 0.90 : 4 : 0.10 y 0.85 : 4 : 0.15 presentan un incremento en el contenido de aire atrapado de 2%, 16% y 25% respectivamente, en relación al mortero patrón 1 : 4 (sin CCA).

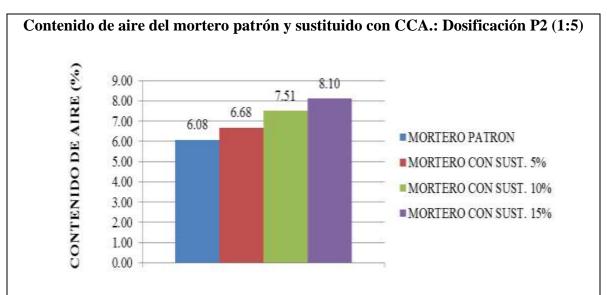

A.3. Dosificación 1:5

Tabla 47Contenido de aire en el mortero patrón P2 (1:5) y mortero sustituido con CCA.

	DOSIFICACIÓN			CONTENIDO DE		
MUESTRA	CEMENTO	ARENA	CCA	AIRE ATRA		
MORTERO PATRÓN	1	5	0	6.08	%	
MORTERO CON SUST. 5%	0.95	5	0.05	6.68	%	
MORTERO CON SUST. 10%	0.90	5	0.10	7.51	%	
MORTERO CON SUST. 15%	0.85	5	0.15	8.10	%	

Fuente: Elaboración propia.

El contenido de aire del mortero patrón (1:5) fue 6.08%, el mortero con 5% de sustitución con CCA obtuvo 6.68%, con 10% fue 7.51% y por último con 15% fue 8.10% como se observan en la tabla 47. Ver anexo 9.2.3

Figura 82. Resultado en barras del ensayo de contenido de aire en la dosificación P2 (1:5), mortero patrón y sustituido con CCA.

En la figura 82, los morteros sustituidos con CCA en proporciones 0.95 : 5 : 0.05, 0.90 : 5 : 0.10 y 0.85 : 5 : 0.15 presentan un incremento en el contenido de aire atrapado de 10%, 24% y 33% respectivamente, en relación al mortero patrón 1 : 5 (sin CCA).

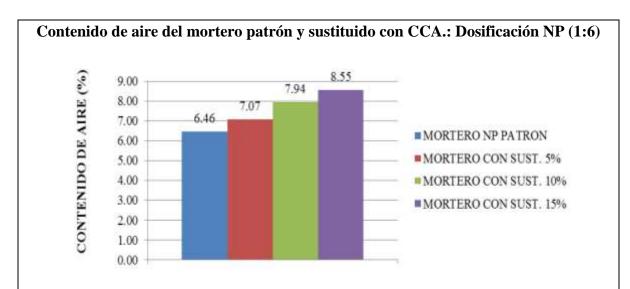

A.4. Dosificación 1:6

Tabla 48Contenido de aire en el mortero patrón NP (1:6) y mortero sustituido con CCA.

MUESTRA	DOSII	FICACIÓN	CONTENIDO DE		
	CEMENTO A	ADENIA	CCA	AIRE ATR	APADO
		ARENA		EN EL MO	RTERO
MORTERO NP PATRÓN	1	6	0	6.46	%
MORTERO CON SUST. 5%	0.95	6	0.05	7.07	%
MORTERO CON SUST. 10%	0.90	6	0.10	7.94	%
MORTERO CON SUST. 15%	0.85	6	0.15	8.55	%

Fuente: Elaboración propia.

El contenido de aire del mortero patrón (1:6) fue 6.46%, el mortero con 5% de sustitución con CCA obtuvo 7.07%, con 10% fue 7.94% y por último con 15% fue 8.55% como se observan en la tabla 48. **Ver anexo 9.2.4**

Figura 83. Resultado en barras del ensayo de contenido de aire en la dosificación NP (1:6), mortero patrón y sustituido con CCA.

En la figura 83, los morteros sustituidos con CCA en proporciones 0.95 : 6 : 0.05, 0.90 : 6 : 0.10 y 0.85 : 6 : 0.15 presentan un incremento en el contenido de aire atrapado de 9%, 23% y 32% respectivamente, en relación al mortero patrón 1 : 6 (sin CCA).

B. Mortero patrón y mortero con adición de CCA

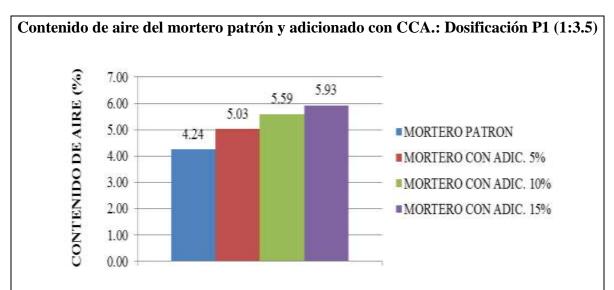

B.1. Dosificación 1:3.5

Tabla 49Contenido de aire en el mortero patrón P1 (1:3.5) y mortero adicionado con CCA.

	DOSIFICACIÓN			CONTENIDO DE		
MUESTRA	CEMENTO	ARENA	CCA	AIRE ATRA		
				EN EL MOI	RTERO	
MORTERO PATRÓN	1	3.5	0	4.24	%	
MORTERO CON ADIC. 5%	1	3.5	0.05	5.03	%	
MORTERO CON ADIC. 10%	1	3.5	0.10	5.59	%	
MORTERO CON ADIC. 15%	1	3.5	0.15	5.93	%	

Fuente: Elaboración propia.

El contenido de aire del mortero patrón (1:3.5) fue 4.24%, el mortero con 5% de adición con CCA obtuvo 5.03%, con 10% fue 5.59% y por último con 15% fue 5.93% como se observan en la tabla 49. **Ver anexo 9.2.1**

Figura 84. Resultado en barras del ensayo de contenido de aire en la dosificación P1 (1:3.5), mortero patrón y adicionado con CCA.

En la figura 84, los morteros adicionados con CCA en proporciones 1 : 3.5 : 0.05, 1 : 3.5 : 0.10 y 1 : 3.5 : 0.15 presentan un incremento en el contenido de aire atrapado de 19%, 32% y 40% respectivamente, en relación al mortero patrón 1 : 3.5 (sin CCA).

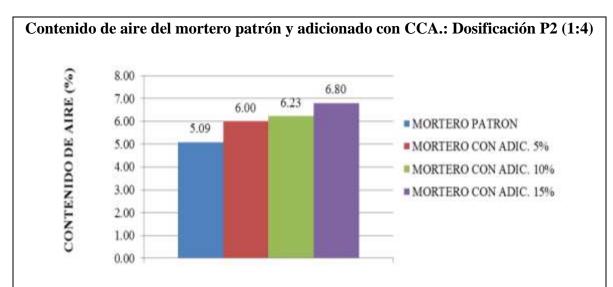

B.2. Dosificación 1:4

Tabla 50
Contenido de aire en el mortero patrón P2 (1:4) y mortero adicionado con CCA.

MUESTRA	DOSIF	ICACIÓN	CONTENIDO DE		
	CEMENTO	ARENA	CCA	AIRE ATRAPADO	
				EN EL MC	ORTERO
MORTERO PATRÓN	1	4	0	5.09	%
MORTERO CON ADIC. 5%	1	4	0.05	6.00	%
MORTERO CON ADIC. 10%	1	4	0.10	6.23	%
MORTERO CON ADIC. 15%	1	4	0.15	6.80	%

Fuente: Elaboración propia.

El contenido de aire del mortero patrón (1:4) fue 5.09%, el mortero con 5% de adición con CCA obtuvo 6.00%, con 10% fue 6.23% y por último con 15% fue 6.80% como se observan en la tabla 50. Ver anexo 9.2.2

Figura 85. Resultado en barras del ensayo de contenido de aire en la dosificación P2 (1:4), mortero patrón y adicionado con CCA.

En la figura 85, los morteros adicionados con CCA en proporciones 1 : 4 : 0.05, 1 : 4 : 0.10 y 1 : 4 : 0.15 presentan un incremento en el contenido de aire atrapado de 18%, 22% y 34% respectivamente, en relación al mortero patrón 1 : 4 (sin CCA).

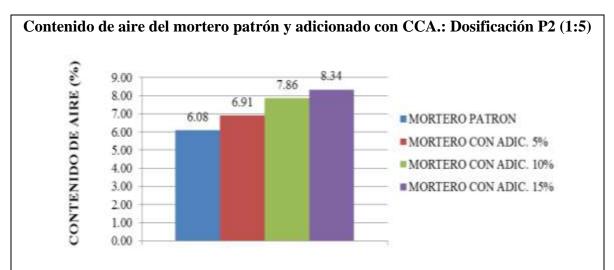

B.3. Dosificación 1:5

Tabla 51Contenido de aire en el mortero patrón P2 (1:5) y mortero adicionado con CCA.

	DOSII	FICACIÓN	CONTENIDO DE		
MUESTRA	CEMENTO	ARENA	CCA	AIRE ATRA EN EL MOI	
MORTERO PATRÓN	1	5	0	6.08	%
MORTERO CON ADIC. 5%	1	5	0.05	6.91	%
MORTERO CON ADIC. 10%	1	5	0.10	7.86	%
MORTERO CON ADIC. 15%	1	5	0.15	8.34	%

Fuente: Elaboración propia.

El contenido de aire del mortero patrón (1:5) fue 6.08%, el mortero con 5% de adición con CCA obtuvo 6.91%, con 10% fue 7.86% y por último con 15% fue 8.34% como se observan en la tabla 51. **Ver anexo 9.2.3**

Figura 86. Resultado en barras del ensayo de contenido de aire en la dosificación P2 (1:5), mortero patrón y adicionado con CCA.

En la figura 86, los morteros adicionados con CCA en proporciones 1 : 5 : 0.05, 1 : 5 : 0.10 y 1 : 5 : 0.15 presentan un incremento en el contenido de aire atrapado de 14%, 29% y 37% respectivamente, en relación al mortero patrón 1 : 5 (sin CCA).

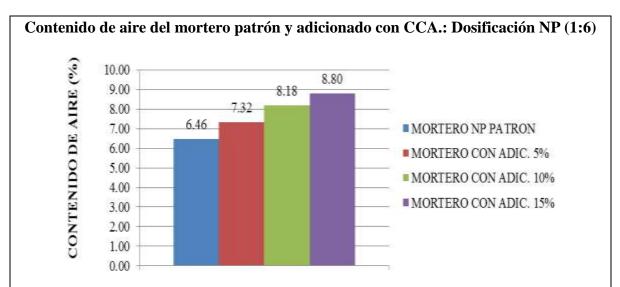

B.4. Dosificación 1:6

Tabla 52. *Contenido de aire en el mortero patrón NP (1:6) y mortero adicionado con CCA.*

	DOSII	FICACIÓN	CONTENIDO DE				
MUESTRA	CEMENTO	A DENIA	CCA	AIRE ATRA	PADO		
	CEMENTO	AKENA	CCA	EN EL MORTERO			
MORTERO NP PATRÓN	1	6	0	6.46	%		
MORTERO CON ADIC. 5%	1	6	0.05	7.32	%		
MORTERO CON ADIC. 10%	1	6	0.10	8.18	%		
MORTERO CON ADIC. 15%	1	6	0.15	8.80	%		

Fuente: Elaboración propia.

El contenido de aire del mortero patrón (1:6) fue 6.46%, el mortero con 5% de adición con CCA obtuvo 7.32%, con 10% fue 8.18% y por último con 15% fue 8.80% como se observan en la tabla 52. Ver anexo 9.2.4

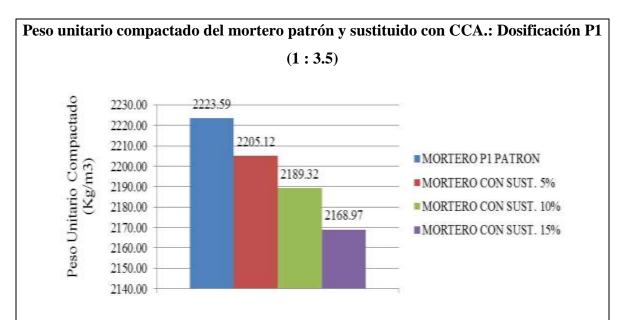
Figura 87. Resultado en barras del ensayo de contenido de aire en la dosificación NP (1:6), mortero patrón y adicionado con CCA.

En la figura 87, los morteros adicionados con CCA en proporciones 1 : 6 : 0.05, 1 : 6 : 0.10 y 1 : 6 : 0.15 presentan un incremento en el contenido de aire atrapado de 13%, 27% y 36% respectivamente, en relación al mortero patrón 1 : 6 (sin CCA).

3.1.4.1.3. Peso unitario.

A. Mortero patrón y mortero con sustitución de CCA

A.1. Dosificación 1:3.5


Tabla 53 *Peso unitario compactado del mortero patrón P1 (1:3.5) y mortero sustituido con CCA.*

MUESTRA	DOSIFICACIÓN			PESO UNITARIO		
	CEMENTO	ARENA	CCA	COMPA	CTADO	
MORTERO P1 PATRÓN	1	3.5	0	2223.59	Kg/m ³	
MORTERO CON SUST. 5%	0.95	3.5	0.05	2205.12	Kg/m^3	
MORTERO CON SUST. 10%	0.90	3.5	0.10	2189.32	Kg/m^3	
MORTERO CON SUST. 15%	0.85	3.5	0.15	2168.97	Kg/m^3	

Fuente: Elaboración propia.

El peso unitario compactado del mortero patrón (1:3.5) fue 2223.59 Kg/m³, el mortero con 5% de sustitución con CCA obtuvo 2205.12 Kg/m³, con 10% fue 2189.32

Kg/m³ y por último con 15% fue 2168.97 Kg/m³ como se observan en la tabla 53. Ver anexo 9.3.1

Figura 88. Resultado en barras del ensayo de peso unitario compactado en la dosificación P1 (1:3.5), mortero patrón y sustituido con CCA.

Fuente: Elaboración propia.

En la figura 88, los morteros sustituidos con CCA en proporciones 0.95 : 3.5 : 0.05, 0.90 : 3.5 : 0.10 y 0.85 : 3.5 : 0.15 presentan una disminución en el peso unitario compactado de 18.48 Kg/m³, 34.28 Kg/m³ y 54.63 Kg/m³ respectivamente, en relación al mortero patrón 1 : 3.5 (sin CCA).

A.2. Dosificación 1:4


Tabla 54 *Peso unitario compactado del mortero patrón P2 (1:4) y mortero sustituido con CCA.*

MUESTRA	DOSIFICACIÓN			PESO UNITARIO	
	CEMENTO	ARENA	CCA	COMPA	CTADO
MORTERO P2 PATRÓN	1	4	0	2202.17	Kg/m ³
MORTERO CON SUST. 5%	0.95	4	0.05	2192.53	Kg/m^3
MORTERO CON SUST. 10%	0.90	4	0.10	2181.82	Kg/m^3
MORTERO CON SUST. 15%	0.85	4	0.15	2166.83	Kg/m ³

Fuente: Elaboración propia.

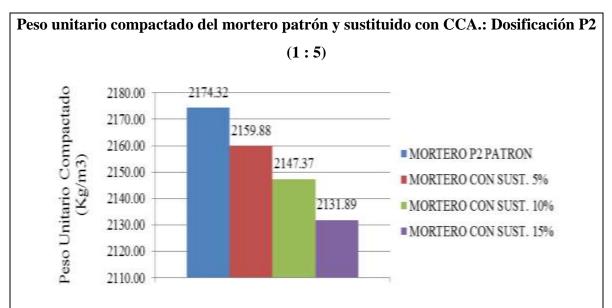
El peso unitario compactado del mortero patrón (1:4) fue 2202.17 Kg/m³, el mortero con 5% de sustitución con CCA obtuvo 2192.53 Kg/m³, con 10% fue 2181.82

Kg/m³ y por último con 15% fue 2166.83 Kg/m³ como se observan en la tabla 54. Ver anexo 9.3.2

Figura 89. Resultado en barras del ensayo de peso unitario compactado en la dosificación P2 (1:4), mortero patrón y sustituido con CCA.

En la figura 89, los morteros sustituidos con CCA en proporciones 0.95 : 4 : 0.05, 0.90 : 4 : 0.10 y 0.85 : 4 : 0.15 presentan una disminución en el peso unitario compactado de 9.64 Kg/m³, 20.35 Kg/m³ y 35.35 Kg/m³ respectivamente, en relación al mortero patrón 1:4 (sin CCA).

A.3. Dosificación 1:5


Tabla 55 *Peso unitario compactado del mortero patrón P2 (1:5) y mortero sustituido con CCA.*

MUESTRA	DOSIFICACIÓN			PESO UNITARIO		
	CEMENTO	ARENA	CCA	COMPAC	CTADO	
MORTERO P2 PATRÓN	1	5	0	2174.32	Kg/m ³	
MORTERO CON SUST. 5%	0.95	5	0.05	2159.88	Kg/m^3	
MORTERO CON SUST. 10%	0.90	5	0.10	2147.37	Kg/m^3	
MORTERO CON SUST. 15%	0.85	5	0.15	2131.89	Kg/m^3	

Fuente: Elaboración propia.

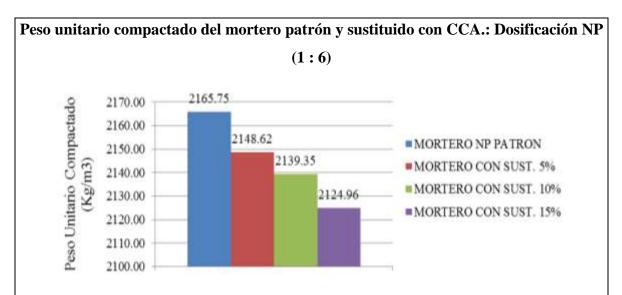
El peso unitario compactado del mortero patrón (1:5) fue 2174.32 Kg/m³, el mortero con 5% de sustitución con CCA obtuvo 2159.88 Kg/m³, con 10% fue 2147.37

Kg/m³ y por último con 15% fue 2131.89 Kg/m³ como se observan en la tabla 55. Ver anexo 9.3.3

Figura 90. Resultado en barras del ensayo de peso unitario compactado en la dosificación P2 (1:5), mortero patrón y sustituido con CCA.

En la figura 90, los morteros sustituidos con CCA en proporciones 0.95 : 5 : 0.05, 0.90 : 5 : 0.10 y 0.85 : 5 : 0.15 presentan una disminución en el peso unitario compactado de 14.44 Kg/m³, 26.95 Kg/m³ y 42.44 Kg/m³ respectivamente, en relación al mortero patrón 1:5 (sin CCA).

A.4. Dosificación 1:6


Tabla 56 *Peso unitario compactado del mortero patrón NP (1:6) y mortero sustituido con CCA.*

MUESTRA	DOSIFICACIÓN			PESO UNITARIO	
	CEMENTO	ARENA	CCA	COMPAC	CTADO
MORTERO NP PATRÓN	1	6	0	2165.75	Kg/m ³
MORTERO CON SUST. 5%	0.95	6	0.05	2148.62	Kg/m^3
MORTERO CON SUST. 10%	0.90	6	0.10	2139.35	Kg/m^3
MORTERO CON SUST. 15%	0.85	6	0.15	2124.96	Kg/m^3

Fuente: Elaboración propia.

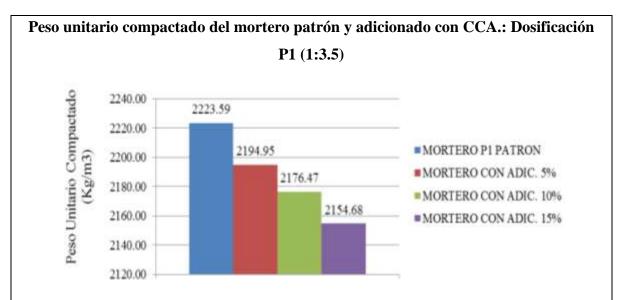
El peso unitario compactado del mortero patrón (1:6) fue 2165.75 Kg/m³, el mortero con 5% de sustitución con CCA obtuvo 2148.62 Kg/m³, con 10% fue 2139.35

Kg/m³ y por último con 15% fue 2124.96 Kg/m³ como se observan en la tabla 56. **Ver** anexo 9.3.4

Figura 91. Resultado en barras del ensayo de peso unitario compactado en la dosificación NP (1:6), mortero patrón y sustituido con CCA.

Fuente: Elaboración propia.

En la figura 91, los morteros sustituidos con CCA en proporciones 0.95 : 6 : 0.05, 0.90 : 6 : 0.10 y 0.85 : 6 : 0.15 presentan una disminución en el peso unitario compactado de 17.14 Kg/m³, 26.40 Kg/m³ y 40.80 Kg/m³ respectivamente, en relación al mortero patrón 1:6 (sin CCA).


B. Mortero patrón y mortero con adición de CCA

B.1. Dosificación 1:3.5

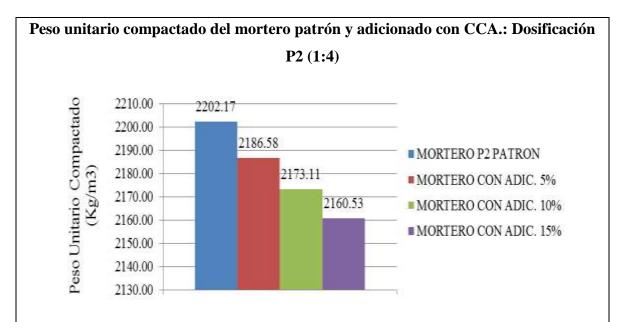
Tabla 57 *Peso unitario compactado del mortero patrón P1 (1:3.5) y mortero adicionado con CCA.*

MUESTRA	DOSIFICACIÓN			PESO UNITARIO		
	CEMENTO	ARENA	CCA	COMPA	CTADO	
MORTERO P1 PATRÓN	1	3.5	0	2223.59	Kg/m ³	
MORTERO CON ADIC. 5%	1	3.5	0.05	2194.95	Kg/m^3	
MORTERO CON ADIC. 10%	1	3.5	0.10	2176.47	Kg/m^3	
MORTERO CON ADIC. 15%	1	3.5	0.15	2154.68	Kg/m^3	

El peso unitario compactado del mortero patrón (1:3.5) fue 2223.59 Kg/m³, el mortero con 5% de adición con CCA obtuvo 2194.95 Kg/m³, con 10% fue 2176.47 Kg/m³ y por último con 15% fue 2154.68 Kg/m³ como se observan en la tabla 57. **Ver anexo 9.3.1**

Figura 92. Resultado en barras del ensayo de peso unitario compactado en la dosificación P1 (1:3.5), mortero patrón y adicionado con CCA.

Fuente: Elaboración propia.


En la figura 92, los morteros adicionados con CCA en proporciones 1 : 3.5 : 0.05, 1 : 3.5 : 0.10 y 1 : 3.5 : 0.15 presentan una disminución en el peso unitario compactado de 28.64 Kg/m³, 47.13 Kg/m³ y 68.91 Kg/m³ respectivamente, en relación al mortero patrón 1:3.5 (sin CCA).

B.2. Dosificación 1:4

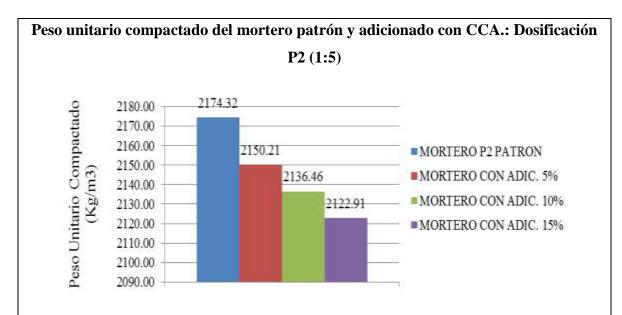
Tabla 58 *Peso unitario compactado del mortero patrón P2 (1:4) y mortero adicionado con CCA.*

MUESTRA	DOSIFICACIÓN			PESO UNITARIO		
	CEMENTO	ARENA	CCA	COMPA	CTADO	
MORTERO P2 PATRÓN	1	4	0	2202.17	Kg/m ³	
MORTERO CON ADIC. 5%	1	4	0.05	2186.58	Kg/m^3	
MORTERO CON ADIC. 10%	1	4	0.10	2173.11	Kg/m^3	
MORTERO CON ADIC. 15%	1	4	0.15	2160.53	Kg/m^3	

El peso unitario compactado del mortero patrón (1:4) fue 2202.17 Kg/m³, el mortero con 5% de adición con CCA obtuvo 2186.58 Kg/m³, con 10% fue 2173.11 Kg/m³ y por último con 15% fue 2160.53 Kg/m³ como se observan en la tabla 58. **Ver anexo 9.3.2**

Figura 93. Resultado en barras del ensayo de peso unitario compactado en la dosificación P2 (1:4), mortero patrón y adicionado con CCA.

Fuente: Elaboración propia.


En la figura 93, los morteros adicionados con CCA en proporciones 1 : 4 : 0.05, 1 : 4 : 0.10 y 1 : 4 : 0.15 presentan una disminución en el peso unitario compactado de 15.60 Kg/m³, 29.06 Kg/m³ y 41.64 Kg/m³ respectivamente, en relación al mortero patrón 1:4 (sin CCA).

B.3. Dosificación 1:5

Tabla 59 *Peso unitario compactado del mortero patrón P2 (1:5) y mortero adicionado con CCA.*

MUESTRA	DOSIFICACIÓN			PESO UNITARIO		
	CEMENTO	ARENA	CCA	COMPAC	CTADO	
MORTERO P2 PATRÓN	1	5	0	2174.32	Kg/m ³	
MORTERO CON ADIC. 5%	1	5	0.05	2150.21	Kg/m^3	
MORTERO CON ADIC. 10%	1	5	0.10	2136.46	Kg/m^3	
MORTERO CON ADIC. 15%	1	5	0.15	2122.91	Kg/m^3	

El peso unitario compactado del mortero patrón (1:5) fue 2174.32 Kg/m³, el mortero con 5% de adición con CCA obtuvo 2150.21 Kg/m³, con 10% fue 2136.46 Kg/m³ y por último con 15% fue 2122.91 Kg/m³ como se observan en la tabla 59. **Ver anexo 9.3.3**

Figura 94. Resultado en barras del ensayo de peso unitario compactado en la dosificación P2 (1:5), mortero patrón y adicionado con CCA.

Fuente: Elaboración propia.

En la figura 94, los morteros adicionados con CCA en proporciones 1 : 5 : 0.05, 1 : 5 : 0.10 y 1 : 5 : 0.15 presentan una disminución en el peso unitario compactado de 24.11 Kg/m³, 37.86 Kg/m³ y 51.41 Kg/m³ respectivamente, en relación al mortero patrón 1:5 (sin CCA).

B.4. Dosificación 1:6

Tabla 60 *Peso unitario compactado del mortero patrón NP (1:6) y mortero adicionado con CCA.*

MUESTRA	DOSIF	PESO UNITARIO			
WOESTRA	CEMENTO	ARENA	CCA	COMPAC	CTADO
MORTERO NP PATRÓN	1	6	0	2165.75	Kg/m ³
MORTERO CON ADIC. 5%	1	6	0.05	2141.41	Kg/m^3
MORTERO CON ADIC. 10%	1	6	0.10	2128.92	Kg/m^3
MORTERO CON ADIC. 15%	1	6	0.15	2117.62	Kg/m^3

El peso unitario compactado del mortero patrón (1:6) fue 2165.75 Kg/m³, el mortero con 5% de adición con CCA obtuvo 2141.41 Kg/m³, con 10% fue 2128.92 Kg/m³ y por último con 15% fue 2117.62 Kg/m³ como se observan en la tabla 60. **Ver anexo 9.3.4**

Figura 95. Resultado en barras del ensayo de peso unitario compactado en la dosificación NP (1:6), mortero patrón y adicionado con CCA.

Fuente: Elaboración propia.

En la figura 95, los morteros adicionados con CCA en proporciones 1 : 6 : 0.05, 1 : 6 : 0.10 y 1 : 6 : 0.15 presentan una disminución en el peso unitario compactado de 24.35 Kg/m³, 36.83 Kg/m³ y 48.14 Kg/m³ respectivamente, en relación al mortero patrón 1:6 (sin CCA).

3.1.4.2. Propiedades mecánicas del mortero patrón y modificado con cenizas de cáscaras de arroz.

3.1.4.2.1. Resistencia a la compresión.

A. Mortero patrón y mortero con sustitución de CCA

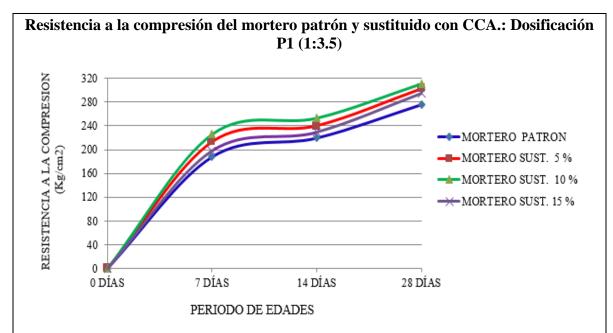

A.1. Dosificación 1:3.5

Tabla 61Resistencia a la compresión del mortero patrón P1 (1:3.5) y mortero sustituido con CCA.

	DOSIF	ICACIÓ	N	RESISTENCIA A LA COMPRESIÓN (Kg/cm²)				
MUESTRA	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	
MORTERO PATRÓN	1	3.5	0	0	187.84	219.46	275.79	
MORTERO SUST. 5%	0.95	3.5	0.05	0	212.89	239.74	302.13	
MORTERO SUST. 10%	0.90	3.5	0.10	0	226.24	253.47	311.44	

MORTERO SUST. 15% 0.85 3.5 0.15 0 198.14 229.58 294.82

Fuente: Elaboración propia.

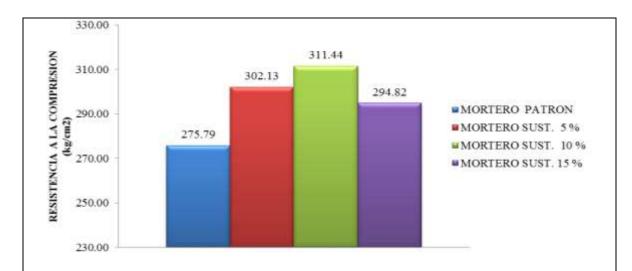


Figura 96. Resistencia a la compresión del mortero patrón y sustituido con CCA.: Dosificación P1 (1:3.5).

Fuente: Elaboración propia.

En la figura 96, los morteros sustituidos con CCA en proporciones 0.95 : 3.5 : 0.05, 0.90 : 3.5 : 0.10 y 0.85 : 3.5 : 0.15, todas estas presentan un incremento en su resistencia a la compresión para todas las edades con respecto al mortero patrón 1:3.5. Ver anexo 10.1.1

Resistencia a la compresión del mortero patrón y sustituido con CCA.: Dosificación P1 (1:3.5)

Figura 97. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P1 (1:3.5), mortero patrón y sustituido con CCA.

En la figura 97, los morteros sustituidos con CCA en proporciones 0.95 : 3.5 : 0.05, 0.90 : 3.5 : 0.10 y 0.85 : 3.5 : 0.15 presentan un incremento en la resistencia a la compresión de 10%, 13% y 7% respectivamente, siendo el mortero patrón 1 : 3.5 (sin CCA), quien presenta menor resistencia a la compresión del mortero a los 28 días.

A.2. Dosificación 1:4

Tabla 62 *Resistencia a la compresión del mortero patrón P2 (1:4) y mortero sustituido con CCA.*

MUESTRA	DOSIFICACIÓN			RESISTENCIA A LA COMPRESIÓN (Kg/cm²)				
	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	
MORTERO PATRÓN	1	4	0	0	182.84	215.48	250.54	
MORTERO SUST. 5%	0.95	4	0.05	0	199.23	234.37	274.85	
MORTERO SUST. 10%	0.90	4	0.10	0	213.69	240.19	283.07	
MORTERO SUST. 15%	0.85	4	0.15	0	193.14	221.74	264.74	

Fuente: Elaboración propia.

Resistencia a la compresión del mortero patrón y sustituido con CCA.: Dosificación P2 (1:4)

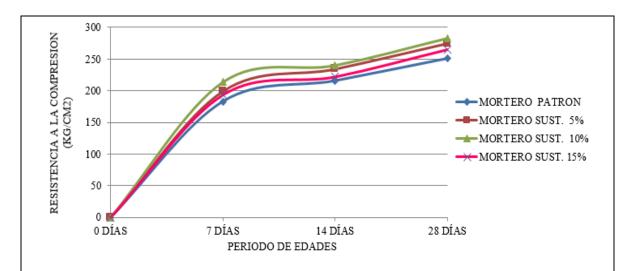
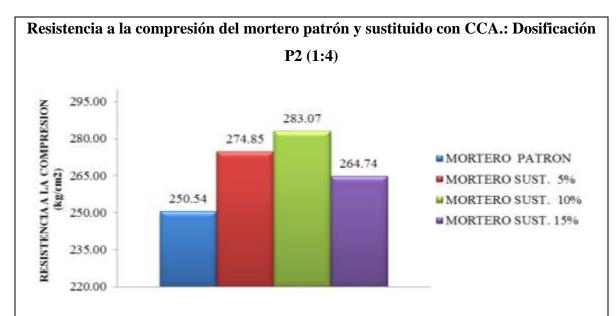



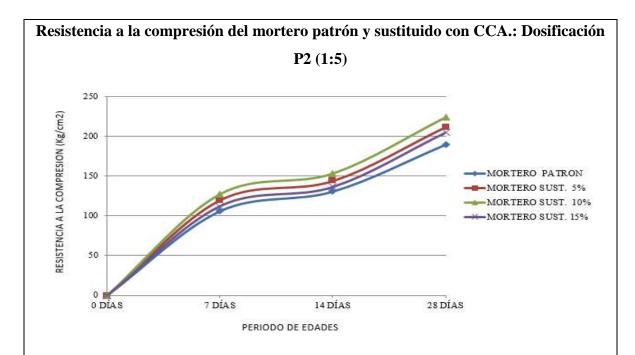
Figura 98. Resistencia a la compresión del mortero patrón y sustituido con CCA.: Dosificación P2 (1:4).

En la figura 98, los morteros sustituidos con CCA en proporciones 0.95 : 4 : 0.05, 0.90 : 4 : 0.10 y 0.85 : 4 : 0.15, todas estas presentan un incremento en su resistencia a la compresión para todas las edades con respecto al mortero patrón 1:4. **Ver anexo 10.1.2**

Figura 99. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P2 (1:4), mortero patrón y sustituido con CCA.

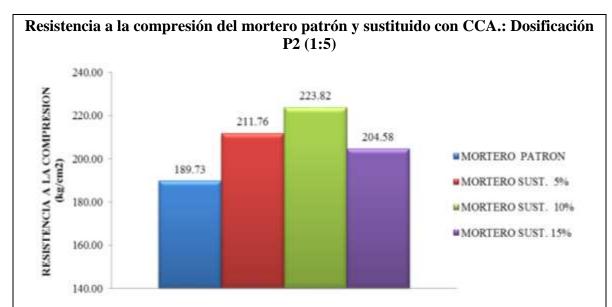
Fuente: Elaboración propia.

En la figura 99, los morteros sustituidos con CCA en proporciones 0.95 : 4 : 0.05, 0.90 : 4 : 0.10 y 0.85 : 4 : 0.15 presentan un incremento en la resistencia a la compresión de


10%, 13% y 6% respectivamente, siendo el mortero patrón 1 : 4 (sin CCA), quien presenta menor resistencia a la compresión del mortero a los 28 días.

A.3. Dosificación 1:5

Tabla 63Resistencia a la compresión del mortero patrón P2 (1:5) y mortero sustituido con CCA.


MUESTRA	DOSIF	ICACIÓ	N	RESISTENCIA A LA COMPRESIÓN (Kg/cm²)				
MUESTRA	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	
MORTERO PATRÓN	1	5	0	0	105.96	130.66	189.73	
MORTERO SUST. 5%	0.95	5	0.05	0	119.68	143.93	211.76	
MORTERO SUST. 10%	0.90	5	0.10	0	127.19	153.11	223.82	
MORTERO SUST. 15%	0.85	5	0.15	0	112.14	136.21	204.58	

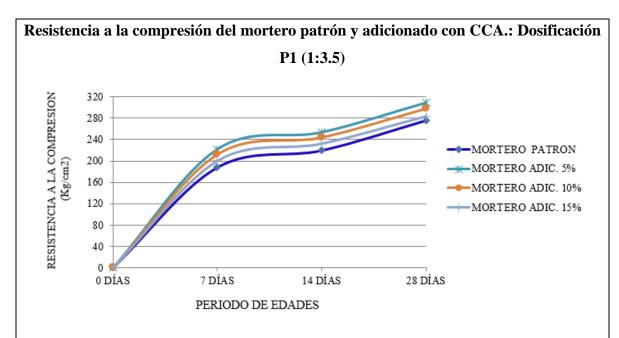
Fuente: Elaboración propia.

Figura 100. Resistencia a la compresión del mortero patrón y sustituido con CCA.: Dosificación P2 (1:5).

En la figura 100, los morteros sustituidos con CCA en proporciones 0.95 : 5 : 0.05, 0.90 : 5 : 0.10 y 0.85 : 5 : 0.15, todas estas presentan un incremento en su resistencia a la compresión para todas las edades con respecto al mortero patrón 1:5. **Ver anexo 10.1.3**

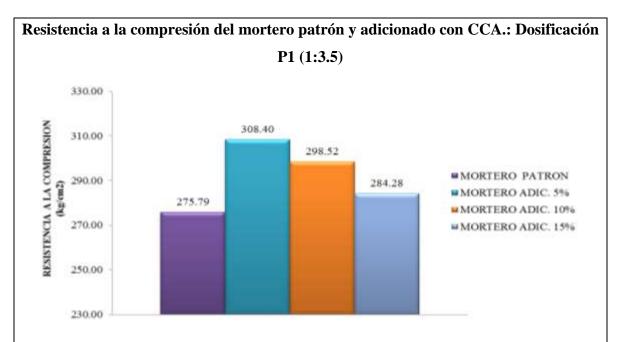
Figura 101. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P2 (1:5), mortero patrón y sustituido con CCA.

Fuente: Elaboración propia.


En la figura 101, los morteros sustituidos con CCA en proporciones 0.95 : 5 : 0.05, 0.90 : 5 : 0.10 y 0.85 : 5 : 0.15 presentan un incremento en la resistencia a la compresión de 12%, 18% y 8% respectivamente, siendo el mortero patrón 1 : 5 (sin CCA), quien presenta menor resistencia a la compresión del mortero a los 28 días.

B. Mortero patrón y mortero con adición de CCA

B.1. Dosificación 1:3.5

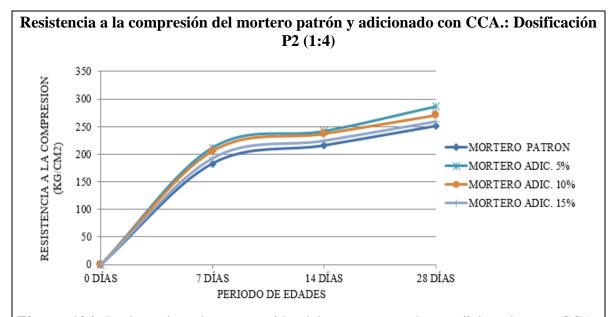

Tabla 64Resistencia a la compresión del mortero patrón P1 (1:3.5) y mortero adicionado con CCA.

MUESTRA	DOSIF	DOSIFICACIÓN			RESISTENCIA A LA COMPRESIÓN (Kg/cm²)			
	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	
MORTERO PATRÓN	1	3.5	0	0	187.84	219.46	275.79	
MORTERO ADIC. 5%	1	3.5	0.05	0	221.62	253.04	308.40	
MORTERO ADIC. 10%	1	3.5	0.10	0	212.57	244.29	298.52	
MORTERO ADIC. 15%	1	3.5	0.15	0	200.49	232.76	284.28	

Figura 102. Resistencia a la compresión del mortero patrón y adicionado con CCA.: Dosificación P1 (1:3.5).

En la figura 102, los morteros adicionados con CCA en proporciones 1 : 3.5 : 0.05, 1 : 3.5 : 0.10 y 1 : 3.5 : 0.15, todas estas presentan un incremento en su resistencia a la compresión para todas las edades con respecto al mortero patrón 1 : 3.5. **Ver anexo 10.1.1**

Figura 103. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P1 (1:3.5), mortero patrón y adicionado con CCA.


En la figura 103, los morteros adicionados con CCA en proporciones 1 : 3.5 : 0.05, 1 : 3.5 : 0.10 y 1 : 3.5 : 0.15 presentan un incremento en la resistencia a la compresión de 12%, 8% y 3% respectivamente, siendo el mortero patrón 1 : 3.5 (sin CCA), quien presenta menor resistencia a la compresión del mortero a los 28 días.

