

FACULTAD DE INGENIERÍA ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

Evaluación del comportamiento hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autores

Bach. Molina Fernandez Miner Orlando https://orcid.org/0000-0002-3750-9332

Bach. Sanchez Ramirez Jose Elmer https://orcid.org/0000-0002-3618-7703

Asesor

Mg. Idrogo Perez Cesar Antonio https://orcid.org/0000-0003-4232-0144

Línea de Investigación

Tecnología e Innovación en el Desarrollo de la Construcción y la Industria en un Contexto de Sostenibilidad

Sublínea de Investigación Innovación y Tecnificación en Ciencia de los Materiales, Diseño e Infraestructura

Pimentel – Perú

2024

Quien suscribe la DECLARACIÓN JURADA, somos egresado (s) del Programa de Estudios de ingeniería civil de la Universidad Señor de Sipán S.A.C, declaro bajo juramento que somos autores del trabajo titulado:

EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firman:

Molina Fernandez Miner Orlando	DNI: 74764016	Of
Sanchez Ramírez Jose Elmer	DNI: 76693330	1, Enn Suckey

Pimentel, 29 de mayo de 2023.

NOMBRE DEL TRABAJO

AUTOR

TESIS RECORTADA.pdf

MOLINA FERNANDEZ MINER ORLANDO MOLINA FERNANDEZ MINER ORLANDO

RECUENTO DE PALABRAS

RECUENTO DE CARACTERES

8028 Words

39014 Characters

RECUENTO DE PÁGINAS

TAMAÑO DEL ARCHIVO

28 Pages

368.5KB

FECHA DE ENTREGA

FECHA DEL INFORME

Nov 5, 2024 7:43 PM GMT-5

Nov 5, 2024 7:43 PM GMT-5

• 19% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base de datos.

- 17% Base de datos de Internet
- 2% Base de datos de publicaciones

· Base de datos de Crossref

- Base de datos de contenido publicado de Crossref
- 9% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

Material bibliográfico

- Material citado
- Coincidencia baja (menos de 8 palabras)

Índice de contenidos

Indice de tablas	iii
Índice de figuras	iii
Resumen	6
Abstract	7
I. INTRODUCCIÓN	8
II. MATERIALES Y MÉTODO	19
III. RESULTADOS Y DISCUSIÓN	25
3.1. Resultados	
3.2. Discusión	31
IV. CONCLUSIONES Y RECOMENDACIONES	34
4.1. Conclusiones	34
4.2. Recomendaciones	35
REFERENCIAS	
ANEXOS	43
Índice de tablas	
$\textbf{Tabla I} \ \text{Población y muestra del concreto patrón con PP para 210 kg/cm2 y 280 kg/cm2.}$	21
Tabla II Población y muestra del concreto con PP y FP para 210 kg/cm² y =280 kg/cm².	22
Tabla III Dosificaciones en peso para diseño 210 y 280 kg/cm²	25
Tabla IV Dosificaciones en peso para diseño 210 y 280 kg/cm²	26
Índice de figuras	
Fig. 1. Diagrama de flujo	24
Fig. 2. Desempeño de las propiedades físicas del concreto con PP.	27
Fig. 3. Ensayos mecánicos e hidromecánico con PP para D210 y D280	28
Fig. 4. Desempeño de propiedades físicas del concreto con PP óptimo y adiciones de F	P.29
Fig. 5. Ensayos mecánicos e hidromecánicos con PP óptimo y FP para D210 y D280	30

EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

Aprobación del jurado

Dr. Coronado Zuloeta Omar Presidente del Jurado de Tesis

Dr. Salinas Vasquez Nestor Raul **Secretario del Jurado de Tesis**

Mg. Villegas Granados Luis Mariano

Vocal del Jurado de Tesis

EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

Resumen

La sobreexplotación de recursos y producción de cemento viene siendo excesiva para altas demandas de concreto, conllevando a utilizar materiales alternativos para mejorar su desempeño con aplicaciones no estructurales como veredas o losas deportivas. Se tuvo por objetivo evaluar el desempeño hidromecánico que incorpora perlitas de poliestireno expandido (PP) y fibra de polipropileno (FP). Se empleó una metodología con diseño experimental, elaborando 420 muestras entre probetas y vigas, donde se realizaron diseños de mezcla incorporando 5%, 10% y 15% de PP por cemento y 0.1%, 0.2% y 0.3% de FP, en el cual se evaluó propiedades de asentamiento, contenido de aire, peso unitario y propiedades hidromecánicas. Los resultados mostraron que el asentamiento se redujo significativamente con PP hasta 3", y con FP incremento hasta 4". Por otro lado, la compresión a 28 días con 10%PP incrementó su resistencia en 14.08% y 0.73% para D210 y D280 respecto a la muestra patrón, con 10%PP+0.3%FP incrementó un 16.07%, el esfuerzo a tracción incrementó con la muestra 10%PP en un 13.77% y 11.02%, al combinar 10%PP+0.3%FP aumentó en un 21.23%, así mismo la resistencia a flexión incrementó en un 19.74% y 26.64% con 10%PP+0.3%FP, el módulo de elasticidad logró incrementos de hasta 17.75% v 4.89% con 10%PP+0.3%FP para D210 Y D280 respectivamente, finalmente, en profundidad de penetración incrementó incorporando EPS y PF hasta en un 48.35 mm respecto al control. Se concluye que la incorporación optima es 10% PP y 0.3% FP incrementando significativamente las propiedades hidromecánicas del concreto respecto al diseño patrón.

Palabras Clave: Propiedades hidromecánicas, concreto, perlitas de poliestireno expandido, fibra de polipropileno.

Abstract

The overexploitation of resources and cement production has been excessive for high concrete demands, leading to the use of alternative materials to improve their performance with non-structural applications such as sidewalks or sports slabs. The objective was to evaluate the hydromechanical performance that incorporates expanded polystyrene (PP) beads and polypropylene fiber (FP). A methodology with experimental design was used, preparing 420 samples between specimens and beams, where mix designs were carried out incorporating 5%, 10% and 15% of PP for cement and 0.1%, 0.2% and 0.3% of FP, in which Settlement properties, air content, unit weight and hydromechanical properties were evaluated. The results showed that settlement was significantly reduced with PP up to 3", and with FP it increased up to 4". On the other hand, compression at 28 days with 10%PP increased its resistance by 14.08% and 0.73% for D210 and D280 compared to the standard sample, with 10%PP+0.3%FP it increased by 16.07%, the tensile stress increased with the 10%PP sample by 13.77% and 11.02%, when combining 10%PP+0.3%FP it increased by 21.23%, likewise the bending resistance increased by 19.74% and 26.64% with 10%PP+0.3% FP, the elasticity modulus achieved increases of up to 17.75% and 4.89% with 10%PP+0.3%FP for D210 and D280 respectively, finally, the penetration depth increased by incorporating EPS and PF by up to 48.35 mm compared to the control. It is concluded that the optimal incorporation is 10% PP and 0.3% FP, significantly increasing the hydromechanical properties of the concrete with respect to the standard design.

Keywords: Hydromechanical properties, concrete, expanded polystyrene beads, polypropylene fiber.

I. INTRODUCCIÓN

Realidad Problemática

El concreto, a pesar de ser material esencial en la construcción, es responsable de una considerable contaminación de CO2, presentando desafíos en su producción [1]. Actualmente el reciclaje es importante para evitar contaminaciones, se conoce que los desechos de plástico se conforman por un porcentaje del 46% lo cual abarca compuesto de baja densidad y alta densidad, siendo un material para poder ser utilizado como un árido de polímero que incremente las prestaciones estructurales del concreto [2].

En la actualidad en día se establece que la fabricación de concretos es la fuente principal para poder reciclar y reutilizar materiales desechados aprovechando sus propiedades y composición química [3], asimismo, en los últimos años se ha determinado que las PP como material alternativo gracias a su baja densidad, esto debido a que su producción es más limpia y a su vez sostenible [4] componiéndose de hasta un 95% de aire lo que agregado en el concreto puede provocar segregación en la pasta cementante y para no afectar su resistencia se recomienda no exceder más del 50% de adiciones de PP [5].

Los polímeros de desechos industriales han sido utilizados para mejorar de manera eficiente las propiedades físicas y mecánicas del concreto, pero por su naturaleza hidrofóbica del poliestireno, dificulta su adherencia en la mezcla de concreto [6].

En Alemania la producción de concretos con baja densidad, es novedoso debido a la reducción de volumen generado en los elementos estructurales, mejorando la sostenibilidad, baja conductividad térmica, aislamiento acústico y reducción de riesgos por terremotos gracias a su baja carga muerta [7] al igual que en Irak, siendo reemplazado parcialmente por agregado grueso [8] siendo el contenido de plástico en la composición de los residuos es alto [9], por el cual el polipropileno el principal material y en mayor abundancia que es causante de la contaminación [10]. Medellín produce al día 3.055 toneladas de desechos sólidos, del 44% pudiendo ser empleados en la elaboración de ladrillos ecológicos [11].

Por otra parte, China entorno al creciente acelerado de la población, presentó in cremento en la cantidad de residuos plásticos [12]. En esa línea, de detalla que se implementó la utilización de derivados del propileno como FP, gracias a su alto rendimiento de resistencia, resistencia al calor, alta rigidez y baja absorción de agua [13], por ello se busca poder sustituir, reciclar y posteriormente desechar siendo un material sostenible [14].

En Perú se generan 30 kg de plástico por ciudadano, casi 95 mil toneladas de residuos de polipropileno al año [15] establecieron que las PP, con características como aislante térmico, buena absorción y resistencia al fuego [16, 17]. Al igual que en Tarapoto, que buscan conocer el tamaño correcto de PP para evitar fallas en las estructuras [18] y evaluar la utilización de fibra industrial como fibras de coco, la cascarilla de café, la cascarilla de arroz, la fibra de madera, el bambú, el yute, así como la caña de azúcar y el sisal [19] debido que el plástico tiene el más alto grado de contaminación, por ello se implementa la posibilidad de emplear plástico reciclado en la producción de bloques de concreto [20] cumpliendo los requisitos de vivienda actuales, esto se puede lograr reemplazando los agregados convencionales en la elaboración de concreto con desechos sólidos como los son las PP [21].

A nivel local, estudios han determinado que Chiclayo genera casi 145 toneladas de residuos por día, donde poco más del 5.4% pertecen a desechos plasticos, siendo 1,4% de polipropileno, 0.51% de Polietileno de alta densidad, el 0.30% de PVC, el 1.3% de Polietileno de baja densidad, entre otros tipos de plásticos habituales en la ciudad [22]. No obstante, Chávez [23] afirma que la población chiclayana desconoce en gran parte la reutilización de los materiales con aplicaciones en el sector de la construcción, tales como, los bloques de concreto de baja densidad que se comportan eficientemente con adiciones de vidrio triturado, plásticos y el poliestireno, teniendo en cuenta la relación de costo-beneficio.

Dentro de los antecedentes a nivel internacional tenemos a Assaad & El Mir [24] en su artículo de investigación tuvo por objetivo diseñar un concreto de baja densidad que sea autocompactante añadiendo PE para incorporar aire en la mezcla, para ello, se empleó un método experimental evaluando el comportamiento entre rangos de 1870kg/ m³ y 2360kg/ m³,

generando un deterioro significativo con las adiciones de 10% y 14%, respecto a las resistencias a compresión, no obstante, la densidad disminuyó significativamente, de tal forma que, se considere un concreto, se concluyó que a mayor contenido de poliestireno se redujo la resistencia.

Dixit et al., [25] en su artículo de investigación tuvo por objetivo diseñar un concreto de uso estructural mediante la incorporación de PE para un concreto con gran conductividad térmica, para ello se empleó una metodología experimental. Los resultados determinaron que con 45% fue el menos eficiente arrojó una resistencia a compresión de 27 MPa, finalmente los autores concluyeron que la dosificación óptima es con 36% de adición generando una resistencia máxima de 45 MPa en base a una densidad aparente reducida de 1677 kg/m³.

Saleh et al., [26] en su artículo de investigación tuvo por objetivo hacer uso de dos materiales de desechos reciclados como el polvo de horno de cemento y el poliestireno rallado en decadencia de aditivos, los cuales junto con los materiales reciclables fueron evaluados mediante una metodología experimental, los ensayos mostraron la inviabilidad del PE con el fin de mejorar la durabilidad de la mezcla, se concluye que el producto a base de cemento permite lograr los valores recomendados para su uso en construcciones que cuentan con blindaje en su exterior y muros no portantes, los cuales alcanzan los parámetros físicomecánicos respecto a la normatividad internacional y nacional.

Haitang et al., [27] su investigación tuvo como objetivo evaluar la actividad agua/cemento y fibra, para ello, emplearon una metodología experimental con 06 diseños de a/c de 0.35, 0.30 y 0.25 usando FP, fibra de acero y FP respectivamente. Los resultados demostraron que se logra una infiltración eficiente alcanzando 4.38 mm/s, 222.70kg/ cm² en su fuerza a la compresión y 33.14kg/cm² en flexión correspondiente a la a/c 0,3. Por lo tanto, se concluye que la relación agua/cemento óptimo es de 0.35 y 0.25 que permitió fuerzas aceptables, pero se ven diferenciadas por su coeficiente de infiltración.

Darshan et al., [28] en su investigación tuvo como objetivo evaluar las propiedades físicomecánicas del concreto permeable reforzado con FP, empleando una metodología con
diseño experimental. Los resultados determinaron que las FP a los 28 días alcanzaron
resistencia de hasta 186.20kg/cm² en compresión, 25.70kg/cm² en tracción y un coeficiente
de 0.79 in/s en permeabilidad, por otra parte, la mezcla con tamaño de 20 mm del agregado
obtuvo 173.35kg/cm² en compresión. Finalmente, se concluyó que la FP para ambos diseños
experimentales presentó valores máximos respecto al tratamiento sin fibra.

Baskar et al., [29] en su investigación el efecto de la FP de concreto permeable, para ello, se empleó una metodología experimental, el cual se implementó diseños de 0.2% de FP y relación agua/cemento de 0.30. Los resultados determinaron incrementos significativos con FP con valores de 18.28 MPa en compresión, 1.03 MPa en tracción y 4.49 MPa en flexión, en comparación con 11.97 MPa, 0.83 MPa y 3.83 MPa, respectivamente, en el tratamiento sin FP, finalmente, concluyeron que la FP mejora significativamente el desempeño de resistencia del concreto permeable.

Dentro del nivel nacional tenemos a Celis [30] en su tesis tuvo por objetivo evaluar el desempeño mecánico que genera la adición de fibras de PP, para ello, se empleó una metodología experimental donde realizó pruebas mediante ensayos con ayuda de testigos de concreto, siendo los porcentajes de dosificación (0.5%, 0.75%, 1%) en volumen que sustituye a los compuestos tradicionales, obteniendo resultados positivos en su mayoría, no obstante, al incorporar 1% su resistencia a la compresión disminuye logrando alcanzar 225 kg/cm², sin embargo, aun así se encuentra por encima del concreto patrón, finalmente se concluyó que las adiciones del 0.5% y 0.75% son las más beneficiosas, estimando que el porcentajes de fibras de PP óptimo es del 0.75% con un incremento de hasta un 14%.

Jalixto [31] en su tesis de investigación tuvo por objetivo analizar el comportamiento de un concreto que adiciona compuestos de PP mediante forma de fibras, el autor utilizó una metodología con un diseño cuasi experimental, obteniendo resultados donde el asentamiento se reduce considerablemente en hasta un 35.1% para 210 kg/cm² y 38.9% para 280 kg/cm²,

no obstante, mostró resultados donde la compresión se incrementa significativamente con adiciones de 0.3% de fibras de PP, concluyendo que el porcentaje óptimo de 0.3% permite alcanzar resistencias promedio máximas de compresión y tracción de hasta un 13.53% y 6.89% respectivamente convirtiéndose en un material sumamente beneficioso.

Chaisa & Maccarcco [32] en su tesis tuvo por objetivo medir como influye las adiciones parciales de FP, de tal forma que, su incorporación permita incrementar las resistencias de compresión y flexión, para ello, emplearon metodología con un diseño experimental, con dosificaciones por peso en un rango de 0.25kg a 0.8kg por diseño, obteniendo como resultados que la dosificación de 0.5kg redujo el asentamiento de las mezclas de hasta un 6.95%, asimismo para un concreto de 280kg /cm² su trabajabilidad disminuyó un 93.42%, concluyendo que las resistencias físicas disminuyen considerablemente, sin embargo, las mecánicas presentan incrementos tanto para compresión y flexión.

Ticona [33] en su investigación quien tuvo como objetivo evaluar la influencia en la resistencia a compresión de concreto con PP, con una metodología con diseño experimenal. Los resultados mostraron que la sustitución de 6, 12 y 18% de PP, incrementando la resistencia a la compresión hasta un 2% por encima del concreto patrón. Concluyendo que el porceentaje optimo de incorporación de 6% de PP, asimismo estos parametros seencuentran dentro del rango aceptable estipulado por la norma tecnica, concluyendo que el uso de este concreto en paviento rigido no sería muy recommendable para vias de alto tránsito.

Rios [34] en su investigación tuvo como objetivo determinar la influencia de PP respecto al asentamiento, peso unitario y resistencia a la compresión, empleando una metodología aplicada, con unenfoque cuantitativo, con un diseño cuasiexperimental, empleando dosificaciónes de 5%, 10% y 15%. Los resultados evidenciaron que a mayor dosificación de PP su asentaiento es proporcional a comparación del peso unitario quien denoto una disminución de hasta 3.76%, la resistencia a la compresión incremento con la incoporación de 15% PP. Concluyendo que se logro obtener la maxima resistencia de todos los diseños a

28 días, puede este concreto ser empleado en losas aligeradas, ya que cumple con os parametros estipulados en la normativa vigente.

En el ambito local tenemos a Mondragon [35] en su tesis de investigación tuvo por objetivo determinar el comportamiento que ocasiona la incorporación de FP reciclado en el concreto, utilizaron una metodología con un diseño experimental evaluando 5%, 10% y 15% de FP en función a la piedra. Los resultados determinaron que el asentamiento es viable, así como también su temperatura lograda, no obstante, la compresión se deteriora con dosificaciones no adecuadas, concluyendo que a menor contenido de FP mejor resistencias obtendremos, por lo tanto, se estimó para este estudio que el porcentaje óptimo es de un 5%.

Barboza & León [36] quien en su estudio tuvo como objetivo diseñar una mezcla de concreto con incorporación de poliestireno expandido reciclado y PP, empleando una metodología experimental. Los resultados determinan incrementos en la resistencia a la compresión de 1%, tracción de 1%, flexión de 9% respecto a la muestra patrón y módulo de elasticidad se mantiene con el concreto patrón con dosificaciones de 5 y 7.5% de PP. Concluyendo que el añadir PP en 7.5% es el contenido óptimo de reemplazo para añadir al concreto, otorgando beneficios al concreto.

Mestanza y Tarrillo [37] en su estudio se tuvo por objetivo evaluar el comportamiento del concreto mediante la adición de fibras de vidrio y FP, los autores emplearon una metodología con un diseño experimental en base a la incorporación de porcentajes parciales. Los resultados determinaron un incremento de resistencia de hasta un 37.20% con un 25 de FP y un 3% de fibras de vidrio, en tracción se alcanzó hasta un 6.16% y 23.55% en flexión. Concluyendo que ambos materiales en su derivado de fibras permiten incrementos significativos.

Abad [38] en su investigación se tuvo por objetivo evaluar el desempeño del concreto en base a la incorporación de materiales alternativos como son las FP, además, de fibras de Nylon, para ello, emplearon una metodología con diseño experimental. Los resultados determinaron

un incremento en hasta un 22.5% en la flexión y un 4.14 en compresión incorporando 700 g/m3 para diseños de 210 kg/cm2, sin embargo, se redujo el módulo elástico en un 9.09%. Se concluyó que la combinación de fibras no permitió aumentos significativos en la resistencia mecánica.

La justificación del estudio se enfoca principalmente en el aspecto ambiental, donde se establece una producción de concreto sostenible aplicando materiales reutilizables como son las PP y las FP, asimismo, en el aspecto técnico para mejorar significativamente el rendimiento del concreto incorporando PP y FP luego de una evaluación experimental mediante ensayos físicos y de resistencia, finalmente en el aspecto económico se pretende reducir los costos de la producción y con mejores prestaciones utilizando PP y FP, los cuales se estiman como rentables a diferencia de los componentes convencionales.

Formulación del problema

¿De qué manera la incorporación de perlitas de poliestireno expandido y las fibras de polipropileno en el análisis del comportamiento de las propiedades hidromecánicas del concreto, Lambayeque, 2023?

Hipótesis

La incorporación de dosificaciones de PP y dosificación optima de PP con dosificaciones de FP respecto al volumen del concreto permitirá mejorar eficazmente las propiedades hidromecánicas del concreto, Lambayeque, 2023

Objetivos

Objetivo general

Evaluar el comportamiento hidromecánico del concreto con adiciones de perlitas de poliestireno expandido y fibras de polipropileno, Lambayeque, 2023.

Objetivos específicos

Determinar las propiedades físicas de los agregados pétreos, de las perlitas de poliestireno expandido y fibras de polipropileno.

- Elaborar diseños de mezclas para un concreto patrón y concreto con adiciones de perlitas de poliestireno expandido y fibras de polipropileno para resistencias de 210 kg/cm² y 280 kg/cm².
- Evaluar las propiedades hidromecánicas del concreto incorporando 5%, 10% y 15%
 de perlitas de poliestireno expandido para 210 kg/cm² y 280 kg/cm².
- Evaluar las propiedades hidromecánicas del concreto con el óptimo contenido de perlitas de poliestireno expandido más adiciones del 0.1%, 0.2%, 0.3% de fibras de polipropileno para 210 kg/cm² y 280 kg/cm².

Teorías relacionadas al tema

Poliestireno expandido, los concretos que incorporan PE están siendo utilizados en una variedad de aplicaciones en la industria de la construcción. Este material es llamativo gracias a su ligereza y baja densidad, asimismo se permite una buena conservación del calor y aislante térmico [39]. Es un plástico fabricado artificialmente a partir de la polimerización de estireno con pentano, lo que es útil en la construcción en planchas o perlitas [40], asimismo, es conocido como material plástico espumado, especialmente como aislante acústico y térmico, así como envases y embalajes u otras aplicaciones [41].

Dentro de *las propiedades del poliestireno*, tenemos la resistencia al envejecimiento, extraordinario aislante térmico, se manipula fácilmente y gran reductor de impactos, resistente a la humedad y a las agresiones químicas [42]. De esta manera, antes de agregar PE al concreto, se debe realizar un previo estudio al material en función de su densidad y dimensiones de aplicación.

El concreto con perlitas de poliestireno expandido cuenta con una capacidad de deformación y es liviano, lo cual es una de sus principales características, por su baja resistencia, solo pueden usarse en elementos que no soporten mucha carga. Siendo utilizado, para crear una variedad de componentes como muros no estructurales o paneles de revestimiento [43]. Además, es importante tener en cuenta que dicho material tiene que

regirse a una serie de procedimientos antes de convertirse en el producto final, contando con una fácil manipulación, las PP se incorporan con éxito en las mezclas de concreto, lo que resulta en un concreto liviano y de baja densidad. Sin embargo, es importante tener en cuenta que este concreto no es adecuado para edificaciones estructurales debido a las bajas resistencias estándar que presenta en comparación con el concreto convencional [44].

El polipropileno, es un polímero termoplástico más ampliamente usado, que generalmente se lo denomina simplemente un tipo de poliéster; comúnmente genera errores ya que las resinas de poliéster son materiales termo endurecible [45]. Cabe resaltar que todos los plásticos son extremadamente resistentes al impacto y al fuego, pero la principal característica de cada polímero es excelente conductividad y aislamiento térmico [46].

El concreto reforzado con fibras, es aquel que se caracteriza por tener una estructura fibrosa, lo que resulta en un mejor rendimiento estructural del edificio. Distinguiéndose por la incorporación de diferentes tipos de fibras en su composición [47].

Las fibras de polipropileno (FP), se estima a las FP como un compuesto sintético, como se detalla en la Figura 5; con diferentes beneficios a diferencia de otras fibras sintéticas que son de uso comercial, estas mejoras se incrementan debido a su baja densidad, costo eficiente, buena conductividad térmica y a su vez resistente al ataque de ácidos y álcalis [48].

Las propiedades físico-químicas de las fibras de polipropileno tiene una predominante propiedad hidrofóbica que permite proteger a los compuestos creados ante la humectación con pastas de cemento, de tal forma que, estos no tienen ningún efecto respecto a las dosis de agua requerida [49]. Por otra parte, [50] señala que las FP tienen características como una densidad fresca y un impacto al contenido de aire reducido. Además, señala que la densidad fresca se incrementa conforme las proporciones de FP aumentan.

Dentro de *las propiedades mecánicas de las fibras de polipropileno*, siendo Akin et al., [51] quienes señalan que las prestaciones mecánicas y físicas dependen directamente de las dimensiones de las fibras, donde la longitud de la FP es el punto principal generando cambios

en la trabajabilidad. Asimismo, [52] afirma que la que el incremento de la longitud de FP ocasiona una reducción en el flujo de asentamiento, un aumento de la viscosidad aparente y el esfuerzo cortante del cemento, de igual manera, comprueba que las FP de mejoran considerablemente las resistencias del concreto [48]. La capacidad de soporte ante la fractura por deformación con adiciones de FP se ve variada significativamente luego de la de la etapa de deformación del compuesto a base de fibrocemento, de tal forma, que el desempeño de la fibra cambia cuando se evalúa la resistencia a la flexión [39].

Por otra parte, el sector industrial de fabricación de *cemento* es el principal causante de contaminación debido a los compuestos necesarios para obtener el Clinker, se determina que la producción genera grandes cantidades de dióxido de carbono, según datos estadísticos, la cantidad de dióxido de carbono liberado es equivalente a la cantidad de cemento producido; para ello, se han implementado medidas de reutilización de diferentes materiales con el fin de beneficiar el medio ambiente y mejorar las capacidades de producción de concreto [53].

El uso común del *cemento Portland tipo I* es en diversas construcciones de concreto, como estructuras, viviendas y pavimentos. Sin embargo, en algunos proyectos específicos se puede requerir otro tipo de cemento. Una ventaja clave es su compatibilidad con una amplia gama de materiales de construcción. Además, se caracteriza por tener un tiempo de desencofrado más corto en comparación con otros tipos de cemento [54].

Los agregados pétreos, se clasifican como piedras naturales granuladas sin forma ni volumen específicos e inertes. Los agregados se pueden dividir en agregados gruesos y finos según el tamaño más común utilizando un tamiz como referencia [55]

El agregado grueso, se clasifican como piedras que pasan un proceso de trituración y cuentan con forma angular por lo general con una dimensión comprendida entre 20 – 25mm. Se determina como compuesto fundamental en la producción de mezclas cementantes, siempre que cumplan estándares expuestos en [56].

El agregado fino conocido también como arena de río, es un agregado de dimensiones muy pequeñas que pasa por un tamiz normalizado de 4,75mm y se mantiene hasta un tamiz de 75 micrones. Por otra parte, al agregado liviano que se logra luego una disgregación artificial o natural de rocas, donde dicho material pueda cumplir los requerimientos de [56]; la Tabla 5 detalla aspectos físicos de dicho material.

Dentro de *las propiedades físicas del concreto* tenemos a la *trabajabilidad* se establece como ensayo indispensable en estado fresco, que permite de manera adecuada y el uso de instrumentos el nivel del asentamiento [54]. El *peso unitario* es el peso volumétrico del agregado indica la densidad total del material, ya sea en estado suelto o compactado. La masa del material tiene un volumen especifico (kg/m³) [57]. El *peso específico* se determina como la relación del peso del material con el del agua, pero ambos con el mismo valor de volumen, el valor obtenido es relevante para cálculos del diseño de mezclas y de control. Finalmente, la *temperatura* del concreto luego de someterse a condiciones ambientales, la resistencia del concreto puede disminuir y como prevención se utiliza superplastificantes polímeros que incrementa la resistencia inicial y controlar la resistencia a la fisuración [57].

Dentro de *las propiedades mecánicas del concreto*, tenemos la *resistencia a la compresión*, la cual se le conoce así a la relación que existe entre una carga aplicada en un área determinada del material en cuestión que estima la calidad del concreto [58]. La *resistencia a la flexión*, nos permite medir la resistencia a la falla por momentos en elementos estructurales como vigas y losas de concreto sin refuerzo [60]. La *resistencia a tracción*, es el esfuerzo mecánico máximo, siendo la carga con la que es sometido el concreto, en caso se exceda la resistencia generando una rotura del material, pero antes de su resistencia final se comienza a presentar deformaciones plásticas [58]. El *módulo de elasticidad*, se determina mediante la relación entre la tensión y deformación con la que cuenta el material al soportar una carga, dándonos a conocer la rigidez del material antes de aplicarse la carga [59].

II. MATERIALES Y MÉTODO

Tipo y diseño de investigación

La presente investigación es del tipo aplicada con un enfoque cuantitativo, dado al análisis en base a materiales alternativos en el concreto, un diseño *experimental*, nivel cuasiexperimental, dado que tiene la capacidad de poder realizar la manipulación de variables que se plantean para cumplir con los requerimientos establecidos.

$$X \rightarrow Y$$

$$Mp ----> Bx ----> Ox$$

$$Mp_1 ----> Bx_1 ----> Ox_1$$

$$Mp_2 ----> Bx_2 ----> Ox_2$$

$$Mp_3 ---- > Bx_3 ---- > Ox_3$$

$$Mp_4 ----> Bx_4 ----> Ox_4$$

$$Mp_5 ---- > Bx_5 ---- > Ox_5$$

$$Mp_6 ---- > Bx_6 ---- > Ox_6$$

Donde:

 Mp_{1-6} : Modelo de pruebas.

Bx: Muestra patrón.

Bx_{1,2,3}: Muestra experimental con 5%, 10% y 15% de PP.

Bx_{4,5,6}: Muestra experimental con el óptimo contenido de PP más 0.1%, 0.2% y 0.3% de FP.

 Ox_{1-6} : Observación de resultados experimentales.

Variables, Operacionalización

Variable Independiente

Utilización de perlitas de poliestireno expandido y fibras de polipropileno.

Variable Dependiente

Propiedades hidromecánicas del concreto.

Operacionalización

Población de estudio, muestra, muestreo y criterios de selección

Población de estudio, para este proyecto se designó como población a un total de 546 muestras de concreto ensayadas según las Normas Técnicas Peruanas

Muestra, está comprendida por un total de 420 muestras de concreto a las cuales se les incorpora perlitas de poliestireno expandido y fibras de polipropileno.

Muestreo, Se realizó la fabricación de probetas y vigas de concreto mediante incorporaciones parciales de PP y FP.

Criterios de selección, se evaluará las muestras de concreto incorporando PP mediante tres sustituciones parciales de 5%, 10%, 15% y FP en porcentajes de 0.1%, 0.2% y 0.3, de tal forma que, se evalúen a los 7, 14 y 28 días.

Tabla IPoblación y muestra del concreto patrón con PP para 210 kg/cm² y 280 kg/cm²

Muestra	Dosificación	Curado (días)	Resistencia a la compresión y módulo de elasticidad	Resistencia a la tracción		Profundidad de penetración	Total de probetas	Total de vigas
			C210 - CP sin	adiciones				
		7	3	3	3	0		
M1	CP_0%	14	3	3	3	0	21	9
		28	3	3	3	3		
			C210 - CP + adi	ciones %PP				
		7	3	3	3	0		
M2	CP+ 5.0% PP	14	3	3	3	0	21	9
		28	3	3	3	3		
		7	3	3	3	0		
М3	CP + 10.0% PP	14	3	3	3	0	21	9
		28	3	3	3	3		
		7	3	3	3	0		
M4	CP + 15.0% PP	14	3	3	3	0	21	9
		28	3	3	3	3		
		C21	0 - CP + Optimo de	PP + adiciones	%FP			
		7	3	3	3	0		
M5	CP + PP_OP + 0.1%FP	14	3	3	3	0	21	9
		28	3	3	3	3		
		7	3	3	3	0		
M6	CP + PP_OP + 0.2%FP	14	3	3	3	0	21	9
		28	3	3	3	3		
		7	3	3	3	0		
M7	CP + PP_OP + 0.3% FP	14	3	3	3	0	21	9
		28	3	3	3	3		
			MUESTRAS	-	-	-	210)

Tabla IIPoblación y muestra del concreto con PP y FP para 210 kg/cm² y =280 kg/cm²

Muestra	Dosificación	Curado (días)	Resistencia a la compresión y módulo de elasticidad	Resistencia a la tracción	Resistencia a la flexión	Profundidad de penetración	Total de probetas	Total de vigas
			C280 - CP sin	adiciones				
		7	3	3	3	0		
M8	CP_0%	14	3	3	3	0	21	9
		28	3	3	3	3		
			C280 - CP + adi	ciones %PP				
		7	3	3	3	0		
M9	CP+ 5.0% PP	14	3	3	3	0	21	9
		28	3	3	3	3		
		7	3	3	3	0		
M10	CP + 10.0% PP	14	3	3	3	0	21	9
		28	3	3	3	3		
		7	3	3	3	0		
M11	CP + 15.0% PP	14	3	3	3	0	21	9
		28	3	3	3	3		
		C28	0 - CP + Optimo de l	PP + adiciones	%FP			
		7	3	3	3	0		
M12	CP + PP_OP + 0.1%FP	14	3	3	3	0	21	9
		28	3	3	3	3		
		7	3	3	3	0		
M13 C	CP + PP_OP + 0.2%FP	14	3	3	3	0	21	9
		28	3	3	3	3		
		7	3	3	3	0		
M14	CP + PP_OP + 0.3% FP	14	3	3	3	0	21	9
		28	3	3	3	3		
		TOTAL DE	MUESTRAS				210)

Técnicas e Instrumentos de recolección de datos, validez y confiabilidad

La presente investigación ha sido llevada a cabo con total veracidad, asegurando la autenticidad de los resultados obtenidos. Es relevante destacar que se llevó a cabo una cuidadosa *recopilación de datos*, seleccionando los materiales y suministros más adecuados con el objetivo de obtener resultados óptimos, con ayuda de *la observación*, evaluando el comportamiento de las mezclas de concreto. La investigación se ha documentado de manera precisa, utilizando fuentes confiables, y puede servir como referencia para futuras investigaciones con ayuda del *análisis de documentos*.

Dentro de los instrumentos de recolección de datos, tenemos la *guía de observación*, la cual manejo técnicas en conjunto con los formatos de laboratorio para un correcto proceso, asimismo, la *guía de análisis de resultados*, nos sirve para brindarnos los parámetros por cada ensayo aplicado en la investigación, aplicando la normativa ASTM, NTP y regulaciones nacionales estipuladas en el RNE.

Además, para garantizar la *validez y confiabilidad*, se han citado correctamente las fuentes utilizadas, lo cual es importante para los investigadores que consulten este trabajo. Los resultados de esta investigación son de gran importancia para el avance de futuras investigaciones y el desarrollo de nuevas tecnologías, y se basan en fuentes confiables. Se ha seguido un procedimiento adecuado para la recolección y procesamiento de los datos, y los resultados han sido respaldados por expertos en el tema. Los materiales y suministros utilizados cuentan con certificados de calidad.

Procedimiento de análisis de datos

En el presente proyecto se basa en un análisis experimental y cuantitativo, con ensayos de laboratorio realizados según las normas técnicas peruanas. Los resultados se obtendrán a través de un proceso experimental utilizando diversas técnicas para facilitar su manipulación.

Diagrama de flujo

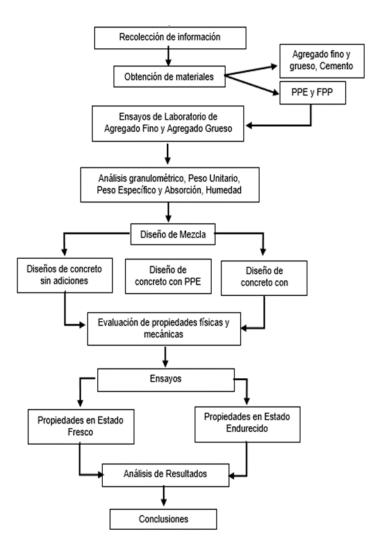


Fig. 1. Diagrama de flujo

Criterios éticos

La presente investigación se llevó a cabo bajo el código de ética en investigación de la USS en sus artículos 2, 3 y 4, estableciendo principios generales para proteger la integridad, dignidad y honor profesional como estipula el capítulo I [60]. Asimismo, especifican reglas morales y éticas que se deben llevar a cabo en una investigación para eludir sanciones establecidas en el sistema de disciplina estipulado en el capítulo IV [60]. La investigación se ha documentado de manera precisa, utilizando fuentes confiables, sirviendo como referencia para futuras investigaciones, guiándose por los criterios de la investigación científica, con el propósito de obtener nuevos conocimientos científicos – tecnológicos, estando comprendido por investigación aplicada y básica [60].

