

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

PARA OPTAR AL TITULO PROFESIONAL DE: INGENIERA CIVIL

AUTORA:

Bach. Ramirez Silva, Rosa Vanessa https://orcid.org/0000-0002-4084-2996

ASESOR:

Dr. Muñoz Pérez, Sócrates Pedro https://orcid.org/0000-0003-3182-8735

LÍNEA DE INVESTIGACIÓN

Tecnología e innovación en el desarrollo de la construcción y la industria en un contexto de sostenibilidad

SUB LÍNEA DE INVESTIGACIÓN Innovación y tecnificación en ciencia de los materiales, diseño e

> PIMENTEL – PERÚ 2024

infraestructura

DECLARACIÓN JURADA DE ORIGINALIDAD

Quien suscribe la DECLARACIÓN JURADA, soy egresado (s) del Programa de Estudios de **la escuela de Ingeniería Civil** de la Universidad Señor de Sipán S.A.C, declaro bajo juramento que soy autor del trabajo titulado:

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firman:

Ramirez Silva Rosa Vanessa	DNI: 46161257	All-
----------------------------	---------------	------

Pimentel, 30 de octubre del 2024.

15% Similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para ca...

Filtrado desde el informe

- Bibliografía
- Texto mencionado
- Coincidencias menores (menos de 8 palabras)

Fuentes principales

5% Publicaciones

10% 💄 Trabajos entregados (trabajos del estudiante)

Marcas de integridad

N.º de alerta de integridad para revisión

Texto oculto

6 caracteres sospechosos en N.º de página

El texto es alterado para mezclarse con el fondo blanco del documento.

Los algoritmos de nuestro sistema analizan un documento en profundidad para buscar inconsistencias que permitirían distinguirlo de una entrega normal. Si advertimos algo extraño, lo marcamos como una alerta para que pueda revisarlo.

Una marca de alerta no es necesariamente un indicador de problemas. Sin embargo, recomendamos que preste atención y la revise.

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

Lambayoquo 2020
Aprobación del jurado
DR. CORONADO ZULOETA OMAR
Presidente del Jurado de Tesis
Tresidente dei burado de Tesis
DR. MARIN BARDALES NOE HUMBERTO
Secretario del Jurado de Tesis
MG. BALLENA DEL RIO PEDRO MANUEL
Vocal del Jurado de Tesis

DEDICATORIA

Este trabajo de investigación lo dedico a mi madre, mi roca, mi inspiración. Quien fue mi apoyo a lo largo de formación profesional.

A mi esposo, por su compañía y apoyo inquebrantable en cada paso del camino.

A mi hijo, por ser la luz que ilumina mi vida y la razón de mi esfuerzo. Este triunfo es el reflejo del amor y la unidad que nos une.

AGRADECIMIENTO

Quiero expresar mi profunda gratitud a mis maestros, quienes con su sabiduría y paciencia me guiaron en este camino. Su pasión por el conocimiento ha sido una fuente de inspiración constante. A mi madre, gracias por tu amor infinito y por creer siempre en mí. A mi esposo, gracias por ser mi compañero, mi amigo y mi confidente. Tu apoyo ha sido fundamental para alcanzar esta meta. Y a mi hijo, gracias por tu amor incondicional y por recordarme la importancia de perseguir mis sueños.

Rosa Vanessa Ramirez Silva

ÍNDICE DE CONTENIDOS

ABSTRACT	11
I. INTRODUCCIÓN	12
TRABAJOS PREVIOS	15
TEORÍAS RELACIONADAS AL TEMA	21
OBJETIVOS	28
II. MATERIALES Y MÉTODO	29
2.1. VARIABLES Y OPERACIONALIZACIÓN	30
VARIABLES	30
2.2. POBLACIÓN Y MUESTRA	30
2.2.1. Población	30
2.2.2. Muestra	30
2.3. TÉCNICAS DE RECOLECCIÓN DE DATOS VALIDES Y CONFIA	BILIDAD. 31
2.4. PROCEDIMIENTO DE ANALISIS DE DATOS	33
2.5. DESCRIPCIÓN DEL PROCESO	35
2.6. CRITERIO ÉTICOS	39
III. RESULTADOS Y DISCUSION	40
3.1. RESULTADOS	40
3.2. DISCUSIÓN	53
IV. CONCLUSIONES Y RECOMENDACIONES	55
4.1. CONCLUSIONES	55
4.2. RECOMENDACIONES	56
REFERENCIAS BIBLIOGRÁFICAS	57
ANEXOS	60

ÍNDICE DE TABLAS

Tabla 1: Resultados de análisis de propiedades-físicas-mecánicas del suelo.	40
Tabla 2: Cuadro de resumen de propiedades físicas y químicas del suelo ante la	
incorporación de CCA en diferentes % al suelo.	41
Tabla 3: Características mecánicas del suelo	46
Tabla 4: Contenido químico de la ceniza de cáscara de arroz	49
Tabla 5: Cuadro de Costos para obtención de Ceniza de Cáscara de Arroz	50
Tabla 6: Precio de ceniza por kilo.	51
Tabla 7: Análisis de beneficios	51
ÍNDICE DE FIGURAS	
Fig. 1: Análisis de la investigación	34
Fig. 2: obtención de muestras, excavación de calicatas.	35
Fig. 3: Proceso de Obtención de CCA	36
Fig. 4: Ensayos de granulometría	36
Fig. 5: Ensayos de contenido de humedad	37
Fig. 6: Porcentaje de Sales	37
Fig. 7: Realización de Ensayos de límites de Atterberg	38
Fig. 8: Realización de ensayos de Corte Directo	38
ÍNDICE DE GRÁFICOS	
Gráfico 1: Influencia de la Ceniza de Cáscara de arroz en la variación de Límite Líqu suelo.	
Gráfico 2: Variación del Límite plástico con la adición de CCA	

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

RESUMEN

Esta investigación evaluó la efectividad de la ceniza de cáscara de arroz (CCA) como estabilizante para suelos arcillosos plásticos, con el objetivo de mejorar sus propiedades geotécnicas y determinar la viabilidad técnica y económica de su uso. Se analizó el efecto de diferentes proporciones de CCA (5%, 10%, 15%, 20% y 25%) sobre las propiedades físicas y mecánicas del suelo, incluyendo la plasticidad, la compactación (Prueba Proctor Estándar y Modificado), y la resistencia (California Bearing Ratio - CBR). Además, se estudió el comportamiento del suelo estabilizado bajo ciclos de humedecimiento y secado para evaluar su durabilidad. Los resultados demostraron que la adición de CCA mejora significativamente las propiedades geotécnicas del suelo arcilloso. Se determinó que la proporción óptima de CCA es del 20%, logrando un aumento considerable en el CBR y una disminución en la plasticidad y los cambios volumétricos del suelo. El análisis de los ciclos de humedecimiento y secado indicó una mejora en la resistencia del suelo estabilizado a la degradación por la acción del agua. Finalmente, la evaluación económica preliminar sugiere que el uso de CCA como estabilizante de suelos es una alternativa viable y sostenible, especialmente en regiones con alta disponibilidad de este subproducto agrícola. Esta investigación contribuye al conocimiento sobre la estabilización de suelos con materiales alternativos y promueve el uso de residuos agrícolas para la construcción sostenible.

PALABRAS CLAVE: Ceniza de cáscara de arroz, estabilización de suelos, construcción sostenible.

ABSTRACT

This research evaluated the effectiveness of rice husk ash (RHA) as a stabilizer

for plastic clayey soils, with the aim of improving their geotechnical properties and

determining the technical and economic feasibility of its use. The effect of different

proportions of RHA (5%, 10%, 15%, 20% and 25%) on the physical and mechanical

properties of the soil was analyzed, including plasticity, compaction (Standard and

Modified Proctor Test), and strength (California Bearing Ratio - CBR). In addition, the

behavior of the stabilized soil under wetting and drying cycles was studied to evaluate

its durability. The results showed that the addition of RHA significantly improves the

geotechnical properties of clayey soil. The optimal proportion of RHA was determined

to be 20%, achieving a considerable increase in the CBR and a decrease in the

plasticity and volumetric changes of the soil. Analysis of wetting and drying cycles

indicated an improvement in the resistance of the stabilized soil to degradation by the

action of water. Finally, the preliminary economic assessment suggests that the use

of CCA as a soil stabilizer is a viable and sustainable alternative, especially in regions

with high availability of this agricultural by-product. This research contributes to the

knowledge on soil stabilization with alternative materials and promotes the use of

agricultural residues for sustainable construction.

KEYWORDS: Rice husk ash, soil stabilization, sustainable construction.

11

I. INTRODUCCIÓN

A **nivel mundial** la contaminación es un tema que va ganando importancia con el transcurso de los años, Malasia [1] nos hace recordar los 17 objetivos sostenibles planteados por la ONU al 2030, dejando en claro que el sector construcción desempeña un rol importante por el sustancial crecimiento de este campo que debe ir de la mano con la sostenibilidad ambiental y bienestar social, debiendo ser la incorporación de materiales residuales que no contaminen el ambiente de vital importancia en este rubro permitiendo cumplir con el desarrollo de estos objetivos.

La incorporación de materiales biomasa o residuos agrícolas fomentarian la reduccion de residuos solidos en el planeta, en India la cascarilla de arroz es un producto residual que se encuentra en grandes cantidades en dicho país, que además al ser quemada produce un 20% de ceniza, siendo su principal componente el Sílice que se genera al ser quemado correctamente. Además la emisión Co2 [2] en este material es de cero, por lo que su uso ayuda a la sostenibilidad del medio ambiente. Su empleo en suelos puede ser una de las principales usos de este material; [3] la durabilidad de una estructura que reposa sobre arcillas expansivas siempre esta en duda debido al comportamiento del suelo en relación a las arcillas, ya que suelen presentar grietas, baches, surcos, y levantamientos de varios lugares. Por lo que la aplicación de CCA (CCA) como un aditivo para controlar la variación de volumen del suelo es de utilidad.

En el sector construcción siempre encontraremos terrenos con algún porcentaje de arcillas que pueden resultar perjudiciales debido a sus bajas

propiedades de resistencia. Pero tampoco pueden ser evitados, debiendo usarse diferentes productos para beneficiar las propiedades físicas del suelo, siendo el uso de residuos orgánicos como la cáscara de arroz la ayuda para reducir de la contaminación y disminución de basura que debe eliminarse [4], los suelos con presencia de arcillas suelen presentar bajas propiedades geotécnicas por lo que es necesario realizar tratamientos previos para que sean óptimos para la construcción, pero muchos de estos tratamientos han sido ineficaces al paso de los años [5].

Este tipo de suelos [6] son un gran desafío para la ingeniería ya que es difícil lograr estabilizarlos debido a su alto contenido de sulfatos, al ser tratados con estabilizadores a base de calcio llevan a la formación de ettringita que causa serios problemas en el suelo [7] En china un tercio del país se encuentra bajo una región de suelo expansivo, y debido a las limitaciones económicas, no es práctico omitir este material o reemplazarlo por otro material prestado, siendo lo más rentable es estabilizar estos suelos.

Por ello [8] la cáscara de arroz termina siendo un desperdicio que se genera en todo el mundo y puede causar serios problemas ambientales. La transformación de este producto y su aplicación en la ingeniería ayuda en el proceso de reciclaje sostenible de residuos de biomasa. Además, el uso de las cenizas puede mejorar el comportamiento del suelo en relación a la contracción, resistencia y comprensión, aportando beneficios económicos y ambientales.

En Arabia Saudita [9] los suelos reforzados con fibras muestran un buen comportamiento a nivel de subrasante para pavimentos, pero para los suelos

con presencia de arcillas requieren comprender la curva característica de suelo - agua no solo con fibras si no con la adición de cal u otros elementos para mejorar la unión entre las partículas de arcilla.

mientras que, en Benín [10], mencionan el trabajo sostenible mediante la valoración de recursos agrícolas en la construcción, las CCA son recursos locales que se generan de la eliminación de alrededor de 50000 toneladas de desechos que tienden a acumularse.

A **Nivel Nacional**, en la ciudad de Lima[11] se señala a la agricultura como una actividad económica del país, siendo la siembra de arroz uno de sus cultivos de mayor consumo, produciéndose aproximadamente 3 millones de toneladas, indicándose que de cada 1000kg de arroz cosechado 300kg (30%) es solo cáscara y al ser quemado se logra obtener 45kg (20%) de ceniza de este producto [12] que puede ser usado como agente estabilizador de suelos.

En Trujillo [13] se busca utilizar la CCA para solucionar la baja calidad y sostenibilidad de ladrillos artesanales, como refuerzo de las propiedades estructurales y reducir el impacto ambiental, siendo una alternativa accesible y viable para la construcción.

A **Nivel Local**, El MIDRAGRI [14] señala que La Región Lambayeque tiene proyectado hacia el 2025 destinar el 50% de sus cultivos a la siembra de Arroz. Razón por la que diferentes investigaciones han optado por el uso de este material como base de estudio en diferentes aplicaciones de la ingeniería, [15]como la elaboración de geopolímeros que han reflejado tener buenas características mecánicas con la CCA.

[16] La incorporación de CCA en aplicaciones de ingeniería es una alternativa sostenible para la problemática de la polución y manejo de residuos además de ser alternativas de bajo costo.

La presencia de suelos arcillosos, y la abundancia de desechos de cáscara de arroz, el uso de este producto transformado en ceniza para aprovechar sus bondades cementantes en la mejora de suelos a precios bajos y logrando una construcción sostenible, conlleva el uso de esta alternativa.

TRABAJOS PREVIOS

A **nivel mundial** En la investigación denominada "Embodied Energy of Rice Husk Ash for Sustainable Cement Production" [17] se tiene por objetivo la aplicación de cenizas de residuos del arroz como un sustituto del aglutinante de cemento, resultando que la ceniza bien tratada aporta alta energía incorporada para la elaboración del cemento, haciéndolo un elemento altamente sostenible para materiales de construcción, por tanto se recomienda el uso de este material como reemplazo viable del cemento, además de reducir el gasto de energía para su fabricación, proporcionará materiales de construcción más sostenibles.

En la investigación denominada "Stabilization of expansive soils with biomass bottom ashes for an eco-efficient construction" [18] cuyo objetivo es encontrar un nuevo uso para los desechos con gran potencial (CCA) derivado de sus propiedades técnicas, para mejorar las propiedades del suelo y minimizar la naturaleza expansiva de las arcillas expansivas, los resultados mostraron el potencial de las cenizas como estabilizador de arcillas expansivas

para infraestructuras civiles, concluyendo que la adición de este material cementoso reduce el comportamiento expansivo de las arcillas.

En la investigación denominada "Mechanical and Durability Properties of Aerated Concrete Incorporating Rice Husk Ash (RHA) as Partial Replacement of Cement" [19] se tiene por objetivo el evaluar el efecto usar ceniza de arroz para reemplazar de forma parcial el cemento en la fabricación de concreto aireado liviano. Para tal fin se empleó cemento portland tipo I, agregado fino y aluminio con material aireante. La ceniza fue agregada en proporciones de 0%, 2.5%, 5%, 7.5%, 10%, 12.5%, y 15% en proporción al peso, los resultados de dicha investigación demostraron la adición del 10% del material en la elaboración del hormigón celular fue beneficioso para la resistencia y durabilidad del producto.

La investigación denominada "Suitability of Rice Husk Ash (RHA) with lime as a soil stabilizer in geotechnical application" [20] se tiene por objetivo explorar las bondades de la ceniza de estudio, como un residuo agrícola, con cal como estabilizador del suelo; para tal fin se usaron muestras de suelo arcilloso altamente plástico con porcentajes de ceniza en 5%, 10%, 20% y 30%, además de la cal en 10% y 20%, observándose variaciones en los índices de plasticidad y mecánica del suelo, encontrado que 10% de ceniza de arroz y 20% de cal fueron optimas en el estudio, notándose el aumento de la resistencia a la compresión libre y ángulo de fricción de un 54.05% a 60.48% y reduciendo el índice de plasticidad, por lo que se demostró que el uso de ceniza y cal mejoraron la mecánica del suelo e índice de plasticidad de manera positiva.

En la investigación denominada "Improvement of Expansive Soils Stabilized with Rice Husk Ash (RHA)" [21] se busca estabilizar un suelo con presencia pobre de arcilla con cenizas de arroz en proporciones el 0%, 3%, 6% y 9%, para ello al suelo se agregó la ceniza como material estabilizador, realizándose diversas pruebas como índices de plasticidad, SPCT, contenido de humedad, entre otras, demostrando que la incorporación de este material se redujo la gravedad especifica logrando que el índice de plasticidad disminuyera, enriqueciendo las propiedades físicas del suelo, donde los contenidos de humedad se mostraron constantes, siendo el resultado más importante que el CBR aumento en el 130% con la incorporación del 6% de ceniza.

En su estudio "Modification of Mechanical Properties of Expansive Soil from North China by Using Rice Husk Ash" [22] - China, tiene por objetivo adicionar ceniza de estudio en el suelo para mejorar el comportamiento del suelo expansivo en la construcción de edificios. Para ello se adiciono este producto en cantidades del 0%, 4%, 8%, 12% y 16% en relación al suelo, realizándose pruebas de índice de plasticidad, compactación, consolidación, CBR. Dando como resultado que el mejor porcentaje de adición fue en 16%, indicando una disminución en la conductividad hidráulica, relación de vacíos y la consolidación. Concluyendo que la incorporación de cenizas es útil pata proporcionar una base adecuada para el tratamiento de suelos expansivos ya que se adecuan las condiciones para la construcción de una infraestructura.

Este artículo realizado en Japón denominado "Effects of controlled burn rice husk ash on geotechnical properties of the soil" [23] tiene por objetivo

aclarar los efectos de la incineración controlada de la cáscara de arroz en las propiedades geotécnicas del suelo tipo A-2-4. Para esto se realizaron pruebas para la compactibilidad, capacidad de carga, resistencia a la compresión y la resistencia al corte, con adiciones del 0%, 5%, 10% y 15% de ceniza obtenida. Dando por resultado que el uso del 5% de ceniza mejoró las propiedades del suelo, concluyendo que la integración de cenizas en una quema a temperatura controlada mejoró notablemente las propiedades geotécnicas del suelo y un mejor desarrollo en la parte microestructural.

En Japón el artículo denominado "Dimensional influence of basalt fiber reinforcements on the consolidation behaviour of rice husk ash stabilized soils" [24] busca evaluar la contribución de la fibra de basalto en la comprensibilidad e hinchamiento de suelos estabilizados con la ceniza de estudio y cemento. Agregándose una dosis de fibras de basalto en longitudes de 3mm, 6mm y 12mm, CCA en proporciones de 5%, 10%, 15% y cemento en 3% efectuándose diversas pruebas que demostraron que el uso de fibras en 12mm, cenizas al 5% y cemento al 3% mejoro las presiones de fluencia máxima y resistencia al hinchamiento excesivo.

El artículo denominado "Effect Of Different Types Of Rice Husk Ash On Some Geotechnical Properties Of Cement-Admixed Soil" [25] busca investigar el efecto de dos tipos de CCA en las pruebas de límites de atterberg, resistencia a la compresión no confinada y modulo elástico, en la combinación de suelo y cemento. Para la ejecución de este estudio se tomaron dos tipos de cenizas que se obtuvieron mediante quema abierta y quema controlada, se usó cantidades de 0% a 15% y 10% de cemento al peso seco del suelo; lo

resultados indican que los tipos ceniza influencio de manera positiva en las propiedades del suelo, siendo que la ceniza en quena controlada obtuvo mejores efectos en la mejora de las características mecánicas del suelo. Se concluye que el uso de un 12% de ceniza a quema controlada puede aumentar en un 50% las propiedades del suelo.

A **nivel nacional** en Perú, la investigación denominada "Stabilization of clayey soil for subgrade using rice husk ash (RHA) and sugarcane bagasse ash (SCBA)" [11], se buscó lograr la mejora del suelo con arcillas usado como subrasante mediante la adición de ceniza arroz y bagazo de caña. Agregándose al suelo las cenizas en porcentajes del 5%, 7.5% y 10% en relación al peso, dando como solución la reducción de la expansión del suelo, además la densidad seca máxima aumenta, el mejor resultado obtenido en CBR fue de 33.7% con el reemplazo de mezclas al 5%, concluyendo que el uso del 5% de estas cenizas contribuyen en la mejoría de la estabilización del suelo, además el uso de estos residuos orgánicos ayuda a reducir los niveles de polución.

La investigación denominada, "Stabilization of a Subgrade Composed by Low Plasticity Clay with Rice Husk Ash" [12] que tiene por objetivo determinar las bondades de la ceniza de cascarilla de arroz para mejorar la subrasante, para lo cual se realizaron diversos ensayos para determinar índices de plasticidad, y CB, luego de la realización de estas pruebas se determinó que las cenizas en el suelo redujo la densidad seca y aumento el contenido de humedad, además de un incremento del CBR de 4.30% al

20.70% frente a una dosificación del 20% de CCA en el suelo. Concluyendo que el empleo de la ceniza enriquece las propiedades geotécnicas del suelo.

A **nivel local** la investigación denominada "Influence of rice husk ash (RHA) with gypsum and ichu fibers in the processing of geopolymers" [15] tiene por objetivo estudiar la mecánica y microestructura de geo polímeros con CCA, yeso y fibra ichu para esto se fabricaron goepolimeros a base de 8, 10, 12 y 14% de ceniza, 10, 20, 30, 40 y 50% de yeso y 0.5, 1.0, 1.5, y 2.0% de fibra, dando como resultado que la mejor composición fue 12% de ceniza, 20% de yeso y 1.5% de fibra que lograron una mejora en las pruebas de compresión, flexión y tracción, demostrado que el uso de estos materiales mejoran la calidad del producto final para aplicaciones de ingeniería.

El estudio titulado "Elaboración y caracterización de ladrillos elaborados con adición de cascarilla de arroz calcinada" [26] busca elaborar ladrillos con las cenizas de estudio, para dicho trabajo se realizó la incorporación de 5%, 10% y 15% de ceniza a la fabricación de ladrillos, y realizando las pruebas establecidas en la NTP 399.61, mostrando en la pruebas de compresión y absorción la concentración de ceniza afecto positivamente en la absorción del agua, concluyendo que la incorporación de solo el 5% indico un gran potencial para la producción de ladrillos de cemento tal y como se establecen en la NTP-399.601.

en su investigación titulada "Estudio De Las Propiedades Físicas Y Mecánicas Del Concreto Usando Ceniza De Cáscara De Arroz Y Pet" [16] busca evaluar los efectos de la ceniza de investigación y el tereftalato de polietileno en las propiedades del concreto, para ello se elaboró diferentes

mezclas de concreto en diferentes proporciones de ceniza y polietileno evaluando las propiedades físicas y mecánicas, los resultados indicaron que el uso de estos materiales en proporciones optimas, mejora la resistencia a la compresión y reducción de permeabilidad, concluyendo que el agregado de estos materiales tiene potencial en la mejora del concreto.

TEORÍAS RELACIONADAS AL TEMA

Respecto a las **Teorías Relacionadas Al Tema**; se tiene a las **Cenizas** De Cascarilla De Arroz - CCA; [27] La búsqueda de materiales alternativos y las diferentes aplicaciones de la biomasa ha aumentado en los últimos años. En Suramérica se puede generar el aprovechamiento de los materiales agrícolas. La biomasa ha mostrado múltiples beneficios como aprovechamiento energético, reducción de emisión de gases, y múltiples usos en el campo de la construcción. [28] La cascarilla de arroz está conformada por Celulosa y Sílice, posee una diversidad de propiedades físicas y químicas que se precisan estudiar, para ser usadas en el sector construcción es necesario conocer la composición química, humedad y poder calorífico. La composición química de los residuos del arroz varía según la muestra, pues estas se determinan según el clima, condición geográfica y el tipo de arroz. Conformada por Sílice y compuestos orgánicos como Celulosa y Lignina. La cantidad de Sílice en las cenizas de base de estudio se encuentra entre 93.54% – 98.14%, pudiendo ser usado como material de construcción. La Sílice es una materia alternativa para su uso en la construcción siendo relativamente económica [29]. Este material será utilizado como aditivo por sus propiedades puzolánicas, para estabilizar suelos con alto contenido de arcillas expansivas.

Técnicas de incineración: Estudios experimentales demostraron que se espera obtener materiales no cristalinos ya que estos no son contaminantes y se puede obtener mayor cantidad de Sílice, a diferencia del cristalino que se considera un material pobre y dañino. [30]; Calcinación a campo abierto: Técnica realizada en recintos circulares de ladrillos de 16 metros de diámetro, con una altura de 2.5 metros, obteniéndose una ceniza negra o blanca, la cual debe ser extraída cada cierto tiempo. Esta técnica no es recomendada porque no se puede controlar las temperaturas de incineración. [30]; Calcinación en hornos: Esta técnica consiste en poner paredes de ladrillos permitiendo el acceso del aire, elaborada con una malla metálica fina que permite el acceso de aire y evita el ingreso de ceniza. [30]; Calcinación en lecho fluido: Técnica que reside en un horno con cámara de combustión de acero con un acceso donde el paso del aire es controlado a través de un plato perforado que se encuentra localizado en la base de la cámara, este debe ser recalentado a 500°C, la temperatura debe ser controlada[30]. Para obtener un material adecuado se debe controlar que la temperatura de calcinación no sobrepase los 700°C, caso contrario las propiedades del material obtenido será pobre, y no obtendremos los resultados esperados. [30]

Suelos Con Presencia De Arcillas; los suelos están formados por cuatro principales elementos que son: agua, aire, materia mineral y orgánica. Las dos últimas generalmente están constituidas por pequeñas rocas y diferentes minerales, siendo las más importantes: gravas, arenas, limos y arcillas [31]. Los suelos con presencia de arcillas son aquellos que contienen una proporción significativa de partículas de arcilla, que son partículas minerales muy finas (menores a 0.002 mm de diámetro). Estas partículas

tienen una gran superficie específica y una estructura laminar, lo que les confiere propiedades únicas que influyen significativamente en el comportamiento del suelo. Las arcillas son conocidas por su plasticidad cuando están húmedas y su capacidad para retener agua [32]. Las arcillas insaturadas cambian su volumen debido a su contenido de humedad. Cuando una estructura impide el movimiento del suelo, este desarrolla una presión de hinchamiento contra la estructura. Muchas estructuras livianas ubicadas en estos suelos sufren degradaciones limitando su funcionalidad y generando costos adicionales en su rehabilitación. [33]

Problemas de suelos con presencia de Arcillas: expansividad; la presencia de arcillas del tipo montmorillonita resultan ser expansivas. Las que al absorber agua tienden a expandirse, llegando a ejercer presiones considerables sobre las estructuras, mientras que al secarse estas se contraer pudiendo generar asentamientos diferencial y daños a las cimentaciones. [34]; Baja capacidad portante; los suelos con presencia de arcillas presentan un abaja capacidad portante, lo que dificulta la construcción de cimientos estables. La baja resistencia al corte de las arcillas puede provocar fallas por deslizamiento; Alta compresibilidad; la presencia de estas arcillas provoca la consolidación baja carga, provocando asentamientos a largo plazo. Siendo problemático para construcciones de gran magnitud. Permeabilidad baja; esto dificulta el drenaje del agua, lo que puede aumentar la presión de poros y reducir la estabilidad del suelo. [35] Sensibilidad al agua; un pequeño cambio de humedad puede transformar el suelo arcilloso a uno blando y poco resistente.

Caracterización de Minerales: Las arcillas básicamente son conformadas por hidratos, silicatos de aluminio y raramente por silicatos de magnesio, hierro y otros metales. La estructura cristalina de estos minerales dispone sus átomos en laminas como la Silíca y Alumínica. [36]; Montmorillonita [(OH)₄ Si₈ Al₄ O₂₀.nH₂O]; Este es un mineral común de las arcillas [36] que posee espacios entre las láminas que absorben el agua provocando la expansión del suelo. Las arcillas con alto porcentaje de montmorillonita conllevan a la búsqueda de soluciones para reducir posibles fallas estructurales en obras construidas o proyectadas sobre estos suelos. [31]; Caolinitas (Al₂ O₃. 2Si O₂. 2H₂O); esta arcilla está formada por una lámina silícica y una alumínica. La unión de las partículas es tan firme que impide el ingreso de agua entre estas. Por tanto, estas son estables al de agua. [36]; Ilitas [(OH)₄. K_v (Si_{8-v}. Al_v) (Al₄. Fe. Mg₄, Mg₄) O₂₀ con y, igual a 1.5]; su conformación interna tiende a moldear cúmulos de materia, reduciendo el área comprometida al agua por unidad de volumen, por lo que su crecimiento es menor a las que presentan montmorillonita, estas arcillas tienen un comportamiento mecanice más favorable para obras. [36]

Propiedades Físico – Químicas: Color, es importante para determinar rasgos del suelo, puesto que un color oscuro muestra la presencia de materia orgánica, mientras que un color claro muestra la presencia de carbonatos y yesos, mayormente los suelos con arcillas muestran un color café oscuro con pequeños cristales de yeso [31]; Superficie Específica, se explica como el vínculo entre la superficie de partículas encontradas y la unidad de masa o volumen (m²/m³, m²/gr correspondiente), por lo que a un menor tamaño de partículas se tendrá más superficie específica. Las partículas de arcilla por su

forma laminada presentan alta superficie específica, ya que posee mayor cantidad de montmorillonita [31]; Floculación y Dispersión, estas propiedades dependen principalmente de la atracción y repulsión entre partículas cercanas entre sí dentro de un medio líquido. Cuando mayor sea la fuerza de atracción a la de repulsión, las partículas se moverán entrando en contacto formando partículas de mayor tamaño a esto se le denomina floculación. Pero cuando sucede lo contrario, las fuerzas serán repulsivas produciendo la separación de particular [31]. Cuando las partículas de las arcillas expansivas están en estado floculado, influye en la capa absorbida de agua y espesor, produciendo un hinchamiento a mayor escala; Carga superficial, Las arcillas expansivas que tienen gran cantidad de montmorillonita, tienen alta superficie específica, lo que lleva a tener mayor carga negativa haciéndose más susceptibles para la atracción de moléculas de aqua, teniendo como consecuencia la separación de láminas o hinchamiento del suelo. [31]; Hidratación e hinchamiento, La hidratación tiene más importancia en las arcillas con presencia de montmorillonita ya que se genera mayor inestabilidad en sus partículas cuando hay presencia de agua. La hidratación y deshidratación del suelo dependen de la naturaleza de los cationes y carga de láminas; cuando estas entran en contacto con el agua resulta en la disociación y dispersión de las láminas produciendo el hinchamiento, es decir cuando hay una presencia de láminas silícicas incrementa la atracción de moléculas de agua, aumentando el volumen y por ende la presión de expansión, llegando a valores tan altos que afectarían las estructuras de cualquier edificación [31]; Plasticidad, esta propiedad es característica de los suelos finos, la cual se produce por el agua, el cual actúa como un agente de lubricante entre las partículas, facilitando el deslizamiento entre las mismas. Las arcillas presentan alta plasticidad debido a la morfología de las láminas, tamaño de partículas, y su alta capacidad de expansión, esta es determinada por los límites de Atterberg, pudiendo determinar el estado del comportamiento del suelo, como: Sólido, Semisólido, plástico y semilíquido. [31]. El índice de plasticidad (IP) nos permitirá conocer el estado del suelo, para ello es importante conocer el límite líquido y plástico, la diferencia de estos nos permite obtener el IP. Para la obtener el índice de plasticidad (IP) se debe conocer la diferencia de límite líquido y límite plástico [31].