B.2. Dosificación 1:4

Tabla 65 *Resistencia a la compresión del mortero patrón P2 (1:4) y mortero adicionado con CCA.*

MUESTRA	DOSIFICACIÓN			RESISTENCIA A LA COMPRESIÓN (Kg/cm²				
MUESTRA	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	
MORTERO PATRÓN	1	4	0	0	182.84	215.48	250.54	
MORTERO ADIC. 5%	1	4	0.05	0	211.73	241.45	286.09	
MORTERO ADIC. 10%	1	4	0.10	0	205.14	236.34	269.67	
MORTERO ADIC. 15%	1	4	0.15	0	193.06	224.91	259.84	

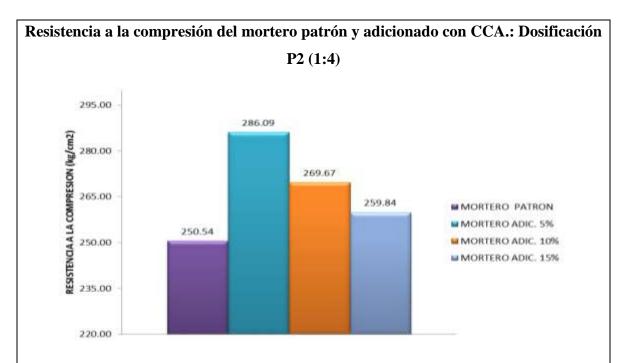

Fuente: Elaboración propia.

Figura 104. Resistencia a la compresión del mortero patrón y adicionado con CCA.: Dosificación P2 (1:4).

Fuente: Elaboración propia.

En la figura 104, los morteros adicionados con CCA en proporciones 1 : 4 : 0.05, 1 : 4 : 0.10 y 1 : 4 : 0.15, todas estas presentan un incremento en su resistencia a la compresión para todas las edades con respecto al mortero patrón 1:4. **Ver anexo 10.1.2**

Figura 105. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P2 (1:4), mortero patrón y adicionado con CCA.

En la figura 105, los morteros adicionados con CCA en proporciones 1 : 4 : 0.05, 1 : 4 : 0.10 y 1 : 4 : 0.15 presentan un incremento en la resistencia a la compresión de 14%, 8% y 4% respectivamente, siendo el mortero patrón 1:4 (sin CCA), quien presenta menor resistencia a la compresión del mortero a los 28 días.

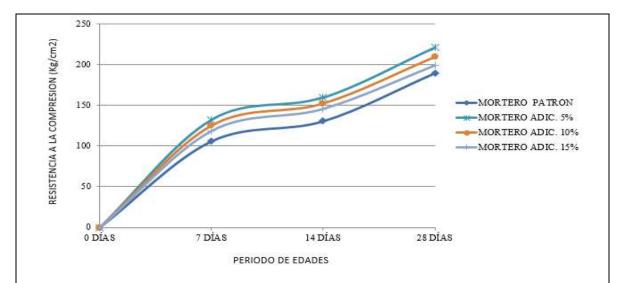
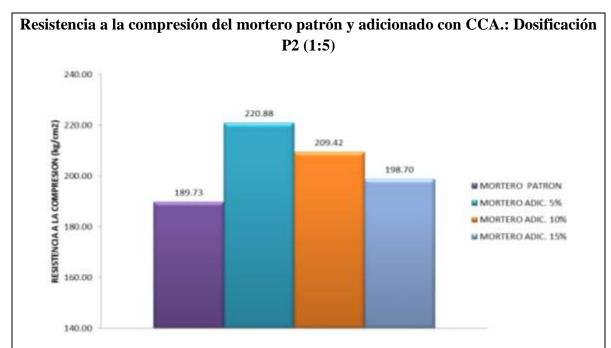

B.3. Dosificación 1:5

Tabla 66
Resistencia a la compresión del mortero patrón P2 (1:5) y mortero adicionado con CCA.

MUESTRA	DOSIF	ICACIÓ	N	RESISTE	RESISTENCIA A LA COMPRESIÓN (Kg/cm²)				
	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS		
MORTERO PATRÓN	1	5	0	0	105.96	130.66	189.73		
MORTERO ADIC. 5%	1	5	0.05	0	132.13	159.22	220.88		
MORTERO ADIC. 10%	1	5	0.10	0	125.08	152.21	209.42		
MORTERO ADIC. 15%	1	5	0.15	0	118.34	145.46	198.70		


Fuente: Elaboración propia.

Resistencia a la compresión del mortero patrón y adicionado con CCA.: Dosificación P2 (1:5)

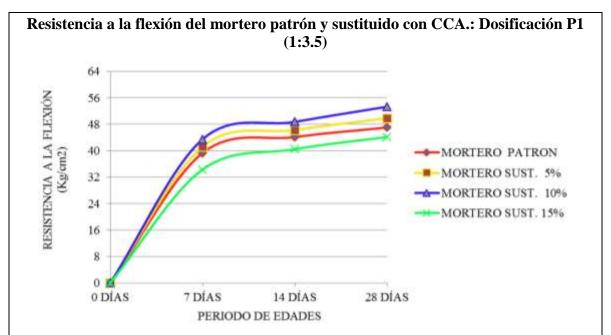
Figura 106. Resistencia a la compresión del mortero patrón y adicionado con CCA.: Dosificación P2 (1:5).

En la figura 106, los morteros adicionados con CCA en proporciones 1 : 5 : 0.05, 1 : 5 : 0.10 y 1 : 5 : 0.15, todas estas presentan un incremento en su resistencia a la compresión para todas las edades con respecto al mortero patrón 1:5. Ver anexo 10.1.3

Figura 107. Resultado en barras del ensayo de resistencia a la compresión en la dosificación P2 (1:5), mortero patrón y adicionado con CCA.

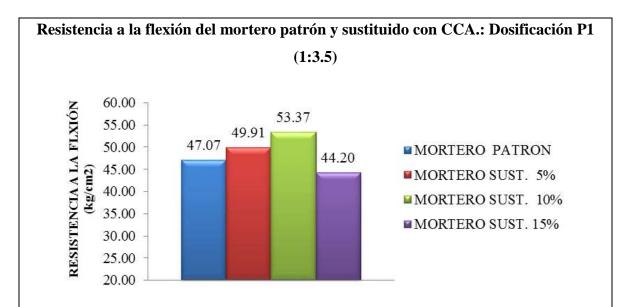
En la figura 107, los morteros adicionados con CCA en proporciones 1 : 5 : 0.05, 1 : 5 : 0.10 y 1 : 5 : 0.15 presentan un incremento en la resistencia a la compresión de 16%, 10% y 5% respectivamente, siendo el mortero patrón 1:5 (sin CCA), quien presenta menor resistencia a la compresión del mortero a los 28 días.

3.1.4.2.2. Resistencia a la flexión.


A. Mortero patrón y mortero con sustitución de CCA

A.1. Dosificación 1:3.5

Tabla 67Resistencia a la flexión del mortero patrón P1 (1:3.5) y mortero sustituido con CCA.

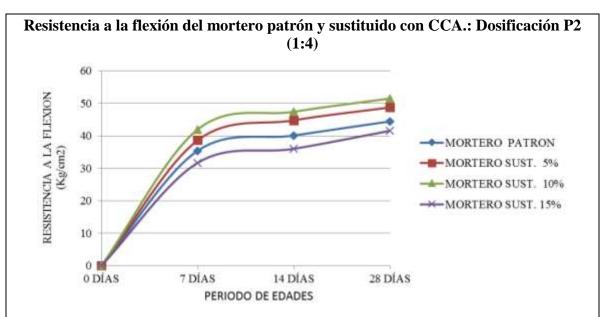

MUESTRA	DOSIF	ICACIÓ	N	RESISTENCIA A LA FLEXIÓN (Kg/cm²				
WICESTRA	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	
MORTERO PATRÓN	1	3.5	0	0	39.34	44.18	47.07	
MORTERO SUST. 5%	0.95	3.5	0.05	0	41.25	46.31	49.91	
MORTERO SUST. 10%	0.90	3.5	0.10	0	43.48	48.78	53.37	
MORTERO SUST. 15%	0.85	3.5	0.15	0	34.34	40.50	44.20	

Fuente: Elaboración propia.

Figura 108. Resistencia a la flexión del mortero patrón y sustituido con CCA.: Dosificación P1 (1:3.5).

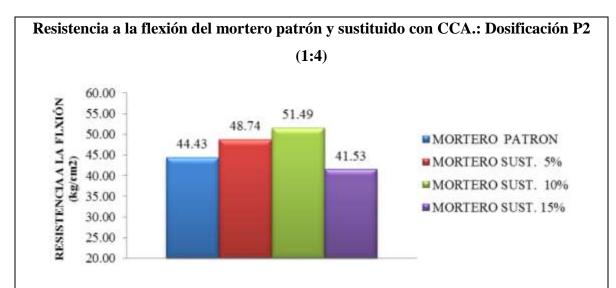
En la figura 108, los morteros sustituidos con CCA en proporciones 0.95 : 3.5 : 0.05 y 0.90 : 3.5 : 0.10 presentan un incremento en su resistencia a la flexión, sin embargo la proporción 0.85 : 3.5 : 0.15 muestra una disminución con respecto al mortero patrón 1:3.5 para todas las edades. **Ver anexo 10.2.1**

Figura 109. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P1 (1:3.5), mortero patrón y sustituido con CCA.


Fuente: Elaboración propia.

En la figura 109, los morteros sustituidos con CCA en proporciones 0.95 : 3.5 : 0.05 y 0.90 : 3.5 : 0.10 presentan un incremento en la resistencia a la flexión de 6% y 13% respectivamente, sin embargo la proporción 0.85 : 3.5 : 0.15 muestra una disminución de 6% con respecto al mortero patrón 1:3.5 (sin CCA), en lo que concierne a la resistencia a la flexión del mortero a los 28 días.

A.2. Dosificación 1:4


Tabla 68Resistencia a la flexión del mortero patrón P2 (1:4) y mortero sustituido con CCA.

MUESTRA	DOSIF	ICACIÓ	N	RESISTENCIA A LA FLEXIÓN (Kg/cm²)				
WICESTRA	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	
MORTERO PATRÓN	1	4	0	0	35.39	40.09	44.43	
MORTERO SUST. 5%	0.95	4	0.05	0	38.61	44.76	48.74	
MORTERO SUST. 10%	0.90	4	0.10	0	41.93	47.40	51.49	
MORTERO SUST. 15%	0.85	4	0.15	0	31.67	35.98	41.53	

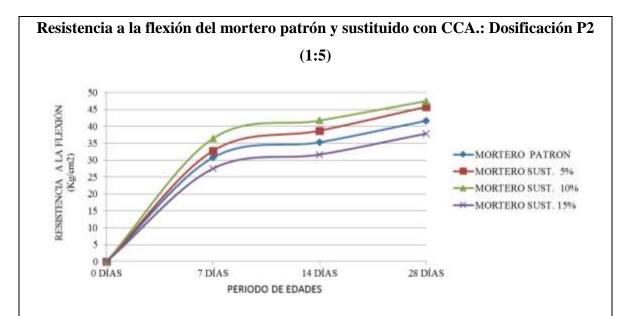
Figura 110. Resistencia a la flexión del mortero patrón y sustituido con CCA.: Dosificación P2 (1:4).

En la figura 110, los morteros sustituidos con CCA en proporciones 0.95 : 4 : 0.05 y 0.90 : 4 : 0.10 presentan un incremento en su resistencia a la flexión, sin embargo la proporción 0.85 : 4 : 0.15 muestra una disminución con respecto al mortero patrón 1:4 para todas las edades. Ver anexo 10.2.2

Figura 111. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P2 (1:4), mortero patrón y sustituido con CCA.

Fuente: Elaboración propia.

En la figura 111, los morteros sustituidos con CCA en proporciones 0.95 : 4 : 0.05 y 0.90 : 4 : 0.10 presentan un incremento en la resistencia a la flexión de 10% y 16%


respectivamente, sin embargo la proporción 0.85 : 4 : 0.15 muestra una disminución de 7% con respecto al mortero patrón 1:4 (sin CCA), en lo que concierne a la resistencia a la flexión del mortero a los 28 días.

A.3. Dosificación 1:5

Tabla 69Resistencia a la flexión del mortero patrón P2 (1:5) y mortero sustituido con CCA.

MUESTRA	DOSIF	ICACIÓ	N	RESISTENCIA A LA FLEXIÓN (Kg/cm²)				
	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	
MORTERO PATRÓN	1	5	0	0	30.77	35.31	41.68	
MORTERO SUST. 5%	0.95	5	0.05	0	32.77	38.73	45.79	
MORTERO SUST. 10%	0.90	5	0.10	0	36.41	41.72	47.50	
MORTERO SUST. 15%	0.85	5	0.15	0	27.52	31.67	37.88	

Fuente: Elaboración propia.

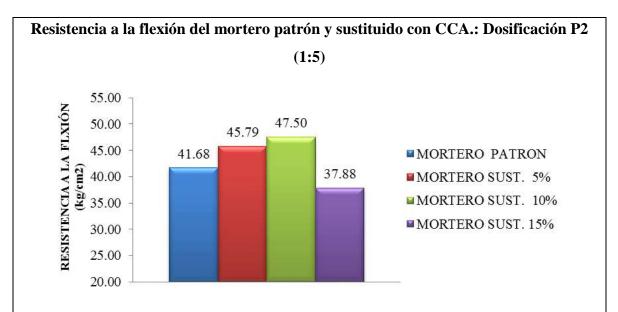


Figura 112. Resistencia a la flexión del mortero patrón y sustituido con CCA.: Dosificación P2 (1:5).

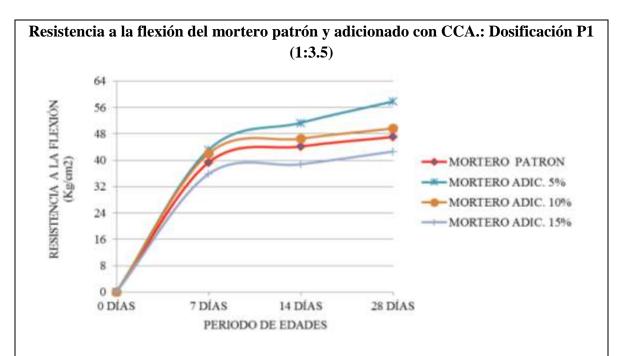
Fuente: Elaboración propia.

En la figura 112, los morteros sustituidos con CCA en proporciones 0.95 : 5 : 0.05 y 0.90 : 5 : 0.10 presentan un incremento en su resistencia a la flexión, sin embargo la

proporción 0.85 : 5 : 0.15 muestra una disminución con respecto al mortero patrón 1:5 para todas las edades. Ver anexo 10.2.3

Figura 113. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P2 (1:5), mortero patrón y sustituido con CCA.

Fuente: Elaboración propia.


En la figura 113, los morteros sustituidos con CCA en proporciones 0.95 : 5 : 0.05 y 0.90 : 5 : 0.10 presentan un incremento en la resistencia a la flexión de 10% y 14% respectivamente, sin embargo la proporción 0.85 : 5 : 0.15 muestra una disminución de 9% con respecto al mortero patrón 1:5 (sin CCA), en lo que concierne a la resistencia a la flexión del mortero a los 28 días.

B. Mortero patrón y mortero con adición de CCA

B.1. Dosificación 1:3.5

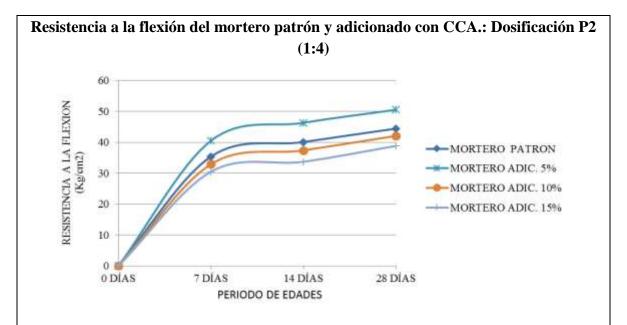
Tabla 70Resistencia a la flexión del mortero patrón P1 (1:3.5) y mortero adicionado con CCA.

MUESTRA	DOSIF	ICACIÓ	N	RESISTENCIA A LA FLEXIÓN (Kg/cm²)				
	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	
MORTERO PATRÓN	1	3.5	0	0	39.34	44.18	47.07	
MORTERO ADIC. 5%	1	3.5	0.05	0	43.16	51.37	57.84	
MORTERO ADIC. 10%	1	3.5	0.10	0	42.03	46.56	49.66	
MORTERO ADIC. 15%	1	3.5	0.15	0	35.82	38.78	42.65	

Figura 114. Resistencia a la flexión del mortero patrón y adicionado con CCA.: Dosificación P1 (1:3.5).

En la figura 114, los morteros adicionados con CCA en proporciones 1:3.5:0.05 y 1:3.5:0.10 presentan un incremento en su resistencia a la flexión, sin embargo la proporción 1:3.5:0.15 muestra una disminución con respecto al mortero patrón 1:3.5 para todas las edades. Ver anexo 10.2.1

Figura 115. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P1 (1:3.5), mortero patrón y adicionado con CCA.


En la figura 115, los morteros adicionados con CCA en proporciones 1:3.5:0.05 y 1:3.5:0.10 presentan un incremento en la resistencia a la flexión de 23% y 5% respectivamente, sin embargo la proporción 1:3.5:0.15 muestra una disminución de 9% con respecto al mortero patrón 1:3.5 (sin CCA), en lo que concierne a la resistencia a la flexión del mortero a los 28 días.

B.2. Dosificación 1:4

Tabla 71Resistencia a la flexión del mortero patrón P2 (1:4) y mortero adicionado con CCA.

MUESTRA	DOSIF	ICACIÓ	N	RESISTENCIA A LA FLEXIÓN (Kg/cm²)				
WIUESTRA	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	
MORTERO PATRÓN	1	4	0	0	35.39	40.09	44.43	
MORTERO ADIC. 5%	1	4	0.05	0	40.51	46.31	50.54	
MORTERO ADIC. 10%	1	4	0.10	0	32.90	37.38	42.06	
MORTERO ADIC. 15%	1	4	0.15	0	30.49	33.70	38.83	

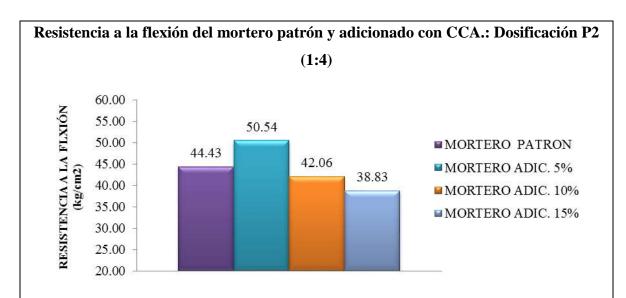

Fuente: Elaboración propia.

Figura 116. Resistencia a la flexión del mortero patrón y adicionado con CCA.: Dosificación P2 (1:4).

Fuente: Elaboración propia.

En la figura 116, los morteros adicionados con CCA en proporciones 1 : 4 : 0.10 y 1 : 4 : 0.15 presentan una disminución en su resistencia a la flexión, sin embargo la proporción 1 : 4 : 0.05 muestra un incremento con respecto al mortero patrón 1:4 para todas las edades. Ver anexo 10.2.2

Figura 117. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P2 (1:4), mortero patrón y adicionado con CCA.

En la figura 117, los morteros adicionados con CCA en proporciones 1:4:0.10 y 1:4:0.15 presentan una disminución en la resistencia a la flexión de 5% y 13% respectivamente, sin embargo la proporción 1:4:0.05 muestra un incremento de 14% con respecto al mortero patrón 1:4 (sin CCA), en lo que concierne a la resistencia a la flexión del mortero a los 28 días.

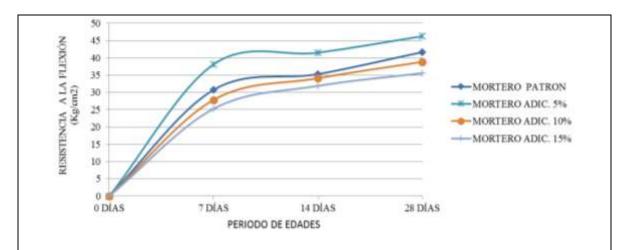
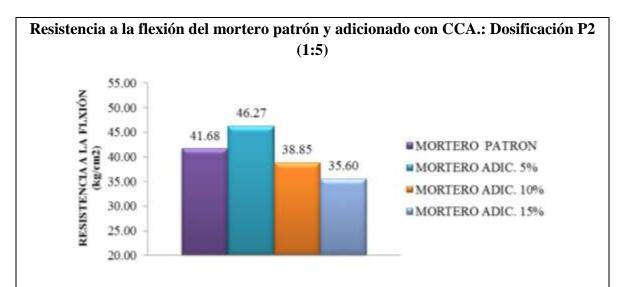

B.3. Dosificación 1:5

Tabla 72 *Resistencia a la flexión del mortero patrón P2 (1:5) y mortero adicionado con CCA.*

MUESTRA	DOSIFICACIÓN			RESISTENCIA A LA FLEXIÓN (Kg/cm²)			
WICESTRA	Cemento	Arena	CCA	0 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS
MORTERO PATRÓN	1	5	0	0	30.77	35.31	41.68
MORTERO ADIC. 5%	1	5	0.05	0	38.13	41.50	46.27
MORTERO ADIC. 10%	1	5	0.10	0	27.86	34.13	38.85
MORTERO ADIC. 15%	1	5	0.15	0	25.29	31.90	35.60


Fuente: Elaboración propia.

Resistencia a la flexión del mortero patrón y adicionado con CCA.: Dosificación P2 (1:5)

Figura 118. Resistencia a la flexión del mortero patrón y adicionado con CCA.: Dosificación P2 (1:5).

En la figura 118 mostrada a continuación, los morteros adicionados con CCA en proporciones 1 : 5 : 0.10 y 1 : 5 : 0.15 presentan una disminución en su resistencia a la flexión, sin embargo la proporción 1 : 5 : 0.05 muestra un incremento con respecto al mortero patrón 1:5 para todas las edades. Ver anexo 10.2.3

Figura 119. Resultado en barras del ensayo de resistencia a la flexión en la dosificación P2 (1:5), mortero patrón y adicionado con CCA.

Fuente: Elaboración propia.

En la figura 119, los morteros adicionados con CCA en proporciones 1 : 5 : 0.10 y 1 : 5 : 0.15 presentan una disminución en la resistencia a la flexión de 7% y 15% respectivamente, sin embargo la proporción 1 : 5 : 0.05 muestra un incremento de 11%

con respecto al mortero patrón 1:5 (sin CCA), en lo que concierne a la resistencia a la flexión del mortero a los 28 días.

3.1.5. Propiedades mecánicas de la albañilería simple.

3.1.5.1. Ensayo de adherencia del mortero – ladrillo arcilla.

3.1.5.1.1. Mortero patrón y mortero con sustitución de CCA.

A. Dosificación 1:4

Tabla 73 *Ensayo de adherencia del mortero patrón P2 (1:4) y mortero sustituido con CCA.*

	DOSII	FICACIÓN	ADHERENCIA DEL		
MUESTRA	CEMENTO	A DENIA	CCA	MOI	RTERO -
	CEMENTO	ARENA	CCA	LADRILI	LO ARCILLA
MORTERO PATRÓN	1	4	0	22.82	Kg/cm ²
MORTERO CON SUST. 5%	0.95	4	0.05	25.05	Kg/cm ²
MORTERO CON SUST. 10%	0.90	4	0.10	23.40	Kg/cm ²
MORTERO CON SUST. 15%	0.85	4	0.15	20.55	Kg/cm ²

Fuente: Elaboración propia.

La adherencia en el mortero patrón (1:4) fue 22.82 Kg/cm², el mortero con 5% de sustitución con CCA obtuvo 25.05 Kg/cm², con 10% fue 23.40 Kg/cm² y por último con 15% fue 20.55 Kg/cm² como se observan en la tabla 73. **Ver anexo 11.1.1**

Figura 120. Resultado en barras del ensayo de adherencia del mortero – ladrillo arcilla en la dosificación P2 (1:4), mortero patrón y sustituido con CCA.

En la figura 120, los morteros sustituidos con CCA en proporciones 0.95 : 4 : 0.05 y 0.90 : 4 : 0.10 presentan un incremento en la adherencia de 10% y 3% respectivamente, sin embargo la proporción 0.85 : 4 : 0.15 muestra una disminución de 10% con respecto al mortero patrón 1:4 (sin CCA).

3.1.5.1.2. Mortero patrón y mortero con adición de CCA.

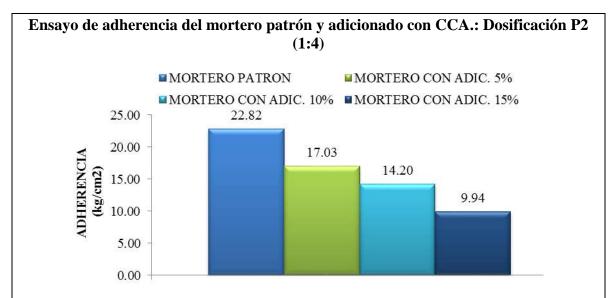

A. Dosificación 1:4

Tabla 74 *Ensayo de adherencia del mortero patrón P2 (1:4) y mortero adicionado con CCA.*

	DOSI	FICACIÓN	ADHERENCIA DEL		
MUESTRA	CEMENTO ARENA		CCA	_	TERO - O ARCILLA
MORTERO PATRÓN	1	4	0	22.82	Kg/cm ²
MORTERO CON ADIC. 5%	1	4	0.05	17.03	Kg/cm ²
MORTERO CON ADIC. 10%	1	4	0.10	14.20	Kg/cm ²
MORTERO CON ADIC. 15%	1	4	0.15	9.94	Kg/cm ²

Fuente: Elaboración propia.

La adherencia en el mortero patrón (1:4) fue 22.82 Kg/cm², el mortero con 5% de adición con CCA obtuvo 17.03 Kg/cm², con 10% fue 14.20 Kg/cm² y por último con 15% fue 9.94 Kg/cm² como se observan en la tabla 74. **Ver anexo 11.1.1**

Figura 121. Resultado en barras del ensayo de adherencia del mortero – ladrillo arcilla en la dosificación P2 (1:4), mortero patrón y adicionado con CCA.

En la figura 121, los morteros adicionados con CCA en proporciones 1 : 4 : 0.05, 1 : 4 : 0.10 y 1 : 4 : 0.15 presentan una disminución en la adherencia del mortero de 25%, 38% y 56% respectivamente, en relación al mortero patrón 1:4 (sin CCA).

3.1.5.2. Ensayo de resistencia a la compresión axial en pilas de albañilería.

3.1.5.2.1. Mortero patrón y mortero con sustitución de CCA.

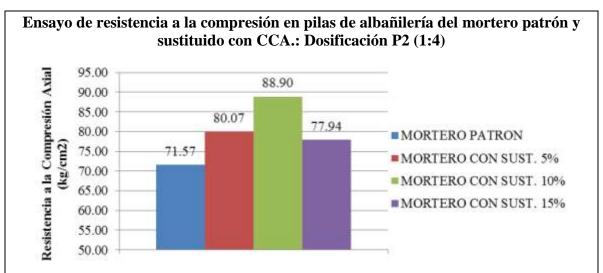

A. Dosificación 1:4

Tabla 75Ensayo de resistencia a la compresión en pilas de albañilería del mortero patrón P2 (1:4) y mortero sustituido con CCA.

	DOSI	FICACIÓ	N	RESISTENCIA A LA	
MUESTRA	CEMENTO	ARENA	CCA	COMPRESIÓN EN PILAS: F'm CORREGIDO	
MORTERO PATRÓN	1	4	0	71.57	Kg/cm ²
MORTERO CON SUST. 5%	0.95	4	0.05	80.07	Kg/cm ²
MORTERO CON SUST. 10%	0.90	4	0.10	88.90	Kg/cm ²
MORTERO CON SUST. 15%	0.85	4	0.15	77.94	Kg/cm ²

Fuente: Elaboración propia.

La resistencia a la compresión en pilas de albañilería del mortero patrón (1:4) fue 71.57 Kg/cm², el mortero con 5% de sustitución con CCA obtuvo 80.07 Kg/cm², con 10% fue 88.90 Kg/cm² y por último con 15% fue 77.94 Kg/cm² como se observan en la tabla 75. **Ver anexo 11.2.1**

Figura 122. Resultado en barras del ensayo de resistencia a la compresión en pilas de albañilería en la dosificación P2 (1:4), mortero patrón y sustituido con CCA.

En la figura 122, los morteros sustituidos con CCA en proporciones 0.95 : 4 : 0.05, 0.90 : 4 : 0.10 y 0.85 : 4 : 0.15 presentan un incremento en la resistencia a la compresión en pilas de albañilería de 12%, 24% y 9% respectivamente, en relación al mortero patrón 1:4 (sin CCA).

3.1.5.2.2. Mortero patrón y mortero con adición de CCA.

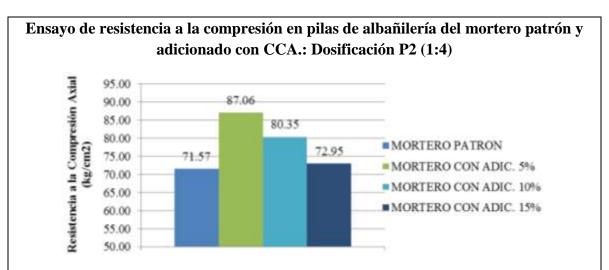

A. Dosificación 1:4

Tabla 76Ensayo de resistencia a la compresión en pilas de albañilería del mortero patrón P2 (1:4) y mortero adicionado con CCA.

	DOSI	FICACIÓ	RESISTENCIA A LA		
MUESTRA	CEMENTO	ARENA	CCA	COMPRESIÓN EN PILAS: F'm CORREGIDO	
MORTERO PATRÓN	1	4	0	71.57	Kg/cm ²
MORTERO CON ADIC. 5%	1	4	0.05	87.06	Kg/cm ²
MORTERO CON ADIC. 10%	1	4	0.10	80.35	Kg/cm ²
MORTERO CON ADIC. 15%	1	4	0.15	72.95	Kg/cm ²

Fuente: Elaboración propia.

La resistencia a la compresión en pilas de albañilería del mortero patrón (1:4) fue 71.57 Kg/cm², el mortero con 5% de adición con CCA obtuvo 87.06 Kg/cm², con 10% fue 80.35 Kg/cm² y por último con 15% fue 72.95 Kg/cm² como se observan en la tabla 76. **Ver anexo 11.2.1**

Figura 123. Resultado en barras del ensayo de resistencia a la compresión en pilas de albañilería en la dosificación P2 (1:4), mortero patrón y adicionado con CCA.

En la figura 123, los morteros adicionados con CCA en proporciones 1 : 4 : 0.05, 1 : 4 : 0.10 y 1 : 4 : 0.15 presentan un incremento en la resistencia a la compresión en pilas de albañilería de 22%, 12% y 2% respectivamente, en relación al mortero patrón 1:4 (sin CCA).

3.1.5.3. Ensayo de resistencia a la compresión diagonal en muretes de albañilería.

3.1.5.3.1. Mortero patrón y mortero con sustitución de CCA.

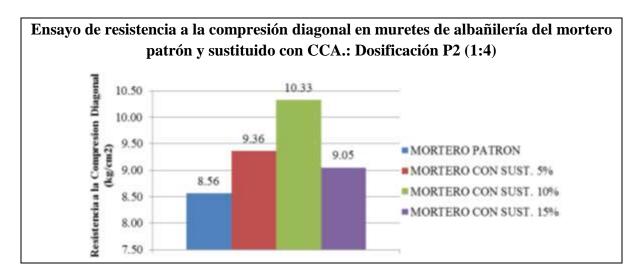

A. Dosificación 1:4

Tabla 77Ensayo de resistencia a la compresión diagonal en muretes de albañilería del mortero patrón P2 (1:4) y mortero sustituido con CCA.

NATIFICADA	DOSIF	ICACIÓN		RESISTENCIA A LA COMPRESIÓN DIAGONAL		
MUESTRA	CEMENTO	ARENA	CCA		DIAGONAL ETES: V'm	
MORTERO PATRÓN	1	4	0	8.56	Kg/cm ²	
MORTERO CON SUST. 5%	0.95	4	0.05	9.36	Kg/cm ²	
MORTERO CON SUST. 10%	0.90	4	0.10	10.33	Kg/cm ²	
MORTERO CON SUST. 15%	0.85	4	0.15	9.05	Kg/cm ²	

Fuente: Elaboración propia.

La resistencia a la compresión diagonal en muretes de albañilería del mortero patrón (1:4) fue 8.56 Kg/cm², el mortero con 5% de sustitución con CCA obtuvo 9.36 Kg/cm², con 10% fue 10.33 Kg/cm² y por último con 15% fue 9.05 Kg/cm² como se observan en la tabla 77. **Ver anexo 11.3.1**

Figura 124. Resultado en barras del ensayo de resistencia a la compresión diagonal en muretes de albañilería en la dosificación P2 (1:4), mortero patrón y sustituido con CCA.

En la figura 124, los morteros sustituidos con CCA en proporciones 0.95 : 4 : 0.05, 0.90 : 4 : 0.10 y 0.85 : 4 : 0.15 presentan un incremento en la resistencia a la compresión diagonal en muretes de albañilería de 9%, 21% y 6% respectivamente, en relación al mortero patrón 1 : 4 (sin CCA).

3.1.5.3.2. Mortero patrón y mortero con adición de CCA.

A. Dosificación 1:4

Tabla 78Ensayo de resistencia a la compresión diagonal en muretes de albañilería del mortero patrón P2 (1:4) y mortero adicionado con CCA.

ACCID A	DOSIF	ICACIÓN	I	RESISTENCIA A LA COMPRESIÓN DIAGONAL		
MUESTRA	CEMENTO	ARENA	CCA		ON DIAGONAL RETES: V'm	
MORTERO PATRÓN	1	4	0	8.56	Kg/cm ²	
MORTERO CON ADIC. 5%	1	4	0.05	10.25	Kg/cm ²	
MORTERO CON ADIC. 10%	1	4	0.10	9.27	Kg/cm ²	
MORTERO CON ADIC. 15%	1	4	0.15	8.75	Kg/cm ²	

Fuente: Elaboración propia.

La resistencia a la compresión diagonal en muretes de albañilería del mortero patrón (1:4) fue 8.56 Kg/cm², el mortero con 5% de adición con CCA obtuvo 10.25 Kg/cm², con 10% fue 9.27 Kg/cm² y por último con 15% fue 8.75 Kg/cm² como se observan en la tabla 78. Ver anexo 11.3.1

Figura 125. Resultado en barras del ensayo de resistencia a la compresión diagonal en muretes de albañilería en la dosificación P2 (1:4), mortero patrón y adicionado con CCA.

En la figura 125, los morteros adicionados con CCA en proporciones 1 : 4 : 0.05, 1 : 4 : 0.10 y 1 : 4 : 0.15 presentan un incremento en la resistencia a la compresión diagonal en muretes de albañilería de 20%, 8% y 2% respectivamente, en relación al mortero patrón 1:4 (sin CCA).

3.1.6. Propuesta económica.

Tabla 79 *Resumen de costo por m*² *de asentado de muro de Soga para un mortero de 1:3.5.*

MUESTRA	MORTERO	DOSIFICACIÓN	COSTO	%	DIFERENCIA
WICESTRA	MORTERO	DE MORTERO	soles /m²	DISMINUCIÓN	DIFERENCIA
M. PATRÓN	M1	1 : 3.5	S/. 51.99		
MORTEROS	M2	0.95 : 3.5 : 0.05	S/. 51.87	0.22%	S/. 0.12
SUSTITUIDOS	M3	0.90 : 3.5 : 0.10	S/. 51.77	0.43%	S/. 0.22
CON CCA	M4	0.85 : 3.5 : 0.15	S/. 51.65	0.66%	S/. 0.34
				%	
				INCREMENTO	
MORTEROS	M5	1 : 3.5 : 0.05	S/. 52.05	0.11%	S/. 0.06
ADICIONADOS	M6	1 : 3.5 : 0.10	S/. 52.13	0.27%	S/. 0.14
CON CCA	M7	1 : 3.5 : 0.15	S/. 52.20	0.40%	S/. 0.21

Fuente: Elaboración propia.

El costo por m² de muro de soga para un mortero patrón (1:3.5) es S/. 51.99, el mortero con 5% de sustitución con CCA es S/. 51.87, con 10% cuesta S/. 51.77 y por último con 15% tiene un costo de S/. 51.65 como se observan en la tabla 79. Sin embargo, se puede apreciar que para un mortero adicionado con CCA el costo por m² incrementa con respecto al mortero patrón.

Tabla 80 *Resumen de costo por m*² *de asentado de muro de Soga para un mortero de 1:4.*

MUESTRA	MORTERO	DOSIFICACIÓN DE MORTERO	COSTO soles /m²	% DISMINUCIÓN	DIFERENCIA
M. PATRÓN	M1	1 : 4	S/. 51.45		
MORTEROS	M2	0.95 : 4 : 0.05	S/. 51.37	0.16%	S/. 0.08
SUSTITUIDOS	M3	0.90 : 4 : 0.10	S/. 51.28	0.32%	S/. 0.17
CON CCA	M4	0.85 : 4 : 0.15	S/. 51.19	0.51%	S/. 0.26
				%	
				INCREMENTO	

MORTEROS	M5	1 : 4 : 0.05	S/. 51.54	0.17%	S/. 0.09
ADICIONADOS	M6	1 : 4 : 0.10	S/. 51.63	0.35%	S/. 0.18
CON CCA	M7	1 : 4 : 0.15	S/. 51.72	0.52%	S/. 0.27

El costo por m² de muro de soga para un mortero patrón (1:4) es S/. 51.45, el mortero con 5% de sustitución con CCA es S/. 51.37, con 10% cuesta S/. 51.28 y por último con 15% tiene un costo de S/. 51.19 como se observan en la tabla 80. Sin embargo, se puede apreciar que para un mortero adicionado con CCA el costo por m² incrementa con respecto al mortero patrón.

Tabla 81 *Resumen de costo por m*² *de asentado de muro de Soga para un mortero de 1:5.*

MUESTRA	MORTERO	DOSIFICACIÓN	COSTO	%	DIFERENCIA
WIUESTKA	MORIERO	DE MORTERO	soles /m²	DISMINUCIÓN	DIFERENCIA
M. PATRÓN	M1	1 : 5	S/. 50.60		
MORTEROS	M2	0.95 : 5 : 0.05	S/. 50.52	0.16%	S/. 0.08
SUSTITUIDOS	M3	0.90 : 5 : 0.10	S/. 50.44	0.30%	S/. 0.15
CON CCA	M4	0.85 : 5 : 0.15	S/. 50.36	0.46%	S/. 0.23
				%	
				INCREMENTO	
MORTEROS	M5	1 : 5 : 0.05	S/. 50.65	0.11%	S/. 0.06
ADICIONADOS	M6	1 : 5 : 0.10	S/. 50.73	0.26%	S/. 0.13
CON CCA	M7	1 : 5 : 0.15	S/. 50.80	0.41%	S/. 0.21

Fuente: Elaboración propia.

El costo por m² de muro de soga para un mortero patrón (1:5) es S/. 50.60, el mortero con 5% de sustitución con CCA es S/. 50.52, con 10% cuesta S/. 50.44 y por último con 15% tiene un costo de S/. 50.36 como se observan en la tabla 81. Sin embargo, se puede apreciar que para un mortero adicionado con CCA el costo por m² incrementa con respecto al mortero patrón.

Tabla 82 *Resumen de costo por m*² *de asentado de muro de Soga para un mortero de 1:6.*

MUESTRA	MORTERO	DOSIFICACIÓN	COSTO	%	DIFERENCIA
	1/101112110	DE MORTERO	soles /m²	DISMINUCIÓN	
M. PATRÓN	M1	1 : 6	S/. 50.04		
MORTEROS	M2	0.95 : 6 : 0.05	S/. 49.96	0.15%	S/. 0.07
SUSTITUIDOS	M3	0.90 : 6 : 0.10	S/. 49.91	0.26%	S/. 0.13
CON CCA	M4	0.85 : 6 : 0.15	S/. 49.84	0.40%	S/. 0.20
				%	
				INCREMENTO	

MORTEROS ADICIONADOS CON CCA	M5	1 : 6 : 0.05	S/. 50.09	0.10%	S/. 0.05
	M6	1 : 6 : 0.10	S/. 50.16	0.24%	S/. 0.12
	M7	1 : 6 : 0.15	S/. 50.23	0.38%	S/. 0.19

El costo por m² de muro de soga para un mortero patrón (1:6) es S/. 50.04, el mortero con 5% de sustitución con CCA es S/. 49.96, con 10% cuesta S/. 49.91 y por último con 15% tiene un costo de S/. 49.84 como se observan en la tabla 82. Sin embargo, se puede apreciar que para un mortero adicionado con CCA el costo por m² incrementa con respecto al mortero patrón.