III. RESULTADOS Y DISCUSIÓN

3.1. Resultados

Características físicas de los agregados pétreos, perlitas de poliestireno expandido y fibras de polipropileno.

Las canteras a evaluar para los agregados pétreos son: La cantera Tres Tomas, La Victoria y Pacherres, ubicadas en el departamento de Lambayeque y las perlitas de poliestireno recicladas y la fibra de polipropileno.

Tabla IIIDosificaciones en peso para diseño 210 y 280 kg/cm².

Materiales	TMN	MF	Contenido de humedad	Peso unitario suelto seco	Peso unitario suelto compactado	Peso especifico	Absorc ión	Abrasión
_	(plg)		(%)	(kg/m³)	(kg/m³)	(kg/m³)	(%)	(%)
Ag. Fino Tres Tomas	-	3.24	0.40	1577.31	1706.15	2.51	1.25	-
Ag. Fino La Victoria	-	2.58	0.30	1572.01	1694.68	2.54	0.98	-
Ag. Fino Pacherres	-	3.22	0.50	1573.42	1702.28	2.51	1.05	-
Ag. Grueso Tres Tomas	1/2"	-	0.29	1344.58	1449.77	2.28	1.72	6.58
Ag. Grueso La Victoria	3/4"	-	0.26	1345.23	1449.55	2.36	3.28	-
Ag. Grueso Pacherres	3/4"	-	0.22	1344.52	1450.69	2.57	1.44	12.21
PP	-	-	-	-	-	1.68	1.84	-
FP	-	-	-	-	-	0.72	3.15	-

Nota: La tabla muestra las características físicas de los materiales de canteras mencionadas y las perlitas de poliestireno, así como las fibras de polipropileno.

El agregado fino se encuentra dentro de los parámetros estipulados por el reglamento 400.019 [61] siendo la cantera "La Victoria" aquel material que adoptó el mejor comportamiento en la curva granulométrica y presenta un bajo contenido de humedad y

absorción. De igual manera para el agregado grueso, la cantera Tres Tomas, adopto el mejor comportamiento, obteniendo un material bien graduado con TMN de ¾" y un bajo desgaste por abrasión. Por otro lado, la PP tiene un bajo porcentaje de absorción a comparación de la FP, y peso específico de masa aceptables

Diseño de mezcla por diseño

Los diseños se realizaron de acuerdo al método ACI 211.1, tanto para f'c = 210 y 280 kg/cm² de resistencia a los 7 días de curado para prueba de resistencia, el cual nos permitió verificar la dosificación que cumpla con los requerimientos de diseño, así como corregir componentes de la mezcla de concreto, previamente a realizar las pruebas definitivas.

Tabla IVDosificaciones en peso para diseño 210 y 280 kg/cm².

Doscrinción	Resistencia de diseño			
Descripción	C210	C280		
Relación a/c	0.7728	0.594		
Cemento (kg/m³)	389	489		
Cemento (bls/m³)	9.1	11.5		
Agua (Its)	283	291		
Agregado fino (kg/m³)	771	736		
Agregado grueso (kg/m³)	865	838		
Perlitas de poliestireno al 5% (kg/m³)	19.5	24.5		
Perlitas de poliestireno al 10% (kg/m³)	38.9	48.9		
Perlitas de poliestireno al 15% (kg/m³)	58.4	73.4		
Fibra de polipropileno al 0.1% (kg/m³)	19.5	24.5		
Fibra de polipropileno al 0.2% (kg/m³)	38.9	48.9		
Fibra de polipropileno al 0.3% (kg/m³)	58.4	73.4		

Nota: Se muestran los resultados obtenidos por los ensayos físicas elaborado al PP y FP.

Propiedades hidromecánicas del concreto con incorporación de PP para D210 y D280.

a) Propiedades físicas del concreto para adiciones con PP

Se tiene al asentamiento, contenido de aire, peso unitario y temperatura.

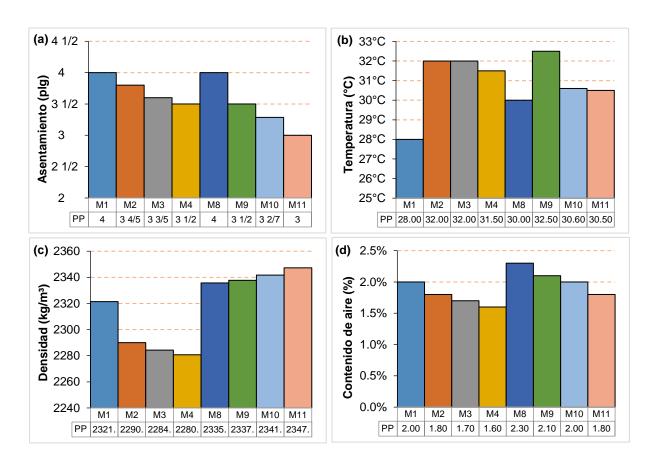


Fig. 2. Desempeño de las propiedades físicas del concreto con PP.

El comportamiento del PP dentro del concreto para asentamiento y peso unitario para un diseño D210 con la mezcla M4 se obtuvo el menor valor, disminuyó la trabajabilidad, de igual manera el contenido de aire, por la reacción química del PP con el concreto, la temperatura se encuentra dentro de los parámetros establecidos por la norma NTP 339.184. [62] siendo menor que 32°C; para un diseño D280 con la mezcla M11 se redujo el asentamiento hasta un 25%, incremento el peso unitario a como se adiciona más PP, a su vez causó una reacción química que incrementó sus valores por encima del concreto patrón.

b) Propiedades hidromecánicas del concreto con adiciones de PP

Se ensayaron las propiedades hidromecánicas del concreto con PP, como resistencia a la compresión, tracción, flexión, módulo de elasticidad, permeabilidad del concreto.

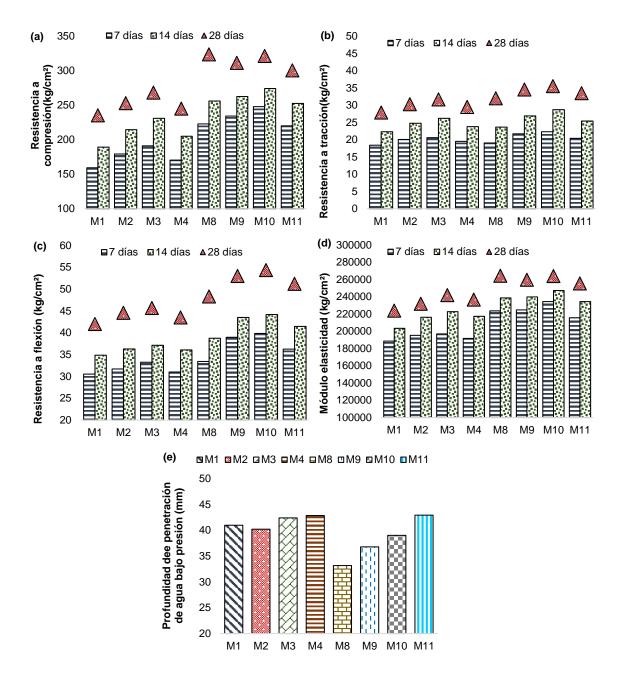


Fig. 3. Ensayos mecánicos e hidromecánico con PP para D210 y D280.

Evaluando los resultados a 28 días, con la muestra M3 se obtuvo los máximos incrementos de 14.08%, 13.77%, 8.74% y 7.98% para resistencia a compresión, tracción, flexión y módulo de elasticidad respectivamente, comparado al CP210 para D210. Para un D280 con la muestra M10 se obtuvo los máximos incrementos de 36.57%, 27.53%, 29.45% y 17.85% respectivamente, de acuerdo al CP280 para D280. Por otro lado, la muestra M2 es quien tiene la menor profundidad de penetración de agua (40.20mm), considerándose el menos permeable en comparación con todos los demás tipos de concreto para D210, demostrando

que la permeabilidad incrementa con la incorporación de PP, siendo los más críticos las muestras M4 y M11 para D210 y D280 respectivamente.

Propiedades físicas y mecánicas del concreto con incorporación optima de PP y FP para D210 y D280.

a) Propiedades físicas del concreto para adición optima de PP y adiciones de FP

Se tiene al asentamiento, contenido de aire, peso unitario y temperatura para PP + FP.

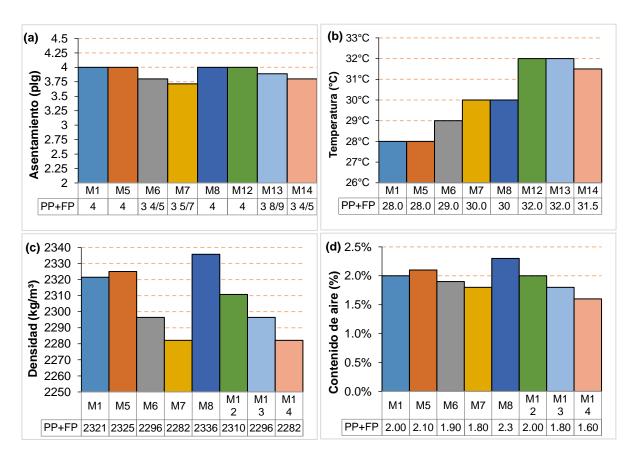


Fig. 4. Desempeño de propiedades físicas del concreto con PP óptimo y adiciones de FP.

El comportamiento del PP+FP dentro del concreto fresco para un diseño D210 con la mezcla M7 disminuyó la trabajabilidad, al igual que su peso unitario, el contenido de aire se reduce hasta un 10% por debajo del CP210. Para un diseño D280 con la mezcla M14 el asentamiento se redujo hasta 3 4/5", se obtuvo el menor contenido de aire con una reducción de 30.43%, y su peso unitario se redujo considerablemente hasta un 2.29% por debajo del CP280. La temperatura para ambos diseños se encuentra por debajo de los 32°C, estando dentro de los parámetros de la norma NTP 339.184 [62].

c) Propiedades hidromecánicas del concreto con adiciones de PP+FP

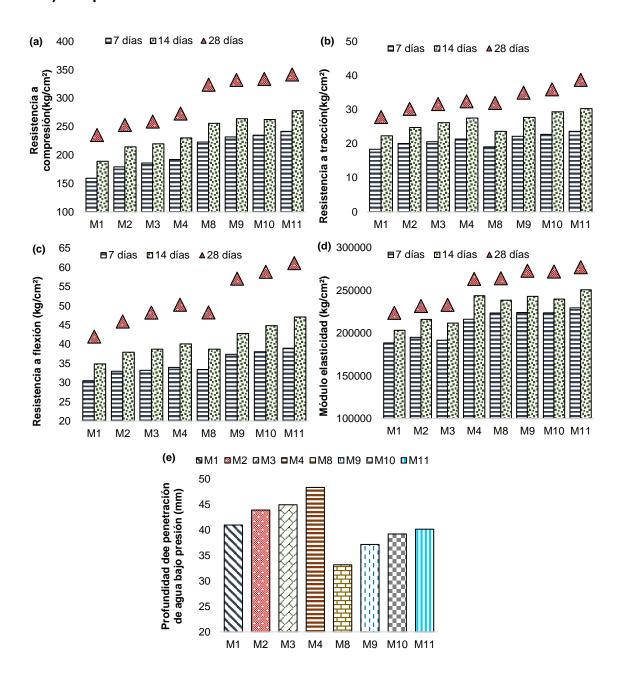


Fig. 5. Ensayos mecánicos e hidromecánicos con PP óptimo y FP para D210 y D280.

Evaluando los resultados a 28 días, con la muestra M7 (CP210+ 10%PP+ 0.3%FP se obtuvo los máximos incrementos de 16.07%, 16.59%, 19.74% y 17.75% para resistencia a compresión, tracción, flexión y módulo de elasticidad respectivamente, comparado al CP210 para D210. Para un D280 con la muestra CP280+ 10%PP+ 0.3%FP se obtuvo los máximos incrementos de 45.30%, 39.25%, 45.63% y 23.83% para resistencia a compresión, tracción, flexión y módulo de elasticidad respectivamente, de acuerdo al CP280. Por otro lado, la

muestra M1 y M8 es quien tiene la menor profundidad de penetración de agua (40.97 y 33.16 mm), considerándose el menos permeable en comparación con todos los demás tipos de concreto para D210 y D280, demostrando que la permeabilidad incrementa con la incorporación de PP+FP hasta un 21% respecto a sus CP, siendo los más críticos las muestras M7 y M14 para D210 y D280 respectivamente.

3.2. Discusión

OE01: Del estudio de canteras, aquella que cuentan con material que adopta las mejores características físicas que se ajustan a la norma NTP 400.012 [63], siendo la cantera "La Victoria" para agregado fino y "Tres Tomas" para la piedra chancada, reafirmando la buena graduación de los materiales a comparación de las demás canteras, coincidiendo con Jalixto y Percca [31] quien obtuvo propiedades similares con las canteras mencionadas anteriormente, con un TMN de ¾" para la piedra y un módulo de fineza de 3.87. Difiriendo a lo que expresa Mondragón [35], quien determina que la cantera con mejores propiedades para el agregado grueso es la cantera Pacherres, quien determina u TMN de ½". Para el PP y FP del presente estudio se obtuvieron pesos específicos bajos y aceptables, al igual que su peso unitario. Encajando con lo expresa por Assad & El Mir [24] quienes obtuvieron una absorción para el PP casi nula, y una gravedad especifica despreciable de 0.02. Baskar et al., [29] por su parte, empleo FP de 12-20mm de longitud, coincidiendo con la aplica en el presente estudio, quien obtuvo resultados beneficiosos.

OE02: Los diseños de mezcla para resistencias diseño de f'c = 210 y 280 kg/cm², de lo cual se obtuvo proporciones en volumen de 1.0: 1.99: 2.41: 30.9 litros/pie³ para D210 con una a/c de 0.77, empleando 9.1 bolsas de cemento y 1.0: 1.44: 1.92: 25.3 litros/pie³ para D280, con una a/c de 0.594, empleando 11.5 bolsas de cemento por m³ de concreto, todo ello tomando en cuenta el procedimiento plasmado en la guía del comité ACI 211.1 [64]. Coincidiendo con Barboza & León [36] quienes para su diseño de concreto D210, emplearon una relación a/c de 0.67, y 8.84 bolsas de cemento y para su diseño D280 emplearon 10.11 bolsas de cemento con una a/c de 0.614, teniendo un diseño optimizado para poder alcanzar la resistencia

requerida en el concreto, pero a comparación del presente estudio emplean mayor peso de perlillas de poliestireno expandido con porcentajes de adición similares. De igual manera, Mestanza y Tarrillo [37] optimizaron su diseño, coincidiendo con el estudio, quienes emplean una relación a/c de 0.74 y 8.5 bolsas de cemento para un D210, por otra parte, para un D280 emplean una cantidad menor de cemento, con un total de 10 bolsas y una a/c de 0.592, pero mayor cantidad de agregado grueso y agregado fino, obteniendo resultados esperados en la resistencia requerida del concreto por diseño.

OE03: De las propiedades físicas se puede visualizar que a como incorpora la adición de PP de 5%, 10% y 15% se va reduciendo el asentamiento, así como el peso unitario y el contenido de aire, la temperatura se mantiene por debajo de 32°C, donde se relaciona a los resultados obtenidos por Saleh et al., [26] y Mondragón [35] con un desempeño similar reduciendo la trabajabilidad conforme incrementa la adición de PP, influyendo significativamente también en el contenido de aire y peso unitario de acuerdo a lo expresado a Assaad et al., [24]. Por otra parte, en el desempeño mecánico la muestra para CP210 y CP280 con 10%PP ambas se obtuvo el mejor desempeño para todas sus propiedades de resistencia, coincidiendo con el estudio de Dixit et al. [25], quienes indican que las proporciones optimas de PP están entre 16% y 45%. Por su parte, se asemeja al estudio de Haitang et al [27], quienes obtuvieron un incremento de 17.96% en la resistencia a flexión respecto a la muestra control con los mismos porcentajes, asimismo, Dixit et al., [25] observó una reducción en el valor de módulo de elasticidad, similar a la resistencia a compresión al incorporar 10% de PP, no obstante, similar al comportamiento del módulo de elasticidad donde obtuvieron una reducción de su valor entre 20.26% y 68.94% con PP. Finalmente en la profundidad de penetración de agua, sus valores incrementan considerablemente al incorporarse PP, un 3.47% para D210 y un 17.64% para D280 en comparación de la muestra patrón.

OE04: De las propiedades físicas se puede visualizar que a como incorpora la adición de PP y PF en 0.1%. 0.2% y 0.3% se va reduciendo el asentamiento, así como el contenido de aire, la temperatura se mantiene por debajo de 32°C y peso unitario se reduce significativamente,

lo cual se relaciona con el estudio de Celis & Calderon [30] quienes obtuvieron un comportamiento similar reduciendo la trabajabilidad de 3.7" a 2.8", de acuerdo a como incrementaba la adición de PP, influyendo significativamente también en el contenido de aire y peso unitario. Por otra parte, el desempeño mecánico en el diseño CP210 con 10%PP+0.3%PF y CP280 con 10%PP+0.3%PF se obtuvo el mejor comportamiento tanto para resistencia a compresión, flexión, tracción y módulo de elasticidad, finalmente, en la profundidad de penetración de agua, sus valores incrementan considerablemente al incorporarse PP, un 18.01% para D210 y un 21.08% para D280 en comparación de la muestra patrón. Coincidiendo con el estudio de Baskar et al., [29] quienes indican que las proporciones optimas de FP están entre 25% y 75%, presentando un incremento de la resistencia a compresión de 52.71%. Por su parte, Jalixto & Percca [31], con adiciones de 0.10%, 0.20% y 0.30% obtuvo un incremento de 11.27% en la resistencia a tracción respecto a la muestra patrón. Asimismo, Chaisa & Maccarcco [32] observó un incremento en el valor de la resistencia a flexión al 17%. De los porcentajes óptimos para PP, se obtuvo la dosificación de 10% de PP coincidiendo con Mondragón [35] quien obtiene los mejores resultados con 10 PP, no obstante, para FP en combinación con porcentajes de 0.1%, 0.2% y 0.3% obteniendo un diseño óptimo con 0.3% coincidiendo con Baskar et al [29]., respecto a la profundidad de penetración bajo presión de agua de los resultados adquiridos en el estudio, discrepando con el estudio de Baskar et al., [29] quien obtiene una reducción de la profundidad de penetración de 28.22% respecto a la muestra patrón, denotando que, la FP, vuelve al concreto menos permeable, prologando la calidad de vida del mismo.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

Se concluye del estudio de canteras, se seleccionaron las canteras con las características adecuadas, siendo la cantera "La Victoria" para agregado fino, con un módulo de fineza de 2.58 y la cantera "Pacherres" para agregado grueso con un TMN de 3/4".

Se realizaron 14 diseños de mezcla, 1 diseño para el CP210 y 6 empleados para diseño D210 con adiciones de PP, de igual manera para D280. Se realizaron otros 14 diseños para adiciones de PP óptimo + FP para ambos diseños, haciendo un total de 28 diseños.

Se determinó para concretos con PP una reducción del asentamiento, peso unitario y contenido de aire para D210 y D280, donde la temperatura excede con M9; de igual manera, la compresión, tracción, flexión y módulo de elasticidad incrementó significativamente con M3 para D210 y D280 con M10, finalmente la profundidad de penetración incrementó a como incrementaban la dosificación de PP.

Por otra parte, en combinaciones de PP+FP se determinó que a mayor contenido FP con 10%PP reduce el asentamiento, peso unitario y contenido de aire, no obstante, la temperatura no se excede; además, la compresión, tracción, flexión y módulo de elasticidad presentó mejor desempeño con M7 para D210 y para D280 con M14, finalmente, la profundidad de penetración incrementó a como incrementaban la dosificación de PP+FP.

4.2. Recomendaciones

Se recomiendo realizar un estudio de canteras en cada investigación, porque las características de los materiales cambian y poder realizar así una comparación en base a las normas NTP y ASTM y del PP y FP.

Se debe tener en cuenta la dosificación de PP y FP que se emplea dentro del concreto, entorno de las investigaciones anteriores, ya que el material en exceso se convierte perjudicial para las propiedades del concreto.

Se recomienda evaluar la dosificación de PP en el concreto en cuanto a la conductividad térmica, también evaluar propiedades como la permeabilidad y absorción del concreto.

Se recomienda emplear aditivo para dosificaciones superiores a 15% de PP y 0.3% FP para evaluar el comportamiento de estos materiales dentro del concreto.

REFERENCIAS

- [1] H. Mahdi, K. Jasim and A. Shaban, "Manufacturing and improving the characteristics of the isolation of concrete composites by additive Styrofoam particulate," *Energy* procedia, vol. 157, pp. 158-163, 2019.
- [2] F. Khanzada, K. Nazir, M. Ishtiaq, M. Javed, S. Kashif, F. Aslam, M. Musarat and K. Usanova, "Concrete by Preplaced Aggregate Method Using Silica Fume and Polypropylene Fibres," *Materials*, vol. 15, no. 6, p. 1997, 2022.
- [3] C. Yin, "Experimental study on mix proportion of recycled concrete with super plasticizer," *13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA),* pp. 488-491, April 2021.
- [4] T. Souza, V. Lima, F. Araújo and A. Melo, "Alkali-activated slag cellular concrete with expanded polystyrene (EPS) physical, mechanical, and mineralogical properties," *Journal of Building Engineering*, vol. 44, p. 103387, 2021.
- [5] A. Wibowo, A. Lianasari, Z. Wiransyah and A. Kurniawan, "THE STRENGTH AND WATER ABSORPTION OF HEATED EXPANDED POLYSTYRENE BEADS LIGHTWEIGHT-CONCRETE," *International Journal of GEOMATE*, vol. 21, no. 83, pp. 150-156, July 2021.
- [6] A. Barkhanadzhyan, A. Riskulov, M. Karimov, R. Khakimov and B. Ibragimov, "Development of high-strength concrete with the addition of a universal superplasticizer," E3S Web of Conferences, vol. 264, no. 02062, p. 02062, 2021.
- [7] N. Hilal, N. Hamah and R. Faraj, "Development of eco-efficient lightweight self-compacting concrete with high volume of recycled EPS waste materials," Environmental Science and Pollution Research, vol. 28, p. 50028–50051, 04 May 2021.
- [8] A. Medher, A. Al-Hadithi and N. Hilal, "The Possibility of Producing Self-Compacting Lightweight Concrete by Using Expanded Polystyrene Beads as Coarse Aggregate," Arabian Journal for Science and Engineering, vol. 46, p. 4253–4270, 31 August 2021.
- [9] A. Karimipour, "Influence of micro polypropylene fibres on the fracture energy and mechanical characteristics of recycled coarse brick aggregate concrete," *Construction* and Building Materials, vol. 314, p. 125667, 2022.

- [10] R. Alyousef, "Sustainable Use of Waste Polypropylene Fibres to Enhance the Abrasion and Skid Resistance of Two-Stage Concrete," *Sustainability*, vol. 13, no. 5200, p. 5200, 2021.
- [11] M. Sanz, "Arquitectura y empresa," Ladrillos PET, avances en la construcción ecológica, 28 Octubre 2021. [Online]. Available: https://arquitecturayempresa.es/noticia/ladrillos-pet-avances-en-la-construccionecologica.
- [12] N. Liang, J. Mao, R. Yan, X. Liu and X. Zhou, "Corrosion resistance of multiscale polypropylene fiber-reinforced concrete under sulfate attack," *Case Studies in Construction Materials*, vol. 16, p. e01065, 2022.
- [13] L. Lei, L. Dong, H. An, Y. Fan and Y. Wang, "Experimental Study of the Thermal and Dynamic Behaviors of Polypropylene Fiber-Reinforced Concrete," *Applied sciences*, vol. 11, no. 22, p. 10757, 2021.
- [14] R. Abousnina, S. Premasiri, V. Anise, W. Lokuge, V. Vimonsatit, W. Ferdous and O. Alajarmeh, "Mechanical Properties of Macro Polypropylene Fibre-Reinforced Concrete," *Polymers*, vol. 13, no. 23, p. 4112, 2021.
- [15] J. Sandoval and R. Guzmán, "Propuesta de elaboración y diseño de bloques de concreto simple y pet reciclado para muros de mampostería en la ciudad de Piura," Piura, 2019.
- [16] A. Reto and R. Sanabria, "Propuesta de uso de concreto liviano estructural con Perlita de Poliestireno Expandido (PPE) para mejorar la respuesta sísmica de un sistema de albañilería confinada en Lima, Perú," Lima, 2021.
- [17] K. Trinidad, "Elaboración de bloques de concreto liviano adicionándole poliestireno reciclado para uso no estructural," Lima, 2020.
- [18] V. Enriquez and J. Orbegoso, "Diseño de un concreto celular con la aplicación de perlas de poliestireno para mejorar la resistencia a compresión. Tarapoto, 2020," Tarapoto, 2020.
- [19] M. Tasayco, "Evaluación de las propiedades del concreto reforzado (f´c=210 kg/cm2) con fibra de caña de azúcar y desecho del fruto de coco en una edificación, Puente Piedra, Lima 2019," Lima, 2020.

- [20] C. Hoyos and M. López, "Elaboración de bloques de concreto usando plástico como nuevo material en su composición: Una revisión," Lima, 2020.
- [21] A. Camacho, "Diseño de unidades de Albañilería para Fines Estructurales Elaborado con Poliestireno Expandido, en el Distrito de Lambayeque, 2018," Chiclayo, 2020.
- [22] E. Peña, "Evaluación de las propiedades mecanicas del ladrillo ecologico prensado manualmente de arcilla y arcilla/plastico en albañilería confinada, Chiclayo, Lambayeque 2018," Chiclayo, 2019.
- [23] Y. Chávez, "EVALUACIÓN DE LAS PROPIEDADES MECÁNICAS EN BLOQUES DE CONCRETO TIPO P INCORPORANDO VIDRIO TRITURADO," Chiclayo, 2020.
- [24] J. Assaad and A. El Mir, "Durability of polymer-modified lightweight flowable concrete made using expanded polystyrene," *Construction and Building Materials*, vol. 249, p. 118764, 2020.
- [25] A. Dixit, S. Pang, S. Kang and J. Moon, "Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation," *Cement and Concrete Composites*, vol. 102, pp. 185-197, 2020.
- [26] H. Saleh, A. Salman, A. Faheim and A. Sayed, "Sustainable composite of improved lightweight concrete from cement kiln dust with grated poly(styrene)," *Journal of Cleaner Production*, vol. 277, p. 123491, 2020.
- [27] Z. Haitang, W. Chengcheng, W. Zhanqiao and L. Lan, "Study on the permeability of recycled aggregate pervious concrete with fibers," *materials*, vol. 13, no. 2, p. 321, 2020.
- [28] N. Darshan, S. Shuaib Ahmed, A. Nawaz, A. Umair and R. Sanaur, "Experimental Investigation on the Properties of Pervious Concrete Over Fiber-Reinforced Pervious Concrete," Sustainable Construction and Building Materials, vol. 25, pp. 299-306, 2019.
- [29] I. Baskar, M. Thiruvannamalai and R. Theenathayalan, "Experimental study on mechanical properties of polypropylene fiber reinforced pervious concrete," *International Journal of Civil Engineering and Technology*, vol. 10, no. 2, pp. 977-987, 2019.
- [30] X. Celis, "Influencia de la incorporación de fibras de polipropileno y su," Moyobamba, 2021.

- [31] B. Jalixto, "Influencia de las fibras de polipropileno en las propiedades plásticas y mecánicas del concreto F'c=210, 280 Kg/cm2- Cusco 2021," Lima, 2021.
- [32] E. Chaisa and J. Maccarcco, "Adición de la fibra de polipropileno en un concreto hidráulico f´c=175, 210,280 kg/cm2 para mejorar sus propiedades plásticas y mecánicas," Lima, 2021.
- [33] A. Ticona, "Adición de perlas poliestireno en 6, 12 y 18% para diseño de pavimento rígido f'c=280kg/cm2, en Av. Ramos, Cañete- 2021," Universidad César Vallejo, Lima, 2021.
- [34] A. Rios, "Influencia de la adición de Perlas de poliestireno Expandido en el Asentamiento, peso unitario y Resistencia a la copresión de Concretos en Losas Aligeradas, Trujillo-2022," Universidad Privada del Norte, Trujillo, 2022.
- [35] E. Mondragón, "Influencia de la dibra de poliestireno en las propiedades fisicas y mecanicas del concreto para una resistencia de 210 y 280 kg/cm2," Chiclayo, 2020.
- [36] S. Barboza and K. Leon, "Producción de Concreto Adicionando Poliestireno Expandido Reciclado y Perlas de Poliestireno," Universidad Señor de Sipan, Pimentel, 2023.
- [37] A. Mestanza and L. Tarrillo, "Evaluación de las Propiedades Mecánicas del Concreto con Adición de Fibra de Vidrio y Macrofibra Sintética de Polipropileno," Chiclayo, 2023.
- [38] Y. Abad, "Adición de fibra de polipropileno y nylon para mejorar las propiedades físicasmecánicas del concreto," Chiclayo, 2023.
- [39] D. Akhmetov, S. Akhazhanov, A. Jetpisbayeva, Y. Pukharenko, Y. Root, Y. Utepov and A. Akhmetov, "Effect of low-modulus polypropylene fiber on physical and mechanical properties of self-compacting concrete," *Case Studies in Construction Materials*, vol. 16, pp. 1-5, 2022.
- [40] A. Omar and A. Hassan, "Use of polymeric fibers to improve the mechanical properties and impact resistance of lightweight SCC," *Construction and Building Materials*, vol. 229, p. 116944, Setember 2019.
- [41] Z. Wang, Z. Huang and T. Yang, "Silica coated expanded polystyrene/cement composites with improved fire resistance, smoke suppression and mechanical strength," *Materials Chemistry and Physics*, vol. 240, pp. 2-6, Setember 2020.

- [42] H. Mohammed and O. Aayeel, "Flexural behavior of reinforced concrete beams containing recycled expandable polystyrene particles," *Journal of Building Engineering*, vol. 32, pp. 8-10, 2020.
- [43] A. Bicer, "Investigation of waste EPS foams modified by heat treatment method as concrete aggregate," *Journal of Building Engineering*, vol. 42, pp. 2-6, October 2021.
- [44] M. Ali, M. Maslehuddin, M. Shameem and M. Barry, "Thermal-resistant lightweight concrete with polyethylene beads as coarse aggregates," *Construction and Building Materials*, vol. 164, pp. 739-749, 2018.
- [45] H. Suiffia, A. Malikia, O. Cherkaouib and M. Dalalb, "Study of the durability of concrete mixed with polypropylene fibers," *Procedia Structural Integrity*, vol. 33, pp. 230-232, 2021.
- [46] I. Ruslan, B. Ruslan and K. Evgenij, "The effect of metal and polypropylene fiber on technological and physical mechanical properties of activated cement compositions," *Case Studies in Construction Materials*, vol. 16, pp. 3-4, 2022.
- [47] E. Jara and A. Serrano, "FIBRAS DE ACERO PARA MEJORAR LA RESISTENCIA DEL CONCRETO EN EDIFICACIONES URBANAS. REVISIÓN SISTEMÁTICA ENTRE EL AÑO 2010 Y 2020: UNA REVISIÓN DE LA LITERATURA CIENTÍFICA," Trujillo, 2020.
- [48] J. Ahmad, F. Aslam, R. Martínez, J. de Prado, N. Abbas and M. Hechmi, "Mechanical performance of concrete reinforced with polypropylene fibers (PPFs)," *Journal of Engineered Fibers and Fabrics*, vol. 16, pp. 3-6, 2021.
- [49] I. Bentegri, O. Boukendakdji, E. Kadri, T. Ngo and H. Soualhi, "Rheological and tribological behaviors of polypropylene fiber reinforced concrete," *Construction and Building Materials*, vol. 261, pp. 3-6, 2020.
- [50] F. Sciarretta, S. Fava, M. Francini, L. Ponticelli, M. Caciolai, B. Briseghella and C. Nuti, "Ultra-High performance concrete (UHPC) with polypropylene (Pp) and steel Fibres: Investigation on the high temperature behaviour," *Construction and Building Materials*, vol. 304, pp. 14-15, 2021.

- [51] S. Akın, S. Kartal, A. Müsevitoğlu, S. Sancıoğlu, A. Zia and A. İlgün, "Macro and micro polypropylene fiber effect on reinforced concrete beams with insufficient lap splice length," Case Studies in Construction Materials, vol. 16, pp. 1-3, 2022.
- [52] R. McNamee, J. Sjöström and L. Boström, "Reduction of fire spalling of concrete with small doses of polypropylene fibres," *Fire and Materials*, vol. 45, no. 7, pp. 945-946, 2021.
- [53] S. Juluru, R. Divahar, H. Goud, M. Chand and R. Reddy, "Load bearing capacity of rice husk added glass fiber reinforced hollow block wall," *AIP Conference Proceedings*, vol. 2271, p. 030027, 2020.
- [54] I. García and L. Gutierrez, "Adición de microsílice en la resistencia del concreto en Trujillo, 2022," Trujillo, 2022.
- [55] I. Ruslan, B. Ruslan and K. Evgenij, "The effect of metal and polypropylene fiber on technological and physical mechanical properties of activated cement compositions," *Case Studies in Construction Materials*, vol. 16, p. e00882, 2022.
- [56] NTP 400.037, "AGREGADOS. Agregados para concreto. Requisitos," Lima, 2018.
- [57] H. Bolaños and A. Linares, "Evaluación a la compresión del concreto simple f`c = 140kg/cm2 con adición de fibras de acero reciclado en la ciudad de Moyobamba 2019," Moyobamba, 2019.
- [58] A. Bautista, K. Díaz, S. Flores, K. Jalme and C. Muñoz, Propiedades físicas y mecánicas del concreto y el acero de refuerzo, Nayarit: Instituto Tecnológico de Tepic, 2020.
- [59] R. S. Gupta, Principles of Structural Design Wood, Steel, and Concrete, 3° ed. ed., CRC Press, 2019.
- [60] U. S. D. S. S.A.C., CÓDIGO DE ÉTICA EN INVESTIGACIÓN DE LA UNIVERSIDAD SEÑOR DE SIPÁN S.A.C. VERSIÓN 9, Pimentel, 2023.
- [61] NTP 400.019, "Agregados. Método de ensayo normalizado para la determinación de la resistencia a la degradación en agregados gruesos de tamaños menores por abrasión e impacto en la máquina de Los Angeles," Ene. 2002. [Online]. Available: https://dokumen.tips/documents/ntp-400019-2002-abrasion-de-agregados-maquina-delos-angeles.html?page=1.

- [62] NTP 339.184, "Hormigón (Concreto). Método de ensayo normalizado para determinar la temperatura de mezclas de hormigón (concreto)," May. 2002. [Online]. Available: https://dokumen.tips/documents/ntp-339184pdf.html.
- [63] NTP 400.012, "Agregados. Análisis granulometrico del agregado fino, grueso y global," May. 2001. [Online]. Available: https://www.studocu.com/pe/document/universidad-privada-de-tacna/tecnologia-del-concreto/ntp400-norma-tecnica-peruana-granulometria-de-los-agregados/4659039.
- [64] ACI 211.1, "Standard Practice for selecting Proportions for Normal Hwavyweight, and Mass Concrete (AC! 211.1-91) Reapproved 1997," 1997. [Online]. Available: https://dokumen.tips/documents/aci-2111-91-norma.html?page=1. [Accessed 11 Oct 2022].

ANEXOS

Anexo 1. Acta de revisión de similitud de la investigación	44
Anexo 2. Acta de aprobación de asesor	45
Anexo 3. Correo de recepción del manuscrito por revista	46
Anexo 4. Matriz de consistencia	47
Anexo 5. Tablas de operacionalización de variables	48
Anexo 6. Informe de laboratorio	132
Anexo 7. Certificado de calibración de instrumentos de laboratorio	132
Anexo 8. Análisis estadístico	159
Anexo 9. Fichas de validación de expertos AIKEN	170
Anexo 10. Validez de instrumento	180
Anexo 11. Panel Fotográfico	182

Anexo 1. Acta de revisión de similitud de la investigación

ANEXO 02: ACTA DE REVISIÓN DE SIMILITUD DE LA INVESTIGACIÓN

Yo Idrogo Pérez Cesar Antonio asesor de INVESTIGACIÓN del Programa de Estudios de Ingeniería Civil y revisor de la investigación del (los) estudiante(s), Molina Fernandez Miner Orlando, Sanchez Ramírez Jose Elmer ,titulada:

Evaluación del comportamiento hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno

Se deja constancia que la investigación antes indicada tiene un índice de similitud del 21%, verificable en el reporte final del análisis de originalidad mediante el software de similitud TURNITIN. Por lo que se concluye que cada una de las coincidencias detectadas no constituyen plagio y cumple con lo establecido en la Directiva sobre índice de similitud de los productos académicos y de investigación en la Universidad Señor de Sipán S.A.C., aprobada mediante Resolución de Directorio N° 145-2022/PD-USS.