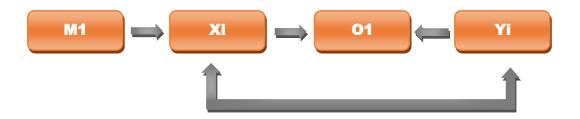
Tipo De Estabilización De Suelos, el mejoramiento de suelos pone a prueba la aplicación de los conocimientos de ingeniería, permitiendo así el desarrollo de diferentes proyectos en terrenos problemáticos. Para la estabilización de los suelos se emplean productos químicos o tratamientos físicos. Dependerá de las características y propiedades que necesiten ser mejoradas para buscar un método adecuado de estabilización [31]. Las propiedades que requieren mayor atención para el mejoramiento de suelos son: Resistencia, permeabilidad, durabilidad, comprensibilidad, y estabilidad volumétrica. [37]; Estabilización mecánica: Consiste en mejorar un suelo sin afectar las propiedades químicas. Compactación con Maquinaria: Es uno de los más usados, pues permite eliminar los vacíos del suelo, mejorando su densidad, estabilidad y capacidad de carga, entre otras. Este tipo de estabilización se aplica para terraplenes, pavimentos, diques, presas de tierra y mejoramiento del suelo para cimentaciones [37]: las maquinas que se emplean para estabilizar suelos son: Apisonador, Rodillo vibratorio, Rodillo pata de cabra, placa compactadora. a) Estabilización Física: Esta se produce al mezclar uno o varios suelos con propiedades adicionales, juntos con otros materiales pétreos con buena granulometría para estabilizar los suelos [31]; b) Estabilización Química: Esta técnica usa sustancias químicas en el suelo a mejorar, generando cambios en la estructura química del suelo. Las sustancias más usadas son: cemento, puzolanas, cal, polímeros, entre otras [37].

Criterios para la dosificación de cenizas de cascarilla de arroz con el suelo expansivo: La dosificación de cenizas con el suelo expansivo se tomará de las revisiones bibliográficas previas. Las cuales mencionan la adición de este material en porcentajes de 5%, 10%, 15%, 20% y 25% en relación con el suelo a estabilizar.

laboratorio: Granulometría: lα Distribución Ensayos de Granulométrica nos permitirá obtener la distribución del suelo por el tamaño de sus partículas, permitiéndonos clasificar las muestras de suelos que usaremos, además del material que usaremos como aditivo; Límites de Atterberg: Permitirá describir la consistencia del suelo, y los estados por los que tiene pasar por los cambios del contenido de agua. Este consiste en diferentes tratamientos al suelo que permitieran obtener valores para conocer el líquido plástico, líquido e índice de plasticidad; Clasificación de suelos: La clasificación permitirá mostrar las características del suelo, indicando lo principal y sin extenderse en la descripción de este. Los ensayos granulométricos y límites de Atterberg facilitan la clasificación de suelos. Los sistemas de clasificación AASHTO y SUCS son los más utilizados;

El **problema general** del estudio es: ¿Cuál es el efecto de las cenizas de cascarilla de arroz en la estabilización de suelos con presencia de arcillas?

La **Hipótesis General** fue: La incorporación de cenizas de cascarilla de arroz lograra estabilizar los suelos con presencia de arcillas.


OBJETIVOS

Dentro del **Objetivo General:** Evaluar los efectos de estabilización de suelos con presencia de arcillas plásticas en la variación de porcentaje de cenizas de cascarilla de arroz, para fines de edificación. Y sus **Objetivos Específicos: OE1:** Determinar las propiedades físicas y mecánicas del suelo con presencia de arcillas. **OE2:** Identificar la proporción óptima de 5%, 10%, 15%, 20% y 25% de CCA que maximice el mejoramiento de las propiedades geotécnicas de las arcillas. **OE3:** Analizar el comportamiento de los suelos estabilizados con CCA. **OE4:** Evaluar la viabilidad técnica y económica del uso de CCA como estabilizador de suelos con presencia de arcillas plásticas.

II. MATERIALES Y MÉTODO

El tipo de investigación usado será aplicada ya que se busca la utilización de las CCA para la estabilización de suelos con presencia de arcillas, es decir se centra en la resolución practica de un problema. [38] y cuantitativa ya que permite establecer mediciones y análisis numéricos en los ensayos realizados.

Además, se usa un método experimental pues se centra en la manipulación de la variable independiente (ceniza) para observar su impacto en la variable dependiente (suelo), permitiendo observar el cumplimiento de los objetivos. [39] que tiene como finalidad evaluar la relación entre dos variables: Porcentaje de Ceniza de Cáscara de Arroz a utilizar y Estabilización de Suelos con arcillas plásticas para fines de edificación.

M1: Muestra a utilizar en la investigación

Suelos con presencia de arcillas plásticas

Xi: Variables Independientes

Cenizas de Cascarilla de Arroz (5%, 10%, 15%, 20% y 25%)

O1: Resultados

Yi: Variables Dependientes

Estabilización de suelos

2.1. VARIABLES Y OPERACIONALIZACIÓN

VARIABLES

Variable Independiente

La variable independiente identificada es la CCA la cual será incorporada en porcentajes del 0%, 5%, 10%, 15%, 20%, 25%, los cuales se basan en investigaciones ya realizadas en suelos problemas con presencia de arcillas, las cuales indicaron que el empleo de este material enriquece las propiedades mecánicas del suelo.

Variable Dependiente

La variable dependiente será el material que será sometido a pruebas mediante la incorporación de CCA, para ser modificada. En esta investigación dicha variable será el suelo de un sector del distrito La Victoria – Chiclayo, que se caracteriza por la presencia de arcillas plásticas.

2.2. POBLACIÓN Y MUESTRA

2.2.1. Población

La población empleada para la investigación se localiza en el distrito de La Victoria - Chiclayo, el cual presenta suelos con presencia de arcillas.

2.2.2. Muestra

La muestra representa una parte de la población, en esta investigación la muestra fue tomada de un sector del distrito La Victoria con la excavación de 3 calicatas que tendrán una profundidad 3.00 metros, según se indica el RNE para habilitaciones urbanas con viviendas unifamiliares de 3 pisos.

Tabla 02. Porcentajes de estudio

Muestras	Combinación
M1	Suelo + 5% de CCA
M2	Suelo + 10% de CCA
M3	Suelo + 15% de CCA
M4	Suelo + 20% de CCA
M5	Suelo + 25% de CCA

Fuente: Elaboración Propia

2.3. TÉCNICAS DE RECOLECCIÓN DE DATOS VALIDES Y CONFIABILIDAD.

Técnicas de recolección de datos:

La recolección de datos se centrará en la obtención de información cuantitativa sobre las propiedades geotécnicas de las arcillas plásticas antes y después del tratamiento con cenizas. Para ello, se emplearán las siguientes técnicas:

Ensayo de Compresión Simple (ASTM D2166): Este ensayo permitirá determinar la Resistencia a la Compresión Simple (RCS) de las muestras de arcilla, un indicador clave de la resistencia del suelo. Se realizará siguiendo las normas ASTM D2166. [32]

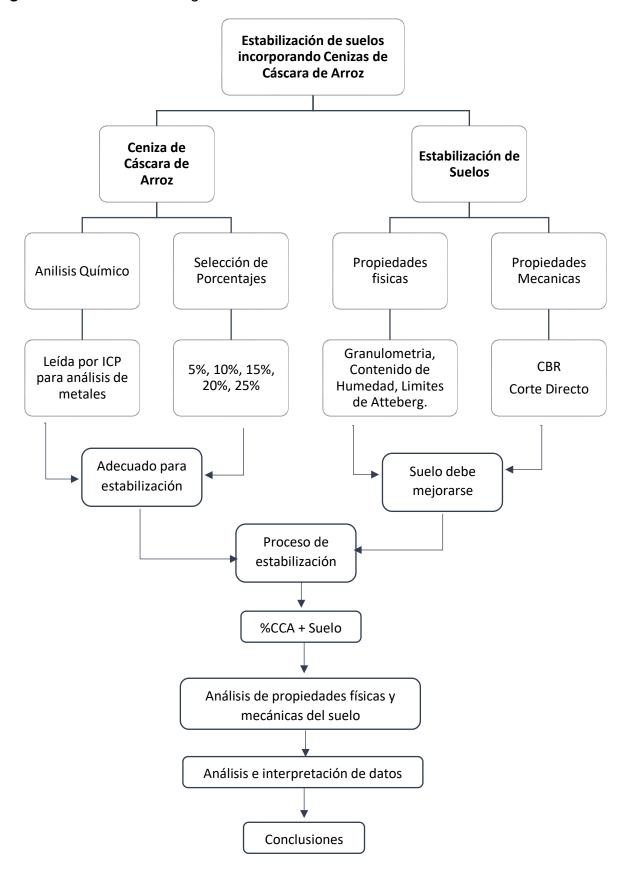
Ensayo de Límites de Atterberg (ASTM D4318): Se determinarán el Límite Líquido (LL) y el Límite Plástico (LP) de las muestras, lo que permitirá calcular el Índice de Plasticidad (IP). Estos parámetros son fundamentales para caracterizar la plasticidad de las arcillas. Se seguirá la norma ASTM D4318. [32]

Análisis Químico: Se realizará un análisis químico de la CCA para determinar su composición, incluyendo el contenido de SiO2. [32]

Ensayo de Granulometría por Tamizado: Se realizará un análisis granulométrico de la CCA mediante tamizado para diagnosticar la distribución del tamaño de las partículas. [32]

Validez y confiabilidad

Validez: Para asegurar la validez de los datos, se muestra la evaluación de resultados por especialistas que han validado y constatado dichos ensayos mediante una ficha adjunta.


Confiabilidad: La veracidad, autenticidad y validación de los resultados de esta investigación se muestra los resultados emitidos por laboratorios que muestren su acreditación.

2.4. PROCEDIMIENTO DE ANALISIS DE DATOS

Los procesos empleados para el estudio son de tipo experimental donde se podrá cuantificar, medir y registrar los resultados obtenidos de los ensayos, que a su vez serán comparados con las normativas nacionales (NTP) y normas internacionales a su vez sus características iniciales y con adición de polvo de vidrio serán comparadas para evaluar su desempeño.

Los ensayos realizados siguen una secuencia de procesos, puesto que están normanos, y para su adecuado procedimiento y resultados fehacientes se tiene que respetar los criterios establecidos para cada uno de los ensayos a realizar.

Fig. 1: Análisis de la investigación

2.5. DESCRIPCIÓN DEL PROCESO

OBTENCIÓN DE LOS MATERIALES:

Se obtuvieron las muestras de suelo del distrito la Victoria, provincia de Chiclayo, departamento de Lambayeque. Se realizo la calicata a 1.50 m. de profundidad tal y como se indica en la E.050, para el EMS para edificaciones no mayores de 3 pisos.

Fig. 2: obtención de muestras, excavación de calicatas.

OBTENCIÓN DE LA CENIZA DE CÁSCARA DE ARROZ.

La elaboración de la CCA, se obtuvo la cascara de arroz en los molinos de Lambayeque. El proceso de calcinación de la cáscara se realizó mediante quema controlada a una temperatura de 700°. El proceso de quema paso por un lapso de 7 a 8 horas. Y se controló la temperatura cada media hora con el pirómetro para mantener una temperatura constante.

Fig. 3: Proceso de Obtención de CCA

ENSAYOS DE EMS CON LA ADICIÓN DE CCA.

Los ensayos a las muestras de suelo obtenidas se realizaron en porcentajes del 0%, 5%, 10%, 15%, 20% y 25% de CCA. A las cenizas obtenidas se les realizo un análisis químico para conocer las cantidades de sílice y calcio que estas obtuvieron.

Se realizaron los ensayos del comportamiento físico y mecánico a las muestras preparadas con las CCA, de estos ensayos se obtuvo el mejor % de cenizas a incorporar para la mejora de las propiedades del suelo de estudio.

Fig. 4: Ensayos de granulometría

Fig. 5: Ensayos de contenido de humedad

Fig. 6: Porcentaje de Sales

Fig. 7: Realización de Ensayos de límites de Atterberg

Fig. 8: Realización de ensayos de Corte Directo

2.6. CRITERIO ÉTICOS

La presente investigación es elaborada siguiendo los parámetros establecidos por la Universidad Señor De Sipán, asegurando la integridad, honestidad y el respeto en todas las etapas del proceso. Los principios éticos que guíen este estudio son los siguientes: (Art. 5 y Art. 6)

Honestidad y Transparencia: La recolección, análisis e interpretación de datos se realizarán con total honestidad. Los resultados, tanto positivos como negativos, se presentarán de manera transparente, evitando cualquier manipulación o falsificación.

Respeto a la Propiedad Intelectual: Se respetarán los derechos de autor y la propiedad intelectual. Se citarán correctamente todas las fuentes, incluyendo publicaciones, informes y cualquier otro material consultado.

Impacto Ambiental y Sostenibilidad: Considerando el enfoque de la investigación en la incorporación de las cenizas de estudio, un subproducto agrícola, se promoverá la sostenibilidad ambiental mediante la valorización de residuos.

Responsabilidad Social: Se reconoce la responsabilidad social de la investigación. Los resultados se difundirán a la comunidad científica y a la sociedad, contribuyendo al conocimiento y al desarrollo sostenible.

Cumplimiento de la Normativa: Se cumplirá con todas las normas y regulaciones pertinentes, incluyendo las de la Universidad Señor de Sipán, y las leyes nacionales e internacionales sobre investigación.

III. RESULTADOS Y DISCUSION

3.1. RESULTADOS

RESULTADOS OBTENIDOS PARA EL OE 01:

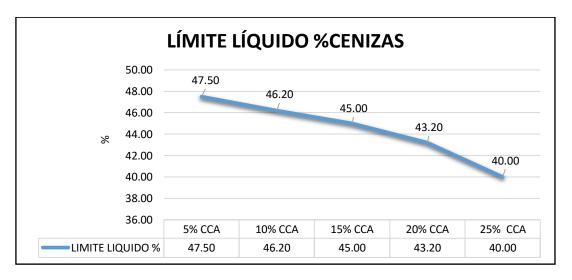
Referente a la caracterización física-mecánica del suelo obtenido en el Distrito de la Victoria, determinadas por la realización de ensayos de laboratorio mostro:

Tabla 1: Resultados de análisis de propiedades-físicas-mecánicas del suelo.

MATERIAL	SUELO NATURAL
PROFUNDIDAD (M)	0.20 a 3.00
HUMEDAD NATURAL.	14.66%
SALES TOTALES.	0.139%
LIMITE LÍQUIDO (%).	49.6
LIMITE PLÁSTICO (%).	24.3
ÍNDICE PLÁSTICO (%).	25.3
COHESIÓN (KG/CM²)	0.40
ANGULO DE FRICCIÓN INTERNA (°)	11.90
DENSIDAD NATURAL (GR/CM³)	1.850
DENSIDAD SATURADA (GR/CM³)	1.982
CAPACIDAD DE CARGA ULTIMA O CARGA LIMITE ΣU KG/CM ²	2.54
CAPACIDAD DE CARGA ADMISIBLE ΣADM KG/CM²	0.85
MÁXIMA DENSIDAD SECA (GR/CM³)	1.76
OPTIMO CONTENIDO DE HUMEDAD (%)	14.73
C.B.R. AL 95%	6.80
CLASIFICACIÓN SUCS	CL
CLASIFICACIÓN AASHTO	A-7-6

Los valores obtenidos para Límites de Atterberg, Granulometría, entre otros permite clasificar el suelo por SUCS (CL) sugiriendo este tipo de suelo como una arcilla inorgánica de baja compresibilidad y baja a media plasticidad que es problemática al contacto con el agua y por AASHTO (A-7-6) sugiere que es un suelo arcilloso de calidad regular, con plasticidad media y un CBR que señala la necesidad de mejoramiento. Estos suelen indican la necesidad de ayuda y servirán de base para el uso de la CCA.

Referente al OE02, identificar la proporción óptima de 5%, 10%, 15%, 20% y 25% de CCA que maximice el mejoramiento de las propiedades geotécnicas de los suelos, se ha obtenido:


Tabla 2: Cuadro de resumen de propiedades físicas y químicas del suelo ante la incorporación de CCA en diferentes % al suelo.

Material	CENIZA DE				
	ARROZ 5%	ARROZ 10%	ARROZ 15%	ARROZ 20%	ARROZ 25%
Profundidad (m)	0.20 a 1.50				
Humedad Natural.	14.62%	14.20%	15.26%	13.19%	14.91%
Sales Totales.	0.134%	0.136%	0.132%	0.132%	0.135%
Densidad Natural	1.807	1.817	1.817	1.869	1.871
(gr/cm³)					
Densidad Saturada	1.930	1.934	1.936	1.975	2.003
(gr/cm³)					
Máxima Densidad	1.80	1.83	1.83	1.85	1.86
Seca (gr/cm³)					
Optimo Contenido de	14.13	14.93	15.15	14.06	14.82
Humedad (%)					
C.B.R. al 95%	7.70	8.05	8.74	9.06	9.41
Clasificación SUCS	CL	CL	CL	CL	CL
Clasificación	A-7-6	A-7-6	A-7-6	A-7-6	A-7-6
AASHTO					

La tabla 02 muestra cambios en las principales propiedades del suelo, Estos resultados sugieren que la CCA es un buen estabilizante para este tipo de suelo, mejorando su resistencia sin modificar significativamente otras propiedades importantes. El aumento progresivo del CBR con el porcentaje de CCA indica que se podría explorar el uso de porcentajes aún mayores para optimizar la estabilización. Sin embargo, también se debe considerar el costo asociado a la adición de mayores cantidades de CCA.

A continuación, mostraremos los gráficos de las variaciones del comportamiento de las propiedades físicas del suelo, ante las adiciones de Ceniza de cáscara de arroz.

Límites de Atterberg:

Gráfico 1: Influencia de la Ceniza de Cáscara de arroz en la variación de Límite Líquido de suelo.

En el gráfico 01 se puede observar la tendencia a la disminución del límite plástico con el aumento de adición de CCA, esto sugiere que la adición de ceniza influye en la estructura del suelo, reduciendo la capacidad de las partículas de arcilla para retener agua.

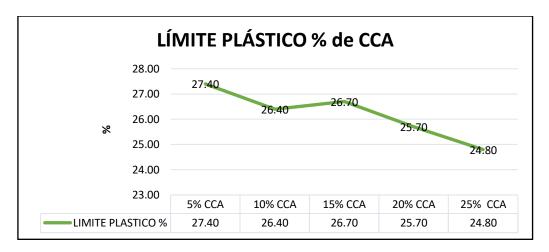


Gráfico 2: Variación del Límite plástico con la adición de CCA

En el gráfico 02 muestra la tendencia general de la disminución del límite plástico del suelo con el aumento de porcentaje de CCA con una ligera subida el porcentaje 15. Esta tendencia, aunque con algunas variabilidades, sugiere una reducción en el contenido de humedad en el cual el suelo se comporta plásticamente, esto combinado con los resultados del límite líquido, implica una mejora en la estabilidad del suelo, haciéndolo menos susceptible a los cambios de volumen por variaciones de humedad.

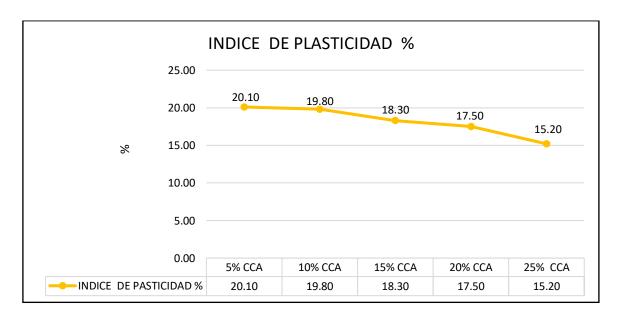
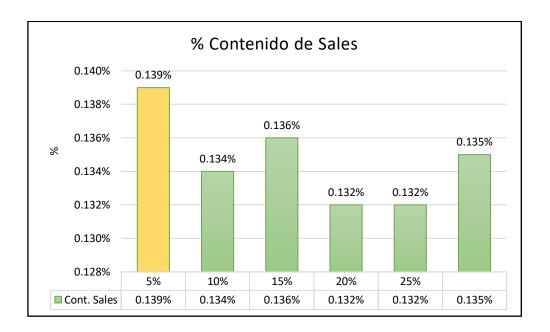



Gráfico 3: Efecto de la ceniza de cáscara de arroz en el índice de plasticidad.

El gráfico 03 muestra una tendencia decreciente en el índice de plasticidad con el incremento del porcentaje de ceniza de cáscara de arroz. Esta reducción indica una menor plasticidad del suelo, lo que indica un mejor comportamiento geotécnico.

Los gráficos presentados muestran la tendencia general de la influencia de las CCA en las características de plasticidad del suelo y mejoramiento potencial en la estabilización.

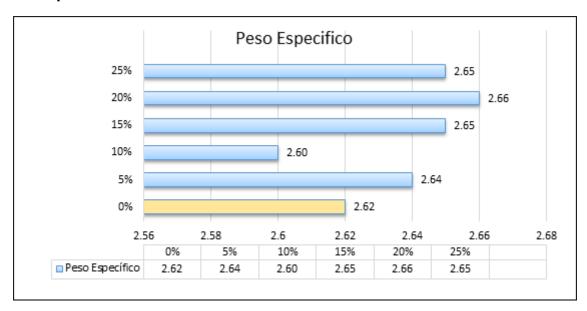

Contenido De Sales

Gráfico 4: cuadro comparativo de sales al 0%,5%, 10%, 15%, 20%, 25%.

En el gráfico 04 se observa la variación del contenido de sal a la incorporación de 0% al 25% CCA mostrando una tendencia particularmente estable, con fluctuaciones mínimas. Se puede apreciar una ligera disminución inicial al contenido de sales, seguido de un leve incremento en la adición del 25% de ceniza. La variación total del contenido de sal a lo largo del rango de porcentajes de ceniza estudiados es pequeña (0.007), lo que sugiere que la ceniza de cáscara de arroz tiene una influencia limitada en la salinidad del suelo dentro de este rango.

Peso Especifico

Gráfico 5: Variación de peso específico a la incorporación de Cenizas al 5%, 10%, 15%, 20%, 25%.

En el gráfico 05 de peso específico a la incorporación de cenizas del 5% al 25% muestra una tendencia general al ligero aumento, aunque con cierta fluctuación. Los cambios observados no son drásticos, lo que sugiere que, si bien la adición de la ceniza influye en el peso específico, el efecto no es pronunciado dentro de los rangos mostrados. El valor más alto se presenta con la adición del 20% de ceniza lo que resulta beneficioso para la estabilidad del suelo en la construcción de cimentaciones.

Lo datos mostrados de la variación en las propiedades físicas del suelo ante la incorporación de cenizas en el suelo nos indica que las adiciones del 20% y 25% pueden ser las más adecuadas.

Resultados para el OE 03:

Referente al objetivo 03 analizar el comportamiento de los suelos estabilizados con Ceniza de cáscara de arroz. Observamos el siguiente gráfico:

Tabla 3: Características mecánicas del suelo

	CENIZA DE ARROZ 5%	CENIZA DE ARROZ 10%	CENIZA DE ARROZ 15%	CENIZA DE ARROZ 20%	CENIZA DE ARROZ 25%
Cohesión	0.42	0.41	0.41	0.43	0.43
Angulo de Fricción Interna (°)	12.00	13.20	13.50	12.05	12.60
Capacidad de carga ultima o carga limite σu kg/cm²	2.74	2.80	2.80	2.82	2.83
Capacidad de carga admisible σadm kg/cm²	0.91	0.93	0.93	0.94	0.94

La tabla 03 muestra el efecto de la adición de ceniza de arroz (CCA) en las propiedades mecánicas del suelo, específicamente en la cohesión, el ángulo de fricción interna, y la capacidad de carga última y admisible. A continuación, analicemos las gráficas.

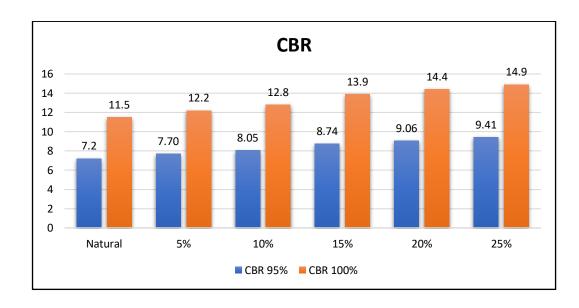



Gráfico 6: Máxima Densidad Seca VS Óptimo Contenido de Humedad

El grafico 06 indica que la máxima densidad seca aumenta con el porcentaje de CCA, alcanzando su máximo valor (1,86 g/cm³) con el 25% de adición de cenizas. Esto indica que la ceniza mejora la compactación del suelo. Sin embargo, el aumento en la máxima densidad sea es marginal entre el 20% (1,85 g/cm³) y el 25% (1,86 g/cm³).

En cuanto al óptimo contenido de humedad la tendencia no es tan clara. Aumenta del 5% al 15% de ceniza, luego disminuye al 20% y vuelve a subir al 25%. El valor más alto de óptimo contenido de humedad (15.15%) se observa con el 15% de ceniza, mientras que el valor más bajo (14.06%) se observa con el 20% de ceniza.

Idealmente se busca un porcentaje de ceniza que maximice la densidad del suelo y mantenga un contenido de humedad razonable, señalándose el 20% de ceniza como el más adecuado para la compactación y facilidad de manejo de campo.

CBR - Californian Bearing Ratio

Gráfico 7: CBR al 95% y 100% del suelo ante las adiciones de CCA

El gráfico 07 muestra dos tipos de barras que representan el CBR al 95% y al 100% de compactación en función del porcentaje de ceniza añadido. Ambas líneas

tienen una tendencia ascendente, lo que confirma visualmente la mejora del CBR con la incorporación de ceniza. Se observa una mayor pendiente en los primeros porcentajes de adición, lo que indica un mayor impacto de la ceniza en la mejora del CBR en esos rangos. La pendiente se reduce a medida que se acerca al 25%, sugiriendo que el beneficio adicional de añadir más ceniza podría ser menor. Este gráfico facilita la visualización del posible punto óptimo de adición de ceniza, que parece estar alrededor del 20-25%. La diferencia entre las dos líneas (CBR al 95% y 100%) se mantiene relativamente constante, mostrando que el efecto de la ceniza es beneficioso en ambos niveles de compactación.

Por los resultados tenidos podemos indicar que el porcentaje optimo es del 20% de adición de cenizas para mejor las propiedades geotécnicas del suelo.

RESULTADOS OBTENIDOS PARA EL OBJETIVO ESPECÍFICO 04:

Esta tesis resulta viable debido a que la cascarilla de arroz es un material común, además de que el arroz es uno de los principales productos agrícolas de la región Lambayeque. Si bien para el proceso de quemado fue complicado por no contar con equipos y materiales clave se tuvo que iniciar con la elaboración de un horno con paredes de ladrillo y adquisición de diferentes materiales para este proceso. A continuación, un análisis:

VIABILIDAD TÉCNICA

Las investigaciones previas y los ensayos realizados, nos indican las propiedades beneficiosas de la ceniza de arroz ante un correcto proceso de quema. Además, los análisis químicos nos señalan la cantidad de Sílice (SiO2), cuyo contenido muestra un efecto puzolánico que denota la resistencia y duración del

material, mostrando propiedades positivas para ser usado como aditivo en la estabilización de los suelos.

PROPIEDADES QUIMICAS DE LA CENIZA DE CÁSCARA DE ARROZ

Tabla 4: Contenido químico de la ceniza de cáscara de arroz.

PARAMETROS (mg/kg)	LCM	CA (mg/kg)
Silice	0.104	9787.6524
Magnesio	0.019	1256.8806
Estroncio	0.003	0.307
Titanio	0.004	0.3564
Potasio	0.051	4878.2566
Calcio	0.124	3558.2156
Zinc	0.018	19.8782

El análisis químico de la muestra de ceniza tratada por digestión acida, leída por ICP para la detección de metales. Revela una composición rica en sílice (Si) y potasio (K), con cantidades moderadas de calcio (Ca) y magnesio (Mg).