3.2. Discusión de resultados

3.2.1. Composición química de las cenizas de cáscaras de arroz.

En el ensayo de composición química de la cenizas de cáscaras de arroz proveniente de la incineración de las cáscaras, realizado por el laboratorio MASTERLEM S.A.C. según la norma American Society for Testing and Materials C618 (Método de ensayo para determinar la cantidad de ceniza volante y puzolana natural cruda o calcinada para uso en concreto), los porcentajes de óxido de silicio (95.18%), óxido de potasio (1.13%) y óxido de calcio (0.64%); resultados que coinciden con la investigación de Allauca, Amen y Lung (2009).

3.2.2. Ensayos del agregado fino y unidades de albañilería.

3.2.2.1. Ensayos del agregado fino.

3.2.2.1.1. Granulometría y módulo de fineza.

El RNE E.070 indica que no deberá quedar retenida más del 50% de arena entre dos mallas consecutivas. El módulo de fineza debe estar comprendido entre 1,6 y 2,5, por lo tanto esta granulometría (M.F.= 2.353) se encuentra dentro del rango establecido por el reglamento nacional de edificaciones como se muestra en la tabla 21 de resultados.

3.2.2.1.2. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino.

Según la NTP 400.022 AGREGADOS, indica que el peso específico del agregado fino debe estar comprendido entre 2400 kg/m³ y 2900 kg/m³. El peso específico del agregado fino obtenido en esta investigación fue 2584 kg/m³, encontrándose entre los

rangos establecidos. En el caso de la absorción sí se encuentra entre los rangos estipulados en la Norma que van desde 0% - 5%, siendo la absorción del agregado fino 1.83%.

3.2.2.1.3. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

La NTP 400.017 AGREGADOS, señala que el peso unitario aproximado del agregado fino comúnmente usado varía entre 1200 a 1750 kg/m³. El peso unitario suelto seco y compactado seco del agregado fino resultó 1551 kg/m³ y 1735 kg/m³ respectivamente, ubicándose dentro los parámetros requeridos.

3.2.2.1.4. Método de ensayo para determinar el contenido de humedad total evaporable de agregados por secado.

La NTP 339.185 AGREGADOS, señala que el contenido de humedad evaporable del agregado fino varía entre 0 a 100%. En este caso se obtuvo un contenido de humedad evaporable de 0.74%, ubicándose dentro los parámetros requeridos.

3.2.2.2. Ensayos de las unidades de albañilería.

3.2.2.2.1. Variación dimensional.

En la tabla 27 se muestran los resultados de la variabilidad dimensional, de acuerdo al RNE E.070 se clasifican como ladrillos TIPO IV y TIPO III para ladrillos Ital.

El RNE E.070 indica que, para ladrillos TIPO IV, la dispersión máxima es de 4%, por lo que el resultado de los ladrillos ensayados es aceptable como se muestra en la Tabla 28.

3.2.2.2.2. Porcentaje de área de vacíos.

El RNE E.070 clasifica a los ladrillos que sobrepasan el 30% de área de vacíos como unidades de albañilería hueca, que no son aptos para ser empleadas en zonas sísmicas 2 y 3. Los resultados de los ladrillos ensayados sobrepasan el porcentaje, por lo que solamente se pueden emplear en zona sísmica 1.

3.2.2.2.3. Absorción.

Para que una unidad de albañilería sea aceptable, su nivel de absorción no debe exceder el 22%, como lo indica el RNE E.070. Las unidades ensayadas se ubican dentro del límite especificado.

3.2.2.2.4. Succión.

El RNE E.070 señala que la succión debe encontrarse en un rango de 10 a 20 gr/ (200cm² x min). En este caso la marca Cerámicos Lambayeque no se encuentra en el rango establecido a diferencia de las marcas Lark e Ital.

3.2.2.2.5. Resistencia a la compresión F'_b.

El RNE E.070 indica que, para clasificar un ladrillo como tipo III y IV, estos deben obtener resistencias entre 95 – 129 kg/cm² y 130 – 179 kg/cm² respectivamente. Debido a las resistencias obtenidas de las marcas de ladrillos Cerámicos Lambayeque y Lark se clasifican como Tipo IV. Sin embargo, la marca Ital se clasifica como Tipo III.

3.2.3. Diseño de mezcla del mortero.

Las proporciones especificadas se seleccionaron de acuerdo al tipo de uso del mortero (Muros portantes y No portantes), indicados en el artículo 6 del RNE E.070.

Las relaciones agua/cemento para las proporciones 1:3.5, 1:4, 1:5 y 1:6 fueron 0.77, 0.83, 1.05 y 1.25 respectivamente.

En el caso de sustitución y adición no se pueden comparar con otros estudios debido a que no existen las mismas proporciones utilizadas para ambos casos.

3.2.4. Propiedades físico – mecánicas de la mezcla del mortero patrón y modificado con cenizas de cáscaras de arroz (CCA).

3.2.4.1. Propiedades físicas del mortero patrón y modificado con cenizas de cáscaras de arroz.

Los resultados del presente acápite no tienen comparación con otros estudios, debido a que no existen investigaciones referenciales sobre estas propiedades.

3.2.4.1.1. Fluidez.

La NTP 334.057 CEMENTOS, indica que la fluidez óptima debe estar en el rango de $100 \pm 5\%$, por lo tanto, los morteros Patrones 1:3.5, 1:4, 1:5, 1:6 cumplen con lo estipulado en la norma. En el caso de los morteros con sustitución y adición con CCA, la fluidez disminuye conforme se le añade más porcentaje de ceniza a la mezcla, en comparación al mortero patrón.

3.2.4.1.2. Contenido de aire.

Los resultados obtenidos para el contenido de aire del mortero patrón y mortero modificado con CCA (adición y sustitución) cumplen con el parámetro establecido por la NTP 399.610 UNIDADES DE ALBAÑILERÍA. Especificación normalizada para morteros, la cual indica que el porcentaje máximo de contenido de aire para mortero – cemento Tipo "M" es de 12%.

3.2.4.1.3. Peso unitario.

Mediante el ensayo de Peso unitario del concreto fresco según la NTP 339.046 HORMIGÓN (CONCRETO). Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del hormigón (concreto).

Los resultados de peso unitario en el mortero decrecen por la incorporación de las CCA a la mezcla, sea sustituyendo o adicionando, en comparación con el mortero patrón; por lo que se deduce que a mayor volumen de cenizas disminuye el peso unitario.

3.2.4.2. Propiedades mecánicas del mortero patrón y modificado con cenizas de cáscaras de arroz.

3.2.4.2.1. Resistencia a la compresión.

Según la Norma NTP 399.610 UNIDADES DE ALBAÑILERÍA, se clasifica a los morteros patrón y modificados con CCA (sustitución y adición) como morteros Tipo "M" los cuales alcanzaron resistencias mayores que 175. 4 kg/cm² (valor indicado en la especificación normalizada para morteros).

3.2.4.2.2. Resistencia a la flexión.

La NTP 334.120 CEMENTOS describe el método para determinar la resistencia a la flexión de mortero de cemento hidráulico.

Para la proporción 1:3.5, con sustitución y adición de 5% y 10% de CCA la resistencia a la flexión aumenta en relación a la del mortero patrón, a diferencia del 15% que no logra superarla.

Para la proporción 1:4, con sustitución de 5% y 10% de CCA la resistencia a la flexión aumenta en relación a la del mortero patrón, a diferencia del 15% que no logra superarla. En el caso de adición sólo el 5% logra alcanzar una resistencia a la flexión mayor que el mortero patrón; caso contrario sucede con los porcentajes del 10% y 15%.

Para la proporción 1:5, con sustitución de 5% y 10% de CCA la resistencia a la flexión aumenta en relación a la del mortero patrón, a diferencia del 15% que no logra superarla. En el caso de adición sólo el 5% logra alcanzar una resistencia a la flexión mayor que el mortero patrón; caso contrario sucede con los porcentajes del 10% y 15%.

3.2.5. Propiedades mecánicas de la albañilería simple.

3.2.5.1. Ensayo de adherencia del mortero – ladrillo arcilla.

La NTP 334.129 CEMENTOS describe el método para determinar la resistencia a la adherencia por flexión de elementos de albañilería.

Para la proporción 1:4, con sustitución de 5% y 10% de CCA la resistencia a la adherencia del mortero – ladrillo arcilla aumenta en relación a la del mortero patrón, a diferencia del 15% que no logra superarla. En el caso de adición los 3 porcentajes 5%, 10% y 15% obtienen una resistencia a la adherencia menor que el mortero patrón.

3.2.5.2. Ensayo de resistencia a la compresión axial en pilas de albañilería.

Los resultados de resistencia a la compresión axial en pilas del mortero patrón y mortero modificado con CCA (sustitución y adición), cumplen con lo especificado en el RNE E-070 Albañilería en el capítulo 5 resistencias de prismas de albañilería; siendo mayores a 65 kg/cm².

3.2.5.3. Ensayo de resistencia a la compresión diagonal en muretes de albañilería.

Los resultados de resistencia a la compresión diagonal en muretes del mortero patrón y mortero modificado con CCA (adición y sustitución), cumplen con lo especificado en el RNE E-070 Albañilería en el capítulo 5 resistencia de prismas de albañilería; siendo mayores a 8.1 kg/cm².

3.2.6. Propuesta económica.

Los morteros con sustitución para las diferentes dosificaciones empleadas para la presente investigación (1:3.5, 1:4, 1:5, 1:6), tienen un costo menor en comparación al mortero patrón con una disminución de hasta 0.43%, generando así un ahorro para la construcción. Sin embargo, en la parte de adición su costo aumenta por lo que generaría gastos mayores a lo estimado.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

4.1.1. Composición química de las cenizas de cáscaras de arroz.

El análisis químico de las cenizas de cáscaras de arroz se elaboró en los laboratorios de la empresa MASTERLEM S.A.C., el resultado muestra que contiene en gran parte de su estructura un mineral que es la sílice con un 95,18%, por lo que este residuo (CCA) aumenta la resistencia estructural del mortero.

4.1.2. Ensayos de agregado fino y unidades de albañilería.

El agregado fino utilizada para esta investigación fue extraído de la cantera La victoria – Pátapo, el cual cumplió con todos los parámetros establecidos en las Normas Técnicas Peruanas y en el Reglamento Nacional de Edificaciones E-070.

En cuanto a las unidades de albañilería, la marca más apropiada para ser utilizada en la elaboración de prismas de albañilería (pilas y muretes) fue la marca Ladrillos Lark, en comparación a las otras dos marcas estudiadas (Cerámicos Lambayeque e Ital).

Se concluye que las marcas utilizadas (Ladrillos Lark, Cerámicos Lambayeque e Ital) fueron unidades huecas por sobrepasar el 30% de área de vacíos, pudiéndose emplear solamente en zona sísmica 1.

4.1.3. Diseño de mezcla del mortero.

Los porcentajes de adición y sustitución de cenizas de cáscaras de arroz utilizado fueron 5%, 10% y 15% respecto al peso del cemento. Las proporciones seleccionadas fueron 1:3.5, 1:4, 1:5 y 1:6 donde sus relaciones agua/cemento para obtener una fluidez óptima resultaron 0.77, 0.83, 1.05 y 1.25 respectivamente.

4.1.4. Propiedades físico – mecánicas de la mezcla del mortero patrón y modificado con cenizas de cáscaras de arroz (CCA).

Para los ensayos de mortero en estado fresco como son el porcentaje de fluidez y peso unitario al aumentar la dosificación de CCA en la mezcla tanto para adición como sustitución, los resultados para los 2 ensayos disminuyen con respecto al mortero patrón; en cambio para el contenido de aire aumenta su porcentaje.

En el ensayo de resistencia a la compresión los resultados fueron satisfactorios en 5%, 10% y 15% de adición y sustitución con CCA para las tres proporciones (1:3.5, 1:4 y

1:5) porque se obtuvieron resistencias mayores a las del mortero patrón. Sin embargo cabe recalcar que el porcentaje óptimo para utilizar como sustitución es el 10% (incrementa hasta un 18% la resistencia) y como adición el 5% (incrementa hasta un 16% la resistencia).

Como sustitución, es aceptable utilizar el 5% y 10%, siendo este último óptimo al alcanzar mayor resistencia a la flexión en comparación al mortero patrón (incrementa hasta un 16%). En el caso de adición sólo se considera óptimo utilizar el 5% (incrementa hasta un 23% la resistencia), debido a que los otros porcentajes no superan ni alcanzan la resistencia del mortero patrón.

La dosificación escogida fue 1:4 para desarrollar los ensayos de mortero como material de unión del ladrillo: Adherencia del mortero – ladrillo arcilla, resistencia a la compresión axial en pilas de albañilería y resistencia a la compresión diagonal en muretes de albañilería.

4.1.5. Propiedades mecánicas de la albañilería simple.

En el ensayo de adherencia del mortero – ladrillo arcilla, se pueden utilizar 5% y 10% como sustitución debido a que las resistencias incrementan en referencia al mortero patrón. A diferencia de los porcentajes de adición, los cuales no alcanzan la resistencia respecto al mortero patrón.

En los ensayos de resistencia axial en pilas y compresión diagonal en muretes los resultados obtenidos por los porcentajes de sustitución y adición (5%, 10% y 15%) fueron satisfactorios debido a que presentan una mayor resistencia a la del mortero patrón. En el caso de sustitución la mejor resistencia fue obtenida por el 10% y en el de adición por el 5%.

Las fallas que se presentaron en todas las pilas tanto en el mortero patrón y mortero modificado con CCA (sustitución y adición), fueron grietas verticales y trituraciones en la parte inferior, debido a la alta concentración de esfuerzos (falla común en este tipo de unidades huecas). Ver anexo 13.3

Los tipos de fallas que se presentaron en las muestras de los muretes fueron falla mixta (grieta diagonal que atraviesa ladrillos y juntas); falla escalonada que califica a la adherencia mortero – ladrillo como intermedia; y por último la falla de grieta diagonal

(donde la resistencia a la tracción de los ladrillos es menor que la resistencia a la adherencia del mortero – ladrillo, calificando la adherencia como óptima). Ver anexo 13.4

El ensayo de compresión diagonal en muretes de albañilería fue realizado en el Laboratorio de Materiales de la Universidad Nacional Pedro Ruíz Gallo de Lambayeque.

4.1.6. Propuesta económica.

Los morteros con cenizas de cáscaras de arroz en el caso de sustitución, el costo para un m² de muro en las diferentes proporciones utilizadas es más barato, pero no tienen mucha diferencia con el mortero patrón, debido a que el costo de la CCA es económica teniendo un costo de S/. 0.42 por Kg. Por ello es que el costo por m² para un mortero con adición de CCA es mayor, pero con una diferencia mínima en comparación con el patrón.

Ver anexo 12.2

Respecto a los precios obtenidos para cada dosificación 1:3.5, 1:4, 1:5 y 1:6, fueron S/. 51.99, S/. 51.45, S/. 50.60 y S/. 50.04 respectivamente; por lo que se concluye que el mortero de 1:4 es el más adecuado para ser utilizado en muros de albañilería alcanzando altas resistencias, teniendo un valor menor que el mortero 1:3.5 donde sus características de ambos son similares.

Comparando el mortero patrón 1:4 y con un mortero sustituido con 10% de cenizas de cáscaras de arroz (0.90:4:0.10), donde este último tiene mejores propiedades, cuenta con un costo menor de S/. 0.17 respecto al mortero patrón. Indicando que para ser empleado en la construcción generaría menores gastos, ayudando así a reducir el impacto ambiental formado por este residuo.

4.2. Recomendaciones

4.2.1. Composición química de las cenizas de cáscaras de arroz.

Se recomienda utilizar cenizas de cáscaras de arroz en las mezclas de mortero y concreto para ser empleado en la construcción, gracias a su elemento principal que es la sílice, la cual conforma gran porcentaje en su estructura química; este residuo (CCA) aumentará la resistencia de la estructura y reducirá costos en las obras.

Para la manipulación de las CCA se recomienda utilizar los Equipos de Protección Personal (EPP), con el fin de evitar efectos nocivos en la salud.

4.2.2. Ensayos de agregado fino y unidades de albañilería.

Realizar los ensayos teniendo en cuenta los alcances y procedimientos que indican las Normas Técnicas Peruanas y el Reglamento Nacional de Edificaciones.

4.2.3. Diseño de mezcla del mortero.

Seleccionar una relación agua/cemento óptima en las dosificaciones de sustitución y adición de tal manera obtener una fluidez que cumpla con el rango de $110 \pm 5\%$.

4.2.4. Propiedades físico – mecánicas de la mezcla del mortero patrón y modificado con cenizas de cáscaras de arroz (CCA).

En el caso de sustitución con cenizas de cáscaras de arroz es recomendable utilizar hasta un 10% y en el de adición hasta un 5%, con el fin de obtener mejoras en las propiedades físicas y mecánicas del diseño de mezclas del mortero y de albañilería simple.

4.2.5. Propiedades mecánicas de la albañilería simple.

Se recomienda para el asentado de muretes, usar la plomada y nivel cada vez que se asienta una hilera; utilizar los ladrillos que estén en buen estado.

Se debe utilizar los morteros económicos para el asentado de muros, en prioridad el mortero con una dosificación de 1:4 y con sustitución de cenizas de cáscaras de arroz en un 10% (0.90:4:0.10), ya que presentó resultados satisfactorios en comparación con las otras dosificaciones.

4.2.6. Propuesta económica.

Utilizar un mortero 1:4 sustituido con 10% de cenizas de cáscaras de arroz (0.90:4:0.10), cuenta con propiedades que cumplen las características estipuladas en el RNE y las NTP siendo este más barato, ayudando a reducir los costos en la construcción.

Se recomienda efectuar investigaciones para implementar su industrialización y propuesta de embolsado de la ceniza de cascará de arroz y así contribuir de cierta manera en la disminución de contaminación ambiental.

REFERENCIAS

- Águila, I. & Sosa, M. (2008, Julio). Evaluación físico química de cenizas de cascarilla de arroz, bagazo de caña y hoja de maíz y su influencia en mezclas de mortero, como materiales puzolánicos. *Revista de la Facultad de Ingeniería U.C.V, 23* (4), 55-66.

 Recuperado de: http://saber.ucv.ve/ojs/index.php/rev_fiucv/article/view/5078/4885
- Allauca, L.; Amen, H. & Lung, J. (2009). Uso de sílice en hormigones de alto desempeño. (tesis de pregrado). Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador.
- ASTM C188:2003. Standard Test Method for Density of Hydraulic Cement. USA.
- ASTM C1314:2014. Standard Test Method for Compressive Strength of Masonry Prisms. USA.
- ASTM C348:2002. Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. USA.
- ASTM C403:1999. Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance. USA.
- ASTM C618:2012. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. USA.
- Borja, M. (2012). *Metodología de la investigación científica para ingenieros*. Chiclayo, Perú.
- Chur, G. (2010). Evaluación del uso de la cascarilla de arroz como agregado orgánico en morteros de mampostería (tesis de pregrado). Universidad de San Carlos de Guatemala, Guatemala.
- CIP. (2012). Código Deontológico del Colegio de Ingenieros del Perú. Congreso Nacional de Consejos Departamentales del Colegio de Ingenieros del Perú. Lima, Perú.
- Díez, J. (2017). Estudio de investigación de morteros con sustitución de escorias siderúrgicas utilizados en revestimientos interiores de tubos de fundición (tesis de pregrado). Universidad de Cantabria, Santander, España.
- Edquén, J. & Mera, J. (2015). Análisis de las propiedades físico-mecánicas del mortero modificado a base de residuos industriales (PET) (tesis de pregrado). Universidad Señor de Sipán, Pimentel, Perú.

- Gbegnedji, G. (2017). GESTIÓN DE LOS COSTOS: 7.2. Estimar los costos del proyecto.

 Recuperado de https://www.gladysgbegnedji.com/estimar-los-costos-del-proyecto/
- Hidalgo, P. (2015). Evaluación de las emisiones de carbono del cemento Pórtland compuesto con ceniza de cascara de arroz durante el proceso de fabricación (tesis de maestría). Universidad de la República de Uruguay, Montevideo, Uruguay.
- INDECOPI, NTP 334.003:2017 (27 de diciembre del 2017). CEMENTOS. Procedimiento para la obtención de pastas y morteros de consistencia plástica por mezcla mecánica. 4 ed. Lima, Perú.
- INDECOPI, NTP 334.048:2014 (30 de diciembre del 2014). CEMENTOS. Método de ensayo para la determinación del contenido de aire en morteros de cemento hidráulico. 4 ed. Lima, Perú.
- INDECOPI, NTP 334.051:2013 (26 de diciembre del 2013). CEMENTOS. Método de ensayo para determinar la resistencia a la compresión de morteros de cemento Pórtland usando especímenes cúbicos de 50 mm de lado. 5 ed. Lima, Perú.
- INDECOPI, NTP 334.057:2016 (25 de julio del 2016). *CEMENTOS. Método de ensayo para determinar la fluidez de morteros de cemento Pórtland.* 3 ed. Lima, Perú.
- INDECOPI, NTP 334.129:2016. CEMENTOS. Método de ensayo en laboratorio para la determinación de la resistencia a la adherencia por flexión de elementos de albañilería. 2 ed. Lima, Perú.
- INDECOPI, NTP 339.046:2008 (03 de septiembre del 2008). CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del hormigón (concreto). 2 ed. Lima, Perú.
- INDECOPI, NTP 339.185:2013 (07 de agosto del 2013). AGREGADOS. Método de ensayo para determinar el contenido de humedad total evaporable de agregados por secado. 2 ed. Lima, Perú.

- INDECOPI, NTP 399.613:2005 (14 de junio del 2005). UNIDADES DE ALBAÑILERÍA. Métodos de muestreo y ensayo de ladrillos de arcilla usados en albañilería. 1 ed. Lima, Perú.
- INDECOPI, NTP 399.621:2004 (10 de junio del 2004). UNIDADES DE ALBAÑILERÍA. Método de ensayo de compresión diagonal en muretes de albañilería. 1 ed. Lima, Perú.
- INDECOPI, NTP 400.012:2013 (16 de enero del 2013). AGREGADOS. Método de ensayo para determinar el Análisis granulométrico del agregado fino, grueso y global. 3 ed. Lima, Perú.
- INDECOPI, NTP 400.017:2011 (02 de febrero del 2011). AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados. 3 ed. Lima, Perú.
- INDECOPI, NTP 400.022:2002 (30 de mayo del 2002). AGREGADOS. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino. 2 ed. Lima, Perú.
- INDECOPI, NTP 399.610:2013. UNIDADES DE ALBAÑILERÍA. Especificación normalizada para morteros. 2 ed. Lima, Perú.
- Inoñan, B. & Vega, M. (2012). Obtención de dióxido de silicio vía calcinación de la cascarilla de arroz como alternativa para reducir costos en la elaboración del cemento Pórtland. Universidad Señor de Sipán, Pimentel, Lambayeque, Perú.
- Marín, A. (2014-2015). Materiales I: Ciencia y Tecnología de la Edificación. Guadalajara, México. Recuperado de https://docplayer.es/27653645-Tema-4-morteros-materiales-i-curso-ciencia-y-tecnologia-de-la-edificacion-c-guadalajara-profesor-ana-ma-marin-palma.html
- Ministerio de Educación de Chile. (2008). *Investigan el uso de la ceniza de cáscara de arroz como estabilizante de suelos para pavimentos*. Recuperado de http://noticias.universia.cl/vidauniversitaria/noticia/2008/05/16/310666/investigan -uso-ceniza-cascara-arroz-como-estabilizante-suelos-pavimentos.html.

- Ministerio del Ambiente. (2011). Ley del Sistema Nacional de Evaluación de Impacto Ambiental y su Reglamento. Recuperado de http://www.minam.gob.pe/wp-content/uploads/2013/10/Ley-y-reglamento-del-SEIA1.pdf
- Molina, E. (2010). Evaluación del uso de la cascarilla de arroz en la fabricación de bloques de concreto (tesis de pregrado). Instituto Tecnológico de Costa Rica, Cartago, Costa Rica.
- Morales, M. (2016). Estudio del comportamiento del concreto incorporando PET reciclado (tesis de pregrado). Universidad Nacional de Ingeniería, Lima, Perú.
- Naji, A., Abdul, S., Nora, F., y Mohd, M. (2010). Contribution of Rice Husk Ash to the Properties of Mortar and Concrete: A Review. *Rice Husk Ash in Concrete*, 6(3).
- Portugal, P. (2007). *Tecnología del concreto de alto desempeño*. París, Francia: Imprimerie Lafayette.
- Reglamento Nacional de Edificaciones. (2016). *Título III: Edificaciones*. III.2 Estructuras. Norma E.070 Albañilería. Lima, Perú: Megabyte.
- Reglamento Nacional de Edificaciones. (2016). *Título I: Generalidades*. Norma G.050 Seguridad Durante la Construcción. Lima, Perú: Megabyte.
- Salamanca, R. (2001). *La tecnología de los morteros*. Bogotá, Colombia: Universidad Militar Nueva Granada.
- Sierra, J. (2009). *Alternativas de aprovechamiento de la cascarilla de arroz en Colombia*. Universidad de Sucre, Sincelejo, Colombia.
- Villegas, C. (2012). Utilización de puzolanas naturales en la elaboración de prefabricados con base cementicia destinados a la construcción de viviendas de bajo costo (tesis de maestría). Universidad Nacional de Ingeniería, Lima, Perú.

Anexos

Anexo 1. Análisis de documentos

Anexo 1.1. Ficha técnica del cemento

CEMENTOS PACASMAYO S.A.A.

Calle La Cdonia No. 150 Urb. El Vivero de Monterico Santiago de Surco - Lima Carretera Paramericana Note Km. 666 Pacasmayo - La Ubertad Taletono 317 - 6000

Cemento Portland Tipo I

Conforme a la NTP 334,009 / ASTM C150 Pacasmayo, 15 de Agosto del 2017

COMPOSICIÓN QUÍMICA		CPSAA	Requisito NTP 334.009 / ASTM C150
MgO	%	23	Máximo 6.0
MgO 503	%	2.0	Máximo 3.0
Pérdida por Ignición	16	3.1	Máximo 3.5
Residuo Insolubile	1 %	0.66	Máximo 1.5

PROPIEDADES FISIC	AS	CPSAA	Requisito NTP 334.009 / ASTM C150
Contenido de Aire		8	Máximo 12
Expansión en Autoclave	16	0.09	Máximo 0.80
Superficie Específica	cm2/g	3650	Minimo 2800
Densidad	g/mL	3.08	NO ESPECIFICA
Resistencia Compresión : Resistencia Compresión a 3días Resistencia Compresión a 7días	MPa (Kg/cm2) MPa (Kg/cm2)	26.5 (271) 34.3 (350)	Minimo 12.0 (Minimo 122) Minimo 19.0 (Minimo 194)
Resistencia Compresión a 28días (*)	MPa (Kg/cm2)	39.8 (406)	Minimo 28.0 (Minimo 286)
Tiempo de Fraguado Vicat :			· ·
Fraguado Inicial	min	138	Mínimo 45
	min	261	Maximo 375

Los resultados antiba mostrados, curresponden al promedio del cemento despachado durante el periodo del 01-07-2017 al 31-07-2017. La resistancia a la compresión a 25 días corresponde al mes de Junio 2017. (*) Requisito opcional.

Ing. Gabriel G. Mansilla Fiestas

Superintendente de Control de Calidad

Solicitado por :

Distribuidora Norte Pacasmayo S.R.L.

Está totalmente prohibito la reproduzción total o parcial de este documento sin la autorización de Cementos Pazasenejo S.A.A.

Anexo 2. Análisis químico de CCA

Anexo 2.1. Composición química de CCA

R.U.C. 20506076235 Av. Circunvalacion S/N - Huachipa Teléfono: 968632055 E-mail; serviciosmasteriem@gmail.com

CERTIFICADO Nº001-10/2018

Peticionario:

Ramos Fernández Christian Silvestre

Obra: Ubicación: "Diseño de mortero empleando cenizas de cáscaras de arroz"

Obicacion:

Universidad Señor de Sipán

Fecha de recepción: Fecha de ensayo: Fecha de entrega: 20/08/2018 23/08/2018

06/09/2018

Método de ensayo para determinar la cantidad de ceniza volante y puzolana natural cruda o calcinada para uso en concreto Norma Técnica Peruana 334.104 - American Society for Testing and Materials C618

Muestra de ceniza:	Cascarilla de arroz	
COMPUESTO	COMPOSICIÓN QUÍMICA	CONTENIDO (%)
Óxido de Silicio	SiO ₂	95,18
Óxido de Aluminio	Al ₂ O ₃	0,48
Óxido de Fiero	Fe ₂ O ₈	0,08
Óxido de Sodio	Na ₂ O	0,12
Óxido de Potasio	K ₂ O	1,13
Óxido de Calcio	CaO	0,64
Oxido de Magnesio	MgO	0,44
	Otros	1,93

Observaciones

- La muestra de cenizas fue proporcionada e identificada por el Peticionario.
- El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad.
- El taboratorio no se hace responsable por el mal uso de los resultados presentados.

CONTRACTOR OF THE PARTY OF THE

Página 1 de 1

ONE HAVISCONNING APA INGENIERO CIVIL Reg. del CIP N° 8428 Anexo 3. Guías de observación

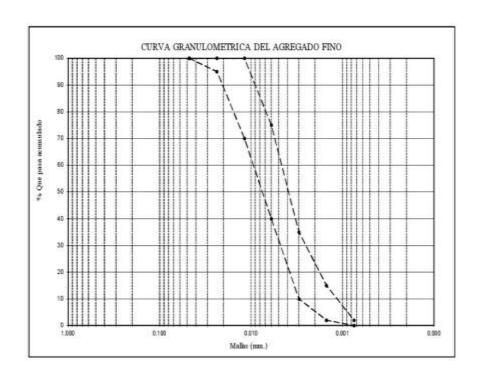
Anexo 3.1. Formatos para ensayos de agregado fino

Anexo 3.1.1. Análisis granulométrico

FACULTAD DE INGENIERIA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: ANÁLISIS GRANULOMÉTRICO DEL AGREGADO FINO (NTP 400.012).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"


Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 4/3/2018

Muestra : AGREGADO FINO - CANTERA LA VICTORIA

PESO INICIAL g

MALI	LAS	PESO	PESO %	% RETENIDO	% QUE PASA	Parametros
PULGADAS	MILIMETROS	RETENIDO	RETENIDO	ACUMULADO	ACUMULADO	Arena Gruesa
3/8"	9.500					9
Nº4	4.750					100
Nº8	2.360					95-100
Nº16	1.180					70-100
Nº30	0.600					40-75
N°50	0.300					10-35
Nº100	0.150					2-15
N°200	0.075					0-2
FON	00					- 24
	MOI	ULO DE FINEZ.	A	i i		

Anexo 3.1.2. Peso específico y absorción

FACULTAD DE INGENIERIA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO ESPECÍFICO Y ABSORCIÓN DEL AGREGADO FINO (NTP 400.022).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÂNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 4/3/2018

AGREGADO FINO - CANTERA LA VICTORIA

I. DATOS

1 Peso de la arena superficialmente seca	(gr)	
2 Peso de la arena superficialmente seca + peso del frasco + peso del agua	(gr)	
 Peso de la arena superficialmente seca + peso del frasco 	(gr)	
4 Peso del agua	(gr)	
5 Peso de la arena secada al homo + peso del frasco	(寅)	
6 Peso del frasco	(gr)	
7 Peso de la muestra secada al homo	(gr)	
8 Volumen del frasco	(cm³)	

II .- RESULTADOS

1 PESO ESPECIFICO DE MASA	(gr/cm³)	
2 - PESO ESPECIFICO DE MASA SATURADO SUPERFICIALMENTE SECO	(gr/cm³)	
3 PESO ESPECIFICO APARENTE	(gr/cm ³)	
4 - PORCENTAJE DE ABSORCIÓN	96	

Anexo 3.1.3. Peso unitario y contenido de humedad

FACULTAD DE INGENIERIA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

LABORATORIO DE ENSATO	DE MATERIALES		
ENSAYO: PESO UNITARIO SUELTO Y CO	OMPACTADO (NTP 40	00.017).	
Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZ.	AS DE CÁSCARAS DE	ARROZ"	
Tesista : RAMOS FERNÁNDEZ, Christian Silvestre			
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE			
Fecha : 4/4/2018			
1 PESO UNITARIO SUELTO			
Peso de la muestra suelta + recipiente	(gr.)	A	В
Peso del recipiente	(gr.)		
Peso de muestra	(gr.)		
Volumen del molde	(m^3)		
Peso unitario suelto	(kg/m^3)		
Peso unitario suelto (Promedio)	(kg/m^3)		
2 PESO UNITARIO COMPACTADO			
		Α	В
Peso de la muestra suelta + recipiente	(gr.)		
Peso del recipiente	(gr.)		
Peso de muestra	(gr.)		
Volumen del molde	(m^3)		
Peso unitario compactado	(kg/m^3)		
Peso unitario compactado (Promedio)	(kg/m^3)		
ENSAYO: CONTENIDO DE HUMI	EDAD (NTP 339.185).		
3 CONTENIDO DE HUMEDAD			
1. Peso de muestra húmeda	(gr.)	A	В
2. Peso de muestra seca + recipiente	(gr.)		
3. Peso de recipiente	(gr.)		
4. Contenido de humedad	(%)		
5. Contenido de humedad (promedio)	(%)		

Anexo 3.2. Formatos para ensayos de unidades de albañilería

Anexo 3.2.1. Variación dimensional del ladrillo

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: VARIACIÓN DIMENSIONAL DE LA UNIDAD DE ALBAÑILERÍA (NTP 399.613).

"DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Texista : RAMOS FERNÁNDEZ, Christian Silvestre UMcación: CHICLAYO - CHICLAYO - LAMBAYEQUE Fecha : 3/26/2018

~ Variación d'imensional del lurgo de la unidad.

Espécimen			Resultados	de unidad			
N0.	Li	1.2	L3	L4	L prom.	ø	V (%)
1					- 723	le:	
2							
3							
4							
5							
6							
7							
ti ti				3 U			
9				9		i i	
10						l.	
- 10				Promedia			
				4 =		1	
				V-		1	

- Variación dimensional del ancho de la unidad.

Espécimen			Resultadox	de unidad			
Nº	A1	A1	A1	AI	A prom.	σ	V (%)
1							
2							
3							
4						1	
5							
6						1	
7							
8							
9							
10							
				Promedio			
				g =		1	
				V=		1	

- Variación dimensional del alto de la unidad.

§	de unidad	Resultados			Espécimen			
	V (%)	ď	Н ргов.	H4	H3	H2	80	Nº .
								1
								2
								3
								4
								.5
								6
		3						7
								tr .
								9
								10
DEPERSE				Promedio				-
MAXIMA		1		σ =				
		1		V-				

Anexo 3.2.2. Succión del ladrillo

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: SUCCIÓN DE LA UNIDAD DE ALBAÑILERÍA (NTP 399.613).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha: 3/28/2018

- Succión

Espécimen	Largo	Ancho	Altura	Pesc	Peso (gr)			Succión
No	(mm)	(mm)	(mm)	Ps	Pm	asiento (cm2)	Pm-Ps (gr)	(gr/200cm2 min)
1								
2								
3								
4								
5								
٨.		i i			01		PROMEDIO=	

Anexo 3.2.3. Absorción del ladrillo

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: ABSORCIÓN DE LA UNIDAD DE ALBAÑILERÍA (NTP 399.613).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 3/27/2018

- Absorción

		PESO (gr)	, neonorów w
ESPECIMEN	SECO 24 H. INMERSIO		ABSORCIÓN (%)
1			
2			
3			
4			
5			
		PROMEDIO-	

Anexo 3.2.4. Porcentaje de vacíos

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PORCENTAJE DEL ÁREA DE VACIOS EN LA UNIDAD DE ALBAÑILERÍA (NTP 399.613).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha: 3/26/2018

- Calibración de la Arena.

N° ENSAYOS	VOLUMEN RECIPIENTE	PESO DE LA ARENA	P.E (x) gr/cm3
1			
2			
3			
		PROMEDIO=	

- % Área de vacios

Espécimen N°	Largo (cm)	Ancho (cm)	Altura (cm)	Volumen del ladrillo (cm3)	Peso especifico de la arena (x)	Densidad en orificios (gr)	Volumen de los orificios en los ladrillos (cm3)	% Area de vacios
1								
2								
3]			
4								-
5								45
							PROMEDIO=	

Anexo 3.2.5. Resistencia a la compresión (F'_b)

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE LA UNIDAD DE ALBAÑILERÍA F'b (NTP 399.613).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha: 3/28/2018

- Resistencia a la Compresión F'b

ESPECIMEN	LAI	LARGO (mm)			ANCHO(mm)		ANCHO(mm)		AREA	CARGA	CARGA MAXIMA	
ESI ECIMEN	L1	L2	L prom	A1	A2	A prom	cm2	KN	Kg	(Kg/cm2)		
1												
2												
3												
4												
5												

PROMEDIO=

Anexo 3.3. Formato para ensayos de Diseño de Mezcla del mortero

Anexo 3.3.1. Diseño de mezcla

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

DISEÑO DE MEZCLA DE MORTERO

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 4/23/2018

PESO SUELTO =	P.U.S*Vol
PESO COMPACTADO =	P.U.C*Vol

DOSIFIC	ACIÓN	DE MEZCI	LA - MORTI	ERO EN VOI	LUMEN
			С	A	CCA
MEZCL	A PATRO	ON:			
	M-1	5%			
MEZCLA -	M-2	10%			
CONCCA	M-3	15%			

ARENA

P.U.S =

DOSIFIC	CACIÓN	DE MEZC	LA - MORT	ERO EN PES	O (KG)
			C	A	CCA
MEZCI	A PATRO	ON:		8	1:
A FESTIVE A	M-1	5%			
MEZCLA	M-2	10%			
CON CCA	M-3	15%			

A/C = 0.00

	D	ISEÑO DE	MEZCLA -	MORTERO	EN PESO (Gr)
			c	A	CCA	AGUA DE DISEÑO
MEZCI	A PATRO	ON:				
AFEZOT A	M-1	5%				
MEZCLA	M-2	10%				
CON CCA	M-3	15%				

Anexo 3.4. Formatos para ensayos de mortero

Anexo 3.4.1. Mortero en estado fresco

Anexo 3.4.1.1. Fluidez

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

% de Fluidez del mortero.

MORTERO					DIAMETRO MESA DE FLUIDEZ (cm.)		DIAMETE	O DE FLUID	EZ (cm.)	
MATERIALES (gr.)	CEMENTO	ARENA	CCA	A/C	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA AGUA (ml)							FLUIDEZ =		9/0	

Anexo 3.4.1.2. Peso unitario

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre

Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN DE MORTERO

P1 =

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico		gr
Peso Recipiente + Peso Muestra		gr
Peso de la Muestra Compactada		gr
Volumen del Recipiente		cm3
PESO UNTARIO COMPACTADO		Kg/m3

Anexo 3.4.1.3. Contenido de aire

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 6/13/2018

DOSIFICACIÓN DE MORTERO

P1 =

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico		gr
Peso Recipiente + Peso Muestra		gr
Peso Muestra		gr
Relacion agua/cemento		%
CONTENIDO DE AIRE ATRAPADO		%

Anexo 3.4.2. Mortero en estado endurecido

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051)

Tesis "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista RAMOS FERNÁNDEZ, Christian Silvestre PIMENTEL - CHICLAYO - LAMBAYEOUE Ubicación :

Fecha 4/30/2018

DOSIFICACION DE MORTERO

Proporción =

CCA Cemento Arena

Edad de Muestreo : 7 DIAS Fecha de Obtención

Fecha de Ensayo

ESPECIMEN LARGO	* * * * * * * * * * * * * * * * * * * *	ANCHO	AREA	P	u	ou
	LARGO em	cm	cm2	KN	Kg	(kg/cm2)
M1						
M2						
M3					Ì	
TOTAL PROM.						

Edad de Muestreo : Fecha de Obtención 14 DIAS

Fecha de Ensayo

PERPENTAREN	F. 1 D.C.C	ANCHO	O AREA	P	u	ou
ESPECIMEN	LARGO em	cm	cm2	KN	Kg	(kg/cm2)
MI						
M2						
M3						
TOTAL PROM.						

Edad de Muestreo : 28 DIAS Fecha de Obtención Fecha de Ensayo

ESPECIMEN	LARGO cm	ANCHO	AREA cm2	Pu		σιι
				KN	Kg	(kg/cm2)
MI						
M2						
M3						
TOTAL PROM.						