En virtud de lo antes mencionado, firma:

Idrogo Perez Cesar Antonio

DNI: 41554766

Pimentel, 18 de diciembre de 2023.

ANEXO 13: ACTA DE APROBACIÓN DEL ASESOR

Yo IDROGO PEREZ CESAR ANTONIO quien suscribe como asesor designado mediante Resolución de Facultad N°0385-2024/FIAU-USS, del proyecto de investigación titulado Evaluación del comportamiento hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno, desarrollado por los estudiantes: Molina Fernandez Miner Orlando, Sanchez Ramírez Jose Elmer del programa de estudios de Ingeniería Civil , acredito haber revisado, realizado observaciones y recomendaciones pertinentes, encontrándose expedito para su revisión por parte del docente del curso.

En virtud de lo antes mencionado, firma:

Idrogo Perez Cesar Antonio (Asesor)	DNI: 41554766	funda.
Molina Fernandez Miner Orlando (Autor 1)	DNI: 74764016	4
Sanchez Ramirez Jose Elmer (Autor 2)	DNI: 76693330	1, Europa Rule

Pimentel, 22 de diciembre de 2023.

Anexo 3. Correo de recepción del manuscrito por revista

10/7/24, 18:43

Correo de Universidad Señor de Sipan - Decision on your submission to Iranian Journal of Science and Technology, Transactions...

MINER ORLANDO MOLINA FERNANDEZ <mfernandezminer@uss.edu.pe>

Decision on your submission to Iranian Journal of Science and Technology, Transactions of Civil Engineering

1 mensaje

Iranian Journal of Science and Technology, Transactions of Civil Engineering hemalatha.velmurugan@springernature.com 8 de julio de 2024, 12:05

Para: gchumacerojuanm@uss.edu.pe

Ref: Submission ID a9ec0622-e998-4e0c-a2f3-8bc3dcb44771

Dear Dr Garcia Chumacero,

Your manuscript "Estudio experimental de hormigón sostenible utilizando perlas de poliestireno expandido y fibras de polipropileno: investigación de laboratorio" has now been assessed. If there are any reviewer comments on your manuscript, you can find them at the end of this email.

Regrettably, your manuscript has been rejected for publication in Iranian Journal of Science and Technology, Transactions of Civil Engineering.

Thank you for the opportunity to review your work. I'm sorry that we cannot be more positive on this occasion and hope you will not be deterred from submitting future work to Iranian Journal of Science and Technology, Transactions of Civil Engineering.

Kind regards,

Nasser Talebbeydokhti

Editor

Iranian Journal of Science and Technology, Transactions of Civil Engineering

While I'm sorry we cannot publish your work in Iranian Journal of Science and Technology, Transactions of Civil Engineering, your manuscript may be a good fit for one of our other journals. At Springer Nature we provide a free service to give authors a range of personalised journal recommendations. The corresponding author will receive an email with more information in the next 2 days.

Anexo 4. Matriz de consistencia.

FORMULACIÓN DEL FORMULA	HIPÓTESIS	OBJETIVOS	VARIABLES	MARCO TEÓRICO (ESQUEMA)	DIMENSIONES	MÉTODOS	
Problema general		Objetivo General		I. Incorporación de las perlitas de poliestireno expandido y fibras de polipropileno. I.1. Objetivos de la incorporación de las perlitas de poliestireno expandido y fibras de polipropileno.	Dosificación de Perlitas de Poliestireno Expandido	Diseño: Experimental - Cuasiexperimental	
incorporación de perlitas de poliestireno expandido y las fibras de polipropileno en el análisis del comportamiento de		Evaluar el comportamiento hidromecánico del concreto con adiciones de perlitas de poliestireno expandido y fibras de polipropileno,	V.I.: Incorporación de Perlitas de Poliestireno	1.2. Importancia de la incorporación de las perlitas de poliestireno expandido y fibras de polipropileno. 1.3. Técnicas de la incorporación de las perlitas de	Dosificación de Fibras de Polipropileno		
las propiedades hidromecánicas del concreto, Lambayeque, 2023?	hidromecánicas Lambayeque, 2023 Expandido y Fibra de poliestireno expandido y fibras de polipropileno. 1.4. Dimensiones de la las perlitas de poliestireno expandido y fibras de polipropileno expandido y fibras de polipropileno.	-	Población: 546 Testigos de concreto				
	La incorporación	Objetivo específicos		1.5. Técnicas de la incorporación de las perlitas de poliestireno expandido y fibras de polipropileno. 1.6. Componentes de la incorporación de las	Dosificación para elaboración de concreto	Muestra: 420 Testigos de concreto	
Problemas Especificas	de dosificaciones			perlitas de poliestireno expandido y fibras de			
1. ¿De qué manera la incorporación de perlilas de poliestireno expandido y fibra de polipropileno mejora la resistencia a la compresión?	de PP y dosificación optima de PP con dosificaciones de FP respecto al volumen del	Determinar las propiedades físicas de los agregados pétreos, de las perlitas de poliestireno expandido y fibras de polipropileno.		polipropileno. 1. Propiedades hidromecánicas del concreto Diseño de mezcla		Técnicas:	
¿De qué manera la incorporación de perlilas de poliestireno expandido y fibra	concreto perimirá mejorar	concreto patrón y concreto con adiciones de perlitas de poliestireno expandido y fibras de polipropileno para resistencias	concreto patrón y concreto con adiciones		1.1. Objetivos de las propiedades hidromecánicas del concreto.	- para 5210 y 5200	Observación, análisis de documentos
de polipropileno mejora la resistencia a la la tracción?	eficazmente las propiedades hidromecánicas		fibras de polipropileno para resistencias		1.2. Importancia de las propiedades hidromecánicas del concreto.	- 5	Instrumentos:
¿De qué manera la incorporación de perlilas de poliestireno expandido y fibra	del concreto, Lambayeque 2023	3. Evaluar las propiedades físicas y	V.D. :	1.3. Técnicas de las propiedades hidromecánicas del concreto.	Propiedades físicas del concreto	Fichas de laboratorio y guías de observación	
de polipropileno mejora la resistencia a la flexión?	_	mecánicas del concreto incorporando 5%, 10% y 15% de perlitas de poliestireno expandido para 210 kg/cm2	Propiedades Hidromecánicas	1.4. Dimensiones de las propiedades hidromecánicas del concreto.		Métodos de análisis de investigación:	
4. ¿De qué manera la incorporación de perlilas de		y 280 kg/cm2.	de Concreto.	1.5. Técnicas de las propiedades hidromecánicas del concreto.	Propiedades hidromecánicas	Estadistica descriptiva y el paquete estadístico	
poliestireno expandido y fibra de polipropileno mejora el módulo de elasticidad?		4. Evaluar las propiedades físicas y		1.6. Componentes de las propiedades hidromecánicas del concreto.	del concreto	SPSS	
5. ¿De qué manera la incorporación de perlilas de poliestireno expandido y fibra de polipropileno mejora la profundidad de penetración de agua bajo presión?		mecánicas del concreto con el óptimo contenido de perlitas de poliestireno expandido más adiciones del 0.3%, 0.6%, 0.9% de fibras de polipropileno para 210 kg/cm2 y 280 kg/cm2					

Anexo 5. Tablas de operacionalización de variables

Operacionalización de variable independiente

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Instrumento	Valores finales	Tipo de variable	Escala de medición	
				5.0%					
	Las FP son resistentes al calor,		Dosificación de PP	10.0%		kg			
	tienen alta rigidez y			15.0%	•		- Numérica	Do rozán	
	su absorción de			0.1%	•		- Numerica	De razón	
	agua es baja, aun así, su reutilización		Dosificación de FP	0.2%	_ kg	kg			
	permite aumentar el			0.3%	Guías de				
Utilización de Perlitas de	desarrollo sostenible mediante concretos	La influencia de las PP y FP se		Agregado grueso	observación,	kg			
Poliestireno	eco-ambientales. Por	mide a través		Agregado fino	formatos de	kg	-		
Expandido y Fibras de Polipropileno	otra parte, las PP es una alternativa de reciclaje de procedencia artificial	de diferentes diseños de mezcla	Dosificación de materiales	Contenido de cemento	ensayo de laboratorio y análisis de documentos	kg	-		
	que también tienen una baja densidad,		para elaboración de concreto	Perlita de poliestireno	•	kg	Numérica	De razón	
	esto debido a que su producción es más limpia y a su vez		33.13.3.3	Fibra de polipropileno		kg	- -		
	sostenible [13].			Contenido de agua		Lts			

Operacionalización de variable dependiente

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Instrumento	Valores finales	Tipo de variable	Escala de medición
				Granulometría		gr		
			Propiedades físicas de los	Peso Unitario suelto y compactado	-	kg/m³	- - Numérica	De razón
			agregados	Peso especifico		g/cm²	- 14011101100	D0 102011
				Absorción		%	<u>-</u>	
	Los polímeros han	El desempeño		Contenido humedad	₋ Observación, .	%		
	sido utilizados para mejorar las	físico y mecánico del	_	Asentamiento	análisis de	pulg		
Propiedades	propiedades físicas	concreto	Desempeño físico del	Temperatura	documentos,	°C	- - Numérica	De razón
físicas e hidromecánicas	y mecánicas del	incorporando	concreto	Peso unitario	- guías de - observación, -	kg/m³	- Numenca	De lazon
del concreto	concreto, y se ha determinado que	PP y FP se miden a través		Contenido de aire	formatos de	%		
	es una excelente opción [6].	de un análisis experimental		Resistencia a la compresión	ensayos de laboratorio	kg/cm²		
	opolon [o].	одреннена	Duania da da a	Resistencia a la tracción		kg/cm²		
			Propiedades hidromecánicas del concreto	Resistencia a la flexión	-	kg/cm²	Numérica	De razón
			331 331101310	Módulo de elasticidad	-	kg/cm²	_	
				Profundidad de penetración	-	mm	-	

Anexo 6. Informe de laboratorio

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO PROYECTO

INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE

POLIPROPILENO"

UBICACIÓN Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

FECHA DE APERTURA:

martes, 17 de Octubre de 2023

AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global. **ENSAYO**

NORMA N.T.P. 400.012 :

Muestra Arena Gruesa - TT

Cantera Tres Tomas - Bomboncito

-	Malla		% Retenido	% Que Pasa	GR/	DACI	ÓN
Pulg.	(mm.)	Retenido	Acumulado	Acumulado		"C"	
3/8"	9.520	0.00	0.00	100.00	100	-	100
Nº 4	4.750	9.36	9.36	90.64	95	-	100
Nº 8	2.360	18.49	27.85	72.15	80	-	100
Nº 16	1.180	19.58	47.43	52.57	50	-	85
Nº 30	0.600	17.44	64.87	35.13	25	-	60
Nº 50	0.300	16.92	81.79	18.21	10	-	30
Nº 100	0.150	10.53	92.32	7.68	2	-	10
Nº 200	0.080	5.44	97.76	2.24	2	-	0

L			MODULO	DE FINEZA			3.24
			Curva granul	lometrica para	agregado fii	10	
	3/8"	N*4	N*8	N*16	N*30	N*50	N*100
100 90 80 80 60 60 60 50 30 30 30 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					- •- Limi	ite Inferior ite Superior na la Victoria
1	10.000			1.000			0.100

- Muestreo, identificación y ensayo realizado por el solicitante.

WELC BIRL

RO OLAYA AGUULAR

SOLICITANTE : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO

INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE

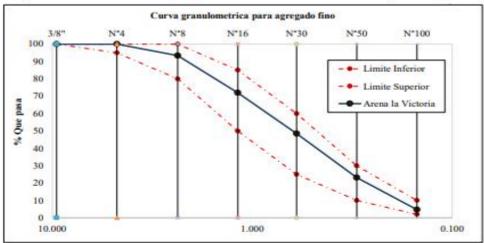
POLIPROPILENO"

UBICACIÓN : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

FECHA DE : martes, 17 de Octubre de 2023

ENSAYO : AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

NORMA : N.T.P. 400.012


PROYECTO

Muestra Arena Gruesa - LV

átapo
átapo

	Malla		% Retenido	% Que Pasa	GRA	DACI	ÓN
Pulg.	(mm.)	Retenido	Acumulado	Acumulado	- S	*C"	
3/8*	9.520	0.00	0.00	100.00	100	24	100
Nº 4	4.750	0.00	0.00	100.00	95	235	100
Nº 8	2.360	6.61	6.61	93.39	80	100	100
Nº 16	1.180	21.40	28.01	71.99	50		85
Nº 30	0.600	23.51	51.52	48.48	25	8-	60
Nº 50	0.300	25.29	76.81	23.19	10	-	30
Nº 100	0.150	18.49	95.30	4.70	2	8.0	10
Nº 200	0.080	2.94	98.24	1.76	2		0

M	ODULO DE FINEZA	2.58

Observaciones:

- Muestreo, identificación y ensayo realizado por el solicitante.

VALSON ARTURO CLAYA AGUSLAR

3.22

0.100

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO

PROYECTO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

UBICACIÓN Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

FECHA DE martes, 17 de Octubre de 2023 **APERTURA**

ENSAYO AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

MÓDULO DE FINEZA

NORMA N.T.P. 400.012

Muestra Arena Gruesa - PP

Cantera Pacherres - Pacherres

	Malla		% Retenido	% Que Pasa	GR/	DACI	ÓN
Pulg.	(mm.)	Retenido	Acumulado	Acumulado		"C"	
3/8"	9.520	0.37	0.37	99.63	100	-	100
Nº 4	4.750	5.40	5.77	94.23	95	-	100
No 8	2.360	20.25	26.02	73.98	80	-	100
Nº 16	1.180	19.06	45.09	54.91	50	-	85
Nº 30	0.600	20.89	65.97	34.03	25	-	60
Nº 50	0.300	19.66	85.63	14.37	10	-	30
Nº 100	0.150	7.18	92.82	7.18	2	-	10
Nº 200	0.080	3.61	96.43	3.57	2	-	0

Curva granulometrica para agregado fino											
	3/8"	N*4	N*8	N*16	N*30	N*50	N*100				
	100		····	Ť	Î						
	90		S	***.		- e- Limit	e Inferior				
	80			180		- e- Limit	e Superior				
2	70				N	I	a la Victoria				
Ļ	60				*	- Aucii	The Victoria				
se d'une buss	50				100						
	40					N. 1					
	30					`` \					
	20				1	<u> </u>	,				
	10						7.1				

1.000

Observaciones:

- Muestreo, identificación y ensayo realizado por el solicitante.

10.000

PROYECTO

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE

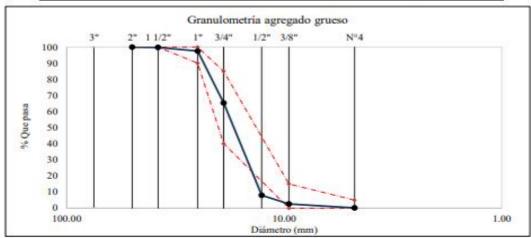
SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO : INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE

POLIPROPILENO"

UBICACIÓN : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

FECHA DE ENSAYO : martes, 17 de Octubre de 2023


: AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global. **ENSAYO**

NORMA DE : N.T.P. 400.012 / ASTM C-136 REFERENCIA

> Piedra Chancada - B Muestra: Cantera Tres Tomas - Bomboncito

	Anal	isis Granulom	étrico por tamiz	ado			
Nº Tamiz	Abertura (mm)	% Retenido	% Acumulados Retenido	% Que pasa Acumulados	1	67)
2"	50.00	0.0	0.0	100.0			
1 1/2"	38.00	0.1	0.1	99.9	100		100
1"	25.00	2.3	2.4	97.6	90		10
3/4"	19.00	32.2	34.6	65.4	40	-	85
1/2"	12.70	57.4	92.0	8.0	10	-	40
3/8"	9.52	5.3	97.3	2.7	0	-	15
Nº4	4.75	2.5	99.8	0.2	0	-	5

TAMAÑO MÁXIMO NOMINAL	1/2"

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

PROYECTO

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO : INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE

POLIPROPILENO"

UBICACIÓN : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

FECHA DE ENSAYO : martes, 17 de Octubre de 2023

: AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

NORMA DE REFERENCIA : N.T.P. 400.012 / ASTM C-136

Muestra: Piedra Chancada - LV Cantera Patapo - La Victoria

N° Tamiz	Abertura (mm)	% Retenido	% Acumulados Retenido		ı	HUSC 56)
2"	50.00	0.0	0.0	100.0			
1 1/2"	38.00	0.1	0.1	99.9	100		100
1"	25.00	2.3	2.4	97.6	90		100
3/4"	19.00	31.7	34.1	65.9	40	-	85
1/2"	12.70	56.5	90.6	9.4	10	-	40
3/8"	9.52	6.1	96.7	3.3	0	-	15
Nº4	4.75	3.2	99.9	0.1	0		5

			Granulometría agregado grueso	
		3*	2" 1 1/2" 1" 3/4" 1/2" 3/8" N°4	
	100	T		
	90			
	80			
	70		\\\\	
% Que pasa	60			
ine i	50			
%	40			
	30			
	20			
	10			
	0			
	100.0	0	10.00	1.00

Diámetro (mm)

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE

SÁNCHEZ RAMÍREZ JOSE ELMER

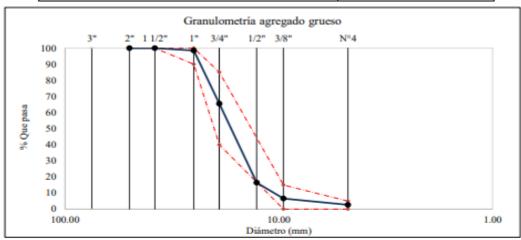
Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO **PROYECTO**

: INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE

POLIPROPILENO"

: Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque : martes, 17 de Octubre de 2023 UBICACIÓN

FECHA DE ENSAYO


: AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

NORMA DE REFERENCIA : N.T.P. 400.012 / ASTM C-136

Cantera Pacherres - Pacherres Piedra Chancada - PP Muestra:

Analisis Granulométrico por tamizado							
N° Tamiz	Abertura (mm)	% Retenido	% Acumulados Retenido	% Que pasa Acumulados		HUS0 56)
2"	50.00	0.0	0.0	100.0			
1 1/2"	38.00	0.0	0.0	100.0	100		100
1"	25.00	1.5	1.5	98.5	90		100
3/4"	19.00	33.0	34.5	65.5	40		85
1/2"	12.70	49.1	83.6	16.4	10	-	40
3/8"	9.52	9.8	93.4	6.6	0	-	15
Nº4	4.75	3.9	97.3	2.7	0	-	5

TAMAÑO MÁXIMO NOMINAL	3/4"

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL PROYECTO

: CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE

POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

UBICACIÓN

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA DE ENSAYO

: martes, 17 de Octubre de 2023

ENSAYO : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado.

: NTP 400.017:2011 (revisada el 2016) REFERENCIA

NTP 339 185:2013

Muestra: Arena Gruesa - TT Cantera: Tres Tomas - Bomboncito

Peso Unitario Suelto Humedo	100	1583.65	
r eso chitano cacito riamedo	(Kg/m ³)	.000.00	
Peso Unitario Suelto Seco	(Kg/m ³)	1577.31	
Contenido de Humedad	(%)	0.40	

Peso Unitario Compactado Humedo	(Kg/m ³)	1713.00
Peso Unitario Compactado Seco	(Kg/m ³)	1706.15
Contenido de Humedad	(%)	0.40

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.
- El suscrito, no se responsabiliza de las conclusiones y usos que se deriven de este ensayo.

SOLICITANTE : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL

PROYECTO: CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE

POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

UBICACIÓN : Dist. Chiclay

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA DE ENSAYO

: martes, 17 de Octubre de 2023

ENSAYO : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado.

REFERENCIA : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra: Arena Gruesa - LV Cantera: La Victoria

Peso Unitario Suelto Humedo	(Kg/m³)	1576.74
Peso Unitario Suelto Seco	(Kg/m³)	1572.01
Contenido de Humedad	(%)	0.30

Peso Unitario Compactado Humedo	(Kg/m³)	1699.78
Peso Unitario Compactado Seco	(Kg/m³)	1694.68
Contenido de Humedad	(%)	0.30

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- El suscrito, no se responsabiliza de las conclusiones y usos que se deriven de este ensayo.

SOLICITANTE : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL

PROYECTO: CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE

POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

UBICACIÓN

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA DE ENSAYO

: martes, 17 de Octubre de 2023

ENSAYO : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad tota

evaporable de agregados por secado.

REFERENCIA : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra: Arena Gruesa - PP Cantera: Pacherres

Peso Unitario Suelto Humedo (Kg/m³	1581.32
Peso Unitario Suelto Seco (Kg/m³	1573.42
Contenido de Humedad (%	0.50

Peso Unitario Compactado Humedo	(Kg/m³)	1710.83
Peso Unitario Compactado Seco	(Kg/m³)	1702.28
Contenido de Humedad	(%)	0.50

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- El suscrito, no se responsabiliza de las conclusiones y usos que se deriven de este ensayo.

SOLICITANTE : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO

PROYECTO : INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y

FIBRAS DE POLIPROPILENO"

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA DE ENSAYO

: martes, 17 de Octubre de 2023

ENSAYO : AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad

de volumen o densidad ("Peso Unitario") y los vacíos en los agregados. 3a.

Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado

REFERENCIA : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

MUESTRA Piedra Chancada - TT Cantera Tres Tomas - Bomboncito

Peso Unitario Suelto Humedo	(Kg/m³)	1348.43
Peso Unitario Suelto Seco	(Kg/m³)	1344.58
Contenido de Humedad	(%)	0.29

Peso Unitario Compactado Humedo	(Kg/m³)	1453.93
Peso Unitario Compactado Seco	(Kg/m ³)	1449.77
Contenido de Humedad	(%)	0.29

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

SOLICITANTE : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO

PROYECTO : INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y

FIBRAS DE POLIPROPILENO"

UBICACIÓN

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA DE ENSAYO

: martes, 17 de Octubre de 2023

ENSAYO : AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad

de volumen o densidad ("Peso Unitario") y los vacíos en los agregados. 3a.

Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado

REFERENCIA : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

MUESTRA Piedra Chancada - LV Cantera Patapo - La Victoria

Peso Unitario Suelto Humedo	(Kg/m³)	1348.66
Peso Unitario Suelto Seco	(Kg/m³)	1345.23
Contenido de Humedad	(%)	0.26

Peso Unitario Compactado Humedo	(Kg/m ³)	1453.25
Peso Unitario Compactado Seco	(Kg/m ³)	1449.55
Contenido de Humedad	(%)	0.26

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

SOLICITANTE : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO

PROYECTO : INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y

FIBRAS DE POLIPROPILENO"

UBICACIÓN

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA DE ENSAYO

: martes, 17 de Octubre de 2023

ENSAYO : AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad

de volumen o densidad ("Peso Unitario") y los vacíos en los agregados. 3a.

Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado

REFERENCIA : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

MUESTRA Piedra Chancada - PP Cantera Pacherres

Peso Unitario Suelto Humedo	(Kg/m³)	1347.52
Peso Unitario Suelto Seco	(Kg/m³)	1344.52
Contenido de Humedad	(%)	0.22

Peso Unitario Compactado Humedo	(Kg/m³)	1453.93
Peso Unitario Compactado Seco	(Kg/m ³)	1450.69
Contenido de Humedad	(%)	0.22

OBSERVACIONES:

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334

:mail: servicios@lemswyceirl.cor

SOLICITANTE(S) : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO PROYECTO : INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS

DE POLIPROPILENO"

UBICACIÓN : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

FECHA : martes, 17 de Octubre de 2023

NORMA : AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado fino.

REFERENCIA : N.T.P. 400.022

> Cantera: Tres Tomas - Bomboncito Muestra: Arena Gruesa - B

1 PESO ESPECÍFICO DE MASA	(gr/cm³)	2.514	
2 PORCENTAJE DE ABSORCIÓN	96	1.253	

OBSERVACIONES:

SOLICITANTE(S) : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO

PROYECTO : INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS

DE POLIPROPILENO"

: Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque UBICACIÓN

FECHA : martes, 17 de Octubre de 2023

NORMA : AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado fino.

REFERENCIA : N.T.P. 400.022

> Muestra: Arena Gruesa - LV Cantera: Patapo - La Victoria

1 PESO ESPECÍFICO DE MASA	(gr/cm ³)	2.545
2 PORCENTAJE DE ABSORCIÓN	%	1.150

OBSERVACIONES:

SOLICITANTE(S) : MOLINA FERNÁNDEZ MINER ORLANDO SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO

: INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS

DE POLIPROPILENO"

UBICACIÓN : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

FECHA : martes, 17 de Octubre de 2023

NORMA : AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado fino.

REFERENCIA : N.T.P. 400.022

> Muestra: Arena Gruesa - PP Cantera: Pacherres - Pacherres

1 PESO ESPECÍFICO DE MASA	(gr/cm³)	2.510
2 PORCENTAJE DE ABSORCIÓN	%	1.048

OBSERVACIONES:

PROYECTO

Pimentel – Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

INFORME

SOLICITANTE(S) : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO : INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS

DE POLIPROPILENO"

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA: martes, 17 de Octubre de 2023

NORMA : AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado grueso.

REFERENCIA: N.T.P. 400.021

Muestra: Piedra Chancada - B Cantera: Tres Tomas - Bomboncito

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.292
2 PORCENTAJE DE ABSORCIÓN	96	1.598

OBSERVACIONES:

PROYECTO

INFORME

SOLICITANTE(S) : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO

: INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS

DE POLIPROPILENO"

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : martes, 17 de Octubre de 2023

NORMA : AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado grueso.

REFERENCIA: N.T.P. 400.021

Muestra: Piedra Chancada - LV Cantera: La Victoria - Patapo

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.344
2 PORCENTAJE DE ABSORCIÓN	%	3.292

OBSERVACIONES:

PROYECTO

INFORME

SOLICITANTE(S) : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO

PROYECTO : INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS

DE POLIPROPILENO"

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : martes, 17 de Octubre de 2023

NORMA : AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado grueso.

REFERENCIA: N.T.P. 400.021

Muestra: Piedra Chancada - PP Cantera: Pacherres - Pacherres

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.600
2 PORCENTAJE DE ABSORCIÓN	%	1.236

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

OLAYA AGUULAR

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Proyecto / Obra : Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL

CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : martes, 17 de Octubre de 2023

Ensayo : AGREGADOS. Método de ensayo normalizado para determinación de la

resistencia a la degradación en agregados grueso de tamaños menores por

abrasión e impacto en la máquina de los Ángeles.

Referencia: NTP 400.019

Muestra: Piedra Chancada Cantera: Pacherres

Peso de la muestra	(gr)	5000.00
Masa retenida por la malla N°12	(gr)	4671.06
Masa Pasante por la malla N°12	(gr)	328.94
Desgaste por abrasión	(%)	6.58

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- Método de ensayo a usar: Gradación "A", Nº de esferas : 12, Revoluciones: Total 500

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSE ELMER

Proyecto / Obra : Tesis: "EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL

CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : martes, 17 de Octubre de 2023

Ensayo : AGREGADOS. Método de ensayo normalizado para determinación de la

resistencia a la degradación en agregados grueso de tamaños menores por

abrasión e impacto en la máquina de los Ángeles.

Referencia: NTP 400.019

Muestra: Piedra Chancada Cantera: Tres Tomas

(gr)	4389.52
(gr)	610.48
(%)	12.21
	-1000

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- Método de ensayo a usar: Gradación "A", Nº de esferas : 12, Revoluciones: Total 500

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de apertura : Viernes 08 de septiembre del 2023 Inicio de ensayo : Lunes 10 de setiembre del 2023

Fin de ensayo : Martes, 11 de setiembre de noviembre del 2023

NORMA: MÉTODO DE ENSAYO NORMALIZADO PARA DETERMINAR LA DENSIDAD DEL

CEMENTO PORTLAND

REFERENCIA: N.T.P. 334.005-2011

INSTRUMENTOS: Botella de Le Chatelier

Termómetro digital Balanza digital

MATERIAL: Fibras de Polipropileno

1 PESO ESPECÍFICO DE MASA	(gr/cm³)	0.720	
---------------------------	----------	-------	--

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.
- '- El líquido utilizado es Kerosene.
- '- Se realizó ciclos de baño maría con agua regulada a tempretura de 20°C .

'- La lectura inicial se tomó luego de estabilizar el volumen del líquido .

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: servicios@lemswyceirl.com

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de apertura : Viernes 08 de septiembre del 2023 Inicio de ensayo : Lunes 10 de setiembre del 2023

Fin de ensayo : Martes, 11 de setiembre de noviembre del 2023

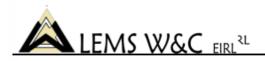
NORMA: MÉTODO DE ENSAYO NORMALIZADO PARA DETERMINAR LA DENSIDAD DEL

CEMENTO PORTLAND

REFERENCIA: N.T.P. 334.005-2011

INSTRUMENTOS: Botella de Le Chatelier

Termómetro digital Balanza digital


MATERIAL: Perlitas de Poliestireno

1 PESO ESPECÍFICO DE MASA	(gr/cm³)	1.680
---------------------------	----------	-------

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.
- '- El líquido utilizado es Kerosene.
- '- Se realizó ciclos de baño maría con agua regulada a tempretura de 20°C .

'- La lectura inicial se tomó luego de estabilizar el volumen del líquido .

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: servicios@lemswyceirl.com

Solicitud de Ensayo: 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno

expandido y fibras de polipropileno.

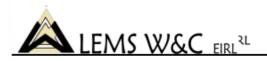
Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura : Viernes 08 de septiembre del 2023 Inicio de ensayo : Lunes 10 de setiembre del 2023 Fin de ensayo : Miercoles, 12 de setiembre del 2023

ENSAYO: ABSORCIÓN NORMA DE REFERENCIA: N.T.P. 400.022

Muestra: FIBRA DE POLIPROPILENO

I. DATOS


		F-2	F-3
Masa de la arena superficialmente seca	(gr)	80.20	80.40
2 Masa de la arena secada al horno	(gr)	77.90	77.80

II .- RESULTADOS

			PROMEDIO	
1 PORCENTAJE DE ABSORCIÓN %	2.95	3.34	3.15	

Observaciones:

- Muestreo e identificación realizados por el solicitante.

Email: servicios@lemswyceirl.com

Solicitud de Ensayo: 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno

expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura : Viernes 08 de septiembre del 2023 Inicio de ensayo : Lunes 10 de setiembre del 2023 Fin de ensayo : Miercoles, 12 de setiembre del 2023

ENSAYO: ABSORCIÓN NORMA DE REFERENCIA: N.T.P. 400.022

Muestra: PERLITAS DE POLIESTIRENO

I. DATOS

		F-2	F-3
1 Masa de la arena superficialmente seca	(gr)	80.20	80.40
2 Masa de la arena secada al horno	(gr)	78.90	78.80

II .- RESULTADOS

				PROMEDIO
1 PORCENTAJE DE ABSORCIÓN	%	1.65	2.03	1.84

Observaciones:

Email: servicios@lemswyceirl.com

INFORME

Pag. 01 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de Proyecto / Obra

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : Lunes 10 de setiembre del 2023

> DISEÑO DE MEZCLA FINAL 210 kg/cm²

CEMENTO

1.- Tipo de cemento : Tipo I-PACASMAYO 2.- Peso específico : 3150 kg/m3

AGREGADOS:

Agregado fino: : Arena Gruesa - La Victoria - Patapo

1.- Peso específico de masa gr/cm3 2.514 2.- Peso específico de masa S.S.S. 2.548 gr/cm³ 3.- Peso unitario suelto 1496.68 Kg/m³ 4.- Peso unitario compactado 1596.37 Kg/m³ 5.- % de absorción 1.38 % 6.- Contenido de humedad 0.57 %

7.- Módulo de fineza Granulometria:

Agregado grueso :

rigitegado gracio .		
: Piedra Chancada - Cantera Pacherre	es - Pacherres	
 Peso específico de masa 	2.660	gr/cm ³
Peso específico de masa S.S.S.	2.687	gr/cm ³
3 Peso unitario suelto	1389.46	Kg/m ³
 Peso unitario compactado 	1517.40	Kg/m ³
5 % de absorción	1.04	%
6 Contenido de humedad	0.17	%
7 Tamaño máximo	1"	Pulg.

3/4"

Pulg.

% Acumulado

que pasa

100.0

100.0

98.5

85.4

30.6

10.2

0.1

0.0

7	Malla	%
		Retenido
	2"	0.0
\perp	1 1/2"	0.0
	1"	1.5
	3/4"	13.1
	1/2"	54.8
	3/8"	20.4
	Nº 04	10.1
	Fondo	0.1

8.- Tamaño máximo nominal

Malla % Acum		% Acumulado
Pidild	Retenido	que pasa
3/8"	0.0	100.0
Nº 04	2.2	97.8
No 08	13.2	84.5
Nº 16	22.8	61.7
No 30	25.9	35.8
Nº 50	15.7	20.0
Nº 100	11.5	8.5
Fondo	8.5	0.0

2.92

OBSERVACIONES:

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20548885974 Email: servicios@lemswyceirl.com

INFORME

Pag. 02 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Fecha de vaciado : Lunes 10 de setiembre del 2023

DISEÑO DE MEZCLA FINAL F'c = 210 kg/cm²

Resultados del diseño de mezcla:

Relación agua cemento de diseño : 0.728

Cantidad de materiales por metro cúbico :

Cemento 389 Kg/m³ : Tipo I-PACASMAYO Agua 283 L : Potable de la zona.

Agregado fino 771 Kg/m³ : Arena Gruesa - La Victoria - Patapo

Agregado grueso 865 Kg/m³: Piedra Chancada - Cantera Pacherres - Pacherres

Proporción en peso: Cemento Arena Piedra Agua

1.0 1.98 2.23 30.9 Lts/pie³

Proporción en volumen : 1.0 1.99 2.41 30.9 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20548885974 Email: servicios@lemswyceirl.com

INFORME

Pag. 01 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno Proyecto / Obra

expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : Lunes 10 de setiembre del 2023

> DISEÑO DE MEZCLA FINAL F'c = 210 kg/cm²

DOSIFICACIÓN EXPERIMENTAL: ADICIÓN 5% DE PERLITAS DE POLIESTIRENO EN PESO DEL CEMENTO CEMENTO

: Tipo I-PACASMAYO 1.- Tipo de cemento 2.- Peso específico : 3150 kg/m3

AGREGADOS:

Agregado fino:

: Arena Gruesa - La Victoria - Patapo

gr/cm³ 1.- Peso específico de masa 2.514 2.- Peso específico de masa S.S.S. 2.548 gr/cm³ 3.- Peso unitario suelto 1496.68 Kg/m³ Kg/m³ 1596.37 4.- Peso unitario compactado 5.- % de absorción 1.38 % 0.57 % 6.- Contenido de humedad 7.- Módulo de fineza 2.92

Agregado grueso:

: Piedra Chancada - Cantera Pacherres - Pacherres

2.660 1.- Peso específico de masa gr/cm³ 2.687 Peso específico de masa S.S.S. gr/cm³ 3.- Peso unitario suelto 1389.46 Kg/m³ 1517.40 Kg/m³ 4.- Peso unitario compactado 5.- % de absorción 1.04 % 0.17 % 6.- Contenido de humedad 7.- Tamaño máximo 1" Pulg. 8.- Tamaño máximo nominal 3/4" Pulg.

Granulometría:

Malla	%	% Acumulado
Mana	Retenido	que pasa
3/8"	0.0	100.0
Nº 04	2.2	97.8
Nº 08	13.2	84.5
Nº 16	22.8	61.7
No 30	25.9	35.8
Nº 50	15.7	20.0
Nº 100	11.5	8.5
Fondo	8.5	0.0
	Nº 04 Nº 08 Nº 16 Nº 30 Nº 50 Nº 100	Retenido 3/8" 0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	1.5	98.5
3/4"	13.1	85.4
1/2"	54.8	30.6
3/8"	20.4	10.2
Nº 04	10.1	0.1
Fondo	0.1	0.0

OBSERVACIONES:

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3.5
Pimentel – Lambayeque
R.U.C. 20548885974
Emait servicios@lemswyceirl.com

INFORME

Pag. 02 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno

expandido y fibras de polipropileno.