La alta concentración de sílice es el factor más relevante para la estabilización de suelos. La sílice amorfa presente en la CCA puede reaccionar con la cal libre del suelo en presencia de humedad, formando un gel cementicio que mejora la resistencia y durabilidad del suelo. Este proceso, conocido como reacción puzolánica, es fundamental para el mecanismo de estabilización.

ANÁLISIS DE PROPIEDADES FÍSICAS:

Plasticidad: Los límites de Atterberg se determinaron mediante la norma ASTM D4318, que demostraron una disminución de los tres parámetros ante la mayor adición de CCA, siendo las proporciones del 20% y 25% las que mejor indicaron reducción en los índices de plasticidad.

Compactación: Los ensayos realizados en de Proctor modificado (ASTM D1557) para determinar la Máxima Densidad Seca y el Óptimo Contenido de Humedad. Se observó un aumento en la Máxima Densidad Seca y variación en el Contenido de Humedad con el aumento del porcentaje de CCA.

Resistencia: La resistencia del suelo mejorado se evaluó mediante ensayos de CBR (ASTM D1883) y compresión no confinada (ASTM D2166). Los resultados indicaron un incremento significativo en el CBR y la resistencia a la compresión con el aumento del porcentaje de CCA. Siendo las adiciones del 20% y 25% de ceniza las que mejores resultados mostraron.

Además, los ensayos de corte directo y compactación ante la adición de los diferentes porcentajes de ceniza de cáscara de arroz, determinó un aumento en la Capacidad de carga del suelo ante mayor adición de Cenizas. La interacción de las cenizas con el suelo genera un mejor acomodo de las partículas logrando una mayor estabilización del suelo. Generando así que el suelo tenga un mejor comportamiento para la construcción.

VIABILIDAD ECONÓMICA

Análisis de costos: Realizar un análisis detallado de los costos asociados al uso de ceniza de arroz, incluyendo:

1. Cascarilla De Arroz

Tabla 5: Cuadro de Costos para obtención de Ceniza de Cáscara de Arroz

Material Precio Cantidad Subtotal Cascarilla Arroz (Fanega = 140Kg)) S/ 280.00 5 S/ 1,400.00 S/ 1,400.00 2. Horno de Ladrillo Pirómetro (unidad) S/ 150.00 1 S/ 150.00

Ladrillos (millar)	;	S/ 500.00	0.5	S/ 250.00
Cemento (bolsa)		S/ 30.00	2	S/ 60.00
Arena m3		S/ 33.00	1	S/ 33.00
Mano de Obra	;	S/ 200.00	1	S/ 200.00
				S/ 693.00
	3. Tamizad	o de Ceni	za	
Leña		S/ 50.00	5	S/ 250.00
Tamiz № 270	S/	440.00	1	S/ 440.00
Bandejas de metal	S/	20.00	4	S/ 80.00
				S/ 770.00
			Costo total	S/ 2,863.00

Tabla 6: Precio de ceniza por kilo.

Del peso bruto de cáscara de arroz (KG) se obtiene el 20% de ceniza

Peso de Cáscara kg	700 kg
% Ceniza	20%
Ceniza Obtenida (kg)	140 kg
PRECIO DE CENIZA POR KG.	S/ 20.45

Del cuadro de gastos realizados; podemos concluir que el costo liquido de la ceniza fue de S/ 20.38, cabe resaltar que esto incluye materiales que solo fueron utilizados para la obtención de ceniza en esta investigación. Ante mayor quema de Cáscara se obtendría una mayor cantidad de ceniza, ya que el costo de la fabricación del horno es un gasto fijo.

Tabla 7: Análisis de beneficios

Categoría	Beneficio	Descripción	Implicaciones
de Beneficio	específico		

Reducción de	La Cáscara de arroz como	Reduce el
costo de	producto agrícola, que es	costo de
materiales.	convertido en ceniza	estabilización
		del suelo
Valorización de	La aplicación de CCA.	Promueve la
Residuos		economía
		circular y la
		sostenibilidad
Mejora las	La cáscara de arroz puede	Permite la
propiedades	aumentar la resistencia a la	construcción de
mecánicas del	compresión, el CBR y la	pavimentos y
suelo	Máxima densidad seca del	terraplenes
	suelo.	más resistentes
		y estables.
Disminuye el	La ceniza de cáscara de	Menor
índice de	arroz disminuye la	susceptibilidad
plasticidad del	plasticidad en los suelos	en condiciones
suelo	con presencia de arcillas,	de saturación.
	logrando que sean menos	
	susceptibles a cambios de	
	volumen con la humedad.	
Reducción de la	La aplicación de esta ceniza	Construcción
huella de	como sustituto de	sostenible
carbono	materiales tradicionales con	
	gran impacto ambiental	
	contribuye a la disminución	
	de la emisión de gases de	
	efecto invernadero.	
Conservación de	Al utilizar un subproducto	Preservación
recursos	agrícola, se reduce la	de recursos
naturales	demanda de materiales de	naturales.
naturales	demanda de materiales de construcción tradicionales,	naturales.
	costo de materiales. Valorización de Residuos Mejora las propiedades mecánicas del suelo Disminuye el índice de plasticidad del suelo Reducción de la huella de carbono Conservación de	costo de materiales. Valorización de Residuos Mejora las La cáscara de arroz puede aumentar la resistencia a la compresión, el CBR y la Máxima densidad seca del suelo. Disminuye el Máxima densidad seca del suelo. Disminuye el plasticidad del plasticidad en los suelos con presencia de arcillas, logrando que sean menos susceptibles a cambios de volumen con la humedad. Reducción de la huella de carbono materiales tradicionales con gran impacto ambiental contribuye a la disminución de la emisión de gases de efecto invernadero. Conservación de Al utilizar un subproducto

		estabilizantes	
		convencionales.	
	Disminución de	La valorización de la CCA	Protección del
	la contaminación	evita su acumulación y la	medio
		potencial contaminación del	ambiente.
		suelo y el agua.	
Social	Generación de	La producción de esta	Desarrollo
	empleo	ceniza para ser usada como	económico
		estabilizante de suelos	social.
		puede generar empleos en	
		comunidades locales.	

3.2. DISCUSIÓN

Esta investigación se centró en evaluar el potencial de la CCA como estabilizante para suelos con presencia de arcillas, considerando sus propiedades físicas-mecánicas, la proporción óptima de CCA y la viabilidad técnica y económica.

Las muestras de suelo analizado, lo clasifico como CL (SUCS) y A-7-6(14) (AASHTO) presentó una alta plasticidad, evidenciada por un límite líquido de 49.2% y un índice de plasticidad de 21.2%. Esta plasticidad elevada implica una susceptibilidad a cambios de volumen con las variaciones de humedad, lo que puede comprometer la estabilidad de las estructuras construidas sobre él. La granulometría del suelo, con un alto porcentaje de finos 89.2% corrobora esta tendencia.

Los resultados obtenidos muestran una influencia de la ceniza propuesta en las propiedades de compactación del suelo, específicamente en la Máxima Densidad Seca (MDS) y el Óptimo Contenido de Humedad (OCM). La adición de ceniza incrementa la MDS, lo que indica una mejora en la compactación, pero el OCM presenta una variación menos predecible.

El incremento de la MDS con el aumento del porcentaje de ceniza, desde 1.80 g/cm³ con 5% hasta 1.86 g/cm³ con 25%, sugiere que la ceniza actúa como material de relleno, ocupando los espacios vacíos entre las partículas del suelo y contribuyendo a una mayor densificación. Este efecto es particularmente relevante en aplicaciones donde se requiere una alta capacidad de soporte del suelo, como en la construcción de carreteras y cimentaciones. Sin embargo, es importante apreciar que la diferencia en MDS entre el 20% (1.85 g/cm³) y el 25% (1.86 g/cm³) es mínima.

El OCM, por otro lado, no muestra una correlación directa con el porcentaje de ceniza. El valor fluctúa entre 14.06% con 20% de ceniza y 15.15% con 15% de ceniza. Esta variación puede atribuirse a la compleja interacción entre las partículas de ceniza, las partículas del suelo original y el agua. La forma, tamaño y composición química de la ceniza pueden influir en la cantidad de agua necesaria para alcanzar la máxima compactación. Un OCM elevado, como el observado con el 15% de ceniza, puede ser problemático en la práctica, ya que implica un mayor consumo de agua durante la compactación y un mayor potencial de contracción del suelo al secarse.

Lo observado en la MDS y el OCM, el pequeño incremento de la MDS plantea la pregunta de si el beneficio marginal en la compactación justifica el costo adicional y el posible impacto ambiental ante un mayor consumo de agua por un mayor porcentaje de ceniza. Considerando ambos parámetros, la MDS y el OCM, en esta investigación se establece el 20% de ceniza como un porcentaje prometedor. Combina una MDS alta (1.85 g/cm³) con un OCM relativamente bajo (14.06%), lo que facilita el proceso de compactación en campo y minimiza el riesgo de contracción.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1. CONCLUSIONES

El suelo estudiado se clasifico por SUCS como CL, una arcilla inorgánica de plasticidad baja a media y baja comprensibilidad y por AASHTO como A-7-6(14), como un suelo arcilloso de calidad regular, con un límite líquido de 49.2%, límite plástico de 28.4% y un índice de plasticidad de 21.2%. identificándose como un suelo de plasticidad media y CBR que necesita mejoramiento.

Así mismo los resultados muestran que la adición de la CCA mejoro las propiedades geotécnicas del suelo, alcanzando un valor máximo de CBR al 95% y 100% con porcentajes optimo del 20% y 25 % de cenizas.

A partir de estos porcentajes las mejoras de otras propiedades fueron marginales en ambas adiciones. Al correlacionar los porcentajes con la mejora en la compactación, con una MDS de 1.85 gr/cm³ y 1.86 gr/cm³ y un OCM de 14.06% y 14.82% para los porcentajes de 20% y 25% de adición de CCA. Se establece el uso del 20% de ceniza de cáscara de arroz como la proporción más óptima para lograr la estabilización de suelos con presencia de arcilla sin afectar a las características del suelo y el cuidado del ambiente.

Considerando las mejoras en las propiedades del suelo y la disponibilidad de la cáscara de arroz como subproducto agrícola y su menor costo en comparación de otros estabilizantes tradicionales, se concluye que el uso de la ceniza de cáscara de arroz como estabilizante es técnicamente viable y económicamente atractivo. Además, se contribuye a la gestión de residuos agrícolas, representando un beneficio ambiental.

4.2. RECOMENDACIONES

Si bien se determinaron las características básicas del suelo, se recomienda profundizar en la caracterización mineralógica de las arcillas presentes. Esto permitirá comprender mejor los mecanismos de interacción entre la arcilla y la CCA. Técnicas como la difracción de rayos X (DRX) podrían ser útiles.

Se recomienda ampliar el estudio a suelos con diferentes índices de plasticidad para evaluar la efectividad de la CCA en un rango más amplio de suelos arcillosos.

Se recomienda realizar un análisis de costo-beneficio comparativo con otros métodos de estabilización disponibles en la región, considerando el costo del material, la mano de obra, el transporte y el impacto ambiental.

Se recomienda difundir los resultados de esta investigación a través de publicaciones científicas y congresos para contribuir al conocimiento sobre el uso de CCA como estabilizante de suelos.

Se sugiere continuar la investigación explorando la combinación de CCA con otros materiales estabilizantes para optimizar aún más las propiedades del suelo.

REFERENCIAS BIBLIOGRÁFICAS

- [1] S. Almuaythir, M. Zaini, M. Hasan y M. I. Hoque, «1. Sustainable soil stabilization using industrial waste ash: Enhancing expansive clay properties,» *Heliyon*, vol. 10, nº e39124, p. 2030, 2024.
- [2] A. F. Saved y M. Z. Mohd, «Production of new generation and sustainable concrete using Rice Husk Ash (RHA): A review,» *Materials Today*, 2023.
- [3] J. Arpit, K. C. Anil y J. N. Jha, «Influence of Rice Husk Ash on the Swelling and Strength Characteristics of Expansive Soil,» *Geotechnical and Geological Engineering*, pp. 2293 2302, 2020.
- [4] S. Venkatachalam, K. Raja, K. Vishnuvardhan, K. Siva Rama, V. Tamil Selvan y N. Vetriselvan, «A review on soil stabilization using rice husk ash and lime sludge,» *Materials Today*, vol. 65, pp. 1205-1212, 2022.
- [5] Y. Pan, M. Li y R. Dai, «Review on The Progress of Expansive Soil Improvement in Ten Years,» *Earth and Environmental Science*, vol. 455, nº 012112, pp. 455-461, 2020.
- [6] S. D. Khadka, P. W. Jayawickrama, S. Senadheera y B. Segvic, «Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum,» *Transportation Geotechnics*, vol. 23, nº 100327, p. 23, 2020.
- [7] K. Peng, X. Li, R. Yang, C. Liu y H. He, «Experimental study on permeability and expansion characteristics of expansive soil,» *IOP Conf. Series: Earth and Environmental Science*, vol. 446, nº 052008, pp. 1-6, 2020.
- [8] C. Rueifeng, C. Surya Sarat, C. Guojun, D. Wei y L. Songyu, «Sustainable utilization of biomass waste-rice husk ash as a new solidified material of soil in geotechnical engineering: A review,» *Construction and building materials*, vol. 292, nº 123219, 2021.
- [9] A. M. Al-Mahbashi, M. A-Shamrani y A. A. Baig Moghal, «Soil–Water Characteristic Curve and One-Dimensional Deformation Characteristics of Fiber-Reinforced Lime-Blended Expansive Soil,» *Journal of Materials and Civil Engineering*, vol. 2, nº 04020125, pp. 32-41, 2020.
- [10] E. Chabi, V. Doko, S. Peace Hounkpè y E. C. Adjovi, «Study of Cement Composites on addition of rice husk,» *Case studies in Construccion Materials*, vol. 12, nº e00345, 2020.
- [11] F. Hidalgo, J. Saavedra, C. Fernandez y G. Duran, «Stabilization of clayey soil for subgrade using rice husk ash (RHA) and sugarcane bagasse ash (SCBA),» *Science and enginering*, p. 758, 2020.
- [12] E. Ormeño, N. Rivas, G. Duran y M. Soto, «Stabilization of a Subgrade Composed by Low Plasticity Clay with Rice Husk Ash,» *IOP Conf. Series: Materials Science and Engineering,* vol. 758, nº 012058, 2020.

- [13] F. M. Anticona Paredes y E. S. Campos Arevalo, Análisis del comportamiento estructural en ladrillos artesanales reforzados con cascarilla de arroz calcinada, Trujillo: Universidad Cesar Vallejo, 2023.
- [14] Mninisterio de Desarrollo Agrario y Riego del Perú, «2021,» 2024. [En línea]. Available: https://app.powerbi.com/view?r=eyJrljoiODZIMDQwY2MtNGI4NS00NjlhLTkwMzktMTU4Njly MzVjYzdhliwidCl6ljdmMDg0Njl3LTdmNDAtNDg3OS04OTE3LTk0Yjg2ZmQzNWYzZiJ9.
- [15] S. Charca Mamani, L. Villena Zapata, J. Leiva Piedra, S. Gonzales Ayasta, E. Rodríguez Lafitte, F. Aparicio Roque, O. Coronado Zuloeta y S. Muñoz Pérez, «Influence of rice husk ash (RHA) with gypsum and ichu fibers in the processing of geopolymers,» *Innovative Infrastructure Solutions*, 2023.
- [16] J. J. Lozano Sanchez, Estudio De Las Propiedades Físicas Y Mecánicas Del Concreto Usando Ceniza De Cáscara De Arroz Y Pet, Chiclayo: Universidad Señor de Sipán, 2023.
- [17] C. S. Henry y J. G. Lynam, «Embodied Energy of Rice Husk Ash for Sustainable Cement Production,» *Case Studies In Chemical And Environmental Engineering*, 2020.
- [18] A. P. Galvin, M. Cabrera, J. Rosales, J. Ayuso y A. López-Uceda, «Stabilization of expansive soils with biomass bottom ashes for an eco-efficient construction,» *Environmental Science and Pollution Research*, p. 14, 2020.
- [19] A. Tariq, S. Abdullah, K. Daddan, S. Abdul y A. Zaheer, «Mechanical and Durability Properties of Aerated Concrete Incorporating Rice Husk Ash (RHA) as Partial Replacement of Cement,» *Crystals*, vol. 11, p. 604, 2021.
- [20] B. Pushpakumara y W. Mendis, «Suitability of Rice Husk Ash (RHA) with lime as a soil stabilizer in geotechnical application,» *International Journal of Geo-Engineering*, vol. 13, nº 4, 2022.
- [21] Daryati y M. Ramadhan, «Improvement of Expansive Soils Stabilized with Rice Husk Ash (RHA),» 2nd International Conference on Sustainable Infrastructure, p. 1625, 2020.
- [22] M. Mazahir, F. Cheng Pei y A. Sara H, «Modification of Mechanical Properties of Expansive Soil from North China by Using Rice Husk Ash,» *Materials*, vol. 14, nº 11, p. 2789, 2021.
- [23] N. Najmun, A. Otieno Owino, S. Kabir Khan, Z. Hossain y N. Tamaki, «Effects of controlled burn rice husk ash on geotechnical properties of the soil,» *Journal of Agricultural Engineering*, vol. 52, nº 4, 2021.
- [24] A. Otieno Owino, N. Nahar, Z. Hossain y N. Tamaki, «Dimensional influence of basalt fiber reinforcements on the consolidation behaviour of rice husk ash stabilized soils,» *Construction and Building Materials*, vol. 339, p. 127686, 2022.
- [25] T. Duong, H. Nguyen y T. N. Nguyen, «EFFECT OF DIFFERENT TYPES OF RICE HUSK ASH ON SOME GEOTECHNICAL PROPERTIES OF CEMENT-ADMIXED SOIL,» *Iraqi Geological Journal*, vol. 53, 2020.

- [26] E. Sanchez Vasquez, J. Leiva Piedra y C. Monteza Arbulú, «Elaboración y caracterización de ladrillos elaborados con adición de cascarilla de arroz calcinada,» *Revista Facultad de Ingeniería*, vol. 30, nº 57, 2021.
- [27] Y. Rueda y K. Tannous, «Análisis cinético de la descomposición térmica de biomasas aplicando un esquema de reacciones paralelas independientes,» *UIS Ingenierías,* pp. 119-127, 2017.
- [28] A. Valverde, B. Sarria y J. Monteagudo, «Análisis Comparativo De Las Características Fisicoquímicas De La Cascarilla De Arroz,» *Scientia et Technica Año XIII dialnet,* pp. 255-260, 2007.
- [29] Mursal, Imail, Irhamni y Gemiatik, «The Characteristics of Silica Nano-powder and Thin Films Prepared from Rice Husk Ash,» *IOP Conf. Series: Journal of Physics: Conf. Series*, vol. 1120, nº 012039, pp. 1-7, 2018.
- [30] G. L. Maguiña Sal y Rosas, Evaluación del potencial de expansión y capacidad portante en el suelo limo arcilloso incorporando ceniza de cascarilla de arroz en la Av.Aija, Huarmey, Ancash 2018, Lima: Universidad César Vallejo, 2018.
- [31] E. Chicaiza y F. Oña, Estabilización De Arcillas Expansivas De La Provincia De Manabí Con Puzolana Extraída De Ceniza De Cascarilla De Arroz, Quito: Escuela Politecnica Nacional, 2018.
- [32] B. M. Das y K. Sobhan, Principles of Geotechnical Engineering., California: Global Engineering, 2012.
- [33] M. Aniculaesi y I. Lungu, «Evaluation of the swelling pressure for expansive soils,» *Materials Science and Engineering*, pp. 1-6, 2019.
- [34] R. D. Holtz y W. D. Kovacs, An Introduction to Geotechnical Engineering., New York: Prentice-Hall, Inc., 1981.
- [35] J. K. Mitchell, Fundamentals of Soil Behavior, California: Series in soil Engineering, 1976.
- [36] E. Juarez B. y A. Rico R., Mecánica de suelos Tomo 1- Fundamentos de la mecánica de suelos, Mexico: Limusa Noriega Editores, 2005.
- [37] C. Licuy O y K. Román S, Estudio de la estabilización de arcillas expansivas utilizando el 10, 20 y 30% en peso, de puzolanas de ceniza de volcan Tungurahua y ceniza de cascarilla de arroz en composiciones iguales., Quito: Escuela politecnica nacional, 2020.
- [38] R. Hernandez Siamperi,, C. Fernández Collado y P. Baptista Lucio, Metodología de la investigación, McGraw-Hill Interamericana., 2014.
- [39] D. Campbel y J. Stanley, Experimental and quasi-experimental designs for research, Rand McNally College Publishing Company., 1963.

Anexo 1: Acta de revisión de similitud de investigación.

Yo Dr. Néstor Raúl Salinas Vásquez docente del curso de Investigación II del Programa de Estudios de La Escuela Profesional de Ingenieria Civil, luego de revisar la investigación de la estudiante, Rosa Vanessa Ramirez Silva, titulada:

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

Dejo constancia que la investigación antes indicada tiene un índice de similitud del 17%, verificable en el reporte de originalidad mediante el software de similitud TURNITIN. Por lo que se concluye que cada una de las coincidencias detectadas no constituyen plagio y cumple con lo establecido en la Directiva sobre índice de similitud de los productos académicos y de investigación en la Universidad Señor de Sipán S.A.C. vigente.

En virtud de lo antes mencionado, firma:

Salinas Vásquez Néstor Raúl	DNI:	

Pimentel, 30 de octubre del 2024.

ACTA DE APROBACIÓN DEL ASESOR

Yo Sócrates Pedro Muñoz Pérez. quien suscribe como asesor designado mediante Resolución de Facultad N° 1557-A-2019/FIAU-USS, del proyecto de investigación titulado Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020, desarrollado por la estudiante: Rosa Vanessa Ramirez Silva, del programa de estudios de La Escuela Profesional de Ingeniería Civil, acredito haber revisado, y declaro expedito para que continue con el trámite pertinentes.

En virtud de lo antes mencionado, firman:

Muñoz Pérez Sócrates Pedro (Asesor)

DNI: 42107300

Firmado digitalmente por: MUÑOZ PEREZ SOCRATES PEDRO FIR 42107300 hard Motivo: En señal de conformidad

Fecha: 29/11/2024 11:39:45-0500 Firma

Pimentel, 30 de Octubre del 2024

Anexo 3: Matriz de consistencia lógica

Droblomo	Problema Hipótesis Objetivo General Objetivos específicos	Tipo de	Diseño de		
Problema	Hipótesis	Objetivo General	Objetivos específicos	Investigación	Investigación
¿Cuál es el efecto de	La incorporación de	Evaluar los efectos	OE1: Determinar las propiedades	Aplicada/	Cuasi
las cenizas de	cenizas de cascarilla	de estabilización de	físicas y mecánicas del suelo con	Tecnológica	experimental
cascarilla de arroz en	de arroz lograra	suelos con presencia	presencia de arcillas.		
la estabilización de	estabilizar los suelos	de arcillas plásticas	OE2: Identificar la proporción		
suelos con presencia	con presencia de	en la variación de	óptima de 5%, 10%, 15%, 20% y		
de arcillas?	arcillas.	porcentaje de	25% de Ceniza de cáscara de		
		cenizas de cascarilla	arroz que maximice el		
		de arroz, para fines	mejoramiento de las propiedades		
		de edificación.	geotécnicas de las arcillas.		
			OE3: Analizar el comportamiento		
			de los suelos estabilizados con		
			Ceniza de cáscara de arroz.		
			OE4: Evaluar la viabilidad técnica		
			y económica del uso de Ceniza de		
			cáscara de arroz como		
			estabilizador de suelos con		
			presencia de arcillas plásticas.		

Anexo 4: Matriz de operacionalización De Variables

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Instrumento	Valores Finales	Tipo de variable	Escala de Medición
Subproducto agrícola rico en sílice, con	Ceniza obtenida de la combustión controlada de	Propiedades físicas	Granulometría					
Cenizas de cascarilla de arroz (Independiente)	propiedades puzolánicas, utilizado como material estabilizador de suelos	cáscara de arroz, caracterizada por su composición química y granulometría.	Propiedades químicas	Fichas control es Composición química	Resultado de ensayos	I	Ordinario	
Estabilización de Arcillas	Mejora de las propiedades geotécnicas de las arcillas plásticas	Cambio en las propiedades geotécnicas de la arcilla plástica de la Urb. Santa Margarita después de la	Propiedades físicas	Color Granulometría Densidad Límites de Atterberg Clasificación de suelos Sales	Fichas		II	Ordinario
Plásticas (Dependiente)	mediante la adición de un agente estabilizador.	adición de diferentes proporciones de Ceniza, medido a través de ensayos de laboratorio.	Propiedades mecánicas	Peso unitario seco máximo Consolidación CBR Proctor	- CONTO	de ensayos	ie erisayos	Guía de observación: Formatos de la USS Equipo de laboratorio de suelos

Anexo 5: Carta de Autorización

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES

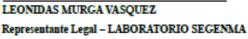
Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI
Email: leonidasmyas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE N° 50090112

CARTA DE AUTORIZACIÓN PARA LA RECOLECCIÓN DE LA INFORMACIÓN

Chiclayo, 13 de septiembre de 2024

Quien suscribe:

Sr. LEONIDAS MURGA VASQUEZ


Representante Legal – Empresa LABORATORIO SEGENMA (SERVICIOS DE EXPLORACION GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES)

AUTORIZA: Permiso para recojo de información pertinente en función del proyecto de investigación, denominado ""Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020""

Por el presente, el que suscribe, LEONIDAS MURGA VASQUEZ, representante legal de la empresa LABORATORIO SEGENMA (SERVICIOS DE EXPLORACION GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES) AUTORIZO al estudiante Bach. Ramirez Silva Rosa Vanessa, identificado con DNI N°:46161257, estudiante del Programa de Estudios de egresado de la Escuela Profesional de Ingeniería civil de la Universidad Señor de Sipán y autor del trabajo de investigación denominado "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020" al uso de dicha información que conforma el expediente técnico así como hojas de memorias, cálculos entre otros como planos para efectos exclusivamente académicos de la elaboración de tesis, enunciada líneas arriba de quien solicita se garantice la absoluta confidencialidad de la información solicitada.

Atentamente

UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENERÍA QUÍMICA E INDUSTRIAS ALIMENTARIAS LABORATORIO DE INVESTIGACIÓN Y SERVICIOS TÉCNICOS

REPORTE DE ANÁLISIS Nº 133 - FIQIA

1. DATOS DE TESISTA

: RAMÌREZ SILVA ROSA VANESSA

2. PROYECTO DE TESIS

: ESTABILIZACIÓN DE SUELOS INCORPORANDO

CENIZAS DE CASCARILLA DE ARROZ, LAMBAYEQUE

2020

3. DATOS DE LA MUESTRA

- Número de muestras : 1

- Nombre de la muestra : CENIZA DE ARROZ (CA)

Fecha de muestreo

: 08-11-2024

4. RESULTADOS DE ANÁLISIS

PARÀMETRO (mg/kg)	LCM*	CA (mg/kg)
Plata - Ag	0.019	<lcm< td=""></lcm<>
Aluminio - Al	0.023	88.5474
Arsénico - As	0.005	0.0625
Boro - B	0.026	0.2897
Bario - Ba	0.004	8.7870
Berilio - Be	0.003	<lcm< td=""></lcm<>
Bismuto - Bi	0.016	<lcm< td=""></lcm<>
Calcio - Ca	0.124	3558,2156
Cadmio - Cd	0.002	0.0039
Cerio - Ce	0.004	0.0744
Cobalto - Co	0.002	0.011
Cromo - Cr	0.003	0.0312
Cobre - Cu	0.018	0.118
Hierro - Fe	0.023	278.6520
Potasio - K	0.051	4878.2566
Litio - Li	0.005	0.0252
Magnesio - Mg	0.019	1256.8806
Manganeso - Mn	0.003	60.2338
Molibdeno - Mo	0.002	0.003
Sodio - Na	0.026	338.7741
Níquel - Ni	0.006	3,2598
Fósforo - P	0.024	19.6
Plomo - Pb	0.004	0.4007
Azufre - S	0.091	874.5127
Antimonio - Sb	0.005	<lcm< td=""></lcm<>
Selenio - Se	0.007	<lcm< td=""></lcm<>

UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO

FACULTAD DE INGENERÍA QUÍMICA E INDUSTRIAS ALIMENTARIAS LAIBORATORIO DE LIVVESTIGACIÓN Y SERVICIOS TÉCNICOS

0.104	9787.6524
0.007	<lcm< td=""></lcm<>
0.003	0.307
0.004	0.3564
0.003	<lcm< td=""></lcm<>
0.004	<lcm< td=""></lcm<>
0.004	0.0859
0.018	19.8782
0.003	<lcm< td=""></lcm<>
	0.007 0.003 0.004 0.003 0.004 0.004 0.018

^{*}LCM Limite Cuantificable Minimo)

METODOLOGÍA EPA 200.7

5. ALCANCE

 - La muestra de CENIZA DE ARROZ fue previamente tamizada; posteriormente tratada por digestión acida, para luego ser leída en el ICP para análisis de metales.

Analista	Quinteros Vílchez Fecha de Reporte	V°B° Ing. Cristian David Visconde Beltra 15 de Noviembre del 2024			
Firma	Marilyn Catherine	Firma	Cristian David Visconde Beltras INGENIERO QUÍMICO REG. CIP. 111172		

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO
Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI
Email: leonidasmyas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE Nº 50090112
LABORATORIO SEGENMA

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

PERFIL ESTRATIGRÁFICO - SUELOS/REGISTRO DE EXCAVACIÓN DE CALICATA (ASTM - 2488)

ALUMN : ROSA VANESA RAMIREZ SILVA

PROYE : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020".