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/9/2018

DOSIFICACION DE MORTERO

Proporción =

Cemento Arena CCA

Edad de Muestreo : 7 DIAS Fecha de Obtención

Fecha de Ensayo

VIGAS	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
MI						
M2						Ü.
M3						
				PROME	DIO =	
				σ = PROMEDIO - σ =		ii .
						7

Edad de Muestreo : 14 DIAS Fecha de Obtención

Fecha de Ensayo :

100040	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm) b (cm) b (cm) (Kgf	(Kgf)	(kg/cm2)	
MI						
M2			1			
M3						Œ.
		PROM		PROME	OIO =	

PROMEDIO =

g =

PROMEDIO - g =

Edad de Muestreo : 28 DIAS Fecha de Obtención

Fecha de Ensayo :

VIGAS LONGITUD ENTRE APOYOS (cm)	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)	
Mi						
M2						
M3					d a	
				PROME	DIO -	
				ø =		
				PROMED	ΙΟ-σ =	

Anexo 3.5. Formatos para ensayos de albañilería simple

Anexo 3.5.1. Resistencia a la adherencia por flexión

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: ADHERENCIA MORTERO - UNIDAD DE ALBAÑILERIA (NTP 334.129).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 8/3/2018

DOSIFICACION DE MORTERO

Proporción =

Cemento Arena CCA

Edad de Muestreo : 28 DIAS Fecha de Obtención :

Fecha de Ensayo

	CARGA	LUZ LIBRE	LONG.	ALTURA	MODULO DE ROTURA
DEMOMINACIÓN	(Kg) P	(cm.) L	(cm.) B	(cm.) H	(Kg/cm2)
	-				
	-				
PROMEDIO =					

Anexo 3.5.2. Resistencia a la compresión en pilas

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE PILAS DE LADRILLOS DE ARCILLA (NTP 399.605).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 8/3/2018

DOSIFICACION DE MORTERO

PROPORCION=

Cemento Arena CCA

EDAD DE LAS PILAS - 28 DÍAS Fecha de Obtención : Fecha de Ensayo :

DIMENSIONES DE LAS PILAS.

PILA	L1 (m)	L2 (m)	L3 (m)	L4 (m)	E1 (cm)	E2 (cm)	E3 (cm)	E4 (cm)	H1 (cm)	H2 (cm)	H3 (cm)	H4 (cm)
M1												
M2												
M3							ř ř	Ž. Š	Ĭ.			

RESULTADO DE LAS PILAS.

PILA	PROM.	PROM.	PROM.	ÁREA	I	'u	F'm	ESBELTEZ	COEF.	F'm Corregido
FILA	(L)	(E)	(H)	cm 2	KN	Kg	(kg/cm 2)	h/e	CORREC.	(kg/cm 2)
M1										
M2										
M3								-2000		
	•			•				PROME	DIO =	
								σ -		
								PROMED	IO-s =	

Anexo 3.5.3. Resistencia a la compresión diagonal en muretes

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DIAGONAL DE MURETES DE LADRILLO DE ARCILLA (NTP 399.621).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha: 8/6/2018

DOSIFICACION DE MORTERO

PROPORCION=

Cemento Arena CCA

EDAD DE LOS MURETES = 28 DÍAS Fecha de Obtención : Fecha de Ensayo :

- DIMENSIONES DE LOS MURETES.

MURETES	L1 (cm)	L2 (cm)	H1 (cm)	H2 (cm)	E1 (cm)	E2 (cm)
M1						
M2		7				
M3						

- RESULTADO DE LOS MURETES.

A # 7 TYN 10 TYN 10	PROM. (L	PROM.	PROM.	Ad (cm 2)	1	Pu	V'm
MURETES)	(H)	(t) = E	Ad (cm2)	KN	Kg	(kg/cm2)
M1			0.000			5.20,000	
M 2					9		
M3							
HONDO DO	•				PR	OMEDIO =	
						σ =	
					PRO	OMEDIO-s =	

Anexo 3.6. Formato para ensayo de cenizas de cáscaras de arroz

Anexo 3.6.1. Peso específico

FACULTAD DE INGENIERIA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO ESPECÍFICO DE LAS CENIZAS DE CÁSCARAS DE ARROZ (ASTM C 188-95).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 11/20/2018

Muestra: CENIZAS DE CÁSCARAS DE ARROZ

DETERMINACIÓN DEL PESO ESPECÍFICO DE LAS CCA.

Peso de la muestra de las cenizas de cáscaras de arroz	(gr)	
Volumen inicial del líquido introducido al frasco Le Chatelier	(cm ³)	
Volumen final del líquido (después de introducir el peso de las cenizas de cáscaras de arroz)	(cm ³)	
PESO ESPECÍFICO DE MASA	(gr/cm ³)	

Anexo 4.	Resultados de los ensayos elaborados a las cenizas de cáscaras de arroz

Anexo 4.1. Peso específico

FACULTAD DE INGENIERIA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO ESPECÍFICO DE LAS CENIZAS DE CÁSCARAS DE ARROZ (ASTM C 188-95).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 11/20/2018

Muestra: CENIZAS DE CÁSCARAS DE ARROZ

DETERMINACIÓN DEL PESO ESPECÍFICO DE LAS CCA.

Peso de la muestra de las cenizas de cáscaras de arroz	(gr)	54.40
Volumen inicial del líquido introducido al frasco Le Chatelier	(cm ³)	0.50
Volumen final del líquido (después de introducir el peso de las cenizas de cáscaras de arroz)	(cm ³)	23.00
PESO ESPECÍFICO DE MASA	(gr/cm ³)	2.418

Anexo 4.2. Peso unitario y contenido de humedad

FACULTAD DE INGENIERIA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO UNITARIO SUELTO Y COMPACTADO (NTP 400.017).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 11/20/2018

Muestra: CENIZAS DE CÁSCARAS DE ARROZ

1.- PESO UNITARIO SUELTO

		A	В
Peso de la muestra suelta + recipiente	(gr.)	4341	4355
Peso del recipiente	(gr.)	3072	3072
Peso de muestra	(gr.)	1269	1283
Constante o Volumen	(m ³)	0.002796	0.002796
Peso unitario suelto húmedo	(kg/m^3)	453.89	458.90
Peso unitario suelto húmedo (Promedio)	(kg/m^3)	4:	56
Peso unitario suelto seco (Promedio)	(kg/m ³)	4:	53

2.- PESO UNITARIO COMPACTADO

		A	В
Peso de la muestra suelta + recipiente	(gr.)	4755	4772
Peso del recipiente	(gr.)	3072	3072
Peso de muestra	(gr.)	1683	1700
Constante o Volumen	(m ³)	0.002796	0.002796
Peso unitario suelto húmedo	(kg/m^3)	601.97	608.05
Peso unitario compactado húmedo (Promedio)	(kg/m^3)	60	05
Peso unitario seco compactado (Promedio)	(kg/m^3)	6	01

ENSAYO: CONTENIDO DE HUMEDAD (NTP 339.185).

3.- CONTENIDO DE HUMEDAD

		A	В
1. Peso de muestra húmeda	(gr.)	338.60	335.98
2. Peso de muestra seca	(gr.)	336.88	334.34
3. Peso de recipiente	(gr.)	87.80	89.25
4. Contenido de humedad	(%)	0.69	0.67
5. Contenido de humedad (promedio)	(%)	0.	68

Anexo 5. Resultados de los ensayos elaborados al agregado fino

Anexo 5.1. Análisis Granulométrico y módulo de fineza

FACULTAD DE INGENIERIA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: ANÁLISIS GRANULOMÉTRICO DEL AGREGADO FINO (NTP 468.612).

Tests : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNANDEZ, Christian Silvestre Ubicadón : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecks : 4/3/2018

Muestra : AGREGADO FINO - CANTERA LA VICTORIA

PESO INICIAL 600.0 E

MALI	AS	PESO	16	% RETENIDO	% QUE PASA	Parametres
PULGADAS	MILIMETROS	RETENIDO	RETENIDO	ACUMULADO	ACUMULADO	Arms Green
3/8"	9.500	0	0	0	100	
N°4	4,750	0	0.0	0.0	100.6	100
Nº8	2.360	28.63	4.8	4.8	95.2	95-100
Nº16	1.190	109.81	18.3	23.1	76.9	79-100
N°30	0.600	156.77	26.1	49.2	50.8	40-75
Nº50	0.300	124.54	20.8	70.0	30.0	10-35
N°100	0.150	109.73	18.3	88.2	11.8	2-15
N°200	0.075	67.14	11.2	99.4	0.6	0-2
FONT	00	1.38	0.6	100.0	0.0	+0.

2.353

MODULO DE FINEZA

Anexo 5.2. Peso específico y absorción

FACULTAD DE INGENIERIA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO ESPECÍFICO Y ABSORCIÓN DEL AGREGADO FINO (NTP 400.022).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 4/3/2018

AGREGADO FINO - CANTERA LA VICTORIA

I. DATOS

Peso de la arena superficialmente seca	(gr)	500,0
2 Peso de la arena superficialmente seca + peso del frasco + peso del agua	(gr)	980.0
 Peso de la arena superficialmente seca + peso del frasco 	(gr)	670.0
4 Peso del agua	(gr)	310.0
5 Peso de la arena secada al homo + peso del frasco	(gr)	661.0
6 Peso del frasco	(gr)	170.0
7 Peso de la muestra secada al homo	(gr)	491.0
8 Volumen del frasco	(cm³)	500.0

II .- RESULTADOS

1 - PESO ESPECIFICO DE MASA	(gr/cm³)	2.584
2 - PESO ESPECIFICO DE MASA SATURADO SUPERFICIALMENTE SECO	(gr/cm³)	2.632
3 PESO ESPECIFICO APARENTE	(gr/cm3)	2.713
4 PORCENTAJE DE ABSORCIÓN	96	1.83

Anexo 5.3. Peso unitario y contenido de humedad

FACULTAD DE INGENIERIA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO UNITARIO SUELTO Y COMPACTADO (NTP 400.017).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 4/4/2018

Muestra: AGREGADO FINO - CANTERA LA VICTORIA

1.- PESO UNITARIO SUELTO

		\mathbf{A}	В
Peso de la muestra suelta + recipiente	(gr.)	7397	7457
Peso del recipiente	(gr.)	3038	3038
Peso de muestra	(gr.)	4359	4419
Volumen del molde	(m ³)	0.00283	0.00283
Peso unitario suelto	(kg/m^3)	1540.08	1561.27
Peso unitario suelto (Promedio)	(kg/m^3)	15	551
2 PESO UNITARIO COMPACTADO			
		A	В
Peso de la muestra suelta + recipiente	(gr.)	7942	7953
Peso del recipiente	(gr.)	3038	3038
Peso de muestra	(gr.)	4904	4915
Volumen del molde	(m ³)	0.002830	0.002830
Peso unitario compactado	(kg/m^3)	1732.63	1736.52
Peso unitario compactado (Promedio)	(kg/m^3)	17	735

ENSAYO: CONTENIDO DE HUMEDAD (NTP 339.185).

3.- CONTENIDO DE HUMEDAD

	A	В
(gr.)	950.00	950.00
(gr.)	1037.00	1028.00
(gr.)	94.00	85.00
(%)	0.74	0.74
(%)	0.	74
	(gr.) (gr.) (%)	(gr.) 1037.00 (gr.) 94.00 (%) 0.74

Anexo 6. Resultados de los ensayos elaborados a las unidades de albañilería

Anexo 6.1. Variación dimensional

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INCENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: VARIACIÓN DIMENSIONAL DE LA UNIDAD DE ALBAÑILERÍA (NTP 399.413).

: "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Testa : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE Fecha : 3/26/2018

- Variación dimensional del lorgo de la unidad (Ladrillos Cerámicos Lambayeque).

Espécimen N°			Lorge (mm)			Remitados	de unidad
	L1	1.2	L3	L4	L prom.		V (%)
BC-1:	238.00	236.50	237.00	297.50	2.97.25	0.65	0.272
BC-2	236.70	237.80	236.00	237.60	237,03	0.83	0.352
EC-3	237.00	238.00	237.50	238.90	2,87,70	0.57	0.240
EC-4	238.20	236.50	237.00	237.40	2.97.28	0.72	0.303
EC-5	237.00	236.00	237,80	236.70	236.88	0.75	0.315
EC-6	238.50	237.80	238.00	237.30	237.90	0.50	0.209
BC+7:	237.00	238.00	237.40	237.50	237,48	0.41	0.173
EC-8	236.00	257.00	236.80	237.30	2.86.76	0.56	0.235
BC-9	237.00	239.00	236.50	237.00	237.13	0.63	0.265
EC-10	237.50	239.50	238.90	237.90	238.47	0.90	0.377
				Promedio	237.38		0.274
					9.51	1	
				V=	9.21 %	1	

- Variación dimensional del ancho de la unidad (Ladrillos Cerámicos Lambayeque).

Espécimen			Anche (mm)			Remitador	de unidad
Nº	AI	AI	A1	Al	A prom.		V (%)
EC-1	118.70	119.40	119.00	118.90	119.00	0.29	0.247
BC-2	118.40	117.50	118.00	118.10	118.00	0.37	0.317
EC-3	118.80	117.40	118.50	118.00	118.38	0.61	0.519
BC-4	119.60	118.50	120.20	119.20	119.38	0.71	0.598
BC-5	119.20	117.90	115.50	119.00	118.65	0.58	0.489
EC-6	119.10	119.10	119.00	118.00	119.00	0.14	0.119
BC-T	118.90	119.10	120.00	119.50	119.38	0.49	0.407
BC-8	119.60	119.20	119.80	119.00	119.40	0.37	0.306
EC-9	119.80	119.50	119.50	120.00	119.70	0.34	0.205
EC-10	118.90	117.90	119.00	117.50	118.33	0.74	0.626
				Promedia	115.99		0.353
					8,59	1	
				V=	0.49 %	1	

- Variación dimensional del alta de la unidad (Cerámica: Lambayeque).

Espécimen			Altara (mm)		Reultsday	de unided
Nº	HI	H2	H3	H4	H prom.		V (%)
BC-1	90.76	13.64	89.61	90.07	89.77	0.89	0.991
BC-2	90.04	89.45	89.03	90.05	89.65	0.49	0.549
BC-3:	90.16	19.44	87.73	89,32	89.16	1.02	1.149
EC-4	90.74	89.77	811.63	90.30	89.86	6.92	1.024
BC-5	89.64	88.59	85.56	109.49	89.07	0.57	0.646
EC-6	91.28	\$9.00	90.12	91.16	90.39	1.06	1.176
BC-7	89.24	86.92	\$6.97	85.39	87.88	1.13	1.291
EC-8	89.20	87.85	89.25	90.12	89.11	0.94	1.052
EC-9	90.20	89.61	E9.67	90.10	89.90	0.30	0.132
EC-10	90.50	88.40	86.90	89.04	\$3.69	1.53	1.729
				-	20.00		2.42.

8.994 DEFERRION MAXIMA

FACULTAD DE INGENIERÍA, AR QUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: VARIACIÓN DIMENSIONAL DE LA UNIDAD DE ALBAÑILERÍA (NTP 399.613).

esis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 3/26/2018

- Variación dimensional del largo de la unidad (Ladrillos Lark)

Espécimen			Largo (mm)			Resultados	de unidad
Nº.	L1	L2	L3	L4	L prom.	σ	V (%)
EL-1	223.80	224.00	223.00	223.70	223.63	0.43	0.194
EL-2	221.20	222.90	222.00	222.30	222.10	0.71	0.318
EL-3	224.20	222.30	223.00	223.50	223.25	0.80	0.359
EL-4	221.40	221.60	221.40	221.80	221.55	0.19	0.086
EL-5	224.40	222.20	223.00	223.50	223.28	0.92	0.413
EL-6	223.00	222.50	222.80	222.60	222.73	0.22	0.100
EL-7	226.50	226.00	226.00	225.90	226.10	0.27	0.120
EL-8	222.00	221.50	221.80	222.10	221.85	0.26	0.119
EL-9	224.00	223.00	223.50	223.80	223.58	0.43	0.195
EL-10	223.00	225.00	224.00	223.80	223.95	0.82	0.367
			•	Promedio	223.20		0.227
				δ=	1.30	1	
				V=	0.58 %	1	

- Variación dimensional del ancho de la unidad (Ladrillos Lark)

Espécimen			Ancho (mm)			Resultados	de unidad
No	A1	A2	A3	A4	A prom.	σ	V (%)
EL-1	122.30	122.60	122.50	122.00	122.35	0.26	0.216
EL-2	121.60	121.80	122.00	121.70	121.78	0.17	0.140
EL-3	121.70	121.20	121.50	121.00	121.35	0.31	0.256
EL-4	122.10	121.00	121.80	121.50	121.60	0.47	0.386
EL-5	121.40	121.90	121.60	121.50	121.60	0.22	0.178
EL-6	121.90	121.90	121.70	121.70	121.80	0.12	0.095
EL-7	124.10	123.30	123.90	124.00	123.83	0.36	0.290
EL-8	121.50	121.60	121.90	121.70	121.68	0.17	0.140
EL-9	122.30	121.90	122.00	122.20	122.10	0.18	0.150
EL-10	122.50	121.90	122.30	122.00	122.18	0.28	0.225
				Promedio	122.03		0.208
				σ =	0.70	1	
				V=	0.57 %	1	

- Variación dimensional del alto de la unidad (Ladrillos Lark).

Espécimen			Altura (mm)		Resultados	de unidad
N°	H1	H2	Н3	H4	H prom.	σ	V (%)
EL-1	90.11	90.91	89.20	89.80	90.01	0.71	0.791
EL-2	90.47	90.74	88.72	89.96	89.97	0.90	0.995
EL-3	90.39	89.57	90.46	89.87	90.07	0.43	0.473
EL-4	89.54	87.80	87.89	87.55	88.20	0.91	1.030
EL-5	90.61	89.61	90.94	90.72	90.47	0.59	0.652
EL-6	88.26	87.73	87.88	88.48	88.09	0.34	0.390
EL-7	92.35	91.34	91.52	91.31	91.63	0.49	0.534
EL-8	91.42	90.40	90.10	89.75	90.42	0.72	0.795
EL-9	89.81	90.42	89.04	90.18	89.86	0.60	0.671
EL-10	90.84	90.35	89.78	89.81	90.20	0.50	0.558
				The second of the second	621020		**************************************

 $\begin{array}{ccc} Promedio & 89.89 \\ \hline \sigma & = & 1.05 \\ \hline V = & 1.17 \% \\ \end{array}$

0.689 DISPERSIÓN MÁXIMA

FACULTAD DE INGENIERÍA, AR QUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: VARIACIÓN DIMENSIONAL DE LA UNIDAD DE ALBAÑILERÍA (NTP 399.613).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 3/26/2018

- Variación dimensional del largo de la unidad (Ladrillos Ital).

Espécimen			Largo (mm)			Resultados	de unidad
Nº	L1	L2	L3	L4	L prom.	σ	V (%)
EI-1	229.80	231.50	230.90	229.50	230.43	0.94	0.406
EI-2	230.00	231.00	231.80	231.20	231.00	0.75	0.324
EI-3	230.90	230.50	232.50	232.00	231.48	0.93	0.403
EI-4	228.50	230.00	232.00	231.50	230.50	1.58	0.686
EI-5	231.00	231.20	229.00	230.00	230.30	1.01	0.440
EI-6	232.20	230.50	231.80	232.00	231.63	0.77	0.331
EI-7	231.20	229.50	231.00	230.50	230.55	0.76	0.329
EI-8	231.80	231.20	232.00	231.30	231.58	0.39	0.167
EI-9	231.00	230.00	229.80	230.00	230,20	0.54	0.235
EI-10	231.30	229.80	230.50	230.80	230.60	0.63	0.272
				Promedio	230.83		0.359
				σ =	0.55	1	<i>b</i> .
				V=	0.24 %	1	

- Variación dimensional del ancho de la unidad (Ladrillos Ital).

Espécimen			Ancho (mm))		Resultados	de unidad
No	A1	A2	A3	A4	A prom.	σ	V (%)
EI-1	117.66	116.55	115.81	117.82	116.96	0.95	0.814
EI-2	117.20	117.97	118.41	117.99	117.89	0.50	0.428
EI-3	118.47	118.64	117.18	118.33	118.16	0.66	0.560
EI-4	117.28	117.86	118.37	117.89	117.85	0.45	0.379
EI-5	118.17	117.70	117.00	117.29	117.54	0.51	0.433
EI-6	117.68	118.42	118.69	118.44	118.31	0.44	0.369
EI-7	118.20	117.72	117.03	117.74	117.67	0.48	0.410
EI-8	117.44	117.89	119.49	118.33	118.29	0.88	0.744
EI-9	117.75	118.10	118.27	117.91	118.01	0.23	0.192
EI-10	117.20	118.12	118.04	117.19	117.64	0.51	0.435
- 5				Promedio	117.83	77	0.476
				σ =	0.41	1	
				V=	0.34 %	1	

- Variación dimensional del alto de la unidad (Ladrillos Ital).

Espécimen			Altura (mm	Resultados de unidad				
N°	H1	H2	Н3	H4	H prom.	σ	V (%)	1
EI-1	87.42	90.06	88.36	88.71	88.64	1.09	1.234	7
EI-2	87.64	88.96	84.27	86.13	86.75	2.02	2.326	1
EI-3	91.40	93.43	90.02	92.23	91.77	1.43	1.562	1
EI-4	92.87	91.75	91.79	91.42	91.96	0.63	0.686	
EI-5	89.40	90.97	90.78	90.36	90.38	0.70	0.774	7
EI-6	90.46	92.28	88.20	88.16	89.78	1.99	2.212	7
EI-7	87.85	89.75	87.91	89.85	88.84	1.11	1.249	7
EI-8	88.68	89.03	87.47	88.36	88.39	0.67	0.756	1
EI-9	87.91	88.50	87.41	88.89	88.18	0.65	0.739	7
EI-10	92.07	90.83	90.44	91.40	91.19	0.71	0.778	
				Promedio	89.59		1.232	DISPERSIÓN

σ = 1.72 V= 1.92 %

MÁXIMA

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: VARIACIÓN DIMENSIONAL DE LA UNIDAD DE ALBAÑILERIA (NTP 399.613).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 3/26/2018

- Cuadro comparativo de la Variabilidad Dimensional.

Variabilidad dimensional							Clasificación
Ladrilles	L(mm)	L(%)	a(mm)	a(%)	h(mm)	h(%)	de norma
Ceramico Lambayeque 18 Huecos	237.38	0.21	118.90	0.49	89.35	0.81	TIPO V
Ladrillos Lark 18 Huecos	223.20	0.58	122.03	0.57	89.89	1.17	TIPO V
Ladrillos Ital 18 Huecos	230.83	0.24	117.83	0.34	89.59	1.92	TIPO V

- Espesores de junta horizontal.

Zona	Derviación Estándar (mm)	Junta calculada - 4mm + 2.0 (mm)
Ceramicos Lambayeque	0.59	5.172
Ladrillos Lark	0.70	5,403
Ladrillos Ital	0.41	4.811

Anexo 6.2. Succión

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: SUCCIÓN DE LA UNIDAD DE ALBAÑILERÍA (NTP 399.613).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENTZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 3/28/2018

- Succión (Ladrillos Cerámicos Lambayeque 18 Huecos - Estandar).

Espécimen	Large	Ancho	Altura	Peso (gr)				Succión
Nº 0	(mm)	um) (mm)	(mm)	Ps	Pm	Area de asiento (cm2)	Pm-Ps (gr)	(gr/200cm2/m in)
SCL-1	237.25	119.00	89.77	2766	2792	282.33	26.00	18.42
SCL-2	237.03	118.00	89.65	2763	2792	279.69	29.00	20.74
SCL-3	237.70	118.18	89.16	2745	2794	280.90	49.00	34.89
SCL-4	237.28	119.38	89.86	2800	2838	283.25	38.00	26.83
SCL-5	236.88	118.65	89.07	2750	2776	281.05	26.00	18.50
							PROMEDIO=	23.88

- Succión (Ladrillos Lark 18 Huecos - Estandar).

Espécimen	Largo	Anche	Altura	Peso (gr)				Succión
Nº	(mm)	(mm)	(mm)	Ps	Pm	Area de asiento (cm2)	Pm-Ps (gr)	(gr/200cm2/m in)
SLF-1	223.63	122.35	90.01	2678	2703	273.61	25.00	18.27
SLF-2	222.10	121.78	89.97	2694	2719	270.46	25.00	18.49
SLF-3	223.25	121.35	90.07	2704	2730	270.91	26.00	19.19
SLF-4	221.55	121.60	88.20	2631	2656	269.40	25.00	18.56
SLF-5	223.28	121.60	90.47	2694	2722	271.50	28.00	20.63
							PROMEDIO-	19.03

- Succión (Ladrillos Ital 18 Huecos - Estandar).

Espécimen	Large	Ancho	Altura	Peso (gr)				Succión
Nº (min	(mm)	(mm) (mm)	(mm)	Ps	Pm	Area de asiento (cm2)	Pm-Ps (gr)	(gr/200cm2/m in)
SLL-1	230.43	116.96	88.64	2420	2443	269.51	23.00	17.07
SLL-2	231.00	117.89	86.75	2466	2491	272.33	25.00	18.36
SLL-3	231.48	118.16	91.77	2374	2396	273.50	22.00	16.09
SLL-4	230.50	117.85	91.96	2497	2518	271.64	21.00	15.46
SLL-5	230.30	117.54	90.38	2517	2542	270.69	25.00	18.47
							PROMEDIO=	17.09

- Cuadro comparativo de Succión

Esp écimen	SUCCIÓN (gr/200cm2/min)	
Cerámicos Lambayeque	23.88	
Ladrillos Lark	19.03	
Ladrillos Ital	17.09	

Anexo 6.3. Absorción

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: ABSORCIÓN DE LA UNIDAD DE ALBAÑILERÍA (NTP 399.613).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 3/27/2018

- Absorción (Cerámicos Lamb ayeque 18 Huecos Estandar).

Perremen		A BEODOTÓN (BC)		
ESPECIMEN	SECO	24 H. INMERSION	ABSORCIÓN (%)	
ACL-1	2761	3112	12.59	
ACL-2	2761	3109	12.60	
ACL-3	2744	3089	12.57	
ACL-4	2799	3157	12.79	
ACL-5	2747	3090	12.49	
		PROMEDIO=	12.61	

- Absorción (Ladrillos Lark 18 Huecos - Estandar).

Renn CIRCUR		A BEODETÁN OLO	
ESPECIMEN	SECO	24 H. INMERSION	ABSORCIÓN (%)
ALL-1	2677	2914	8.85
ALL-2	2693	2920	8.43
ALL-3	2703	2924	8.18
ALL-4	2630	2821	7.26
ALL-5	2692	2925	8.66
		PROMEDIO=	8.28

- Absorción (Ladrillos Ital 18 Huecos - Estandar).

PERFORMEN		A BEODETÁN (B.)		
ESPECIMEN	SECO	24 H. INMERSION	ABSORCIÓN (%)	
ALI-1	2424	2727	12.50	
ALI-2	2376	2685	13.01	
ALI-3	2516	2852	13.35	
ALI-4	2498	2826	13.13	
ALI-5	2470	2783	12.67	
		PROMEDIO-	12.93	

- Cuadro comparativo de % de Absorción

Espécim en	% ABSORCIÓN 12.61	
Cerámicos Lambayeque		
Ladrillos Lark	8.28	
Ladrillos Ital	12.93	

Anexo 6.4. Porcentaje de vacíos

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PORCENTAJE DEL ÁREA DE VACIOS EN LA UNIDAD DE ALBAÑILERÍA (NTP 399.413).

DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ

Teststa : RAMOS FERNÁNDEZ, Christian Silvestra Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fechs : 3/26/2018

Tests

- Calibración de la Arena.

N° ENSAYOS	VOLUMEN RECIPIENTE	PESO DE LA ARENA	P.E (t) gr/cm3
1.	100	149.46	1.49
2	100	151.20	1.51
3	100	148.95	1.49
		PROMEDIO-	1.50

- % Área de vacios (Ladrillos Cerámicos Lambayeque 18 Huecos - Estandar).

Espécimen Nº	Large (cm)	Anche (cm)	Altura (cm)	Volumen del Indrillo (cm3)	Pess especifico de la arena (1)	Densidad en orificies (gr)	Volumen de los orificios en los ladrillos (cm3)	% Area de vacios
WRCL-I	23.78	11.90	9.00	2569.48		1575.00	1050.91	40.90
NRCL-2	23.83	11.77	9.01	2527.12		1594.00	1063.59	42.09
NRCL-3	23.84	11.77	8.95	2511.34	1.50	1563.00	1042.90	41.58
%RCL-4	24.03	11.85	9.05	2577.04		1645.00	1097.62	42.59
NRCL-5	23.77	11.90	E.96	2534.45		1591.00	1061.59	41.89
							PROMEDIO»	41.50

- % Áren de vacios (Ladrillos Lark 18 Huccos - Estandar).

Espécimen N°	Lorgo (cm)	Ancho (cm)	Altura (cm)	Volumen del Intrillo (cm3)	Peso especifico de la arena (s)	Company of the Compan	Volumes de los orificios en los ladrillos (cm3)	% Arm de vacios
%RIL-1	22.57	12.26	1.97	2482.07		1741.00	1163.01	46.86
WRIL-2	22.47	12.15	9.00	2478.94		1745.00	1164.34	46.97
SeltiL-3	22.50	12.12	9.11	2494.30	1.50	1738.00	1159.67	46.68
WRIL-4	22.45	12.10	8.79	2387.76	10,000,000	1675.00	1117.64	46.81
BLL-5 22.39 1	12.15	9.07	2467,39		1731.00	1155.67	46.84	
11.000.000.000							PROMEDIO-	46.83

- % Ārea de vacios (Ladrillos Ital 18 Huecos - Estandar).

Espécimen Nº	Large (on)	Aucha (cm)	Altura (cm)	Volumen del Indrillo (cm3)	Peso especifico de la arena (s)	Densidad en orificion (gr)	Volumen de les srificies en les ladrilles (cm3)	% Arm de vacios
NALI-I	23.17	11.75	9.10	2477.45		1766.00	1178.35	47.56
%RIJ-2	23.11	11.70	1.92	2411.85		1745.00	1164.34	48.28
%R23-3	23.10	31.74	11.115	2400.07	1.50	1762.00	1175.69	41.99
%R13-4	22.92	11.77	8.82	2379.36	1	1745.00	1164.34	41.94
PITTE	23.10	11.70	9.77	2640.54	1	1746.00	1165.01	44.12
					il.	·	PROMEDIO-	47.55

- Cuadro comparativo de % de Área de Vacios

Espécimen	% de Area de vacies
Ladrillos Carámicos Lambay eque.	41.80
Ladrillos Lade.	46.83
Ladvilles Ital.	47.58

Anexo 6.5. Resistencia a la compresión (F'b)

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE LA UNIDAD DE ALBAÑILERÍA F6 (NTP 399.613).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 3/28/2018

- Resistencia a la Compresión fb (Ladrillos Cerámicos Lambayeque 18 Huecos - Estandar).

ESPECIME	SPECIME LARGO (mm)		1)	ANCHO(mm)			AREA	CARGA MAXIMA		LP	
N	Li	1.2	L prom	A1	A2	A prom	cm2	KN	Kg	(Kg/cm2)	
RCCL-1	125.50	125.60	125.55	118.85	118.70	118.78	149.12	194.39	19815.00	132.88	
RCCL-2	125.50	125.15	125.33	118.90	118.60	118.75	148.82	199.40	20326.00	136.58	
RCCL-3	124.45	124.20	124.33	119.20	119.25	119.23	148.23	206.86	21087.00	142.26	
RCCL-4	125.70	125.00	125.35	119.35	119.75	119.55	149.86	171.36	17468.00	116.57	
RCCL-5	125.75	120.80	123.28	118.15	118.45	118.30	145.83	221.46	22575.00	154.80	
									PROMEDIO-	136.62	

- Resistencia a la Compresión fb (Ladrillos Lark 18 Huecos - Estandar).

ESPECIME	ESPECIME LARGO (mm)		-	ANCHO(mm)			CARGA MAXIMA		Гb	
N	Li	L2	L prem	A1	A2	A prom	cm2	KN	Kg	(Kg/cm2)
RCLL-1	116.80	115.45	116.13	121.50	121.70	121.60	141.21	201.83	20574.00	145.70
RCLL-2	117.15	117.70	117.43	123.55	123.70	123.63	145.17	152.60	15556.00	107.16
RCLL-3	114.95	115.10	115.03	121.25	121.25	121.25	139.47	347.12	35384.00	253.71
RCLL-4	115.70	115.80	115.75	121.50	121.45	121.48	140.61	177.01	18044.00	128.33
RCLL-5	115.25	115.45	115.35	121.35	121.25	121.30	139.92	261.75	26682.00	190.70
									PROMEDIO =	165.12

- Resistencia a la Compresion fb (Ladrillos Ital 18 Huecos - Estandar).

ESPECIME	LA	LARGO (mm)		ANCHO(mm)			AREA	CARGA MAXIMA		Гb
N	Li	L2	L prom	A1	A2	A prom	cm2	KN	Kg	(Kg/cm2)
RCLI-1	118.47	117.32	117.90	118.09	118.22	118.16	139.30	123.44	12583	90.33
RCLI-2	118.37	117.68	118.03	117.73	117.89	117.81	139.05	136.66	13931	100.19
RCLI-3	118.03	118.79	118.41	118.89	118.69	118.79	140.66	115.76	11800	83.89
RCLI-4	117.67	117.90	117.79	118.69	118.08	118.39	139.44	158.33	16140	115.75
RCLI-5	119.05	118.19	118.62	118.27	117.96	118.12	140.11	121.96	12432	88,73
									PROMEDIO =	95.78

- Cuadro comparativo de Resistencia a la Compresión

Espécimen	fb (Kg/cm2)	Clasificación
Cerámicos Lambayeque	136.62	TIPOIV
Ladrillos Lark	165.12	TIPO IV
Ladrillos Ital	95.78	III OULT

Anexo 7. Diseño de mortero patrón y con sustitución con CCA

Anexo 7.1. Dosificación 1:3.5

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

DISEÑO DE MEZCLA DE MORTERO PATRÓN 1 : 3.5 Y MORTERO SUSTITUIDO CON CCA

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha: 4/23/2018

PESO SUELTO =	P.U.S*Vol
PESO COMPACTADO =	P.U.C*Vol

DOSIFICACIÓN DE MEZCLA - MORTERO EN VOLUMEN									
			C		A		CCA		
MEZCI	1	12	3.5	48	0				
	M-1	596	0.95	33	3.5	:	0.05		
MEZCLA CON CCA	M-2	10%	0.90	3	3.5		0.10		
CONCCA	M-3	15%	0.85	-	3.5		0.15		

40.375

38.250

36.125

5%

10%

15%

M-1

M-2

M-3

MEZCLA

CON CCA

ARENA

153.72

153.72

153.72

2.125

4.250

6.375

A/C = 0.77

	D	ISEÑO D	E MEZCLA	- 1	IORTERO E	N PESO (Gr)
			C	Г	A	CCA	AGUA DE DISEÑO
MEZCLA PATRON:		425 gr	:	1537.19 gr :	0	327.25 ml	
A PERSON A	M-1	5%	403.75 gr		1537.19 gr :	21.25	327.25 ml
MEZCLA	M-2	10%	382.5 gr	:	1537.19 gr :	42.50	327.25 ml
CON CCA	M-3	15%	361.25 gr	:	1537.19 gr :	63.75	327.25 ml

Anexo 7.2. Dosificación 1:4

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

DISEÑO DE MEZCLA DE MORTERO PATRÓN 1 : 4 Y MORTERO SUSTITUIDO CON CCA

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 4/23/2018

PESO SUELTO =	P.U.S*Vol
PESO COMPACTADO =	P.U.C*Vol

DOSIFICACIÓN DE MEZCLA - MORTERO EN VOLUMEN									
SAMOTHET IS			C		A		CCA		
MEZCL	A PATRO	N:	1	23	4	40	0		
a monar a	M-1	5%	0.95	12	4		0.05		
MEZCLA CON CCA	M-2	10%	0.90	- 6	4	1	0.10		
CONCCA	M-3	15%	0.85		4	4	0.15		

ARENA

DOSIFICACION DE 1	P.U.S =	1551 Kg/m3			
			CCA		

			C		A		CCA
MEZCL	A PATRO	N:	42.50	1	175.68	*	0
A PERFORMA	M-1	5%	40.375	1	175.68		2.125
MEZCLA	M-2	10%	38.250		175.68		4.250
CON CCA	M-3	15%	36.125		175.68		6.375

A/C = 0.83

	DISEÑO DE MEZCLA - MORTERO EN PESO (Gr)										
			C		A		CCA	AGUA DE DISEÑO			
MEZCL	A PATRO	N:	425 gr	:	1756.79 gr	1	0	352.75 ml			
Ampor A	M-1	5%	403.75 gr		1756.79 gr	:	21.25	352.75 ml			
MEZCLA	M-2	10%	382.5 gr		1756.79 gr	;	42.50	352.75 ml			
CON CCA	M-3	15%	361.25 gr		1756.79 gr		63.75	352,75 ml			

Anexo 7.3. Dosificación 1:5

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

DISEÑO DE MEZCLA DE MORTERO PATRÓN 1 : 5 Y MORTERO SUSTITUIDO CON CCA

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha : 4/23/2018

PESO SUELTO =	P.U.S*Vol	
PESO COMPACTADO =	P.U.C*Vol	

DOSIFICACIÓN DE MEZCLA - MORTERO EN VOLUMEN										
			C		A		CCA			
MEZCL	A PATRO	ON:	1	-3	5	- (2)	0			
	M-1	5%	0.95		5	4	0.05			
MEZCLA CON CCA	M-2	10%	0.90	9	5	4	0.10			
CONCLA	M-3	15%	0.85	1.0	5	88	0.15			

ARENA

P.U.S = 1551 Kg/m3

DOSIFICACIÓN DE MEZCLA - MORTERO EN PESO (KG)									
	CCA								
MEZCLA PATRON:		42.50		219.60	:	0			
MEZCLA	M-1	5%	40.375		219.60	4	2.125		
123324522202	M-2	10%	38.250		219.60	3	4.250		
CON CCA	M-3	15%	36.125	4	219.60	3	6.375		

A/C = 1.05

	DISEÑO DE MEZCLA - MORTERO EN PESO (Gr)										
			C		A	CCA	AGUA DE DISEÑO				
MEZCI	A PATRO	ON:	425 gr	:	2195.98 gr :	0	446.25 ml				
A FERRENT A	M-1	5%	403.75 gr	1	2195.98 gr :	21.25	446.25 ml				
MEZCLA	M-2	10%	382.5 gr	:	2195.98 gr :	42.50	446.25 ml				
CON CCA	M-3	15%	361.25 gr	:	2195.98 gr :	63.75	446.25 ml				

Anexo 7.4. Dosificación 1:6

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

DISEÑO DE MEZCLA DE MORTERO PATRÓN 1 : 6 Y MORTERO SUSTITUIDO CON CCA

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : CHICLAYO - CHICLAYO - LAMBAYEQUE

Fecha: 4/23/2018

PESO SUELTO =	P.U.S*Vol
PESO COMPACTADO =	P.U.C*Vol

			C		A		CCA
MEZCL	A PATRO	ON:	1	3	6	100	0
	M-1	5%	0.95	- 1	6	12	0.05
MEZCLA CON CCA	M-2	10%	0.90	- 1	6	9	0.10
CONCCA	M-3	15%	0.85	- 2	6		0.15

ARENA

P.U.S =

DOSIFICACIÓN DE MEZCLA - MORTERO EN PESO (KG)										
			C		CCA					
MEZCLA PATRON:		42.50	:	263.52	1	0				
A PERSON A	M-1	5%	40.375	-	263.52	:	2.125			
MEZCLA CON CCA	M-2	10%	38.250		263.52	-	4.250			
	M-3	15%	36.125		263.52		6.375			

A/C = 1.25

1551 Kg m3

		DISEÑO	DE MEZCL	A - :	MORTERO	EN	PESO (G	r)
			C		A	П	CCA	AGUA DE DISEÑO
MEZCI	A PATRO	ON:	425 gr	43	2635.18 gr	:	0	531.25 ml
MEZOLA	M-1	. 5%	403.75 gr	:	2635.18 gr	:	21.25	531.25 ml
MEZCLA	M-2	10%	382.5 gr	:	2635.18 gr	:	42.50	531.25 ml
CON CCA	M-3	15%	361.25 gr	1	2635.18 gr	:	63.75	531.25 ml