Fecha de vaciado : Lunes 10 de setiembre del 2023

DISEÑO DE MEZCLA FINAL F'c = 210 kg/cm²

DOSIFICACIÓN EXPERIMENTAL: ADICIÓN 5% DE PERLITAS DE

Resultados del diseño de mezcla : POLIESTIRENO EN PESO DEL CEMENTO

 Asentamiento obtenido
 : 4 Pulgadas

 Peso unitario del concreto fresco
 : 2309 Kg/m³

 Resistencia promedio a los 7 días
 : 242 Kg/cm²

 Porcentaje promedio a los 7 días
 : 115 %

 Factor cemento por M³ de concreto
 : 9.1 bolsas/m³

Relación agua cemento de diseño : 0.728

Cantidad de materiales por metro cúbico :

 Cemento
 389
 Kg/m³
 : Tipo I-PACASMAYO

 Agua
 283
 L
 : Potable de la zona.

Agregado fino 771 Kg/m³ : Arena Gruesa - La Victoria - Patapo

Agregado grueso 865 Kg/m3 : Piedra Chancada - Cantera Pacherres - Pacherres

Perlitas de Poliestireno 194 kg/m3 : Perlitas de Poliestireno 5% Adicionando al Peso del Cemento

Proporción en peso: Cemento Arena Piedra Agua Lts/pie3 0.50 30.9 1.98 2.23 1.0 Proporción en volumen: 1.0 1.99 2.41 0.45 30.9 Lts/pie3

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

En obra corregir por humedad.

ELANDE AND TALES

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20548885974 Email: servicios@lemswyceirl.com

INFORME

Pag. 01 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno Proyecto / Obra

expandido y fibras de polipropileno.

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Lunes 10 de setiembre del 2023 Ubicación

Fecha de vaciado

DISEÑO DE MEZCLA FINAL F'c = 210 kg/cm²

DOSIFICACIÓN EXPERIMENTAL: ADICIÓN 10% DE PERLITAS DE POLIESTIRENO CEMENTO

EN PESO DEL CEMENTO : Tipo I-PACASMAYO 1.- Tipo de cemento

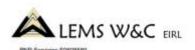
2.- Peso específico : 3150 kg/m3

AGREGADOS:

Agregado fino :

Agregado grueso : : Arena Gruesa - La Victoria - Patapo : Piedra Chancada - Cantera Pacherres - Pacherres

1.- Peso específico de masa 2.514 gr/cm3 1.- Peso específico de masa gr/cm3 2.548 gr/cm³ 2.687 gr/cm³ 2.- Peso específico de masa S.S.S. 2.- Peso específico de masa S.S.S. 3.- Peso unitario suelto 1496.68 Kg/m³ 3.- Peso unitario suelto 1389.46 Kg/m³ 1517.40 4.- Peso unitario compactado 1596.37 Kg/m³ 4.- Peso unitario compactado Kg/m³ 1.38 5.- % de absorción % 5.- % de absorción 1.04 % 6.- Contenido de humedad 0.57 6.- Contenido de humedad 0.17 % Pulg. 7.- Módulo de fineza 2.92 7.- Tamaño máximo 1" 3/4" 8.- Tamaño máximo nominal Pulg.


Granulometría:

Malla	%	% Acumulado
Malia	Retenido	que pasa
3/8"	0.0	100.0
Nº 04	2.2	97.8
No 08	13.2	84.5
Nº 16	22.8	61.7
No 30	25.9	35.8
Nº 50	15.7	20.0
Nº 100	11.5	8.5
Fondo	8.5	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	1.5	98.5
3/4"	13.1	85.4
1/2"	54.8	30.6
3/8"	20.4	10.2
Nº 04	10.1	0.1
Fondo	0.1	0.0

OBSERVACIONES :

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3,5 Pimentel – Lambayeque R.U.C. 20548885974 Email: servicios@lemswyceirl.com

Pag. 02 de 02

INFORME

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno

expandido y fibras de polipropileno.

Fecha de vaciado : Lunes 10 de setiembre del 2023

DISEÑO DE MEZCLA FINAL F'c = 210 kg/cm²

DOSIFICACIÓN EXPERIMENTAL: ADICIÓN 10% DE PERLITAS DE

Resultados del diseño de mezcla : POLIESTIRENO EN PESO DEL CEMENTO

Asentamiento obtenido : 4 Pulgadas
Peso unitario del concreto fresco : 2309 Kg/m³
Resistencia promedio a los 7 días : 242 Kg/cm²
Porcentaje promedio a los 7 días : 115 %

Factor cemento por M³ de concreto : 9.1 bolsas/m³

Relación agua cemento de diseño : 0.728

Cantidad de materiales por metro cúbico :

 Cemento
 389
 Kg/m³
 : Tipo I-PACASMAYO

 Agua
 283
 L
 : Potable de la zona.

Agregado fino 771 Kg/m³ : Arena Gruesa - La Victoria - Patapo

Agregado grueso 865 Kg/m³ : Piedra Chancada - Cantera Pacherres - Pacherres

Perlitas de Poliestireno 389 kg/m3 : Perlitas de Poliestireno 10% Adicionando al Peso del Cemento

Proporción en peso : Cemento Arena Piedra P-P Agua 1.0 1.98 2.23 1.00 30.9 Lts/pie³ Proporción en volumen :

Proporcion en volumen : 1.0 1.99 2.41 0.90 30.9 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

Workland Augustus 188

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20548885974 Email: servicios@lemswyceirl.com

DOSIFICACIÓN EXPERIMENTAL: ADICIÓN 15% DE PERLITAS DE POLIESTIRENO

INFORME

Pag. 01 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

¿ Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno Proyecto / Obra

expandido y fibras de polipropileno.

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : Lunes 10 de setiembre del 2023

> DISEÑO DE MEZCLA FINAL F'c = 210 kg/cm²

> > EN PESO DEL CEMENTO

CEMENTO

1.- Tipo de cemento : Tipo I-PACASMAYO : 3150 kg/m3

2.- Peso específico

Agregado fino: Agregado grueso:

: Arena Gruesa - La Victoria - Patapo : Piedra Chancada - Cantera Pacherres - Pacherres

1.- Peso específico de masa 2.514 gr/cm³ 1.- Peso específico de masa 2.660 gr/cm³ gr/cm³ 2.- Peso específico de masa S.S.S. 2.548 2.- Peso específico de masa S.S.S. 2.687 gr/cm3 Kg/m³ 3.- Peso unitario suelto 1496.68 3.- Peso unitario suelto 1389.46 Kg/m³ 4.- Peso unitario compactado 1596.37 Kg/m³ 4.- Peso unitario compactado 1517.40 Kg/m³ 1.38 1.04 % 5.- % de absorción % 5.- % de absorción 6.- Contenido de humedad 0.57 % 6.- Contenido de humedad 0.17 % Pulg. 7.- Tamaño máximo 1" 7.- Módulo de fineza 2.92 3/4" 8.- Tamaño máximo nominal Pulg.

Granulometría:

AGREGADOS:

rue .		
Malla	%	% Acumulado
Maila	Retenido	que pasa
3/8"	0.0	100.0
Nº 04	2.2	97.8
Nº 08	13.2	84.5
Nº 16	22.8	61.7
No 30	25.9	35.8
Nº 50	15.7	20.0
Nº 100	11.5	8.5
Fondo	8.5	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	1.5	98.5
3/4"	13.1	85.4
1/2"	54.8	30.6
3/8"	20.4	10.2
Nº 04	10.1	0.1
Fondo	0.1	0.0

OBSERVACIONES:

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20548885974 Email: servicios⊛lemswyceirl.com

INFORME

Pag. 02 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno

expandido y fibras de polipropileno.

Fecha de vaciado : Lunes 10 de setiembre del 2023

DISEÑO DE MEZCLA FINAL F'c = 210 kg/cm²

DOSIFICACIÓN EXPERIMENTAL: ADICIÓN 15% DE PERLITAS DE

Resultados del diseño de mezcla : POLIESTIRENO EN PESO DEL CEMENTO

 Asentamiento obtenido
 :
 4
 Pulgadas

 Peso unitario del concreto fresco
 :
 2309 Kg/m³

 Resistencia promedio a los 7 días
 :
 242 Kg/cm²

 Porcentaje promedio a los 7 días
 :
 115 %

 Factor cemento por M³ de concreto
 :
 9.1 bolsas/m³

Relación agua cemento de diseño : 0.728

Cantidad de materiales por metro cúbico :

Cemento 389 Kg/m³ : Tipo I-PACASMAYO Agua 283 L : Potable de la zona.

Agregado fino 771 Kg/m³ : Arena Gruesa - La Victoria - Patapo

Agregado grueso 865 Kg/m³ : Piedra Chancada - Cantera Pacherres - Pacherres

Perlitas de Poliestireno 583 kg/m3 : Perlitas de Poliestireno 15% Adicionando al Peso del Cemento

Proporción en peso : Cemento Arena Piedra P-P Agua 1.0 1.98 2.23 1.50 30.9 Lts/pie³ Proporción en volumen :

1.0 1.99 2.41 1.34 30.9 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

MOUPLANDE FOR FEVERS

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20548885974 Email: servicios@lemswyceirl.com

INFORME

Pag. 01 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno. Proyecto / Obra

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : Lunes 10 de setiembre del 2023

> DISEÑO DE MEZCLA FINAL $F'c = 280 \text{ kg/cm}^2$

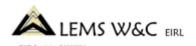
CEMENTO

1.- Tipo de cemento : Tipo I-PACASMAYO 2.- Peso específico : 3150 kg/m3

AGREGADOS:

Agregado fino :

: Arena Gruesa - La Victoria - Patapo			: Piedra Chancada - Cantera Pacherres - Pacherres			
 Peso específico de masa 	2.566	gr/cm³	 Peso específico de masa 	2.631	gr/cm ³	
Peso específico de masa S.S.S.	2.591	gr/cm ³	Peso específico de masa S.S.S.	2.661	gr/cm ³	
Peso unitario suelto	1.57	Kg/m ³	Peso unitario suelto	1344.37	Kg/m ³	
 Peso unitario compactado 	1.70	Kg/m ³	 Peso unitario compactado 	1451.30	Kg/m ³	
5 % de absorción	0.98	%	5 % de absorción	1.13	%	
6 Contenido de humedad	0.25	%	6 Contenido de humedad	0.26	%	
7 Módulo de fineza	2.61		7 Tamaño máximo	1"	Pulg.	
			8 Tamaño máximo nominal	1/2"	Pulg.	


Agregado grueso:

Granulometría:

	Malla	%	% Acumulado		
ı	Malia	Retenido	que pasa		
	3/8" 0.0		100.0		
	Nº 04	0.0	100.0		
	Nº 08	6.7	93.3		
	Nº 16	21.6	71.7		
	No 30	23.8	47.9		
	Nº 50	25.6	22.4		
	Nº 100 18.7		3.7		
	Fondo	3.7	0.0		

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	1.5	98.5
3/4"	13.1	85.4
1/2"	54.8	30.6
3/8"	20.4	10.2
Nº 04	10.1	0.1
Fondo	0.1	0.0

OBSERVACIONES:

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20548885974 imail: servicios@lemswyceirLcom

INFORME

Pag. 02 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Fecha de vaciado : Lunes 10 de setiembre del 2023

DISEÑO DE MEZCLA FINAL $F'c = 280 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas
Peso unitario del concreto fresco : 2354 Kg/m³
Resistencia promedio a los 7 días : 242 Kg/cm²
Porcentaje promedio a los 7 días : 87 %
Factor cemento por M³ de concreto : 11.5 bolsas/m³
Relación agua cemento de diseño : 0.594

Cantidad de materiales por metro cúbico :

Agregado fino 736 Kg/m³ : Arena Gruesa - La Victoria - Patapo

Agregado grueso 838 Kg/m³: Piedra Chancada - Cantera Pacherres - Pacherres

Proporción en peso : Cemento Arena Piedra Agua

1.0 1.50 1.71 25.3 Lts/pie³

Proporción en volumen : 1.0 1.44 1.92 25.3 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

MOURLANDE FORES

INFORME

Pag. 01 de 02

: MOLINA FERNÁNDEZ MINER ORLANDO. Solicitante

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Martes 11 de setiembre del 2023 Ubicación

Fecha de vaciado

F'c = 280 kg/cm² DISEÑO DE MEZCLA FINAL

DOSIFICACIÓN ESPERIMENTAL: ADICIÓN 5% DE PERLITAS DE POLIESTIRENO EN PESO DEL CEMENTO

: Tipo I-PACASMAYO 1.- Tipo de cemento

2.- Peso específico : 3150 kg/m3

AGREGADOS:

Agregado fino: Agregado grueso:

: Arena Gruesa - La Victoria - Patapo : Piedra Chancada - Cantera Pacherres - Pacherres 1.- Peso específico de masa 2.566 gr/cm³ 1.- Peso específico de masa 2.631 gr/cm³ 2.591 gr/cm³ 2.661 2.- Peso específico de masa S.S.S. 2.- Peso específico de masa S.S.S. gr/cm³ 1.57 1344.37 3.- Peso unitario suelto Kg/m³ 3.- Peso unitario suelto Kg/m³ 1.70 4.- Peso unitario compactado 1451.30 4.- Peso unitario compactado Kg/m³ Kg/m³ 0.98 5.- % de absorción 1.13 % 5.- % de absorción 96 % 6.- Contenido de humedad 0.25 % 6.- Contenido de humedad 0.26 2.61 1" 7.- Módulo de fineza 7.- Tamaño máximo Pulg.

8.- Tamaño máximo nominal

Granulometría :

aranulometr	a:			
	Malla	%	% Acumulado	
	Malia	Retenido	que pasa	l [
	3/8"	0.0	100.0	[[
	Nº 04	0.0	100.0	[[
Evaluació	, Ņº 08	6.7	93.3	ete poditac
do poline	1 del compor	21.6	o del concreto incorporando parcialme	nte penitas
de polipro	No.30	23.8	47.9	
	Nº 50	25.6	22.4	
	Nº 100	18.7	3.7	[[
	Fondo	3.7	0.0	

Malla		%	% Acumulado
		Retenido	que pasa
2"		0.0	100.0
1 1/2"		0.0	100.0
. 1"		1,5	98.5
3/4	no expandit	13.1	85.4
1/2"		54.8	30.6
3/8"		20.4	10.2
Nº 04		10.1	0.1
Fondo		0.1	0.0

1/2"

Pulg.

OBSERVACIONES :

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

Pag. 01 de 02

INFORME

96

0.0

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación:

Fecha de vaciado : Martes 11 de setiembre del 2023

Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de poliestireno expandido y f

CEMENTO

: Tipo I-PACASMAYO 1.- Tipo de cemento

2.- Peso específico : 3150 kg/m3

AGREGADOS:

Agregado fino :

: Arena Gruesa - La Victoria - Patapo 1.- Peso específico de masa 2.566 gr/cm3 2.- Peso específico de masa S.S.S. 2.591 gr/cm³ 3.- Peso unitario suelto 1.57 Kg/m³ 4.- Peso unitario compactado 1.70 Kg/m³ 5.- % de absorción 0.98 96

6.- Contenido de humedad 0.25 2.61 7.- Módulo de fineza

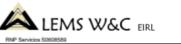
Granulometria: % % Acumulado Malla

Retenido que pasa 3/8" 0.0 100.0 Nº 04 0.0 100.0 Nº 08 6.7 93.3 Nº 16 21.6 71.7 Nº 30 23.8 47.9 Nº 50 25.6 22.4 Nº 100 18.7 3.7

Fondo OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

3.7


Agregado grueso :

: Piedra Chancada - Cantera Pacherres - Pacherres

2.631 1.- Peso específico de masa gr/cm3 2.- Peso específico de masa S.S.S. 2.661 gr/cm3 3.- Peso unitario suelto 1344.37 Kg/m3 4.- Peso unitario compactado 1451.30 Kg/m³ 5.- % de absorción 1.13 96 6.- Contenido de humedad 0.26 96 7.- Tamaño máximo 1" Pula. 1/2" 8.- Tamaño máximo nominal Pulg.

DOSIFICACIÓN ESPERIMENTAL: ADICIÓN 10% DE PERLITAS DE POLIESTIRENO EN PESO DEL CEMENTO

Malla	% Retenido	% Acumulado que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	1.5	98.5
3/4"	13.1	85.4
1/2"	54.8	30.6
3/8"	20.4	10.2
Nº 04	10.1	0.1
ondo	0.1	0.0

INFORME

Pag. 02 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras Proyecto / Obra

de polipropileno.

Fecha de vaciado : Martes 11 de setiembre del 2023

DISEÑO DE MEZCLA FINAL F'c = 280 kg/cm²

DOSIFICACIÓN ESPERIMENTAL: ADICIÓN 10% DE PERLITAS DE

Resultados del diseño de mezcla: POLIESTIRENO EN PESO DEL CEMENTO

4 Pulgadas Asentamiento obtenido 2354 Kg/m³ Peso unitario del concreto fresco Resistencia promedio a los 7 días 242 Kg/cm² 87 % Porcentaje promedio a los 7 días Factor cemento por M3 de concreto 11.5 bolsas/m3 Relación agua cemento de diseño 0.594

Cantidad de materiales por metro cúbico :

Cemento 489 Kg/m³ : Tipo I-PACASMAYO 291 Agua L : Potable de la zona.

Agregado fino 736 Kg/m³ : Arena Gruesa - La Victoria - Patapo

Agregado grueso 838 Kg/m³ : Piedra Chancada - Cantera Pacherres - Pacherres

PERLITAS DE POLIESTIRENO kg/m3 489 : Perlitas de Poliestireno 10% Adicionando al Peso del Cemento

Proporción en peso: P - P Cemento Arena Piedra 25.3 Lts/pie³ 1.0 1.50 1.71 1.00 Proporción en volumen: 1.44 1.92 0.90 25.3 Lts/pie³ 1.0

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20548885974 Email: servicios@lemswyceirl.com

INFORME

Pag. 01 de 02

2.631

2.661

1344.37

1451.30

gr/cm3

gr/cm³

Kg/m³

Kg/m³

%

%

Pulg.

Pulg.

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras Proyecto / Obra

de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : Martes 11 de setiembre del 2023

DISEÑO DE MEZCLA FINAL F'c = 280 kg/cm²

CEMENTO

DOSIFICACIÓN ESPERIMENTAL: ADICIÓN 15% DE PERLITAS DE POLIESTIRENO EN PESO DEL CEMENTO 1.- Tipo de cemento : Tipo I-PACASMAYO

2.- Peso específico : 3150 kg/m3

AGREGADOS: Agregado fino:

: Arena Gruesa - La Victoria - Patapo

1.- Peso específico de masa 2.566 gr/cm³ gr/cm³ 2.- Peso específico de masa S.S.S. 2.591 Kg/m³ 3.- Peso unitario suelto 1.57 Kg/m³ 1.70 4.- Peso unitario compactado 5.- % de absorción 0.98 % 0.25 96 6.- Contenido de humedad

7.- Módulo de fineza 2.61 1.- Peso específico de masa 2.- Peso específico de masa S.S.S. 3.- Peso unitario suelto 4.- Peso unitario compactado 5.- % de absorción 6.- Contenido de humedad

: Piedra Chancada - Cantera Pacherres - Pacherres

Agregado grueso :

1.13 0.26 1" 7.- Tamaño máximo 1/2" 8.- Tamaño máximo nominal

Granulometría:

Malla	%	% Acumulado
Malia	Retenido	que pasa
3/8"	0.0	100.0
Nº 04	0.0	100.0
Nº 08	6.7	93.3
Nº 16	21.6	71.7
Nº 30	23.8	47.9
Nº 50	25.6	22.4
Nº 100	18.7	3.7
Fondo	3.7	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	1.5	98.5
3/4"	13.1	85.4
1/2"	54.8	30.6
3/8"	20.4	10.2
Nº 04	10.1	0.1
Fondo	0.1	0.0

OBSERVACIONES:

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

INFORME

Pag. 02 de 02

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras

de polipropileno.

Fecha de vaciado : Martes 11 de setiembre del 2023

DISEÑO DE MEZCLA FINAL F'c = 280 kg/cm²

DOSIFICACIÓN ESPERIMENTAL: ADICIÓN 15% DE PERLITAS DE

Resultados del diseño de mezcla : POLIESTIRENO EN PESO DEL CEMENTO

Asentamiento obtenido : 4 Pulgadas
Peso unitario del concreto fresco : 2354 Kg/m³
Resistencia promedio a los 7 días : 242 Kg/cm²
Porcentaje promedio a los 7 días : 87 %
Factor cemento por M³ de concreto : 11.5 bolsas/m³

Relación agua cemento de diseño : 0.594

Cantidad de materiales por metro cúbico :

 Cemento
 489
 Kg/m³
 : Tipo I-PACASMAYO

 Agua
 291
 L
 : Potable de la zona.

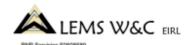
Agregado fino 736 Kg/m³ : Arena Gruesa - La Victoria - Patapo

Agregado grueso 838 Kg/m³ : Piedra Chancada - Cantera Pacherres - Pacherres

PERLITAS DE POLIESTIRENO 734 kg/m3 : Perlitas de Poliestireno 15% Adicionando al Peso del Cemento

 Proporción en peso :
 Cemento 1.0
 Arena 1.50
 P - P 1.50
 Agua 25.3
 Lts/pie³

 Proporción en volumen :
 1.0
 1.44
 1.92
 1.34
 25.3
 Lts/pie³


OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

CONTRACTOR OF THE STATES

Pag. 02 de 02

INFORME

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras

de polipropileno.

Fecha de vaciado : Martes 11 de setiembre del 2023

DISEÑO DE MEZCLA FINAL Fc = 280 kg/cm²

DOSIFICACIÓN ESPERIMENTAL: ADICIÓN 5% DE PERLITAS DE

Resultados del diseño de mezcla: POLIESTIRENO EN PESO DEL CEMENTO

Asentamiento obtenido : 4 Pulgadas

 Peso unitario del concreto fresco
 : 2354 Kg/m³

 Resistencia promedio a los 7 días
 : 242 Kg/cm²

 Porcentaje promedio a los 7 días
 : 87 %

 Factor cemento por M³ de concreto
 : 11.5 bolsas/m³

Relación agua cemento de diseño : 0.594

Cantidad de materiales por metro cúbico :

Cemento 489 Kg/m³ : Tipo I-PACASMAYO Agua 291 L : Potable de la zona.

Agregado fino 736 Kg/m³ : Arena Gruesa - La Victoria - Patapo

Agregado grueso 838 Kg/m³ : Piedra Chancada - Cantera Pacherres - Pacherres

PERLITAS DE POLIESTIRENO 245 kg/m3 : PERLITAS DE POLIESTIRENO 5% Adicionando al Peso del Cemento

 Proporción en peso :
 Cemento 1.0
 Arena 1.50
 Piedra 1.71
 P - P 0.50
 Agua 25.3
 Lts/pie³

 Proporción en volumen :
 1.0
 1.44
 1.92
 0.45
 25.3
 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

MOURLANGE THE TALES

Email: servicios@lemswycseirl.com

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante (s) : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Provecto / Obra : Tesis: "Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno

expandido y fibras de polipropileno"

Ubicación : Dist. Chiclayo, Prov. Pimentel, Depart, Lambayeque

Fecha de ensavo : domingo, 10 de Setiembre de 2023

Ensayo : HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del concreto de cemento Portland.

Referencia : N.T.P. 339.035:2009

	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Asentamiento		
Diseño	IDENTIFICACION	f´c (kg/cm²)	(Días)	Diseño (pulg)	Obtenido (pulg)	Obtenido (cm)
DM-01	M.P- f'c= 210 kg/cm2	210	10/09/2023	3" - 4"	4.00	10.16
DM-02	M.P - f'c= 210 kg/cm2 +5% FP	210	10/09/2023	3" - 4"	3.80	9.65
DM-03	M.P - f'c= 210 kg/cm2 +10% FP	210	10/09/2023	3" - 4"	3.60	9.14
DM-04	M.P - f'c= 210 kg/cm2 +15% FP	210	10/09/2023	3" - 4"	3.50	8.89

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

VIO. SON ARTURO OLAYA AGUILAR

INGENIERO CIVI

Email: servicios@lemswycseirl.com

Solicitante (s) MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Provecto / Obra : Tesis: "Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido

y fibras de polipropileno"

Ubicación : Dist. Chiclayo, Prov. Pimentel, Depart, Lambayeque

Fecha de ensayo : lunes, 11 de Setiembre de 2023

Ensayo : HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del concreto de cemento Portland.

Referencia : N.T.P. 339.035:2009

Diseño	IDENTIFICACIÓN	Diseño	Fecha de vaciado		Asentamiento	
Disello		f'c (kg/cm²)	(Días)	Diseño (pulg)	Obtenido (pulg)	Obtenido (cm)
DM-01	M.P- f'c= 280 kg/cm2	280	11/09/2023	3" - 4"	4.00	10.16
DM-02	M.P - f'c= 280 kg/cm2 +5% PP	280	11/09/2023	3" - 4"	3.50	8.89
DM-03	M.P - f'c= 280 kg/cm2 +10% PP	280	11/09/2023	3" - 4"	3.29	8.35
DM-04	M.P - f'c= 280 kg/cm2 +15% PP	280	11/09/2023	3" - 4"	3.00	7.62

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

LEME WELL WILL

WILSON ARTURO OLAYA AGUILAR

MOURLANGEL AUR FERALES

Email: servicios@lemswycseirl.com

Solicitante (s) MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Tesis: "Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno

expandido y fibras de polipropileno"

WE SON ARTURO OLAYA AGUILAR

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : jueves, 12 de Octubre de 2023

Ensayo : HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del concreto de cemento Portland.

Referencia : N.T.P. 339.035:2009

Diseño	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Asentamiento		•
Disello	DENTIFICACION	f´c (kg/cm²)	(Días)	Diseño (pulg)	Obtenido (pulg)	Obtenido (cm)
DM-01	M.P- f'c= 210 kg/cm2	210	12/10/2023	3" - 4"	4.00	10.16
DM-02	M.P - f'c= 210 kg/cm2+ 10%PP +0.1% FP	210	12/10/2023	3" - 4"	4.00	10.16
DM-03	M.P - f'c= 210 kg/cm2+ 10%PP +0.2% FP	210	12/10/2023	3" - 4"	3.80	9.65
DM-04	M.P - f'c= 210 kg/cm2+ 10%PP +0.3% FP	210	12/10/2023	3" - 4"	3.71	9.43

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

A LEMB VACE

MIGUELANGEL AUE PERALES

Email: servicios@lemswvcseirl.com

MOLINA FERNÁNDEZ MINER ORLANDO Solicitante (s)

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Tesis: "Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno" Proyecto / Obra

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : viernes, 13 de Octubre de 2023

: HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del concreto de cemento Portland. Ensayo

Referencia : N.T.P. 339.035:2009

- :	IDENTIFICACIÓN	Diseño	Fecha de vaciado		Asentamiento	
Diseño		f´c (kg/cm²)	(Días)	Diseño (pulg)	Obtenido (pulg)	Obtenido (cm)
DM-01	M.P- f'c= 280 kg/cm2	280	13/10/2023	3" - 4"	3.88	9.84
DM-02	M.P - f'c= 280 kg/cm2+ 10%PP +0.1% FP	280	13/10/2023	3" - 4"	4.00	10.16
DM-03	M.P - f'c= 280 kg/cm2+ 10%PP +0.2% FP	280	13/10/2023	3" - 4"	3.89	9.88
DM-04	M.P - f'c= 280 kg/cm2+ 10%PP +0.3% FP	280	13/10/2023	3" - 4"	3.80	9.65

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON ARYURO OLAYA AGUILAR

Email: servicios@lemswycseirl.com

SOLICITANTE (S) : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

PROYECTO : Tesis "Evaluación del comportamiento Hidromecánico del concreto incorporando

parcialmente perlitas de poliestireno expandido y fibras de polipropileno"

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : sábado, 10 de Setiembre de 2022

ENSAYO : HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la

temperatura de mezcla de hormigón.

REFERENCIA: N.T.P. 339.184

Diseño	Identificación	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Temperatura (C°)
DM-01	M.P- f'c= 210 kg/cm2	210	10/09/2022	28.0
DM-02	M.P - f'c= 210 kg/cm2 +5% FP	210	10/09/2022	32.0
DM-03	M.P - 1'c= 210 kg/cm2 +10% FP	210	10/09/2022	32.0
DM-04	M.P - f c= 210 kg/cm2 +15% FP	210	10/09/2022	31.5

OBSERVACIONES:

Email: servicios@lemswycseirl.com

SOLICITANTE (S) : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

PROYECTO : Tesis "Evaluación del comportamiento Hidromecánico del concreto incorporando

parcialmente perlitas de poliestireno expandido y fibras de polipropileno"

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : lunes, 11 de Setiembre de 2023

ENSAYO : HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la

temperatura de mezcla de hormigón.

REFERENCIA: N.T.P. 339.184

Diseño	Identificación	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Temperatura (C°)
DM-01	M.P- f'c= 280 kg/cm2	280	11/09/2023	30.0
DM-02	M.P - f'c= 280 kg/cm2 + 5%PP	280	11/09/2023	32.5
DM-03	M.P - f'c= 280 kg/cm2 + 10% PP	280	11/09/2023	30.6
DM-04	M.P - f'c= 280 kg/cm2 + 15% PP	280	11/09/2023	30.5

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

OLAYA AGUILAR

Email: servicios@lemswycseirl.com

SOLICITANTE (S) : MOLINA FERNÁNDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

PROYECTO : Tesis "Evaluación del comportamiento Hidromecánico del concreto incorporando

parcialmente perlitas de poliestireno expandido y fibras de polipropileno"

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : jueves, 12 de Octubre de 2023

ENSAYO : HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la

temperatura de mezcla de hormigón.

REFERENCIA: N.T.P. 339.184

Diseño	Identificación	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Temperatura (C°)
DM-01	M.P- f'c= 210 kg/cm2	210	12/10/2023	28.0
DM-02	M.P - f'c= 210 kg/cm2+ 10%PP +0.1% FP	210	12/10/2023	28.0
DM-03	M.P - f'c= 210 kg/cm2+ 10%PP +0.2% FP	210	12/10/2023	29.0
DM-04	M.P - f'c= 210 kg/cm2+ 10%PP +0.3% FP	210	12/10/2023	30.0

OBSERVACIONES:

Email: servicios@lemswycseirl.com

: MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE (S)

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Tesis "Evaluación del comportamiento Hidromecánico del concreto incorporando PROYECTO

parcialmente perlitas de poliestireno expandido y fibras de polipropileno"

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : viernes, 13 de Octubre de 2023

ENSAYO : HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la

temperatura de mezcla de hormigón.

REFERENCIA : N.T.P. 339.184

Diseño	Identificación	Identificación Identificación Identificación f'c (kg/cm²)		Temperatura (C°)
DM-01	M.P- f'c= 280 kg/cm2	280	13/10/2023	27.0
DM-02	M.P - f'c= 280 kg/cm2+ 10%PP +0.1% FP	280	13/10/2023	32.0
DM-03	M.P - f'c= 280 kg/cm2+ 10%PP +0.2% FP	280	13/10/2023	32.0
DM-04	M.P - f'c= 280 kg/cm2+ 10%PP +0.3% FP	280	13/10/2023	31.5

OBSERVACIONES:

Email: lemswyceirl@gmail.com

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE (S)

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Tesis: "Evaluación del comportamiento Hidromecánico del concreto incorporando parcialn perlitas de poliestireno expandido y fibras de polipropileno" **PROYECTO**

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : sábado, 10 de Setiembre de 2022

ENSAYO : CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y

contenido de aire (método gravimétrico) del concreto. 2ª Edición

REFERENCIA : N.T.P. 339.046 : 2008 (revisada el 2018)

Muestra Nº	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	DENSIDAD (Kg/m³)
01	M.P- f´c= 210 kg/cm2	210	10/09/2022	2321
02	M.P - f'c= 210 kg/cm2 + 5% PP	210	10/09/2022	2290
03	M.P - f 'c= 210 kg/cm2 + 10% PP	210	10/09/2022	2284
04	M.P - f 'c= 210 kg/cm2 + 15% PP	210	10/09/2022	2281

OBSERVACIONES:

Email: lemswyceirl@gmail.com

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE (S)

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Tesis: "Evaluación del comportamiento Hidromecánico del concreto incorporando parcialr : perlitas de poliestireno expandido y fibras de polipropileno" **PROYECTO**

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : lunes, 11 de Setiembre de 2023

: CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y ENSAYO

contenido de aire (método gravimétrico) del concreto. 2ª Edición

REFERENCIA : N.T.P. 339.046 : 2008 (revisada el 2018)

Muestra Nº	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	DENSIDAD (Kg/m³)
01	M.P- f'c= 280 kg/cm2	280	11/09/2023	2336
02	M.P - f´c= 280 kg/cm2 + 5%PP	280	11/09/2023	2338
03	M.P - f 'c= 280 kg/cm2 + 10% PP	280	11/09/2023	2342
04	M.P - f 'c= 280 kg/cm2 + 15% PP	280	11/09/2023	2347

OBSERVACIONES:

Email: lemswyceirl@gmail.com

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE (S)

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Tesis: "Evaluación del comportamiento Hidromecánico del concreto incorporando parcialm **PROYECTO**

perlitas de poliestireno expandido y fibras de polipropileno"

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : jueves, 12 de Octubre de 2023

: CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y **ENSAYO**

contenido de aire (método gravimétrico) del concreto. 2ª Edición

REFERENCIA : N.T.P. 339.046 : 2008 (revisada el 2018)

Muestra Nº	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	DENSIDAD (Kg/m³)
01	M.P- f'c= 210 kg/cm2	210	12/10/2023	2321
02	M.P - f'c= 210 kg/cm2+ 10%PP +0.1% FP	210	12/10/2023	2325
03	M.P - f'c= 210 kg/cm2+ 10%PP +0.2% FP	210	12/10/2023	2296
04	M.P - f'c= 210 kg/cm2+ 10%PP +0.3% FP	210	12/10/2023	2282

OBSERVACIONES:

Email: lemswyceirl@gmail.com

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE (S)

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Tesis: "Evaluación del comportamiento Hidromecánico del concreto incorporando parcialn i perlitas de poliestireno expandido y fibras de polipropileno" **PROYECTO**

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : viernes, 13 de Octubre de 2023

: CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y **ENSAYO**

contenido de aire (método gravimétrico) del concreto. 2ª Edición

REFERENCIA : N.T.P. 339.046 : 2008 (revisada el 2018)

Muestra Nº	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	DENSIDAD (Kg/m³)
01	M.P- f'c= 280 kg/cm2	280	13/10/2023	2336
02	M.P - f'c= 280 kg/cm2+ 10%PP +0.1% FP	280	13/10/2023	2311
03	M.P - f'c= 280 kg/cm2+ 10%PP +0.2% FP	280	13/10/2023	2296
04	M.P - f'c= 280 kg/cm2+ 10%PP +0.3% FP	280	13/10/2023	2282

OBSERVACIONES:

Email: servicios@lemswycseirl.com

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE (S)

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Tesis "Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno" **PROYECTO**

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : sábado, 10 de Setiembre de 2022

. HORMIGON (CONCRETO). Método por presión para la determinación del contenido de aire en **ENSAYO**

mezclas frescas.