UBICA: : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALIC/ : C1-M1 : 1.50 mts FECHA : 5/05/2022

	Est	trato	Simbolo			Clasific	acion		Gra	nulometria		Cons	tantes Fi	sicas	w.
Prof. (m.)	Capa	Espesor (m)	Grafico	Descripcion	Visual del Suelo	AASHTO	Sucs.	>3"	3" - N°4	Nº4 - Nº 200	< Nº 200	L.L.	L.P	IP	w. Natural
0.05 0.10 0.15 0.20	20			Suelo suelto											
0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80	60	1.50	GM	M-1											
0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50	70		GP-GM	M-2: Grava Ligeramente Iimosa, Mal Graduada		A-1-a(0)	GP-GM	1	74.12	15.0	10.9	41.5	36.0	6.0	12.6

PANEL FOTOGRAFICO

OBSERVACIONES :

www los Leonidas Murga Vasquez TÉCNICO LABORATORISTA

SEGENMA

Luis Suarez Vargas INGENIERO CIVIL C.I.P. N° 152267

67

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

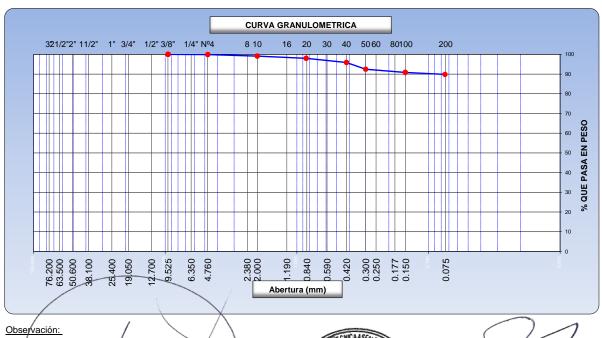
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ANALISIS GRANULOMETRICO POR TAMIZADO (MTC E-107 / ASTM D-422, C-117 / AASHTO T-27, T-88)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020".


UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C1-M1

MATERIAL : CENIZA DE ARROZ 0% PROFUNDIDAD : 0.20 - 1.50 M.

FECHA: 05 DE MAYO DEL 2022

Tamices ASTM	Abertura (mm)	Peso Retenido	Retenido Parcial	Retenido Acumulado	Porcentaje que Pasa	Materia Especific	Descripcion	
5"	127.000						1. Peso de Material	
4"	101.600						 Peso Inicial Total (kg)	200.00
3"	73.000						Peso Fraccion Fina Para Lavar (gr)	200.00
2 1/2"	60.300							
2"	50.800						2. Caracteristicas	
1 1/2"	37.500						Tamaño Maximo	3/8"
1"	25.400						Tamaño Maximo Nominal	1/4"
3/4"	19.000						Grava (%)	0.1
1/2"	12.700						Arena (%)	10.0
3/8"	9.520				100.00		Finos (%)	89.8
1/4"	6.350						Modulo de Fineza (%)	
N° 4	4.750	0.25	0.13	0.13	99.87			
N° 8	2.360						3. Clasificacion	
N° 10	2.000	1.52	0.76	0.89	99.11		Limite Liquido (%)	48.5
N° 16	1.190						Limite Plastico (%)	28.4
N° 20	0.850	2.23	1.11	2.00	98.00		Indice de Plasticidad (%)	20.1
N° 30	0.600						Clasificacion SUCS	ML
N° 40	0.420	4.26	2.13	4.13	95.87		Clasificacion AASHTO	A-7-6 (14)
N° 50	0.300	6.87	3.43	7.56	92.44			
N° 60	0.250							
N° 80	0.180							
N° 100	0.150	3.21	1.60	9.16	90.84			
N° 200	0.075	2.02	1.01	10.17	89.83			
Pasante		179.9	89.8	100.0				

Leoyidas Murga Vasquez

TÉCNICO LABORATORISTA

SEGENNÁA WWW.

Vais Suarez Vargas INGENIERO CIVIL C.I.P. Nº 152267

SERVICIOS DE EXPLORACIÓN SEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

LIMITES DE CONSISTENCIA

(MTC E-110,111 / ASTM D-4318 / AASHTO T-90, T-89)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO "Estabilizad

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020".

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE CALICATA : C1-M1

TESIS

 MATERIAL
 :
 CENIZA DE ARROZ 0%

 PROFUNDIDAD
 :
 0.20 - 1.50 m.

FECHA : 05 DE MAYO DEL 2022

DETERMINACION DEL LIMITE LIQUIDO

N° de Tarro		31	32	33	
Peso de Tarro + Suelo Humedo	gr.	54.82	55.88	61.78	
Peso de Tarro + Suelo Seco	gr.	44.03	44.45	49.84	
Peso de Tarro	gr.	22.25	20.89	24.82	
Peso de Agua	gr.	10.79	11.43	11.94	
Peso del Suelo Seco	gr.	21.78	23.56	25.02	Limite Liquido
Contenido de Humedad	%	49.55	48.51	47.72	48.5
Numero de Golpes		20	25	30	

DETERMINACION DEL LIMITE PLASTICO E INDICE DE PLASTICIDAD

N° de Tarro		34	35	
Peso de Tarro + Suelo Humedo	gr.	50.03	50.50	
Peso de Tarro + Suelo seco	gr.	43.97	43.35	
Peso de Tarro	gr.	22.18	18.63	
Peso de Agua	gr.	6.06	7.15	
Peso de Suelo seco	gr.	21.79	24.72	Limite Plastico
Contenido de Humedad	%	27.82	28.92	28.4

Constantes Fisicas de la Muestra					
Limite Liquido	48.5				
Limite Plastico	28.4				
Indice de Plasticidad	20.1				

Observaciones

Pasante Tamiz N° 40

Leoyidas Murga Vasquez

TÉCNICO LABORATORISTA

Vuis Suarez Vargas INGENIERO CIVIL C.I.P. Nº 152267

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE Nº S0090112
LABORATORIO SEGENMA

RESULTADOS DE ENSAYO DE ANALISIS QUIMICO

ALUMNA: ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS: Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

NORMA: ASTM NTP 400. 042

ASUNTO: Analisis Químico de una Muestra - CENIZA DE ARROZ 0%

		p.p.m				
Muestra	P.H	Sales Totales	Cloruros	Sulfatos		
Agregado Fino	6.42	0.136	57	39		

Limites permisibles para Mezcla de Agregado Fino segun NTP 339.088

Descrippción	Límite Permisible					
1 sólidos en Suspensión	5,000	p.p.m	máximo			
2 Materia Orgánica	3	p.p.m	máximo			
3 Alcalinidad (NaHCO3)	1,000	p.p.m	máximo			
4 Sulfato (Ión SO4)	600	p.p.m	máximo			
5 Cloruros (Ión Cl)	1,000	p.p.m	máximo			
5 Ph		5 a 8	1			

Lambayeque, Mayo del 2022

Leonidas Murga Vasquez
TÉCNICO LABORATORISTA

SEGENNA SE

Luis Suarez Vargas INGENIERO CIVIL C.I.P. Nº 152267

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

DETERMINACION DE LA SAL (NTP 339.152)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO

: RUSA VANESA RAWIREZ

PROYECTO TESIS

Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020

LABORATORIO SEGENMA

MATERIAL : CE

: CENIZA DE ARROZ 0%

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA: 05 DE MAYO DEL 2022

POZO - MUESTRA	C1- M 1	
UBICACIÓN		
PROFUNDIDAD (Mt)	0.20 a 3.00	
(1) PESO DEL TARRO	19.25	
(2) PESO TARRO + AGUA + SAL	44.56	
(3) PESO TARRO SECO + SAL	19.29	
(4) PESO SAL (3 - 1)	0.04	
(5) PESO AGUA (2 - 3)	25.27	
(6) PORCENTAJE DE SAL	0.158%	

HUMEDAD NATURAL (ASTM 2216-98)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO

TESIS Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020

MATERIAL CENIZA DE ARROZ 0%

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA: 05 DE MAYO DEL 2022

POZO-MUESTRA	C1- M 1	
UBICACIÓN		
PROFUNDIDAD (Mt)	0.20 a 3.00	
Nº RECIPIENTE	27	
1- PESO SUELO HUMEDO + RECIPIENTE	369.11	
2- PESO SUELO SECO + RECIPIENTE	338.25	
3- PESO DEL AGUA	30.86	
4- PESO RECIPIENTE	130.25	
5- PESO SUELO SECO	208.00	
6- PORCENTAJE DE HUMEDAD	14.84%	

Leoyidas Murga Vasquez

SEGENNÁA RA

Vuis Suarez Vargas INGENIERO CIVIL C.I.P. N° 152267

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE Nº S0090112
LABORATORIO SEGENMA

PESO ESPECÍFICO RELATIVO DE SOLIDOS

(ASTM- D854-58)

ALUMNA: ROSA VANESA RAMIREZ SILVA

Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

PROYECTO TESIS: 2020

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL: CENIZA DE ARROZ 0%

FECHA: MAYO DEL 2022

CALICATA	C1-M1	
1. Temperatura (°C)	23.0 °C	23.0 °C
2. Numero de Picnometro	10	11
3. Peso de fiola + suelo seco (gr)	326.2	342.7
4. Peso de fiola (volumetrico) (gr)	117.0	116.0
5. Peso suelo seco (gr)	227.0	226.3
6. Peso fiola + suelo seco + agua (gr)	529.0	536.1
7. Peso de fiola + agua (gr)	388.6	396.5
8. Peso especifico relativo de los solidos	2.62	2.61
		_

Leoridas Murga Vasquez

TÉCNICO LABORATORISTA

SEGENMA PR

uis Suarez Varga INGENIERO CIVIL C.I.P. Nº 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ENSAYO CALIFORNIA BEARING RATIO ASTM: D-1883

ALUMNA : ROSA VANESA RAMIREZ SILVA PROYECTO

TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL : CENIZA DE ARROZ 0%

C.B.R.

MOLDE Nº			1		2		3
Nº DE GOLPES POR CAPA		Ę	i6	2	25		12
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA
PESO MOLDE + SUELO HUMEDO	(g)	8,026	8,101	8,288	8,387	7,890	8,085
PESO DEL MOLDE	(g)	3,701	3,701	4,120	4,120	3,883	3,883
PESO DEL SUELO HUMEDO	(g)	4325	4400	4168	4267	4007	4202
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143
DENSIDAD HUMEDA	(g/cm ³)	2.02	2.05	1.94	1.99	1.87	1.96
CAPSULA №		94	95	96	97	98	99
PESO CAPSULA + SUELO HUMEDO	(g)	323.03	329.08	327.64	336.58	311.54	350.67
PESO CAPSULA + SUELO SECO	(g)	298.61	301.44	301.69	307.10	287.99	315.65
PESO DE AGUA CONTENIDA	(g)	24.42	27.64	25.95	29.48	23.55	35.02
PESO DE CAPSULA	(g)	132.25	128.48	129.64	135.02	128.32	136.72
PESO DE SUELO SECO	(g)	166.36	172.96	172.05	172.08	159.67	178.93
HUMEDAD	(%)	14.68%	15.98%	15.08%	17.13%	14.75%	19.57%
DENSIDAD SECA		1.76	1.77	1.69	1.7	1.63	1.64
DENGIDAD GECA		1.70	1.77	1.09	1.7	1.03	1.0

EXPANSION

FECHA	HORA	TIE	МРО	DIAL	EXPANSION		DIAL	EXPANSION		DIAL	EXPANSIO	ON
					mm.	%		mm.	%		mm.	%
Mayo del 2022	8.30 a.m	0	hrs	3.029			1.44			2.48		
Mayo del 2022	8.30 a.m	24	hrs	3.201	0.172	0.148	1.57	0.140	0.12	2.65	0.170	0.146
Mayo del 2022	8.30 a.m	48	hrs	3.422	0.393	0.338	1.85	0.412	0.354	2.79	0.313	0.269
Mayo del 2022	8.30 a.m	72	hrs	3.790	0.761	0.654	2.25	0.812	0.698	3.01	0.533	0.458
Mayo del 2022	8.30 a.m	96	hrs	4.066	1.037	0.892	2.51	1.071	0.921	3.40	0.923	0.794

PENETRACION

I ENETITACION													
PENETRACION	CARGA		MOLDE	Nº	1		MOLDE	Nº	2		MOLDE № 3		
pulg.	ESTÁNDAR	CARGA	-	CORECCION	-	CARGA	•	CORECCIO		CARGA		CORECCIO	ON
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		5.90	69	23.00		4.40	51	17.00		2.60	30	10.00	
0.040		12.30	144	48.00		9.00	105	35.00		5.40	63	21.00	
0.060		18.20	213	71.00		13.10	153	51.00		7.70	90	30.00	
0.080		23.80	279	93.00		17.20	201	67.00		10.30	120	40.00	
0.100	1000	29.70	348	116.00	11.60	21.50	252	84.00	8.40	12.80	150	50.00	5.00
0.200	1500	48.50	567	189.00		35.10	411	137.00		21.00	246	82.00	
0.300		61.50	720	240.00		44.60	522	174.00		26.70	312	104.00	
0.400		71.30	834	278.00		51.80	606	202.00		30.80	360	120.00	
0,500		74.40	870	290.00		53.80	630	210.00		32.10	375	125.00	

Leonidas Murga Vasquez
TECNICO LABORATORISTA

SEGENMA SEGENMA

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

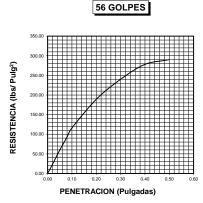
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

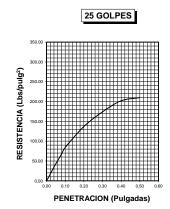
CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

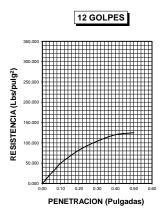
ALUMNA : ROSA VANESA RAMIREZ SILVA

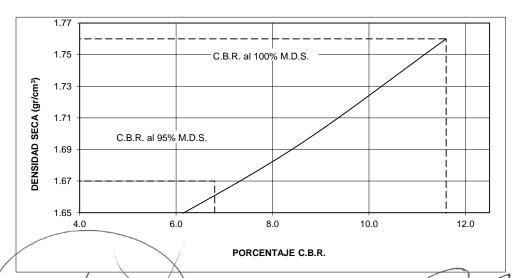
PROYECTO TESIS

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"


UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE


MATERIAL : CENIZA DE ARROZ 0%


CALICATA : C - 1 FECHA : Mayo del 2022 PROFUNDIDAD: 0.20 - 3.00 m


DATOS DEL PROCTOR						
Densidad Màxima (gr/cm³)	1.76					
Humedad Optima (%)	14.73					

DATOS DEL C.B.R.						
C.B.R. al 100% de M.D.S. (%)						
C.B.R. al 95% de M.D.S. (%)	6.80					

Leonidas Murga Vasquez

Técnico LABORATORISTA

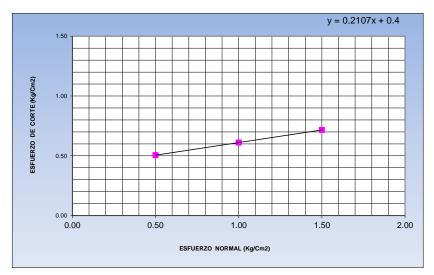
Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ENSAYO DE CORTE DIRECTO ASTM D3080-72

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"


CALICATA : 1

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA : 05 DE MAYO DEL 2022		2022	MUESTRA Nº	1	PROFUNDIDAD:	1.50 M
NO DE	PESO VOLUME-	ESFUERZO	PROPORCION	HUMEDAD	ESFUERZO	HUMEDAD
Nº DE ESPECIMEN	TRICO SECO	NORMAL	DE ESFUERZOS	NATURAL	DE CORTE	SATURADA
LOFECIIVILIN	(gr/cm³)	(kg/Cm ²)	(t/s)	(%)	(kg/Cm ²)	(%)
1	1.619	0.50	1.011	14.25	0.505	22.15
2	1.618	1.00	0.611	14.33	0.611	22.56
3	1 616	1.50	0.477	14 51	0.716	22.80

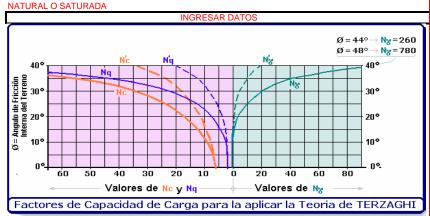
RESULTADO ::

COHESION (kg/Cm²) 0.40 ANGULO DE FRICCION INTERNA (°) : 11.90

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112


LABORATORIO SEGENMA

"ESTABILIZACION DE ARCILLAS PLASTICAS INCORPORANDO CENIZAS DE CASCARILLA DE ARROZ".

CAPACIDAD PORTANTE

Tipo de falla	Loc	cal
Denominacion	C1-	M1
Ubicación		
Tipo de cimentacion	CORF	RIDO
Estado del suelo	SATU	RADA
DETERMINACIÓN	UNIDAD	VALOR
Cohesion	kg/cm ²	0.40
Ángulo de fricción interna	Grado sexag.	11.90°
Peso volumetrico seco #1	gr/cm ³	1.619
Contenido de humedad #1, estado: saturada	porcentaje	22.15%
Peso volumetrico saturada en el anillo	gr/cm ³	1.978
Peso volumetrico seco #2	gr/cm3	1.618
Contenido de humedad #2, estado: saturada	porcentaje	22.56%
Peso volumetrico saturada en el anillo	gr/cm3	1.983
Peso volumetrico seco #3	gr/cm ³	1.616
Contenido de humedad #3, estado: saturada	porcentaje	22.89%
Peso volumetrico saturada en el anillo	gr/cm ³	1.985
Peso volumetrico promedio: saturada	gr/cm ³	1.982
Peso volumetrico (γ1) saturado y sumergido	kg/m³	982
Profundidad del cimiento (Df)	metros	1.50
Ancho de cimiento (B) o diametro en caso circular (D)	metros	1.00
CAPACIDAD DE CARGA ULTIMA O CARGA LIMITE qu	kg/cm ²	2.54
Factor de seguridad	adimensional	3.00
CAPACIDAD DE CARGA ADMISIBLE gadm	kg/cm ²	0.85

CUADRADA, CIRCULAR O CORRIDO

SEGENMA

Leonidas Murga Vasquez

TÉCNICO LABORATORISTA

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

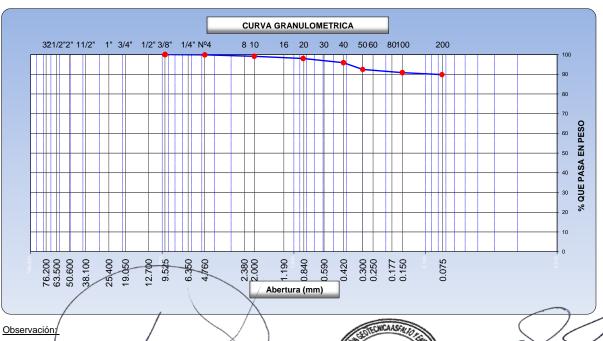
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ANALISIS GRANULOMETRICO POR TAMIZADO (MTC E-107 / ASTM D-422, C-117 / AASHTO T-27, T-88)

ALUMNA ROSA VANESA RAMIREZ SILVA

PROYECTO "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020" TESIS


UBICACIÓN DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA

MATERIAL CENIZA DE ARROZ 5 % PROFUNDIDAD 0.20 a 3.00 m.

FECHA 05 DE MAYO DEL 2022

Tamices ASTM	Abertura (mm)	Peso Retenido	Retenido Parcial	Retenido Acumulado	Porcentaje que Pasa	Material sin Especificacion	Descripci	on
5"	127.000						1. Peso de Material	
4"	101.600						Peso Inicial Total (kg)	200.00
3"	73.000						Peso Fraccion Fina Para Lavar (gr)	200.00
2 1/2"	60.300							
2"	50.800						2. Caracteristicas	
1 1/2"	37.500						Tamaño Maximo	3/8"
1"	25.400						Tamaño Maximo Nominal	1/4"
3/4"	19.000						Grava (%)	0.1
1/2"	12.700						Arena (%)	10.0
3/8"	9.520				100.00		Finos (%)	89.8
1/4"	6.350						Modulo de Fineza (%)	
N° 4	4.750	0.25	0.13	0.13	99.87			
N° 8	2.360						3. Clasificacion	
N° 10	2.000	1.52	0.76	0.89	99.11		Limite Liquido (%)	47.5
N° 16	1.190						Limite Plastico (%)	27.4
N° 20	0.850	2.23	1.11	2.00	98.00		Indice de Plasticidad (%)	20.1
N° 30	0.600						Clasificacion SUCS	CL
N° 40	0.420	4.26	2.13	4.13	95.87		Clasificacion AASHTO	A-7-6 (14)
N° 50	0.300	6.87	3.43	7.56	92.44			
N° 60	0.250							
N° 80	0.180							
N° 100	0.150	3.21	1.60	9.16	90.84			
N° 200	0.075	2.02	1.01	10.17	89.83			
Pasante		179.9	89.8	100.0				

www bo Leonidas Murga Vasquez TÉCNICO LABORATORISTA

SEGENM

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

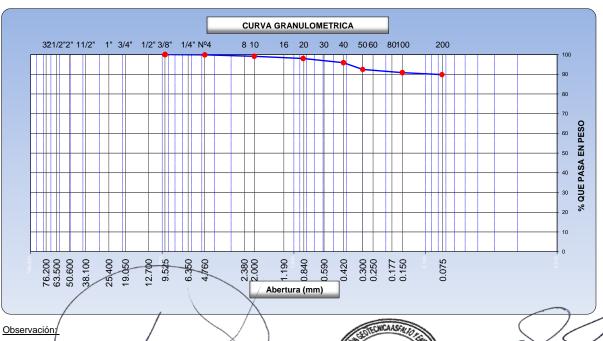
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ANALISIS GRANULOMETRICO POR TAMIZADO (MTC E-107 / ASTM D-422, C-117 / AASHTO T-27, T-88)

ALUMNA ROSA VANESA RAMIREZ SILVA

PROYECTO "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020" TESIS


UBICACIÓN DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA

MATERIAL CENIZA DE ARROZ 5 % PROFUNDIDAD 0.20 a 3.00 m.

FECHA 05 DE MAYO DEL 2022

Tamices ASTM	Abertura (mm)	Peso Retenido	Retenido Parcial	Retenido Acumulado	Porcentaje que Pasa	Material sin Especificacion	Descripci	on
5"	127.000						1. Peso de Material	
4"	101.600						Peso Inicial Total (kg)	200.00
3"	73.000						Peso Fraccion Fina Para Lavar (gr)	200.00
2 1/2"	60.300							
2"	50.800						2. Caracteristicas	
1 1/2"	37.500						Tamaño Maximo	3/8"
1"	25.400						Tamaño Maximo Nominal	1/4"
3/4"	19.000						Grava (%)	0.1
1/2"	12.700						Arena (%)	10.0
3/8"	9.520				100.00		Finos (%)	89.8
1/4"	6.350						Modulo de Fineza (%)	
N° 4	4.750	0.25	0.13	0.13	99.87			
N° 8	2.360						3. Clasificacion	
N° 10	2.000	1.52	0.76	0.89	99.11		Limite Liquido (%)	47.5
N° 16	1.190						Limite Plastico (%)	27.4
N° 20	0.850	2.23	1.11	2.00	98.00		Indice de Plasticidad (%)	20.1
N° 30	0.600						Clasificacion SUCS	CL
N° 40	0.420	4.26	2.13	4.13	95.87		Clasificacion AASHTO	A-7-6 (14)
N° 50	0.300	6.87	3.43	7.56	92.44			
N° 60	0.250							
N° 80	0.180							
N° 100	0.150	3.21	1.60	9.16	90.84			
N° 200	0.075	2.02	1.01	10.17	89.83			
Pasante		179.9	89.8	100.0				

www bo Leonidas Murga Vasquez TÉCNICO LABORATORISTA

SEGENM

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

LIMITES DE CONSISTENCIA

(MTC E-110,111 / ASTM D-4318 / AASHTO T-90, T-89)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DIS

: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C1-M1

 MATERIAL
 :
 CENIZA DE ARROZ 5 %

 PROFUNDIDAD
 :
 0.20 a 3.00 m.

 FECHA
 :
 05 DE MAYO DEL 2022

DETERMINACION DEL LIMITE LIQUIDO

N° de Tarro		31	32	33	
Peso de Tarro + Suelo Humedo	gr.	52.25	53.17	58.31	
Peso de Tarro + Suelo Seco	gr.	42.12	42.45	47.10	
Peso de Tarro	gr.	21.25	19.89	23.08	
Peso de Agua	gr.	10.13	10.72	11.21	
Peso del Suelo Seco	gr.	20.87	22.56	24.02	Limite Liquido
Contenido de Humedad	%	48.55	47.50	46.65	47.5
Numero de Golpes		20	25	30	

DETERMINACION DEL LIMITE PLASTICO E INDICE DE PLASTICIDAD

N° de Tarro		34	35	
Peso de Tarro + Suelo Humedo	gr.	47.50	47.93	
Peso de Tarro + Suelo seco	gr.	41.93	41.32	
Peso de Tarro	gr.	21.18	17.63	
Peso de Agua	gr.	5.57	6.61	
Peso de Suelo seco	gr.	20.75	23.69	Limite Plastico
Contenido de Humedad	%	26.82	27.91	27.4

Constantes Fisicas de la Muestra						
Limite Liquido	47.5					
Limite Plastico	27.4					
Indice de Plasticidad	20.1					

Observaciones

Pasante Tamiz N° 40

Leoylidas Murga Vasquez
TECNICO LABORATORISTA

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYO DE ANALISIS QUIMICO

ALUMNA: ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

NORMA: ASTM NTP 400. 042

ASUNTO: Analisis Químico de una Muestra - CENIZA DE ARROZ 5%

		p.p.m				
Muestra	P.H	Sales Totales	Sales Totales Cloruros			
Agregado Fino	6.42	0.134	58	37		

Limites permisibles para Mezcla de Agregado Fino segun NTP 339.088

Descrippción	Límite Permisible					
1 sólidos en Suspensión	5,000	p.p.m	máximo			
2 Materia Orgánica	3	p.p.m	máximo			
3 Alcalinidad (NaHCO3)	1,000	p.p.m	máximo			
4 Sulfato (Ión SO4)	600	p.p.m	máximo			
5 Cloruros (Ión Cl)	1,000	p.p.m	máximo			
5 Ph		5 a 8	}			

Leonidas Murga Vasquez

TECNICO LABORATORISTA

Lambayeque, Mayo del 2022

SEGENNA

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmyas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

DETERMINACION DE LA SAL (NTP 339.152)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

2020"

MATERIAL : CENIZA DE ARROZ 5%

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA: 05 DE MAYO DEL 2022

POZO - MUESTRA	C1- M 1		
UBICACIÓN			
PROFUNDIDAD (Mt)	0.20 a 3.00		
(1) PESO DEL TARRO	20.28		
(2) PESO TARRO + AGUA + SAL	42.7		
(3) PESO TARRO SECO + SAL	20.31		
(4) PESO SAL (3 - 1)	0.03		
(5) PESO AGUA (2 - 3)	22.39		
(6) PORCENTAJE DE SAL	0.134%		

HUMEDAD NATURAL (ASTM 2216-98)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

2020"

MATERIAL CENIZA DE ARROZ 5%

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA : 05 DE MAYO DEL 2022

POZO-MUESTRA	C1- M 1	
UBICACIÓN		
PROFUNDIDAD (Mt)	0.20 a 3.00	
Nº RECIPIENTE	15	
1- PESO SUELO HUMEDO + RECIPIENTE	362.21	
2- PESO SUELO SECO + RECIPIENTE	332.62	
3- PESO DEL AGUA	29.59	
4- PESO RECIPIENTE	130.25	
5- PESO SUELO SECO	202.37	
6- PORCENTAJE DE HUMEDAD	14.62%	

Leonidas Murga Vasquez

TECNICO LABORATORISTA

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

PESO ESPECÍFICO RELATIVO DE SOLIDOS

(ASTM- D854-58)

ALUMNA: ROSA VANESA RAMIREZ SILVA

PROVECTO TESIS "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz,

PROYECTO TESIS "Estabilización de Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL: CENIZA DE ARROZ 5%

FECHA: MAYO DEL 2022

CALICATA	C1-	M1	
1. Temperatura (°C)	23.0 °C	23.0 °C	
2. Numero de Picnometro	15	16	
3. Peso de fiola + suelo seco (gr)	321.2	335.7	
4. Peso de fiola (volumetrico) (gr)	115.0	113.0	
5. Peso suelo seco (gr)	223.0	221.3	
6. Peso fiola + suelo seco + agua (gr)	524.0	530.1	
7. Peso de fiola + agua (gr)	385.6	392.5	
8. Peso especifico relativo de los solidos	2.64	2.64	

Leoylidas Murga Vasquez

/ TÉCNICO LABORATORISTA

SEGENMA SE

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ENSAYO CALIFORNIA BEARING RATIO ASTM: D-1883

ALUMNA : ROSA VANESA RAMIREZ SILVA PROYECTO

TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL : CENIZA DE ARROZ 5%

C.B.R.