Anexo 8. Diseño de mortero patrón y con adición con CCA

Anexo 8.1. Dosificación 1:3.5

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

DISEÑO DE MEZCLA DE MORTERO PATRÓN 1 : 3.5 Y MORTERO ADICIONADO CON CCA

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 4/23/2018

PESO SUELTO =	P.U.S*Vol
PESO COMPACTADO =	P.U.C*Vol

DOSIFIC	CACIÓN	DE MEZCI	LA - MO	RTER	O EN V	OLU	MEN
			C		A		CCA
MEZCI	A PATR	ON:	1		3.5	- 10	0
MEZCLA CON CCA	M-1	5%	1		3.5	1	0.05
	M-2	10%	1		3.5	\$3	0.10
CONCCA	M-3	15%	1	4	3.5	1)	0.15

ARENA

DOSIFICACION DE MEZCLA	- MORTI	ERO EN PE	SO (KG)	P.U.S =	1551 Kg/m3
	C	A	CCA		

			C		A		CCA
MEZCL	A PATR	ON:	42.50	2	153.72	3 00	0
MEZOT A	M-1	5%	42.50	1	153.72	20	2.125
MEZCLA -	M-2	10%	42.50	4	153.72	\$3	4.250
CON CCA	M-3	15%	42.50	1	153.72	10	6.375

A/C = 0.77

DISEÑO DE MEZCLA - MORTERO EN PESO (Gr)										
			С	Т	A	CCA	AGUA DE DISEÑO			
MEZCI	A PATR	ON:	425 gr	;	1537.19 gr :	0	327.25 ml			
MEZCH A	M-1	5%	425 gr	4	1537.19 gr :	21.25	327.25 ml			
MEZCLA	M-2	10%	425 gr	1	1537.19 gr :	42.50	327.25 ml			
CON CCA	M-3	15%	425 gr	1	1537.19 gr :	63.75	327.25 ml			

Anexo 8.2. Dosificación 1:4

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

DISEÑO DE MEZCLA DE MORTERO PATRÓN 1 : 4 Y MORTERO ADICIONADO CON CCA

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

M-1

M-2

MEZCLA

CON CCA

596

10%

Fecha: 4/23/2018

PESO SUELTO =	P.U.S*Vol
PESO COMPACTADO =	P.U.C*Vol

10.000			C		A		CCA
MEZCL	A PATRO	N:	1	81	4	20	0
	M-1	5%	1	;	4	20	0.05
MEZCLA CON CCA	M-2	10%	1	1	4		0.10
CONCCA	M-3	15%	1	:	4	- 1	0.15

42.50

42.50

ARENA

DOSIFICACION DE ME	DOSIFICACION DE MEZCLA - MORTERO EN PESO (KG)							
	C	A	CCA					
MEZCLA PATRON:	42.50	175.68	. 0					

175.68

175.68

M-3 15% 42.50 : 175.68 : 6.375

A/C = 0.83

2.125

4.250

DISEÑO DE MEZCLA - MORTERO EN PESO (Gr)										
			С	Т	A	П	CCA	AGUA DE DISEÑO		
MEZCL	A PATRO	N:	425 gr	:	1756.79 gr	:	0	352.75 ml		
A PERSON A	M-1	5%	425 gr	:	1756.79 gr	:	21.25	352.75 ml		
MEZCLA	M-2	10%	425 gr	:	1756.79 gr		42.50	352.75 ml		
CON CCA	M-3	15%	425 gr	:	1756,79 gr		63.75	352.75 ml		

Anexo 8.3. Dosificación 1:5

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

DISEÑO DE MEZCLA DE MORTERO PATRÓN 1:5 Y MORTERO ADICIONADO CON CCA

: "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

: 4/23/2018

MEZCLA

CONCCA

M-2

M-3

10%

15%

PESO SUELTO =	P.U.S*Vol
PESO COMPACTADO =	P.U.C*Vol

DOSIFICACIÓN DE MEZCLA - MORTERO EN VOLUMEN									
			C		A		CCA		
MEZCI	A PATRO	ON:	1		5		0		
MEZCLA CON CCA	M-1	5%	1	1	5	:	0.05		
	M-2	10%	1	:	5	:	0.10		
	M-3	15%	1		5		0.15		

42.50

42.50

ARENA

DOSIF	ICACIÓN	DE MEZ	CLA - MO	RTEF	O EN PE	SO (P.U.s =	1551 Kg/m3	
			C		A		CCA		1,75
MEZC	LA PATRO	N:	42.50	i	219.60	:	0		
FEDER COT A	M-1	5%	42.50	£	219.60	:	2.125		

219.60

219.60

4.250

6.375

A/C = 1.05

DISEÑO DE MEZCLA - MORTERO EN PESO (Gr)										
			C	Т	A	П	CCA	AGUA DE DISEÑO		
MEZCLA PATRON:			425 gr	:	2195.98 gr	:	0	446.25 ml		
MEZGLA	M-1	5%	425 gr	:	2195.98 gr	:	21.25	446.25 ml		
MEZCLA CON CCA	M-2	10%	425 gr	1	2195.98 gr	:	42.50	446.25 ml		
CONCCA	M-3	15%	425 gr	:	2195.98 gr	:	63.75	446.25 ml		

Anexo 8.4. Dosificación 1:6

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

DISEÑO DE MEZCLA DE MORTERO PATRÓN 1 : 6 Y MORTERO ADICIONADO CON CCA

Tests : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 4/23/2018

PESO SUELTO =	P.U.S*Vol
PESO COMPACTADO =	P.U.C*Vol

DOSIFI	CACION	DE MEZO	LA - MC	DRTER	O EN V	OLU:	MEN
No. of the Control of			C		A		CCA
MEZCL	APATRO	ON:	1	10	6	15	0
A PERSON A	M-1	5%	1	(1)	6	133	0.05
MEZCLA CON CCA	M-2	10%	1	3	6	8	0.10
CONCCA	M-3	15%	1		6	-6	0.15

ARENA

P.U.S =

DOSIFI	CACIÓN	DE MEZ	CLA - MO	RTE	RO EN PE	so	(KG)
			C		A		CCA
MEZCLA PATRON:			42.50	Đ.	263.52	12	0
MEZOT A	M-1	5%	42.50	;	263.52		2.125
MEZCLA	M-2	10%	42.50	:	263.52		4.250
CON CCA	M-3	15%	42.50	1	263.52	1	6.375

A/C = 1.25

1551 Kg/m3

	1	DISEÑO I	E MEZCL	A-1	MORTERO E	ZN.	PESO (G	ir)
			С		A	Τ	CCA	AGUA DE DISEÑO
MEZCLA PATRON:			425 gr	. :	2635.18 gr		0	531.25 ml
METOT A	M-1	5%	425 gr	:	2635.18 gr		21.25	531.25 ml
MEZCLA	M-2	10%	425 gr	1	2635.18 gr		42.50	531.25 ml
CON CCA	M-3	15%	425 gr	1	2635.18 gr	Ī	63.75	531.25 ml

Anexo 9. Resultados de los ensayos del mortero en estado fresco

Anexo 9.1. Fluidez

Anexo 9.1.1. Dosificación 1:3.5

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO PATRÓN

ENSAYO Nº 01

MORTERO	D	OSIFICACIÓN	ī	DIÁMETRO MESA DE FLUIDEZ (cm.)	MESA DE DIÁMETRO DE FLUIDEZ (cm.)						
MATERIALES (gr.)	CEMENTO ARENA A/C 1 3.5 0.77		DB	D1	D2	D3	D4	DP			
CEMENTO ARENA		425.00 1537.19		10.00	21.80	21.10	20.40	21.60	21.23		
AGUA (ml)		327.25			FLUIDEZ = 112.25 %						

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

ENSAYO N° 02 1 : 3.5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 0.95	ARENA 3.5	CCA 0.05	A/C 0.77	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA	403.75 1537.19 21.25				10.00	17.55	17.30	17.15	17.00	17.25
AGUA (ml)		327	.25				FLUIDEZ =	72.50	%	

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

ENSAYO N° 03 1 : 3.5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 0.90	ARENA 3.5	CCA 0.10	A/C 0. 77	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		382 1537 42.	7.19		10.00	15.50	15.30	15.50	15.70	15.50
AGUA (ml)		327	.25			-	FLUIDEZ =	55.00	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

ENSAYO N° 04 1 : 3.5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	ZZ (cm.)	
MATERIALES (gr.)	CEMENTO 0.85	ARENA 3.5	CCA 0.15	A/C 0.77	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		361 1537 63.	7.19		10.00	14.15	14.45	13.90	13.85	14.09
AGUA (ml)		327	.25				FLUIDEZ =	40.88	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

ENSAYO N° 05 1 : 3.5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDEZ	Z (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 3.5	CCA 0.05	A/C 0. 77	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425 1537 21.	7.19		10.00	16.40	16.00	15.70	16.40	16.13
AGUA (ml)		327	.25				FLUIDEZ =	61.25	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

ENSAYO N° 06 1 : 3.5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDEZ	Z (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 3.5	CCA 0.10	A/C 0. 77	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425 1537 42.	7.19		10.00	14.50	14.65	14.00	14.25	14.35
AGUA (ml)		327	.25				FLUIDEZ =	43.50	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

ENSAYO N° 07 1 : 3.5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 3.5	CCA 0.15	A/C 0. 77	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425. 1537 63.	7.19		10.00	12.50	13.70	12.10	12.40	12.68
AGUA (ml)		327.	.25		1		FLUIDEZ =	26.75	%	9

Anexo 9.1.2. Dosificación 1:4

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/23/2018

DOSIFICACIÓN P2 MORTERO PATRÓN

ENSAYO Nº 08

MORTERO	D	DOSIFICACIÓN				DIÁMET	RO DE FLUID	EZ (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 4	A/C 0.83	DB	D1	D2	D3	D4	DP
CEMENTO ARENA		425.00 1756.80		10.00	21.50	19.90	19.60	21.90	20.73
AGUA (ml)		352.75	•	•	FLUIDEZ -	107.25	%		

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

ENSAYO N° 09 1 : 4

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 0.95	ARENA 4	CCA 0.05	A/C 0.83	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		403 1756 21.	5.80		10.00	17.70	17.40	17.10	17.50	17.43
AGUA (ml)		352	.75				FLUIDEZ =	74.25	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

ENSAYO N° 10 1 : 4

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 0.90	ARENA 4	CCA 0.10	A/C 0.83	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		382 1756 42.	5.80		10.00	15.90	15.70	15.45	15.80	15.71
AGUA (ml)		352	.75			-	FLUIDEZ =	57.13	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

ENSAYO N° 11 1 : 4

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	ZZ (cm.)	
MATERIALES (gr.)	CEMENTO 0.85	ARENA 4	CCA 0.15	A/C 0.83	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		361 1756 63.	5.80		10.00	14.10	14.35	14.65	14.80	14.48
AGUA (ml)		352	.75				FLUIDEZ =	44.75	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

ENSAYO N° 12 1 : 4

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	TRO DE FLUIDE	ŒZ (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 4	CCA 0.05	A/C 0.83	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425 1756 21.	5.80		10.00	16.40	16.35	16.50	16.80	16.51
AGUA (ml)		352	.75		,		FLUIDEZ =	65.13	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 4/30/2018

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

ENSAYO N° 13 1 : 4

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	TRO DE FLUIDE	EZ (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 4	CCA 0.10	A/C 0.83	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425 1756 42.	5.80		10.00	15.00	14.80	14.30	14.60	14.68
AGUA (ml)		352	.75				FLUIDEZ =	46.75	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

ENSAYO N° 14 1 : 4

MORTERO		DOSIFIC	CACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	EZ (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 4	CCA 0.15	A/C 0.83	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425 1756 63.	5.80		10.00	13.20	13.75	13.50	13.50	13.49
AGUA (ml)	SV.	352	.75		C.		FLUIDEZ =	34.88	%	

Anexo 9.1.3. Dosificación 1:5

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 4/23/2018

DOSIFICACIÓN P2 MORTERO PATRÓN

ENSAYO Nº 15

MORTERO	D	OSIFICACIÓN	1	DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÂMETI	RO DE FLUID	DEZ (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 5	A/C 1.05	DB	D1	D2	D3	D4	DP
CEMENTO ARENA	425.00 2196.00		10.00	21.20	21.80	19.90	19.95	20.71	
AGUA (ml)		446.25		1	1	FLUIDEZ =	107.13	%	10

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

ENSAYO N° 16 1 : 5

MORTERO		DOSIFIC	CACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMEI	RO DE FLUIDI	EZ (cm.)	
MATERIALES (gr.)	CEMENTO 0.95	ARENA 5	CCA 0.05	A/C 1.05	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		403 2196 21.	5.00		10.00	17.90	18.70	17.85	19.30	18.44
AGUA (ml)		446	.25				FLUIDEZ =	84.38	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 4/30/2018

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

ENSAYO N° 17 1 : 5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMEI	RO DE FLUIDE	EZ (cm.)	
MATERIALES (gr.)	CEMENTO 0.90	ARENA 5	CCA 0.10	A/C 1.05	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		382 2196 42.	5.00		10.00	16.20	17.00	18.60	17.00	17.20
AGUA (ml)		446	.25				FLUIDEZ =	72.00	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 4/30/2018

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

ENSAYO N° 18 1 : 5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	TRO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 0.85	ARENA 5	CCA 0.15	A/C 1.05	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		361. 2196 63.	.00		10.00	16.10	15.00	14.50	16.50	15.53
AGUA (ml)		446.	25			4	FLUIDEZ =	55.25	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 4/30/2018

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

ENSAYO N° 19 1 : 5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	ZZ (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 5	CCA 0.05	A/C 1.05	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425. 2196 21.	5.00		10.00	17.50	18.90	16.90	15.65	17.24
AGUA (ml)		446.	25				FLUIDEZ =	72.38	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

ENSAYO N° 20 1 : 5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 5	CCA 0.10	A/C 1.05	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425. 2196 42.	.00		10.00	16.05	15.45	15.85	16.35	15.93
AGUA (ml)	is .	446.25					FLUIDEZ =	59.25	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

ENSAYO N° 21 1 : 5

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	ZZ (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 5	CCA 0.15	A/C 1.05	DB	DI	D2	D3	D4	DP
CEMENTO ARENA CCA		425. 2196 63.	5.00		10.00	14.40	14.70	15.00	14.80	14.73
AGUA (ml)	1.0	446.	.25				FLUIDEZ =	47.25	%	

Anexo 9.1.4. Dosificación 1:6

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/23/2018

DOSIFICACIÓN NP MORTERO PATRÓN

ENSAYO Nº 22

MORTERO	D	OSIFICACIÓN	1	DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUII	PEZ (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 6	A/C 1.25	DB	D1	D2	D3	D4	DP
CEMENTO ARENA		425.00 2635.20		10.00	21.00	20.00	20.90	22.00	20.98
AGUA (ml)		531.25		1		FLUIDEZ =	109.75	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN NP MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

ENSAYO N° 23 1 : 6

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 0.95	ARENA 6	CCA 0.05	A/C 1.25	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		403. 2635 21.	3.20		10.00	17.90	18.40	20.10	19.70	19.03
AGUA (ml)		531.	.25				FLUIDEZ =	90.25	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN NP MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

ENSAYO N° 24 1 : 6

MORTERO		DOSIFIC	CACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 0.90	ARENA 6	CCA 0.10	A/C 1.25	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		382 2635 42.	5.20		10.00	18.10	16.30	17.70	18.05	17.54
AGUA (ml)	ri.	531	.25		·		FLUIDEZ =	75.38	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN NP MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

ENSAYO N° 25 1 : 6

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 0.85	ARENA 6	CCA 0.15	A/C 1.25	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		361. 2635 63.	.20		10.00	16.10	15.80	15.30	16.15	15.84
AGUA (ml)		531.	.25				FLUIDEZ =	58.38	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN NP MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

ENSAYO N° 26 1 : 6

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	CZ (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 6	CCA 0.05	A/C 1.25	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425 2635 21.	5.20		10.00	18.00	17.40	17.80	17.90	17.78
AGUA (ml)		531	.25			9	FLUIDEZ =	77.75	%	

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN NP MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

ENSAYO N° 27 1 : 6

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)		DIÁMET	RO DE FLUIDE	Z (cm.)	
MATERIALES (gr.)	CEMENTO 1	ARENA 6	CCA 0.10	A/C 1.25	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425. 2635 42	.20		10.00	16.00	16.90	16.30	15.30	16.13
AGUA (ml)		531.	.25				FLUIDEZ =	61.25	%	•

ENSAYO: FLUIDEZ Y TRABAJABILIDAD DE MORTEROS (NTP 334.057)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 4/30/2018

DOSIFICACIÓN NP MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

ENSAYO N° 28 1 : 6

MORTERO		DOSIFIC	ACIÓN		DIÁMETRO MESA DE FLUIDEZ (cm.)	DIÁMETRO DE FLUIDEZ (cm.)				
MATERIALES (gr.)	CEMENTO 1	ARENA 6	CCA 0.15	A/C 1.25	DB	D1	D2	D3	D4	DP
CEMENTO ARENA CCA		425. 2635 63.	5.20		10.00	15.65	14.80	14.55	15.60	15.15
AGUA (ml)		531	.25				FLUIDEZ =	51.50	%	

Anexo 9.2. Contenido de aire

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 6/13/2018

DOSIFICACIÓN P1 MORTERO PATRÓN

ENSAYO Nº 01

P1 = 1 : 3.5

Cemento Arena

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	āt.
Peso Recipiente + Peso Muestra	1339	āt.
Peso Muestra	851	gr
Relacion agua/cemento	77	%
CONTENIDO DE AIRE ATRAPADO	4.24	%

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 02

P1 = 0.95 : 3.5 : 0.05

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1336	gr
Peso Muestra	848	gr
Relacion agua/cemento	77	%
CONTENIDO DE AIRE ATRAPADO	4.58	%

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 6/13/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 03

P1 = 0.90 : 3.5 : 0.10

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr gr
Peso Recipiente + Peso Muestra	1329	gr gr
Peso Muestra	841	gr
Relacion agua/cemento	77	%
CONTENIDO DE AIRE ATRAPADO	5.37	%

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 04

P1 = 0.85 : 3.5 : 0.15

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	व्र
Peso Recipiente + Peso Muestra	1328	ब्र
Peso Muestra	840	gr gr
Relacion agua/cemento	77	%
CONTENIDO DE AIRE ATRAPADO	5.48	%

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 6/13/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 05

P1 = 1 : 3.5 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1332	gr
Peso Muestra	844	gr
Relacion agua/cemento	77	%
CONTENIDO DE AIRE ATRAPADO	5.03	%

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 06

P1 = 1 : 3.5 : 0.10 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1327	gr
Peso Muestra	839	gr
Relacion agua/cemento	77	%
CONTENIDO DE AIRE ATRAPADO	5.59	%

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 07

P1 = 1 : 3.5 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1324	gr
Peso Muestra	836	gr
Relacion agua/cemento	77	%
CONTENIDO DE AIRE ATRAPADO	5.93	%

Anexo 9.2.2. Dosificación 1:4

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 6/13/2018

DOSIFICACIÓN P2 MORTERO PATRÓN

ENSAYO Nº 08

P2 = 1 : 4

Cemento Arena

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1321	gr
Peso Muestra	833	gr
Relacion agua/cemento	83	%
CONTENIDO DE AIRE ATRAPADO	5.09	%

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 09

P2 = 0.95 : 4 : 0.05 Cemento Arena CCA

DESCRIPCIÓN RESULTADO UNID Peso Recipiente Metálico 488 ΩΓ Peso Recipiente + Peso Muestra 1320 21 Peso Muestra 832 21 Relacion agua/cemento 83 % CONTENIDO DE AIRE ATRAPADO 5.20 96

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 6/13/2018

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 10

P2 = 0.90 : 4 : 0.10

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1314	gr
Peso Muestra	826	gr
Relacion agua/cemento	83	%
CONTENIDO DE AIRE ATRAPADO	5.89	%

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 11

P2 = 0.85 : 4 : 0.15

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1310	gr
Peso Muestra	822	gr
Relacion agua/cemento	83	%
CONTENIDO DE AIRE ATRAPADO	6.34	%

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 6/13/2018

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 12

P2 = 1 : 4 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1313	gr
Peso Muestra	825	gr
Relacion agua/cemento	83	%
CONTENIDO DE AIRE ATRAPADO	6.00	%

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 13

P2 = 1 : 4 : 0.10 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1311	gr
Peso Muestra	823	gr
Relacion agua/cemento	83	%
CONTENIDO DE AIRE ATRAPADO	6.23	%

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 14

P2 = 1 : 4 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1306	gr
Peso Muestra	818	gr
Relacion agua/cemento	83	%
CONTENIDO DE AIRE ATRAPADO	6.80	%

Anexo 9.2.3. Dosificación 1:5

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 6/13/2018

DOSIFICACIÓN P2 MORTERO PATRÓN

ENSAYO Nº 15

P2 = 1 : 5

Cemento Arena

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1278	gr
Peso Muestra	790	gr
Relacion agua/cemento	105	%
CONTENIDO DE AIRE ATRAPADO	6.08	%

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 16

P2 = 0.95 ; 5 ; 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1273	gr
Peso Muestra	785	gr
Relacion agua/cemento	105	%
CONTENIDO DE AIRE ATRAPADO	6.68	%

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 6/13/2018

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 17

P2 = 0.90 : 5 : 0.10

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1266	gr
Peso Muestra	778	gr
Relacion agua/cemento	105	%
CONTENIDO DE AIRE ATRAPADO	7.51	%

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 18

P2 = 0.85 : 5 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1261	gr
Peso Muestra	773	gr
Relacion agua/cemento	105	%
CONTENIDO DE AIRE ATRAPADO	8.10	%

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 6/13/2018

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 19

P2 = 1 : 5 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1270	gr
Peso Muestra	783	gr
Relacion agua/cemento	105	%
CONTENIDO DE AIRE ATRAPADO	6.91	%

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 20

P2 = 1 : 5 : 0.10 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1263	gr
Peso Muestra	775	gr
Relacion agua/cemento	105	%
CONTENIDO DE AIRE ATRAPADO	7.86	%

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 21

P2 = 1 : 5 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1259	gr
Peso Muestra	771	gr
Relacion agua/cemento	105	%
CONTENIDO DE AIRE ATRAPADO	8.34	%

Anexo 9.2.4. Dosificación 1:6

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 6/13/2018

DOSIFICACIÓN "NP" MORTERO PATRÓN

ENSAYO Nº 22

NP = 1 : 6

Cemento Arena

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1248	gr
Peso Muestra	760	gr
Relacion agua/cem ento	125	%
CONTENIDO DE AIRE ATRAPADO	6.46	%

DOSIFICACIÓN "NP" MORTERO CON SUSTITUCIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 23

NP = 0.95 : 6 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1243	gr
Peso Muestra	755	gr
Relacion agua/cemento	125	%
CONTENIDO DE AIRE ATRAPADO	7.07	%

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 6/13/2018

DOSIFICACIÓN "NP" MORTERO CON SUSTITUCIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 24

NP = 0.90 : 6 : 0.10

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1236	gr
Peso Muestra	748	gr
Relacion agua/cemento	125	%
CONTENIDO DE AIRE ATRAPADO	7.94	%

DOSIFICACIÓN "NP"MORTERO CON SUSTITUCIÓN DEL 15% DE CEMENTO POR CCA

ENSAYO Nº 25

NP = 0.85 : 6 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1231	gr
Peso Muestra	743	gr
Relacion agua/cemento	125	%
CONTENIDO DE AIRE ATRAPADO	8.55	%

ENSAYO: CONTENIDO DE AIRE ATRAPADO EN EL MORTERO (NTP 334.048)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 6/13/2018

DOSIFICACIÓN "NP" MORTERO CON ADICIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 26

NP = 1 : 6 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1241	gr
Peso Muestra	753	gr
Relacion agua/cemento	125	%
CONTENIDO DE AIRE ATRAPADO	7.32	%

DOSIFICACIÓN "NP" MORTERO CON ADICIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 27

NP = 1 : 6 : 0.10 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1234	gr
Peso Muestra	746	gr
Relacion agua/cemento	125	%
CONTENIDO DE AIRE ATRAPADO	8.18	%

DOSIFICACIÓN "NP"MORTERO CON ADICIÓN DEL 15% DE CEMENTO POR CCA

ENSAYO Nº 28

NP = 1 : 6 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	488	gr
Peso Recipiente + Peso Muestra	1229	gr
Peso Muestra	741	gr
Relacion agua/cemento	125	%
CONTENIDO DE AIRE ATRAPADO	8.80	%

Anexo 9.3. Peso unitario compactado

Anexo 9.3.1. Dosificación 1:3.5

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO PATRÓN

ENSAYO Nº 01

P1 = 1 : 3.5 Cemento Arena

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6306	gr
Peso de la Muestra Compactada	2076	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2223.59	Kg/m3

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 02

P1 = 0.95 : 3.5 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6289	gr
Peso de la Muestra Compactada	2059	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2205.12	Kg/m3

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 03

P1 = 0.90 : 3.5 : 0.10

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	ध
Peso Recipiente + Peso Muestra	6274	gr
Peso de la Muestra Compactada	2044	a.
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2189.32	Kg/m3

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 04

P1 = 0.85 : 3.5 : 0.15

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6255	gr
Peso de la Muestra Compactada	2025	ब्र
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2168.97	Kg/m3

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 05

P1 = 1 : 3.5 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6279	gr
Peso de la Muestra Compactada	2049	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2194.95	Kg/m3

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 06

P1 = 1 : 3.5 : 0.10 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6262	gr
Peso de la Muestra Compactada	2032	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2176.47	Kg/m3

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 07

P1 = 1 : 3.5 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6242	gr
Peso de la Muestra Compactada	2012	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2154.68	Kg/m3

Anexo 9.3.2. Dosificación 1:4

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO PATRON

ENSAYO Nº 08

P2 = 1 : 4

Cemento Arena

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	āt.
Peso Recipiente + Peso Muestra	6286	gr.
Peso de la Muestra Compactada	2056	āt.
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2202.17	Kg/m3

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 09

P2 = 0.95 : 4 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	āt.
Peso Recipiente + Peso Muestra	6277	āt.
Peso de la Muestra Compactada	2047	at.
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2192.53	Kg/m3

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 10

P2 = 0.90 : 4 : 0.10

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6267	gr
Peso de la Muestra Compactada	2037	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2181.82	Kg/m3

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 11

P2 = 0.85 : 4 : 0.15 Cemento Arena CCA

 DESCRIPCIÓN
 RESULTADO
 UNID

 Peso Recipiente Metálico
 4230
 gr

 Peso Recipiente + Peso Muestra
 6253
 gr

 Peso de la Muestra Compactada
 2023
 gr

 Volumen del Recipiente
 933.6238
 cm3

 PESO UNTARIO COMPACTADO
 2166.83
 Kg/m3

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 12

P2 = 1 : 4 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6271	gr
Peso de la Muestra Compactada	2041	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2186.58	Kg/m3

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 13

P2 = 1 : 4 : 0.10 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6259	gr
Peso de la Muestra Compactada	2029	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2173.11	Kg/m3

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 14

P2 = 1 : 4 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6247	gr
Peso de la Muestra Compactada	2017	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2160.53	Kg/m3

Anexo 9.3.3. Dosificación 1:5

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO PATRÓN

ENSAYO Nº 15

P2 = 1 : 5

Cemento Arena

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6260	a.
Peso de la Muestra Compactada	2030	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2174.32	Kg/m3

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 16

P2 = 0.95 : 5 : 0.05

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	āt.
Peso Recipiente + Peso Muestra	6247	āt.
Peso de la Muestra Compactada	2017	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2159.88	Kg/m3

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 17

P2 = 0.90 : 5 : 0.10

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6235	a.
Peso de la Muestra Compactada	2005	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2147.37	Kg/m3

DOSIFICACIÓN P2 MORTERO CON SUSTITUCIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 18

P2 = 0.85 : 5 : 0.15

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	a.
Peso Recipiente + Peso Muestra	6220	āt.
Peso de la Muestra Compactada	1990	ā.
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2131.89	Kg/m3

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 19

P2 = 1 : 5 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6237	gr
Peso de la Muestra Compactada	2007	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2150.21	K₂/m3

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 20

P2 = 1 : 5 : 0.10 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID
Peso Recipiente Metálico	4230	gr
Peso Recipiente + Peso Muestra	6225	gr
Peso de la Muestra Compactada	1995	gr
Volumen del Recipiente	933.6238	cm3
PESO UNTARIO COMPACTADO	2136.46	Kg/m3

DOSIFICACIÓN P2 MORTERO CON ADICIÓN DEL 15 % DE CEMENTO POR CCA

ENSAYO Nº 21

P2 = 1 : 5 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID	
Peso Recipiente Metálico	4230	gr	
Peso Recipiente + Peso Muestra	6212	gr	
Peso de la Muestra Compactada	1982	gr	
Volumen del Recipiente	933.6238	cm3	
PESO UNTARIO COMPACTADO	2122.91	Kg/m3	

Anexo 9.3.4. Dosificación 1:6

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN "NP" MORTERO PATRÓN

ENSAYO Nº 22

NP = 1 : 6

Cemento Arena

DESCRIPCIÓN	RESULTADO	UNID	
Peso Recipiente Metálico	4230	gr	
Peso Recipiente + Peso Muestra	6252	gr	
Peso de la Muestra Compactada	2022	gr	
Volumen del Recipiente	933.6238	cm 3	
PESO UNTARIO COMPACTADO	2165.75	Kg/m3	

DOSIFICACIÓN "NP" MORTERO CON SUSTITUCIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 23

NP = 0.95 : 6 : 0.05 Cemento Arena CCA

DESCRIPCIÓN RESULTADO UNID Peso Recipiente Metálico 4230 gr Peso Recipiente + Peso Muestra 6236 gr Peso de la Muestra Compactada 2006 gr Volumen del Recipiente 933.6238 cm3 PESO UNTARIO COMPACTADO Kg/m3 2148.62

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN "NP" MORTERO CON SUSTITUCIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 24

NP = 0.90 : 6 : 0.10

Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID	
Peso Recipiente Metálico	4230	gr	
Peso Recipiente + Peso Muestra	6227	gr	
Peso de la Muestra Compactada	1997	gr	
Volumen del Recipiente	933.6238	cm3	
PESO UNTARIO COMPACTADO	2139.35	Kg/m3	

DOSIFICACIÓN "NP"MORTERO CON SUSTITUCIÓN DEL 15% DE CEMENTO POR CCA

ENSAYO Nº 25

NP = 0.85 : 6 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID	
Peso Recipiente Metálico	4230	gr	
Peso Recipiente + Peso Muestra	6214	gr	
Peso de la Muestra Compactada	1984	gr	
Volumen del Recipiente	933.6238	cm3	
PESO UNTARIO COMPACTADO	2124.96	Kg/m3	

ENSAYO: PESO UNITARIO COMPACTADO DEL MORTERO (NTP 339.046)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN "NP" MORTERO CON ADICIÓN DEL 5 % DE CEMENTO POR CCA

ENSAYO Nº 26

NP = 1 : 6 : 0.05 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID	
Peso Recipiente Metálico	4230	gr	
Peso Recipiente + Peso Muestra	6229	gr	
Peso de la Muestra Compactada	1999	gr	
Volumen del Recipiente	933.6238	cm3	
PESO UNTARIO COMPACTADO	2141.41	Kg/m3	

DOSIFICACIÓN "NP" MORTERO CON ADICIÓN DEL 10 % DE CEMENTO POR CCA

ENSAYO Nº 27

DESCRIPCIÓN	RESULTADO	UNID	
Peso Recipiente Metálico	4230	gr	
Peso Recipiente + Peso Muestra	6218	gr	
Peso de la Muestra Compactada	1988	gr	
Volumen del Recipiente	933.6238	cm3	
PESO UNTARIO COMPACTADO	2128.92	Kg/m3	

DOSIFICACIÓN "NP"MORTERO CON ADICIÓN DEL 15% DE CEMENTO POR CCA

ENSAYO Nº 28

NP = 1 : 6 : 0.15 Cemento Arena CCA

DESCRIPCIÓN	RESULTADO	UNID	
Peso Recipiente Metálico	4230	gr	
Peso Recipiente + Peso Muestra	6207	gr	
Peso de la Muestra Compactada	1977	gr	
Volumen del Recipiente	933.6238	cm3	
PESO UNTARIO COMPACTADO	2117.62	Kg/m3	

Anexo 10. Resultados de los ensayos del mortero en estado endurecido

Anexo 10.1. Resistencia a la compresión de mortero

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/27/2018

DOSIFICACIÓN P1 MORTERO PATRON

P1 = 1 : 3.5 Proporción = Cemento Arena

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 4/28/2018

Fecha de Ensayo : 5/5/2018

ESPECIMEN LARGO	T 4 P.CC	ANCHO ÁREA	Pu		ou	
	LARGO cm	cm	cm2	KN	Kg	(kg/cm2)
M1	5.07	5.10	25.86	51.78	5278	204.12
M2	5.10	5.13	26.16	44.19	4505	172.19
M3	5.08	5.11	25.96	47.68	4860	187.22
TOTAL PROM.						187.84

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 4/28/2018

Fecha de Ensayo : 5/12/2018

PERFORMEN	SPECIMEN LARGO cm ANCHO ÁREA cm cm2	ÁREA	Pu		σιι	
ESPECIMEN LARGO		GO cm cm	cm2	KN	Kg	(kg/cm2)
M1	5.11	5.08	25.96	56.25	5734	220.89
M2	5.10	5.10	26.01	56.01	5709	219.49
M3	5.10	5.10	26.01	55.62	5670	217.99
TOTAL PROM.						219.46

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 4/28/2018 Fecha de Ensayo : 5/26/2018

ESPECIMEN LARGO cm Cm cm2 KN Kg (kg/cm2)

THE STREET STATE ASSESSMENT	DECTATES TANCO	CARAGOS				
ESPECIMEN LARGO	LARGO em	O cm cm	cm 2	KN	Kg	(kg/cm2)
M1	5.06	5.08	25.70	74.15	7559	294.07
M2	5.09	5.14	26.16	69.54	7089	270.96
M3	5.09	5.12	26.06	67.07	6837	262.35
TOTAL PROM.						275.79

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

P1 = 0.95 : 3.5 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/1/2018

Fecha de Ensayo : 5/8/2018

ESPECIMEN LARGO a	TARGO	ANCHO	ÁREA	P	u	σı
	ESPECIMEN	LAKGO cm	cm	cm2	KN	Kg
Ml	5.11	5.10	26.06	58.27	5940	227.93
M2	5.06	5.06	25.60	49.16	5011	195.71
М3	5.08	5.09	25.86	54.54	5560	215.03
TOTAL PROM.	1					212.89

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/1/2018 Fecha de Ensayo : 5/15/2018

ESPECIMEN LARGO on	ANCHO ÁREA cm cm2	Pu		on on		
		cm cm2	KN	Kg	(kg/cm2)	
Ml	5.17	5.09	26.32	65.50	6677	253.73
M2	5.04	5.13	25.86	56.86	5796	224.17
M3	5.08	5.10	25.91	61.33	6252	241.32
TOTAL PROM.						239.74

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/1/2018 Fecha de Ensayo : 5/29/2018

ESPECIMEN		ANCHO cm	ÁREA cm2	Pu		ਗ
	LARGO cm			KN	Kg	(kg/cm2)
M1	5.11	5.13	26.21	80.50	8206	313.04
M2	5.11	5.12	26.16	74.84	7629	291.59
M3	5.10	5.11	26.06	77.15	7864	301.75
TOTAL PROM.						302.13

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 4/30/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

P1 = 0.90 : 3.5 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/1/2018

Fecha de Ensayo : 5/8/2018

ESPECIMEN	LARGO	ANCHO cm	ÁREA cm2	Pu		હ્યા
	cm			KN	Kg	(kg/cm 2)
M1	5.07	5.07	25.70	54.13	5518	214.67
M2	5.10	5.10	26.01	61.71	6291	241.87
M3	5.09	5.08	25.86	56.36	5745	222.18
TOTAL PROM.			-			226.24

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/1/2018 Fecha de Ensayo : 5/15/2018

ESPECIMEN	LARGO .	ANCHO cm	ÁREA cm2	Pu		તા
	cm			KN	Kg	(kg/cm 2)
M1	5.07	5.07	25.70	60.21	6138	238.79
M2	5.08	5.06	25.70	69.41	7075	275.24
M3	5.07	5.07	25.70	62.13	6333	246.37
TOTAL PROM.					201	253.47

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/1/2018 Fecha de Ensayo : 5/29/2018

ESPECIMEN	LARGO	ANCHO cm	ÁREA cm2	Pu		σιι
	cm			KN	Kg	(kg/cm 2)
M1	5.08	5.10	25.91	80.60	8216	317.12
M2	5.08	5.05	25.65	78.78	8031	313.05
M3	5.09	5.07	25.81	77.00	7849	304.15
TOTAL PROM.						311.44

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 4/30/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

P1 = 0.85 : 3.5 : 0.15 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/1/2018

> Fecha de Ensayo : 5/8/2018

ESPECIMEN	T ARGO	ANCHO cm	ÁREA cm2	Pu		σu
	LAKGO cm			KN	Kg	(kg/cm2)
M1	5.14	5.11	26.27	47.67	4859	185.00
M2	5.08	5.10	25.91	53.89	5493	212.02
M3	5.12	5.11	26.16	50.67	5165	197.41
TOTAL PROM.						198.14

Fecha de Obtención : 5/1/2018 Edad de Muestreo : 14 DÍAS Fecha de Ensayo : 5/15/2018

ESPECIMEN I	LARGO cm	ANCHO cm	ÁREA cm2	Pu		συ
				KN	Kg	(kg/cm2)
M1	5.13	5.06	25.96	61.21	6240	240.39
M2	5.13	5.06	25.96	58.40	5953	229.33
M3	5.12	5.07	25.96	55.77	5685	219.00
TOTAL PROM.						229.58

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/1/2018 Fecha de Ensayo : 5/29/2018

ESPECIMEN I	LARGO cm	ANCHO cm	ÁREA cm2	P	σu	
				KN	Kg	(kg/cm2)
M1	5.04	5.05	25.45	77.78	7929	311.53
M2	5.06	5.11	25.86	69.46	7081	273.86
M3	5.04	5.09	25.65	75.26	7672	299.06
TOTAL PROM.			20. 30.			294.82

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/7/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

P1 = 1 : 3.5 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/8/2018

Fecha de Ensayo : 5/15/2018

ESPECIMEN	LARGO cm	ANCHO cm	ÁREA cm2	Pu		ળા
				KN	Kg	(kg/cm2)
M1	5.09	5.12	26.06	61.58	6277	240.86
M2	5.10	5.03	25.65	51.82	5282	205.90
M3	5.08	5.07	25.76	55.10	5617	218.09
TOTAL PROM.			4.5-			221.62

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/8/2018 Fecha de Ensayo : 5/22/2018

ESPECIMEN L		ANCHO cm	ÁREA cm2	Pu		હ્યા
	LARGO cm			KN	Kg	(kg/cm2)
M1	5.05	5.09	25.70	58.59	5972	232.33
M2	5.07	5.03	25.50	67.19	6849	268.57
M3	5.05	5.07	25.60	64.85	6611	258.21
TOTAL PROM.						253.04

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/8/2018 Fecha de Ensayo : 6/5/2018

ESPECIMEN LARGO		ANCHO cm	ÁREA cm2	Pu		ળા
	LAKGO cm			KN	Kg	(kg/cm2)
M1	5.06	5.08	25.70	74.46	7590	295.28
M2	5.08	5.07	25.76	78.67	8019	311.35
M3	5.09	5.07	25.81	80.65	8221	318.57
TOTAL PROM.						308.40

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/7/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

P1 = 1 : 3.5 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/8/2018 Fecha de Ensayo : 5/15/2018

ESPECIMEN	LARGO	ANCHO	ÁREA	Pu		वा
	cm	cm	cm2	KN	Kg	(kg/cm2)
M1	5.10	5.08	25.91	54.27	5532	213.52
M2	5.07	5.05	25.60	53.64	5468	213.56
M3	5.08	5.07	25.76	53.22	5425	210.63
TOTAL PROM.		-	**	-	-	212.57

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/8/2018 Fecha de Ensayo : 5/22/2018

ESPECIMEN	LARGO	O ANCHO cm	ÁREA cm2	P	ਗ	
	cm			KN	Kg	(kg/cm2)
M1	5.09	5.06	25.76	60.78	6196	240.57
M2	5.10	5.07	25.86	62.87	6409	247.86
M3	5.08	5.06	25.70	61.64	6283	244.43
TOTAL PROM.						244.29

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/8/2018 Fecha de Ensayo : 6/5/2018

ESPECIMEN	LARGO A	ANCHO	ÁREA cm2	P	வ	
	cm	cm		KN	Kg	(kg/cm2)
M1	5.09	5.06	25.76	79.11	8064	313.10
M2	5.09	5.06	25.76	70.45	7181	278.82
M3	5.06	5.05	25.55	76.12	7759	303.64
TOTAL PROM.						298.52

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051)

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/7/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/8/2018

Fecha de Ensayo : 5/15/2018

ESPECIMEN LARGO	*	ANCHO cm	ÁREA cm2	P	जा ।	
	LAKGO cm			KN	Kg	(kg/cm2)
M1	5.07	5.07	25.70	48.15	4908	190.94
M2	5.10	5.08	25.91	51.78	5278	203.72
M3	5.08	5.08	25.81	52.36	5337	206.81
TOTAL PROM.						200.49

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/8/2018 Fecha de Ensayo : 5/22/2018

ESPECIMEN LARGO cm	TIRGO	ANCHO	ÁREA	P	ਗ	
	cm	cm2	KN	Kg	(kg/cm2)	
M1	5.07	5.07	25.70	61.53	6272	244.00
M2	5.08	5.08	25.81	55.87	5695	220.68
M3	5.07	5.06	25.65	58.79	5993	233.61
TOTAL PROM.						232.76

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/8/2018 Fecha de Ensayo : 6/5/2018

ESPECIMEN LARGO cm		ANCHO	ÁREA	Pu		σιι
	cm	cm2	KN	Kg	(kg/cm2)	
M1	5.08	5.07	25.76	67.71	6902	267.98
M2	5.10	5.09	25.96	76.63	7811	300.90
M3	5.09	5.09	25.91	72.17	7357	283.97
TOTAL PROM.						284.28

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/1/2018

TOTAL PROM.