REFERENCIA : NTP 339.080 TIPO DE MEDIDOR : Medidor "B"

Diseño	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Contenido de aire (%)
DM-01	M.P- f´c= 210 kg/cm2	210	10/09/2022	2.00
DM-02	M.P - f'c= 210 kg/cm2 + 5% PP	210	10/09/2022	1.80
DM-03	M.P - f 'c= 210 kg/cm2 + 10% PP	210	10/09/2022	1.70
DM-04	M.P - f 'c= 210 kg/cm2 + 15% PP	210	10/09/2022	1.60

OBSERVACIONES:

Email: servicios@lemswycseirl.com

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE (S)

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Tesis "Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno" **PROYECTO**

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : lunes, 11 de Setiembre de 2023

. HORMIGON (CONCRETO). Método por presión para la determinación del contenido de aire en mezclas frescas. **ENSAYO**

REFERENCIA : NTP 339.080 TIPO DE MEDIDOR : Medidor "B"

Diseño	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Contenido de aire (%)
DM-01	M.P- f´c= 280 kg/cm2	280	11/09/2023	2.30
DM-02	M.P - f'c= 280 kg/cm2 + 5% PP	280	11/09/2023	2.10
DM-03	M.P - f'c= 280 kg/cm2 + 10% PP	280	11/09/2023	2.00
DM-04	M.P - f'c= 280 kg/cm2 + 15% PP	280	11/09/2023	1.80

OBSERVACIONES:

Email: servicios@lemswycseirl.com

MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE (S)

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Tesis "Evaluación del comportamiento Hidromecánico del concreto incorporando : parcialmente perlitas de poliestireno expandido y fibras de polipropileno" **PROYECTO**

UBICACIÓN : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

FECHA : jueves, 12 de Octubre de 2023

. HORMIGON (CONCRETO). Método por presión para la determinación del contenido de aire en mezclas frescas. **ENSAYO**

: NTP 339.080 REFERENCIA TIPO DE MEDIDOR : Medidor "B"

Diseño	IDENTIFICACIÓN		Fecha de vaciado (Días)	Contenido de aire (%)
DM-01	M.P- f'c= 210 kg/cm2	210	12/10/2023	2.00
DM-02	M.P - f'c= 210 kg/cm2+ 10%PP +0.1% FP	210	12/10/2023	2.10
DM-03	M.P - f'c= 210 kg/cm2+ 10%PP +0.2% FP	210	12/10/2023	1.90
DM-04	M.P - f'c= 210 kg/cm2+ 10%PP +0.3% FP	210	12/10/2023	1.80

OBSERVACIONES:

Email: servicios@lemswycseirl.com

: MOLINA FERNÁNDEZ MINER ORLANDO SOLICITANTE (S)

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Tesis "Evaluación del comportamiento Hidromecánico del concreto incorporando : parcialmente perlitas de poliestireno expandido y fibras de polipropileno" **PROYECTO**

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque UBICACIÓN

FECHA : viernes, 13 de Octubre de 2023

. HORMIGON (CONCRETO). Método por presión para la determinación del contenido de aire en mezclas frescas. **ENSAYO**

: NTP 339.080 REFERENCIA TIPO DE MEDIDOR : Medidor "B"

Diseño	IDENTIFICACIÓN		Fecha de vaciado (Días)	Contenido de aire (%)
DM-01	M.P- f'c= 280 kg/cm2	280	13/10/2023	2.30
DM-02	M.P - f'c= 280 kg/cm2+ 10%PP +0.1% FP	280	13/10/2023	2.00
DM-03	M.P - f'c= 280 kg/cm2+ 10%PP +0.2% FP	280	13/10/2023	1.80
DM-04	M.P - f'c= 280 kg/cm2+ 10%PP +0.3% FP	280	13/10/2023	1.60

OBSERVACIONES:

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f′c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	19/09/2023	7	32100	15.18	177	181
02	Testigo 2 - D.P 210 + 5%PP	210	12/09/2023	19/09/2023	7	31509	15.13	177	178
03	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	19/09/2023	7	31804	15.23	177	179
04	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	26/09/2023	14	39666	15.01	177	224
05	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	26/09/2023	14	36301	15.02	177	205
06	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	26/09/2023	14	37984	15.01	177	215
07	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	10/10/2023	28	44357	15.02	177	250
08	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	10/10/2023	28	45356	15.02	177	256
09	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	10/10/2023	28	44857	15.03	177	253

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

144

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f′c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	19/09/2023	7	34150	15.03	177	193
02	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	19/09/2023	7	33630	15.03	177	190
03	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	19/09/2023	7	33890	15.03	177	191
04	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	26/09/2023	14	40655	15.02	177	230
05	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	26/09/2023	14	41074	15.01	177	232
06	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	26/09/2023	14	40864	15.01	177	231
07	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	10/10/2023	28	47712	15.01	177	270
08	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	10/10/2023	28	47294	15.01	177	267
09	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	10/10/2023	28	47503	15.01	177	269

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo 0606A-23/ LEMS W&C

MOLINA FERNÁNDEZ MINER ORLANDO. Solicitante

SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente Proyecto / Obra

perlitas de poliestireno expandido y fibras de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

: martes, 12 de Setiembre de 2023 Inicio de Ensayo

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f′c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	Testigo 1 - D.P 210 + 15%PP	210	12/09/2023	19/09/2023	7	30387	15.03	177	171
02	Testigo 1 - D.P 210 + 15%PP	210	12/09/2023	19/09/2023	7	30081	15.03	177	170
03	Testigo 1 - D.P 210 + 15%PP	210	12/09/2023	19/09/2023	7	30234	15.02	177	171
04	Testigo 1 - D.P 210 + 15%PP	210	12/09/2023	26/09/2023	14	36281	15.02	177	205
05	Testigo 1 - D.P 210 + 15%PP	210	12/09/2023	26/09/2023	14	36393	15.02	177	205
06	Testigo 1 - D.P 210 + 15%PP	210	12/09/2023	26/09/2023	14	36337	15.01	177	205
07	Testigo 1 - D.P 210 + 15%PP	210	12/09/2023	10/10/2023	28	43215	15.02	177	244
08	Testigo 1 - D.P 210 + 15%PP	210	12/09/2023	10/10/2023	28	43633	15.02	177	246
09	Testigo 1 - D.P 210 + 15%PP	210	12/09/2023	10/10/2023	28	43424	15.02	177	245

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

146

Certificado INDECOPI N°00137704 RNP Servicios S0608589

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f′c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	Testigo 1 - D.P 210	210	12/09/2023	19/09/2023	7	29571	15.18	181	163
02	Testigo 2 - D.P 210	210	12/09/2023	19/09/2023	7	28144	15.13	180	157
03	Testigo 3 - D.P 210	210	12/09/2023	19/09/2023	7	28858	15.23	182	158
04	Testigo 4 - D.P 210	210	12/09/2023	26/09/2023	14	32630	15.01	177	184
05	Testigo 5 - D.P 210	210	12/09/2023	26/09/2023	14	34364	15.02	177	194
06	Testigo 6 - D.P 210	210	12/09/2023	26/09/2023	14	33497	15.01	177	189
07	Testigo 7 - D.P 210	210	12/09/2023	10/10/2023	28	42420	15.02	177	239
08	Testigo 8 - D.P 210	210	12/09/2023	10/10/2023	28	40992	15.02	177	232
09	Testigo 9 - D.P 210	210	12/09/2023	10/10/2023	28	41706	15.03	177	235

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

OLAYA AGUILAR

Certificado INDECOPI Nº00137704 RNP Servicios S0608589

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : miércoles, 13 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f′c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	Testigo 1 - D.P 280	280	13/09/2023	20/09/2023	7	32630	15.18	181	180
02	Testigo 1 - D.P 280	280	13/09/2023	20/09/2023	7	35180	15.13	180	196
03	Testigo 1 - D.P 280	280	13/09/2023	20/09/2023	7	47620	15.23	182	261
04	Testigo 1 - D.P 280	280	13/09/2023	27/09/2023	14	40890	15.01	177	231
05	Testigo 1 - D.P 280	280	13/09/2023	27/09/2023	14	43133	15.02	177	244
06	Testigo 1 - D.P 280	280	13/09/2023	27/09/2023	14	46498	15.01	177	263
07	Testigo 1 - D.P 280	280	13/09/2023	11/10/2023	28	51189	15.02	177	289
08	Testigo 1 - D.P 280	280	13/09/2023	11/10/2023	28	52209	15.02	177	295
09	Testigo 1 - D.P 280	280	13/09/2023	11/10/2023	28	51699	15.03	177	292

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : miércoles, 13 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f′c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	Testigo 1 - D.P 280 + 5%PP	280	13/09/2023	20/09/2023	7	42012	15.18	177	237
02	Testigo 1 - D.P 280 + 5%PP	280	13/09/2023	20/09/2023	7	43133	15.13	177	243
03	Testigo 1 - D.P 280 + 5%PP	280	13/09/2023	20/09/2023	7	39462	15.23	177	222
04	Testigo 1 - D.P 280 + 5%PP	280	13/09/2023	27/09/2023	14	48538	15.01	177	274
05	Testigo 1 - D.P 280 + 5%PP	280	13/09/2023	27/09/2023	14	46498	15.02	177	263
06	Testigo 1 - D.P 280 + 5%PP	280	13/09/2023	27/09/2023	14	44357	15.01	177	251
07	Testigo 1 - D.P 280 + 5%PP	280	13/09/2023	11/10/2023	28	55982	15.02	177	316
08	Testigo 1 - D.P 280 + 5%PP	280	13/09/2023	11/10/2023	28	55676	15.02	177	314
09	Testigo 1 - D.P 280 + 5%PP	280	13/09/2023	11/10/2023	28	53942	15.03	177	304

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : miércoles, 13 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f′c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	Testigo 1 - D.P 280 + 10%PP	280	13/09/2023	20/09/2023	7	44357	15.03	177	250
02	Testigo 2 - D.P 280 + 10%PP	280	13/09/2023	20/09/2023	7	43541	15.03	177	246
03	Testigo 3 - D.P 280 + 10%PP	280	13/09/2023	20/09/2023	7	44051	15.03	177	248
04	Testigo 4 - D.P 280 + 10%PP	280	13/09/2023	27/09/2023	14	48538	15.02	177	274
05	Testigo 5 - D.P 280 + 10%PP	280	13/09/2023	27/09/2023	14	48538	15.01	177	274
06	Testigo 6 - D.P 280 + 10%PP	280	13/09/2023	27/09/2023	14	48436	15.01	177	274
07	Testigo 7 - D.P 280 + 10%PP	280	13/09/2023	11/10/2023	28	57817	15.01	177	327
08	Testigo 8 - D.P 280 + 10%PP	280	13/09/2023	11/10/2023	28	55880	15.01	177	316
09	Testigo 9 - D.P 280 + 10%PP	280	13/09/2023	11/10/2023	28	56899	15.01	177	322

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : miércoles, 13 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f′c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	Testigo 1 - D.P 280 + 15%PP	280	13/09/2023	20/09/2023	7	40992	15.03	177	231
02	Testigo 2 - D.P 280 + 15%PP	280	13/09/2023	20/09/2023	7	42012	15.03	177	237
03	Testigo 3 - D.P 280 + 15%PP	280	13/09/2023	20/09/2023	7	34058	15.02	177	192
04	Testigo 4 - D.P 280 + 15%PP	280	13/09/2023	27/09/2023	14	45071	15.02	177	255
05	Testigo 5 - D.P 280 + 15%PP	280	13/09/2023	27/09/2023	14	44357	15.02	177	250
06	Testigo 6 - D.P 280 + 15%PP	280	13/09/2023	27/09/2023	14	44714	15.01	177	253
07	Testigo 7 - D.P 280 + 15%PP	280	13/09/2023	11/10/2023	28	54248	15.02	177	306
08	Testigo 8 - D.P 280 + 15%PP	280	13/09/2023	11/10/2023	28	52209	15.02	177	295
09	Testigo 9 - D.P 280 + 15%PP	280	13/09/2023	11/10/2023	28	53228	15.02	177	301

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	M,	М,
Nº		(Dias)	(Dias)	(Días)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	Testigo 1 - D.P 210	12/09/2023	19/09/2023	7	25500	450	150	150	0	3.19	32.50
02	Testigo 2 - D.P 210	12/09/2023	19/09/2023	7	21160	450	150	150	0	2.80	28.55
03	Testigo 3 - D.P 210	12/09/2023	19/09/2023	7	23330	450	150	150	0	2.99	30.52
04	Testigo 4 - D.P 210	12/09/2023	26/09/2023	14	27800	450	150	150	0	3.47	35.35
05	Testigo 5 - D.P 210	12/09/2023	26/09/2023	14	25600	450	150	150	0	3.37	34.40
06	Testigo 6 - D.P 210	12/09/2023	26/09/2023	14	26700	450	150	150	0	3.42	34.87
07	Testigo 7 - D.P 210	12/09/2023	10/10/2023	28	32000	450	150	150	0	4.04	41.20
08	Testigo 8 - D.P 210	12/09/2023	10/10/2023	28	33600	450	150	150	0	4.20	42.83
09	Testigo 9 - D.P 210	12/09/2023	10/10/2023	28	32800	450	150	150	0	4.12	42.01

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	Mr	M,
N°		(Dias)	(Dias)	(Días)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	Testigo 1 - D.P 210 + 5% PP	12/09/2023	19/09/2023	7	25500	450	150	150	0	3.40	34.67
02	Testigo 1 - D.P 210 + 5% PP	12/09/2023	19/09/2023	7	21160	450	150	150	0	2.82	28.77
03	Testigo 1 - D.P 210 + 5% PP	12/09/2023	19/09/2023	7	23330	450	150	150	0	3.11	31.72
04	Testigo 1 - D.P 210 + 5% PP	12/09/2023	26/09/2023	14	27800	450	150	150	0	3.71	37.80
05	Testigo 1 - D.P 210 + 5% PP	12/09/2023	26/09/2023	14	25600	450	150	150	0	3.41	34.81
06	Testigo 1 - D.P 210 + 5% PP	12/09/2023	26/09/2023	14	26700	450	150	150	0	3.56	36.30
07	Testigo 1 - D.P 210 + 5% PP	12/09/2023	10/10/2023	28	32000	450	150	150	0	4.27	43.51
08	Testigo 1 - D.P 210 + 5% PP	12/09/2023	10/10/2023	28	33600	450	150	150	0	4.48	45.68
09	Testigo 1 - D.P 210 + 5% PP	12/09/2023	10/10/2023	28	32800	450	150	150	0	4.37	44.60

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	P	L	b	h	a	Mr	M,
Nº		(Dias)	(Dias)	(Días)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	Testigo 1 - D.P 210 + 10% PP	12/09/2023	19/09/2023	7	25000	450	150	150	0	3.33	34
02	Testigo 1 - D.P 210 + 10% PP	12/09/2023	19/09/2023	7	23900	450	150	150	0	3.19	32
03	Testigo 1 - D.P 210 + 10% PP	12/09/2023	19/09/2023	7	24450	450	150	150	0	3.26	33
04	Testigo 1 - D.P 210 + 10% PP	12/09/2023	26/09/2023	14	26700	450	150	150	0	3.56	36
05	Testigo 1 - D.P 210 + 10% PP	12/09/2023	26/09/2023	14	27900	450	150	150	0	3.72	38
06	Testigo 1 - D.P 210 + 10% PP	12/09/2023	26/09/2023	14	27300	450	150	150	0	3.64	37
07	Testigo 1 - D.P 210 + 10% PP	12/09/2023	10/10/2023	28	33200	450	150	150	0	4.43	45
08	Testigo 1 - D.P 210 + 10% PP	12/09/2023	10/10/2023	28	34000	450	150	150	0	4.53	46
09	Testigo 1 - D.P 210 + 10% PP	12/09/2023	10/10/2023	28	33600	450	150	150	0	4.48	46

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	P	L	b	h	a	M,	M,
Nº		(Dias)	(Dias)	(Días)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	Testigo 1 - D.P 210 + 15% PP	12/09/2023	19/09/2023	7	22600	450	150	150	0	3.01	30.73
02	Testigo 1 - D.P 210 + 15% PP	12/09/2023	19/09/2023	7	23000	450	150	150	0	3.07	31.27
03	Testigo 1 - D.P 210 + 15% PP	12/09/2023	19/09/2023	7	22800	450	150	150	0	3.04	31.00
04	Testigo 1 - D.P 210 + 15% PP	12/09/2023	26/09/2023	14	26300	450	150	150	0	3.51	35.76
05	Testigo 1 - D.P 210 + 15% PP	12/09/2023	26/09/2023	14	26770	450	150	150	0	3.57	36.40
06	Testigo 1 - D.P 210 + 15% PP	12/09/2023	26/09/2023	14	26535	450	150	150	0	3.54	36.08
07	Testigo 1 - D.P 210 + 15% PP	12/09/2023	10/10/2023	28	33000	450	150	150	0	4.40	44.87
08	Testigo 1 - D.P 210 + 15% PP	12/09/2023	10/10/2023	28	31000	450	150	150	0	4.13	42.15
09	Testigo 1 - D.P 210 + 15% PP	12/09/2023	10/10/2023	28	32000	450	150	150	0	4.27	43.51

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : miércoles, 13 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	Mr	M,
Nº		(Dias)	(Dias)	(Días)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	Testigo 1 - D.P 280	13/09/2023	20/09/2023	7	31000	450	150	150	0	3.20	32.63
02	Testigo 1 - D.P 280	13/09/2023	20/09/2023	7	27000	450	150	150	0	3.47	35.35
03	Testigo 1 - D.P 280	13/09/2023	20/09/2023	7	28000	450	150	150	0	3.17	32.36
04	Testigo 1 - D.P 280	13/09/2023	27/09/2023	14	32000	450	150	150	0	3.73	38.07
05	Testigo 1 - D.P 280	13/09/2023	27/09/2023	14	31000	450	150	150	0	3.87	39.43
06	Testigo 1 - D.P 280	13/09/2023	27/09/2023	14	33000	450	150	150	0	3.80	38.75
07	Testigo 1 - D.P 280	13/09/2023	11/10/2023	28	39000	450	150	150	0	4.80	48.95
08	Testigo 1 - D.P 280	13/09/2023	11/10/2023	28	41000	450	150	150	0	4.79	48.81
09	Testigo 1 - D.P 280	13/09/2023	11/10/2023	28	37000	450	150	150	0	4.63	47.18

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : miércoles, 13 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	М,	М,
N°		(Dias)	(Dias)	(Días)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	Testigo 1 - D.P 280 + 5% PP	13/09/2023	20/09/2023	7	31000	450	150	150	0	4.13	42.15
02	Testigo 1 - D.P 280 + 5% PP	13/09/2023	20/09/2023	7	27000	450	150	150	0	3.60	36.71
03	Testigo 1 - D.P 280 + 5% PP	13/09/2023	20/09/2023	7	28000	450	150	150	0	3.73	38.07
04	Testigo 1 - D.P 280 + 5% PP	13/09/2023	27/09/2023	14	32000	450	150	150	0	4.27	43.51
05	Testigo 1 - D.P 280 + 5% PP	13/09/2023	27/09/2023	14	31000	450	150	150	0	4.13	42.15
06	Testigo 1 - D.P 280 + 5% PP	13/09/2023	27/09/2023	14	33000	450	150	150	0	4.40	44.87
07	Testigo 1 - D.P 280 + 5% PP	13/09/2023	11/10/2023	28	39000	450	150	150	0	5.20	53.03
08	Testigo 1 - D.P 280 + 5% PP	13/09/2023	11/10/2023	28	41000	450	150	150	0	5.47	55.74
09	Testigo 1 - D.P 280 + 5% PP	13/09/2023	11/10/2023	28	37000	450	150	150	0	4.93	50.31

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : miércoles, 13 de Setiembre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	M,	M,
Nº		(Días)	(Dias)	(Días)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	Testigo 1 - D.P 280 + 10% PP	13/09/2023	20/09/2023	7	27000	450	150	150	0	3.60	36.71
02	Testigo 1 - D.P 280 + 10% PP	13/09/2023	20/09/2023	7	28900	450	150	150	0	3.85	39.29
03	Testigo 1 - D.P 280 + 10% PP	13/09/2023	20/09/2023	7	32000	450	150	150	0	4.27	43.51
04	Testigo 1 - D.P 280 + 10% PP	13/09/2023	27/09/2023	14	36000	450	150	150	0	4.80	48.95
05	Testigo 1 - D.P 280 + 10% PP	13/09/2023	27/09/2023	14	29000	450	150	150	0	3.87	39.43
06	Testigo 1 - D.P 280 + 10% PP	13/09/2023	27/09/2023	14	32500	450	150	150	0	4.33	44.19
07	Testigo 1 - D.P 280 + 10% PP	13/09/2023	11/10/2023	28	42000	450	150	150	0	5.60	57.10
08	Testigo 1 - D.P 280 + 10% PP	13/09/2023	11/10/2023	28	38000	450	150	150	0	5.07	51.67
09	Testigo 1 - D.P 280 + 10% PP	13/09/2023	11/10/2023	28	40000	450	150	150	0	5.33	54.39

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

IRO OLAYA AGUILAR

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : Jueves 16 de noviembre del 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	М,	М,
Nº		(Dias)	(Dias)	(Días)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	Testigo 1 - D.P 280 + 15% PP	13/09/2023	20/09/2023	7	24000	450	150	150	0	3.20	32.63
02	Testigo 1 - D.P 280 + 15% PP	13/09/2023	20/09/2023	7	27000	450	150	150	0	3.60	36.71
03	Testigo 1 - D.P 280 + 15% PP	13/09/2023	20/09/2023	7	29000	450	150	150	0	3.87	39.43
04	Testigo 1 - D.P 280 + 15% PP	13/09/2023	27/09/2023	14	29000	450	150	150	0	3.87	39.43
05	Testigo 1 - D.P 280 + 15% PP	13/09/2023	27/09/2023	14	32000	450	150	150	0	4.27	43.51
06	Testigo 1 - D.P 280 + 15% PP	13/09/2023	27/09/2023	14	30500	450	150	150	0	4.07	41.47
07	Testigo 1 - D.P 280 + 15% PP	13/09/2023	11/10/2023	28	36000	450	150	150	0	4.80	48.95
08	Testigo 1 - D.P 280 + 15% PP	13/09/2023	11/10/2023	28	38000	450	150	150	0	5.07	51.67
09	Testigo 1 - D.P 280 + 15% PP	13/09/2023	11/10/2023	28	39000	450	150	150	0	5.20	53.03

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción indirecta del

concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra N°	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	P (N)	d (mm)	l (mm)	T (MPa)	T (Kg/cm²)
01	Testigo 1 - D.P 210 +	210	12/09/2023	19/09/2023	7	142400	150	302	1.90	19
02	Testigo 1 - D.P 210 +	210	12/09/2023	19/09/2023	7	138900	150	300	1.77	18
03	Testigo 1 - D.P 210 +	210	12/09/2023	19/09/2023	7	137500	150	301	1.74	18
04	Testigo 1 - D.P 210 +	210	12/09/2023	26/09/2023	14	174400	150	300	2.20	22
05	Testigo 1 - D.P 210 +	210	12/09/2023	26/09/2023	14	173400	150	300	2.18	22
06	Testigo 1 - D.P 210 +	210	12/09/2023	26/09/2023	14	170500	150	300	2.18	22
07	Testigo 1 - D.P 210 +	210	12/09/2023	10/10/2023	28	213000	151	303	2.64	27
08	Testigo 1 - D.P 210 +	210	12/09/2023	10/10/2023	28	207000	150	300	2.80	29
09	Testigo 1 - D.P 210 +	210	12/09/2023	10/10/2023	28	210400	151	302	2.74	28

Donde:

D.P 210 : Diseño Patrón 210 Kg/cm2

P: Carga d: Diámetro I: Longitud

T: Resistencia a la tracción simple.

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

; Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de Proyecto / Obra

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

: CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción Ensayo

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra Nº	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	P (N)	d (mm)	(mm)	T (MPa)	T (Kg/cm²)
01	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	19/09/2023	7	142400	150	300	2.01	21
02	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	19/09/2023	7	138900	150	300	1.96	20
03	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	19/09/2023	7	137500	150	302	1.93	20
04	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	26/09/2023	14	174400	150	300	2.46	25
05	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	26/09/2023	14	173400	150	303	2.43	25
06	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	26/09/2023	14	170500	150	301	2.40	24
07	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	10/10/2023	28	213000	150	300	3.01	31
08	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	10/10/2023	28	207000	150	300	2.92	30
09	Testigo 1 - D.P 210 + 5%PP	210	12/09/2023	10/10/2023	28	210400	150	300	2.97	30

Donde:

D.P 210 : Diseño Patrón 210 Kg/cm2

P: Carga d: Diámetro I: Longitud

T: Resistencia a la tracción simple.

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra Nº	IDENTIFICACIÓN	Diseño f'o (kg/cm²)	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	P (N)	d (mm)	l (mm)	T (MPa)	T (Kg/cm ²)
01	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	19/09/2023	7	140500	150	301	1.98	20
02	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	19/09/2023	7	145000	150	302	2.03	21
03	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	19/09/2023	7	145000	150	301	2.04	21
04	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	26/09/2023	14	190000	150	302	2.66	27
05	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	26/09/2023	14	186000	150	301	2.62	27
06	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	26/09/2023	14	172300	150	302	2.42	25
07	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	10/10/2023	28	220000	150	301	3.10	32
08	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	10/10/2023	28	234000	150	302	3.28	33
09	Testigo 1 - D.P 210 + 10%PP	210	12/09/2023	10/10/2023	28	208900	150	301	2.94	30

Donde:

D.P 210 : Diseño Patrón 210 Kg/cm2

P: Carga

d: Diámetro

I: Longitud

T: Resistencia a la tracción simple.

OBSERVACIONES:

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO. SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : Jueves 12 de octubre del 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra	IDENTIFICACIÓN	Diseño f'o	Fecha de vaciado	Fecha de ensayo	Edad	P	d	1	T	T
Nº		(kg/cm²)	(Días)	(Días)	(Dias)	(N)	(mm)	(mm)	(MPa)	(Kg/cm²)
01	Testigo 1 - D.P 210 +15%PP	210	12/09/2023	19/09/2023	7	136000	150	301	1.91	20
02	Testigo 1 - D.P 210 +15%PP	210	12/09/2023	19/09/2023	7	136500	150	301	1.92	20
03	Testigo 1 - D.P 210 +15%PP	210	12/09/2023	19/09/2023	7	135300	150	301	1.90	19
04	Testigo 1 - D.P 210 +15%PP	210	12/09/2023	26/09/2023	14	145000	150	303	2.03	21
05	Testigo 1 - D.P 210 +15%PP	210	12/09/2023	26/09/2023	14	190800	150	301	2.69	27
06	Testigo 1 - D.P 210 +15%PP	210	12/09/2023	26/09/2023	14	162300	150	301	2.28	23
07	Testigo 1 - D.P 210 +15%PP	210	12/09/2023	10/10/2023	28	203400	150	302	2.85	29
08	Testigo 1 - D.P 210 +15%PP	210	12/09/2023	10/10/2023	28	210300	150	301	2.96	30
09	Testigo 1 - D.P 210 +15%PP	210	12/09/2023	10/10/2023	28	203000	150	301	2.86	29

Donde:

D.P 210 : Diseño Patrón 210 Kg/cm2

P: Carga

d: Diámetro

I: Longitud

T: Resistencia a la tracción simple.

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334

icado INDECOPI N°00137704 RNP Servicios S0608589 Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente pertitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción indirecta del

concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra Nº	IDENTIFICACIÓN	Diseño f'a (kg/cm²)	Fecha de vaciado (Días)	Fecha de ensayo (Dias)	Edad (Dias)	P (N)	d (mm)	I (mm)	T (MPa)	T (Kg/cm²)
01	Testigo 1 - D.P 280 +	280	12/09/2023	19/09/2023	7	154000	150	302	2.01	20
02	Testigo 1 - D.P 280 +	280	12/09/2023	19/09/2023	7	152000	150	300	1.86	19
03	Testigo 1 - D.P 280 +	280	12/09/2023	19/09/2023	7	147000	150	301	1.74	18
04	Testigo 1 - D.P 280 +	280	12/09/2023	26/09/2023	14	187000	150	300	2.49	25
05	Testigo 1 - D.P 280 +	280	12/09/2023	26/09/2023	14	198000	150	300	2.29	23
06	Testigo 1 - D.P 280 +	280	12/09/2023	26/09/2023	14	178000	150	300	2.18	22
07	Testigo 1 - D.P 280 +	280	12/09/2023	10/10/2023	28	243000	151	303	2.93	30
08	Testigo 1 - D.P 280 +	280	12/09/2023	10/10/2023	28	246000	150	300	3.27	33
09	Testigo 1 - D.P 280 +	280	12/09/2023	10/10/2023	28	231000	151	302	3.21	33

Donde

D.P 280 : Diseño Patrón 280 Kg/cm2

P: Carga

d: Diámetro I: Longitud

T: Resistencia a la tracción simple.

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra Nº	IDENTIFICACIÓN	Diseño f'o (kg/cm²)	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Dias)	P (N)	d (mm)	l (mm)	T (MPa)	T (Kg/cm²)
01	Testigo 1 - D.P 210 + 5%PP	280	12/09/2023	19/09/2023	7	154000	150	300	2.18	22
02	Testigo 1 - D.P 210 + 5%PP	280	12/09/2023	19/09/2023	7	152000	150	300	2.15	22
03	Testigo 1 - D.P 210 + 5%PP	280	12/09/2023	19/09/2023	7	147000	150	302	2.06	21
04	Testigo 1 - D.P 210 + 5%PP	280	12/09/2023	26/09/2023	14	187000	150	300	2.64	27
05	Testigo 1 - D.P 210 + 5%PP	280	12/09/2023	26/09/2023	14	198000	150	303	2.77	28
06	Testigo 1 - D.P 210 + 5%PP	280	12/09/2023	26/09/2023	14	178000	150	301	2.50	26
07	Testigo 1 - D.P 210 + 5%PP	280	12/09/2023	10/10/2023	28	243000	150	300	3.43	35
08	Testigo 1 - D.P 210 + 5%PP	280	12/09/2023	10/10/2023	28	246000	150	300	3.47	35
09	Testigo 1 - D.P 210 + 5%PP	280	12/09/2023	10/10/2023	28	231000	150	300	3.26	33

Donde:

D.P 280 : Diseño Patrón 280 Kg/cm2

P: Carga d: Diámetro l: Longitud

T: Resistencia a la tracción simple.

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra Nº	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	P (N)	d (mm)	l (mm)	T (MPa)	T (Kg/cm²)
01	Testigo 1 - D.P 280 + 10%PP	280	12/09/2023	19/09/2023	7	145000	150	301	2.04	21
02	Testigo 1 - D.P 280 + 10%PP	280	12/09/2023	19/09/2023	7	156000	150	302	2.19	22
03	Testigo 1 - D.P 280 + 10%PP	280	12/09/2023	19/09/2023	7	165000	150	301	2.32	24
04	Testigo 1 - D.P 280 + 10%PP	280	12/09/2023	26/09/2023	14	213000	150	302	2.99	30
05	Testigo 1 - D.P 280 + 10%PP	280	12/09/2023	26/09/2023	14	216000	150	301	3.04	31
06	Testigo 1 - D.P 280 + 10%PP	280	12/09/2023	26/09/2023	14	172300	150	302	2.42	25
07	Testigo 1 - D.P 280 + 10%PP	280	12/09/2023	10/10/2023	28	243000	150	301	3.42	35
08	Testigo 1 - D.P 280 + 10%PP	280	12/09/2023	10/10/2023	28	253000	150	302	3.55	36
09	Testigo 1 - D.P 280 + 10%PP	280	12/09/2023	10/10/2023	28	247000	150	301	3.48	35

MIGUEL

Donde:

D.P 280 : Diseño Patrón 280 Kg/cm2

P: Carga d: Diámetro

I: Longitud

T: Resistencia a la tracción simple.

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra	IDENTIFICACIÓN	Diseño f'c	Fecha de vaciado	Fecha de ensayo	Edad	Р	d	1	Т	Т
N°		(kg/cm²)	(Días)	(Días)	(Días)	(N)	(mm)	(mm)	(MPa)	(Kg/cm ²)
01	Testigo 1 - D.P 280 +15%PP	280	12/09/2023	19/09/2023	7	143000	150	301	2.01	21
02	Testigo 1 - D.P 280 +15%PP	280	12/09/2023	19/09/2023	7	148000	150	301	2.08	21
03	Testigo 1 - D.P 280 +15%PP	280	12/09/2023	19/09/2023	7	135300	150	301	1.90	19
04	Testigo 1 - D.P 280 +15%PP	280	12/09/2023	26/09/2023	14	168000	150	303	2.35	24
05	Testigo 1 - D.P 280 +15%PP	280	12/09/2023	26/09/2023	14	190800	150	301	2.69	27
06	Testigo 1 - D.P 280 +15%PP	280	12/09/2023	26/09/2023	14	173000	150	301	2.44	25
07	Testigo 1 - D.P 280 +15%PP	280	12/09/2023	10/10/2023	28	234000	150	302	3.28	33
08	Testigo 1 - D.P 280 +15%PP	280	12/09/2023	10/10/2023	28	243000	150	301	3.42	35
09	Testigo 1 - D.P 280 +15%PP	280	12/09/2023	10/10/2023	28	223000	150	301	3.14	32

Donde:

D.P 280 : Diseño Patrón 280 Kg/cm2

P: Carga

d: Diámetro

I: Longitud

T: Resistencia a la tracción simple.