MOLDE Nº		1		2	3		
Nº DE GOLPES POR CAPA		į	56	2	25		12
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA
PESO MOLDE + SUELO HUMEDO	(g)	8,101	8,176	8,399	8,500	7,966	8,165
PESO DEL MOLDE	(g)	3,699	3,699	4,154	4,154	3,879	3,879
PESO DEL SUELO HUMEDO	(g)	4402	4477	4245	4346	4087	4286
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143
DENSIDAD HUMEDA	(g/cm ³)	2.05	2.09	1.98	2.03	1.91	2
CAPSULA Nº		100	101	102	103	104	105
PESO CAPSULA + SUELO HUMEDO	(g)	309.70	315.58	314.96	322.97	298.24	337.08
PESO CAPSULA + SUELO SECO	(g)	287.61	290.44	291.41	296.10	276.99	304.95
PESO DE AGUA CONTENIDA	(g)	22.09	25.14	23.55	26.87	21.25	32.13
PESO DE CAPSULA	(g)	131.25	127.48	129.36	134.02	127.32	136.02
PESO DE SUELO SECO	(g)	156.36	162.96	162.05	162.08	149.67	168.93
HUMEDAD	(%)	14.13%	15.43%	14.53%	16.58%	14.20%	19.02%
DENSIDAD SECA		1.80	1.81	1.73	1.74	1.67	1.68

EXPANSION

FECHA	HORA	TIE	МРО	DIAL	EXPANSION		EXPANSION		DIAL	EXPANSIO	N	DIAL	EXPANSIO	ON
					mm.	%		mm.	%		mm.	%		
Mayo del 2022	8.30 a.m	0	hrs	3.025			1.33			2.01				
Mayo del 2022	8.30 a.m	24	hrs	3.170	0.145	0.125	1.46	0.140	0.12	2.17	0.170	0.146		
Mayo del 2022	8.30 a.m	48	hrs	3.399	0.374	0.322	1.74	0.412	0.354	2.32	0.313	0.269		
Mayo del 2022	8.30 a.m	72	hrs	3.770	0.745	0.641	2.14	0.812	0.698	2.54	0.533	0.458		
Mayo del 2022	8.30 a.m	96	hrs	4.068	1.043	0.897	2.40	1.071	0.921	2.93	0.923	0.794		

PENETRACION

PENETRACION													
PENETRACION	CARGA		MOLDE	Nº	1		MOLDE	Nº	2		MOLDE	Nº	3
pulg.	ESTÁNDAR	CARGA		CORECCION	١	CARGA	•	CORECCIO	Z	CARGA		CORECCIO	N
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		6.20	72	24.00		4.60	54	18.00		2.80	33	11.00	
0.040		13.10	153	51.00		9.50	111	37.00		5.60	66	22.00	
0.060		19.00	222	74.00		13.80	162	54.00		8.20	96	32.00	
0.080		25.10	294	98.00		17.90	210	70.00		10.80	126	42.00	
0.100	1000	31.30	366	122.00	12.20	22.60	264	88.00	8.80	13.60	159	53.00	5.3
0.200	1500	51.00	597	199.00		36.70	429	143.00		22.10	258	86.00	
0.300		64.90	759	253.00		46.70	546	182.00		28.20	330	110.00	
0.400		75.10	879	293.00		54.10	633	211.00		32.60	381	127.00	
0.500		78.20	915	305.00		56.40	660	220.00		34.10	399	133.00	

Leonidas Murga Vasquez

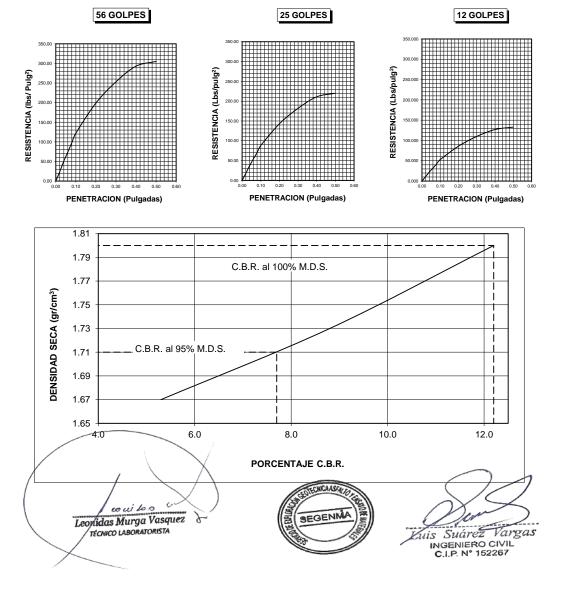
TÉCNICO LABORATORISTA

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"


UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL : CENIZA DE ARROZ 5%

CALICATA : C - 1 FECHA : Mayo del 2022 PROFUNDIDAD: 0.20 - 3.00 m

DATOS DEL PROCTOR								
Densidad Màxima (gr/cm³)	1.80							
Humedad Optima (%)	14.13							

DATOS DEL C.B.R.							
C.B.R. al 100% de M.D.S. (%)							
C.B.R. al 95% de M.D.S. (%)	7.70						

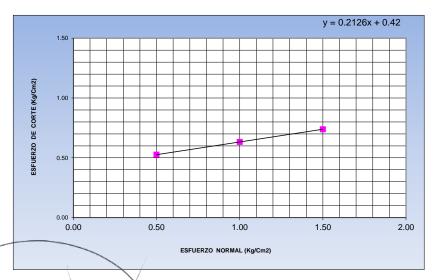
Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE Nº S0090112
LABORATORIO SEGENMA

ENSAYO DE CORTE DIRECTO ASTM D3080-72

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS

: "ESTABILIZACION DE ARCILLAS PLASTICAS INCORPORANDO CENIZAS DE CASCARILLA DE ARROZ".


CALICATA : 1

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA	: 05 DE MAYO DEL 2	2022	MUESTRAN	1	PROFUNDIDAD:	1.50 M
NO DE	PESO VOLUME-	ESFUERZO	PROPORCION	HUMEDAD	ESFUERZO	HUMEDAD
Nº DE ESPECIMEN	TRICO SECO	NORMAL	DE ESFUERZOS	NATURAL	DE CORTE	SATURADA
LOFECTIVILIN	(gr/cm³)	(kg/Cm ²)	(t/s)	(%)	(kg/Cm ²)	(%)
1	1.583	0.50	1.053	14.15	0.526	21.89
2	1.582	1.00	0.633	14.23	0.633	22.03
3	1 570	1.50	0.403	1/1/1	0.730	22.13

RESULTADO ::

COHESION (kg/Cm²) 0.42 ANGULO DE FRICCION INTERNA (º) : 12.00

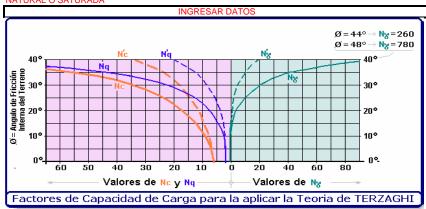
Leoylidas Murga Vasquez

SEGENMA RANGE

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112


LABORATORIO SEGENMA

"ESTABILIZACION DE ARCILLAS PLASTICAS INCORPORANDO CENIZAS DE CASCARILLA DE ARROZ".

CAPACIDAD PORTANTE

Tipo de falla	Loc	al		
Denominacion	C1-M1			
Ubicación	CI-I	VII		
Tipo de cimentacion	CORRIDO			
Estado del suelo	SATUR	RADA		
DETERMINACIÓN	UNIDAD	VALOR		
Cohesion	kg/cm ²	0.42		
Ángulo de fricción interna	Grado sexag.	12.00°		
Peso volumetrico seco #1	gr/cm ³	1.583		
Contenido de humedad #1, estado: saturada	porcentaje	21.89%		
Peso volumetrico saturada en el anillo	gr/cm ³	1.930		
Peso volumetrico seco #2	gr/cm ³	1.582		
Contenido de humedad #2, estado: saturada	porcentaje	22.03%		
Peso volumetrico saturada en el anillo	gr/cm ³	1.930		
Peso volumetrico seco #3	gr/cm ³	1.579		
Contenido de humedad #3, estado: saturada	porcentaje	22.13%		
Peso volumetrico saturada en el anillo	gr/cm ³	1.929		
Peso volumetrico promedio: saturada	gr/cm ³	1.930		
Peso volumetrico (γ1) saturado y sumergido	kg/m³	930		
Profundidad del cimiento (Df)	metros	1.50		
Ancho de cimiento (B) o diametro en caso circular (D)	metros	1.00		
CAPACIDAD DE CARGA ULTIMA O CARGA LIMITE qu	kg/cm ²	2.74		
Factor de seguridad	adimensional	3.00		
CAPACIDAD DE CARGA ADMISIBLE qadm	kg/cm ²	0.91		

CUADRADA, CIRCULAR O CORRIDO NATURAL O SATURADA

Contenido de humedad natural #1 = Peso volumetrico natural #1 = 14.15% 1.807 gr/cm3 Contenido de humedad natural #2 = 14.23% 14.41% Contenido de humedad natural #3 = PESO VOLUMETRICO NATURAL = 1.807 gr/cm3 CHICAASFAL PESO VOLUMETRICO SATURADO = 1.930 gr/cm3 www los SEGENMA

Leoyidas Murga Vasquez TÉCNICO LABORATORISTA

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-45648 CODIGO OSCE Nº S0090112

ENSAYO DE COMPACTACION

(PROCTOR MODIFICADO - ASTM D-1557)

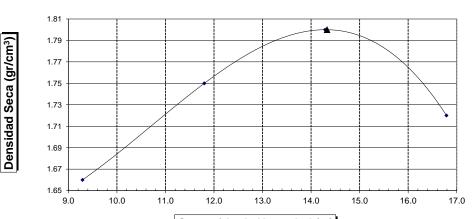
FECHA: MAYO DEL 2022

ALUMNA : ROSA VANESA RAMIREZ SILVA

"ESTABILIZACION DE ARCILLAS PLASTICAS INCORPORANDO CENIZAS DE CASCARILLA DE PROYECTO TESIS

LUGAR : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C-1


MATERIAL : CENIZA DE ARROZ 5 %

	Volùmen Molde = 2118 cm3									
	Prueba Nº		1	2	3	4				
1	Peso molde + Suelo hùmedo compactado	(g)	6454	6771	6983	6877				
2	Peso de molde	(g)	2620	2620	2620	2620				
3	Peso suelo húmedo compactado	(g)	3834	4151	4363	4257				
4	Densidad hùmeda	(g)	1.810	1.960	2.060	2.010				
5	Densidad seca	(g/cm ³)	1.660	1.750	1.800	1.720				

CONTENIDO DE HUMEDAD

	Frasco Nº		50	51	52	53
1	Peso de frasco + Suelo húmedo	(g)	282.34	286.78	292.02	300.05
2	Peso del frasco + Peso de suelo seco	(g)	269.22	270.34	271.68	276.01
3	Peso del frasco	(g)	128.03	131.03	129.36	132.84
4	Peso de agua contenida	(g)	13.12	16.44	20.34	24.04
5	Peso del suelo seco	(g)	141.19	139.31	142.32	143.17
6	Contenido de humedad	(%)	9.29	11.80	14.29	16.79

Máxima Densidad Seca 1.80 gr/cm³ Optimo Contenido de Humedad : 14.33

Contenido de Humedad (%)

www los Leoyiidas Murga Vasquez TÉCNICO LABORATORISTA

SEGENMA

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

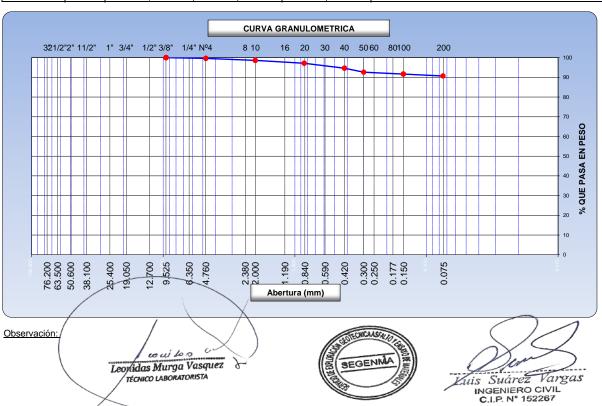
LABORATORIO SEGENMA

ANALISIS GRANULOMETRICO POR TAMIZADO (MTC E-107 / ASTM D-422, C-117 / AASHTO T-27, T-88)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE


CALICATA : C1-M1

MATERIAL : CENIZA DE ARROZ 10 %

PROFUNDIDAD : 0.20 a 3.00 m.

FECHA : 05 DE MAYO DEL 2022

. 05 DE IMATO DEL 2022									
Tamices ASTM	Abertura (mm)	Peso Retenido	Retenido Parcial	Retenido Acumulado	Porcentaje que Pasa	Material sin Especificacion	Descripci	on	
5"	127.000						1. Peso de Material		
4"	101.600						Peso Inicial Total (kg)	208.10	
3"	73.000						Peso Fraccion Fina Para Lavar (gr)	208.10	
2 1/2"	60.300								
2"	50.800						2. Caracteristicas		
1 1/2"	37.500						Tamaño Maximo	3/8"	
1"	25.400						Tamaño Maximo Nominal	1/4"	
3/4"	19.000						Grava (%)	0.4	
1/2"	12.700						Arena (%)	9.0	
3/8"	9.520				100.00		Finos (%)	90.7	
1/4"	6.350						Modulo de Fineza (%)		
N° 4	4.750	0.74	0.36	0.36	99.64				
N° 8	2.360						3. Clasificacion		
N° 10	2.000	2.21	1.06	1.42	98.58		Limite Liquido (%)	46.2	
N° 16	1.190						Limite Plastico (%)	26.4	
N° 20	0.850	3.02	1.45	2.87	97.13		Indice de Plasticidad (%)	19.8	
N° 30	0.600						Clasificacion SUCS	CL	
N° 40	0.420	5.25	2.51	5.38	94.62		Clasificacion AASHTO	A-7-6 (13)	
N° 50	0.300	4.23	2.03	7.41	92.59				
N° 60	0.250								
N° 80	0.180								
N° 100	0.150	1.96	0.94	8.35	91.65				
N° 200	0.075	2.01	0.96	9.31	90.69				
Pasante		189.4	90.7	100.0					

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE N° S0090112

LABORATORIO SEGENMA

LIMITES DE CONSISTENCIA

(MTC E-110,111 / ASTM D-4318 / AASHTO T-90, T-89)

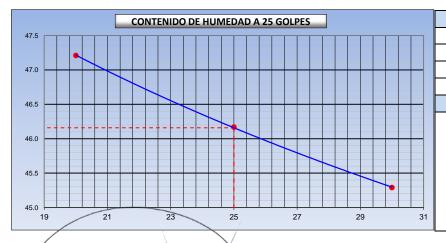
ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C1-M1

MATERIAL : CENIZA DE ARROZ 10 % PROFUNDIDAD : 0.20 a 3.00 m.


FECHA : 05 DE MAYO DEL 2022

DETERMINACION DEL LIMITE LIQUIDO

N° de Tarro		46	47	48	
Peso de Tarro + Suelo Humedo	gr.	47.86	51.90	45.96	
Peso de Tarro + Suelo Seco	gr.	38.36	40.75	37.88	
Peso de Tarro	gr.	18.23	16.59	20.03	
Peso de Agua	gr.	9.50	11.15	8.08	
Peso del Suelo Seco	gr.	20.13	24.16	17.85	Limite Liquido
Contenido de Humedad	%	47.21	46.17	45.29	46.2
Numero de Golpes		20	25	30	

DETERMINACION DEL LIMITE PLASTICO E INDICE DE PLASTICIDAD

N° de Tarro		49	50	
Peso de Tarro + Suelo Humedo	gr.	46.16	43.66	
Peso de Tarro + Suelo seco	gr.	40.71	38.18	
Peso de Tarro	gr.	19.66	17.85	
Peso de Agua	gr.	5.45	5.48	
Peso de Suelo seco	gr.	21.05	20.33	Limite Plastico
Contenido de Humedad	%	25.89	26.94	26.4

Constantes Fisicas de la Muestra					
Limite Liquido	46.2				
Limite Plastico	26.4				
Indice de Plasticidad	19.8				

Observaciones

Pasante Tamiz N° 40

Leonidas Murga Vasquez

TÉCNICO LABORATORISTA

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYO DE ANALISIS QUIMICO

ALUMNA: ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

NORMA: ASTM NTP 400. 042

ASUNTO: Analisis Químico de una Muestra - CENIZA DE ARROZ 10%

		p.p.m			
Muestra	P.H	Sales Totales	Cloruros	Sulfatos	
Agregado Fino	6.45	0.136	62	37	

Limites permisibles para Mezcla de Agregado Fino segun NTP 339.088

Descrippción	Límite Permisible				
1 sólidos en Suspensión	5,000	p.p.m	máximo		
2 Materia Orgánica	3	p.p.m	máximo		
3 Alcalinidad (NaHCO3)	1,000	p.p.m	máximo		
4 Sulfato (Ión SO4)	600	p.p.m	máximo		
5 Cloruros (Ión Cl)	1,000	p.p.m	máximo		
5 Ph		5 a	8		

Leovidas Murga Vasquez

TECNICO LABORATORISTA

SEGENMA IN THE SECOND S

Lambayeque, Mayo del 2022

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

DETERMINACION DE LA SAL (NTP 339.152)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

2020"

MATERIAL : CENIZA DE ARROZ 10%

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA: 05 DE MAYO DEL 2022

POZO - MUESTRA	C1- M 1	
UBICACIÓN		
PROFUNDIDAD (Mt)	0.20 a 3.00	
(1) PESO DEL TARRO	17.36	
(2) PESO TARRO + AGUA + SAL	46.89	
(3) PESO TARRO SECO + SAL	17.4	
(4) PESO SAL (3 - 1)	0.04	
(5) PESO AGUA (2 - 3)	29.49	
(6) PORCENTAJE DE SAL	0.136%	

HUMEDAD NATURAL (ASTM 2216-98)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

2020"

MATERIAL CENIZA DE ARROZ 10%

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA : 05 DE MAYO DEL 2022

POZO-MUESTRA	C1- M 1	
UBICACIÓN		
PROFUNDIDAD (Mt)	0.20 a 3.00	
Nº RECIPIENTE	103	
1- PESO SUELO HUMEDO + RECIPIENTE	415.02	
2- PESO SUELO SECO + RECIPIENTE	380.22	
3- PESO DEL AGUA	34.80	
4- PESO RECIPIENTE	135.21	
5- PESO SUELO SECO	245.01	
6- PORCENTAJE DE HUMEDAD	14.20%	

Leonidas Murga Vasquez
TECNICO LABORATORISTA

SEGENMA RE

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE Nº S0090112
LABORATORIO SEGENMA

PESO ESPECÍFICO RELATIVO DE SOLIDOS

(ASTM- D854-58)

ALUMNA: ROSA VANESA RAMIREZ SILVA

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

PROYECTO TESIS: 2020"

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL: CENIZA DE ARROZ 10%

FECHA: MAYO DEL 2022

CALICATA	C1-M1		
1. Temperatura (°C)	21.0 °C	22.0 °C	
2. Numero de Picnometro	10	11	
3. Peso de fiola + suelo seco (gr)	330.0	325.4	
4. Peso de fiola (volumetrico) (gr)	112.0	114.0	
5. Peso suelo seco (gr)	224.6	228.1	
6. Peso fiola + suelo seco + agua (gr)	530.5	524.6	
7. Peso de fiola + agua (gr)	392.3	384.2	
8. Peso especifico relativo de los solidos	2.60	2.60	

Leonidas Murga Vasquez

SEGENNÍA PO

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

ENSAYO CALIFORNIA BEARING RATIO

ASTM: D-1883

ALUMNA : ROSA VANESA RAMIREZ SILVA PROYECTO

TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL : CENIZA DE ARROZ 10%

C.B.R.

MOLDE Nº	4		:	5	6		
Nº DE GOLPES POR CAPA	56		25		12		
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA
PESO MOLDE + SUELO HUMEDO	(g)	8,362	8,439	8,527	8,630	8,443	8,644
PESO DEL MOLDE	(g)	3,855	3,855	4,177	4,177	4,253	4,253
PESO DEL SUELO HUMEDO	(g)	4507	4584	4350	4453	4190	4391
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143
DENSIDAD HUMEDA	(g/cm ³)	2.1	2.14	2.03	2.08	1.96	2.05
CAPSULA Nº		220	221	222	223	224	225
PESO CAPSULA + SUELO HUMEDO	(g)	294.23	305.74	297.06	308.03	286.50	320.49
PESO CAPSULA + SUELO SECO	(g)	272.78	281.35	274.16	282.06	265.95	289.52
PESO DE AGUA CONTENIDA	(g)	21.45	24.39	22.9	25.97	20.55	30.97
PESO DE CAPSULA	(g)	129.09	131.06	124.78	132.65	128.95	133.26
PESO DE SUELO SECO	(g)	143.69	150.29	149.38	149.41	137	156.26
HUMEDAD	(%)	14.93%	16.23%	15.33%	17.38%	15.00%	19.82%
DENSIDAD SECA		1.83	1.84	1.76	1.77	1.70	1.71

EXPANSION

FECHA	HORA	TIE	MPO	DIAL	EXPANSION		DIAL EXPANSION		DIAL	EXPANSIO	ON	
					mm.	%		mm.	%		mm.	%
Mayo del 2022	9.00 a.m	0	hrs	2.210			2.07			2.00		
Mayo del 2022	9.00 a.m	24	hrs	2.436	0.226	0.194	2.27	0.206	0.177	2.22	0.226	0.194
Mayo del 2022	9.00 a.m	48	hrs	2.631	0.421	0.362	2.42	0.359	0.309	2.35	0.356	0.306
Mayo del 2022	9.00 a.m	72	hrs	3.076	0.866	0.745	2.82	0.758	0.652	2.72	0.727	0.625
Mayo del 2022	9.00 a.m	96	hrs	3.310	1.100	0.946	3.10	1.040	0.894	3.22	1.223	1.052

PENETRACION

	PENETRACION												
PENETRACION	CARGA		MOLDE	Nº	4	MOLDE № 5			MOLDE № 6				
pulg.	ESTÁNDAR	CARGA		CORECCION		CARGA	•	CORECCIO	Z	CARGA		CORECCIO	ON
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		6.70	78	26.00		4.90	57	19.00		2.80	33	11.00	
0.040		13.60	159	53.00		10.00	117	39.00		5.90	69	23.00	
0.060		20.00	234	78.00		14.60	171	57.00		8.70	102	34.00	
0.080		26.20	306	102.00		19.00	222	74.00		11.30	132	44.00	
0.100	1000	32.80	384	128.00	12.80	23.80	279	93.00	9.30	14.10	165	55.00	5.50
0.200	1500	53.60	627	209.00		39.00	456	152.00		23.10	270	90.00	
0.300		67.90	795	265.00		49.50	579	193.00		29.20	342	114.00	
0.400		78.70	921	307.00		57.20	669	223.00		33.80	396	132.00	
0.500		82.10	960	320.00		59.70	699	233.00		35.40	414	138.00	
		/											

Leoridas Murga Vasquez
TÉCNICO LABORATORISTA

SEGENNÁA PRO SEGENNÁA

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

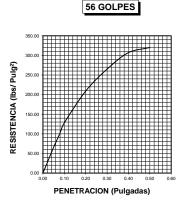
CODIGO OSCE N° S0090112

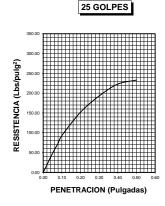
LABORATORIO SEGENMA

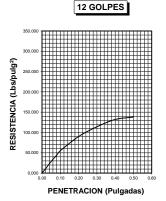
ALUMNA : ROSA VANESA RAMIREZ SILVA

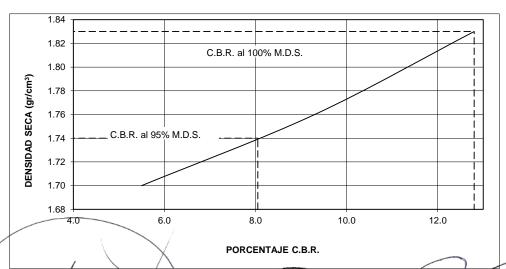
PROYECTO TESIS

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"


UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE


MATERIAL : CENIZA DE ARROZ 10%


CALICATA : C - 1 **FECHA** : Mayo del 2022 **PROFUNDIDAD**: 0.20 - 3.00 m


DATOS DEL PROCTOR						
Densidad Màxima (gr/cm³) 1.83						
Humedad Optima (%) 14.93						

DATOS DEL C.B.R.						
C.B.R. al 100% de M.D.S. (%)						
C.B.R. al 95% de M.D.S. (%) 8.05						

Leovidas Murga Vasquez
TECNICO LABORATORISTA

SEGENMA WE

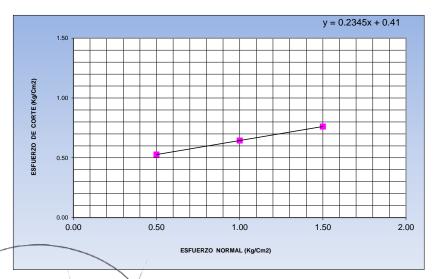
Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ENSAYO DE CORTE DIRECTO ASTM D3080-72

: ROSA VANESA RAMIREZ SILVA ALUMNA

PROYECTO TESIS

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"


CALICATA

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA	: 05 DE MAYO DEL 2	2022	MUESTRA Nº	1	PROFUNDIDAD:	1.50 m
NO DE	PESO VOLUME-	ESFUERZO	PROPORCION	HUMEDAD	ESFUERZO	HUMEDAD
Nº DE ESPECIMEN	TRICO SECO	NORMAL	DE ESFUERZOS	NATURAL	DE CORTE	SATURADA
ESPECIIVIEN	(gr/cm³)	(kg/Cm ²)	(t/s)	(%)	(kg/Cm ²)	(%)
1	1.590	0.50	1.055	14.26	0.527	21.56
2	1.588	1.00	0.645	14.42	0.645	21.74
3	1.585	1.50	0.508	14.63	0.762	22.06

RESULTADO

COHESION (kg/Cm²) 0.41 ANGULO DE FRICCION INTERNA (°) 13.20

www loo Leoylidas Murga Vasquez TÉCNICO LABORATORISTA

SEGENN

Kuis Suárez Vargas INGENIERO CIVIL C.I.P. N° 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

CAPACIDAD PORTANTE

Tipo de falla	Loc	cal		
Denominacion	C1-M1			
Ubicación				
Tipo de cimentacion	CORF	RIDO		
Estado del suelo	SATUR	RADA		
DETERMINACIÓN	UNIDAD	VALOR		
Cohesion	kg/cm ²	0.41		
Ángulo de fricción interna	Grado sexag.	13.20°		
Peso volumetrico seco #1	gr/cm ³	1.590		
Contenido de humedad #1, estado: saturada	porcentaje	21.56%		
Peso volumetrico saturada en el anillo	gr/cm ³	1.933		
Peso volumetrico seco #2	gr/cm ³	1.588		
Contenido de humedad #2, estado: saturada	porcentaje	21.74%		
Peso volumetrico saturada en el anillo	gr/cm ³	1.933		
Peso volumetrico seco #3	gr/cm ³	1.585		
Contenido de humedad #3, estado: saturada	porcentaje	22.06%		
Peso volumetrico saturada en el anillo	gr/cm ³	1.935		
Peso volumetrico promedio: saturada	gr/cm ³	1.934		
Peso volumetrico (γ1) saturado y sumergido	kg/m³	934		
Profundidad del cimiento (Df)	metros	1.50		
Ancho de cimiento (B) o diametro en caso circular (D)	metros	1.00		
CAPACIDAD DE CARGA ULTIMA O CARGA LIMITE qu	kg/cm ²	2.80		
Factor de seguridad	adimensional	3.00		
CAPACIDAD DE CARGA ADMISIBLE gadm	kg/cm ²	0.93		

CUADRADA, CIRCULAR O CORRIDO NATURAL O SATURADA

Contenido de humedad natural #1 = 14.26%
Contenido de humedad natural #2 = 14.42%
Contenido de humedad natural #3 = 14.68%

PESO VOLUMETRICO NATURAL = PESO VOLUMETRICO SATURADO = 1.934 gr/cm3

Leonidas Murga Vasquez

SEGENMA SE

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-45648 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

ENSAYO DE COMPACTACION

(PROCTOR MODIFICADO - ASTM D-1557)

FECHA: MAYO DEL 2022

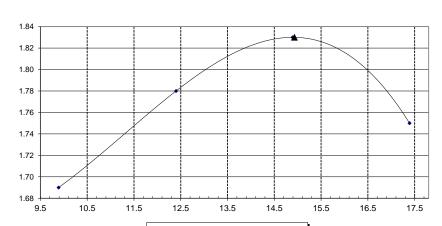
ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE LUGAR

CALICATA : C-1

MATERIAL : CENIZA DE ARROZ 10 %


Г	Volùmen Molde = 2118 cm3								
	Prueba Nº		1	2	3	4			
1	Peso molde + Suelo hùmedo compactado	(g)	6559	6856	7068	6962			
2	Peso de molde	(g)	2620	2620	2620	2620			
3	Peso suelo húmedo compactado	(g)	3939	4236	4448	4342			
4	Densidad hùmeda	(g)	1.860	2.000	2.100	2.050			
5	Densidad seca	(g/cm ³)	1.690	1.780	1.830	1.750			

CONTENIDO DE HUMEDAD

	Frasco Nº		56	57	58	59
1	Peso de frasco + Suelo húmedo	(g)	301.69	306.42	310.75	314.19
2	Peso del frasco + Peso de suelo seco	(g)	286.11	287.12	287.13	286.45
3	Peso del frasco	(g)	128.59	131.48	128.48	126.95
4	Peso de agua contenida	(g)	15.58	19.30	23.62	27.74
5	Peso del suelo seco	(g)	157.52	155.64	158.65	159.50
6	Contenido de humedad	(%)	9.89	12.40	14.89	17.39

gr/cm³ Máxima Densidad Seca 1.83 Optimo Contenido de Humedad : 14.93 %

Contenido de Humedad (%)

wai los Leopidas Murga Vasquez TÉCNICO LABORATORISTA

SEGENMA

Kuis Suárez Vary INGENIERO CIVIL C.I.P. Nº 152267 Vargas

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE

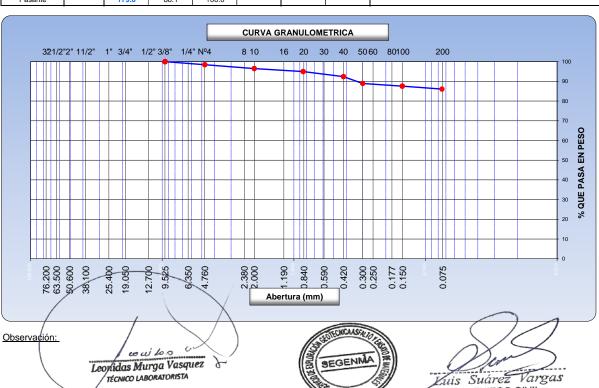
RESOLUCION N° 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ANALISIS GRANULOMETRICO POR TAMIZADO (MTC E-107 / ASTM D-422, C-117 / AASHTO T-27, T-88)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"


UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C1-M1

MATERIAL : CENIZA DE ARROZ 15 % PROFUNDIDAD : 0.20 a 3.00 m.