DOSIFICACION P2 MORTEROS PATRÓN

P2 = 1 : 4 Proporción = Cemento Arena

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/2/2018

Fecha de Ensayo : 5/9/2018

215.48

ESPECIMEN	LARGO	ANCHO	CHO ÅREA	Pu		σu
	cm	cm		KN	Kg	(kg/cm2)
M1	5.11	5.07	25.91	48.33	4927	190.18
M2	5.08	5.06	25.70	43.73	4458	173.43
M3	5.09	5.07	25.81	46.81	4772	184.92
TOTAL PROM.						182.84

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/2/2018 Fecha de Ensayo : 5/16/2018

LARGO ANCHO AREA Pu ESPECIMEN cm 2 cm cm KN Kg (kg/cm2) M1 5.07 5.10 25.86 56.05 5714 220.98 5.08 5.07 25.76 53.25 210.75 M2 5428 **M3** 5.06 5.10 25.81 54.36 5541 214.72

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/2/2018 Fecha de Ensayo : 5/30/2018

ESPECIMEN	LARGO	ANCHO	ÁREA cm 2	Pu		συ
	cm			KN	Kg	(kg/cm2)
M1	5.06	5.09	25.76	58.79	5993	232,69
M2	5.07	5.11	25.91	66.82	6811	262.89
M3	5.07	5.09	25.81	64.81	6607	256.02
TOTAL PROM.			A			250.54

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/1/2018

DOSIFICACION P2 (1:4) MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

P2 = 0.95 : 4 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/2/2018

Fecha de Ensayo : 5/9/2018

ESPECIMEN	LARGO	ANCHO	ÁREA cm2	Pu		તા
	cm	cm		KN	Kg	(kg/cm2)
M1	5.12	5.04	25.80	52.04	5305	205.58
M2	5.09	5.11	26.01	50.86	5185	199.35
M3	5.10	5.07	25.86	48.89	4984	192.75
TOTAL PROM.					-	199.23

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/2/2018 Fecha de Ensayo : 5/16/2018

ESPECIMEN	LARGO ANCH	ANCHO	ÁREA cm2	P	on .	
	cm	cm		KN	Kg	(kg/cm2)
M1	5.12	5.05	25.86	62.71	6392	247.22
M2	5.13	5.06	25.96	55.93	5701	219.63
M3	5.11	5.06	25.86	59.93	6109	236.26
TOTAL PROM.						234.37

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/2/2018 Fecha de Ensavo : 5/30/2018

ESPECIMEN	LARGO	ANCHO	ÁREA cm2	P	ਗ	
	cm	cm		KN	Kg	(kg/cm2)
M1	5.05	5.05	25.50	73.76	7519	294.83
M2	5.07	5.08	25.76	68.60	6993	271.51
M3	5.07	5.07	25.70	65.11	6637	258.20
TOTAL PROM.						274.85

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

"DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ" Tesis :

RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/1/2018

DOSIFICACION P2 (1:4) MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

P2 = 0.90 : 4 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/2/2018

Fecha de Ensayo 5/9/2018 :

ESPECIMEN LARGO cm	Lungo	ANCHO	ÁREA	P	σu (kg/cm2)	
	cm	cm2	KN	Kg		
M1	5.09	5.12	26.06	57.67	5879	225.59
M2	5.09	5.09	25.91	51.82	5282	203.87
M3	5.08	5.10	25.91	53.78	5482	211.59
TOTAL PROM.						213.69

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/2/2018 : Fecha de Ensayo 5/16/2018

ESPECIMEN LARGO cm	L LDGG	ANCHO	ÁREA	Pu		σu (kg/cm2)
	cm	cm2	KN	Kg		
M1	5.11	5.07	25.91	65.45	6672	257.53
M2	5.07	5.09	25.81	59.54	6069	235.18
M3	5.08	5.11	25.96	58.03	5915	227.86
TOTAL PROM.						240.19

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/2/2018

: 5/30/2018 Fecha de Ensayo

ESPECIMEN LARGO	Lings	ANCHO cm	ÁREA cm2	Pu		σu
	LAKGO cm			KN	Kg	(kg/cm2)
M1	5.10	5.07	25.86	68.54	6987	270.22
M2	5.10	5.03	25.653	72.26	7366	287.14
M3	5.08	5.06	25.70	73.59	7502	291.85
TOTAL PROM.	1					283.07

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/2/2018

DOSIFICACION P2 (1:4) MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

P2 = 0.85 : 4 : 0.15 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/3/2018

Fecha de Ensayo : 5/10/2018

ESPECIMEN	LARGO	ANCHO	ÁREA cm2	Pu		હ્યા
	cm	cm		KN	Kg	(kg/cm2)
M1	5.06	5.05	25.55	51.62	5262	205.92
M2	5.10	5.07	25.86	45.65	4653	179.95
M3	5.07	5.08	25.76	48.90	4985	193.55
TOTAL PROM.				-		193.14

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/3/2018 Fecha de Ensayo : 5/17/2018

ESPECIMEN	LARGO	ANCHO cm	ÁREA cm2	Pu		σιι
	cm			KN	Kg	(kg/cm2)
M1	5.10	5.06	25.81	58.20	5933	229.91
M2	5.12	5.03	25.7536	54.31	5536	214.96
M3	5.10	5.05	25.76	55.67	5675	220.35
TOTAL PROM.						221.74

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/3/2018 Fecha de Ensayo : 5/31/2018

Pu LARGO ANCHO ÁREA GII ESPECIMEN cm2 cm cm KN Kg (kg/cm2) 71.79 5.10 5.12 26.11 7318 280.25 M1 M25.08 5.06 25.7048 62.46 6367 247.70 67.54 5.10 266.27 M3 5.07 25.86 6885

TOTAL PROM. 264.74

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/8/2018

DOSIFICACION P2 (1:4) MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 09/05/2014

Fecha de En sayo : 16/05/2014

ESPECIMEN I	LARGO cm	ANCHO cm	ÁREA cm2	Pu		σιι
				KN	Kg	(kg/cm2)
M1	5.08	5.14	26.11	51.87	5287	202.48
M2	5.06	5.07	25.65	55.35	5642	219.93
M3	5.10	5.11	26.06	54.40	5545	212.77
TOTAL PROM.			3%			211.73

 Edad de Muestreo :
 14 DÍAS
 Fecha de Obtención :
 09/05/2014

 Fecha de En sayo :
 23/05/2014

ESPECIMEN	LARGO cm	ANCHO cm	ÁREA cm2	Pu		σιι
				KN	Kg	(kg/cm2)
M1	5.06	5.08	25.70	61.06	6224	242.13
M2	5.05	5.07	25.60	60.41	6158	240.51
M3	5.06	5.08	25.70	60.95	6213	241.71
TOTAL PROM.			**			241.45

 Edad de Muestreo :
 28 DÍAS
 Fecha de Obtención :
 09/05/2014

 Fecha de En sayo :
 06/06/2014

ESPECIMEN LARGO	TARGO	ANCHO cm	ÁREA cm2	P	σιι	
	LARGO cm			KN	Kg	(kg/cm2)
M1	5.05	5.11	25.81	72.48	7388	286.30
M2	5.10	5.10	26.01	74.66	7611	292.62
М3	5.07	5.12	25.96	71.14	7252	279.37
TOTAL PROM.						286.09

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/8/2018

DOSIFICACION P2 (1:4) MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 09/05/2014

Fecha de Ensayo : 16/05/2014

ESPECIMEN		ANCHO cm	ÁREA cm2	P	συ	
	LARGO cm			KN	Kg	(kg/cm2)
M1	5.10	5.05	25.76	50.86	5184	201.28
M2	5.09	5.15	26.21	53.64	5468	208.59
M3	5.08	5.10	25.91	52.24	5325	205.53
TOTAL PROM.						205.14

 Edad de Muestreo :
 14 DÍAS
 Fecha de Obtención :
 09/05/2014

 Fecha de Ensayo :
 23/05/2014

ESPECIMEN	LARGO cm	ANCHO cm	ÁREA cm2	P	வ	
				KN	Kg	(kg/cm2)
M1	5.11	5.07	25.91	58.81	5995	231.40
M2	5.08	5.10	25.91	61.35	6254	241.39
M3	5.10	5.09	25.96	60.15	6132	236.22
TOTAL PROM.						236.34

 Edad de Muestreo :
 28 DÍAS
 Fecha de Obtención :
 09/05/2014

 Fecha de Ensayo :
 06/06/2014

ESPECIMEN LARGE	Lings	ANCHO	ÁREA cm2	P	σι	
	LAKGO cm	cm		KN	Kg	(kg/cm2)
M1	5.06	5.08	25.70	71.19	7257	282.32
M2	5.08	5.08	25.8064	65.09	6635	257.11
M3	5.09	5.11	26.01	68.79	7012	269.59
TOTAL PROM.			100			269.67

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/8/2018

DOSIFICACION P2 (1:4) MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.15Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 09/05/2014

Fecha de Ensayo : 16/05/2014

ESPECIMEN	LARGO	ANCHO	ÁREA cm2	Pu		σι
	cm	cm		KN	Kg	(kg/cm2)
M1	5.11	5.09	26.01	48.74	4968	191.00
M2	5.10	5.10	26.01	49.96	5093	195.81
M3	5.07	5.11	25.91	48.89	4984	192.38
TOTAL PROM.			2000	11	1	193.06

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 09/05/2014 Fecha de Ensayo : 23/05/2014

ESPECIMEN	LARGO	ANCHO	ÁREA cm2	P	σι	
	cm	cm		KN	Kg	(kg/cm2)
M1	5.07	5.08	25.76	59.86	6102	236.92
M2	5.09	5.08	25.86	53.31	5434	210.15
M3	5.08	5.08	25.81	57.63	5875	227.66
TOTAL PROM.		-				224.91

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 09/05/2014 Fecha de Ensayo : 06/06/2014

ESPECIMEN	LARGO A	ANCHO	ÁREA cm2	P	σιι	
		cm		KN	Kg	(kg/cm2)
M1	5.09	5.06	25.76	69.21	7055	273.92
M2	5.10	5.07	25.857	66.84	6813	263.49
M3	5.07	5.09	25.81	61.29	6248	242.11
TOTAL PROM.						259.84

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/2/2018

DOSIFICACION P2 MORTEROS PATRON

P2 = 1 : 5 Proporción = Cemento Arena

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/3/2018

Fecha de Ensayo : 5/10/2018

ESPECIMEN	LARGO	ANCHO cm	ÁREA cm2	P	σu	
	cm			KN	Kg	(kg/cm 2)
M1	5.11	5.07	25.91	30.41	3100	119.66
M2	5.07	5.09	25.81	24.03	2450	94.94
M3	5.10	5.07	25.86	26.20	2671	103.30
TOTAL PROM.						105.96

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/3/2018 Fecha de Ensayo : 5/17/2018

ESPECIMEN	LARGO	ANCHO	ÁREA cm2	Pu		σu
	cm	cm		KN	Kg	(kg/cm 2)
M1	5.07	5.05	25.60	35.01	3569	139.40
M2	5.09	5.10	25.959	31.05	3165	121.92
M3	5.08	5.08	25.81	33.08	3372	130.67
OTAL PROM.						130.66

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/3/2018 Fecha de Ensayo : 5/31/2018

ESPECIMEN	LARGO	ANCHO cm	ÅREA cm2	Pu		σιι
	cm			KN	Kg	(kg/cm 2)
M1	5.06	5.10	25.81	47.80	4873	188.83
M2	5.09	5.08	25.86	46.59	4749	183.66
M3	5.05	5.11	25.81	49.80	5076	196.70
TOTAL PROM.						189.73

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/2/2018

DOSIFICACION P2 (1:5) MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

P2 = 0.95 : 5 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/3/2018

Fecha de Ensayo : 5/10/2018

ESPECIMEN	v ungo	ANCHO cm	ÁREA cm2	Pu		वा
	LARGO cm			KN	Kg	(kg/cm2)
M1	5.05	5.09	25.70	31.88	3250	126.44
M2	5.09	5.05	25.70	29.53	3010	117.10
M3	5.06	5.06	25.60	29.01	2957	115.49
TOTAL PROM.						119.68

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/3/2018 Fecha de Ensayo : 5/17/2018

ESPECIMEN		ANCHO cm	ÁREA cm2	Pu		હ્યા
	LARGO cm			KN	Kg	(kg/cm2)
M1	5.09	5.07	25.81	37.11	3783	146.59
M2	5.08	5.09	25.86	33.94	3460	133.81
M3	5.07	5.07	25.70	38.17	3891	151.37
TOTAL PROM.						143.93

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/3/2018 Fecha de Ensayo : 5/31/2018

MEN LARGO cm ANCHO ÁREA Pu Gu

ESPECIMEN	LARGO cm	ANCHO cm	ÁREA cm2	P	ज्य	
				KN	Kg	(kg/cm2)
M1	5.07	5.09	25.81	57.93	5905	228.82
M2	5.07	5.09	25.81	49.81	5077	196.73
M3	5.08	5.08	25.81	53.09	5412	209.72
TOTAL PROM.						211.76

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/3/2018

DOSIFICACION P2 (1:5) MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

P2 = 0.90 : 5 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/4/2018

Fecha de Ensayo : 5/11/2018

ESPECIMEN	LARGO		ÁREA cm2	P	QII	
	cm			KN	Kg	(kg/cm2)
M1	5.06	5.10	25.81	31.54	3215	124.58
M2	5.07	5.08	25.76	34.77	3544	137.60
M3	5.08	5.08	25.81	30.22	3081	119.39
TOTAL PROM.						127.19

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/4/2018 Fecha de Ensayo : 5/18/2018

ESPECIMEN	LARGO A	ANCHO	ÁREA cm2	Pu		લા
		cm		KN	Kg	(kg/cm2)
M1	5.06	5.06	25.60	42.63	4346	169.74
M2	5.06	5.07	25.65	38.84	3959	154.32
М3	5.09	5.07	25.81	34.25	3491	135.28
TOTAL PROM.						153.11

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/4/2018 Fecha de Ensayo : 6/1/2018

ESPECIMEN	LARGO	ANCHO	ÁREA cm2	P	on .	
	cm	cm		KN	Kg	(kg/cm2)
M1	5.06	5.07	25.65	56.18	5727	223.24
M2	5.07	5.06	25.65	60.64	6181	240.94
M3	5.05	5.09	25.70	52.27	5328	207.28
TOTAL PROM.			-			223.82

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/3/2018

DOSIFICACION P2 (1:5) MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

P2 = 0.85 : 5 : 0.15 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/4/2018

Fecha de Ensayo : 5/11/2018

ESPECIMEN	LARGO	ANCHO cm	ÁREA cm2	Pu		द्धा
	cm			KN	Kg	(kg/cm2)
M1	5.09	5.10	25.96	24.15	2462	94.84
M2	5.10	5.07	25.86	28.89	2945	113.90
M3	5.09	5.09	25.91	32.45	3308	127.68
TOTAL PROM.						112.14

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/4/2018 Fecha de Ensayo : 5/18/2018

ESPECIMEN	LARGO	ANCHO	ÁREA cm2	P	GU	
	cm	cm		KN	Kg	(kg/cm2)
M1	5.09	5.07	25.81	33.48	3413	132.25
M2	5.07	5.10	25.86	37.78	3851	148.93
M3	5.08	5.08	25.81	32.27	3289	127.45
TOTAL PROM.						136.21

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/4/2018 Fecha de Ensayo : 6/1/2018

ESPECIMEN	LARGO A	ANCHO	ÁREA cm2	P	on	
	cm	cm		KN	Kg	(kg/cm2)
M1	5.09	5.11	26.01	55.55	5663	217.72
M2	5.09	5.07	25.81	47.88	4881	189.14
M3	5.08	5.09	25.86	52.47	5349	206.87
TOTAL PROM.						204.58

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/9/2018

DOSIFICACION P2 (1:5) MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

P2 = 1 : 5 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/10/2018

Fecha de Ensayo : 5/17/2018

ESPECIMEN LAR	Linco	ANCHO	ÁREA cm2	P	σι	
	LARGO cm	cm		KN	Kg	(kg/cm2)
M1	5.06	5.10	25.81	30.97	3157	122.34
M2	5.08	5.10	25.91	36.92	3764	145.28
M3	5.07	5.07	25.70	32.47	3310	128.77
TOTAL PROM.						132.13

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 5/24/2018

ESPECIMEN	LARGO cm	ANCHO cm	ÁREA cm2	Pu		συ
				KN	Kg	(kg/cm2)
M1	5.09	5.09	25.91	42.34	4316	166.59
M2	5.09	5.11	26.01	38.77	3952	151.94
M3	5.08	5.10	25.91	40.45	4123	159.14
TOTAL PROM.						159.22

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 6/7/2018

ESPECIMEN	LARGO cm	ANCHO cm	ÁREA cm2	Pu		ਗ
				KN	Kg	(kg/cm2)
M1	5.09	5.09	25.91	60.01	6117	236.10
M2	5.09	5.12	26.06	55.46	5653	216.92
M3	5.07	5.10	25.86	53.17	5420	209.61
TOTAL PROM.						220.88

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/9/2018

DOSIFICACION P2 (1:5) MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

P2 = 1 : 5 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/10/2018

Fecha de Ensayo : 5/17/2018

ESPECIMEN	LARGO ANCHO cm cm	ÁREA	P	σιι		
		cm	m cm2	KN	Kg	(kg/cm2)
M1	5.06	5.10	25.81	27.91	2845	110.25
M2	5.08	5.11	25.96	34.82	3549	136.72
M3	5.07	5.07	25.70	32.34	3297	128.26
TOTAL PROM.		-				125.08

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 5/24/2018

ESPECIMEN	LARGO .	ANCHO	ÁREA cm2	P	σιι	
	cm	cm		KN	Kg	(kg/cm2)
M1	5.04	5.11	25.75	34.45	3512	136.37
M2	5.02	5.10	25.60	42.09	4291	167.60
M3	5.05	5.12	25.86	38.72	3947	152.65
TOTAL PROM.						152.21

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 6/7/2018

LARGO ANCHO ÁREA Pu σu ESPECIMEN cm cm cm2 KN Kg (kg/cm2) 5.02 5.11 25.65 52.15 5316 207.23 M1 M25.10 5.10 26.01 50.36 5134 197.39 25.70 5.06 5.08 56.40 5749 M3 223.65 TOTAL PROM. 209.42

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE MORTERO (NTP 334.051).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÂSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/9/2018

DOSIFICACION P2 (1:5) MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

P2 = 1 : 5 : 0.15Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/10/2018

Fecha de Ensayo : 5/17/2018

ESPECIMEN	LARGO	ANCHO	ÁREA cm2	P	ज ध	
	cm	cm		KN	Kg	(kg/cm 2)
M1	5.07	5.07	25.70	25.64	2614	101.69
M2	5.08	5.08	25.81	29.27	2984	115.63
M3	5.05	5.05	25.50	34.45	3512	137.71
OTAL PROM.						118.34

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 5/24/2018

ESPECIMEN	LARGO cm	ANCHO	ÁREA cm2	P	σι	
		cm		KN	Kg	(kg/cm 2)
M1	5.08	5.06	25.70	38.51	3926	152.73
M2	5.07	5.04	25.55	36.70	3741	146.40
M3	5.10	5.07	25.86	34.82	3549	137.25
TOTAL PROM.						145.46

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 6/7/2018

ESPECIMEN	LARGO A	ANCHO	ÁREA cm2	P	ना	
	cm	cm		KN	Kg	(kg/cm2)
M1	5.08	5.06	25.70	50.92	5191	201.95
M2	5.11	5.07	25.91	47.32	4824	186.20
M3	5.03	5.10	25.65	52.34	5335	207.97
TOTAL PROM.						198.70

Anexo 10.2. Resistencia a la flexión de mortero

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/9/2018

DOSIFICACIÓN P1 MORTERO PATRÓN

P1 = 1 : 3.5 Proporción = Cemento Arena

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 5/17/2018

VIGAS LONGITUD ENTI APOYOS (cm)	LONGITUD ENTRE	LA	ADOS DEL CU	Pu	R	
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
MI	17.50	2.49	2.51	2.50	26.22	44.05
M2	17.50	2.53	2.55	2.53	24.54	39.47
M3	17.50	2.57	2.60	2.54	26.77	41.40
	***************************************			PROME	DIO =	41.64
				σ =		2.30
				PROMEDI	Ο-σ =	39.34

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 5/24/2018

VIGAS	LONGITUD ENTRE	LA	ADOS DEL CU	Pu	R (kg/cm2)	
APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)		
M1	17.50	2.55	2.56	2.51	28.16	45.11
M2	17.50	2.54	2.57	2.50	28.90	46.49
M3	17.50	2.60	2.55	2.61	29.19	44.28
	***		•	PROME	DIO =	45.29
				σ =		1.11
				PROMEDI	Ο-σ =	44.18

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 6/7/2018

VIGAS	LONGITUD ENTRE	LA	DOS DEL CU	Pu	R.	
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.54	2.55	2.57	33.97	53.57
M2	17.50	2.65	2.61	2.58	33.73	49.62
M3	17.50	2.70	2.68	2.71	35.41	47.40
				PROME	DIO =	50.20
				σ =		3.12
				PROMEDI	0-σ=	47.07

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

: "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/9/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DE 5% DE CEMENTO POR CCA

P1 = 0.95 : 3.5 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/10/2018

Fecha de Ensayo : 5/17/2018

VIGAS	LONGITUD ENTRE	LA	DOS DEL CU	Pu	R	
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.72	2.70	2.71	31.71	41.82
M2	17.50	2.66	2.61	2.65	31.07	44.33
M3	17.50	2.56	2.59	2.55	32.04	49.74
	•			PROMEI	DIO =	45.30
				σ =		4.05

PROMEDIO - σ = 41.25

14 DÍAS Fecha de Obtención : 5/10/2018 Edad de Muestreo : Fecha de Ensavo 5/24/2018

VIGAS	LONGITUD ENTRE		ADOS DEL CU	BO	Pu (Kgf)	R (kg/cm2)
APOYOS (cm)	b (cm)	b (cm)	b (cm)			
M1	17.50	2.74	2.73	2.68	35.27	46.18
M2	17.50	2.63	2.63	2.65	33.33	47.73
M3	17.50	2.56	2.58	2.54	30.42	47.60
				PROME	DIO =	47.17
				σ =		0.86
				PROMEDI	[0-σ =	46.31

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/10/2018 6/7/2018 Fecha de Ensayo

MCAR	LONGITUD ENTRE	LA	ADOS DEL CU	BO	Pu	R (kg/cm2)
VIGAS APOYO	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	
MI	17.50	2.60	2.61	2.61	33.65	49.87
M2	17.50	2.55	2.55	2.55	32.04	50.72
M3	17.50	2.51	2.53	2.54	31.55	51.35
			7	PROME	DIO =	50.65
				σ =		0.74
				PROMEDI	Ο-σ =	49.91

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/9/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

P1 = 0.90 : 3.5 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/10/2018

Fecha de Ensayo : 5/17/2018

VIGAS	GAS LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.53	2.53	2.49	29.45	48.50
M2	17.50	2.56	2.51	2.53	28.16	45.47
М3	17.50	2.57	2.55	2.52	27.51	43.73
				PROME	DIO =	45.90

PROMEDIO =	45.90
σ =	2.42
PROMEDIO - σ =	43.48

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 5/24/2018

THOAR	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.70	2.51	2.58	32.36	48.58
M2	17.50	2.61	2.58	2.55	33.33	50.95
М3	17.50	2.57	2.63	2.60	33.97	50.74
				PROME	DIO =	50.09
				σ =		1.31
				PROMEDI	[Ο-σ =	48.78

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 6/7/2018

VICAR	LONGITUD ENTRE	LA	LADOS DEL CUBO		Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.53	2.57	2.53	34.30	54.73
M2	17.50	2.54	2.52	2.50	35.27	57.86
M3	17.50	2.60	2.58	2.61	35.91	53.84
				PROME	DIO =	55.48
				σ =		2.11
				PROMEDI	Ο-σ =	53.37

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/9/2018

DOSIFICACIÓN P1 MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

P1 = 0.85 : 3.5 : 0.15 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/10/2018

Fecha de Ensayo : 5/17/2018

VIGAS	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.75	2.70	2.74	26.22	33.83
M2	17.50	2.60	2.65	2.58	28.00	41.35
M3	17.50	2.63	2.57	2.59	26.45	39.66
				PROME	DIO =	38.28
				σ =		3.94
				PROMEDI	(0-σ =	34.34

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 5/24/2018

17040	LONGITUD ENTRE LADO		ADOS DEL CU	OS DEL CUBO		R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.61	2.63	2.61	29.24	42.84
M2	17.50	2.54	2.56	2.55	26.37	41.75
M3	17.50	2.70	2.73	2.69	30.57	40.47
	***			PROME	DIO =	41.69
				σ =		1.19
				PROMEDI	Ο-σ =	40.50

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/10/2018 Fecha de Ensayo : 6/7/2018

VIGAS	LONGITUD ENTRE	LA	ADOS DEL CU	BO	Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.60	2.58	2.53	31.42	48.60
M2	17.50	2.53	2.57	2.55	29.18	46.20
M3	17.50	2.59	2.61	2.59	29.54	44.29
	•			PROME	DIO =	46.36
				σ =		2.16
				PROMEDI	(0-σ =	44.20

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/14/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/15/2018

Fecha de Ensayo : 5/22/2018

VIGAS LONGITUD ENTE APOYOS (cm)	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
	VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)
M1	17.50	2.50	2.53	2.53	27.22	44.65
M2	17.50	2.57	2.55	2.55	27.61	43.37
M3	17.50	2.52	2.54	2.51	28.78	47.02
				PROME	DIO =	45.01
				2		4.05

PROMEDIO =	45.01
σ =	1.85
PROMEDIO - σ =	43.16

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/15/2018
Fecha de Ensayo : 5/29/2018

UTCAR	LONGITUD ENTRE	LONGITUD ENTRE LADOS DEL CU		BO	Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.52	2.53	2.52	36.24	59.21
M2	17.50	2.65	2.61	2.59	35.88	52,58
M3	17.50	2.57	2.53	2.56	33.78	53.27
	5%			PROME	DIO =	55.02
				σ =		3.65
				PROMED	ΙΟ-σ =	51.37

 Edad de Muestreo :
 28 DÍAS
 Fecha de Obtención :
 5/15/2018

 Fecha de Ensayo :
 6/12/2018

177.01.0	LONGITUD ENTRE	LA	LADOS DEL CUBO		Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.52	2.52	2.55	41.08	66.59
M2	17.50	2.55	2.56	2.54	39.51	62.55
M3	17.50	2.59	2.61	2.57	38.20	57.72
				PROME	DIO =	62.29
				σ =		4.44
				PROMED	ΙΟ-σ =	57.84

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/14/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

P1 = 1 : 3.5 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/15/2018

Fecha de Ensayo 5/22/2018 .

VIGAS	LONGITUD ENTRE	LA	LADOS DEL CUBO		Pu	R
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.56	2.58	2.57	30.59	47.31
M2	17.50	2.49	2.53	2.51	26.72	44.36
M3	17.50	2.58	2.62	2.59	28.12	42.16
				PROME	DIO =	44.61

PROMEDIO =	44.61
σ =	2.58
PROMEDIO - σ =	42.03

Fecha de Obtención : 5/15/2018 Edad de Muestreo : 14 DÍAS 5/29/2018 Fecha de Ensayo :

VIGAS	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf) 30.78 29.29 29.57 DIO =	(kg/cm2)
M1	17.50	2.54	2.58	2.53	30.78	48.73
M2	17.50	2.53	2.51	2.55	29.29	47.48
M3	17.50	2.54	2.57	2.55	29.57	46.63
				PROME	DIO =	47.61
				σ =		1.06
				PROMED	ΙΟ - σ =	46.56

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/15/2018 Fecha de Ensayo : 6/12/2018

VIGAS	LONGITUD ENTRE	LA	DOS DEL CU	Pu	R	
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.56	2.57	2.56	34.02	53.02
M2	17.50	2.51	2.53	2.53	30.45	49.75
M3	17.50	2.61	2.59	2.60	38.05	56.83
				PROME	DIO =	53.20
				σ =		3.54
				PROMEDI	[Ο - σ =	49.66

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/14/2018

DOSIFICACIÓN P1 MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

P1 = 1 : 3.5 : 0.15 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/15/2018

Fecha de Ensayo : 5/22/2018

177.015	LONGITUD ENTRE	LA	DOS DEL CU	BO	Pu (Kgf) 24.74	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.56	2.59	2.59	24.74	37.82
M2	17.50	2.71	2.68	2.69	28.11	37.77
M3	17.50	2.66	2.66	2.65	25.45	35.63
				PROME	DIO =	37.07
						1.35

PROMEDIO =	37.07
σ =	1.25
PROMEDIO - σ =	35.82

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/15/2018 Fecha de Ensayo : 5/29/2018

THOME	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.56	2.58	2.56	28.73	44.60
M2	17.50	2.67	2.64	2.61	28.14	40.15
M3	17.50	2.53	2.55	2.55	24.89	39.71
				PROME	DIO =	41.49
				σ =		2.71
				PROMEDI	(Ο-σ =	38.78

 Edad de Muestreo :
 28 DÍAS
 Fecha de Obtención :
 5/15/2018

 Fecha de Ensayo :
 6/12/2018

VIGAS LO	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf) 28.81 30.62 31.69	(kg/cm2)
M1	17.50	2.57	2.60	2.61	28.81	43.36
M2	17.50	2.63	2.61	2.62	30.62	44.69
M3	17.50	2.55	2.58	2.56	31.69	49.39
				PROME	DIO =	45.82
				σ =		3.17
				PROMEDI	(Ο-σ =	42.65

Anexo 10.2.2. Dosificación 1:4

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/10/2018

DOSIFICACIÓN P2 MORTERO PATRÓN

P2° 1 : 4 Proporción = Cemento Arena

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/11/2018 Fecha de Ensayo : 5/18/2018

VIGAS LON	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf) 27.59 24.37 23.83 DIO =	(kg/cm2)
M1	17.50	2.72	2.72	2.75	27.59	35.60
M2	17.50	2.51	2.56	2.54	24.37	39.20
М3	17.50	2.57	2.57	2.57	23.83	36.85
				PROME	DIO =	37.21
				σ -		1.83
				PROMEDI	Ο-σ =	35.39

 Edad de Muestreo :
 14 DÍAS
 Fecha de Obtención :
 5/11/2018

 Fecha de Ensayo :
 5/25/2018

MOAR	LONGITUD ENTRE	LADOS DEL CUBO		BO	Pu	R.
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
MI	17.50	2.76	2.71	2.74	31.47	40.31
M2	17.50	2.53	2.53	2.52	26.34	42.87
M3	M3 17.50	2.54	2.54	2.54	25.62	41.04
				PROME	DIO =	41.40

PROMEDIO = 41.40
σ = 1.32
PROMEDIO - σ = 40.09

PROMEDIO - o =

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/11/2018 Fecha de Ensayo : 6/8/2018

VIGAS	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VICINA	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.63	2.58	2.60	31.61	47.03
M2	17.50	2.54	2.51	2.50	26.90	44.30
МЗ	17.50	2.58	2.58	2.56	29.94	46.12
			•	PROME	DIO =	45.82
						1.39

44.43

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/10/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

P2 = 0.95 : 4 : 0.05 Proporción = Cemento Arena CCA

 Fecha de Obtención
 :
 5/11/2018

 Fecha de Ensayo
 :
 5/18/2018
 Edad de Muestreo : 7 DÍAS

MCAR	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.51	2.52	2.50	23.71	39.36
M2	17.50	2.61	2.57	2.56	27.12	41.46
M3	17.50	2.55	2.55	2.55	24.63	38.99
				PROMEI	DIO =	39.94
				σ =		1.33
				PROMEDI	0-σ =	38.61

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/11/2018 Fecha de Ensayo : 5/25/2018

THOAR	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R.
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.50	2.50	2.51	28.49	47.67
M2	17.50	2.54	2.61	2.58	30.16	46.29
M3	17.50	2.71	2.68	2.68	33.17	44.73
				PROME	DIO =	46.23
				σ =		1.47
				PROMEDI	0-σ =	44.76

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/11/2018 Fecha de Ensayo : 6/8/2018

VIGAS	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R.
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf) 33.17 30.72 31.40 DIO =	(kg/cm2)
M1	17.50	2.63	2.60	2.60	33.17	48.97
M2	17.50	2.50	2.51	2.51	30.72	51.20
M3	17.50	2.56	2.56	2.54	31.40	49.52
				PROME	DIO =	49.90
				g =		1.16
				PROMEDI	Ο-σ =	48.74

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/10/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

0.90 : 4 : 0.10 Proporción = Cemento Arena CCA

Fecha de Obtención : 5/11/2018 Edad de Muestreo : 7 DÍAS

Fecha de Ensayo : 5/18/2018

VIGAS	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.50	2.52	2.53	28.18	46.41
M2	17.50	2.65	2.61	2.64	29.57	42.51
M3	17.50	2.50	2.50	2.49	25.58	43.15
				PROME	DIO =	44.02

44.02
2.09
41.93

Fecha de Obtención : Edad de Muestreo : 14 DÍAS 5/11/2018 5/25/2018 Fecha de Ensayo :

VIGAS	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.50	2.52	2.51	28.46	47.24
M2	17.50	2.53	2.51	2.50	29.63	48.99
M3	17.50	2.57	2.54	2.55	31.23	49.25
				PROME	DIO =	48.50
				σ =		1.09
				PROMEDI	[0-σ =	47.40

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/11/2018 Fecha de Ensayo 6/8/2018 :

VIGAS	LONGITUD ENTRE	LA	ADOS DEL CU	BO	Pu	R (kg/cm2)
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	
M1	17.50	2.54	2.58	2.61	33.65	51.64
M2	17.50	2.50	2.51	2.51	32.13	53.55
M3	17.50	2.61	2.56	2.57	34.15	52.20
				PROME	DIO =	52.47
				σ =		0.98
				PROMEDI	[O-σ =	51.49

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/10/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

P2 = 0.85 : 4 : 0.15 Proporción = Cemento Arena CCA

Fecha de Obtención : 5/11/2018 Edad de Muestreo : 7 DÍAS

Fecha de Ensayo : 5/18/2018

31.67

PROMEDIO - σ =

VIGAS	LONGITUD ENTRE	LA	LADOS DEL CUBO			R.
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.57	2.54	2.51	19.76	31.66
M2	17.50	2.54	2.56	2.59	21.24	33.11
M3	17.50	2.71	2.73	2.69	26.15	34.49
				PROME	DIO =	33.09
				σ =		1.42

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/11/2018 Fecha de Ensayo : 5/25/2018

VIGAS LONGITUD ENTRE APOYOS (cm)	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)	
M1	17.50	2.77	2.77	2.76	29.45	36.50
M2	17.50	2.54	2.57	2.60	25.07	38.77
M3	17.50	2.49	2.50	2.50	21.67	36.55
				PROME	DIO =	37.28
				σ =		1.30
				PROMEDI	[Ο-σ =	35.98

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/11/2018 : Fecha de Ensayo 6/8/2018

VIGAS	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.52	2.50	2.49	24.83	41.55
M2	17.50	2.59	2.57	2.58	27.82	42.52
M3	17.50	2.66	2.65	2.69	31.49	43.59
				PROME	DIO =	42.56
				σ =		1.02
				PROMEDI	Ο-σ =	41.53

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/14/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 5% DE CEMENTO POR CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/15/2018

Fecha de Ensayo : 5/22/2018

VIGAS	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.51	2.46	2.44	23.15	40.33
M2	17.50	2.50	2.49	2.51	25.43	42.72
M3	17.50	2.63	2.67	2.62	29.64	42.29
				PROME	DIO =	41.78
						32222

PROMEDIO =	41.78
σ =	1.27
PROMEDIO - σ =	40.51

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/15/2018 Fecha de Ensayo : 5/29/2018

177017	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.55	2.54	2.51	30.62	49.44
M2	17.50	2.61	2.61	2.61	32.41	47.85
M3	17.50	2.54	2.59	2.57	29.83	46.31
	-			PROME	DIO =	47.87
				σ =		1.56
				PROMEDI	(O - n =	46.31

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/15/2018 Fecha de Ensayo : 6/12/2018

VIGAS	LONGTIUD ENTRE	LA	DOS DEL CU	BO	Pu	R
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.51	2.55	2.54	34.66	55.96
M2	17.50	2.67	2.71	2.73	40.75	54.15
M3	17.50	2.48	2.51	2.50	29.79	50.25
				PROME	DIO =	53.46
				σ =		2.92
				PROMED	ΙΟ-σ =	50.54

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/15/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/16/2018 5/23/2018

Fecha de Ensayo :

THOAD	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf) 22.54 19.58 23.15	(kg/cm2)
M1	17.50	2.56	2.61	2.57	22.54	34.46
M2	17.50	2.47	2.51	2.50	19.58	33.16
M3	17.50	2.54	2.54	2.54	23.15	37.08
				PROME	DIO =	34.90

PROMEDIO =	34.90
σ =	2.00
PROMEDIO - σ =	32.90

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/16/2018 Fecha de Ensayo : 5/30/2018

VIGAS LONGITUD ENTRE APOYOS (cm)	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)	
M1	17.50	2.54	2.57	2.55	26.88	42.39
M2	17.50	2.50	2.48	2.52	23.19	38.96
M3	M3 17.50	2.59	2.61	2.57	25.06	37.86
	-			DD CLED	270	20.51

PROMEDIO =	39.74
σ =	2.36
PROMEDIO - σ =	37.38

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/16/2018

Fecha de Ensayo 6/13/2018 :

VIGAS	LONGITUD ENTRE	LA	DOS DEL CU	Pu	R	
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.57	2.68	2.61	30.67	44.79
M2	17.50	2.70	2.73	2.68	35.27	46.87
M3	17.50	2.54	2.62	2.57	27.33	41.95
				PROME	DIO =	44.53
				σ =		2.47
				PROMEDI	[Ο - σ =	42.06

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/15/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.15 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/16/2018

Fecha de Ensayo : 5/23/2018

VIGAS	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
Ml	17.50	2.58	2.58	2.60	26.44	40.10
M2	17.50	2.53	2.53	2.56	20.55	32.92
M3 17.50	2.47	2.49	2.50	18.67	31.87	
				PROMEI	DIO =	34.97

PROMEDIO =	34.97
σ =	4.48
PROMEDIO - σ =	30.49

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/16/2018 Fecha de Ensayo : 5/30/2018

100.00	LONGITUD ENTRE	LA	DOS DEL CU	Pu	R	
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
Ml	17.50	2.58	2.67	2.57	24.57	36.43
M2	17.50	2.51	2.51	2.51	20.14	33.43
M3	17.50	2.59	2.64	2.55	24.72	37.22
				PROME	DIO =	35.69
				σ =		2.00
				PROMEDI	ΙΟ-σ =	33.70

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/16/2018 Fecha de Ensayo : 6/13/2018

177010	LONGITUD ENTRE	LA	DOS DEL CU	Pu	R	
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.59	2.58	2.54	26.70	41.29
M2	17.50	2.54	2.54	2.54	24.19	38.75
M3	17.50	2.73	2.69	2.70	32.75	43.36
				PROME	DIO =	41.13
				σ =		2.31
				PROMEDI	[Ο-σ =	38.83