Solicitante : MOLINA FERNANDEZ MINER ORLANDO SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y

fibras de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. : martes, 12 de Setiembre de 2023 Ubicación

Fin de Ensayo

Ensayo : STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0% al

: ASTM C-469 Referencia

IDENTIFICACIÓN	Fecha de	Fecha Ensayo	Edad	o,	Esfuerzo S2	Esfuerzo S1	€ unitaria	Ec	Promedio E _c
IDENTIFICACION	vaciado	recha Ensayo	(Dias)	(Kg/cm²)	(40%a _s) Kg/cm ²	(0.000050) Kg/cm ²	€2 (S2)	Kg/cm²	Kg/cm ²
PC - f'c= 210 kg/cm2	12/09/2023	19/09/2023	7	161.95	65	12.72438	0.000312	198470	
PC - f'c= 210 kg/cm2	12/09/2023	19/09/2023	7	154.13	62	12.10784	0.000319	184225	188620.89
PC - f'c= 210 kg/cm2	12/09/2023	19/09/2023	7	158.04	63	12.41611	0.000327	183168	
PC - f'c= 210 kg/cm2	12/09/2023	26/09/2023	14	178.70	71	14.03807	0.000336	201011	
PC - f'c= 210 kg/cm2	12/09/2023	26/09/2023	14	188.19	75	12.93483	0.000351	207241	203420.37
PC - f'c= 210 kg/cm2	12/09/2023	26/09/2023	14	183.45	73	12.61115	0.000351	202009	
PC - f'c= 210 kg/cm2	12/09/2023	10/10/2023	28	232.31	93	14.18465	0.000406	220887	
PC - f'c= 210 kg/cm2	12/09/2023	10/10/2023	28	223.90	90	15.42277	0.000373	229353	223849
PC - f'c= 210 kg/cm2	12/09/2023	10/10/2023	28	228.40	91	13.94505	0.000400	221308	

6

MIGUELANGEL AUEZ FERALES

WESON ARE

URO OLAYA AGUILAR

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

RALES

Solicitante : MOLINA FERNANDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente peritas de poliestireno expandido y

fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fin de Ensayo : martes, 12 de Setiembre de 2023

Ensays : STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitución (P)0% al cemento ó (CM)0%

Referencia : ASTM C-469

IDENTIFICACIÓN	Fecha de	Forto Forms	Edad	ø,	Esfuerzo S2	Esfuerzo S1	€ unitaria	Ec	Promedio E _c
IDENTIFICACION	vaciado	Fecha Ensayo	(Dias)	(Kg/cm²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	€2 (52)	Kg/cm ²	Kg/cm²
PC - f'c= 210 kg/cm2 +5% PP	12/09/2023	19/09/2023	7	161.95	65	12.72438	0.000312	193250	
PC - f'c= 210 kg/cm2 +5% PP	12/09/2023	19/09/2023	7	154.13	62	12.10784	0.000319	195307	195291.10
PC - f'c= 210 kg/cm2 +5% PP	12/09/2023	19/09/2023	7	158.04	63	12.41611	0.000327	197316	
PC - f'c= 210 kg/cm2 +5% PP	12/09/2023	26/09/2023	14	178.70	71	14.03807	0.000336	221898	
PC - f'c= 210 kg/cm2 +5% PP	12/09/2023	26/09/2023	14	188.19	75	12.93483	0.000351	214184	216184.25
PC - f'c= 210 kg/cm2 +5% PP	12/09/2023	26/09/2023	14	183.45	73	12.61115	0.000351	212471	
PC - f'c= 210 kg/cm2 +5% PP	12/09/2023	10/10/2023	28	232.31	93	14.18465	0.000406	230960	
PC - f'c= 210 kg/cm2 +5% PP	12/09/2023	10/10/2023	28	223.90	90	15.42277	0.000373	230925	231822
PC - f'c= 210 kg/cm2 +5% PP	12/09/2023	10/10/2023	28	228.40	91	13.94505	0.000400	233579	

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

URO OLAYA AGUILAR

: MOLINA FERNANDEZ MINER ORLANDO Solicitante

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras

de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fin de Ensayo : martes, 12 de Setiembre de 2023

 STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)OM1 - sustitucion (P)0% al cemento ó (CM)0% al : ASTM C-469 Ensayo

Referencia

IDENTIFICACIÓN	Fecha de	Fecha Ensavo	Edad	σ,	Esfuerzo S2	Esfuerzo S1	e unitaria	Ec	Promedio E _c
IDENTIFICACION	vaciado	Fecha Ensayo	(Dias)	(Kg/cm²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm²	Kg/cm²
PC - f'c= 210 kg/cm2 + 10% PP	12/09/2023	19/09/2023	7	161.95	65	12.72438	0.000312	201472	
PC - f'c= 210 kg/cm2 + 10% PP	12/09/2023	19/09/2023	7	154.13	62	12.10784	0.000319	208445	196922.75
PC - f'c= 210 kg/cm2 + 10% PP	12/09/2023	19/09/2023	7	158.04	63	12.41611	0.000327	180851	
PC - f'c= 210 kg/cm2 + 10% PP	12/09/2023	26/09/2023	14	178.70	71	14.03807	0.000336	221674	
PC - f'c= 210 kg/cm2 + 10% PP	12/09/2023	26/09/2023	14	188.19	75	12.93483	0.000351	223955	222650.77
PC - f'c= 210 kg/cm2 + 10% PP	12/09/2023	26/09/2023	14	183.45	73	12.61115	0.000351	222323	
PC - f'c= 210 kg/cm2 + 10% PP	12/09/2023	10/10/2023	28	232.31	93	14.18465	0.000406	242705	
PC - f'c= 210 kg/cm2 + 10% PP	12/09/2023	10/10/2023	28	223.90	90	15.42277	0.000373	240789	241714
PC - f'c= 210 kg/cm2 + 10% PP	12/09/2023	10/10/2023	28	228.40	91	13.94505	0.000400	241648	

4

MIGUELANGEL RUIZ FERALES

WE.SON ARYURO OLAYA AGUILAR

WELD FIRL

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : MOLINA FERNANDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de

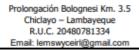
polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : martes, 12 de Setiembre de 2023

Ensayo : STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0% al agregado fino : ASTM C-469


4

Referencia : ASTM C-469

IDENTIFICACIÓN	Fecha de	Forbo France	Edad	σμ	Esfuerzo S2	Esfuerzo S1	€ unitaria	Ec	Promedio E _c
IDENTIFICACION	vaciado	Fecha Ensayo	(Días)	(Kg/cm²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm²	Kg/cm²
PC - f'c= 210 kg/cm2 + 15% PP	12/09/2023	19/09/2023	7	161.95	65	12.72438	0.000312	192873	
PC - f'c= 210 kg/cm2 + 15% PP	12/09/2023	19/09/2023	7	154.13	62	12.10784	0.000319	190936	191793.28
PC - f'c= 210 kg/cm2 + 15% PP	12/09/2023	19/09/2023	7	158.04	63	12.41611	0.000327	191571	
PC - f'c= 210 kg/cm2 + 15% PP	12/09/2023	26/09/2023	14	178.70	71	14.03807	0.000336	218412	
PC - f'c= 210 kg/cm2 + 15% PP	12/09/2023	26/09/2023	14	188.19	75	12.93483	0.000351	214718	217295.35
PC - f'c= 210 kg/cm2 + 15% PP	12/09/2023	26/09/2023	14	183.45	73	12.61115	0.000351	218755	
PC - f'c= 210 kg/cm2 + 15% PP	12/09/2023	10/10/2023	28	232.31	93	14.18465	0.000406	234974	
PC - f'c= 210 kg/cm2 + 15% PP	12/09/2023	10/10/2023	28	223.90	90	15.42277	0.000373	237432	236575
PC - f'c= 210 kg/cm2 + 15% PP	12/09/2023	10/10/2023	28	228.40	91	13.94505	0.000400	237320	

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

WE SON ARTURO OLAYA AGUILAR

Solicitante : MOLINA FERNANDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y

fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de apertura : miércoles, 13 de Setiembre de 2023

Ensayo : STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0% al

Referencia : ASTM C-469

IDENTIFICACIÓN	Fecha de	Forbs France	Edad	σ _u	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
IDENTIFICACION	vaciado	Fecha Ensayo	(Días)	(Kg/cm ²)	(40% σ_u) Kg/cm²	(0.000050) Kg/cm ²	€2 (S2)	Kg/cm ²	Kg/cm ²
PC - f'c= 280 kg/cm2	13/09/2023	20/09/2023	7	178.70	71	14.03807	0.000327	207106	
PC - f'c= 280 kg/cm2	13/09/2023	20/09/2023	7	192.66	77	13.24191	0.000357	207557	220927.97
PC - f'c= 280 kg/cm2	13/09/2023	20/09/2023	7	260.79	104	15.93511	0.000406	248120	
PC - f'c= 280 kg/cm2	13/09/2023	27/09/2023	14	223.93	90	13.68132	0.000391	222477	
PC - f'c= 280 kg/cm2	13/09/2023	27/09/2023	14	236.22	94	14.43382	0.000391	234665	231279.36
PC - f'c= 280 kg/cm2	13/09/2023	27/09/2023	14	254.65	102	15.55886	0.000415	236696	
PC - f'c= 280 kg/cm2	13/09/2023	11/10/2023	28	280.33	112	17.11890	0.000423	254517	
PC - f'c= 280 kg/cm2	13/09/2023	11/10/2023	28	285.17	114	15.71223	0.000437	254248	253433
PC - f'c= 280 kg/cm2	13/09/2023	11/10/2023	28	283.13	113	15.55962	0.000438	251533	

4

MICUELANGEL RUIZ PERALES INGENIERO CIVR.

URO OLAYA AGUILAR

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : MOLINA FERNANDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y

fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de apertura : miércoles, 13 de Setiembre de 2023

Ensayo : STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0%

4

Referencia : ASTM C-469

IDENTIFICACIÓN	Fecha de	Footo Forms	Edad	σu	Esfuerzo S2	Esfuerzo S1	€ unitaria	Ec	Promedio E _c
IDENTIFICACION	vaciado	Fecha Ensayo	(Días)	(Kg/cm ²)	(40%o _u) Kg/cm ²	(0.000050) Kg/cm ²	ϵ_2 (S ₂)	Kg/cm ²	Kg/cm²
PC - f'c= 280 kg/cm2 +5% PP	13/09/2023	20/09/2023	7	178.70	71	14.03807	0.000327	223071	
PC - f'c= 280 kg/cm2 +5% PP	13/09/2023	20/09/2023	7	192.66	77	13.24191	0.000357	230170	224660.59
PC - f'c= 280 kg/cm2 +5% PP	13/09/2023	20/09/2023	7	260.79	104	15.93511	0.000406	220741	
PC - f'c= 280 kg/cm2 +5% PP	13/09/2023	27/09/2023	14	223.93	90	13.68132	0.000391	247071	
PC - f'c= 280 kg/cm2 +5% PP	13/09/2023	27/09/2023	14	236.22	94	14.43382	0.000391	236696	239759.88
PC - f'c= 280 kg/cm2 +5% PP	13/09/2023	27/09/2023	14	254.65	102	15.55886	0.000415	235512	
PC - f'c= 280 kg/cm2 +5% PP	13/09/2023	11/10/2023	28	280.33	112	17.11890	0.000423	261058	
PC - f'c= 280 kg/cm2 +5% PP	13/09/2023	11/10/2023	28	285.17	114	15.71223	0.000437	265355	259682
PC - f'c= 280 kg/cm2 +5% PP	13/09/2023	11/10/2023	28	283.13	113	15.55962	0.000438	252634	

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

WELD FIRL

URO OLAYA AGUILAR

MICUELANGEL AUZ PERALES

INGENIERO CIVR.

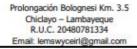
: MOLINA FERNANDEZ MINER ORLANDO SÁNCHEZ RAMÍREZ JOSÉ ELMER

: Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras Proyecto / Obra

de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación

Fecha de apertura : miércoles, 13 de Setiembre de 2023


STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0% al

Referencia : ASTM C-469

	Fecha de		Edad	G _a	Esfuerzo S2	Esfuerzo 51	e unitaria	Ec	Promedio E _c
IDENTIFICACIÓN	vaciado	Fecha Ensayo	(Dias)	(Kg/cm²)	(40%a _s) Kg/cm ²	(0.000050) Kg/cm ²	$\epsilon_2 (S_2)$	Kg/cm²	Kg/cm²
PC - f'c= 280 kg/cm2 + 10% PP	13/09/2023	20/09/2023	7	178.70	71	14.03807	0.000327	231107	
PC - f'c= 280 kg/cm2 + 10% PP	13/09/2023	20/09/2023	7	192.66	77	13.24191	0.000357	236887	234353.44
PC - f'c= 280 kg/cm2 + 10% PP	13/09/2023	20/09/2023	7	260.79	104	15.93511	0.000406	235066	
PC - f'c= 280 kg/cm2 + 10% PP	13/09/2023	27/09/2023	14	223.93	90	13.68132	0.000391	247071	
PC - f'c= 280 kg/cm2 + 10% PP	13/09/2023	27/09/2023	14	236.22	94	14.43382	0.000391	248098	247237.69
PC - f'c= 280 kg/cm2 + 10% PP	13/09/2023	27/09/2023	14	254.65	102	15.55886	0.000415	246543	
PC - f'c= 280 kg/cm2 + 10% PP	13/09/2023	11/10/2023	28	280.33	112	17.11890	0.000423	264128	
PC - f'c= 280 kg/cm2 + 10% PP	13/09/2023	11/10/2023	28	285.17	114	15.71223	0.000437	261984	263815
PC - f'c= 280 kg/cm2 + 10% PP	13/09/2023	11/10/2023	28	283.13	113	15.55962	0.000438	265332	

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

WE SON ARTURO OLAYA AGUILAR

: MOLINA FERNANDEZ MINER ORLANDO SÁNCHEZ RAMÍREZ JOSÉ ELMER Solicitante

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de

polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. : miércoles, 13 de Setiembre de 2023 Ubicación

Fecha de apertura

: STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN Ensayo

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0% al agregado fino

Referencia

IDENTIFICACIÓN	Fecha de	Fecha Ensayo	Edad	σ _u	Esfuerzo S2	Esfuerzo S1	e unitaria	E	Promedio E _c
	vaciado		(Días)	(Kg/cm²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	€2 (S2)	Kg/cm ²	Kg/cm ²
PC - f'c= 280 kg/cm2 + 15% PP	13/09/2023	20/09/2023	7	178.70	71	14.03807	0.000327	223011	
PC - f'c= 280 kg/cm2 + 15% PP	13/09/2023	20/09/2023	7	192.66	77	13.24191	0.000357	223071	215672.89
PC - f'c= 280 kg/cm2 + 15% PP	13/09/2023	20/09/2023	7	260.79	104	15.93511	0.000406	200937	
PC - f'c= 280 kg/cm2 + 15% PP	13/09/2023	27/09/2023	14	223.93	90	13.68132	0.000391	234831	
PC - f'c= 280 kg/cm2 + 15% PP	13/09/2023	27/09/2023	14	236.22	94	14.43382	0.000391	235512	234347.50
PC - f'c= 280 kg/cm2 + 15% PP	13/09/2023	27/09/2023	14	254.65	102	15.55886	0.000415	232699	9
PC - f'c= 280 kg/cm2 + 15% PP	13/09/2023	11/10/2023	28	280.33	112	17.11890	0.000423	258329	
PC - f'c= 280 kg/cm2 + 15% PP	13/09/2023	11/10/2023	28	285.17	114	15.71223	0.000437	254248	255353
PC - f'c= 280 kg/cm2 + 15% PP	13/09/2023	11/10/2023	28	283.13	113	15.55962	0.000438	253480	1

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

WESON ARY

URO OLAYA AGUILAR

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO. SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo : ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión.

Referencia : UNE-EN12390-8

WELC BIRL

WILSON ARTURO OLAYA AGUILAR

 Mezcla de concreto
 : fc = 210 kg/cm²

 R a/c diseño
 : 0.84

 Edad
 : 28 días

Muestra	Descripción de la Muestra	Edad	Fee	:ha	Но	ora	Tiempo		Pene	tración Máxir	ma (mm)
N°	(kg/cm²)	(Dias)	Inicio	Final	Inicio	Final	(72 <u>+</u> 2 Horas)	Cara	Unidad	Promedio	Clase de esposición
M-01	CONCRETO	28	13/10/2023	16/10/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	36.41		
M-U1	CONVENCIONAL 210	26	13/10/2023	10/10/2023	10:00:00 a. m.	10.00.00 a. m.	12	В	37.65		CUMPLE
M-02	CONCRETO	28	13/10/2023	16/10/2023	10:00:00 a.m.	10:00:00 a. m.	72	Α	44.71	40.97	CUMPLE para elementos en
M=02	CONVENCIONAL 210	28	13/10/2023	10/10/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	43.12	40.97	masa o armados
M-03	CONCRETO	28	13/10/2023	16/10/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	41.54		armados
M-03	CONVENCIONAL 210	28	13/10/2023	10/10/2023	10.00.00 a. m.	10.00.00 a. m.	12	В	42.37		

6000

MICUEL ANGEL AUE PERALES

NOTA:

- PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta

OBSERVACIONES:

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO. SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión.

 Referencia
 : UNE-EN12390-8

 Mezcla de concreto
 : fc = 210 kg/cm²

 R a/c diseño
 : 0.64

 Edad
 : 28 días

Muestra	Descripción de la Muestra	Edad	Fee	:ha	Ho	ora	Tiempo	_	Pene	tración Máxir	ma (mm)
N°	(kg/cm²)	(Dias)	Inicio	Final	Inicio	Final	(72 <u>+</u> 2 Horas)	Cara	Unidad	Promedio	Clase de esposición
M-01	CONCRETO PATRÓN 210	28	16/10/2023	19/10/2023	10:00:00 a. m.	10:00:00 a.m.	72	Α	43.27		
M-U1	+ 5%PP	26	10/10/2023	19/10/2023	10.00.00 a. m.	10.00.00 a. m.	12	В	41.82		CUMPLE para
M-02	CONCRETO PATRÓN 210	28	16/10/2023	19/10/2023	10:00:00 a.m.	10:00:00 a. m.	72	Α	38.27	40.20	elementos en
M-02	+ 5%PP	28	10/10/2023	19/10/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	37.55	40.20	masa o armados
M-03	CONCRETO PATRÓN 210	28	16/10/2023	19/10/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	39.44		armados
m-03	+ 5%PP	28	10/10/2023	15/10/2023	10.00.00 a. m.	10.00.00 a. m.	12	В	40.86		

4

MIGUEL ANGEL AUIZ PERALES INGENIERO CIVIL CIP. 248394

NOTA:

 PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

WILSON ARTURO OLAYA AGUILAR

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO. SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra

Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

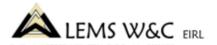
Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión.

 Referencia
 UNE-EN12390-8

 Mezcla de concreto
 ; fc = 210 kg/cm²

 R alc diseño
 0.64


 Edad
 28 dias

Muestra	Descripción de la Muestra	Edad	Fee	ha	Ho	ora	Tiempo	ecape:	Pene	etración Máxi	ma (mm)	
N°	(kg/cm²)	(Dias)	Inicio	Final	Inicio	Final	(72 ± 2 Horas)	Cara	Unidad	Promedio	Clase de esposición	
M-01	CONCRETO PATRÓN 210	28	20/10/2023	23/10/2023	10:00:00 a.m.	10:00:00 a.m.	72	Α	40.63			
M-U1	+ 10%PP	28	2W10/2023	23/10/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	41.78]	ADMIN P	
11.00	CONCRETO PATRÓN 210	20	2004020000	2014012000	10.00.00	10.00.00	20	Α	42.11	1	cumple para elementos er	
M-02	+ 10%PP	28	20/10/2023	23/10/2023	10:00:00 a. m.	10:00:00 a. m.	72	В	43.66	42.39	masa o	
M-03	CONCRETO PATRÓN 210	00	20/10/2023	23/10/2023	10:00:00 a.m.	10.00.00	70	A	42.63	1	armados	
M-U3	+ 10%PP	28	20/10/2023	23/10/2023	10:00:00 a. m.	m. 10:00:00 a.m. 72	a. m. 10:00:00 a. m.	12	B 4:	43.53	1	

NOTA:

 PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

VALSON ARTURO OLAYA AGUILAR

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO. SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión.

 Referencia
 : UNE-EN12390-8

 Mezcla de concreto
 : fc = 210 kg/cm²

 R a/c diseño
 : 0.64

 Edad
 : 28 días

Muestra	Descripción de la Muestra	Edad	Fee	tha	Ho	ora	Tiempo	_	Pene	tración Máxir	ma (mm)
N°	(kg/cm²)	(Dias)	Inicio	Final	Inicio	Final	(72 ± 2 Horas)	Cara	Unidad	Promedio	Clase de esposición
M-01	CONCRETO PATRÓN 210	28	24/10/2023	27/10/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	39.87		
M-01	+ 15%PP	26	24/10/2023	21/10/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	40.69		O
M-02	CONCRETO PATRÓN 210	28	24/10/2023	27/10/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	42.34	42.85	CUMPLE para elementos en
M-02	+ 15%PP	28	24/10/2023	27/10/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	44.10	42.85	masa o
M-03	CONCRETO PATRÓN 210	28	24/10/2023	27/10/2023	10:00:00 a. m.	10:00:00 a.m.	72	Α	44.91		armados
W-03	+ 15%PP	28	24/10/2023	21/10/2023	10.00.00 a. m.	10.00.00 a. m.	12	В	45.18		

MIGUEL ANGEL AUIZ PERALES INGENIERO CIVIL CIP. 248394

NOTA:

PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta
 OBSERVACIONES:

WILSON ARTURO OLAYA AGUILAR

Solicitud de Ensayo : 0606A-23/ LEMS W&C

: MOLINA FERNÁNDEZ MINER ORLANDO. SÁNCHEZ RAMÍREZ JOSÉ ELMER Solicitante

WELC BIRL

WALSON ARYURO OLAYA AGUILAR

Proyecto / Obra Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación

: viernes, 13 de Octubre de 2023 Inicio de Ensayo

Ensayo . ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión.

Referencia : UNE-EN12390-8 Mezcla de concreto : fc = 280 kg/cm² R a/c diseño : 0.54 . 28 dias Edad

Muestra	Descripción de la Muestra	Edad	Fee	cha	Ho	ora	Tiempo	7500-1500	Pene	etración Máxi	ma (mm)
N°	(kg/cm²)	(Dias)	Inicio	Final	Inicio	Final	(72 <u>+</u> 2 Horas)	Cara	Unidad	Promedio	Clase de esposición
M-01	CONCRETO		27/10/2023	30/10/2023	10:00:00 a. m.	10:00:00 a. m.	72	A	32.00		70-107-X-00-05
M-U1	CONVENCIONAL 280	28	21/10/2023	30/10/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	31.55	ľ	CUMPI E constitution
M-02	CONCRETO	28	27/10/2023	30/10/2023	10:00:00 a.m.	10:00:00 a.m.	72	A:	34.71	33.16	CUMPLE para elementos en
M-UZ	CONVENCIONAL 280	20	21/10/2023	30/10/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	32.07	33.16	masa o
M-03	CONCRETO	28	27/10/2023	30/10/2023	10.00.00	10.00.00	20	A	34.58	a di	armados
MI-03	CONVENCIONAL 280	28	27/10/2023	30/10/2023	10:00:00 a. m.	10:00:00 a. m.	12	72 B 34.07			

NOTA:

- PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta

OBSERVACIONES:

Certificado INDECOPI Nº00137704 RNP Servicios S0608585

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO. SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo ENSAYOS DE HORMIGÓN ENDURECIDO: • Parte 8: Profundidad de penetración de agua bajo presión.

 Referencia
 : UNE-EN12390-8

 Mezcla de concreto
 : fo = 280 kg/cm³

 R a/c diseño
 : 0.54

 Edad
 : 28 días

Muestra	Descripción de la Muestra	Edad	Fee	cha	Но	ora	Tiempo		Pene	tración Máxir	ma (mm)
N°	(kg/cm²)	(Dias)	Inicio	Final	Inicio	Final	(72 <u>+</u> 2 Horas)	Cara	Unidad	Promedio	Clase de esposición
M-01	CONCRETO PATRÓN 280	28	30/07/2023	02/08/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	34.34		
M-U1	+ 5%PP	28	30/07/2023	02/06/2023	10.00.00 a. III.	10.00.00 a. m.	12	В	32.95		CUMPLE
M-02	CONCRETO PATRÓN 280	28	30/07/2023	02/08/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	40.20	35.03	CUMPLE para elementos en
M-U2	+ 5%PP	28	30/07/2023	02/08/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	39.59	35.03	masa o armados
M-03	CONCRETO PATRÓN 280	28	30/07/2023	00/00/0000	10:00:00 a.m.	10:00:00 a. m.	72	Α	31.64		armados
M-03	+ 5%PP	28	30/07/2023	02/08/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	31.46		

NOTA:

 PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

Solicitud de Ensayo

: MOLINA FERNÁNDEZ MINER ORLANDO. Solicitante SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra

Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente pertitas de poliestireno expandido y fibras de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

. 28 dias

Inicio de Ensayo : viernes, 13 de Octubre de 2023

. ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión. Ensayo

: UNE-EN12390-8 Referencia Mezcla de concreto : fc = 280 kg/cm² R a/c diseño : 0.54

Muestra	Descripción de la Muestra	Edad	Fee	cha	Ho	ora	Tiempo		Pene	tración Máxi	ma (mm)
N°	(kg/cm²)	(Dias)	Inicio	Final	Inicio	Final	(72 ± 2 Horas)	Cara	Unidad	Promedio	Clase de esposición
M-01	CONCRETO PATRÓN 280	0.0	02/08/2023	05/08/2023	10:00:00 a.m.	10:00:00 a. m.	72	A	36.91		100
M-U1	+ 10%PP	28	U2/U8/2U23	U0/U8/2U23	10:00:00 a. m.	10:00:00 a. m.	12	В	34.09	18	
M-02	CONCRETO PATRÓN 280	28	02/08/2023	05/08/2023	10:00:00 a.m.	10:00:00 a. m.	72	A	38.44	36.68	CUMPLE para elementos en
M-UZ	+ 10%PP	28	U2/UB/2U23	UO/UB/2U23	10:00:00 a. m.	10:00:00 a. m.	12	В	37.28	36.68	masa o
M-03	CONCRETO PATRÓN 280	28	00000000	05/08/2023	10.00.00	10.00.00	72	Α	35.63		armados
M-03	+ 10%PP	28	02/08/2023	05/08/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	37.73		

MICUEL ANGEL RUIZ (E INGENIERO CIVA CIP. 246294

RALES

Edad

- PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

URO OLAYA AGUILAR

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO. SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo . ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión.

 Referencia
 : UNE-EN12390-8

 Mezcla de concreto
 : fc = 280 kg/cm²

 R a/c diseño
 : 0.54

 Edad
 : 28 días

Muestra	Descripción de la Muestra	Edad	Foo	tha			tración Máxir	ración Máxima (mm)			
N°	(kg/cm²)	(Dias)	Inicio	Final	Inicio	Final	(72 <u>+</u> 2 Horas)	Cara	Unidad	Promedio	Clase de esposición
M-01	CONCRETO PATRÓN 280	28	05/08/2023	08/08/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	36.19		
M-U1	+ 15%PP	26	05/08/2023	06/06/2023	10.00.00 a. m.	10.00.00 a. m.	12	В	37.66		CUMPLE
M-02	CONCRETO PATRÓN 280	28	05/08/2023	08/08/2023	10:00:00 a.m.	10:00:00 a. m.	72	Α	38.41		CUMPLE para elementos en
M-U2	+ 15%PP	28	05/08/2023	06/08/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	40.22	36.85	masa o armados
M-03	CONCRETO PATRÓN 280	28	05/08/2023	08/08/2023	10:00:00 a.m.	10:00:00 a. m.	72	Α	34.52		armados
M-03	+ 15%PP	28	00/06/2023	06/06/2023	10.00.00 a. III.	10.00.00 a. m.	12	В	34.10	36.85	

MIGUEL ANGEL RUIZ PE INGENIERO CIVIL. CIP. 246394

NOTA:

 PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

WILSON ARTURO OLAYA AGUILAR

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f'c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D.P 210 + 10%PP +0.1%FP	210	13/10/2023	20/10/2023	7	32100	15.03	177	181
02	D.P 210 + 10%PP +0.1%FP	210	13/10/2023	20/10/2023	7	31509	15.03	177	178
03	D.P 210 + 10%PP +0.1%FP	210	13/10/2023	20/10/2023	7	31804	15.03	177	179
04	D.P 210 + 10%PP +0.1%FP	210	13/10/2023	27/10/2023	14	39666	15.01	177	224
05	D.P 210 + 10%PP +0.1%FP	210	13/10/2023	27/10/2023	14	36301	15.02	177	205
06	D.P 210 + 10%PP +0.1%FP	210	13/10/2023	27/10/2023	14	37984	15.01	177	215
07	D.P 210 + 10%PP +0.1%FP	210	13/10/2023	10/11/2023	28	44357	15.02	177	250
08	D.P 210 + 10%PP +0.1%FP	210	13/10/2023	10/11/2023	28	45356	15.02	177	256
09	D.P 210 + 10%PP +0.1%FP	210	13/10/2023	10/11/2023	28	44857	15.03	177	253

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0606A-23/ LEMS W&C

: MOLINA FERNÁNDEZ MINER ORLANDO. Solicitante

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : Jueves 13 de octubre del 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

: N.T.P. 339.034:2021 Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f'c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D.P 210 + 10%PP +0.2%FP	210	13/10/2023	20/10/2023	7	33242	15.03	177	187
02	D.P 210 + 10%PP +0.2%FP	210	13/10/2023	20/10/2023	7	32824	15.03	177	185
03	D.P 210 + 10%PP +0.2%FP	210	13/10/2023	20/10/2023	7	33033	15.03	177	186
04	D.P 210 + 10%PP +0.2%FP	210	13/10/2023	27/10/2023	14	38341	15.02	177	217
05	D.P 210 + 10%PP +0.2%FP	210	13/10/2023	27/10/2023	14	39462	15.01	177	223
06	D.P 210 + 10%PP +0.2%FP	210	13/10/2023	27/10/2023	14	38902	15.01	177	220
07	D.P 210 + 10%PP +0.2%FP	210	13/10/2023	10/11/2023	28	45988	15.01	177	260
08	D.P 210 + 10%PP +0.2%FP	210	13/10/2023	10/11/2023	28	45672	15.01	177	258
09	D.P 210 + 10%PP +0.2%FP	210	13/10/2023	10/11/2023	28	45830	15.01	177	259

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

: 0606A-23/ LEMS W&C Solicitud de Ensayo

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación

Inicio de Ensayo : Jueves 13 de octubre del 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		fc	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D.P 210 + 10%PP +0.3%FP	210	13/10/2023	20/10/2023	7	34160	15.03	177	193
02	D.P 210 + 10%PP +0.3%FP	210	13/10/2023	20/10/2023	7	34038	15.03	177	192
03	D.P 210 + 10%PP +0.3%FP	210	13/10/2023	20/10/2023	7	34099	15.02	177	193
04	D.P 210 + 10%PP +0.3%FP	210	13/10/2023	27/10/2023	14	40584	15.02	177	229
05	D.P 210 + 10%PP +0.3%FP	210	13/10/2023	27/10/2023	14	40992	15.02	177	231
06	D.P 210 + 10%PP +0.3%FP	210	13/10/2023	27/10/2023	14	40788	15.01	177	231
07	D.P 210 + 10%PP +0.3%FP	210	13/10/2023	10/11/2023	28	48742	15.02	177	275
08	D.P 210 + 10%PP +0.3%FP	210	13/10/2023	10/11/2023	28	48028	15.02	177	271
09	D.P 210 + 10%PP +0.3%FP	210	13/10/2023	10/11/2023	28	48385	15.02	177	273

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : sábado, 14 de Octubre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
N°		fc	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	21/10/2023	7	41706	15.03	177	235
02	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	21/10/2023	7	40584	15.03	177	229
03	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	21/10/2023	7	41145	15.03	177	232
04	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	28/10/2023	14	48538	15.01	177	274
05	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	28/10/2023	14	43133	15.02	177	244
06	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	28/10/2023	14	48538	15.01	177	274
07	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	11/11/2023	28	59856	15.02	177	338
08	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	11/11/2023	28	60978	15.02	177	344
09	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	11/11/2023	28	55880	15.03	177	315

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

Certificado INDECOPI Nº00137704 RNP Servicios S0608589

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : sábado, 14 de Octubre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		fc	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	21/10/2023	7	41094	15.03	177	232
02	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	21/10/2023	7	42318	15.03	177	239
03	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	21/10/2023	7	41706	15.03	177	235
04	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	28/10/2023	14	48742	15.02	177	275
05	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	28/10/2023	14	44357	15.01	177	251
06	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	28/10/2023	14	46396	15.01	177	262
07	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	11/11/2023	28	60978	15.01	177	345
08	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	11/11/2023	28	57511	15.01	177	325
09	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	11/11/2023	28	58735	15.01	177	332

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

Certificado INDECOPI N°00137704 RNP Servicios S0608589

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente

perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : sábado, 14 de Octubre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras

cilíndricas. Método de ensayo.

Referencia : N.T.P. 339.034:2021

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº		f'c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	21/10/2023	7	43133	15.03	177	243
02	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	21/10/2023	7	42012	15.03	177	237
03	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	21/10/2023	7	43541	15.02	177	246
04	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	28/10/2023	14	47416	15.02	177	268
05	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	28/10/2023	14	49659	15.02	177	280
06	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	28/10/2023	14	50781	15.01	177	287
07	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	11/11/2023	28	60876	15.02	177	344
08	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	11/11/2023	28	59856	15.02	177	338
09	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	11/11/2023	28	60978	15.02	177	344

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra Nº	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	P (N)	d (mm)	I (mm)	T (MPa)	T (Kg/cm ²)
01	D.P 210 + 10%PP +0.1%FP	210	06/10/2023	13/10/2023	7	142400	150	300	2.01	21
02	D.P 210 + 10%PP +0.1%FP	210	06/10/2023	13/10/2023	7	138900	150	300	1.96	20
03	D.P 210 + 10%PP +0.1%FP	210	06/10/2023	13/10/2023	7	137500	150	302	1.93	20
04	D.P 210 + 10%PP +0.1%FP	210	06/10/2023	20/10/2023	14	174400	150	300	2.46	25
05	D.P 210 + 10%PP +0.1%FP	210	06/10/2023	20/10/2023	14	173400	150	303	2.43	25
06	D.P 210 + 10%PP +0.1%FP	210	06/10/2023	20/10/2023	14	170500	150	301	2.40	24
07	D.P 210 + 10%PP +0.1%FP	210	06/10/2023	03/11/2023	28	213000	150	300	3.01	31
08	D.P 210 + 10%PP +0.1%FP	210	06/10/2023	03/11/2023	28	207000	150	300	2.92	30
09	D.P 210 + 10%PP +0.1%FP	210	06/10/2023	03/11/2023	28	210400	150	300	2.97	30

Donde:

D.P 210 : Diseño Patrón 210 Kg/cm2

P: Carga d: Diámetro I: Longitud

T: Resistencia a la tracción simple.

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

WELC BIRL

MIGUEL

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra Nº	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	P (N)	d (mm)	(mm)	T (MPa)	T (Kg/cm ²)
01	D.P 210 + 10%PP +0.2%FP	210	06/10/2023	13/10/2023	7	140500	150	301	1.98	20
02	D.P 210 + 10%PP +0.2%FP	210	06/10/2023	13/10/2023	7	145000	150	302	2.03	21
03	D.P 210 + 10%PP +0.2%FP	210	06/10/2023	13/10/2023	7	145000	150	301	2.04	21
04	D.P 210 + 10%PP +0.2%FP	210	06/10/2023	20/10/2023	14	190000	150	302	2.66	27
05	D.P 210 + 10%PP +0.2%FP	210	06/10/2023	20/10/2023	14	186000	150	301	2.62	27
06	D.P 210 + 10%PP +0.2%FP	210	06/10/2023	20/10/2023	14	172300	150	302	2.42	25
07	D.P 210 + 10%PP +0.2%FP	210	06/10/2023	03/11/2023	28	220000	150	301	3.10	32
08	D.P 210 + 10%PP +0.2%FP	210	06/10/2023	03/11/2023	28	234000	150	302	3.28	33
09	D.P 210 + 10%PP +0.2%FP	210	06/10/2023	03/11/2023	28	208900	150	301	2.94	30

Donde:

D.P 210 : Diseño Patrón 210 Kg/cm2

P: Carga d: Diámetro

I: Longitud

T: Resistencia a la tracción simple.

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra	IDENTIFICACIÓN	Diseño f'c	Fecha de vaciado	Fecha de ensayo	Edad	Р	d	1	Т	Т
Nº		(kg/cm²)	(Días)	(Días)	(Días)	(N)	(mm)	(mm)	(MPa)	(Kg/cm ²)
01	D.P 210 + 10%PP +0.3%FP	210	06/10/2023	13/10/2023	7	156000	150	301	2.20	22
02	D.P 210 + 10%PP +0.3%FP	210	06/10/2023	13/10/2023	7	140000	150	301	1.97	20
03	D.P 210 + 10%PP +0.3%FP	210	06/10/2023	13/10/2023	7	151000	150	301	2.13	22
04	D.P 210 + 10%PP +0.3%FP	210	06/10/2023	20/10/2023	14	189000	150	303	2.64	27
05	D.P 210 + 10%PP +0.3%FP	210	06/10/2023	20/10/2023	14	190800	150	301	2.69	27
06	D.P 210 + 10%PP +0.3%FP	210	06/10/2023	20/10/2023	14	197000	150	301	2.77	28
07	D.P 210 + 10%PP +0.3%FP	210	06/10/2023	03/11/2023	28	223000	150	302	3.13	32
08	D.P 210 + 10%PP +0.3%FP	210	06/10/2023	03/11/2023	28	226000	150	301	3.18	32
09	D.P 210 + 10%PP +0.3%FP	210	06/10/2023	03/11/2023	28	230000	150	301	3.24	33

Donde:

D.P 210 : Diseño Patrón 210 Kg/cm2

P: Carga

d: Diámetro

I: Longitud

T: Resistencia a la tracción simple.

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

MIGUEL ANGEL AUEZ TERALES

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura : Lunes 09 de octubre del 2023 Inicio de Ensayo : sábado, 14 de Octubre de 2023 Fin de Ensayo : Viernes 08 de diciembre del 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra Nº	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	P (N)	d (mm)	I (mm)	T (MPa)	T (Kg/cm²)
01	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	21/10/2023	7	154000	150	300	2.18	22
02	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	21/10/2023	7	157000	150	300	2.22	23
03	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	21/10/2023	7	152000	150	302	2.13	22
04	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	28/10/2023	14	189000	150	300	2.67	27
05	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	28/10/2023	14	198000	150	303	2.77	28
06	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	28/10/2023	14	193000	150	301	2.72	28
07	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	11/11/2023	28	243000	150	300	3.43	35
08	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	11/11/2023	28	240000	150	300	3.39	35
09	D.P 280 + 10%PP +0.1%FP	280	14/10/2023	11/11/2023	28	246000	150	300	3.47	35

Donde:

D.P 280 : Diseño Patrón 280 Kg/cm2

P: Carga d: Diámetro

I: Longitud

T: Resistencia a la tracción simple.

Solicitud de Ensayo : 0809A-23/LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : sábado, 14 de Octubre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra Nº	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	P (N)	d (mm)	I (mm)	T (MPa)	T (Kg/cm ²)
01	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	21/10/2023	7	155000	150	301	2.18	22
02	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	21/10/2023	7	164000	150	302	2.30	23
03	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	21/10/2023	7	157000	150	301	2.21	23
04	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	28/10/2023	14	205000	150	302	2.88	29
05	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	28/10/2023	14	201000	150	301	2.83	29
06	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	28/10/2023	14	209000	150	302	2.93	30
07	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	11/11/2023	28	251000	150	301	3.53	36
08	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	11/11/2023	28	248000	150	302	3.48	35
09	D.P 280 + 10%PP +0.2%FP	280	14/10/2023	11/11/2023	28	254000	150	301	3.58	36

Donde:

D.P 280 : Diseño Patrón 280 Kg/cm2

P: Carga d: Diámetro

I: Longitud

T: Resistencia a la tracción simple.