FECHA : 05 DE MAYO DEL 2022

Tamices ASTM	Abertura (mm)	Peso Retenido	Retenido Parcial	Retenido Acumulado	Porcentaje que Pasa	Material sin Especificacion	Descripci	on
5"	127.000						1. Peso de Material	
4"	101.600						Peso Inicial Total (kg)	204.72
3"	73.000						Peso Fraccion Fina Para Lavar (gr)	204.72
2 1/2"	60.300							
2"	50.800						2. Caracteristicas	
1 1/2"	37.500						Tamaño Maximo	3/8"
1"	25.400						Tamaño Maximo Nominal	1/4"
3/4"	19.000						Grava (%)	1.6
1/2"	12.700						Arena (%)	12.4
3/8"	9.520				100.00		Finos (%)	86.1
1/4"	6.350						Modulo de Fineza (%)	
N° 4	4.750	3.21	1.57	1.57	98.43			
N° 8	2.360						3. Clasificacion	
N° 10	2.000	4.02	1.93	3.50	96.50		Limite Liquido (%)	45.0
N° 16	1.190						Limite Plastico (%)	26.7
N° 20	0.850	3.21	1.54	5.04	94.96		Indice de Plasticidad (%)	18.3
N° 30	0.600						Clasificacion SUCS	CL
N° 40	0.420	5.36	2.58	7.62	92.38		Clasificacion AASHTO	A-7-6 (12)
N° 50	0.300	7.25	3.49	11.11	88.89			
N° 60	0.250							
N° 80	0.180							
N° 100	0.150	2.68	1.29	12.40	87.60			
N° 200	0.075	3.17	1.52	13.92	86.08			
Pasante		179.0	86.1	100.0				

INGENIERO CIVIL C.I.P. N° 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

LIMITES DE CONSISTENCIA

(MTC E-110,111 / ASTM D-4318 / AASHTO T-90, T-89)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO

UBICACIÓN

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

TESIS

: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C1-M1

MATERIAL : CENIZA DE ARROZ 15 %

PROFUNDIDAD : 0.20 a 3.00 m.

FECHA : 05 DE MAYO DEL 2022

DETERMINACION DEL LIMITE LIQUIDO

N° de Tarro		51	52	53	
Peso de Tarro + Suelo Humedo	gr.	52.99	54.09	61.64	
Peso de Tarro + Suelo Seco	gr.	43.93	44.30	50.17	
Peso de Tarro	gr.	24.25	22.56	24.15	
Peso de Agua	gr.	9.06	9.79	11.47	
Peso del Suelo Seco	gr.	19.68	21.74	26.02	Limite Liquido
Contenido de Humedad	%	46.05	45.01	44.10	45.0
Numero de Golpes		20	25	30	

DETERMINACION DEL LIMITE PLASTICO E INDICE DE PLASTICIDAD

N° de Tarro		54	55	
Peso de Tarro + Suelo Humedo	gr.	47.29	45.64	
Peso de Tarro + Suelo seco	gr.	41.60	40.29	
Peso de Tarro	gr.	19.85	20.63	
Peso de Agua	gr.	5.69	5.35	
Peso de Suelo seco	gr.	21.75	19.66	Limite Plastico
Contenido de Humedad	%	26.18	27.23	26.7

Constantes Fisicas de la Muestra					
Limite Liquido	45.0				
Limite Plastico	26.7				
Indice de Plasticidad	18.3				

Observaciones

Pasante Tamiz N° 40

Leonidas Murga Vasquez
TECNICO LABORATORISTA

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYO DE ANALISIS QUIMICO

ALUMNA: ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020".

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

NORMA: ASTM NTP 400. 042

ASUNTO: Analisis Químico de una Muestra - CENIZA DE ARROZ 15%

			p.p.m	
Muestra	P.H	Sales Totales	Cloruros	Sulfatos
Agregado Fino	6.39	0.132	60	34

Limites permisibles para Mezcla de Agregado Fino segun NTP 339.088

Descrippción	Lí	nisible	
1 sólidos en Suspensión	5,000	p.p.m	máximo
2 Materia Orgánica	3	p.p.m	máximo
3 Alcalinidad (NaHCO3)	1,000	p.p.m	máximo
4 Sulfato (Ión SO4)	600	p.p.m	máximo
5 Cloruros (Ión Cl)	1,000	p.p.m	máximo
5 Ph		5 a	8

Leonidas Murga Vasquez TÉCNICO LABORATORISTA

SEGENMA

Lambayeque, Mayo del 2022

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

DETERMINACION DE LA SAL (NTP 339.152)

: ROSA VANESA RAMIREZ SILVA ALUMNA

PROYECTO : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque TESIS

MATERIAL : CENIZA DE ARROZ 15%

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA : 05 DE MAYO DEL 2022

POZO - MUESTRA	C1- M 1	
UBICACIÓN		
PROFUNDIDAD (Mt)	0.20 a 3.00	
(1) PESO DEL TARRO	18.59	
(2) PESO TARRO + AGUA + SAL	48.94	
(3) PESO TARRO SECO + SAL	18.63	
(4) PESO SAL (3 - 1)	0.04	
(5) PESO AGUA (2 - 3)	30.31	
(6) PORCENTAJE DE SAL	0.132%	

HUMEDAD NATURAL (ASTM 2216-98)

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

: ROSA VANESA RAMIREZ SILVA ALUMNA

PROYECTO

TESIS 2020"

CENIZA DE ARROZ 15% UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA : 05 DE MAYO DEL 2022

MATERIAL

POZO-MUESTRA	C1- M 1		
UBICACIÓN			
PROFUNDIDAD (Mt)	0.20 a 3.00		
Nº RECIPIENTE	262		
1- PESO SUELO HUMEDO + RECIPIENTE	384.02		
2- PESO SUELO SECO + RECIPIENTE	350.06		
3- PESO DEL AGUA	33.96		
4- PESO RECIPIENTE	127.58		
5- PESO SUELO SECO	222.48		
6- PORCENTAJE DE HUMEDAD	15.26%		

www los Leonidas Murga Vasquez TÉCNICO LABORATORISTA

SEGENM

Vargas Luis Suárez INGENIERO CIVIL C.I.P. Nº 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

PESO ESPECÍFICO RELATIVO DE SOLIDOS

(ASTM- D854-58)

ALUMNA: ROSA VANESA RAMIREZ SILVA

PROYECTO

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

TESIS: 2020"

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL: CENIZA DE ARROZ 15%

FECHA: MAYO DEL 2022

CALICATA	С	C1-M1			
1. Temperatura (°C)	19.0 °C	19.0 °C			
2. Numero de Picnometro	9	10			
3. Peso de fiola + suelo seco (gr)	336.0	339.2			
4. Peso de fiola (volumetrico) (gr)	116.0	118.0			
5. Peso suelo seco (gr)	221.8	226.3			
6. Peso fiola + suelo seco + agua (gr)	516.0	521.6			
7. Peso de fiola + agua (gr)	378.0	380.8			
Peso especifico relativo de los solidos	2.65	2.65			

Leopidas Murga Vasquez

SEGENNÍA RES

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ENSAYO CALIFORNIA BEARING RATIO

ASTM: D-1883

ALUMNA : ROSA VANESA RAMIREZ SILVA PROYECTO

TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL : CENIZA DE ARROZ 15%

C.B.R.

MOLDE Nº	1	10	1	1		12		
Nº DE GOLPES POR CAPA		5	56	2	! 5	12		
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	
PESO MOLDE + SUELO HUMEDO	(g)	8,673	8,750	8,305	8,408	8,372	8,574	
PESO DEL MOLDE	(g)	4,158	4,158	3,946	3,946	4,174	4,174	
PESO DEL SUELO HUMEDO	(g)	4515	4592	4359	4462	4198	4400	
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143	
DENSIDAD HUMEDA	(g/cm ³)	2.11	2.14	2.03	2.08	1.96	2.05	
CAPSULA Nº		208	199	306	287	295	308	
PESO CAPSULA + SUELO HUMEDO	(g)	324.85	335.91	335.48	346.87	324.94	347.37	
PESO CAPSULA + SUELO SECO	(g)	299.20	306.97	308.27	316.06	300.19	310.92	
PESO DE AGUA CONTENIDA	(g)	25.65	28.94	27.21	30.81	24.75	36.45	
PESO DE CAPSULA	(g)	129.88	131.05	133.26	141.02	137.56	129.03	
PESO DE SUELO SECO	(g)	169.32	175.92	175.01	175.04	162.63	181.89	
HUMEDAD	(%)	15.15%	16.45%	15.55%	17.60%	15.22%	20.04%	
DENSIDAD SECA	·	1.83	1.84	1.76	1.77	1.70	1.71	

EXPANSION

FECHA	HORA	TIEMPO		DIAL	EXPANSION		EXPANSION		EXPANSION		DIAL	EXPANSIO	N	DIAL	EXPANSIO	ON
					mm.	%		mm.	%		mm.	%				
Mayo del 2022	9.15 a.m	0	hrs	1.758			1.96			2.07						
Mayo del 2022	9.15 a.m	24	hrs	1.996	0.238	0.205	2.15	0.187	0.161	2.23	0.170	0.146				
Mayo del 2022	9.15 a.m	48	hrs	2.222	0.464	0.399	2.30	0.342	0.294	2.44	0.374	0.322				
Mayo del 2022	9.15 a.m	72	hrs	2.441	0.683	0.587	2.62	0.662	0.569	2.76	0.695	0.598				
Mayo del 2022	9.15 a.m	96	hrs	2.736	0.978	0.841	3.05	1.096	0.942	2.93	0.866	0.745				

PENETRACION

PENETRACION													
PENETRACION	CARGA		MOLDE	Nº	10	MOLDE Nº 11				MOLDE № 12			
pulg.	ESTÁNDAR	CARGA		CORECCIO	٧	CARGA	•	CORECCIO	Z	CARGA	CORECCION		ON
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		7.20	84	28.00		5.10	60	20.00		3.10	36	12.00	
0.040		14.90	174	58.00		10.80	126	42.00		6.40	75	25.00	
0.060		21.80	255	85.00		15.90	186	62.00		9.50	111	37.00	
0.080		28.50	333	111.00		20.80	243	81.00		12.30	144	48.00	
0.100	1000	35.60	417	139.00	13.90	25.90	303	101.00	10.10	15.40	180	60.00	6.00
0.200	1500	58.20	681	227.00		42.30	495	165.00		25.10	294	98.00	
0.300		73.80	864	288.00		53.60	627	209.00		31.80	372	124.00	
0.400		85.60	1002	334.00		62.10	726	242.00		36.90	432	144.00	
0.500		89.20	1044	348.00		64.90	759	253.00		38.50	450	150.00	

Leonidas Murga Vasquez

Técnico LABORATORISTA

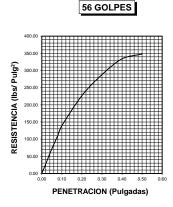
Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

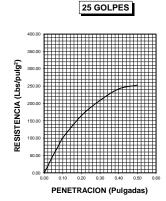
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

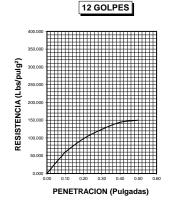
CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

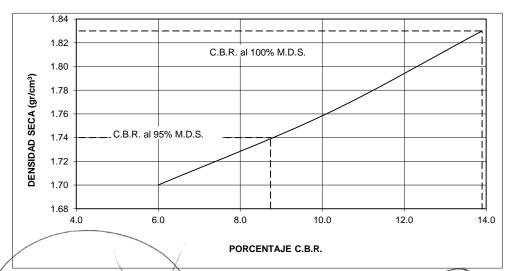
ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020" TESIS


UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE


MATERIAL : CENIZA DE ARROZ 15%


CALICATA : C - 1 **FECHA** : Mayo del 2022 **PROFUNDIDAD**: 0.20 - 3.00 m


DATOS DEL PROCTOR					
Densidad Màxima (gr/cm³)	1.83				
Humedad Optima (%)	15.15				

DATOS DEL C.B.R.							
C.B.R. al 100% de M.D.S. (%)							
C.B.R. al 95% de M.D.S. (%)	8.74						

Leoylidas Murga Vasquez
TÉCNICO LABORATORISTA

SEGENNAA SE

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

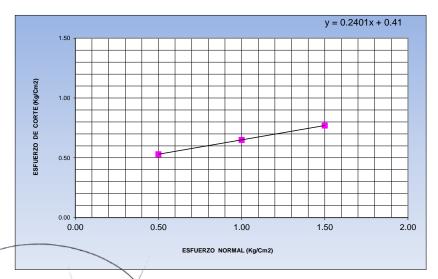
ENSAYO DE CORTE DIRECTO ASTM D3080-72

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO

ROOM VAINEDA MAINIMEZ

TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"


CALICATA : 1

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA MUESTRA Nº PROFUNDIDAD: 1.50 m : 05 DE MAYO DEL 2022 PESO VOLUME-**ESFUERZO PROPORCION** HUMEDAD **ESFUERZO** HUMEDAD Nº DE TRICO SECO **NORMAL** DE ESFUERZOS **NATURAL** DE CORTE SATURADA **ESPECIMEN** (kg/Cm²) (kg/Cm²) (gr/cm3) (t/s) (%) (%) 1.060 1.579 0.50 15.08 0.530 22.78 1.576 1.00 0.650 15.26 0.650 22.94 0.513 15.84 0.770 1.569 1.50 23.05 3

RESULTADO

COHESION (kg/Cm²) 0.41 ANGULO DE FRICCION INTERNA (°) : 13.50

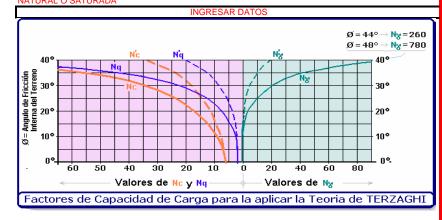
Leonidas Murga Vasquez

Técnico LABORATORISTA

SEGENMA RANGE

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484


CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020" CAPACIDAD PORTANTE

Tipo de falla	Local		
Denominacion	C1-M1		
Ubicación	C1-1	VII	
Tipo de cimentacion	CORF	RIDO	
Estado del suelo	SATUR	RADA	
DETERMINACIÓN	UNIDAD	VALOR	
Cohesion	kg/cm ²	0.41	
Ángulo de fricción interna	Grado sexag.	13.50°	
Peso volumetrico seco #1	gr/cm ³	1.579	
Contenido de humedad #1, estado: saturada	porcentaje	22.78%	
Peso volumetrico saturada en el anillo	gr/cm ³	1.939	
Peso volumetrico seco #2	gr/cm3	1.576	
Contenido de humedad #2, estado: saturada	porcentaje	22.94%	
Peso volumetrico saturada en el anillo	gr/cm ³	1.938	
Peso volumetrico seco #3	gr/cm ³	1.569	
Contenido de humedad #3, estado: saturada	porcentaje	23.05%	
Peso volumetrico saturada en el anillo	gr/cm ³	1.930	
Peso volumetrico promedio: saturada	gr/cm ³	1.936	
Peso volumetrico (γ1) saturado y sumergido	kg/m³	936	
Profundidad del cimiento (Df)	metros	1.50	
Ancho de cimiento (B) o diametro en caso circular (D)	metros	1.00	
CAPACIDAD DE CARGA ULTIMA O CARGA LIMITE qu	kg/cm ²	2.80	
Factor de seguridad	adimensional	3.00	
CAPACIDAD DE CARGA ADMISIBLE gadm	kg/cm ²	0.93	

CUADRADA, CIRCULAR O CORRIDO NATURAL O SATURADA

Contenido de humedad natural #1 = 15.08% Peso volumetrico natural #1 = 1.817 gr/cm3

Contenido de humedad natural #2 = 15.26%

Contenido de humedad natural #3 = 15.84%

PESO VOLUMETRICO NATURAL = 1.817 gr/cm3

PESO VOLUMETRICO SATURADO = 1.817 gr/cm3

1.936 gr/cm3

Leovidas Murga Vasquez

TECNICO LABORATORISTA

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ENSAYO DE COMPACTACION

(PROCTOR MODIFICADO - ASTM D-1557)

FECHA: MAYO DEL 2022

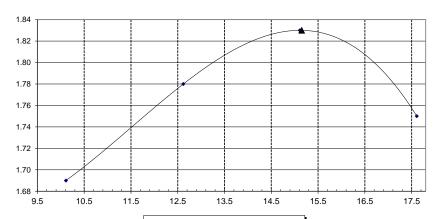
ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

LUGAR : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C - 1

MATERIAL : CENIZA DE ARROZ 15 %


	Volùmen Molde = 2118 cm3										
	Prueba Nº	1	2	3	4						
1	Peso molde + Suelo hùmedo compactado	(g)	6559	6856	7089	6983					
2	Peso de molde	(g)	2620	2620	2620	2620					
3	Peso suelo húmedo compactado	(g)	3939	4236	4469	4363					
4	Densidad hùmeda	(g)	1.860	2.000	2.110	2.060					
5	Densidad seca	(g/cm ³)	1.690	1.780	1.830	1.750					

CONTENIDO DE HUMEDAD

	Frasco Nº		62	65	69	71
1	Peso de frasco + Suelo húmedo	(g)	304.51	301.83	312.25	319.51
2	Peso del frasco + Peso de suelo seco	(g)	288.42	281.99	288.04	291.14
3	Peso del frasco	(g)	129.32	124.77	127.81	130.06
4	Peso de agua contenida	(g)	16.09	19.84	24.21	28.37
5	Peso del suelo seco	(g)	159.10	157.22	160.23	161.08
6	Contenido de humedad	(%)	10.11	12.62	15.11	17.61

Máxima Densidad Seca : 1.83 gr/cm^3 Optimo Contenido de Humedad : 15.15 %

Densidad Seca (gr/cm³)

Contenido de Humedad (%)

Leoyidas Murga Vasquez

TECNICO LABORATORISTA

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

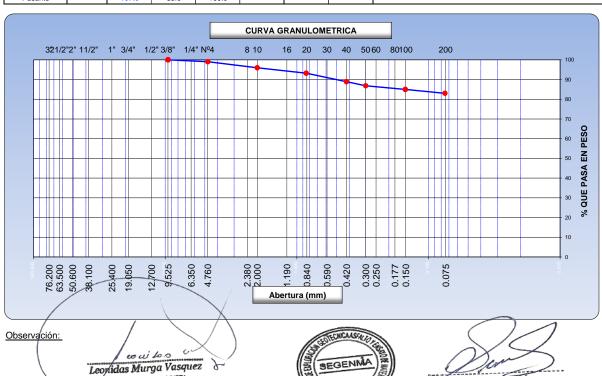
ANALISIS GRANULOMETRICO POR TAMIZADO (MTC E-107 / ASTM D-422, C-117 / AASHTO T-27, T-88)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C1-M1


MATERIAL : CENIZA DE ARROZ 20 %

PROFUNDIDAD : 0.20 a 3.00 m.

FECHA : 05 DE MAYO DEL 2022

TÉCNICO LABORATORISTA

	Abertura	Peso Retenido Retenido Porcentaje Material sin						
Tamices ASTM	(mm) 127.000	Retenido	Parcial	Acumulado	que Pasa	Especificacion	Descripcion	
5"							1. Peso de Material	
4"	101.600						Peso Inicial Total (kg)	200.00
3"	73.000						Peso Fraccion Fina Para Lavar (gr)	200.00
2 1/2"	60.300							
2"	50.800						2. Caracteristicas	
1 1/2"	37.500						Tamaño Maximo	3/8"
1"	25.400						Tamaño Maximo Nominal	1/4"
3/4"	19.000						Grava (%)	0.9
1/2"	12.700						Arena (%)	16.1
3/8"	9.520				100.00		Finos (%)	83.0
1/4"	6.350						Modulo de Fineza (%)	
N° 4	4.750	1.84	0.92	0.92	99.08			
N° 8	2.360						3. Clasificacion	
N° 10	2.000	6.25	3.10	4.02	95.98		Limite Liquido (%)	43.2
N° 16	1.190						Limite Plastico (%)	25.7
N° 20	0.850	5.52	2.73	6.75	93.25		Indice de Plasticidad (%)	17.5
N° 30	0.600						Clasificacion SUCS	CL
N° 40	0.420	8.69	4.31	11.06	88.94		Clasificacion AASHTO	A-7-6 (12)
N° 50	0.300	4.25	2.11	13.17	86.83			
N° 60	0.250							
N° 80	0.180							
N° 100	0.150	3.69	1.83	15.00	85.00			
N° 200	0.075	4.02	1.99	16.99	83.01			
Pasante		167.6	83.0	100.0				

Zuis Suárez

INGENIERO CIVIL C.I.P. N° 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

LIMITES DE CONSISTENCIA

(MTC E-110,111 / ASTM D-4318 / AASHTO T-90, T-89)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO

UBICACIÓN

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

TESIS :

: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C1-M1

MATERIAL : CENIZA DE ARROZ 20 % PROFUNDIDAD : 0.20 a 3.00 m.

FECHA : 05 DE MAYO DEL 2022

DETERMINACION DEL LIMITE LIQUIDO

N° de Tarro		56	57	58	
Peso de Tarro + Suelo Humedo	gr.	48.97	48.67	47.55	
Peso de Tarro + Suelo Seco	gr.	39.29	40.21	40.08	
Peso de Tarro	gr.	17.44	20.63	22.45	
Peso de Agua	gr.	9.68	8.46	7.47	
Peso del Suelo Seco	gr.	21.85	19.58	17.63	Limite Liquido
Contenido de Humedad	%	44.29	43.20	42.38	43.2
Numero de Golpes		20	25	30	

DETERMINACION DEL LIMITE PLASTICO E INDICE DE PLASTICIDAD

N° de Tarro		59	60	
Peso de Tarro + Suelo Humedo	gr.	47.77	39.10	
Peso de Tarro + Suelo seco	gr.	42.70	34.38	
Peso de Tarro	gr.	22.54	16.36	
Peso de Agua	gr.	5.07	4.72	
Peso de Suelo seco	gr.	20.16	18.02	Limite Plastico
Contenido de Humedad	%	25.15	26.21	25.7

Constantes Fisicas de la Muestra							
Limite Liquido	43.2						
Limite Plastico	25.7						
Indice de Plasticidad	17.5						

Observaciones

Pasante Tamiz N° 40

Leonidas Murga Vasquez
TECNICO LABORATORISTA

Vuis Suarez Vargas INGENIERO CIVIL C.I.P. Nº 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYO DE ANALISIS QUIMICO

ALUMNA: ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS: "ESTABILIZACION DE ARCILLAS PLASTICAS INCORPORANDO CENIZAS DE CASCARILLA DE ARROZ".

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

NORMA: ASTM NTP 400. 042

ASUNTO: Analisis Químico de una Muestra - CENIZA DE ARROZ 20%

			p.p.m	
Muestra	P.H	Sales Totales	Cloruros	Sulfatos
Agregado Fino	6.41	0.132	63	31

Limites permisibles para Mezcla de Agregado Fino segun NTP 339.088

Descrippción	Límite Permisible						
1 sólidos en Suspensión	5,000	p.p.m	máximo				
2 Materia Orgánica	3	p.p.m	máximo				
3 Alcalinidad (NaHCO3)	1,000	p.p.m	máximo				
4 Sulfato (Ión SO4)	600	p.p.m	máximo				
5 Cloruros (Ión Cl)	1,000	p.p.m	máximo				
5 Ph		5 a 8					

Leonidas Murga Vasquez TECNICO LABORATORISTA

SEGENMA

Lambayeque, Mayo del 2022

Luis Suarez Vargas INGENIERO CIVIL C.I.P. Nº 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-45648 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

DETERMINACION DE LA SAL (NTP 339.152)

: ROSA VANESA RAMIREZ SILVA ALUMNA

PROYECTO

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020" TESIS

MATERIAL : CENIZA DE ARROZ 20%

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA : 05 DE MAYO DEL 2022

POZO - MUESTRA	C1- M 1	
UBICACIÓN		
PROFUNDIDAD (Mt)	0.20 a 3.00	
(1) PESO DEL TARRO	20.26	
(2) PESO TARRO + AGUA + SAL	43.09	
(3) PESO TARRO SECO + SAL	20.29	
(4) PESO SAL (3 - 1)	0.03	
(5) PESO AGUA (2 - 3)	22.80	
(6) PORCENTAJE DE SAL	0.132%	

HUMEDAD NATURAL (ASTM 2216-98)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020" **TESIS**

MATERIAL **CENIZA DE ARROZ 20%**

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA : 05 DE MAYO DEL 2022

POZO-MUESTRA	C1- M 1	
UBICACIÓN		
PROFUNDIDAD (Mt)	0.20 a 3.00	
Nº RECIPIENTE	163	
1- PESO SUELO HUMEDO + RECIPIENTE	395.88	
2- PESO SUELO SECO + RECIPIENTE	365.32	
3- PESO DEL AGUA	30.56	
4- PESO RECIPIENTE	133.55	
5- PESO SUELO SECO	231.77	
6- PORCENTAJE DE HUMEDAD	13.19%	<u> </u>

www los Leonidas Murga Vasquez TÉCNICO LABORATORISTA

Kuis Suárez Vargas INGENIERO CIVIL C.I.P. N° 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

PESO ESPECÍFICO RELATIVO DE SOLIDOS

(ASTM- D854-58)

ALUMNA: ROSA VANESA RAMIREZ SILVA

PROYECTO

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

TESIS: 2020"

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL: CENIZA DE ARROZ 20%

FECHA: MAYO DEL 2022

CALICATA	C1-	C1-M1				
1. Temperatura (°C)	22.0 °C	23.0 °C				
2. Numero de Picnometro	15	16				
3. Peso de fiola + suelo seco (gr)	334.8	337.1				
4. Peso de fiola (volumetrico) (gr)	117.0	121.0				
5. Peso suelo seco (gr)	226.0	229.0				
6. Peso fiola + suelo seco + agua (gr)	521.0	526.0				
7. Peso de fiola + agua (gr)	380.0	383.1				
8. Peso especifico relativo de los solidos	2.66	2.66				

Leonidas Murga Vasquez

Técnico LABORATORISTA

SOFTEMENTAL PROPERTY OF THE PR

Luis Suarez Vargas INGENIERO CIVIL C.I.P. N° 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

ENSAYO CALIFORNIA BEARING RATIO ASTM: D-1883

ALUMNA : ROSA VANESA RAMIREZ SILVA PROYECTO

TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL : CENIZA DE ARROZ 20%

C.B.R.