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/11/2018

DOSIFICACIÓN P2 MORTERO PATRÓN

P2 = 1 : 5 Proporción = Cemento Arena

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/12/2018 Fecha de Ensayo : 5/19/2018

VIGAS	LONGITUD ENTRE	LA	ADOS DEL CU	Pu	R	
VICINA	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
MI	17.50	2.52	2.53	2.53	18.96	30.86
M2	17.50	2.78	2.73	2.77	25.18	31.44
M3	17.50	2.66	2.66	2.66	23.29	32.48
				PROMEDIO =		31.59
						0.82
				PROMEDI	O- σ =	30.77

 Edad de Muestreo :
 14 DÍAS
 Fecha de Obtención :
 5/12/2018

 Fecha de Ensayo :
 5/26/2018

THOLO	LONGITUD ENTRE	LADOS DEL CUBO			Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.52	2.56	2.55	22.27	35.54
M2	17.50	2.44	2.47	2.47	20.44	36.04
M3	17.50	2.60	2.61	2.65	25.78	37.63
				PROME	DIO =	36.40
				σ =		1.09

PROMEDIO - σ =

Edad de Muestreo : 28 DÎAS Fecha de Obtención : 5/12/2018 Fecha de Ensayo : 6/9/2018

VIGAS	LONGITUD ENTRE	LA	DOS DEL CU	Pu	R.	
VIUMS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.80	2.76	2.69	32.71	41.30
M2	17.50	2.61	2.55	2.58	29.83	45.60
M3	17.50	2.48	2.52	2.56	28.55	46.84
				PROME	DIO =	44.58
				g =		2.91
				PROMEDI	Ο-σ =	41.68

35.31

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/11/2018

DOSIFICACIÓN P2 (1:5) MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

P2 = 0.95 : 5 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/12/2018

5/19/2018 Fecha de Ensayo :

VIGAS	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.51	2.55	2.55	20.33	32.70
M2	17.50	2.70	2.68	2.65	24.57	33.63
M3	M3 17.50 2.44	17.50 2.44	2.47	2.49	19.17	33.53
				PROMEI	OIO =	33.29
				7041		0.51

PROMEDIO - σ = 32.77

Edad de Muestreo : 14 DÍAS Fecha de Obtención 5/12/2018 Fecha de Ensayo 5/26/2018

VIGAS	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.54	2.55	2.51	26.76	43.21
M2	17.50	2.70	2.74	2.71	30.41	39.82
M3	17.50	2.52	2.57	2.54	24.70	39.41
				PROMEI	OIO =	40.81

2.08 PROMEDIO - σ = 38.73

Edad de Muestreo : 28 DÍAS Fecha de Obtención 5/12/2018 6/9/2018 Fecha de Ensayo

VIGAS	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.49	2.55	2.53	28.03	45.80
M2	17.50	2.53	2.53	2.55	29.14	46.86
M3	17.50	2.52	2.57	2.55	30.20	48.00
				PROMEI	OIO =	46.89

1.10 PROMEDIO - σ = 45.79

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/11/2018

DOSIFICACIÓN P2 (1:5) MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

P2 = 0.90 : 5 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/12/2018

Fecha de Ensayo : 5/19/2018

VIGAS	LONGITUD ENTRE APOYOS (cm)	LA	LADOS DEL CUBO			R
		b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.45	2.51	2.54	21.82	36.67
M2	17.50	2.55	2.55	2.55	23.15	36.65
M3	17.50	2.53	2.49	2.51	22.69	37.67
				PROMEI	DIO =	37.00
						0.50

PROMEDIO - σ = 36.41

Edad de Muestreo : 14 DÍAS 5/12/2018 Fecha de Obtención : Fecha de Ensayo : 5/26/2018

VIGAS	LONGITUD ENTRE APOYOS (cm)	LADOS DEL CUBO			Pu	R
		b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.55	2.60	2.52	29.38	46.16
M2	17.50	2.71	2.66	2.70	31.24	42.13
M3	17.50	2.61	2.60	2.61	29.12	43.16
				PROMEI	DIO =	43.82
				σ =	J)	2.09
				PROMEDI	0-σ=	41.72

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/12/2018 Fecha de Ensayo 6/9/2018 1

VIGAS	LONGITUD ENTRE	LA	ADOS DEL CU	BO	Pu (Kgf)	R (kg/cm2)
	APOYOS (cm)	b (cm)	b (cm)	b (cm)		
M1	17.50	2.59	2.60	2.60	31.66	47.47
M2	17.50	2.51	2.55	2.52	30.13	49.04
M3	17.50	2.57	2.57	2.54	32.21	50.40
				PROMEI	DIO =	48.97
				σ =		1.47
				PROMEDI	0-σ=	47.50

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/11/2018

DOSIFICACIÓN P2 (1:5) MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

P2 = 0.85 : 5 : 0.15 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/12/2018

Fecha de Ensayo : 5/19/2018

VIGAS	LONGITUD ENTRE APOYOS (cm)	LADOS DEL CUBO			Pu	R
		b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.50	2.48	2.44	16.60	28.80
M2	17.50	2.64	2.64	2.64	19.21	27.41
M3	17.50	2.71	2.68	2.68	21.69	29.25
			i i	PROME	DIO =	28,49

 PROMEDIO =
 28.49

 σ =
 0.96

 PROMEDIO - σ =
 27.52

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/12/2018 Fecha de Ensayo : 5/26/2018

VIGAS	LONGITUD ENTRE	LA	ADOS DEL CU	BO	Pu	R
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.55	2.57	2.56	21.73	34.00
M2	17.50	2.51	2.53	2.49	18.94	31.44
M3	17.50	2.60	2.60	2.60	23.12	34.53
	•			PROME	DIO =	33.32
				σ =		1.65
				PROMEDI	(O- a =	31.67

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/12/2018 Fecha de Ensayo : 6/9/2018

VIGAS	LONGITUD ENTRE	LA	ADOS DEL CU	BO	Pu	R (kg/cm2)
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	
M1	17.50	2.60	2.60	2.58	25.86	38.92
M2	17.50	2.44	2.50	2.46	22.55	39.45
М3	17.50	2.52	2.52	2.52	23.04	37.79
				PROME	DIO =	38.72
				σ =		0.85
				PROMEDI	[0-σ =	37.88

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÂSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/15/2018

DOSIFICACIÓN P2 (1:5) MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

P2 = 1 : 5 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/16/2018 Fecha de Ensayo : 5/23/2018

VIGAS	LONGITUD ENTRE	LA	DOS DEL CUI	Pu	R	
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.52	2.59	2.60	25.15	38.90
M2	17.50	2.54	2.54	2.54	26.21	41.99
M3	17.50	2.61	2.66	2.65	27.24	38.87
				PROMEI	DIO =	39.92
				σ =		1.79

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/16/2018

Fecha de Ensayo : 5/30/2018

38.13

PROMEDIO - σ =

PROMEDIO - σ =

VIGAS	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.54	2.53	2.53	26.93	43.48
M2	17.50	2.68	2.68	2.64	30.41	42.10
M3	17.50	2.44	2.45	2.44	23.18	41.72
				PROME	DIO =	42.43

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/16/2018 Fecha de Ensavo : 6/13/2018

VIGAS	LONGITUD ENTRE	LA	LADOS DEL CUBO			R
	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.56	2.60	2.54	31.33	48.65
M2	17.50	2.67	2.71	2.64	33.71	46.32
M3	17.50	2.52	2.56	2.55	32.12	51.25
				PROMEI	DIO =	48.74
				σ =		2.47

46.27

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 5/15/2018

DOSIFICACIÓN P2 (1:5) MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

1 : 5 : 0.10 Proporción = Cemento Arena CCA

7 DÍAS Edad de Muestreo : Fecha de Obtención : 5/16/2018

5/23/2018 Fecha de Ensayo :

VIGAS	LONGITUD ENTRE APOYOS (cm)	LADOS DEL CUBO			Pu	R
		b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2,53	2.48	2.45	16.21	27.68
M2	17.50	2.52	2.57	2.54	19.45	31.04
M3	17.50	2.58	2.65	2.60	22.47	33.18
				PROME	DIO =	30.63

PROMEDIO =	30.63
σ =	2.77
PROMEDIO - σ =	27.86

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/16/2018 Fecha de Ensayo 5/30/2018

LONGITUD ENTRE	LA	DOS DEL CU	Pu	R		
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2,53	2.55	2.56	23.67	37.62
M2	17.50	2.48	2.53	2.51	20.96	34.94
M3	17.50	2.66	2.66	2.66	24.88	34.70
	*			PROME	DIO =	35.75
				σ =		1.62
				PROMEDI	[Ο-σ =	34.13

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/16/2018 6/13/2018 Fecha de Ensayo :

VIGAS	LONGITUD ENTRE	LA	DOS DEL CUI	ВО	Pu	R
VIGAS	APOYOS (cm)	b (cm) b (cm) b		b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.60	2.61	2.55	30.20	45.81
M2	17.50	2.61	2.57	2.54	26.62	41.01
M3	17.50	2.74	2.68	2.70	29.87	39.55
	**************************************			PROME	DIO =	42.12
				σ =		3.28

PROMEDIO - σ =

38.85

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA FLEXIÓN DE MORTERO (NTP 334.120).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 5/16/2018

DOSIFICACIÓN P2 (1:5) MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

P2 = 1 : 5 : 0.15 Proporción = Cemento Arena CCA

Edad de Muestreo : 7 DÍAS Fecha de Obtención : 5/17/2018

Fecha de Ensayo : 5/24/2018

TTCAC	LONGITUD ENTRE	LA	DOS DEL CUI	BO	Pu	R
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.56	2.58	2.60	17.99	27.50
M2	17.50	2.69	2.67	2.67	19.14	26.20
M3	17.50	2.54	2.52	2.53	15.66	25.38
				PROMEI	DIO =	26.36

PROMEDIO = 26.36

σ = 1.07

PROMEDIO - σ = 25.29

Edad de Muestreo : 14 DÍAS Fecha de Obtención : 5/17/2018 Fecha de Ensayo : 5/31/2018

TTCAS	LONGITUD ENTRE	ENTRE LADOS DEL CUBO				R
VIGAS	APOYOS (cm)	b (cm) b (cm)		b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.55	2.59	2.53	21.54	33.84
M2	17.50	2.48	2.44	2.51	18.59	32.13
M3 17.50	2.59	2.61	2.60	24.61	36.76	
		_		PROME	DIO =	34.24

PROMEDIO = 34.24

σ = 2.34

PROMEDIO - σ = 31.90

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 5/17/2018

LONGITUD ENTRE		LA	DOS DEL CU	Pu	R	
VIGAS	APOYOS (cm)	b (cm)	b (cm)	b (cm)	(Kgf)	(kg/cm2)
M1	17.50	2.61	2.65	2.62	25.74	37.29
M2	17.50	2.55	2.57	2.58	24.11	37.43
M3	17.50	2.54	2.54	2.54	27.82	44.56
				PROME	DIO =	39.76
			σ =			4.16
				PROMEDI	[0 - σ =	35.60

Anexo 11. Resultados de los ensayos de albañilería simple

Anexo 11.1. Adherencia del mortero – ladrillo arcilla

Anexo 11.1.1. Dosificación 1:4

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: ADHERENCIA MORTERO - UNIDAD DE ALBAÑILERIA (NTP 334.129).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/3/2018

- Dosificación P2 Mortero Patrón.

P2 = 1 : 4

Proporción = Cemento Arena

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 8/4/2018

Fecha de Ensayo : 9/1/2018

2-2-2-2-1	CARGA	LUZ LIBRE	LONG. (cm.) B	ALTURA	MODULO DE ROTURA
DEMOMINACIÓN	(Kg) P	(cm.) L		(cm.) H	(Kg/cm2)
L. Lark 18H (1)	3821.00	17.50	22.70	12.60	27.83
L. Lark 18H (2)	2442.00	17.50	22.70	12.45	18.22
L. Lark 18H (3)	3015.00	17.50	22.55	12.55	22.28
PROMEDIO =	3092.67	17.50	22.65	12.53	22.82

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

P2 = 0.95 : 4 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 8/4/2018

	CARGA	LUZ LIBRE (cm.) L	LONG. (cm.) B	ALTURA	MODULO DE ROTURA
DEMOMINACIÓN	(Kg) P			(cm.) H	(Kg/cm2)
L. Lark 18H (1)	2780.00	17.50	22.80	12.50	20.48
L. Lark 18H (2)	4012.00	17.50	22.75	12.45	29.87
L. Lark 18H (3)	3329.00	17.50	22.70	12.45	24.84
PROMEDIO =	3373.67	17.50	22,75	12.47	25.05

LABORATORIO DE ENSATO DE MATERIALES

ENSAYO: ADHERENCIA MORTERO - UNIDAD DE ALBAÑILERIA (NTP 334.129).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/3/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

P2 = 0.90 : 4 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 8/4/2018

Fecha de Ensayo : 9/1/2018

	CARGA	LUZ LIBRE	LONG.	ALTURA	MODULO DE ROTURA
DEMOMINACIÓN	(Kg) P	(cm.) L	(cm.) B	(cm.) H	(Kg/cm2)
L. Lark 18H (1)	3532.00	17.50	22.90	12.30	26.76
L. Lark 18H (2)	2918.00	17.50	22.60	12.60	21.35
L. Lark 18H (3)	3045.00	17.50	22.85	12.55	22.21
PROMEDIO =	3165.00	17.50	22.78	12.48	23.40

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

P2 = 0.85 : 4 : 0.15 Proporción = Cemento Arena CCA

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 8/4/2018

	CARGA	LUZ LIBRE	LONG.	ALTURA	MODULO DE ROTURA
DEMOMINACIÓN	(Kg) (cm.) P L	(cm.) B	(cm.) H	(Kg/cm2)	
L. Lark 18H (1)	2654.00	17.50	22.70	12.50	19.64
L. Lark 18H (2)	3063.00	17.50	23.00	12.35	22.92
L. Lark 18H (3)	2565.00	17.50	22.85	12.42	19.10
PROMEDIO =	2760.67	17.50	22.85	12.42	20.55

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: ADHERENCIA MORTERO - UNIDAD DE ALBAÑILERIA (NTP 334.129).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 8/3/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.05 Proporción = Cemento Arena CCA

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 8/4/2018

Fecha de Ensayo : 9/1/2018

DEMOMINACIÓN	CARGA	LUZ LIBRE	LONG.	ALTURA	MODULO DE ROTURA
	(Kg) P	(cm.) L	(cm.) B	(cm.) H	(Kg/cm2)
L. Lark 18H (1)	1955.00	17.50	22.70	12.65	14.13
L. Lark 18H (2)	2680.00	17.50	22.80	12.60	19.44
L. Lark 18H (3)	2347.00	17.50	22.65	12.45	17.55
PROMEDIO =	2327.33	17.50	22.72	12.57	17.03

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.10 Proporción = Cemento Arena CCA

Edad de Muestreo : 28 DÍAS Fecha de Obtención : 8/4/2018

DEMOMINACIÓN	CARGA	LUZ LIBRE	LONG.	ALTURA	MODULO DE ROTURA
	(Kg) P	(cm.) L	(cm.) B	(cm.) H	(Kg/cm2)
L. Lark 18H (1)	2084.00	17.50	22.90	12.45	15.41
L. Lark 18H (2)	1703.00	17.50	23.00	12.40	12.64
L. Lark 18H (3)	1954.00	17.50	22.75	12.45	14.55
PROMEDIO =	1913.67	17.50	22.88	12.43	14.20

ENSAYO: ADHERENCIA MORTERO - UNIDAD DE ALBAÑILERIA (NTP 334.129).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/3/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.15

Proporción = Cemento Arena CCA

Edad de Muestreo : 28 DÎAS Fecha de Obtención : 8/4/2018

10	CARGA	LUZ LIBRE	LONG.	ALTURA	MODULO DE ROTURA
DEMOMINACIÓN	(Kg) P	(cm.) L	(cm.) B	(cm.) H	(Kg/cm2)
L. Lark 18H (1)	1194.00	17.50	22.80	12.40	8.94
L. Lark 18H (2)	1405.00	17.50	22.70	12.60	10.23
L. Lark 18H (3)	1447.00	17.50	22.70	12.55	10.62
PROMEDIO =	1348.67	17.50	22.73	12.52	9.94

Anexo 11.2. Resistencia a la compresión axial en pilas de albañilería

Anexo 11.2.1. Dosificación 1:4

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE PILAS DE LADRILLOS DE ARCILLA (NTP 399.605).

Tesin : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CASCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/3/2018

DOSIFICACIÓN P2 MORTERO PATRÓN

P2 = 1 : 4 Cemento Arena

EDAD DE LAS PILAS = 28 DÍAS Fecha de Obtención :

Fecha de Ensayo : 9/1/2018

8/4/2018

DIMENSIONES DE LAS PILAS.

PILA	L1 (m)	L2 (m)	L3 (m)	L4 (m)	E1 (cm)	E2 (cm)	E3 (cm)	E4 (cm)	H1 (cm)	H2 (cm)	H3 (cm)	H4 (cm)
M1	22.70	22.80	22.50	22.70	12.00	12.00	12.20	12.10	30.00	30.20	30.40	30.30
M2	22.60	22.80	22,60	22.65	12.10	11.90	12.15	12.20	30.20	30.00	30.00	30.30
M3	22.75	22.80	22.50	22.55	12.00	12.05	12.05	12.05	30.30	30.10	30.25	30.30

PILA	PROM. (L	PROM.	PROM.	ÁREA		Pu	F'm	ESBELTEZ	COEF.	F'm Corregide
PILA)	(E)	(H)	cm2	KN	Kg	(kg/cm2)	h/e	CORREC.	(kg/cm2)
M1	22.68	12.08	30.23	273.80	252.21	25709.00	93.90	2.50	0.800	75.12
M2	22.66	12.09	30.13	273.93	240.61	24527.00	89.54	2.49	0.799	71.50
M3	22.65	12.04	30.24	272.65	261.12	26618.00	97.63	2.51	0.802	78.30
	- Hill AVANAGER		·					PROMEI	DIO =	74.97
								σ =		3.40
								PROMEDI	IO - N =	71.57

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE PILAS DE LADRILLOS DE ARCILLA (NTP 399.605).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/3/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

P2 = 0.95 : 4 : 0.05 Cemento Arena CCA

DIMENSIONES DE LAS PILAS.

PILA	L1 (m)	L2 (m)	L3 (m)	L4 (m)	E1 (cm)	E2 (cm)	E3 (cm)	E4 (cm)	H1 (cm)	H2 (cm)	H3 (cm)	H4 (cm)
M1	22,60	22.50	22.60	22.80	12.00	12.30	12.20	12.00	31.40	31.80	32.00	31.30
M2	22.80	22.45	22.50	22.70	11.90	12.20	12.30	12.20	30.30	30.70	31.00	30.10
М3	22.55	22.50	22.65	22.70	11.85	12.45	12.15	12.05	30.95	31.05	31.70	30.55

DIT A	PROM. (L	PROM.	PROM.	. ÁREA	,	Pu	F'm	ESBELTEZ	COEF.	F'm Corregido
PILA)	Œ)	(H)	cm 2	KN	Kg	(kg/cm2)	h/e	CORREC.	(kg/cm2)
M1	22.63	12.13	31.63	274.33	261.06	26612.00	97.01	2.61	0.824	79.93
M2	22.61	12.15	30.53	274.74	309.21	31520.00	114.73	2.51	0.802	92.01
M3	22.60	12.13	31,06	274.03	285.63	29116.00	106.25	2.56	0.813	86.38
								PROME	DIO =	86.11
								σ =		6.04
								PROMED	IO-s =	80.07

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE PILAS DE LADRILLOS DE ARCILLA (NTP 399.605).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/3/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

P2 = 0.90 : 4 : 0.10 Cemento Arena CCA

DIMENSIONES DE LAS PILAS.

PILA	L1 (m)	L2 (m)	L3 (m)	L4 (m)	E1 (cm)	E2 (cm)	E3 (cm)	E4 (cm)	H1 (cm)	H2 (cm)	H3 (cm)	H4 (cm)
M1	22.80	22.70	22.50	22.80	12.00	12.20	12.20	12.00	30.00	30.10	30.00	30.00
M2	22.60	22.60	22.70	22.70	12.15	12.40	12.30	11.90	30.50	30.40	30.10	30.05
M3	22.85	22.55	22.60	22.50	12.05	12.35	12.15	11.95	30.20	30.45	29.95	30.10

PILA	PROM. (L	PROM.		ÁREA		Pu	F'm	ESBELTEZ	COEF.	F'm Corregido
PILA)	(E)	(H)	cm2	KN	Kg	(kg/cm2)	h/e	CORREC.	(kg/cm2)
M1	22.70	12.10	30.03	274.67	329.43	33581.00	122.26	2.48	0.797	97.44
M2	22.65	12.19	30.26	276.05	300.02	30583.00	110.79	2.48	0.797	88.30
M3	22.63	12.13	30.18	274.33	321.10	32732.00	119.32	2.49	0.799	95.33
						767.	V	PROME	DIO =	93.69
								σ =		4.79
								PROMED	IO - s =	88.90

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE PILAS DE LADRILLOS DE ARCILLA (NTP 399.605).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/3/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

P2 = 0.85 : 4 : 0.15 Cemento Arena CCA

 EDAD DE LAS PILAS
 =
 28 DÍAS
 Fecha de Obtención :
 8/4/2018

 Fecha de Ensayo
 :
 9/1/2018

DIMENSIONES DE LAS PILAS.

PILA	L1 (m)	L2 (m)	L3 (m)	L4 (m)	E1 (cm)	E2 (cm)	E3 (cm)	E4 (cm)	H1 (cm)	H2 (cm)	H3 (cm)	H4 (cm)
M1	22.60	22.50	22.80	22.80	12.10	12.20	12.00	12.40	30.10	30.70	30.20	30.20
M2	22.80	22.60	22.70	22.70	11.90	12.00	12.20	12.00	30.60	30.20	30.00	30.30
M3	22.45	22.65	22.70	22.65	12.05	12.15	12.00	12.25	30.45	30.25	29.95	30.10

PILA	PROM. (L	PROM.	PROM.	ÁREA		Pu	F'm	ESBELTEZ	COEF.	F'm Corregide
РПА)	Œ)	(H)	cm2	KN	Kg	(kg/cm2)	h/e	CORREC.	(kg/cm2)
M1	22.68	12.18	30.30	276.07	276.50	28186.00	102.10	2.49	0.799	81.58
M2	22.70	12.03	30.28	272.97	259.86	26489.00	97.04	2.52	0.804	78.02
M3	22.61	12.11	30.19	273.89	287.80	29337.00	107.11	2.49	0.799	85.58
								PROME	DIO =	81.73
								σ =		3.78
								PROMED	IO-N =	77.94

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE PILAS DE LADRILLOS DE ARCILLA (NTP 399.605).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/3/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.05 Cemento Arena CCA

DIMENSIONES DE LAS PILAS.

PILA	L1 (m)	L2 (m)	L3 (m)	L4 (m)	E1 (cm)	E2 (cm)	E3 (cm)	E4 (cm)	H1 (cm)	H2 (cm)	H3 (cm)	H4 (cm)
M1	22.90	22.80	22.50	23.00	12.00	12.10	12.10	12.00	31.20	31.00	31.00	30.90
M2	22.70	22.50	22.80	22.80	12.10	12.20	12.20	11.90	30.60	30.70	30.80	30.50
M3	22.65	22.55	22.45	23.00	12.00	12.05	12.25	12.05	30.85	30.55	30.65	30.75

PROMEDIO - s =

87.06

DIT A	PROM. (L	PROM.	PROM.	ÁREA		Pu Pu	F'm	ESBELTEZ	COEF.	F'm Corregido
PILA)	Œ)	(H)	cm2	KN	Kg	(kg/cm2)	h/e	CORREC.	(kg/cm 2)
M1	22.80	12.05	31.03	274.74	290.30	29592.00	107.71	2.57	0.815	87.78
M2	22.70	12.10	30.65	274.67	314.51	32060.00	116.72	2.53	0.807	94.19
М3	22.66	12.09	30.70	273.93	296.52	30226.00	110.34	2.54	0.809	89.27
								PROME	DIO =	90.41
								σ =		3.36

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE PILAS DE LADRILLOS DE ARCILLA (NTP 399.605).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/3/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.10

Cemento Arena CCA

DIMENSIONES DE LAS PILAS.

PILA	L1 (m)	L2 (m)	L3 (m)	L4 (m)	E1 (cm)	E2 (cm)	E3 (cm)	E4 (cm)	H1 (cm)	H2 (cm)	H3 (cm)	H4 (cm)
M1	22.80	22.70	22.50	22.60	11.80	12.20	12.30	12.10	30.70	30.60	31.00	30.70
M2	22.80	22.40	22.60	22.80	12.40	12.20	12.30	12.20	30.40	30.50	30.70	30.80
M3	22.65	22.55	22.60	22.65	12.00	12.00	12.25	12.00	30.55	30.40	30.95	30.65

RESULTADO DE LAS PILAS.

PILA	PROM. (L	PROM.	PROM.	ÁREA		Pu	F'm	ESBELTEZ	COEF.	F'm Corregide
PILA)	(E)	(H)	cm2	KN	Kg	(kg/cm2)	h/e	CORREC.	(kg/cm2)
M1	22.65	12.10	30.75	274.07	268.95	27416.00	100.03	2.54	0.809	80.93
M2	22.65	12.28	30.60	278.03	286.30	29184.00	104.97	2.49	0.799	83.83
M3	22.61	12.06	30.64	272.76	268.35	27355.00	100.29	2.54	0.809	81.13
	21							PROMEI	OIO =	81.96
								σ =		1.62
								PROMEDI	O - s =	80.35

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DE PILAS DE LADRILLOS DE ARCILLA (NTP 399.605).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 8/3/2018

DOSIFICACIÓN P 2 (1:4) MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.15 Cemento Arena CCA

EDAD DE LAS PILAS = 28 DÍAS Fecha de Obtención : 8/4/2018

Fecha de Ensayo : 9/1/2018

DIMENSIONES DE LAS PILAS.

PILA	L1 (m)	L2 (m)	L3 (m)	L4 (m)	E1 (cm)	E2 (cm)	E3 (cm)	E4 (cm)	H1 (cm)	H2 (cm)	H3 (cm)	H4 (cm)
M1	22.90	22.70	22.70	22.60	11.90	12.00	12.00	12.10	31.00	31.40	31.30	31.20
M2	22.70	22.40	22.40	22.60	11.90	12.10	12.20	12.00	31.20	31.00	31.00	30.90
М3	23.00	22.50	22.40	22.55	12.00	12.05	12.25	11.95	31.00	31.30	31.05	31.00

RESULTADO DE LAS PILAS.

PILA	PROM.	PROM.	PROM.	ÁREA		Pu	F'm	ESBELTEZ	COEF.	F'm Corregido
PILA	(L)	(E)	(H)	cm2	KN	Kg	(kg/cm2)	h/e	CORREC.	(kg/cm2)
M1	22.73	12.00	31.23	272.70	238.88	24351.00	89.30	2.60	0.822	73.40
M2	22.53	12.05	31.03	271.43	259.95	26498.00	97.63	2.57	0.815	79.56
М3	22.61	12.06	31.09	272.76	288.65	29424.50	107.88	2.58	0.818	88.24
	•	•	•					PROME	DIO =	80.40
								σ =		7.46
								PROMED	IO - s =	72.95

Anexo 11.3. Resistencia a la compresión diagonal en muretes de albañilería

Anexo 11.3.1. Dosificación 1:4

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DIAGONAL DE MURETES DE LADRILLO DE ARCILLA (NTP 399.621).

"DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ" Tesis

: RAMOS FERNÁNDEZ, Christian Silvestre Tesista Ubicación: PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/6/2018

DOSIFICACIÓN P2 MORTERO PATRÓN

P2 = 4

> Cemento Arena

EDAD DE LOS MURETES = 28 DÍAS Fecha de Obtención: 8/6/2018 Fecha de Ensayo 9/3/2018

- DIMENSIONES DE LOS MURETES.

MURETES	L1 (cm)	L2 (cm)	H1 (cm)	H2 (cm)	E1 (cm)	E2 (cm)
М1	60.90	61.10	60.00	60.10	12.50	12.35
M2	61.25	61.00	60.15	60,50	12.30	12.00
M3	61.25	60.60	60.20	60.25	12.00	12.25

MURETES	PROM.	PROM.	PROM.	Ad		Pu	V'm	
MUREIES	(L)	(H)	(t) = E	(cm 2)	KN	Kg	(kg/cm 2)	
М1	61.00	60.05	12.43	1063.55	126.06	12850.00	8.54	
M2	61.13	60.33	12.15	1043.44	240.35	13150.00	8.91	
М3	60.93	60.23	12.13	1038.72	271.64	13400.00	9.12	
			•		P	ROMEDIO =	8.86	
						σ =	0.29	
				- 1	PR	OMEDIO - s =	8.56	

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DIAGONAL DE MURETES DE LADRILLO DE ARCILLA (NTP 399.621).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/6/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 5 % DE CEMENTO POR CCA

P2 = 0.95 : 4 : 0.05

Cemento Arena CCA

EDAD DE LOS MURETES = 28 DÍAS Fecha de Obtención : 8/6/2018

Fecha de Ensayo : 9/3/2018

- DIMENSIONES DE LOS MURETES.

MURETES	L1 (cm)	L2 (cm)	H1 (cm)	H2 (cm)	E1 (cm)	E2 (cm)
M1	61.00	60.85	61.25	61.00	12.35	12.50
M2	60.80	61.00	60.40	60.60	12.10	12.30
М3	61.15	60.95	60.85	61.00	12.00	12.15

	PROM.	PROM.	PROM.	Ad		Pu	V'm	
MURETES	(L)	(H)	(t) = E	(cm 2)	KN	Kg	(kg/cm 2)	
М1	60.93	61.13	12.43	1072.31	142.25	14500.00	9.56	
M2	60.90	60.50	12.20	1047.29	240.35	13850.00	9.35	
M3	61.05	60.93	12.08	1041.46	271,64	14250.00	9.67	
					PF	ROMEDIO =	9.53	
					-112-10	σ =	0.16	
				Г	PRO	OMEDIO - s =	9.36	

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DIAGONAL DE MURETES DE LADRILLO DE ARCILLA (NTP 399.621).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre Ubicación : PIMENTEL - CHICLAYO - LAMBAYEOUE

Fecha : 8/6/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 10 % DE CEMENTO POR CCA

P2 = 0.90 : 4 : 0.10

Cemento Arena CCA

EDAD DE LOS MURETES = 28 DÍAS Fecha de Obtención : 8/6/2018
Fecha de Ensayo : 9/3/2018

- DIMENSIONES DE LOS MURETES.

MURETES	L1 (cm)	L2 (cm)	H1 (cm)	H2 (cm)	E1 (cm)	E2 (cm)
М1	60.70	60.85	60.70	60.55	12.35	12.40
M2	60.60	61.00	61.00	61.05	12.00	12.10
M3	60.85	61.25	60.75	60.75	12.10	12.30

	PROM.	PROM.	PROM.	Ad	i i	Pu	V'm
MURETES	(L)	(H)	(t) = E	(cm 2)	KN	Kg	(kg/cm 2)
M1	60.78	60.63	12.38	1062.31	152.55	15550.00	10.35
M2	60.80	61.03	12.05	1038.03	240.35	16100.00	10.97
М3	61.05	60.75	12.20	1050.74	271.64	15750.00	10.60
130000A		•		•	PI	ROMEDIO =	10.64
						σ =	0.31
				Г	PRO	OMEDIO - s =	10.33

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DIAGONAL DE MURETES DE LADRILLO DE ARCILLA (NTP 399.621).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha: 8/6/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON SUSTITUCIÓN DE 15 % DE CEMENTO POR CCA

P2 = 0.85 ; 4 ; 0.15

Cemento Arena CCA

- DIMENSIONES DE LOS MURETES.

MURTE	L1 (cm)	L2 (cm)	H1 (cm)	H2 (cm)	E1 (cm)	E2 (cm)
M1	60.90	61.00	60.50	60.75	12.10	12.05
M2	61.25	61.50	61.15	61.00	12.05	12.05
М3	60.75	61.00	60.85	61.00	12.00	12.10

MIDETE	PROM. (L	PROM.	PROM.	Ad		Pu	V'm
MURETE)	(H)	(t) = E	(cm 2)	KN	Kg	(kg/cm 2)
М1	60.95	60.63	12.08	1038.05	130.47	13300.00	9.06
M2	61.38	61.08	12.05	1043.36	240.35	13750.00	9.32
М3	60.88	60.93	12.05	1037.81	271.64	14150.00	9.64
	** HUMANAMA	- HOMEN HOLD IN THE			PRC	OMEDIO =	9.34
						σ =	0.29
				1	PROM	IEDIO-s =	9.05

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DIAGONAL DE MURETES DE LADRILLO DE ARCILLA (NTP 399.621).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/6/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 5 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.05

Cemento Arena CCA

- DIMENSIONES DE LOS MURETES.

MURETES	L1 (cm)	L2 (cm)	H1 (cm)	H2 (cm)	E1 (cm)	E2 (cm)
M1	61.00	61.30	60.90	61.50	12.00	12.05
M2	60.95	61.15	61.00	60.70	12.10	12.25
M3	61.05	60.85	61.00	60.95	12.00	12.00

A CONTRACTOR	PROM.	PROM.	PROM.		Pu		V'm
MURETES L	(L)	(L) (H) ((t) = E	Ad (cm2)	KN	Kg	(kg/cm2)
M1	61.15	61.20	12.03	1040.34	155.00	15800.00	10.74
M2	61.05	60.85	12.18	1049.44	240.35	15150.00	10.21
M3	60.95	60.98	12.00	1034.57	271.64	15650.00	10.69
7		1		1100	P	ROMEDIO =	10.55
						σ ==	0.30
					PRO	OMEDIO - s =	10.25

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DIAGONAL DE MURETES DE LADRILLO DE ARCILLA (NTP 399.621).

Tests : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/6/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 10 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.10

Cemento Arena CCA

- DIMENSIONES DE LOS MURETES.

MURETES	L1 (cm)	L2 (cm)	H1 (cm)	H2 (cm)	E1 (cm)	E2 (cm)
M1	60.25	60.00	61.00	61.15	12.15	12.05
M2	60.75	60.50	61,50	61.35	12.00	11.95
M3	61.00	61.05	61.05	60.95	12.10	12.10

AATTO TOTAL	PROM.	PROM.	PROM.	Ad	Pu		V'm
MURETES	(L)	(L) (H)	(t) = E	(cm 2)	KN	Kg	(kg/cm2)
M1	60.13	61.08	12.10	1037.02	136.36	13900.00	9.48
M2	60.63	61.43	11.98	1033.49	240.35	13550.00	9.27
М3	61.03	61.00	12.10	1044.04	271.64	14250.00	9.65
			Å		P	ROMEDIO =	9.47
						σ =	0.19
					PR	OMEDIO - s =	9.27

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERÍA CIVIL

LABORATORIO DE ENSAYO DE MATERIALES

ENSAYO: RESISTENCIA A LA COMPRESIÓN DIAGONAL DE MURETES DE LADRILLO DE ARCILLA (NTP 399.621).

Tesis : "DISEÑO DE MORTERO EMPLEANDO CENIZAS DE CÁSCARAS DE ARROZ"

Tesista : RAMOS FERNÁNDEZ, Christian Silvestre
Ubicación : PIMENTEL - CHICLAYO - LAMBAYEQUE

Fecha : 8/6/2018

DOSIFICACIÓN P2 (1:4) MORTERO CON ADICIÓN DE 15 % DE CEMENTO POR CCA

P2 = 1 : 4 : 0.10

Cemento Arena CCA

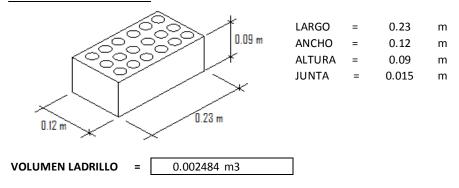
- DIMENSIONES DE LOS MURETES.

MURTE	L1 (cm)	L2 (cm)	H1 (cm)	H2 (cm)	E1 (cm)	E2 (cm)
M1	60.45	60.60	61.50	61.45	12.30	12.15
M2	60.00	60.25	61.35	61.35	12.55	12.30
M3	61.00	61.70	61.40	61.20	12.00	12.00

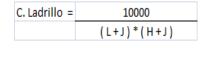
N. 4 X T T T T T T T T T T T T T T T T T T	PROM. (L	PROM.	PROM.		Pu		V'm
MURETE)	(H) (t) *	(t) = E	Ad (cm2)	KN	Kg	(kg/cm2)
M1	60.53	61.48	12.23	1054.65	127.53	13000.00	8.71
M2	60.13	61.35	12.43	1067.31	240.35	13750.00	9.11
М3	61.35	61.30	12.00	1040.72	271.64	13450.00	9.14
	N 2			30 1	PRO	OMEDIO =	8.99
						σ =	0.24
					PRON	AEDIO - s =	8 75

Anexo 12. Análisis de costos

Anexo 12.1. Volumen de mortero para 1m² de muro de soga

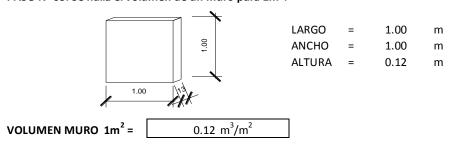

VOLUMEN MORTERO PARA 1M² DE MURO

Para encontrar el volumen de mortero en 1m² de muro de soga se sigue los siguientes pasos:


PASO N° 01: Se halla el volumen del ladrillo (m³).

Para este análisis utilizamos el Ladrillo King Kong 18 Huecos - Estandar se tiene, J = 1.5cm.

Dimensiones del ladrillo:



PASO N° 02: Se halla la cantidad de ladrillo para 1m² de muro, con la siguiente fórmula:

CANTIDAD LADRILLO SOGA = 38.87 Unid/m²

PASO N° 03: Se halla el volumen de un muro para 1m²:

PASO N° 04: Se halla el volumen ocupado del muro en 1m²:

VOLUMEN OCUPADO LADRILLO = Volumen Muro - Cantidad Lad. Soga

VOLUMEN OCUPADO LADRILLO = 0.0966 m³

PASO N° 05: Se halla el volumen de mortero en 1m²:

VOLUMEN MORTERO= Volumen Muro - Volumen Ocupado Ladrillo

VOLUMEN MORTERO EN 1 $M^2 = 0.02344 \text{ m}^3/\text{m}^2$

Anexo 12.2. Análisis del precio unitario del Kg. de cenizas de cáscaras de arroz

PARTIDA:	CENIZA DE CASCARA DE ARROZ (CCA)						
UNIDAD	I	ζg	N°Ho	oras		8	
RENDIMIENTO	350	kg/día	cos	to unitario to	tal	S/. 0.42	
DESCRIPCION DE INSUMO	unidad	cuadrilla	cantidad	precio unitario	parcial	total	
MANO DE OBRA						S/. 0.26	
operador para tamizar cca	h-h	1.00	0.0229	S/. 11.31	S/. 0.26		
MATERIALES						S/. 0.15	
ceniza de cascara de arroz	kg		1.00	S/. 0.15	S/. 0.15		
EQUIPOS Y HERRAMIENTAS						S/. 0.01	
herramientas manuales	%Mo		3%	S/. 0.26	S/. 0.01		

ESTUDIO DE MERCADO DE LA CENIZA DE CASCARA DE ARROZ									
MATERIAL UNIDAD CANTIDAD PRECIO PRECIO									
aguina da accesso da amon	Tn	1	S/. 150.00	S/. 150.00					
ceniza de cascara de arroz	ceniza de cascara de arroz Kg 1 S/. 0.15 S/. 0.15								

Anexo 12.3. Análisis de costos unitarios para un mortero patrón de 1:3.5, adicionado y sustituido con CCA.