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0809A-23/LEMS W&C

: MOLINA FERNÁNDEZ MINER ORLANDO. Solicitante

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : sábado, 14 de Octubre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción

indirecta del concreto, por compresión diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 2022

Muestra N°	IDENTIFICACIÓN	Diseño f'c	Fecha de vaciado	Fecha de ensayo	Edad (Días)	P (N)	d (mm)	 	T (MPa)	T
N°		(kg/cm²)	(Días)	(Días)	(Dias)	(IN)	(mm)	(mm)	(MPa)	(Kg/cm ²)
01	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	21/10/2023	7	163000	150	301	2.29	23
02	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	21/10/2023	7	167000	150	301	2.35	24
03	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	21/10/2023	7	164000	150	301	2.31	24
04	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	28/10/2023	14	213000	150	303	2.98	30
05	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	28/10/2023	14	217000	150	301	3.05	31
06	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	28/10/2023	14	205000	150	301	2.89	29
07	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	11/11/2023	28	256000	150	302	3.59	37
08	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	11/11/2023	28	276000	150	301	3.88	40
09	D.P 280 + 10%PP +0.3%FP	280	14/10/2023	11/11/2023	28	279000	150	301	3.93	40

Donde:

D.P 280 : Diseño Patrón 280 Kg/cm2

P: Carga d: Diámetro I: Longitud

T: Resistencia a la tracción simple.

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : Viernes 13 de octubre del 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	P	L	ь	h	a	M,	м,
M°		(Dias)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	D.P 210 + 10%PP +0.1%FP	13/10/2023	20/10/2023	7	25500	450	150	150	0	3.40	35
02	D.P 210 + 10%PP +0.1%FP	13/10/2023	20/10/2023	7	23000	450	150	150	0	3.07	31
03	D.P 210 + 10%PP +0.1%FP	13/10/2023	20/10/2023	7	24250	450	150	150	0	3.23	33
04	D.P 210 + 10%PP +0.1%FP	13/10/2023	27/10/2023	14	27800	450	150	150	0	3.71	38
05	D.P 210 + 10%PP +0.1%FP	13/10/2023	27/10/2023	14	28000	450	150	150	0	3.73	38
06	D.P 210 + 10%PP +0.1%FP	13/10/2023	27/10/2023	14	27900	450	150	150	0	3.72	38
07	D.P 210 + 10%PP +0.1%FP	13/10/2023	10/11/2023	28	34000	450	150	150	0	4.53	46
08	D.P 210 + 10%PP +0.1%FP	13/10/2023	10/11/2023	28	33600	450	150	150	0	4.48	46
09	D.P 210 + 10%PP +0.1%FP	13/10/2023	10/11/2023	28	33800	450	150	150	0	4.51	46

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : Viernes 13 de octubre del 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	P	L	ь	h	a	M,	М,
Nº		(Dias)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	D.P 210 + 10%PP +0.2%FP	13/10/2023	20/10/2023	7	25000	450	150	150	0	3.33	34
02	D.P 210 + 10%PP +0.2%FP	13/10/2023	20/10/2023	7	23900	450	150	150	0	3.19	32
03	D.P 210 + 10%PP +0.2%FP	13/10/2023	20/10/2023	7	24450	450	150	150	0	3.26	33
04	D.P 210 + 10%PP +0.2%FP	13/10/2023	27/10/2023	14	29000	450	150	150	0	3.87	39
05	D.P 210 + 10%PP +0.2%FP	13/10/2023	27/10/2023	14	28000	450	150	150	0	3.73	38
06	D.P 210 + 10%PP +0.2%FP	13/10/2023	27/10/2023	14	28500	450	150	150	0	3.80	39
07	D.P 210 + 10%PP +0.2%FP	13/10/2023	10/11/2023	28	35000	450	150	150	0	4.67	48
08	D.P 210 + 10%PP +0.2%FP	13/10/2023	10/11/2023	28	36000	450	150	150	0	4.80	49
09	D.P 210 + 10%PP +0.2%FP	13/10/2023	10/11/2023	28	35500	450	150	150	0	4.73	48

D.P 210 = Diseño Patrón 210 Kg/cm2

OBSERVACIONES:

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : Viernes 13 de octubre del 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	P	L	ь	h	a	M,	м,
N°		(Dias)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	D.P 210 + 10%PP +0.3%FP	13/10/2023	20/10/2023	7	24000	450	150	150	0	3.20	33
02	D.P 210 + 10%PP +0.3%FP	13/10/2023	20/10/2023	7	26000	450	150	150	0	3.47	35
03	D.P 210 + 10%PP +0.3%FP	13/10/2023	20/10/2023	7	25000	450	150	150	0	3.33	34
04	D.P 210 + 10%PP +0.3%FP	13/10/2023	27/10/2023	14	27000	450	150	150	0	3.60	37
05	D.P 210 + 10%PP +0.3%FP	13/10/2023	27/10/2023	14	32000	450	150	150	0	4.27	44
06	D.P 210 + 10%PP +0.3%FP	13/10/2023	27/10/2023	14	29500	450	150	150	0	3.93	40
07	D.P 210 + 10%PP +0.3%FP	13/10/2023	10/11/2023	28	38000	450	150	150	0	5.07	52
08	D.P 210 + 10%PP +0.3%FP	13/10/2023	10/11/2023	28	36000	450	150	150	0	4.80	49
09	D.P 210 + 10%PP +0.3%FP	13/10/2023	10/11/2023	28	37000	450	150	150	0	4.93	50

D.P 210 = Diseño Patrón 210 Kg/cm²

OBSERVACIONES:

Certificado INDECOPI N°00137704 RNP Servicios S0608589 Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : sábado, 14 de Octubre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	M,	м,
Nº		(Dias)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	D.P 280 + 10%PP +0.1%FP	14/10/2023	21/10/2023	7	28000	450	150	150	0	3.73	38
02	D.P 280 + 10%PP +0.1%FP	14/10/2023	21/10/2023	7	27000	450	150	150	0	3.60	37
03	D.P 280 + 10%PP +0.1%FP	14/10/2023	21/10/2023	7	27500	450	150	150	0	3.67	37
04	D.P 280 + 10%PP +0.1%FP	14/10/2023	28/10/2023	14	34000	450	150	150	0	4.53	46
05	D.P 280 + 10%PP +0.1%FP	14/10/2023	28/10/2023	14	29000	450	150	150	0	3.87	39
06	D.P 280 + 10%PP +0.1%FP	14/10/2023	28/10/2023	14	31500	450	150	150	0	4.20	43
07	D.P 280 + 10%PP +0.1%FP	14/10/2023	11/11/2023	28	43000	450	150	150	0	5.73	58
08	D.P 280 + 10%PP +0.1%FP	14/10/2023	11/11/2023	28	41000	450	150	150	0	5.47	56
09	D.P 280 + 10%PP +0.1%FP	14/10/2023	11/11/2023	28	42000	450	150	150	0	5.60	57

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0606A-23/ LEMS W&C

: MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación

Inicio de Ensayo : sábado, 14 de Octubre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	P	L	ь	h	a	M,	м,
N°		(Dias)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	D.P 280 + 10%PP +0.2%FP	14/10/2023	21/10/2023	7	26000	450	150	150	0	3.47	35
02	D.P 280 + 10%PP +0.2%FP	14/10/2023	21/10/2023	7	27000	450	150	150	0	3.60	37
03	D.P 280 + 10%PP +0.2%FP	14/10/2023	21/10/2023	7	31000	450	150	150	0	4.13	42
04	D.P 280 + 10%PP +0.2%FP	14/10/2023	28/10/2023	14	34000	450	150	150	0	4.53	46
05	D.P 280 + 10%PP +0.2%FP	14/10/2023	28/10/2023	14	32000	450	150	150	0	4.27	44
06	D.P 280 + 10%PP +0.2%FP	14/10/2023	28/10/2023	14	33000	450	150	150	0	4.40	45
07	D.P 280 + 10%PP +0.2%FP	14/10/2023	11/11/2023	28	43000	450	150	150	0	5.73	58
08	D.P 280 + 10%PP +0.2%FP	14/10/2023	11/11/2023	28	41000	450	150	150	0	5.47	56
09	D.P 280 + 10%PP +0.2%FP	14/10/2023	11/11/2023	28	46000	450	150	150	0	6.13	63

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de

poliestireno expandido y fibras de polipropileno.

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : sábado, 14 de Octubre de 2023

Ensayo : CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente

apoyadas con carga a los tercios de la distancia entre apoyos. Método de ensayo.

Referencia : N.T.P. 339.078:2022

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	P	L	ь	h	a	M,	М,
Nº		(Dias)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Kg/cm²)
01	D.P 280 + 10%PP +0.3%FP	14/10/2023	21/10/2023	7	31000	450	150	150	0	4.13	42
02	D.P 280 + 10%PP +0.3%FP	14/10/2023	21/10/2023	7	27000	450	150	150	0	3.60	37
03	D.P 280 + 10%PP +0.3%FP	14/10/2023	21/10/2023	7	28000	450	150	150	0	3.73	38
04	D.P 280 + 10%PP +0.3%FP	14/10/2023	28/10/2023	14	32000	450	150	150	0	4.27	44
05	D.P 280 + 10%PP +0.3%FP	14/10/2023	28/10/2023	14	35000	450	150	150	0	4.67	48
06	D.P 280 + 10%PP +0.3%FP	14/10/2023	28/10/2023	14	37000	450	150	150	0	4.93	50
07	D.P 280 + 10%PP +0.3%FP	14/10/2023	11/11/2023	28	43000	450	150	150	0	5.73	58
08	D.P 280 + 10%PP +0.3%FP	14/10/2023	11/11/2023	28	47000	450	150	150	0	6.27	64
09	D.P 280 + 10%PP +0.3%FP	14/10/2023	11/11/2023	28	45000	450	150	150	0	6.00	61

MIGUELANGEL

D.P 280 = Diseño Patrón 280 Kg/cm²

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : MOLINA FERNANDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente peritas de poliestireno expandido y

fibras de polipropileno.

Ubicación : Dist Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de apertura : viernes, 13 de Octubre de 2023

Ensayo : STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0%

Referencia : ASTM C-469

IDENTIFICACIÓN	Fecha de	Facha Farma	Edad	ď,	Esfuerzo S2	Esfuerzo S1	€ unitaria	E,	Promedio E _s
IDENTIFICACION	vaciado	Fecha Ensayo	(Días)	(Kg/cm ²)	(40%a _u) Kg/cm ²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm²	Kg/cm²
D.P 210 + 10%PP +0.1%FP	13/10/2023	20/10/2023	7	175.35	70	13.77723	0.000312	192739	
D.P 210 + 10%PP +0.1%FP	13/10/2023	20/10/2023	7	166.41	67	13.07533	0.000319	195307	195120.85
D.P 210 + 10%PP +0.1%FP	13/10/2023	20/10/2023	7	170.88	68	13.42628	0.000327	197316	
D.P 210 + 10%PP +0.1%FP	13/10/2023	27/10/2023	14	196.57	79	15.44188	0.000336	221898	
D.P 210 + 10%PP +0.1%FP	13/10/2023	27/10/2023	14	192.66	77	13.24191	0.000351	214184	216184.25
D.P 210 + 10%PP +0.1%FP	13/10/2023	27/10/2023	14	194.33	78	13.35810	0.000351	212471	
D.P 210 + 10%PP +0.1%FP	13/10/2023	10/11/2023	28	242.92	97	14.83343	0.000406	230960	
D.P 210 + 10%PP +0.1%FP	13/10/2023	10/11/2023	28	236.71	95	16.30194	0.000373	230925	231822
D.P 210 + 10%PP +0.1%FP	13/10/2023	10/11/2023	28	240.13	96	14.66386	0.000400	233579	

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

WELC BIRL

WE SON ARTURO OLAYA AGUILAR

4000

MIGUEL ANGEL AUEZ FRALES

Solicitante : MOLINA FERNANDEZ MINER ORLANDO SÁNCHEZ RAMÍREZ JOSÉ ELMER

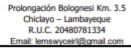
; Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras Proyecto / Obra

de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. : viernes, 13 de Octubre de 2023 Ubicación

Fecha de apertura

Ensayo STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN


COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0% al

: ASTM C-469 Referencia

IDENTIFICACIÓN	Fecha de		Edad	ø,	Esfuerzo S2	Esfuerzo S1	e unitaria	Ec	Promedio E _c
IDENTIFICACION	vaciado	Fecha Ensayo	(Dias)	(Kg/cm²)	(40%a _u) Kg/cm ²	(0.000050) Kg/cm ²	€2 (S2)	Kg/cm²	Kg/cm²
D.P 210 + 10%PP +0.2%FP	13/10/2023	20/10/2023	7	175.35	70	13.77723	0.000312	196112	
D.P 210 + 10%PP +0.2%FP	13/10/2023	20/10/2023	7	166.41	67	13.07533	0.000319	202887	191758.53
D.P 210 + 10%PP +0.2%FP	13/10/2023	20/10/2023	7	170.88	68	13.42628	0.000327	176276	
D.P 210 + 10%PP +0.2%FP	13/10/2023	27/10/2023	14	196.57	79	15.44188	0.000336	209054	
D.P 210 + 10%PP +0.2%FP	13/10/2023	27/10/2023	14	192.66	77	13.24191	0.000351	215161	211862.09
D.P 210 + 10%PP +0.2%FP	13/10/2023	27/10/2023	14	194.33	78	13.35810	0.000351	211371	
D.P 210 + 10%PP +0.2%FP	13/10/2023	10/11/2023	28	242.92	97	14.83343	0.000406	233940	
D.P 210 + 10%PP +0.2%FP	13/10/2023	10/11/2023	28	236.71	95	16.30194	0.000373	232527	233205
D.P 210 + 10%PP +0.2%FP	13/10/2023	10/11/2023	28	240.13	96	14.66386	0.000400	233149	

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

VALSON ARY URO OLAYA AGUILAR

Solicitante : MOLINA FERNANDEZ MINER ORLANDO SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de

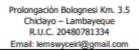
polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación

Fecha de apertura : sábado, 14 de Octubre de 2023

Ensayo

: STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0% al agregado fino


: ASTM C-469 Referencia

IDENTIFICACIÓN	Fecha de		Edad	o,	Esfuerzo S2	Esfuerzo S1	c unitaria	E _c	Promedio E _c
IDENTIFICACION	vaciado	Fecha Ensayo	(Días)	(Kg/cm²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	e ₂ (S ₂)	Kg/cm²	Kg/cm²
D.P 210 + 10%PP +0.3%FP	14/10/2023	21/10/2023	7	175.35	70	13.77723	0.000312	216806	
D.P 210 + 10%PP +0.3%FP	14/10/2023	21/10/2023	7	166.41	67	13.07533	0.000319	216030	216420.85
D.P 210 + 10%PP +0.3%FP	14/10/2023	21/10/2023	7	170.88	68	13.42628	0.000327	216427	
D.P 210 + 10%PP +0.3%FP	14/10/2023	28/10/2023	14	196.57	79	15.44188	0.000336	244319	
D.P 210 + 10%PP +0.3%FP	14/10/2023	28/10/2023	14	192.66	77	13.24191	0.000351	241833	243899.60
D.P 210 + 10%PP +0.3%FP	14/10/2023	28/10/2023	14	194.33	78	13.35810	0.000351	245547	
D.P 210 + 10%PP +0.3%FP	14/10/2023	11/11/2023	28	242.92	97	14.83343	0.000406	265007	
D.P 210 + 10%PP +0.3%FP	14/10/2023	11/11/2023	28	236.71	95	16.30194	0.000373	261339	263590
D.P 210 + 10%PP +0.3%FP	14/10/2023	11/11/2023	28	240.13	96	14.66386	0.000400	264425	

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

WELC BIRL

WELSON ARTURO OLAYA AGUILAR

Solicitante : MOLINA FERNANDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y

fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de apertura : sábado, 14 de Octubre de 2023

Ensayo : STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0%

Referencia : ASTM C-469

IDENTIFICACIÓN	Fecha de		Edad	σμ	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
IDENTIFICACION	vaciado	Fecha Ensayo	(Dias)	(Kg/cm²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm²
D.P 280 + 10%PP +0.1%FP	14/10/2023	21/10/2023	7	217.23	87	14.93087	0.000366	221449	
D.P 280 + 10%PP +0.1%FP	14/10/2023	21/10/2023	7	221.14	88	15.20060	0.000383	227023	224273.90
D.P 280 + 10%PP +0.1%FP	14/10/2023	21/10/2023	7	224.49	90	13.71821	0.000391	224349	
D.P 280 + 10%PP +0.1%FP	14/10/2023	28/10/2023	14	230.07	92	14.05757	0.000400	247071	
D.P 280 + 10%PP +0.1%FP	14/10/2023	28/10/2023	14	236.22	94	14.43382	0.000391	235174	243105.71
D.P 280 + 10%PP +0.1%FP	14/10/2023	28/10/2023	14	278.10	111	16.99376	0.000415	247071	
D.P 280 + 10%PP +0.1%FP	14/10/2023	11/11/2023	28	298.20	119	16.38902	0.000447	279120	
D.P 280 + 10%PP +0.1%FP	14/10/2023	11/11/2023	28	320.82	128	17.67626	0.000462	278761	273196
D.P 280 + 10%PP +0.1%FP	14/10/2023	11/11/2023	28	322.77	129	17.73929	0.000470	261709	

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

VALSON AR

Solicitante : MOLINA FERNANDEZ MINER ORLANDO

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente peritas de poliestireno expandido y fibras

de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de apertura : sábado, 14 de Octubre de 2023

Ensayo : STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0% al

Referencia : ASTM C-469

IDENTIFICACIÓN	Fecha de	Fecha Ensayo	Edad	Ø,	Esfuerzo S2	Esfuerzo S1	€unitaria	E	Promedio E _c
BENTI IONOION	vaciado	recia citalyo	(Dias)	(Kg/cm²)	(40%a _u) Kg/cm ²	(0.000050) Kg/cm ²	€2 (S2)	Kg/cm ²	Kg/cm ²
D.P 280 + 10%PP +0.2%FP	14/10/2023	21/10/2023	7	217.23	87	14.93087	0.000366	223575	
D.P 280 + 10%PP +0.2%FP	14/10/2023	21/10/2023	7	221.14	88	15.20060	0.000383	220491	223822.89
D.P 280 + 10%PP +0.2%FP	14/10/2023	21/10/2023	7	224.49	90	13.71821	0.000391	227403	
D.P 280 + 10%PP +0.2%FP	14/10/2023	28/10/2023	14	230.07	92	14.05757	0.000400	248098	
D.P 280 + 10%PP +0.2%FP	14/10/2023	28/10/2023	14	236.22	94	14.43382	0.000391	235512	239926.08
D.P 280 + 10%PP +0.2%FP	14/10/2023	28/10/2023	14	278.10	111	16.99376	0.000415	236168	
D.P 280 + 10%PP +0.2%FP	14/10/2023	11/11/2023	28	298.20	119	16.38902	0.000447	278571	
D.P 280 + 10%PP +0.2%FP	14/10/2023	11/11/2023	28	320.82	128	17.67626	0.000462	269636	272177
D.P 280 + 10%PP +0.2%FP	14/10/2023	11/11/2023	28	322.77	129	17.73929	0.000470	268323	

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

WELSON ARYURO OLAYA AGUILAR

WELC BIRL

: MOLINA FERNANDEZ MINER ORLANDO Solicitante

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de

polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de apertura : sábado, 14 de Octubre de 2023

Ensayo : STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto

sometido a compresión). Diseño de concreto (Patrón 280kg/cm2)DM1 - sustitucion (P)0% al cemento ó (CM)0% al agregado fino

Referencia : ASTM C-469

IDENTIFICACIÓN	Fecha de	Fecha Ensayo	Edad	o,	Esfuerzo S2	Esfuerzo S1	e unitaria	E _c	Promedio E _c
IDENTIFICACION	vaciado	Pecha Ensayo	(Días)	(Kg/cm²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	€2 (S2)	Kg/cm²	Kg/cm²
D.P 280 + 10%PP +0.3%FP	14/10/2023	21/10/2023	7	217.23	87	14.93087	0.000366	234665	
D.P 280 + 10%PP +0.3%FP	14/10/2023	21/10/2023	7	221.14	88	15.20060	0.000383	223071	229641.03
D.P 280 + 10%PP +0.3%FP	14/10/2023	21/10/2023	7	224.49	90	13.71821	0.000391	231187	
D.P 280 + 10%PP +0.3%FP	14/10/2023	28/10/2023	14	230.07	92	14.05757	0.000400	247070	
D.P 280 + 10%PP +0.3%FP	14/10/2023	28/10/2023	14	236.22	94	14.43382	0.000391	247073	250877.47
D.P 280 + 10%PP +0.3%FP	14/10/2023	28/10/2023	14	278.10	111	16.99376	0.000415	258489	
D.P 280 + 10%PP +0.3%FP	14/10/2023	11/11/2023	28	298.20	119	16.38902	0.000447	278105	
D.P 280 + 10%PP +0.3%FP	14/10/2023	11/11/2023	28	320.82	128	17.67626	0.000462	279332	277197
D.P 280 + 10%PP +0.3%FP	14/10/2023	11/11/2023	28	322.77	129	17.73929	0.000470	274153	

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

Solicitud de Ensayo : 0606A-23/ LEMS W&C

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO. SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra : Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo : viernes, 13 de Octubre de 2023

Ensayo ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión.

 Referencia
 : UNE-EN12390-8

 Mezdia de concreto
 : fo = 210 kg/cm²

 R alo diseño
 : 0.64

 Edad
 : 28 días

Muestra	Descripción de la Muestra	Edad	Fee	cha	Но	ora	Tiempo		Penetración Máxima (mm)			
N°	(kg/cm²)	(Días)	Inicio	Final	Inicio	Final	(72 ± 2 Horas)	Cara	Unidad	Promedio	Clase de esposición	
M-01	CONCRETO PATRÓN 210+	28	08/11/2023	11/11/2023	10:00:00 a.m.	10:00:00 a. m.	72	Α	48.32			
M-U I	10%PP + 0.1%FP	20	00/11/2023	11/11/2023	10.00.00 a. m.	10.00.00 a. m.	12		В	46.99		CUMPLE para
M-02	CONCRETO PATRÓN 210+	28	08/11/2023	11/11/2023	10:00:00 a.m.	10:00:00 a.m.	72	Α	38.02	43.91	elementos en	
M-U2	10%PP + 0.1%FP	28	08/11/2023	11/11/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	40.69	43.91	masa o armados	
M-03	CONCRETO PATRÓN 210+	28	08/11/2023	11/11/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	44.30		armados	
m-03	10%PP + 0.1%FP	28	00/1//2023	11/11/2023	10.00.00 a. III.	10.00.00 H. III.		В	45.14			

NOTA:

- PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

URO OLAYA AGUILAR

LEMB VACERL

MIGUEL ANGEL AUIZ PERALES INGENIERO CIVIL. CIP. 241394

Solicitud de Ensayo : 0606A-23/ LEMS W&C

: MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación

Inicio de Ensayo

Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.
 viernes, 13 de Octubre de 2023
 ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión.

: UNE-EN12390-8 Referencia : fc = 210 kg/cm² : 0.64 Mezda de concreto R a/c diseño Edad . 28 días

Muestra	Descripción de la Muestra	Edad	Fee	tha	Но	ora	Tiempo	Penetración Máxima (mm)			ma (mm)	
N°	(kg/cm²)	(Días)	Inicio	Final	Inicio	Final	(72 <u>+</u> 2 Horas)	Cara	Unidad	Promedio	Clase de esposición	
M-01	CONCRETO PATRÓN 210	28	11/11/2023	14/11/2023	10:00:00 a.m.	10:00:00 a.m.	72	Α	48.35			
M-O1	+10%PP +0.2%FP	20	11/11/2023	14/1/2023	10.00.00 a. iii.	10.00.00 a. m.		В	46.51		CUMPLE para	
M-02	CONCRETO PATRÓN 210	28	11/11/2023	14/11/2023	10:00:00 a.m.	10:00:00 a. m.	72	Α	40.36	44.95	elementos en	
W-02	+10%PP +0.2%FP	28	11/11/2023	14/11/2023	10.00.00 12.111.	10.00.00 a. m.	12	В	42.88	44.55	masa o armados	
M-03	CONCRETO PATRÓN 210		11/11/2023	14/11/2023	10:00:00 a.m.	10:00:00 a.m.	72		Α	46.33	1	armados
m-03	+10%PP +0.2%FP	28	11/11/2023	14/11/2023	10.00.00 a. m.	10.00.00 a. m.		В	45.24	1		

NOTA:

- PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

WELC BIRL

VALSON ARYURO OLAYA AGUILAR

Solicitud de Ensayo

: MOLINA FERNÁNDEZ MINER ORLANDO.

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. : viernes, 13 de Octubre de 2023 Ubicación

Inicio de Ensayo

ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión. Ensayo

: UNE-EN12390-8 Referencia : fa = 210 kg/cm² Mezda de concreto R a/c diseño : 0.64 Edad . 28 días

Muestra	Descripción de la Muestra	Edad	Fee	cha	Н	ora	Tiempo		Penetración Máxima (mm)			
N°	(kg/cm²)	(Días)	Inicio	Final	Inicio	Final	(72 <u>+</u> 2 Horas)	Cara	Unidad	Promedio	Clase de esposición	
M-01	CONCRETO PATRÓN 210	28	14/11/2023	17/11/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	47.61			
MI-O1	+10%PP +0.3%FP	20	14/1/2023	1771172023	10.00.00 #. III.	10.00.00 a. m.	,,	В	50.38		CUMPLE para	
M-02	CONCRETO PATRÓN 210	28	14/11/2023	17/11/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	51.19	48.35	elementos en	
M-UZ	+10%PP +0.3%FP	28	14/11/2023	17/11/2023	10.00.00 a. iii.	10.00.00 a. iii.	72	В	52.29	40.33	masa o armados	
M-03	CONCRETO PATRÓN 210	20	14/11/2023	17/11/2023	10:00:00 a.m.	10:00:00 a. m.	72	Α	43.83		armados	
m-03	+10%PP +0.3%FP	28	1-011/2023	17/11/2023	10.00.00 a. m.	10.00.00 a. m.	12	В	44.78			

MIGUEL ANGEL RUIZ PERALES

NOTA:

- PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

VALSON ARTURO OLAYA AGUILAR

: 0606A-23/ LEMS W&C Solicitud de Ensayo

: MOLINA FERNÁNDEZ MINER ORLANDO. Solicitante

SÁNCHEZ RAMÍREZ JOSÉ ELMER

WELC BIRL

Proyecto / Obra Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación

: viernes, 13 de Octubre de 2023 Inicio de Ensayo

ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión.

: UNE-EN12390-8 Referencia : fa = 280 kg/am² Mezda de concreto R a/c diseño : 0.54 28 días Edad

Muestra	Descripción de la Muestra	Edad	Fee	cha	Но	ora	Tiempo		Pene	Penetración Máxima (mm)		
N°	(kg/cm²)	(Días)	Inicio	Final	Inicio	Final	(72 <u>+</u> 2 Horas)	Cara	Unidad	Promedio	Clase de esposición	
M-01	CONCRETO PATRÓN 280	28	17/11/2023	20/11/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	40.00			
M-U1	+10%PP + 0.1%FP	20	17/11/2023	20/11/2023	10.00.00 a. m.	10.00.00 a. m.	/2	/2	В	38.27		CUMPLE para
M-02	CONCRETO PATRÓN 280	28	17/11/2023	20/11/2023	10:00:00 a.m.	10:00:00 a.m.	72	Α	40.12	37.16	elementos en	
M-02	+10%PP + 0.1%FP	28	1//11/2023	20/11/2023	10:00:00 a. m.	10:00:00 a. m.	12	В	39.56	37.16	masa o armados	
M-03	CONCRETO PATRÓN 280	28	17/11/2023	20/11/2023	10:00:00 a.m.	10:00:00 a. m.	72	Α	33.00	1	armauos	
m-03	+10%PP + 0.1%FP	28	17/11/2023	20/11/2023	10.00.00 a. III.	10.00.00 a. III.		В	31.99	99		

4000

MIGUELANGEL AUIZ PERALES INGENIERO CIVIL CIP. 241894

- PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

VALSON ARTURO OLAYA AGUILAR

MIGUEL ANGEL AUIZ PERALES

: 0606A-23/ LEMS W&C Solicitud de Ensayo

: MOLINA FERNÁNDEZ MINER ORLANDO. Solicitante

SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Ensayo

: viernes, 13 de Octubre de 2023 : ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión. Ensayo

Referencia : UNE-EN12390-8 Mezda de concreto : fc = 280 kg/cm² : 0.54 R a/c diseño 28 días

Muestra	Descripción de la Muestra	Edad	Fee	cha	Н	ora	Tiempo		Pene	Penetración Máxima (mm)			
N°	(kg/cm²)	(Días)	Inicio	Final	Inicio	Final	(72 <u>+</u> 2 Horas)	Cara	Unidad	Promedio	Clase de esposición		
M-01	CONCRETO PATRÓN 280	28	20/11/2023	23/11/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	37.00				
MI-O I	+10%PP + 0.2%FP	20	20/11/2025	23/11/2023	10.00.00 a. iii.	10.00.00 a. iii.	"-	В	38.25		CUMPLE para		
M-02	CONCRETO PATRÓN 280	28	20/11/2023	23/11/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	39.05	39.21	elementos en		
M-02	+10%PP + 0.2%FP	28	20/11/2023	23/11/2023	10.00.00 a. iii.	10.00.00 a. m.	12	В	37.34	35.21	masa o armados		
M-03	CONCRETO PATRÓN 280	28	20/11/2023	23/11/2023	10:00:00 a. m.	10:00:00 a.m.	72	Α	42.63		armados		
M-US	+10%PP + 0.2%FP	28	20/11/2023	23/11/2023	10.00.00 a. iii.	10.00.00 a. m.	12	В	41.00				

- PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

WELD BARL

VALSON ARTURO OLAYA AGUILAR

MIGUELANGEL RUIZ PERALES INGENIERO CIVIL

: 0606A-23/ LEMS W&C Solicitud de Ensayo

Solicitante : MOLINA FERNÁNDEZ MINER ORLANDO. SÁNCHEZ RAMÍREZ JOSÉ ELMER

Proyecto / Obra Evaluación del comportamiento Hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno.

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. : viernes, 13 de Octubre de 2023 Ubicación

Inicio de Ensayo

. ENSAYOS DE HORMIGÓN ENDURECIDO: - Parte 8: Profundidad de penetración de agua bajo presión. Ensayo

: UNE-EN12390-8 Referencia Mezda de concreto : fc = 280 kg/cm² R a/c diseño : 0.54 28 días

Muestra	Descripción de la Muestra	Edad	Fee	cha	Но	ora	Tiempo		Penetración Máxima (mm)			
N°	(kg/cm²)	(Días)	Inicio	Final	Inicio	Final	(72 <u>+</u> 2 Horas)	Cara	Unidad	Promedio	Clase de esposición	
M-01	CONCRETO PATRÓN 280	28	23/11/2023	26/11/2023	10:00:00 a.m.	10:00:00 a. m.	72	Α	47.53			
M-O1	+10%PP + 0.3%FP	20	23/11/2023	20/11/2023	10.00.00 a. iii.	10.00.00 a. m.	12	В	46.13		CUMPLE para	
M-02	CONCRETO PATRÓN 280	28	23/11/2023	26/11/2023	10:00:00 a. m.	10:00:00 a. m.	72	Α	40.29	40.15	elementos en	
IM-UZ	+10%PP + 0.3%FP	28	23/11/2023	20/11/2023	10.00.00 a. III.	10.00.00 a. iii.	12	В	39.64	40.15	masa o armados	
M-03	CONCRETO PATRÓN 280	28	23/11/2023	26/11/2023	10:00:00 a.m.	10:00:00 a. m.	72	Α	34.30		armados	
M-US	+10%PP + 0.3%FP	28	23/11/2023	20/11/2023	10.00.00 a. m.	10.00.00 a. m.	12	В	33.00			

NOTA:

- PRESIÓN APLICADA: 500 kPa aplicada desde la base de la probeta OBSERVACIONES:

VALSON ARY URO OLAYA AGUILAR

Anexo 7. Certificado de calibración de instrumentos de laboratorio

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 036 - 2023

Area de Metrología Laboratorio de Temperatura

1. Expediente 1912-2023

2. Solicitante LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W & C E.I.R.L.

CAL.LA FE NRO. 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - CHICLAYO -

LAMBAYEQUE

4. Equipo HORNO

Alcance Máximo 300°C

Marca PERUTEST

Modelo **PT-H76**

Número de Serie 0176

Procedencia PERÚ

Identificación NO INDICA

Ubicación NO INDICA Este certificado de documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

Descripción	Controlador / Selector	Instrumento de medición
Alcance	30 °C a 300 °C	30 °C a 300 °C
División de escala / Resolución	0.1 °C	0.1 °C
Tipo Tipo	CONTROLADOR ELECTRONICO	TERMÓMETRO DIGITAL

5. Fecha de Calibración 2023-03-01


Fecha de Emisión

Jefe del Laboratorio de Metrología

Sello

2023-03-02

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 036 - 2023

Área de Metrología Laboratorio de Temperatura

Página 2 de 5

6. Método de Calibración

La calibración se efectuó por comparación directa con termómetros calibrados que tiene trazabilidad a la Escala Internacional de Temperatura de 1990 (EIT 90), se utilizó el Procedimiento para la Calibración de Medios Isotérmicos con aire como Medio Termostático PC-018 2da edición.

7. Lugar de calibración

En las instalaciones del cliente. CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

N. 18 18	Inicial	Final
Temperatura	26.3°C	26.3°C
Humedad Relativa	64 %	64 %

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado y/o Informe calibración
SAT	Termometro de indicacion digital	LT-0417-2023
METROIL	THERMOHIGROMETRO DIGITAL BOECO MODELO: HTC-8	1AT-1704-2022

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de CALIBRADO.
- La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición.
- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 036 - 2023

Área de Metrología

Laboratorio de Temperatura

Página 3 de 5

11. Resultados de Medición

Temperatura ambiental promedio

26.3 °C

Tiempo de calentamiento y estabilización del equipo

2 horns

El controlador se seteo en 110

PARA LA TEMPERATURA DE 110 °C

Tiempo	Termometro		TEMPE	RATUR	AS EN	LAS PO	DSICIO	NES DE	MEDIC	ION (°C	:)	_, (-)	1
G	del equipo	MX	NIVE	L SUPE	RIOR		1	NIVE	L INFE	RIOR	Territoria de la constantia del constantia de la constantia de la constantia della constantia della constant	T prom	Tmax-Tm
(min)	(°C)	1	2	3	4	5	6	7	8	9	10	(°C)	(°C)
00	110.0	110.5	110.0	110.1	108.6	109.1	108.7	112.0	112.8	110.6	112.2	110.5	4.2
02	110.0	110.3	111.8	110.0	108.5	109.1	108.4	112.2	112.0	111.3	112.4	110.6	4.0
04	110.0	109.3	111.1	109.3	108.8	109.0	108.1	112.6	112.4	111.7	112.5	110.5	4.5
06	110.0	109.0	111.3	109.1	108.8	109.4	107.4	112.1	112.5	111.3	112.5	110.3	5.1
08	110.0	109.3	110.8	108.3	108.4	109.1	107.7	112.7	112.3	111.6	112.8	110.3	5.1
10	110.0	109.0	110.5	108.8	108.2	109.4	107.3	112.3	112.5	111.3	112.0	110.1	5.2
12	110.0	108.5	110.7	109.1	108.5	109.1	107.5	112.4	112.5	111.4	112.4	110.2	5.0
14	110.0	109.2	110.4	109.3	108.4	109.2	107.3	112.7	112.0	111.6	112.4	110.2	5.4
16	110.0	109.2	110.3	109.4	108.3	109.3	107.1	112.3	112.4	111.5	112.2	110.2	5.3
18	110.0	109.1	110.1	109.6	108.7	109.1	107.4	112.1	112.3	110.8	112.3	110.1	4.9
20	110.0	109.3	110.4	109.3	108.7	109.1	107.3	112.4	112.2	110.6	111.8	110.1	5.1
22	110.0	109.2	110.4	109.2	108.4	109.0	107.5	112.2	112.8	111.2	111.7	110.2	5.3
24	110.0	109.0	110.7	109.5	108.2	109.4	107.1	112.7	112.4	110.9	112.4	110.2	5.6
26	110.0	109.1	110.8	109.5	108.5	109.5	107.2	112.3	112.0	110.7	112.3	110.2	5.1
28	110.0	109.3	110.4	109.4	108.2	109.6	107.4	112.1	112.0	110.4	112.4	110.1	5.0
30	110.0	109.1	110.5	109.4	108.5	109.1	107.5	112.4	112.3	110.7	112.2	110.2	4.9
32	110.0	109.1	110.3	109.3	108.8	109.4	107.1	112.8	112.3	110.7	112.4	110.2	5.7
34	110.0	108.9	110.4	109.2	108.5	109.1	107.4	112.2	112.4	110.8	112.7	110.2	5.3
36	110.0	109.4	110.1	109.5	108.3	109.4	107.7	112.3	112.4	110.4	112.5	110.2	4.8
38	110.0	109.2	110.4	109.6	108.6	109.3	107.7	112.4	112.3	110.6	112.4	110.2	4.7
40	110.0	109.1	110.4	109.2	108.4	109.4	107.4	112.1	112.0	110.8	112.4	110.1	95.0
42	110.0	109.4	110.5	109.3	108.8	109.1	107.2	112.0	112.4	110.4	112.8	110.2	5.6
44	110.0	109.1	110.5	109.5	108.3	109.4	107.4	112.8	112.1	110.5	112.4	110.2	5.4
46	110.0	109.1	110.7	109.7	108.4	109.2	107.5	112.4	112.3	110.3	112.3	110.2	4.9
48	110.0	109.2	110.2	109.4	108.2	109.1	107.1	112.4	112.2	110.1	112.2	110.0	5.3
50	110.0	108.9	110.5	109.4	108.4	109.1	107.3	112.6	112.3	110.5	112.7	110.2	5.4
52	110.0	109.1	110.5	109.2	108.2	109.5	107.3	112.2	112.8	110.7	112.1	110.2	5.5
54	110.0	109.0	110.3	109.7	108.1	109.1	107.5	112.3	112.7	110.1	111.9	110.1	5.2
56	110.0	109.3	110.5	109.4	108.1	109.5	107.5	112.6	112.6	110.4	112.2	110.2	5.1
58	110.0	109.1	110.3	109.2	108.0	109.3	107.6	112.3	112.1	110.5	112.4	110.1	4.8
60	110.0	109.0	110.3	109.6	108.4	109.2	107.4	112.7	112.5	110.7	112.4	110.2	5.3
.PROM	110.0	109.2	110.5	109.4	108.4	109.2	107.5	112.4	112.3	110.8	112.3	110.2	3.3
T.MAX	110.0	110.5	111.8	110.1	108.8	109.6	108.7	112.8	112.8	111.7	112.8	D	1
T.MIN	110.0	108.5	110.0	108.3	108.0	109.0	107.1	112.0	The same of the same of	110.1	111.7	19.1	To the
DIT	0.0	2.0	1.0	10	0.0	0.5	4.6					6	1

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

O Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

1 PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 036 - 2023

Área de Metrología Laboratorio de Temperatura

Página 4 de 5

PARÁMETRO	VALOR (°C)	INCERTIDUMBRE EXPANDIDA (°C)
Máxima Temperatura Medida	112.8	22.0
Mínima Temperatura Medida	107.1	0.1
Desviación de Temperatura en el Tiempo	2.0	9 0.1
Desviación de Temperatura en el Espacio	4.9	24.3
Estabilidad Medida (±)	1.0	0.04
Uniformidad Medida	5.7	24.3

T.PROM : Promedio de la temperatura en una posición de medición durante el tiempo de calibración.
 T prom : Promedio de las temperaturas en la diez posiciones de medición para un instante dado.