MOLDE Nº		10 11			1		12	
Nº DE GOLPES POR CAPA		5	i6	2	5		12	
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	
PESO MOLDE + SUELO HUMEDO	(g)	8,680	8,757	8,311	8,416	8,381	8,584	
PESO DEL MOLDE	(g)	4,158	4,158	3,946	3,946	4,174	4,174	
PESO DEL SUELO HUMEDO	(g)	4522	4599	4365	4470	4207	4410	
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143	
DENSIDAD HUMEDA	(g/cm ³)	2.11	2.15	2.04	2.09	1.96	2.06	
CAPSULA Nº		230	240	242	244	265	266	
PESO CAPSULA + SUELO HUMEDO	(g)	330.43	333.52	344.00	345.30	322.90	350.19	
PESO CAPSULA + SUELO SECO	(g)	306.30	306.14	318.36	316.02	299.59	315.28	
PESO DE AGUA CONTENIDA	(g)	24.13	27.38	25.64	29.28	23.31	34.91	
PESO DE CAPSULA	(g)	134.65	127.89	141.02	138.65	134.63	131.06	
PESO DE SUELO SECO	(g)	171.65	178.25	177.34	177.37	164.96	184.22	
HUMEDAD	(%)	14.06%	15.36%	14.46%	16.51%	14.13%	18.95%	
DENSIDAD SECA	·	1.85	1.86	1.78	1.79	1.72	1.73	

EXPANSION

FECHA	HORA	TIE	МРО	DIAL	EXPANSION		EXPANSION		EXPANSION		DIAL	EXPANSIO	N	DIAL	EXPANSIO	ON
					mm.	%		mm.	%		mm.	%				
Mayo del 2022	9.20 a.m	0	hrs	2.636			2.90			2.04						
Mayo del 2022	9.20 a.m	24	hrs	2.862	0.226	0.194	3.14	0.238	0.205	2.22	0.179	0.154				
Mayo del 2022	9.20 a.m	48	hrs	3.044	0.408	0.351	3.43	0.528	0.454	2.51	0.464	0.399				
Mayo del 2022	9.20 a.m	72	hrs	3.444	0.808	0.695	3.81	0.912	0.784	2.84	0.799	0.687				
Mayo del 2022	9.20 a.m	96	hrs	3.735	1.099	0.945	4.09	1.187	1.021	3.30	1.257	1.081				

PENETRACION

					INAC								
PENETRACION	CARGA		MOLDE	Nº	10		MOLDE	Nº	11		MOLDE	Nº	12
pulg.	ESTÁNDAR	CARGA		CORECCIO	١	CARGA	(CORECCIO	N	CARGA		CORECCIO	ON
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		7.40	87	29.00		5.40	63	21.00		3.10	36	12.00	
0.040		15.40	180	60.00		11.00	129	43.00		6.70	78	26.00	
0.060		22.60	264	88.00		16.20	189	63.00		9.70	114	38.00	
0.080		29.50	345	115.00		21.30	249	83.00		12.80	150	50.00	
0.100	1000	36.90	432	144.00	14.40	26.70	312	104.00	10.40	15.90	186	62.00	6.20
0.200	1500	60.30	705	235.00		43.60	510	170.00		25.90	303	101.00	
0.300		76.40	894	298.00		55.10	645	215.00		32.80	384	128.00	
0.400		88.70	1038	346.00		64.10	750	250.00		38.20	447	149.00	
0.500		92.30	1080	360.00		66.70	780	260.00		39.70	465	155.00	

Leonidas Murga Vasquez

TÉCNICO LABORATORISTA

Luis Suarez Vargas INGENIERO CIVIL C.I.P. N° 152267

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y Ensayo de materiales

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ALUMNA : ROSA VANESA RAMIREZ SILVA

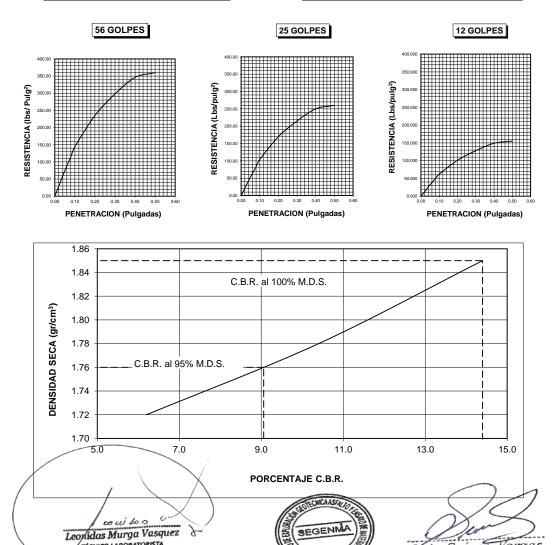
PROYECTO **TESIS**

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL : CENIZA DE ARROZ 20%

CALICATA FECHA: Mayo del 2022 PROFUNDIDAD: 0.20 - 3.00 m : C-1


DATOS DEL PROCTOR							
Densidad Màxima (gr/cm³)	1.85						
Humedad Optima (%)	14.06						

TÉCNICO LABORATORISTA

DATOS DEL C.B.R.					
C.B.R. al 100% de M.D.S. (%)					
C.B.R. al 95% de M.D.S. (%)	9.06				

INGENIERO CIVIL C.I.P. Nº 152267

Vargas

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE Nº S0090112
LABORATORIO SEGENMA

ENSAYO DE CORTE DIRECTO ASTM D3080-72

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

CALICATA : 1

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA	: 05 DE MAYO DEL 2	2022	MUESTRAN	1	PROFUNDIDAD:	1.50 M
NO DE	PESO VOLUME-	ESFUERZO	PROPORCION	HUMEDAD	ESFUERZO	HUMEDAD
Nº DE ESPECIMEN	TRICO SECO	NORMAL	DE ESFUERZOS	NATURAL	DE CORTE	SATURADA
ESPECIIVIEN	(gr/cm³)	(kg/Cm ²)	(t/s)	(%)	(kg/Cm ²)	(%)
1	1.642	0.50	1.073	13.79	0.537	20.26
2	1.639	1.00	0.643	14.05	0.643	20.49
3	1 637	1.50	0.500	14 18	0.750	20.71

RESULTADO

COHESION (kg/Cm²) 0.43 ANGULO DE FRICCION INTERNA (°) : 12.05

Leoyidas Murga Vasquez

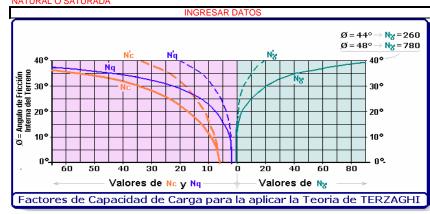
SEGENMA RESERVED

Vuis Suarez Vargas INGENIERO CIVIL C.I.P. N° 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112


LABORATORIO SEGENMA

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

CAPACIDAD PORTANTE

Tipo de falla	Loc	al	
Denominacion	C1-M1		
Ubicación	C1-1	VII	
Tipo de cimentacion	CORRIDO		
Estado del suelo	SATUR		
DETERMINACIÓN	UNIDAD	VALOR	
Cohesion	kg/cm ²	0.43	
Ángulo de fricción interna	Grado sexag.	12.05°	
Peso volumetrico seco #1	gr/cm ³	1.642	
Contenido de humedad #1, estado: saturada	porcentaje	20.26%	
Peso volumetrico saturada en el anillo	gr/cm ³	1.975	
Peso volumetrico seco #2	gr/cm ³	1.639	
Contenido de humedad #2, estado: saturada	porcentaje	20.49%	
Peso volumetrico saturada en el anillo	gr/cm ³	1.975	
Peso volumetrico seco #3	gr/cm ³	1.637	
Contenido de humedad #3, estado: saturada	porcentaje	20.71%	
Peso volumetrico saturada en el anillo	gr/cm ³	1.976	
Peso volumetrico promedio: saturada	gr/cm ³	1.975	
Peso volumetrico (γ1) saturado y sumergido	kg/m³	975	
Profundidad del cimiento (Df)	metros	1.50	
Ancho de cimiento (B) o diametro en caso circular (D)	metros	1.00	
CAPACIDAD DE CARGA ULTIMA O CARGA LIMITE qu	kg/cm ²	2.82	
Factor de seguridad	adimensional	3.00	
CAPACIDAD DE CARGA ADMISIBLE gadm	kg/cm ²	0.94	

CUADRADA, CIRCULAR O CORRIDO NATURAL O SATURADA

Contenido de humedad natural #1 = 13.79% Peso volumetrico natural #1 = 1.869 gr/cm3

Contenido de humedad natural #2 = 14.05%

Contenido de humedad natural #3 = 14.18%

PESO VOLUMETRICO NATURAL = 1.869 gr/cm3

PESO VOLUMETRICO SATURADO = 1.975 gr/cm3

Leoylidas Murga Vasquez

SEGENMA SE

Zuis Suárez Vargas INGENIERO CIVIL C.I.P. Nº 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

ENSAYO DE COMPACTACION

(PROCTOR MODIFICADO - ASTM D-1557)

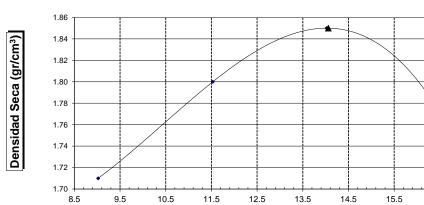
FECHA: MAYO DEL 2022

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

LUGAR : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C-1


MATERIAL : CENIZA DE ARROZ 20 %

	Volùmen Molde = 2118 cm3									
	Prueba Nº		1	2	3	4				
1	Peso molde + Suelo hùmedo compactado	(g)	6559	6877	7089	6983				
2	Peso de molde	(g)	2620	2620	2620	2620				
3	Peso suelo húmedo compactado	(g)	3939	4257	4469	4363				
4	Densidad hùmeda	(g)	1.860	2.010	2.110	2.060				
5	Densidad seca	(g/cm ³)	1.710	1.800	1.850	1.770				

CONTENIDO DE HUMEDAD

	Frasco Nº		25	26	27	28
1	Peso de frasco + Suelo húmedo	(g)	303.07	297.77	307.04	310.51
2	Peso del frasco + Peso de suelo seco	(g)	289.25	280.32	285.40	284.87
3	Peso del frasco	(g)	136.02	128.97	131.04	129.66
4	Peso de agua contenida	(g)	13.82	17.45	21.64	25.64
5	Peso del suelo seco	(g)	153.23	151.35	154.36	155.21
6	Contenido de humedad	(%)	9.02	11.53	14.02	16.52

Máxima Densidad Seca 1.85 gr/cm³ Optimo Contenido de Humedad : 14.06

Contenido de Humedad (%)

wai los Leonidas Murga Vasquez TÉCNICO LABORATORISTA

SEGENM

Luis Suárez Vargas INGENIERO CIVIL C.I.P. N° 152267

16.5

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

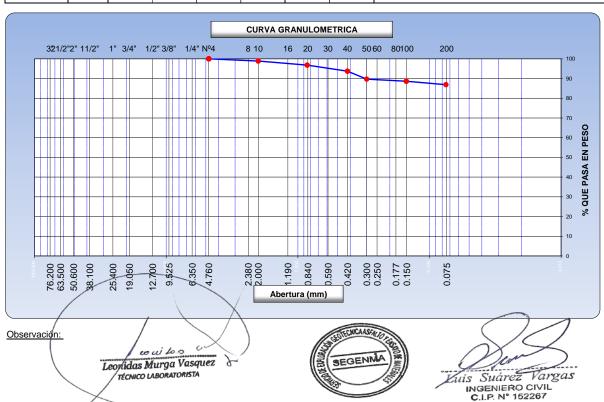
CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ANALISIS GRANULOMETRICO POR TAMIZADO (MTC E-107 / ASTM D-422, C-117 / AASHTO T-27, T-88)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE


CALICATA : C1-M1

MATERIAL : CENIZA DE ARROZ 25 %

PROFUNDIDAD : 0.20 a 3.00 m.

FECHA : 05 DE MAYO DEL 2022

		_	D	D : ::	5			
Tamices ASTM	Abertura (mm)	Peso Retenido	Retenido Parcial	Retenido Acumulado	Porcentaje que Pasa	Material sin Especificacion	Descripci	on
5"	127.000						1. Peso de Material	
4"	101.600						Peso Inicial Total (kg)	203.00
3"	73.000						Peso Fraccion Fina Para Lavar (gr)	203.00
2 1/2"	60.300							
2"	50.800						2. Caracteristicas	
1 1/2"	37.500						Tamaño Maximo	3/8"
1"	25.400						Tamaño Maximo Nominal	1/4"
3/4"	19.000						Grava (%)	
1/2"	12.700						Arena (%)	13.1
3/8"	9.520						Finos (%)	86.9
1/4"	6.350						Modulo de Fineza (%)	
N° 4	4.750				100.00			
N° 8	2.360						3. Clasificacion	
N° 10	2.000	2.23	1.10	1.10	98.90		Limite Liquido (%)	40.0
N° 16	1.190						Limite Plastico (%)	24.8
N° 20	0.850	4.21	2.07	3.17	96.83		Indice de Plasticidad (%)	15.2
N° 30	0.600						Clasificacion SUCS	CL
N° 40	0.420	6.23	3.07	6.24	93.76		Clasificacion AASHTO	A-6 (10)
N° 50	0.300	8.24	4.06	10.30	89.70			
N° 60	0.250							
N° 80	0.180							
N° 100	0.150	2.16	1.06	11.36	88.64			
N° 200	0.075	3.58	1.76	13.12	86.88			
Pasante		176.4	86.9	100.0				

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

LIMITES DE CONSISTENCIA

(MTC E-110,111 / ASTM D-4318 / AASHTO T-90, T-89)

ALUMNA ROSA VANESA RAMIREZ SILVA

PROYECTO

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

TESIS

DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

UBICACIÓN CALICATA

C1-M1

MATERIAL

CENIZA DE ARROZ 25 %

PROFUNDIDAD

: 0.20 a 3.00 m.

FECHA

: 05 DE MAYO DEL 2022

DETERMINACION DEL LIMITE LIQUIDO

N° de Tarro		56	57	58	
Peso de Tarro + Suelo Humedo	gr.	46.24	56.42	45.25	
Peso de Tarro + Suelo Seco	gr.	38.90	47.15	37.54	
Peso de Tarro	gr.	21.03	24.00	17.86	
Peso de Agua	gr.	7.34	9.27	7.71	
Peso del Suelo Seco	gr.	17.87	23.15	19.68	Limite Liquido
Contenido de Humedad	%	41.09	40.03	39.18	40.0
Numero de Golpes		20	25	30	

DETERMINACION DEL LIMITE PLASTICO E INDICE DE PLASTICIDAD

•				
N° de Tarro		59	60	
Peso de Tarro + Suelo Humedo	gr.	43.61	44.77	
Peso de Tarro + Suelo seco	gr.	39.28	39.79	
Peso de Tarro	gr.	21.45	20.16	
Peso de Agua	gr.	4.33	4.98	
Peso de Suelo seco	gr.	17.83	19.63	Limite Plastico
Contenido de Humedad	%	24.29	25.38	24.8

Constantes Fisicas de la Muestra				
Limite Liquido	40.0			
Limite Plastico	24.8			
Indice de Plasticidad	15.2			

Observaciones

Pasante Tamiz N° 40

cow los Leonidas Murga Vasquez TÉCNICO LABORATORISTA

Kuis Suárez Vargas INGENIERO CIVIL C.I.P. N° 152267

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYO DE ANALISIS QUIMICO

ALUMNA: ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

NORMA: ASTM NTP 400. 042

ASUNTO: Analisis Químico de una Muestra - CENIZA DE ARROZ 25%

		p.p.m				
Muestra	P.H	Sales Totales	Cloruros	Sulfatos		
Agregado Fino	6.55	0.135	69	34		

Limites permisibles para Mezcla de Agregado Fino segun NTP 339.088

Descrippción	Límite Permisible				
1 sólidos en Suspensión	5,000	p.p.m	máximo		
2 Materia Orgánica	3 p.p.m		3 p.p.m		máximo
3 Alcalinidad (NaHCO3)	1,000	p.p.m	máximo		
4 Sulfato (Ión SO4)	600	p.p.m	máximo		
5 Cloruros (Ión Cl)	1,000	p.p.m	máximo		
5 Ph		5 a 8	3		

Lambayeque, Mayo del 2022

Leonidas Murga Vasquez

SEGENMA PARTIES

Vuis Suárez Vargas INGENIERO CIVIL C.I.P. Nº 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

DETERMINACION DE LA SAL (NTP 339.152)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO
TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

2020"

MATERIAL : CENIZA DE ARROZ 25%

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA: 05 DE MAYO DEL 2022

POZO - MUESTRA	C1- M 1	
UBICACIÓN		
PROFUNDIDAD (Mt)	0.20 a 3.00	
(1) PESO DEL TARRO	17.94	
(2) PESO TARRO + AGUA + SAL	55.02	
(3) PESO TARRO SECO + SAL	17.99	
(4) PESO SAL (3 - 1)	0.05	
(5) PESO AGUA (2 - 3)	37.03	
(6) PORCENTAJE DE SAL	0.135%	

HUMEDAD NATURAL (ASTM 2216-98)

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO "F-4-bill-selfer de Queles les entre

TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque

2020"

MATERIAL CENIZA DE ARROZ 25%

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA: 05 DE MAYO DEL 2022

POZO-MUESTRA	C1- M 1		
UBICACIÓN			
PROFUNDIDAD (Mt)	0.20 a 3.00		
Nº RECIPIENTE	233		
1- PESO SUELO HUMEDO + RECIPIENTE	362.23		
2- PESO SUELO SECO + RECIPIENTE	332.05		
3- PESO DEL AGUA	30.18		
4- PESO RECIPIENTE	129.65		
5- PESO SUELO SECO	202.40		
6- PORCENTAJE DE HUMEDAD	14.91%		

Leoyidas Murga Vasquez TECNICO LABORATORISTA SEGENMA SE

Kuis Suárez Vargas INGENIERO CIVIL C.I.P. Nº 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

PESO ESPECÍFICO RELATIVO DE SOLIDOS

(ASTM- D854-58)

ALUMNA: ROSA VANESA RAMIREZ SILVA

PROYECTO

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

TESIS:

UBICACIÓN: DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL: CENIZA DE ARROZ 25%

FECHA: MAYO DEL 2022

CALICATA	C		
1. Temperatura (°C)	19.0 °C	20.0 °C	
2. Numero de Picnometro	12	13	
3. Peso de fiola + suelo seco (gr)	329.7	341.0	
4. Peso de fiola (volumetrico) (gr)	113.6	117.4	
5. Peso suelo seco (gr)	228.3	232.3	
6. Peso fiola + suelo seco + agua (gr)	521.0	526.0	
7. Peso de fiola + agua (gr)	379.0	381.5	
B. Peso especifico relativo de los solidos	2.65	2.65	

Leonidas Murga Vasquez
TÉCNICO LABORATORISTA

SEGENNÁA RAS

Vuis Suarez Vargas INGENIERO CIVIL C.I.P. Nº 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

ENSAYO CALIFORNIA BEARING RATIO

ASTM: D-1883

ALUMNA : ROSA VANESA RAMIREZ SILVA PROYECTO

TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL : CENIZA DE ARROZ 25%

C.B.R.

MOLDE Nº		1	0	1	1		12
Nº DE GOLPES POR CAPA		5	i6	25 12		12	
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA
PESO MOLDE + SUELO HUMEDO	(g)	8,735	8,810	8,365	8,470	8,434	8,638
PESO DEL MOLDE	(g)	4,158	4,158	3,946	3,946	4,174	4,174
PESO DEL SUELO HUMEDO	(g)	4577	4652	4419	4524	4260	4464
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143
DENSIDAD HUMEDA	(g/cm ³)	2.14	2.17	2.06	2.11	1.99	2.08
CAPSULA Nº		15	18	19	20	21	22
PESO CAPSULA + SUELO HUMEDO	(g)	338.32	347.03	350.03	346.77	336.56	359.46
PESO CAPSULA + SUELO SECO	(g)	311.46	316.76	321.58	314.49	310.57	321.27
PESO DE AGUA CONTENIDA	(g)	26.86	30.27	28.45	32.28	25.99	38.19
PESO DE CAPSULA	(g)	130.25	128.95	134.68	127.56	136.05	127.49
PESO DE SUELO SECO	(g)	181.21	187.81	186.9	186.93	174.52	193.78
HUMEDAD	(%)	14.82%	16.12%	15.22%	17.27%	14.89%	19.71%
DENSIDAD SECA		1.86	1.87	1.79	1.8	1.73	1.74

EXPANSION

FECHA	HORA	TIE	МРО	DIAL	EXPANSION	١	DIAL	EXPANSIO	N	DIAL	EXPANSION	ON
					mm.	%		mm.	%		mm.	%
Mayo del 2022	9.45 a.m	0	hrs	1.696			2.07			3.02		
Mayo del 2022	9.45 a.m	24	hrs	1.931	0.235	0.202	2.31	0.245	0.211	3.40	0.379	0.326
Mayo del 2022	9.45 a.m	48	hrs	2.174	0.478	0.411	2.57	0.504	0.433	3.67	0.654	0.562
Mayo del 2022	9.45 a.m	72	hrs	2.528	0.832	0.715	2.86	0.792	0.681	3.97	0.947	0.814
Mayo del 2022	9.45 a.m	96	hrs	2.775	1.079	0.928	3.11	1.042	0.896	4.21	1.186	1.02

PENETRACION

	LILLINATION												
PENETRACION	CARGA		MOLDE	Nº	10		MOLDE	Nº	11		MOLDE	Nº	12
pulg.	ESTÁNDAR	CARGA		CORECCION	1	CARGA	(CORECCIO	Z	CARGA		CORECCIO	N
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		7.70	90	30.00		5.60	66	22.00		3.30	39	13.00	
0.040		15.90	186	62.00		11.50	135	45.00		6.90	81	27.00	
0.060		23.30	273	91.00		16.90	198	66.00		10.30	120	40.00	
0.080		30.50	357	119.00		22.10	258	86.00		13.30	156	52.00	
0.100	1000	38.20	447	149.00	14.90	27.70	324	108.00	10.80	16.70	195	65.00	6.50
0.200	1500	62.30	729	243.00		45.10	528	176.00		27.20	318	106.00	
0.300		79.00	924	308.00		57.40	672	224.00		34.60	405	135.00	
0.400		91.80	1074	358.00		66.40	777	259.00		40.00	468	156.00	
0.500		95.60	1119	373.00		69.20	810	270.00		41.80	489	163.00	
			į.										

Leonidas Murga Vasquez

TÉCNICO LABORATORISTA

SEGENMA SE

Vuis Suarez Vargas INGENIERO CIVIL C.I.P. N° 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI

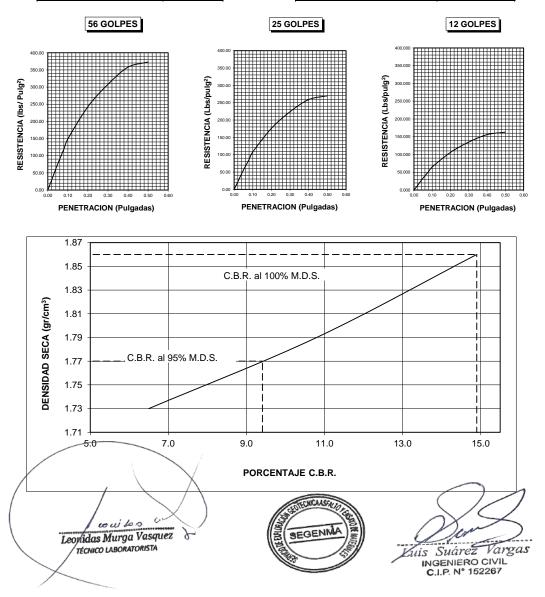
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE N° S0090112

LABORATORIO SEGENMA

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"


UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

MATERIAL : CENIZA DE ARROZ 25%

CALICATA: C - 1 FECHA: Mayo del 2022 PROFUNDIDAD: 0.20 - 3.00 m

DATOS DEL PROCTOR					
Densidad Màxima (gr/cm³)	1.86				
Humedad Optima (%)	14.86				

DATOS DEL C.B.R.					
C.B.R. al 100% de M.D.S. (%)					
C.B.R. al 95% de M.D.S. (%)	9.41				

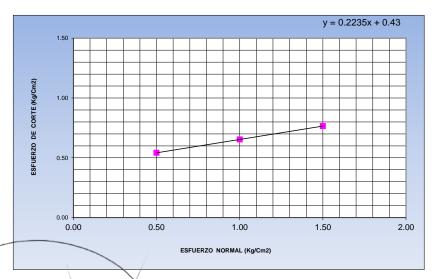
Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE Nº S0090112
LABORATORIO SEGENMA

ENSAYO DE CORTE DIRECTO ASTM D3080-72

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS

: "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"


CALICATA : 1

UBICACIÓN : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

FECHA	: 05 DE MAYO DEL 2	2022	MUESTRAN	1	PROFUNDIDAD:	1.50 M
NO DE	PESO VOLUME-	ESFUERZO	PROPORCION	HUMEDAD	ESFUERZO	HUMEDAD
Nº DE ESPECIMEN	TRICO SECO	NORMAL	DE ESFUERZOS	NATURAL	DE CORTE	SATURADA
LOFECIIVILIN	(gr/cm³)	(kg/Cm ²)	(t/s)	(%)	(kg/Cm ²)	(%)
1	1.627	0.50	1.084	15.02	0.542	23.05
2	1.625	1.00	0.654	15.13	0.654	23.26
3	1 623	1.50	0.510	15 28	0.765	23 //1

RESULTADO ::

COHESION (kg/Cm²) 0.43 ANGULO DE FRICCION INTERNA (º) : 12.60

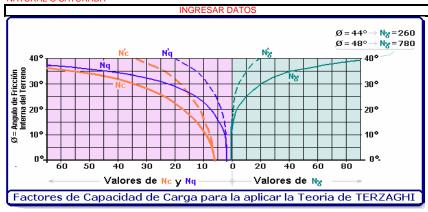
Leonidas Murga Vasquez

Luis Suarez Vargas INGENIERO CIVIL C.I.P. N° 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112


LABORATORIO SEGENMA

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

CAPACIDAD PORTANTE

Tipo de falla	Loc	al	
Denominacion	C1-M1		
Ubicación			
Tipo de cimentacion	CORF		
Estado del suelo	SATUR		
DETERMINACIÓN	UNIDAD	VALOR	
Cohesion	kg/cm ²	0.43	
Ángulo de fricción interna	Grado sexag.	12.60°	
Peso volumetrico seco #1	gr/cm ³	1.627	
Contenido de humedad #1, estado: saturada	porcentaje	23.05%	
Peso volumetrico saturada en el anillo	gr/cm ³	2.002	
Peso volumetrico seco #2	gr/cm ³	1.625	
Contenido de humedad #2, estado: saturada	porcentaje	23.26%	
Peso volumetrico saturada en el anillo	gr/cm ³	2.003	
Peso volumetrico seco #3	gr/cm ³	1.623	
Contenido de humedad #3, estado: saturada	porcentaje	23.41%	
Peso volumetrico saturada en el anillo	gr/cm ³	2.003	
Peso volumetrico promedio: saturada	gr/cm ³	2.003	
Peso volumetrico (γ1) saturado y sumergido	kg/m³	1003	
Profundidad del cimiento (Df)	metros	1.50	
Ancho de cimiento (B) o diametro en caso circular (D)	metros	1.00	
CAPACIDAD DE CARGA ULTIMA O CARGA LIMITE qu	kg/cm ²	2.83	
Factor de seguridad	adimensional	3.00	
CAPACIDAD DE CARGA ADMISIBLE gadm	kg/cm ²	0.94	

CUADRADA, CIRCULAR O CORRIDO NATURAL O SATURADA

Contenido de humedad natural #1 = 15.02% Peso volumetrico natural #1 = 1.871 gr/cm3

Contenido de humedad natural #2 = 15.13%

Contenido de humedad natural #3 = 15.28%

PESO VOLUMETRICO NATURAL = 1.871 gr/cm3

PESO VOLUMETRICO SATURADO = 2.003 gr/cm3

Leonidas Murga Vasquez

TÉCNICO LABORATORISTA

Vuis Suarez Vargas INGENIERO CIVIL C.I.P. Nº 152267

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

ENSAYO DE COMPACTACION

(PROCTOR MODIFICADO - ASTM D-1557)

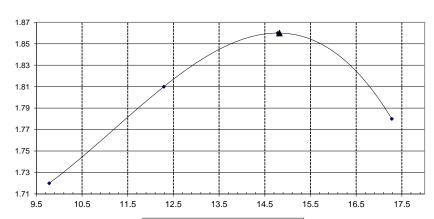
FECHA: MAYO DEL 2022

ALUMNA : ROSA VANESA RAMIREZ SILVA

PROYECTO TESIS : "Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

LUGAR : DISTRITO. LA VICTORIA PROVINCIA. CHICLAYO REGION. LAMBAYEQUE

CALICATA : C - 1


MATERIAL : CENIZA DE ARROZ 25 %

	Volùmen Molde = 2118 cm3					
	Prueba Nº		1	2	3	4
1	Peso molde + Suelo hùmedo compactado	(g)	6623	6920	7131	7047
2	Peso de molde	(g)	2620	2620	2620	2620
3	Peso suelo húmedo compactado	(g)	4003	4300	4511	4427
4	Densidad hùmeda	(g)	1.890	2.030	2.130	2.090
5	Densidad seca	(g/cm ³)	1.720	1.810	1.860	1.780

CONTENIDO DE HUMEDAD

	Frasco Nº		333	334	295	284
1	Peso de frasco + Suelo húmedo	(g)	311.00	321.33	333.14	333.12
2	Peso del frasco + Peso de suelo seco	(g)	294.55	300.89	308.11	303.71
3	Peso del frasco	(g)	126.36	134.58	138.79	133.54
4	Peso de agua contenida	(g)	16.45	20.44	25.03	29.41
5	Peso del suelo seco	(g)	168.19	166.31	169.32	170.17
6	Contenido de humedad	(%)	9.78	12.29	14.78	17.28

Densidad Seca (gr/cm³)

Contenido de Humedad (%)

Leoridas Murga Vasquez

Técnico LABORATORISTA

SEGENMA SEGENMA

Vuis Suarez Vargas INGENIERO CIVIL C.I.P. Nº 152267

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

INFORME DE VERIFICACIÓN PTC - IV- '002 - 2023

Área de Metrología Laboratorio de Longitud

1. Expediente 012 - 2023

2. Solicitante MURGA VASQUEZ VICENTE LEONIDAS

3. Dirección CALLE BRITALDO GONZALES N°183 - PUEBLO NUEVO - FERREÑAFE -

4. Instrumento de medición EQUIPO LÍMITE LÍQUIDO

(CAZUELA CASAGRANDE)

Marca TAMIEQUIPOS LTDA

Modelo TCP - 005

Procedencia COLOMBIA

Número de Serie 766

Código de Identificación NO INDICA

Tipo de contador NO TIENE

5. Fecha de Verificación 2023-12-04

Este informe de verificación documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Página 1 de 3

Los resultados son validos en el momento de la verificación. Al solicitante le corresponde disponer en su momento la ejecución de una reevaluación, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este informe de verificación no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El informe de verificación sin firma y sello carece de validez.

LABORATORIO

PERU

Fecha de Emisión 2023-12-05 Jefe del Laboratorio de Metrología

Sello

PERUTEST S.A.C

9/1

MANUEL ALEJANDRO ALIAGA TORRES

913028621 - 913028622 913028623 - 913028624

ventas@perutest.com.pe

www.perutest.com.pe

Jr. La Madrid S/N Mz D lote 25 urb Los Olivos San Martín de Porres - Lima SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC Nº 20602182721

INFORME DE VERIFICACIÓN PTC - IV- '002 - 2023

Área de Metrología

Laboratorio de Longitud

6. Método de Verificación

Página 2 de 3

La Verificación se realizó tomando las medidas del instrumento, según las especificaciones de la norma internacional ASTM D4318 "Standard Test Methods for Liquid Limit, Plastic Limit and Plastic Index of Soils."

7. Lugar de Verificación

Las instalaciones del cliente.

8. Condiciones ambientales

A STATE OF THE STA	Inicial	Final
Temperatura	28 °C	28 °C
Humedad Relativa	60 %	60 %

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones del INDECOPI-SNM	s del INDECOPI-SNM BLOQUES PATRÓN (Grado 0)	
Bloques patrón (Grado K)	Vertex Modelo VGB-87-0	INACAL LLA-102-2020

10. Observaciones

Se colocó una etiqueta autoadhesiva con la indicación de VERIFICACIÓN.