ANALISIS DE COSTOS UNITARIOS

Se emplearon los siguientes materiales:

Material	Unidad	Precio S/.
Cemento	Bls	S/. 23.31
CCA	Kg	S/. 0.42
Arena	M ³	S/. 41.31
Agua	M ³	S/. 8.60

Se empleo la siguiente Mano de Obra:

Mano de Obra	Unidad	Precio
Operario	hh	S/. 15.59
Peón	hh	S/. 11.31

MUESTRA № 01 (SIN CCA)

38.8727 UND 1:3.5 (cemento: arena) RENDIMIENTO 12 M²/DIA NUMERO LADRILLO x M² 8

Para 1 m² de muro se necesita 0.02344 m³ de Mezcla N° Horas

MURO DE LAD	RILLO KING KO	NG 18 HUECOS AS	ENTADO TIPO S	OGA CON MORTE	RO PATRÓN 1 : 3.	5
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.2277	S/. 23.31	S/. 5.31	
ARENA	M^3		0.0226	S/. 41.31	S/. 0.93	
AGUA	M^3		0.0075	S/. 8.60	S/. 0.06	
LADRILLO LARK KK 18 HUE.	UND		38.8727	S/. 0.80	S/. 31.10	
						S/. 37.40
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	НН	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
HERRAMIENTAS MANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
COSTO UNITARIO						S/. 51.99

MUESTRA № 02

0.95: 3.5: 0.05 (cemento: arena: CCA) RENDIMIENTO 12 M²/DIA NUMERO LADRILLO x M² 38.8727 UND Para 1 m2 de muro se necesita 0.02344 m³ de Mezcla N° Horas

MURO DE LADRILLO KING	MURO DE LADRILLO KING KONG 18 HUECOS ASENTADO TIPO SOGA CON LA PROPORCIÓN 0.95 : 3.5 : 0.05 CON CENIZAS DE CÁSCARAS DE ARROZ							
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL		
CEMENTO	BLS		0.214	S/. 23.31	S/. 5.00			
CCA	KG		0.480	S/. 0.42	S/. 0.20			
ARENA	M^3		0.022	S/. 41.31	S/. 0.92			
AGUA	M^3		0.007	S/. 8.60	S/. 0.06			
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10			
						S/. 37.29		
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL		
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39			
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77			
						S/. 14.16		
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL		
	0/140		2.000	5/ 1116	5/ 0.42			
ERRAMIENTAS I MANUALES	%MO		3.000	S/. 14.16	S/. 0.42	64.649		
					<u> </u>	S/. 0.42		
COSTO UNITARIO						S/. 51.87		

 0.90 : 3.5 : 0.10 (cemento : arena : CCA)
 RENDIMIENTO
 12
 M²/DIA
 NUMERO LADRILLO x M²
 38.8727
 UND

 Para 1 m2 de muro se necesita
 0.02344
 m³ de Mezcla
 N° Horas
 8

MUDO DE LADRILLO KING	CONC 10 HHE	OC ACENTADO TID	0.0004.0041.4	DDODODCIÓN O	00 - 2 5 - 0 40 601	N CENIZAC DE
MURO DE LADRILLO KING	KONG 18 HUEC		O SOGA CON LA AS DE ARROZ	ROPORCION U.	90 : 3.5 : 0.10 CO	N CENIZAS DE
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.202	S/. 23.31	S/. 4.70	
CCA	KG		0.953	S/. 0.42	S/. 0.40	
ARENA	M^3		0.022	S/. 41.31	S/. 0.92	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 37.18
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
IERRAMIENTAS I MANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
COSTO UNITARIO						S/. 51.77

MUESTRA № 04

 $\textbf{0.85:3.5:0.15 (cemento:arena:CCA)} \ \ \text{RENDIMIENTO} \qquad \qquad 12 \qquad \qquad \text{M2/DIA} \qquad \quad \text{NUMERO LADRILLO} \times \text{M2} \qquad \qquad 38.8727 \quad \text{UND}$

Para 1 m2 de muro se necesita 0.02344 m³ de Mezcla N° Horas MURO DE LADRILLO KING KONG 18 HUECOS ASENTADO TIPO SOGA CON LA PROPORCIÓN 0.85:3.5:0.15 CON CENIZAS DE CÁSCARAS DE ARROZ MATERIAL UNIDAD CANTIDAD PRECIO S/. PARCIAL S/. TOTAL CEMENTO S/. 4.40 BLS 0.189 S/. 23.31 CCA KG 1.416 S/. 0.42 S/. 0.59 ARENA M^3 0.022 S/. 41.31 S/. 0.91 M^3 AGUA 0.007 S/. 8.60 S/. 0.06 LADRILLO KK 18 HUE. UND 38.873 S/. 0.80 S/. 31.10 S/. 37.06 MANO DE OBRA UNIDAD CUADRILLA CANTIDAD PRECIO SUBTOTAL TOTAL OPERARIO 0.667 S/. 15.59 S/. 10.39 нн PEON S/. 11.31 нн 0.5 0.333 S/. 3.77 S/. 14.16 **EQUIPOS** UNIDAD CANTIDAD PRECIO SUBTOTAL TOTAL HERRAMIENTAS**M**ANUALES %МО 3.000 S/. 14.16 S/. 0.42 S/. 0.42 COSTO UNITARIO S/. 51.65

1: 3.5: 0.05 (cemento : arena : CCA)RENDIMIENTO12 M^2/DIA NUMERO LADRILLO \times M^2 38.8727UNDPara 1 m2 de muro se necesita0.02344 m^3 de Mezcla N° Horas8

		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
UNIDAD		CANTIDAD	PRECIO 3/.	PARCIAL 3/.	IOTAL
BLS		0.223	S/. 23.31	S/. 5.19	
кG		0.473	S/. 0.42	S/. 0.20	
M^3		0.022	S/. 41.31	S/. 0.91	
M^3		0.007	S/. 8.60	S/. 0.06	
UND		38.873	S/. 0.80	S/. 31.10	
					S/. 37.40
UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
нн	1	0.667	S/. 15.59	S/. 10.39	
нн	0.5	0.333	S/. 11.31	S/. 3.77	
					S/. 14.10
UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
			_		
%MO		3.000	S/. 14.16	S/. 0.42	
	KG M³ M³ UND UNIDAD	KG M³ M³ UND UNIDAD CUADRILLA HH 1 HH 0.5	KG 0.473 M³ 0.022 M³ 0.007 UND 38.873 UNIDAD CUADRILLA CANTIDAD HH 1 0.667 HH 0.5 0.333 UNIDAD CANTIDAD	KG 0.473 \$/.0.42 M³ 0.022 \$/.41.31 M³ 0.007 \$/.8.60 UND 38.873 \$/.0.80 UNIDAD CUADRILLA CANTIDAD PRECIO HH 1 0.667 \$/.15.59 HH 0.5 0.333 \$/.11.31 UNIDAD CANTIDAD PRECIO	KG 0.473 \$/.0.42 \$/.0.20 M³ 0.022 \$/.41.31 \$/.0.91 M³ 0.007 \$/.8.60 \$/.0.06 UND 38.873 \$/.0.80 \$/.31.10 UNIDAD CUADRILLA CANTIDAD PRECIO SUBTOTAL HH 1 0.667 \$/.15.59 \$/.10.39 HH 0.5 0.333 \$/.11.31 \$/.3.77 UNIDAD CANTIDAD PRECIO SUBTOTAL

MUESTRA № 06

1: 3.5: 0.10 (cemento : arena : CCA)RENDIMIENTO12 M^2/DIA NUMERO LADRILLO x M^2 38.8727UNDPara 1 m2 de muro se necesita0.02344 m^3 de MezclaN° Horas8

ara I mz ac maro se neces	itu	0.02344	III de Iviezcia		14 110103	
MURO DE LADRILLO KING	S KONG 18 HUE	COS ASENTADO TI	PO SOGA CON	LA PROPORCIÓN :	1 : 3.5 : 0.10 CON	CENIZAS DE
		CÁSCAR	AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.219	S/. 23.31	S/. 5.10	
CCA	KG		0.930	S/. 0.42	S/. 0.39	
ARENA	M^3		0.022	S/. 41.31	S/. 0.90	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 37.54
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
ERRAMIENTAS M ANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
COSTO UNITARIO		•	•		•	S/. 52.13

MUESTRA № 07

 1: 3.5: 0.15 (cemento : arena : CCA)
 RENDIMIENTO
 12
 M²/DIA
 NUMERO LADRILLO x M²
 38.8727
 UND

 Para 1 m² de muro se necesita
 0.02344
 m³ de Mezcla
 N° Horas
 8

Para 1 m2 de muro se necesita		0.02344	m³ de Mezcla		N° Horas	8
MURO DE LADRILLO KING	S KONG 18 HUE			LA PROPORCIÓN :	1 : 3.5 : 0.15 CON	CENIZAS DE
		CASCAR	AS DE ARROZ		1	1
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.215	S/. 23.31	S/. 5.00	
CCA	KG		1.368	S/. 0.42	S/. 0.57	
ARENA	M^3		0.021	S/. 41.31	S/. 0.88	
AGUA	M ³		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 37.61
						_
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	НН	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
HERRAMIENTAS MANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
COSTO UNITARIO						S/. 52.20

Anexo 12.4. Análisis de costos unitarios para un mortero patrón de 1:4, adicionado y sustituido con CCA.

ANALISIS DE COSTOS UNITARIOS

Se emplearon los siguientes materiales:

Material	Unidad	Precio S/.
Cemento	Bls	S/. 23.31
CCA	Kg	S/. 0.42
Arena	M^3	S/. 41.31
Agua	M^3	S/. 8.60

Se empleo la siguiente Mano de Obra:

Mano de Obra	Unidad	Precio
Operario	hh	S/. 15.59
Peón	hh	S/. 11.31

MUESTRA № 01 (SIN CCA)

1:4 (cemento : arena) RENDIMIENTO 12 M^2/DIA NUMERO LADRILLO x M^2 38.8727 UND

Para 1 m^2 de muro se necesita ${\bf 0.02344}$ m^3 de Mezcla N° Horas 8

ara i mara se meces		******	III de III cecia			
MURO DE LAI	DRILLO KING KO	ONG 18 HUECOS AS	SENTADO TIPO	SOGA CON MORT	ERO PATRÓN 1 : 4	l
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.2037	S/. 23.31	S/. 4.75	
ARENA	M^3		0.0231	S/. 41.31	S/. 0.95	
AGUA	M^3		0.0072	S/. 8.60	S/. 0.06	
LADRILLO LARK KK 18 HUE.	UND		38.8727	S/. 0.80	S/. 31.10	
						S/. 36.86
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
HERRAMIENTAS MANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
COSTO UNITARIO						S/. 51.45

MUESTRA № 02

 0.95 : 4 : 0.05 (cemento : arena : CCA)
 RENDIMIENTO
 12
 M²/DIA
 NUMERO LADRILLO x M²
 38.8727
 UND

 Para 1 m2 de muro se necesita
 0.02344
 m³ de Mezcla
 N° Horas
 8

MURO DE LADRILLO KING KONG 18 HUECOS ASENTADO TIPO SOGA CON LA PROPORCIÓN 0.95 : 4 : 0.05 CON CENIZAS DE

		CÁSCAR	AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.193	S/. 23.31	S/. 4.49	
CCA	KG		0.431	S/. 0.42	S/. 0.18	
ARENA	M^3		0.023	S/. 41.31	S/. 0.95	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 36.78
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
IEDD AN AIENITA CEAANILIA I EC	0/140		2.000	6/ 1116	6/ 0.42	
HERRAMIENTAS MANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
						S/. 51.37

0.90 : 4 : 0.10 (cemento : arena : CCA) RENDIMIENTO 12 M²/DIA NUMERO LADRILLO x M² 38.8727 UND

0.50 . 4 . 0.10 (ccincinto .	archa . cca,	KENDIMILIATO	12	IVI / DIA	NOWILING LADINIL	LO X IVI
Para 1 m2 de muro se nece	sita	0.02344	m³ de Mezcla		N° Horas	8
MURO DE LADRILLO KINO	G KONG 18 HUE	COS ASENTADO TI	PO SOGA CON	LA PROPORCIÓN (0.90 : 4 : 0.10 CON	I CENIZAS DE
		CÁSCAR	AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.182	S/. 23.31	S/. 4.23	
CCA	KG		0.858	S/. 0.42	S/. 0.36	
ARENA	M^3		0.023	S/. 41.31	S/. 0.94	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 36.69
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16

MUESTRA № 04

COSTO UNITARIO

EQUIPOS

HERRAMIENTAS MANUALES

UNIDAD

%МО

0.85:4:0.15 (cemento: arena: CCA)RENDIMIENTO12M²/DIANUMERO LADRILLO x M²38.8727UNDPara 1 m² de muro se necesita0.02344m³ de MezclaN° Horas8

CANTIDAD

3.000

PRECIO

S/. 14.16

SUBTOTAL

S/. 0.42

TOTAL

S/. 0.42

S/. 51.28

Para 1 m2 de muro se neces	ita	0.02344	m³ de Mezcla		N° Horas	8
MURO DE LADRILLO KING	KONG 18 HUE			A PROPORCIÓN O	0.85 : 4 : 0.15 CON	CENIZAS DE
		CASCAR	AS DE ARROZ		1	1
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.170	S/. 23.31	S/. 3.97	
CCA	KG		1.278	S/. 0.42	S/. 0.53	
ARENA	M^3		0.023	S/. 41.31	S/. 0.94	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 36.60
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	НН	1	0.667	S/. 15.59	S/. 10.39	
PEON	НН	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
						_
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
IERRAMIENTAS M ANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
COSTO UNITARIO						S/. 51.19

 1:4:0.05 (cemento: arena: CCA)
 RENDIMIENTO
 12
 M²/DIA
 NUMERO LADRILLO x M²
 38.8727
 UND

 Para 1 m2 de muro se necesita
 0.02344
 m³ de Mezcla
 N° Horas
 8

		CASCARA	AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.201	S/. 23.31	S/. 4.67	
CCA	KG		0.426	S/. 0.42	S/. 0.18	
ARENA	M ³		0.023	S/. 41.31	S/. 0.94	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 36.95
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
	•					
IERRAMIENTAS B IANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
COSTO UNITARIO						S/. 51.54

MUESTRA № 06

 1:4:0.10 (cemento: arena: CCA)
 RENDIMIENTO
 12
 M²/DIA
 NUMERO LADRILLO x M²
 38.8727
 UND

 Para 1 m2 de muro se necesita
 0.02344
 m³ de Mezcla
 N° Horas
 8

ara I mz ac maro se neces	itu	0.02344	III de Iviezcia		14 110103	
MURO DE LADRILLO KIN	IG KONG 18 HU			I LA PROPORCIÓN	1:4:0.10 CON	ENIZAS DE
		CÁSCARA	AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.198	S/. 23.31	S/. 4.61	
CCA	KG		0.840	S/. 0.42	S/. 0.35	
ARENA	M^3		0.022	S/. 41.31	S/. 0.92	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 37.04
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
ERRAMIENTAS M ANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
COSTO UNITARIO						S/. 51.63

MUESTRA № 07

 1: 4: 0.15 (cemento : arena : CCA)
 RENDIMIENTO
 12
 M²/DIA
 NUMERO LADRILLO x M²
 38.8727
 UND

 Para 1 m² de muro se necesita
 0.02344
 m³ de Mezcla
 N° Horas
 8

ita	0.02344	m° de Mezcla		N° Horas	
iG KONG 18 HU			I LA PROPORCIÓN	1 : 4 : 0.15 CON (ENIZAS DE
UNIDAD	CASCAN	CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
BLS		0.195	S/. 23.31	S/. 4.54	
KG		1.243	S/. 0.42	S/. 0.52	
M ³		0.022	S/. 41.31	S/. 0.91	
M^3		0.007	S/. 8.60	S/. 0.06	
UND		38.873	S/. 0.80	S/. 31.10	
					S/. 37.13
LINIDAD	CHADRIHA	CANTIDAD	PRECIO	SURTOTAL	TOTAL
057.5	CONSTRUCT	0,		555151112	10.7.2
нн	1	0.667	S/. 15.59	S/. 10.39	
нн	0.5	0.333	S/. 11.31	S/. 3.77	
					S/. 14.16
LINUDAD		CANTIDAD	PRECIO	CURTOTAL	TOTAL
UNIDAD		CANTIDAD	PRECIO	SUBTUTAL	TOTAL
%MO		3.000	S/. 14.16	S/. 0.42	
,		2.300	-,0	5,:0:12	S/. 0.42
OSTO UNITARIO S/. 51.72					
	BLS KG M³ UNIDAD UNIDAD BLS KG M³ UND	IG KONG 18 HUECOS ASENTADO CÁSCAR. UNIDAD BLS KG M³ UND UNIDAD CUADRILLA HH 1 HH 0.5	IG KONG 18 HUECOS ASENTADO TIPO SOGA CON CÁSCARAS DE ARROZ UNIDAD CANTIDAD	IG KONG 18 HUECOS ASENTADO TIPO SOGA CON LA PROPORCIÓN CÁSCARAS DE ARROZ UNIDAD PRECIO S/.	IG KONG 18 HUECOS ASENTADO TIPO SOGA CON LA PROPORCIÓN 1 : 4 : 0.15 CON C CÁSCARAS DE ARROZ

Anexo 12.5. Análisis de costos unitarios para un mortero patrón de 1:5, adicionado y sustituido con CCA.

ANALISIS DE COSTOS UNITARIOS

Se emplearon los siguientes materiales:

Material	Unidad	Precio S/.
Cemento	Bls	S/. 23.31
CCA	Kg	S/. 0.42
Arena	M ³	S/. 41.31
Agua	M ³	S/. 8.60

Se empleo la siguiente Mano de Obra:

Mano de Obra	Unidad	Precio
Operario	hh	S/. 15.59
Peón	hh	S/. 11.31

MUESTRA № 01 (SIN CCA)

 $\textbf{1:5 (cemento: arena)} \hspace{1.5cm} \textbf{RENDIMIENTO} \hspace{1.5cm} \textbf{12} \hspace{1.5cm} \textbf{M}^2/\textbf{DIA} \hspace{1.5cm} \textbf{NUMERO LADRILLO x M}^2 \hspace{1.5cm} \textbf{38.8727} \hspace{1.5cm} \textbf{UND}$

Para 1 m² de muro se necesita **0.02344** m³ de Mezcla N° Horas

Para 1 m² de muro se necesi	ta	0.02344	m³ de Mezcla		N° Horas	8
MURO DE LAD	RILLO KING KO	NG 18 HUECOS	ASENTADO TIPO S	SOGA CON MORT	ERO PATRÓN 1 : 5	5
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS	I	0.1662	S/. 23.31	S/. 3.87	
ARENA	M^3	I	0.0235	S/. 41.31	S/. 0.97	
AGUA	M^3	I	0.0074	S/. 8.60	S/. 0.06	
LADRILLO LARK KK 18 HUE.	UND	I	38.8727	S/. 0.80	S/. 31.10	
						S/. 36.01
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
		İ				
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
1500 AA 41511TA 6574 AAU I AU 56	0/1.10		2.000	0/ 4446	6/ 0 40	
HERRAMIENTAS MANUALES	%MO	İ	3.000	S/. 14.16	S/. 0.42	S/. 0.42
						3/. 0.42
COSTO UNITARIO			1			S/. 50.60

MUESTRA Nº 02

0.95 : 5 : 0.05 (cemento : arena : CCA)RENDIMIENTO12 M^2/DIA NUMERO LADRILLO x M^2 38.8727 UNDPara 1 m2 de muro se necesita0.02344 m^3 de MezclaN° Horas8

MURO DE LADRILLO KING			AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.157	S/. 23.31	S/. 3.66	
CCA	KG		0.351	S/. 0.42	S/. 0.15	
ARENA	M^3		0.023	S/. 41.31	S/. 0.97	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 35.93
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
EDD A MAIENITA CINA A NILLA LEC	%MO		2 000	C/ 1/16	S/ 0.42	
ERRAMIENTASMANUALES	%IVIU		3.000	S/. 14.16	S/. 0.42	S/. 0.42
COSTO UNITARIO			<u> </u>			S/. 50.52

 $\textbf{0.90:5:0.10 (cemento:arena:CCA)} \quad \text{RENDIMIENTO} \qquad \qquad 12 \qquad \quad \text{M2/DIA} \qquad \quad \text{NUMERO LADRILLO x M2} \qquad \qquad 38.8727 \quad \text{UND}$

Para 1 m2 de muro se neces	sita	0.02344	m³ de Mezcla		N° Horas	8
MURO DE LADRILLO KING	KONG 18 HUE	COS ASENTADO TII	PO SOGA CON L	A PROPORCIÓN 0	.90 : 5 : 0.10 CON	CENIZAS DE
		CÁSCAR	AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.148	S/. 23.31	S/. 3.44	
CCA	KG		0.697	S/. 0.42	S/. 0.29	
ARENA	M^3		0.023	S/. 41.31	S/. 0.96	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 35.85
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL

MUESTRA № 04

COSTO UNITARIO

HERRAMIENTASMANUALES

%МО

0.85 : 5 : 0.15 (cemento : arena : CCA)RENDIMIENTO12M²/DIANUMERO LADRILLO x M²38.8727UNDPara 1 m2 de muro se necesita0.02344m³ de MezclaN° Horas8

3.000

S/. 14.16

S/. 0.42

S/. 0.42

S/. 50.44

MURO DE LADRILLO KING KONG 18 HUECOS ASENTADO TIPO SOGA CON LA PROPORCIÓN 0.85 : 5 : 0.15 CON CENIZAS DE CÁSCARAS DE ARROZ						
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.138	S/. 23.31	S/. 3.23	
CCA	KG		1.039	S/. 0.42	S/. 0.43	
ARENA	M^3		0.023	S/. 41.31	S/. 0.95	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 35.77
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
======					55210111	13
HERRAMIENTAS MANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
OSTO UNITARIO S/. 50.36						

 1: 5 : 0.05 (cemento : arena : CCA)
 RENDIMIENTO
 12
 M²/DIA
 NUMERO LADRILLO x M²
 38.8727
 UND

 Para 1 m² de muro se necesita
 0.02344
 m³ de Mezcla
 N° Horas
 8

Para 1 III2 de Illuro se lieces	ita	0.02344	m de Mezcia		IN HUI as	•
MURO DE LADRILLO KING KONG 18 HUECOS ASENTADO TIPO SOGA CON LA PROPORCIÓN 1 : 5 : 0.05 CON CENIZAS DE CÁSCARAS DE ARROZ						
MATERIAL	UNIDAD	CASCAIT	CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.163	S/. 23.31	S/. 3.80	
CCA	KG		0.347	S/. 0.42	S/. 0.14	
ARENA	M^3		0.023	S/. 41.31	S/. 0.95	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 36.06
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
HERRAMIENTAS M ANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42

COSTO UNITARIO MUESTRA № 06

 1:5:0.10 (cemento: arena: CCA)
 RENDIMIENTO
 12
 M²/DIA
 NUMERO LADRILLO x M²
 38.8727
 UND

 Para 1 m2 de muro se necesita
 0.02344
 m³ de Mezcla
 N° Horas
 8

S/. 50.65

MURO DE LADRILLO KIN	MURO DE LADRILLO KING KONG 18 HUECOS ASENTADO TIPO SOGA CON LA PROPORCIÓN 1 : 5 : 0.10 CON CENIZAS DE CÁSCARAS DE ARROZ						
MATERIAL	UNIDAD	0.100.111	CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL	
CEMENTO	BLS		0.161	S/. 23.31	S/. 3.75		
CCA	KG		0.684	S/. 0.42	S/. 0.28		
ARENA	M^3		0.023	S/. 41.31	S/. 0.94		
AGUA	M^3		0.007	S/. 8.60	S/. 0.06		
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10		
						S/. 36.14	
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL	
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39		
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77		
						S/. 14.16	
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL	
ERRAMIENTAS M ANUALES	%MO		3.000	S/. 14.16	S/. 0.42		
						S/. 0.42	
OSTO UNITARIO						S/. 50.73	

MUESTRA Nº 07

1:5:0.15 (cemento: arena: CCA)RENDIMIENTO12 M^2/DIA NUMERO LADRILLO \times M^2 38.8727UNDPara 1 m2 de muro se necesita0.02344 m^3 de MezclaN° Horas8

		CASCARA	AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.159	S/. 23.31	S/. 3.70	
CCA	KG		1.013	S/. 0.42	S/. 0.42	
ARENA	M ³		0.023	S/. 41.31	S/. 0.93	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 36.22
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.1
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
LQUIFUS	UNIDAD		CANTIDAD	FRECIO	JODIOTAL	IOTAL
RRAMIENTASMANUALES	%МО		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
OSTO UNITARIO						S/. 50.80

Anexo 12.6. Análisis de costos unitarios para un mortero patrón de 1:6, adicionado y sustituido con CCA.

ANALISIS DE COSTOS UNITARIOS

Se emplearon los siguientes materiales:

Material	Unidad	Precio S/.
Cemento	Bls	S/. 23.31
CCA	Kg	S/. 0.42
Arena	M ³	S/. 41.31
Agua	M ³	S/. 8.60

Se empleo la siguiente Mano de Obra:

Mano de Obra	Unidad	Precio
Operario	hh	S/. 15.59
Peón	hh	S/. 11.31

MUESTRA № 01 (SIN CCA)

 $\textbf{1:6 (cemento: arena)} \hspace{1.5cm} \textbf{RENDIMIENTO} \hspace{1.5cm} \textbf{12} \hspace{1.5cm} \textbf{M}^2/\textbf{DIA} \hspace{1.5cm} \textbf{NUMERO LADRILLO x M}^2 \hspace{1.5cm} \textbf{38.8727} \hspace{1.5cm} \textbf{UND}$

Para 1 m² de muro se necesita **0.02344** m³ de Mezcla N° Horas

ld	0.02344	III de Mezcia		IN HUI as	
DRILLO KING KO	ONG 18 HUECOS A	SENTADO TIPO	SOGA CON MORT	ERO PATRÓN 1 : 6	i
MATERIAL UNIDAD CANTIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
BLS		0.1414	S/. 23.31	S/. 3.29	
M^3		0.0240	S/. 41.31	S/. 0.99	
M^3		0.0075	S/. 8.60	S/. 0.06	
UND		38.8727	S/. 0.80	S/. 31.10	
					S/. 35.45
UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
НН	1	0.667	S/. 15.59	S/. 10.39	
НН	0.5	0.333	S/. 11.31	S/. 3.77	
					S/. 14.16
UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
				0021011	
%МО		3.000	S/. 14.16	S/. 0.42	
			•	,	S/. 0.42
				•	S/. 50.0
	BLS M³ UNIDAD UNIDAD UNIDAD HH HH	BLS M³ UNIDAD UNIDAD CUADRILLA HH 1 HH 0.5	DRILLO KING KONG 18 HUECOS ASENTADO TIPO	DRILLO KING KONG 18 HUECOS ASENTADO TIPO SOGA CON MORT	DRILLO KING KONG 18 HUECOS ASENTADO TIPO SOGA CON MORTERO PATRÓN 1 : 6 UNIDAD

MUESTRA Nº 02

0.95 : 6 : 0.05 (cemento : arena : CCA)RENDIMIENTO12 M^2/DIA NUMERO LADRILLO x M^2 38.8727UNDPara 1 m2 de muro se necesita0.02344 m^3 de MezclaN° Horas8

MURO DE LADRILLO KING	KONG 18 HUE		PO SOGA CON L AS DE ARROZ	A PROPORCIÓN 0	.95 : 6 : 0.05 CON	CENIZAS DE
MATERIAL	UNIDAD	CASCAID	CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.133	S/. 23.31	S/. 3.11	
CCA	KG		0.298	S/. 0.42	S/. 0.12	
ARENA	M^3		0.024	S/. 41.31	S/. 0.98	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 35.38
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	НН	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
HERRAMIENTAS MANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
COSTO UNITARIO						S/. 49.96

0.90 : 6 : 0.10 (cemento : arena : CCA) RENDIMIENTO 12 M²/DIA NUMERO LADRILLO x M² 38.8727 UND

0.30 . 0 . 0.10 (ceilleilto .	arena . cca,	KLINDIIVIILINIO	12	IVI / DIA	NOWIERO LADRIE	LO X IVI
Para 1 m2 de muro se nece	sita	0.02344	m³ de Mezcla		N° Horas	8
MURO DE LADRILLO KINO	G KONG 18 HUE	COS ASENTADO TI	PO SOGA CON	LA PROPORCIÓN (0.90 : 6 : 0.10 CON	I CENIZAS DE
		CÁSCAR	AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.126	S/. 23.31	S/. 2.93	
CCA	KG		0.593	S/. 0.42	S/. 0.25	
ARENA	M^3		0.024	S/. 41.31	S/. 0.98	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 35.32
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
1	1	1	1	1	1	1

MUESTRA № 04

COSTO UNITARIO

EQUIPOS

HERRAMIENTAS MANUALES

UNIDAD

%МО

 0.85 : 6 : 0.15 (cemento : arena : CCA)
 RENDIMIENTO
 12
 M²/DIA
 NUMERO LADRILLO x M²
 38.8727
 UND

 Para 1 m2 de muro se necesita
 0.02344
 m³ de Mezcla
 N° Horas
 8

CANTIDAD

3.000

PRECIO

S/. 14.16

SUBTOTAL

S/. 0.42

TOTAL

S/. 0.42

S/. 49.91

ara 1 m2 ac maro se neces	itu	0.02544	TIT UC IVICZCIU							
MURO DE LADRILLO KING	KONG 18 HUE			A PROPORCIÓN 0	.85 : 6 : 0.15 CON	CENIZAS DE				
		CÁSCAR <i>A</i>	AS DE ARROZ							
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL				
CEMENTO	BLS		0.118	S/. 23.31	S/. 2.75					
CCA	KG		0.884	S/. 0.42	S/. 0.37					
ARENA	M^3		0.024	S/. 41.31	S/. 0.97					
AGUA	M^3		0.007	S/. 8.60	S/. 0.06					
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10					
						S/. 35.25				
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL				
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39					
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77					
						S/. 14.16				
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL				
	_			<u> </u>						
IERRAMIENTAS M ANUALES	%MO		3.000	S/. 14.16	S/. 0.42					
						S/. 0.42				
COSTO UNITARIO										

 1:6:0.05 (cemento: arena: CCA)
 RENDIMIENTO
 12
 M²/DIA
 NUMERO LADRILLO x M²
 38.8727
 UND

 Para 1 m2 de muro se necesita
 0.02344
 m³ de Mezcla
 N° Horas
 8

		CÁSCARA	AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.139	S/. 23.31	S/. 3.24	
CCA	KG		0.295	S/. 0.42	S/. 0.12	
ARENA	M^3		0.024	S/. 41.31	S/. 0.98	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 35.50
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
					·	S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
ERRAMIENTAS M ANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
			1			S/. 0.42

MUESTRA № 06

1:6:0.10 (cemento: arena: CCA)RENDIMIENTO12 M^2/DIA NUMERO LADRILLO \times M^2 38.8727UNDPara 1 m2 de muro se necesita0.02344 m^3 de MezclaN° Horas8

ita	0.02344	III de IVIEZCIA		14 110103	
IG KONG 18 HU	ECOS ASENTADO 1	IPO SOGA CON	LA PROPORCIÓN	1:6:0.10 CON (ENIZAS DE
	CÁSCARA	AS DE ARROZ			
UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
BLS		0.137	S/. 23.31	S/. 3.20	
KG		0.584	S/. 0.42	S/. 0.24	
M^3		0.023	S/. 41.31	S/. 0.96	
M^3		0.007	S/. 8.60	S/. 0.06	
UND		38.873	S/. 0.80	S/. 31.10	
					S/. 35.57
UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
нн	1	0.667	S/. 15.59	S/. 10.39	
нн	0.5	0.333	S/. 11.31	S/. 3.77	
					S/. 14.16
UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
%MO		3.000	S/. 14.16	S/. 0.42	
					S/. 0.42
				·	S/. 50.16
	UNIDAD BLS KG M³ UND UNIDAD HH HH	CÁSCARA UNIDAD BLS KG M³ M³ UND UNIDAD CUADRILLA HH 1 HH 0.5	CÁSCARAS DE ARROZ	CÁSCARAS DE ARROZ UNIDAD PRECIO S/.	UNIDAD CANTIDAD PRECIO S/. PARCIAL S/. BLS 0.137 \$/. 23.31 \$/. 3.20 KG 0.584 \$/. 0.42 \$/. 0.24 M³ 0.023 \$/. 41.31 \$/. 0.96 M³ 0.007 \$/. 8.60 \$/. 0.06 UND 38.873 \$/. 0.80 \$/. 31.10 UNIDAD CUADRILLA CANTIDAD PRECIO SUBTOTAL HH 1 0.667 \$/. 15.59 \$/. 10.39 HH 0.5 0.333 \$/. 11.31 \$/. 3.77 UNIDAD CANTIDAD PRECIO SUBTOTAL

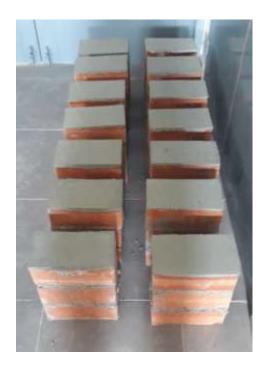
MUESTRA № 07

1:6:0.15 (cemento: arena: CCA)RENDIMIENTO12 M^2/DIA NUMERO LADRILLO \times M^2 38.8727UNDPara 1 m2 de muro se necesita0.02344 m^3 de MezclaN° Horas8

		CÁSCARA	AS DE ARROZ			
MATERIAL	UNIDAD		CANTIDAD	PRECIO S/.	PARCIAL S/.	TOTAL
CEMENTO	BLS		0.136	S/. 23.31	S/. 3.17	
CCA	KG		0.866	S/. 0.42	S/. 0.36	
ARENA	M^3		0.023	S/. 41.31	S/. 0.95	
AGUA	M^3		0.007	S/. 8.60	S/. 0.06	
LADRILLO KK 18 HUE.	UND		38.873	S/. 0.80	S/. 31.10	
						S/. 35.64
MANO DE OBRA	UNIDAD	CUADRILLA	CANTIDAD	PRECIO	SUBTOTAL	TOTAL
OPERARIO	нн	1	0.667	S/. 15.59	S/. 10.39	
PEON	нн	0.5	0.333	S/. 11.31	S/. 3.77	
						S/. 14.16
EQUIPOS	UNIDAD		CANTIDAD	PRECIO	SUBTOTAL	TOTAL
			2			101712
ERRAMIENTAS I MANUALES	%MO		3.000	S/. 14.16	S/. 0.42	
						S/. 0.42
OSTO UNITARIO						

Anexo 13. Panel fotográfico

Anexo 13.1. Elaboración de las pilas y muretes de albañilería en el Laboratorio de Ensayo de Materiales de la Universidad Señor de Sipán



Anexo 13.2. Ensayo de adherencia del mortero – ladrillo arcilla

Anexo 13.3. Ensayo de compresión axial en pilas de albañilería y sus tipos de fallas

Muestras para ser ensayadas a compresión, se colocó a cada una en sus dos superficies exteriores una capa de mezcla (cemento – yeso).

Ensayo a compresión de la muestra patrón 1:4, presenta una falla frágil con trituración de las unidades inferiores.

Ensayo a compresión de la muestra con sustitución 5% de CCA, presenta falla por grieta vertical.

Ensayo a compresión de la muestra con sustitución 10% de CCA, presenta falla por grieta vertical.

Ensayo a compresión de la muestra con sustitución 15% de CCA, presenta dos tipos de fallas, frágil con trituración de las unidades inferiores y por grieta vertical

Ensayo a compresión de la muestra con adición 5% de CCA, presenta falla por grieta vertical.

Ensayo a compresión de la muestra con adición 10% de CCA, presenta dos tipos de fallas, frágil con trituración de las unidades inferiores y por grieta vertical

Ensayo a compresión de la muestra con adición 15% de CCA, presenta una falla de trituración en toda su estructura.

Anexo 13.4. Compresión diagonal en muretes de albañilería realizado en Laboratorio de Ensayo de Materiales de la Universidad Nacional Pedro Ruíz Gallo

Ensayo de compresión diagonal en muretes de albañilería, utilizando la máquina hidráulica Rusa.

El tipo de falla obtenido en todas las muestras fue de grieta diagonal.

Anexo 14. Presupuesto

COSTO DE LA ELABORACIÓN DEL INFORME DE INVESTIGACIÓN

	Presupuesto	Und.	Cantidad	P.U.		Parcial	g2 /	Total
1.	PLANEAMIENTO				21.7		S/	422.0
01	Recursos humanos		1000		8/			
01.01	Autor del Proyecto de investigación		1		S/			
01.02	Asesor especialista y metodológico		2		8/			
01.03	Técnico de laboratorio		1		S/			
02	Materiales	000000000		22	S/	43.00		
02.01	Papel Bond	millar	2	20	S/	40.00		
02.02	Cd	und	2	1.50	8/	3.00		
03	Servicios			(92)2)	8/	379.00		
03.01	Internet	mes	4	60	S/	240.00		
03.02	Movilidad	dias	50	2.40	8/	120.00		
03.03	Impresiones	und	50	0.20	8/	10.00		
03.04	Anillados	und	2	2.00	8/	4.00		
03.05	Rotulados	und	1	5,00	S/	5,00		
11.	EJECUCIÓN						S	/ 23,545.00
01	Materiales y alquiler de equipos				8/	1,830.00		
01.01	Materiales				S/	720.00		
01.01.01	Cemento Portland Pacasmayo Tipo I	bolsas	5	27.50	8/	137.50		
01.01.02	Arena	m'	1	47.50	8/	47.50		
01.01.03	Agua	lt	35	8	8/	280.00		
01.01.04	Cenizas de cáscaras de arroz	kg	50	0.30	S/	15.00		
01.01.05	Ladrillos	und	300	0.80	8/	240.00		
01.02	Alquiler de Equipos				S/	1,110.00		
01.02.01	Mezcladora de mortero	und	1	750	8/	750.00		
01.02.01	Moldes metalicos	und	2	150	S/	300.00		
01.02.02	Cilindros metálicos	und	6	10	8/	60.00		
02.03	Ensayos de los materiales	ma		**	S/	2,390.00		
02.01	Agregado fino				S/	205.00		
02.01.01	Análisis Granulométrico	GHb	1	25.00	8/	25.00		
		CHO	1.00	25.00	S/			
02.01.02	Peso Unitario Suelto y Compactado	600		20.00		140.00		
2.01.02.01	Suelto	Glb	2	30.00	S/	60.00		
02.01.02.02	Varillado	Glb	2	40.00	8/	80.00		
02.01.03	Peso Específico y Absorción	Glb	1	30.00	S/	30.00		
02.01.04	Contenido de Humedad	Glb	2	5.00	8/	10.00		
02.02	Cenizas de cáscaras de arroz				8/	760.00		
02.02.01	Análisis químico	Glb	1	550.00	8/	550.00		
02.02.02	Peso Unitario Suelto y Compactado				S/	140.00		
02.02.02.01	Suelto	Glb	2	30.00	8/	60,00		
02.02.02.02	Varillado	Glb	2	40.00	S/	80.00		
02,02.03	Peso especifico	Glb	1	60.00	8/	60.00		
02.02.04	Contenido de Humedad	Glb	2	5.00	8/	10.00		
02.03	Unidades de albañilería				5/	1,425.00		
02.03.01	Variación dimensional	Glb	30	15.00	8/	450.00		
02.03.02	Porcentaje de vacios	Glb	15	10.00	8/	150.00		
02.03.03	Succión	Glb	15	20.00	S/	300.00		
02.03.04	Absorción	Glb	15	20.00	8/	300.00		
02.03.05	Resistencia a la compresión F b	Glb	1.5	15.00	S/	225,00		
03	Diseño de mezclas				S/	2,800.00		
03.01	Dosificación 1:3.5	Glb	7	100.00	S/	700.00		
03.02	Dosificación 1:4	Glb	7	100.00	S/	700.00		
03.03	Dosificación 1:5	Glb	7	100.00	8/	700.00		
03.04	Dosificación 1:6	Glb	7	100.00	S/	700.00		
04	Ensayos de mortero				8/	11,270.00		
04.01	Mortero en estado fresco				S/	5,600.00		
04.01.01	Fluidez	Glb	28	50.00	8/	1,400.00		
04.01.02	Contenido de aire	Glb	28	50.00	S/	1,400.00		
04.01.03	Peso unitario	Glb	28	50.00	S/	1,400.00		
04.01.03	Tiempo de fraguado	Glb	28	50.00	SI/	1,400.00		
04.02	Mortero en estado endurecido	Said		20.00	8/	5,670.00		
04.02.01	Resistencia a la compresión probetas cúbicas	Glb	189	15.00	8/	2,835.00		
04.02.01	Resistencia a la flexión	Glb	189	15.00	S/	2,835.00		
		3.10	109	1.2,00				
05	Ensayos de albanileria simple	(711)		40.00	S/	2,940.00		
05.01	Adherencia del mortero - ladrillo arcilla	Glb	21	40.00	8/	840,00		
05.02	Resistencia a la compresión axial	Glb	21	40.00	S/	840.00		
05.03	Resistencia a la compresión diagonal	Glb	21	60.00	8/	1,260.00		
06	Servicios				S/	2,315.00		
06.01	Internet	mes	3	60.00	8/	180.00		
06.02	Papel bond	millar	4	20.00	S/	80.00		
06.03	Movilidad	dias	350	3.00	8/	1,050.00		
06.04	Impresiones	unid	1000	0.10	8/	100.00		
06.05	Almuerzos	dias	150	6.00	S/	900.00		
				4	44.4	12 4 12 12 12 12 12		
06.08	CD		1	.5	8/	5.00		

La Universidad Señor de Sipán aporto con un 73.39% y el autor con un 26.61% para la elaboración de la presente investigación.