(*) Serie grabado en el instrumento

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

INFORME DE VERIFICACIÓN PTC - IV- '002 - 2023

Área de Metrología Laboratorio de Longitud

Página 3 de 3

11. Resultados

El equipo cumple con las especificaciones técnicas siguientes:

DIMENSIONES DE LA BASE DE GOMA DURA

Altura	Profundidad	Ancho
(mm)	(mm)	(mm)
50.47	150.16	125.14

HERRAMIENTA DE RANURADO

0° 20° 20	EXTREMO CURVADO		
Espesor (mm)	Borde Cortante (mm)	Ancho (mm)	
10.00	2,00	13.53	

DIMENSIONES DE LA COPA

Radio de la copa (mm)	Espesor de la copa (mm)	Altura desde la guía del elevador hasta la base (mm)
53.03	2.07	48.09

Fin del Documento

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PTC - LF - 008 - 2023

Área de Metrología

Laboratorio de Fuerza

Página 1 de 3

1. Expediente 012 - 2023

2. Solicitante MURGA VASQUEZ VICENTE LEONIDAS

3. Dirección CALLE BRITALDO GONZALES Nº183 -

PUEBLO NUEVO - FERREÑAFE -

4. Equipo CORTE DIRECTO

Capacidad 150 Kg F

Marca NO INDICA

Modelo NO INDICA

Número de Serie NO INDICA

Identificación '002

Procedencia NO INDICA

5. Indicador ANALÓGICO

Marca NO INDICA

Número de Serie NO INDICA

División de Escala /

Resolución

0.01 mm

6. Fecha de Calibración 2023-12-04

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

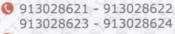
PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

PERUTEST S.A.C

Fecha de Emisión


Jefe del Laboratorio de Metrología

Sello

2023-12-05

MANUEL ALEJANDRO ALIAGA TORRES

PERU

ventas@perutest.com.pe

www.perutest.com.pe

Jr. La Madrid S/N Mz D lote 25 urb Los Olivos San Martín de Porres - Lima SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

Área de Metrología
Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN PTC - LF - 008 - 2023

Página 2 de 3

7. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones de LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de ensayo de tracción/compresión. Verificación y calibración del sistema de medida de fuerza." - Julio 2006.

8. Lugar de calibración

CALLE BRITALDO GONZALES Nº183 - PUEBLO NUEVO - FERREÑAFE -LAMBAYEQUE

9. Condiciones Ambientales

1,9, 19, 19, 19	Inicial	Final
Temperatura	28.0 °C	28.0 °C
Humedad Relativa	67 % HR	67 % HR

10. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibrada acreditada CELDA E.I.R.L	CELDA DE CARGA OAP MOD: ZSF -A SERIE: 55P4331 F-10-A F	CMC-041-2020

11. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PTC - LF - 008 - 2023

Area de Metrología

Laboratorio de Fuerza

Página 3 de 3

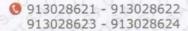
12. Resultados de Medición

	Indicación del Equipo			n de Fuerza ón de Refere	The second second	Error de Exactitud	Incertidumbre U (k=2)
%	Divisiones	F_i (kgf)	F_1 (kgf)	F ₂ (kgf)	F ₃ (kgf)	9(%)	(%)
10	8.00	22.87	22.32	22.32	22.32	2.48	0.2
20	16.00	41.43	41.94	41.94	41.94	-1.22	0.2
30	24.00	59.91	61.05	61.05	61.05	-1.87	0.2
40	32.00	78.32	77.83	77.83	77.83	0.62	0.2
50	40.00	96.65	95.75	95.75	95.75	0.94	0.2
60	48.00	114.90	113.83	113.83	113.83	0.94	0.2
70	56.00	133.09	134.44	134.44	134.44	-1.01	0.2
80	64.00	151.19	151.44	151.44	151.44	-0.16	0.2
90	72.00	169.23	169.26	169.26	169.26	-0.02	0.2
100	80.00	187.19	186.91	186.91	186.91	0.15	0.2

Con los resultados obtenidos se realizó la siguiente ecuación de ajuste:

Y = Fuerza (kgf)
X = Valor indicador

 $Y = -0.00058239x^2 + 2.33337879x + 4.24333333333347$


13. Incertidumbre

La incertidumbre expandidad de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del Documento

ventas@perutest.com.pe

www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PTC - LF - 009 - 2023

Área de Metrología

Laboratorio de Fuerza

Página 1 de 3

1. Expediente 012 - 2023

2. Solicitante MURGA VASQUEZ VICENTE LEONIDAS

3. Dirección CALLE BRITALDO GONZALES N°183 -

PUEBLO NUEVO - FERREÑAFE -

4. Equipo CORTE DIRECTO

Capacidad 150 Kg F

Marca NO INDICA

Modelo NO INDICA

Número de Serie NO INDICA

Identificación '001

Procedencia NO INDICA

5. Indicador ANALÓGICO

Marca NO INDICA

Número de Serie NO INDICA

División de Escala /

Resolución

0.01 mm

6. Fecha de Calibración 2023-12-04

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

LABORA

Fecha de Emisión

Jefe del Laboratorio de Metrología

Sello

PERUTEST S.A.C

2023-12-05

MANUEL ALEJANDRO ALLAGA TORRES

913028621 - 913028622 913028623 - 913028624

ventas@perutest.com.pe

www.perutest.com.pe

Jr. La Madrid S/N Mz D lote 25 urb Los Olivos San Martín de Porres - Lima SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PTC - LF - 009 - 2023

Área de Metrologia

Laboratorio de Fuerza

Página 2 de 3

7. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones de LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de ensayo de tracción/compresión. Verificación y calibración del sistema de medida de fuerza." - Julio 2006.

8. Lugar de calibración

CALLE BRITALDO GONZALES Nº183 - PUEBLO NUEVO - FERREÑAFE -LAMBAYEQUE

9. Condiciones Ambientales

1,91,51,51,91	Inicial	Final
Temperatura	28.0 °C	28.0 °C
Humedad Relativa	67 % HR	67 % HR

10. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibrada acreditada CELDA E.I.R.L	CELDA DE CARGA OAP MOD: ZSF -A SERIE: 55P4331 F-10-A F	CMC-041-2020

11. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PTC - LF - 009 - 2023

Area de Metrología

Laboratorio de Fuerza

Página 3 de 3

12. Resultados de Medición

	Indicación del Equipo		CASC COLUMN	n de Fuerza ón de Refere		Error de Exactitud	Incertidumbre U (k=2)
%	Divisiones	F_i (kgf)	F_1 (kgf)	F ₂ (kgf)	F ₃ (kgf)	9(%)	(%)
10	8.00	18.84	18.80	18.80	18.80	0.23	0.2
20	16.00	33.94	34.14	34.14	34.14	-0.59	0.2
30	24.00	48.94	48.85	48.85	48.85	0.18	0.2
40	32.00	63.84	63.60	63.60	63.60	0.38	0.2
50	40.00	78.64	78.50	78.50	78.50	0.18	0.2
60	48.00	93.35	93.57	93.57	93.57	-0.23	0.2
70	56.00	107.97	108.70	108.70	108.70	-0.67	0.2
80	64.00	122.49	121.75	121.75	121.75	0.60	0.2
90	72.00	136.91	136.86	136.86	136.86	0.03	0.2
100	80.00	151.23	151.38	151.38	151.38	-0.10	0.2

Con los resultados obtenidos se realizó la siguiente ecuación de ajuste:

Y = Fuerza (kgf)
X = Valor indicador

 $Y = -0.00075166x^2 + 1.90488068x + 3.6523333333333481$

13. Incertidumbre

La incertidumbre expandidad de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del Documento

913028621 - 913028622 913028623 - 913028624

ventas@perutest.com.pe

www.perutest.com.pe

Jr. La Madrid S/N Mz D lote 25 urb Los Olivos San Martín de Porres - Lima SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

a

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN PTC - LM - 004 - 2023

Página 1 de 4

1. Expediente	012 - 2023

2. Solicitante MURGA VASQUEZ VICENTE LEONIDAS

3. Dirección CALLE BRITALDO GONZALES Nº183 -

PUEBLO NUEVO - FERREÑAFE -

LAMBAYEQUE

4. Equipo de medición BALANZA ELECTRÓNICA

Capacidad Máxima 2000 g

División de escala (d) 0.1 g

Div. de verificación (e) 1 g

Clase de exactitud III

Marca JM

Modelo CENTAURO:

Número de Serie NO INDICA

Capacidad mínima 1.0 g

Procedencia CHINA

Identificación NO INDICA

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

5. Fecha de Calibración

2023-12-04

Fecha de Emisión

Jefe del Laboratorio de Metrología

Sello

STES S. A.

PERUTEST S.A.C

LABORATORIO

r cond de Limbion

2023-12-05

MANUEL ALEJANDE ALIAGA TORRES

913028621 - 913028622 913028623 - 913028624

ventas@perutest.com.pe

www.perutest.com.pe

Jr. La Madrid S/N Mz D lote 25 urb Los Olivos San Martín de Porres - Lima

SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PTC - LM - 004 - 2023

Área de Metrología Laboratorio de Masas

Página 2 de 4

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase III y Clase IIII" del SNM- INACAL

7. Lugar de calibración

Las instalaciones del cliente.

CALLE BRITALDO GONZALES Nº183 - PUEBLO NUEVO - FERREÑAFE -LAMBAYEQUE

8. Condiciones Ambientales

	Inicial	Final	
Temperatura	28	28	
Humedad Relativa	56%	56%	

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de referencia	JGO DE PESAS DE 1 g a 1 Kg (Clase de Exactitud: F1)	METROIL - M0547 - 2020

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (**) Código indicada en una etiqueta adherido al equipo.

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN Área de Metrología PTC - LM - 004 - 2023

Página 3 de 4

Laboratorio de Masas

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	NO TIENE	CURSOR	NO TIENE
of of of of of	0000	NIVELACIÓN	TIENE	90, 90, 90	04 04 04

ENSAYO DE REPETIBILIDAD

Inicial Final Temperatura 22.2 °C 22.2 °C

Medición	Carga L1 =	1,000	g	Carga L2 =	3,000	9
Nº	1(g)	ΔL (mg)	E(mg)	1(g)	ΔL (mg)	E(mg)
1	1000.00	5	45	3000.00	3	47
2	1000.00	4 6	46	3000.00	5	45
3	1000.00	6	44	3000.00	4 9	46
4 6	1000.00	97.9	9 43	3000.00	969	44
5	1000.00	6	44	3000.00	7	43
6	1000.00	60700 g	43	3000.00	3	47
7	1000.00	7 0	43	3000.00	4.0	46
8	1000.00	5	45	3000.00	6	44
9	1000.00	6	44	3000.00	2	48
10	1000.00	7	43	3000.00	6	44
1000	Diferencia Máxima Error Máximo Permisible		3	Diferenci	a Máxima	5
			3.000	Error Máxim	o Permisible	3 000

ENSAYO DE EXCENTRICIDAD

Posición de las Inicial Final cargas Temperatura 26.3 °C 28.3 °C

Posición	Deter	minación o	del Error en Ce	ero Eo	0 84 60	Corregido E	C		
Charles and the control of the contr	Carga Minima*	I (g)	ΔL (mg)	Eo (mg)	Carga L(g)	1 (g)	ΔL(mg)	E(mg)	Ec (mg)
1	10,10	0.10	5	45	N. 40 40	100.00	7	43	-2
2	8 18 18	0.10	7	43		100.00	4	46	3
3	0.10	0.10	6	44	100.00	100.00	40	46	2
4 9	19,29	0.10	97.9	43		100.00	5	45	2
5	1 10 10	0.10	7 7	43	2 16 70	100.00	7	43	000
* Valor entre 0 y 10e				5 8 6	Error máxi	mo permisible	9 6 8	1,000	

^{913028621 - 913028622} 913028623 - 913028624

www.perutest.com.pe

ventas@perutest.com.pe

¹r. La Madrid S/N Mz D lote 25 urb Los Olivos San Martín de Porres - Lima SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN PTC - LM - 004 - 2023

Página 4 de 4

ENSAYO DE PESAJE

Temperatura

Inicial Final 26.3 °C 28.3 °C

Carga	CRECIENTE		IENTES	0000	00 00	DECRE	CIENTES	0000	0000
L(g)	(g) 1(g)	1(g) ΔL(mg) E(mg)	E(mg)	-	4.8.	P 7	P. P. 1	P 9	e.m.p **
1.00	1.00	6	44	Ec (mg)	I (g)	ΔL(mg)	E(mg)	Ec (mg)	(± mg)
5.00	5.00	5	45	V. C. C.	5.00	3	47	3	1,000
100.00	100.00	6	44	0	100.00	5	45	1000	1,000
200.00	200.00	7.0	43	0-10	200.00	4.0	46	0 2 0	1,000
500.00	500.00	6	44	0	500.00	9 5	45	9 6 9	2,000
800.00	800.00	5	45	10 10 0	800.00	6	44	1000	2,000
1000.00	1000.00	6	44	0	1000.00	07	43	50 00 00 m	2,000
1200.00	1200.00	6	44	0 0	1200.00	3	47	3	2,000
1500.00	1500.00	4	46	2	1500.00	5	45	al 15 a	2,000
1800.00	1800.00	5	45	6 19	1800.00	94.6	46	2 9	2,000
2000.00	2000.00	5	45	1 0	2000.00	5	45	1 1	3,000

^{**} error máximo permisible

Leyenda:

L: Carga aplicada a la balanza.

ΔL: Carga adicional.

E o: Error en cero.

I: Indicación de la balanza.

E: Error encontrado

Ec: Error corregido.

Incertidumbre expandida de medición

 $U = 2 \times \sqrt{(0.001669)}$

g² +

0.00000000021 R

Lectura corregida

R CORREGIDA

R +

0.0000006 R

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

LABORATORIO

PER

913028621 - 913028622 913028623 - 913028624

ventas@perutest.com.pe

www.perutest.com.pe

O Jr. La Madrid S/N Mz D lote 25 urb Los Olivos San Martín de Porres - Lima

SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 030 - 2023

Área de Metrología

Laboratorio de Fuerza

Página 1 de 3

1. Expediente 2061 - 2023

2. Solicitante MURGA VASQUEZ VICENTE LEONIDAS

3. Dirección CALLE BRITALDO GONZALES Nº 183 -

PUEBLO NUEVO - FERREÑAFE -

LAMBAYEQUE

4. Equipo PRENSA CBR

Capacidad 5000 Kg F

Marca A Y A INSTRUMENT

Modelo NO INDICA

Número de Serie NO INDICA

Identificación NINGUNA

Procedencia CHINA

5. Indicador ANALÓGICO

Marca A Y A INSTRUMENT

Número de Serie NO INDICA

División de Escala /

Resolución

0.00001 pulg.

6. Fecha de Calibración 2013-12-04

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

LABORATORI

PERU

Fecha de Emisión

Jefe del Laboratorio de Metrología

Sello

PERUTEST S.A.C

2013-12-05

MANUEL ALEJANDRO ALIAGA TORRES

913 028 621 - 913 028 622

913 028 623 - 913 028 624

www.perutest.com.pe

Av. Chillon Lote 50 B - Comas - Lima - Lima

oventas@perutest.com.pe

FPERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 030 - 2023

Area de Metrología Laboratorio de Fuerza

Página 2 de 3

7. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones de LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de ensayo de tracción/compresión. Verificación y calibración del sistema de medida de fuerza." - Julio 2006.

8. Lugar de calibración

CALLE BRITALDO GONZALES Nº183 - PUEBLO NUEVO - FERREÑAFE -LAMBAYEQUE

9. Condiciones Ambientales

	Inicial	Final
Temperatura	23.0 °C	23.0 °C
Humedad Relativa	57 % HR	57 % HR

10. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibradas en PUCP - Laboratorio de estructuras antísismicas	Celda de Carga OAP Tipo: ZSF-A con Serie: 55P4331 Capacidad: 10,000 kg-f	INF-LE N° 042-22 (A)

11. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.

913 028 621 - 913 028 622

913 028 623 - 913 028 624

www.perutest.com.pe

oventas@perutest.com.pe

FI PERUTEST SAC

Av. Chillon Lote 50 B - Comas - Lima - Lima

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 030 - 2023

Área de Metrología Laboratorio de Fuerza

Página 3 de 3

12. Resultados de Medición

Indicación del Equipo		E GE	Control of the Contro	n de Fuerza ón de Refere		Error de Exactitud	U (k=2)
%	100000000000000000000000000000000000000	F_i (kgf)	F_1 (kgf)	F2 (kgf)	F_3 (kgf)	9(%)	(%)
10	80.00	458.27	454.60	454.60	454.60	0.81	0.2
20	160.00	902.27	901.00	901.00	901.00	0.14	0.2
30	240.00	1345.38	1348.60	1348.60	1348.60	-0.24	0.2
40	320.00	1787.62	1800.00	1800.00	1800.00	-0.69	0.2
50	400.00	2228.98	2240.00	2240.00	2240.00	-0.49	0.2
60	480.00	2669.45	2630.40	2630.40	2630.40	1,48	0.2
70	560.00	3109.05	3120.00	3120.00	3120.00	-0.35	0.2
80	640.00	3547.77	3553.40	3553.40	3553.40	-0.16	0.2
90	720.00	3985.62	3989.00	3989.00	3989.00	-0.08	0.2
100	800.00	4422.58	4420.00	4420.00	4420.00	0.06	0.2

Con los resultados obtenidos se realizó la siguiente ecuación de ajuste:

Y = Fuerza (kgf) X = Valor indicado $Y = -0.00006866x^2 + 5.56640152x + 13.4000000000742$

13. Incertidumbre

La incertidumbre expandidad de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del Documento

913 028 621 - 913 028 622

913 028 623 - 913 028 624

6 www.perutest.com.pe

O Av. Chillon Lote 50 B - Comas - Lima - Lima

PERU

oventas@perutest.com.pe

FPERUTEST SAC

Anexo 9: Análisis Estadístico

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

Estadísticas de fiabilidad

Alfa de Cronbach N de elementos .974 25

Estadísticas de total de elemento

	Media de	Varianza de		Alfa de
	escala si el	escala si el	Correlación	Cronbach si
	elemento se	elemento	total de	el elemento
	ha	se ha	elementos	se ha
	suprimido	suprimido	corregida	suprimido
Índice de Plasticidad 5%	263.9833	.086	.716	.974
Índice de Plasticidad 10%	264.2833	.082	.698	.974
Índice de Plasticidad 15%	265.7867	.075	.734	.980
Índice de Plasticidad 20%	266.5933	.085	.953	.973
Índice de Plasticidad 25%	268.8933	.085	.953	.973
Máxima Densidad Seca 5%	282.2933	.085	.953	.973
Máxima Densidad Seca 10%	282.2667	.082	.994	.972
Máxima Densidad Seca 15%	282.2600	.088	.671	.975
Máxima Densidad Seca 20%	282.2367	.087	.973	.974
Máxima Densidad Seca 25%	282.2250	.087	.840	.974
Óptimo Contenido de Humedad 5%	269.9667	.082	.994	.972
Óptimo Contenido de Humedad 10%	269.1700	.078	1.000	.972
Óptimo Contenido de Humedad 15%	268.9500	.083	.872	.973
Óptimo Contenido de Humedad 20%	270.0500	.077	.901	.973
Óptimo Contenido de Humedad 25%	269.2800	.083	.872	.973
CBR 95% al 5%	276.3867	.083	.832	.973
CBR 95% al 10%	276.0467	.082	.994	.972
CBR 95% al 15%	275.3567	.082	.994	.972
CBR 95% al 20%	275.0400	.078	1.000	.972
CBR 95% al 25%	274.6833	.085	.953	.973
CBR 100% al 5%	271.8917	.091	089	.978
CBR 100% al 10%	271.2833	.086	.716	.974
CBR 100% al 15%	270.1867	.087	.973	.974

CBR 100% al 20%	269.6933	.085	.953	.973
CBR 100% al 25%	269.1933	.085	.953	.973

El análisis de fiabilidad realizado mediante el Alfa de Cronbach arrojó un valor de 0.974. Este resultado indica una excelente consistencia interna del instrumento de medición utilizado. Un Alfa de Cronbach de 0.97 sugiere que los ítems que componen el instrumento están midiendo el mismo constructo de manera altamente consistente. Si bien este valor demuestra una fuerte fiabilidad, se ha revisado la matriz de correlaciones entre ítems para descartar la posibilidad de redundancia excesiva. Se concluye que el instrumento posee una alta fiabilidad para los fines de este estudio.

		ANO	/A			
		Suma de		Media		
		cuadrados	gl	cuadrática	F	Sig.
INDICE DE	Entre grupos	47.271	4	11.818	34.179	<.001
PLASTICIDAD	Dentro de	3.458	10	.346		
	grupos					
	Total	50.728	14			
CBR AL 95%	Entre grupos	6.294	4	1.574	96.779	<.001
	Dentro de	.163	10	.016		
	grupos					
	Total	6.457	14			
CBR AL 100%	Entre grupos	15.036	4	3.759	375.900	<.001
	Dentro de	.100	10	.010		
	grupos					
	Total	15.136	14			

Los resultados indican que la adición de ceniza de cáscara de arroz tiene un impacto real y medible en el índice de plasticidad y la resistencia del suelo (CBR). La significancia de 0.001 proporciona una fuerte evidencia para respaldar esta conclusión. El siguiente paso es realizar pruebas post-hoc para identificar específicamente qué porcentajes de adición de ceniza generan diferencias significativas entre sí.

Anexo 10: Validez Y Confiablidad Por 5 Jueces Expertos

	"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"															
		Claridad				Cont	exto			Congr	uencia		Dominio del Constructo			
	Índice de Plasticidad	Optimo contenido de Humedad	Max. Densidad Seca	CBR 95% Y 100% (gr/cm3)	Índice de Plasticidad	Optimo contenido de Humedad	Max. Densidad Seca	CBR 95% Y 100% (gr/cm3)	Índice de Plasticidad	Optimo contenido de Humedad	Max. Densidad Seca	CBR 95% Y 100% (gr/cm3)	Índice de Plasticidad	Optimo contenido de Humedad	Max. Densidad Seca	CBR 95% Y 100% (gr/cm3)
JUEZ 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
JUEZ 2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
JUEZ 3	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
JUEZ 4	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1
JUEZ 5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
S	4	5	4	5	4	5	5	5	5	5	5	5	4	5	4	5
n	5				5				5				5			
С	2				2				2				2			
V de Aiken por pregunta	0.88	1.00	0.80	1.00	0.80	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.80	1.00	0.80	1.00
V de Aiken 0.9					1	.0			1	.0			0	.9		

VALIDEZ DE AIKEN POR JUECES EXPERTOS

0.943

Luis Arturo Montenegro Caractio Lic. Estadistica MG. INVESTIGACIÓN OR. EQUICACIÓN COESPE 262

ı. **Datos generales**

Residente de obras Índice de plasticidad, José Luis Armas privadas Optimo contenido de Rosa Vanessa Ramire: humedad, Máxima Silva densidad seca, CBR	Apellidos y nombres del informante	del donde labora instrumento de		Autor del Instrumento
			Optimo contenido de humedad, Máxima	Rosa Vanessa Ramirez Silva

Título de la Investigación:

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	Acuerdo	Todo bien
2	Acuerdo	Todo bien
3	Acuerdo	Todo bien
4	Acuerdo	Todo bien

	Dimensiones/Ítems	Clari	dad	Con	texto	Congr	Congruencia		Dominio del Constructo	
	Propiedades Físicas del suelo + %CCA	Si	No	Si	No	Si	No	Si	No	
1	Índice de Plasticidad	Х		Х		Х		Х		
	Propiedades mecánicas del suelo +%CCA	Si	No	Si	No	Si	No	Si	No	

	Optimo contenido de	х	х	х	Х	
2	humedad					
	Máxima densidad seca	Х	Х	Х	Х	
3	(gr/cm ³)					
	CBR 95% Y 100%	Х	Х	Х	Х	
4	(gr/cm ³)					

Observaciones (precisar si hay suficiencia):
Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir (_) No aplicable (_)
Apellidos y nombres del juez validador 1: José Luis Armas Hernández
Especialidad: Ing. Civil
JOSE LUIS ARMAS HERNANDEZ INGENIERO CIVIL REG. CIP 278573

Ing. José Luis Armas Hernández

i. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Luis Suárez Vargas	Residente de obras privadas	Índice de plasticidad, Optimo contenido de humedad, Máxima densidad seca, CBR	Rosa Vanessa Ramirez Silva

Título de la Investigación:

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	Acuerdo	Todo bien
2	Acuerdo	Todo bien
3	Acuerdo	Todo bien
4	Acuerdo	Todo bien

	Dimensiones/Ítems	Clari	dad	Contexto Congruencia		Dominio del Constructo			
	Propiedades Físicas del suelo + %CCA	Si	No	Si	No	Si	No	Si	No
1	Índice de Plasticidad	Х		Х		Х		Х	
	Propiedades mecánicas del suelo +%CCA	Si	No	Si	No	Si	No	Si	No

[&]quot;Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

	Optimo contenido de	Х	Х	Х	Х	
2	humedad					
	Máxima densidad seca	Х	Х	Х	Х	
3	(gr/cm ³)					
	CBR 95% Y 100%	Х	Х	Х	Х	
4	(gr/cm ³)					

Observaciones (precisar si hay suficiencia):
Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir (_) No aplicable (_
Apellidos y nombres del juez validador 2: Luis Suárez Vargas
Especialidad: Ing. Civil

Ing. Luis Suárez Vargas

Kuis Suarez Vargas INGENIERO CIVIL C.I.P. N° 152267

i. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Juan Carlos Ramírez Armas	Auditor OCI Municipalidad distrital de Castilla	Índice de plasticidad, Optimo contenido de humedad, Máxima densidad seca, CBR	Rosa Vanessa Ramirez Silva

Título de la Investigación:

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN				
1	Acuerdo	Todo bien				
2	Acuerdo	Todo bien				
3	Acuerdo	Todo bien				
4	Acuerdo	Todo bien				

	Dimensiones/Ítems	Claridad		Contexto		Congruencia		Dominio de Constructo	
	Propiedades Físicas del suelo + %CCA	Si	No	Si	No	Si	No	Si	No
1	Índice de Plasticidad	Х		Х		Х		Х	
	Propiedades mecánicas del suelo +%CCA	Si	No	Si	No	Si	No	Si	No

[&]quot;Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

	Optimo contenido de	х	х	Х	Х	
2	humedad					
	Máxima densidad seca	Х	Х	Х	Х	
3	(gr/cm ³)					
	CBR 95% Y 100%	Х	Х	Х	Х	
4	(gr/cm ³)					

Observaciones (precisar si hay suficiencia):
Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir (_) No aplicable (_)
Apellidos y nombres del juez validador 3: Juan Carlos Ramírez Armas
Especialidad: Ing. Civil
JUAN CARLOS RAMREZ ARMAS INGENIERO CIVIL REG. CIP. 220004

Ing. Juan Carlos Ramírez Armas

i. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Daiana Rossmery de la Cruz Diaz		Índice de plasticidad, Optimo contenido de humedad, Máxima densidad seca, CBR	Rosa Vanessa Ramirez Silva

Título de la Investigación:

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	Acuerdo	Todo bien
2	Acuerdo	Todo bien
3	Acuerdo	Todo bien
4	Acuerdo	Todo bien

	Dimensiones/Ítems	Clari	dad	Con	texto	Congruencia		Dominio del Constructo	
	Propiedades Físicas del suelo + %CCA	Si	No	Si	No	Si	No	Si	No
1	Índice de Plasticidad	Х		Х		Х		Х	
	Propiedades mecánicas del suelo +%CCA	Si	No	Si	No	Si	No	Si	No

[&]quot;Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

	Optimo contenido de	Х	Х	Х	Х	
2	humedad					
	Máxima densidad seca	Х	Х	Х	Х	
3	(gr/cm ³)					
	CBR 95% Y 100%	Х	Х	Х	Х	
4	(gr/cm ³)					

Observaciones (precisar si hay suficiencia):
Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir (_) No aplicable (_)
Apellidos y nombres del juez validador 4: Daiana Rossmery de la Cruz Diaz
Especialidad: Ing. Civil
DAIANA ROSSMERY DE LA CRUZ DIAZ DE LA CRUZ DIAZ

Ing. Daiana Rossmery de la Cruz Diaz

Ficha de validación según AIKEN

Colegiatura N°278609

i. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Luis Hernán Cotrina Córdova	Asistente de coordinador de obra en la gerencia de Condorcanqui	Índice de plasticidad, Optimo contenido de humedad, Máxima densidad seca, CBR	Rosa Vanessa Ramirez Silva

Título de la Investigación:

"Estabilización de Suelos Incorporando Cenizas de Cascarilla de Arroz, Lambayeque 2020"

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	Acuerdo	Todo bien
2	Acuerdo	Todo bien
3	Acuerdo	Todo bien
4	Acuerdo	Todo bien

	Dimensiones/Ítems	Claridad		Contexto		Congruencia		Dominio del Constructo	
	Propiedades Físicas del suelo + %CCA	Si	No	Si	No	Si	No	Si	No
1	Índice de Plasticidad	Х		Х		Х		Х	
	Propiedades mecánicas del suelo +%CCA	Si	No	Si	No	Si	No	Si	No

	Optimo contenido de	Х	Х	Х	Х	
2	humedad					
	Máxima densidad seca	Х	Х	Х	Х	
3	(gr/cm ³)					
	CBR 95% Y 100%	Х	Х	Х	Х	
4	(gr/cm ³)					

Observaciones (precisar si hay suficiencia):
Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir (_) No aplicable (_)
Apellidos y nombres del juez validador 5: Luis Hernán Cotrina Córdova
Especialidad: Ing. Civil
LUIS HERMAN COTRINA CORDOVA INGENIERO CIVIL REG. CIP. 278609

Ing. Luis Hernán Cotrina Córdova

156