T.MAX : Temperatura máxima.
T.MIN : Temperatura mínima.

DTT : Desviación de Temperatura en el Tiempo.

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

Incertidumbre expandida de las indicaciones del termómetro propio del Medio Isotermo : 0.06 °C

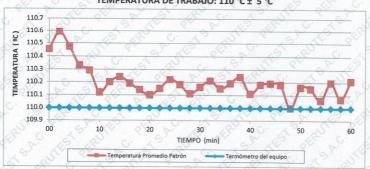
La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

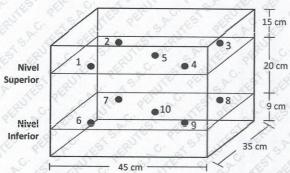
La Estabilidad es considerada igual a ± 1/2 DTT.

Durante la calibración y bajo las condiciones en que ésta ha sido hecha, el medio isotermo SI CUMPLE con los límites especificados de temperatura.

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- 1 PERUTEST SAC


VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Temperatura


CERTIFICADO DE CALIBRACIÓN PT - LT - 036 - 2023

Página 5 de 5

DISTRIBUCIÓN DE TEMPERATURAS EN EL EQUIPO TEMPERATURA DE TRABAJO: 110 °C ± 5 °C

DISTRIBUCIÓN DE LOS TERMOPARES

Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles.

Los sensores del 1 al 4 y del 6 al 9 se colocaron a 8 cm de las paredes laterales y a 8 cm del fondo y frente del equipo a calibrar.

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estandar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

Fin del documento

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

RUTEST S.A

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0110 - 2023

Área de Metrología Laboratorio de Masas

Página 1 de 4

1. Expediente 1912-2023

2. Solicitante LABORATORIO DE ENSAYOS DE

MATERIALES Y SUELOS W&C E.I.R.L.

3. Dirección CALLE LA FE NRO 0167 UPIS SEÑOR DE Internacional de Unidades (SI).

MILAGROS CHICLAYO

LAMBAYEQUE

BALANZA ELECTRÓNICA 4. Equipo de medición

Capacidad Máxima 30000 g

División de escala (d)

Div. de verificación (e)

Clase de exactitud

OHAUS Marca

R31P30 Modelo

Número de Serie 8336460679

Capacidad mínima 20 g

Procedencia U.S.A.

Identificación NO INDICA Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

5. Fecha de Calibración 2023-03-01

Fecha de Emisión Jefe del Laboratorio de Metrología

2023-03-02

108E ALEJANDRO FLORES MINAYA

Sello

LABORATORIO PERU

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0110 - 2023

Área de Metrología Laboratorio de Masas

Página 2 de 4

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase III y Clase IIII" del SNM- INACAL

7. Lugar de calibración

Las instalaciones del cliente.

CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8 Condiciones Ambientales

5. N. 6. 8	Inicial	Final
Temperatura	26.4 °C	26.4 °C
Humedad Relativa	51%	51%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	Patrón utilizado	Certificado de calibración		
PESATEC	JUEGO DE PESAS 10 kg (Clase de Exactitud: M1)	1158-MPES-C-2022		
PESATEC	JUEGO DE PESAS 20 kg (Clase de Exactitud: M1)	1159-MPES-C-2022		
ELICROM	JUEGO DE PESAS 1 kg a 5 kg (Clase de Exactitud: F1)	CCP-0938-001-22		
ELICROM	JUEGO DE PESAS 1 mg a 1 kg (Clase de Exactitud: F1)	CCP-0908-001-22		
METROIL	TERMOHIGROMETRO DIGITAL BOECO	1AT-1704-2022		

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (**) Código indicada en una etiqueta adherido al equipo.

19

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

O Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0110 - 2023

Área de Metrología Laboratorio de Masas

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO TIEN		PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	NO TIENE	CURSOR	NO TIENE
. 69 SE C	1	NIVELACIÓN	TIENE	5 6	Cr. A

ENSAYO DE REPETIBILIDAD

Temperatura | Inicial | Final | Final | 26.4 °C | 26.4 °C |

Medición	Carga L1 =	15,000	g	Carga L2 =	30,000	g
Nº	1(g)	ΔL (mg)	E(mg)	1(g)	ΔL (mg)	E(mg)
1 0	15,000	600	-100	30,000	200	300
2	15,000	500	000	30,000	500	9.0
3	15,001	700	800	30,000	500	0
4.9	15,000	500	00	29,999	200	-700
5	15,000	600	-100	30,000	500	0
6	15,000	500	0 9	30,001	700	800
7	15,000	500	0	30,000	500	0
8	15,000	200	300	30,000	800	-300
9	14,999	300	-800	29,999	300	-800
10	15,000	500	0	30,000	500	0
10	Diferencia	a Máxima	1,600	Diferenci	a Máxima	1,600
	Error Máximo Permisible		± 3,000	Error Máxim	no Permisible	± 3,000

ENSAYO DE EXCENTRICIDAD

2 5 Posición de las cargas

Inicial Final
Temperatura 26.4 °C 26.4 °C

Posición	Deterr	Determinación del Error en Cero Eo				Determinación del Error Corregido Ec			
de la Carga	Carga Mínima*	l (g)	ΔL (mg)	Eo (mg)	Carga L(g)	l (g)	ΔL(mg)	E(mg)	Ec (mg)
91.4	100	10	500	0	6 6	10,001	800	700	700
2	60 P	10	400	100	V 4	10,000	500	00 0	-100
3	10 g	10	500	0	10,000	10,000	400	100	5 100
4	10° 0	10	400	100	200	9,999	200	-700	-800
95	0.	910	500	F. 000	00° N	10,000	500	900	0
* Valo	r entre 0 y 1	0e 6	0. 6	00° C	, 25"	Error máxi	mo permisible	e 🕢	± 3,000

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- 1 PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0110 - 2023

Área de Metrología Laboratorio de Masas

ENSAYO DE PESAJE

| Inicial | Final | | Temperatura | | 26.4 °C | 26.4 °C |

Carga	CRECIENTES				DECRECIENTES				CRECIENTES DECRECIENTES				A
L(g)	I (g)	ΔL(mg)	E(mg)	Fa (ma)	1/0	Si-S	E()	F. (9)	e.m.p **				
10	10	500	0	Ec (mg)	I (g)	ΔL(mg)	E(mg)	Ec (mg)	(± mg)				
20	20	400	100	100	20	500	0	0 8	1,000				
100	100	500	000	0 9	100	500	0	0	1,000				
500	500	400	100	100	500	400	100	100	2,000				
1,000	1,000	500	0.00	200	1,000	500	0 0	0	2,000				
5,000	5,000	400	100	100	5,000	400	100	100	3,000				
10,000	10,000	600	-100	-100	10,000	500	0	0	3,000				
15,000	15,000	500	0	000	15,000	500	0.00	0 0	3,000				
20,000	20,000	600	-100	-100	20,000	600	-100	-100	3,000				
25,000	25,000	500	0	F. 00	25,000	500	0	90	3,000				
30,000	30,000	600	C-100	-100	30,000	600	-100	-100	3,000				

^{**} error máximo permisible

Leyenda: L: Carga aplicada a la balanza.

ΔL: Carga adicional.

E_o: Error en cero.

I: Indicación de la balanza.

E: Error encontrado

E_C: Error corregido.

Incertidumbre expandida de medición

6 4

 $= 2 \times \sqrt{(0.3787222)}$

0.00000000237

R²)

Lectura corregida

R CORREGIDA

= R

0.0000032 R

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Masas

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

CERTIFICADO DE CALIBRACIÓN PT - LM - 0112 - 2023

1. Expediente	1912-2023	Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales,
2. Solicitante	LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W&C E.I.R.L.	que realizan las unidades de la medición de acuerdo con el Sistema Internacional
3. Dirección	CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE	Los resultados son validos en el
4. Equipo de medición	BALANZA ELECTRÓNICA	momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del
Capacidad Máxima	200 kg	uso, conservación y mantenimiento del
División de escala (d)	0.05 kg	instrumento de medición o a reglamento vigente.
Div. de verificación (e)	0.05 kg	PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el
Clase de exactitud	HE HILL OF STREET SHEET SO	uso inadecuado de este instrumento, ni de una incorrecta interpretación de los
Marca	OPALUX	resultados de la calibración aquí declarados.
Modelo	N. N. C. Y. S. L. L. C. S. L. L. C. L. S. L.	Este certificado de calibración no podrá
Número de Serie	NJ STATE OF SPECIAL SECOND	ser reproducido parcialmente sin la aprobación por escrito del laboratorio
Capacidad mínima	1.0 kg	que lo emite.
Procedencia	CHINA	El certificado de calibración sin firma y sello carece de validez.
Identificación	LM-0112	Intel Perulance Land
5. Fecha de Calibración	2023-03-01	PERUTEST S.A.C
Fecha de Emisión	Jefe del Laboratorio de Metrología	Sello Sello
2023-03-02	fle	LABORATOR
	JOSE ALEJANDRO FLORES MINAYA	PERU

O Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Masas CERTIFICADO DE CALIBRACIÓN PT - LM - 0112 - 2023

Página 2 de 4

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase III y Clase IIII" del SNM- INACAL

7. Lugar de calibración

En las instalaciones del cliente.

CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

18, 18, 0. Va	Inicial	Final
Temperatura	26.4	26.4
Humedad Relativa	51%	51%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	Patrón utilizado	Certificado de calibración	
ELICROM	JUEGO DE PESAS 1 kg a 5 kg (Clase de Exactitud: F1)	CCP-0938-001-22	
TOTAL WEIGHT	JUEGO DE PESAS DE 20 KG (Clase de Exactitud: M2)	CM-4187-2022	
PESATEC	PESA 10 KG (Clase de Exactitud: M1)	1158-MPES-C-2022	
ELICROM	JUEGO DE PESAS 1 mg a 1 kg (Clase de Exactitud: F1)	CCP-0908-001-22	
METROIL	TERMOHIGROMETRO DIGITAL BOECO	1AT-1704-2022	

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (**) Código indicada en una etiqueta adherido al equipo.

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- 1 PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0112 - 2023

Área de Metrología Laboratorio de Masas

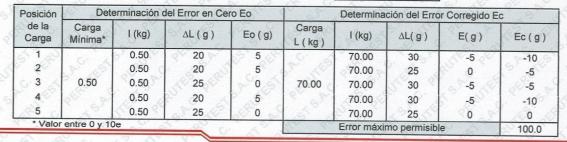
Página 3 de 4

PERU

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	TIENE	CURSOR	NO TIENE
(1) / 6!	1	NIVELACIÓN	TIENE	The state of the s	V .0.5


ENSAYO DE REPETIBILIDAD

Temperatura Inicial Final 26.4 26.4

Medición	Carga L1 =	100.00	kg	Carga L2 =	200.00	kg
N°	1 (kg)	$\Delta L(g)$	E(g)	I(kg)	ΔL(g)	E(g)
AT 0	100.00	20	5	200.05	30	45
2 0	100.05	10	65	200.05	35	40
3	100.05	10	65	200.05	30	45
4 0	100.00	20	5	200.05	20	55
5	100.00	25	0.0	200.00	15	10
9 6	100.05	15	60	200.00	20	5
7	100.05	20	55	200.05	30	45
8	100.00	15	10	200.05	35	40
9	100.00	30	-5	200.05	35	40
10	100.00	30	-5	200.05	35	40
180	Diferencia	Máxima	70	Diferencia	Máxima	50
80	Error Máximo Permisible		150.0	Error Máximo	Permisible	150.0

ENSAYO DE EXCENTRICIDAD

2 5
3 Posición de Inicial
3 4 Ias cargas Temperatura 21.1

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima

Final

21.2

- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN PT - LM - 0112 - 2023

Página 4 de 4

ENSAYO DE PESAJE

| Inicial | Final | | Temperatura | | 26.7 °C | 26.7 °C |

Carga	A NO	CREC	IENTES	V PT	6 6	DECRE	CIENTES	X AY	No.
L(kg)	I (kg)	ΔL(g)	E(g)	E(g)	10.0	8 10	10	(A) (A)	e.m.p **
0.50	0.50	20	5	Ec(g)	I (kg)	$\Delta L(g)$	E(g)	Ec(g)	(±g)
1.00	1.00	25	600	c5 ×	1.00	20	5	0	50
5.00	5.00	20	5	0	5.00	25	0	9 -5	50
10.00	10.00	20	05	0	10.00	30	-5	-10	50
20.00	20.00	30	9 -5	-10	20.00	20	5	0 0	50
50.00	50.00	35	-10	-15	50.00	15	10	5	100
80.00	80.00	30	-5	-10	80.00	20	5	500	100
100.00	100.00	30	9-5	-10	100.05	35	40	35	150
140.00	140.00	20	5	000	140.05	40	35	30	150
160.00	160.05	40	35	30	160.05	35	40	35	150
200.00	200.05	35	9 40	35	200.05	35	40	35	150

^{**} error máximo permisible

Leyenda: L: Carga aplicada a la balanza.

ΔL: Carga adicional.

E₀: Error en cero.

I: Indicación de la balanza.

E: Error encontrado

Ec: Error corregido.

Incertidumbre expandida de medición

 $U = 2 \times \sqrt{(}$

0.001560 kg² +

0.00000000458 R

Lectura corregida

R CORREGIDA

R +

0.0001233 R

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

ABORATORIC

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA

RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 0104 - 2023

Unidades (SI).

uso,

Este certificado de calibración documenta la trazabilidad a los nacionales

internacionales, que realizan las

unidades de la medición de acuerdo

con el Sistema Internacional de

Los resultados son validos en el

momento de la calibración Al solicitante le corresponde disponer

en su momento la ejecución de una recalibración, la cual está en función

medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar

el uso inadecuado de este

instrumento, ni de una incorrecta

interpretación de los resultados de la

Este certificado de calibración no

podrá ser reproducido parcialmente

sin la aprobación por escrito del

El certificado de calibración sin firma

calibración aquí declarados.

laboratorio que lo emite.

y sello carece de validez.

Sello

conservación mantenimiento del instrumento de

Área de Metrología Laboratorio de Fuerza

1. Expediente 4686-2023

2. Solicitante LABORATORIO DE ENSAYOS DE

MATERIALES Y SUELOS W & C E.I.R.L.

LEMS W & C E.I.R.L.

3. Dirección CAL.LA FE NRO. 0167 UPIS SEÑOR DE LOS

MILAGROS LAMBAYEQUE - CHICLAYO -

CHICLAYO

131214

4. Equipo PRENSA DE CONCRETO

Capacidad 2000 kN

Marca A Y A INSTRUMENT

Modelo STYE-2000B

Procedencia CHINA

Número de Serie

Identificación NO INDICA

Indicación DIGITAL Marca MC Modelo STYLE-2000B Número de Serie 131214

Resolución 0.01 / 0.1 kN (

Ubicación NO INDICA

5. Fecha de Calibración 2023-09-02

Fecha de Emisión 2023-09-02

Jefe del Laboratorio de Metrología

JOSE ALEJANDRO FLORES MINAYA

LABORATORI

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

O Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 0104 - 2023

Área de Metrología Laboratorio de Fuerza

Página 2 de 3

6. Método de Calibración

La calibración se realiza por comparación directa entre el valor de fuerza indicada en el dispositivo indicador de la máquina a ser calibrada y la indicación de fuerza real tomada del instrumento de medición de fuerza patrón siguiendo la PC-032 "Procedimiento para la calibración de máquinas de ensayos uniaxiales" Edicion 01 de INACAL - DM

7. Lugar de calibración

En el laboratorio del cliente Laboratorio de Materiales de LEMS W & C E.I.R.L.

8. Condiciones Ambientales

7 25	Inicial	Final
Temperatura	26.0 °C	26.0 °C
Humedad Relativa	58 % HR	58 % HR

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibradas en PUCP - Laboratorio de estructuras antísismicas	Celda de Carga Capacidad: 150,000 kg.f	INF-LE N° 093-23 (B)
ELICROM	TERMOHIGROMETRO DIGITAL BOECO	CCP-0102-001-23

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de ensayo uniaxiales de clase de 2.0 según la norma UNE-EN ISO 7500-1.

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 0104 - 2023

Área de Metrología Laboratorio de Fuerza

Página 3 de 3

11. Resultados de Medición

	Indicación del Equipo		Indicación de Fuerza (Ascenso) Patrón de Referencia				
%	$F_i(kN)$	F ₁ (kN)	F ₂ (kN)	F ₃ (kN)	F _{Promedio} (kN		
10	100	100.8	101.1	100.9	101.0		
20	200	201.0	201.4	201.1	201.3		
30	300	301.6	301.6	301.5	301.5		
40	400	400.8	400.8	400.7	400.8		
50	500	501.7	500.7	501.6	501.2		
60	600	600.5	600.0	600.4	600.2		
70	700	700.7	700.7	700.5	700.7		
80	800	799.6	790.9	799.3	795.2		
90	900	899.8	900.5	899.6	900.1		
100	1000	1001.6	1000.3	1001.3	1000.8		
Retorn	io a Cero	0.0	0.0	0.0	361 6		

Indicación	Err	Errores Encontrados en el Sistema de Medición						
del Equipo F (kN)	Exactitud q (%)	Repetibilidad b (%)	Reversibilidad v (%)	Resol. Relativa a (%)	U (k=2) (%)			
100	-0.97	0.29	0.00	0.10	0.60			
200	-0.62	0.19	0.00	0.05	0.58			
300	-0.51	0.03	0.00	0.03	0.58			
400	-0.20	0.04	0.00	0.03	0.58			
500	-0.23	0.21	0.00	0.02	0.59			
600	-0.04	0.07	0.00	0.02	0.58			
700	-0.09	0.03	0.00	0.01	0.57			
800	0.60	1.10	0.00	0.01	0.85			
900	-0.01	0.11	0.00	0.01	0.58			
1000	-0.08	0.12	0.00	0.04	0.00			

MÁXIMO ERROR RELATIVO DE CERO (f₀) 0.00 %

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

9 913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

BORATORIC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Área de Metrología Laboratorio de Masas

Laboratorio de Masas	of state attach	Página 1 de 4
1. Expediente	1912-2023	Este certificado de calibración documenta la trazabilidad a los
2. Solicitante	LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W&C E.I.R.L.	patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema
3. Dirección	CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE	Internacional de Unidades (SI). Los resultados son validos en el momento de la calibración AI
4. Equipo de medición	BALANZA ELECTRÓNICA	solicitante le corresponde disponer en su momento la ejecución de una
Capacidad Máxima	2000 g	recalibración, la cual está en función del uso, conservación y mantenimiento
División de escala (d)	0.01 g	del instrumento de medición o a reglamento vigente.
Div. de verificación (e)	0.1 g	PERUTEST S.A.C. no se responsabiliza
Clase de exactitud	Control of the second	de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los
Marca	AMPUT	resultados de la calibración aquí declarados.
Modelo	457	
Número de Serie	NO INDICA	Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio
Capacidad mínima	0.2 g	que lo emite.
Procedencia	NO INDICA	El certificado de calibración sin firma y sello carece de validez.
Identificación	NO INDICA	PERUTEST SAG
5. Fecha de Calibración	2023-03-01	WTEST &
Fecha de Emisión	Jefe del Laboratorio de Metrología	Sello Q C
2023-03-02		LABORATORIC
1 16 16 C.	JOSE ALEJANDRO FLORES MINAYA	PERU

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Área de Metrología Laboratorio de Masas

Página 2 de 4

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase III y Clase IIII" del SNM- INACAL

7. Lugar de calibración

En las instalaciones del cliente.

CALLE LA FÉ NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

12 N - 9 9	Inicial	Final
Temperatura	26.5 °C	26.5 °C
Humedad Relativa	53%	55%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	Patrón utilizado	Certificado de calibración		
ELICROM	JUEGO DE PESAS 1 mg a 1 kg (Clase de Exactitud: F1)	CCP-0908-001-22		

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (**) Código indicada en una etiqueta adherido al equipo.

LABORATORIC

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- 1 PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Área de Metrología Laboratorio de Masas

Página 3 de 4

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	I NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	TIENE	CURSOR	NO TIENE
2011	40,00	NIVELACIÓN	TIENE	1/4 A	7 /0 0

ENSAYO DE REPETIBILIDAD

Temperatura Inicial Final Final 26.4 °C 26.4 °C

Medición	Carga L1 =	1,000	g	Carga L2 =	2,000	g
Nº	1(g)	ΔL (mg)	E(mg)	1(g)	ΔL (mg)	E (mg)
5 1 0	1000.00	5	0	2000.00	5	0
2	1000.00	4 0	39	2000.01	8	7 -
0.3 X	1000.01	8	700	2000.00	3	. 2
4	1000.00	55 00	00 4	2000.00	6	19-1
5 0	1000.00	6	F -10	2000.00	2	3
6	1000.01	9 6	6	2000.00	5 5	0
67 0	1000.00	4	1 1	2000.00	4	13
8	1000.00	5 0	0	2000.00	9 6	041
09	1000.00	6	√° -10°	2000.01	8	7.
10	1000.00	.94 .8	0	2000.00	6	A-1
18 C	Diferencia	a Máxima	8	Diferencia	a Máxima	8
	Error Máxim	o Permisible	200	Frror Máxim	o Permisible	300

ENSAYO DE EXCENTRICIDAD

Posición de las cargas

Temperatura 26.4 °C

icial Final .4 °C 26.4 °C

Posición	Deter	Determinación del Error en Cero Eo			GY X	Determina	ción del Erro	Corregido E	c
de la Carga	Carga Mínima*	I (g)	ΔL (mg)	Eo (mg)	Carga L(g)	I (g)	ΔL(mg)	E(mg)	Ec (mg)
120	C. 19	0.10	5	0	0. 3	1000.00	5	0	0.0
92	16	0.11	8 8	- 7 9	16.	1000.00	54	61 4	-6
3	0.10	0.10	6	P -15	1000.00	1000.00	6	at 160	0
4	0 P	0.10	G.5 A	0	8, 84	1000.00	5 6	0	0
50	at out	0.10	6	-1 p	15 18	1000.01	9 8	8°7- 8	16 8 G
* Valor	entre 0 y 10	le	C.	d'as		Error máxir	no permisible	19 18	200

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

ABORATORIO

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Página 4 de 4

ENSAYO DE PESAJE

Temperatura

Inicial Final 26.4 °C 26.4 °C

Carga		CRECIENTES		180	DECRE	The state of			
L(g)	1 (g)	ΔL(mg)	E(mg)	F. (3)	14.	100	5 29	(A) (A)	e.m.p **
0.10	0.10	6	68-1	Ec (mg)	1 (g)	$\Delta L(mg)$	E(mg)	Ec (mg)	(± mg)
0.20	0.20	5	0	1, 1, 5	0.20	5	0	1.4	100
10.00	10.00	6	94	0	10.00	5 5	0	1	100
100.00	100.00	7	-2	20 -1 Y	100.00	4	109	200	100
500.00	500.00	6	(-1 c	0	500.00	0.5 A	0	1	200
800.00	800.00	5	00	1 1 0	800.00	6	00 -16 C	500	200
1000.00	1000.00	6	,91 (0	1000.00	27 0	-2	-1	200
1200.00	1200.00	6	5 -1e	0.00	1200.00	2	6 3 N	94.6	200
1500.00	1500.00	4	1 0	2	1500.00	93	2	3	200
1800.00	1800.01	8	7,5	8 0	1800.00	300	200	3	200
2000.00	2000.01	8	7	8	2000.01	8	7	8	300

^{**} error máximo permisible

Leyenda:

L: Carga aplicada a la balanza.

ΔL: Carga adicional.

E_o: Error en cero.

I: Indicación de la balanza.

E: Error encontrado

E_C: Error corregido.

Incertidumbre expandida de medición

U = 2 x

g² +

+ 0.0000000001

ABORATORIC

Lectura corregida

R CORREGIDA =

= R

0.0000026 R

0.000028

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confidanza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- 1 PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Área de Metrología

Laboratorio de Temperatura

1. Expediente 1912-2023

2. Solicitante LABORATORIO DE **ENSAYOS** MATERIALES Y SUELOS W & C E.I.R.L.

3. Dirección CALLE LA FE NRO. 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - CHICLAYO -

LAMBAYEQUE

4. Equipo HORNO

Alcance Máximo 300°C

Marca PERUTEST

Modelo PT-H225

Número de Serie 0120

Procedencia PERÚ

Identificación NO INDICA

Ubicación NO INDICA

Página 1 de 5 certificado documenta la trazabilidad a los patrones DE nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

QUTEST S.

ABORATOR

ERU

Descripción	Controlador / Selector	medición		
Alcance	30 °C a 300 °C	30 °C a 300 °C		
División de escala / Resolución	0.1 °C	0.1 °C		
Tipo of	CONTROLADOR ELECTRONICO	TERMÓMETRO		

5. Fecha de Calibración

2023-03-01

Fecha de Emisión

Jefe del Laboratorio de Metrología

2023-03-02

JOSE ALEJANDRO FLORES MINAYA

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Temperatura CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Página 2 de 5

6. Método de Calibración

La calibración se efectuó por comparación directa con termómetros calibrados que tiene trazabilidad a la Escala Internacional de Temperatura de 1990 (EIT 90), se utilizó el Procedimiento para la Calibración de Medios Isotérmicos con aire como Medio Termostático PC-018 2da edición.

7. Lugar de calibración

En las instalaciones del cliente.

CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

au 9	Inicial	Final
Temperatura	26.3 °C	26.3 °C
Humedad Relativa	64 %	64 %

9. Patrones de referencia

Ğ.	Trazabilidad	Patrón utilizado	Certificado y/o Informe de calibración
PERU	SAT	Termometro de indicacion digital	LT-0417-2023
STEE	METROIL	THERMOHIGROMETRO DIGITAL BOECO MODELO: HTC-8	1AT-1704-2022

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (*) Código indicado en una etiqueta adherido al equipo.
- La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición.
- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **O PERUTEST SAC**

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Área de Metrología Laboratorio de Temperatura

Página 3 de 5

11. Resultados de Medición

Temperatura ambiental promedio

26.3 °C

Tiempo de calentamiento y estabilización del equipo

2 horas

El controlador se seteo en 110

PARA LA TEMPERATURA DE 110 °C

Tiempo	Termómetro		NAME OF TAXABLE PARTY.		a married to the colors	LAS PO	OSICIOI	NES DE	MEDIC	IÓN (°C	;)	49	¢ 0:
C	del equipo			25	NIVE	EL INFE	RIOR		T prom	Tmax-Tmi			
(min)	(°C)	1	2	3	4	5	6	7	8	9	10	(°C)	(°C)
00	110.0	105.8	107.1	105.8	109.7	112.4	109.7	112.3	111.0	109.0	109.7	109.2	6.6
02	110.0	105.8	107.1	105.8	109.7	113.0	109.7	111.9	109.7	108.6	109.7	109.1	07.2 A
04	110.0	105.8	106.9	105.8	109.6	112.6	109.6	112.4	111.3	108.6	109.6	109.2	6.8
06	110.0	105.5	107.0	105.5	109.7	112.6	109.7	112.5	110.5	108.6	109.7	109.1	7.1
08	110.0	105.7	107.1	105.7	109.7	112.4	109.7	112.4	111.0	109.0	109.7	109.2	6.7
10	110.0	105.6	107.0	105.7	109.6	113.0	109.6	112.3	109.7	108.6	109.6	109.1	7.4
12	110.0	105.5	107.1	105.5	109.7	112.6	109.7	112.4	111.0	108.6	109.7	109.2	7.1
14	110.0	105.5	106.9	105.5	109.7	112.6	109.7	112.7	109.7	109.0	109.7	109.1	7.2
16	110.0	106.1	107.0	106.1	109.6	112.4	109.6	112.5	111.3	108.6	109.6	109.3	6.4
18	110.0	106.3	107.1	106.3	109.7	113.0	109.7	112.6	110.5	109.0	109.7	109.4	6.7
20	110.0	106.2	107.1	106.2	109.7	112.6	109.7	112.3	111.3	108.6	109.7	109.3	6.4
22	110.0	106.1	107.1	106.1	109.6	112.6	109.6	112.7	110.5	108.6	109.6	109.2	6.6
24	110.0	106.2	106.9	106.2	109.7	112.6	109.7	112.6	111.0	108.6	109.7	109.3	6.4
26	110.0	106.5	107.0	106.5	109.7	112.4	109.7	112.3	109.7	108.6	109.7	109.2	5.9
28	110.0	106.3	106.9	106.3	109.6	113.0	109.6	112.6	111.3	108.6	109.6	109.4	6.7
30	110.0	106.4	107.0	106.4	109.7	112.4	109.7	112.5	110.5	109.0	109.7	109.3	6.1
32	110.0	106.4	107.1	106.4	109.7	113.0	109.7	112.7	111.0	108.6	109.7	109.4	6.6
34	110.0	106.3	107.0	106.3	109.6	112.6	109.6	112.6	109.7	109.0	109.6	109.2	6.3
36	110.0	106.2	107.1	106.2	109.7	112.6	109.7	112.3	111.3	108.6	109.7	109.3	6.4
38	110.0	106.3	107.1	106.3	109.7	113.0	109.7	112.4	110.5	108.6	109.7	109.3	6.7
40	110.0	106.4	106.9	106.4	109.6	112.6	109.6	112.4	111.0	109.0	109.6	109.3	6.2
42	110.0	105.9	107.0	105.9	109.7	112.4	109.7	112.8	109.7	108.6	109.7	109.1	6.9
44	110.0	106.7	107.0	106.7	109.7	113.0	109.7	112.7	111.0	108.6	109.7	109.5	6.3
46	110.0	106.7	107.1	106.7	109.6	112.6	109.6	112.7	109.7	108.6	109.6	109.3	6.0
48	110.0	106.6	107.1	106.6	109.7	112.6	109.7	112.3	111.3	109.0	109.7	109.5	6.0
50	110.0	106.3	106.9	106.3	109.7	112.4	109.7	112.4	110.5	108.6	109.7	109.2	6.1
52	110.0	106.4	107.0	106.4	109.6	113.0	109.6	112.5	111.3	108.6	109.6	109.4	6.6
54	110.0	106.2	107.1	106.2	109.6	112.6	109.6		(111.0	108.6	109.6	109.3	6.5
56	110.0	106.4	107.1	106.4	109.7	112.6	109.7	112.6	109.7	108.6	109.7	109.3	6.2
58	110.0	106.3	106.9	106.3	109.7	113.0	109.7	112.4	111.3	109.0	109.7	109.4	67
60	5 110.0	106.1	107.0	106.1	109.6	112.6	109.6	112.4	110.5	108.6	109.6	109.4	6.7 AST 1
.PROM	110.0	106.1	107.0	106.1	109.7	112.7	109.7	112.5	110.6	108.7	109.7	109.3	fai l
T.MAX	110.0	106.7	107.1	106.7	109.7	113.0	109.7	112.8	111.3	109.0	109.7		19
T.MIN	110.0	105.5	106.9	105.5	109.6	112.4	109.6	111 9	109 7	109.6	100 6	12	TARO

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **O PERUTEST SAC**

UTEST S.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

Área de Metrología Laboratorio de Temperatura

CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

PARÁMETRO	VALOR (°C)	INCERTIDUMBRE EXPANDIDA (°C)
Máxima Temperatura Medida	113.0	22.0
Mínima Temperatura Medida	105.5	0.0
Desviación de Temperatura en el Tiempo	1.6	0.1
Desviación de Temperatura en el Espacio	6.5	23.4
Estabilidad Medida (±)	0.8	0.04
Uniformidad Medida	7.4	23.4

T.PROM Promedio de la temperatura en una posición de medición durante el tiempo de calibración. Promedio de las temperaturas en la diez posiciones de medición para un instante dado.

Temperatura máxima. T.MIN : Temperatura mínima

: Desviación de Temperatura en el Tiempo.

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

Incertidumbre expandida de las indicaciones del termómetro propio del Medio Isotermo :

0.06 °C

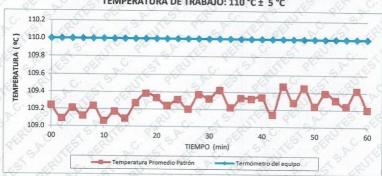
La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

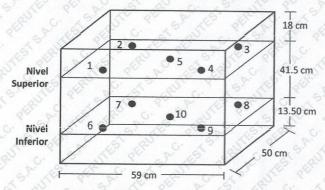
La Estabilidad es considerada igual a ± 1/2 DTT.

Durante la calibración y bajo las condiciones en que ésta ha sido hecha, el medio isotermo SI CUMPLE con

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC



VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721


Área de Metrología Laboratorio de Temperatura CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Página 5 de 5

DISTRIBUCIÓN DE TEMPERATURAS EN EL EQUIPO TEMPERATURA DE TRABAJO: 110 °C ± 5 °C

DISTRIBUCIÓN DE LOS TERMOPARES

Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles.

Los sensores del 1 al 4 y del 6 al 9 se colocaron a 9 cm de las paredes laterales y a 9 cm del fondo y frente del equipo a calibrar.

12. Incertidumbre

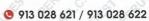
La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estandar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

Fin del documento

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- 1 PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LP - 062 - 2023


Área de Metrología Laboratorio de Presión

1. Expediente	2605-2023	Este certificado de calibración documenta la
2. Solicitante	LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W & C E.I.R.L LEMS W & C E.I.R.L.	trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la
3. Dirección	CALLA FE NRO. 0167 UPIS SEÑOR DE LOS MILAGROS LAMBAYEQUE - CHICLAYO - CHICLAYO	medición de acuerdo con el Sistema Internacional de Unidades (SI).
4. Instrumento de Medición	MANOMETRO	Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer
Alcance de indicación	0 PSI a 150 PSI	en su momento la ejecución de una recalibración,
División de Escala / Resolución	5 PSI	la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.
Marca	NO INDICA	of an as other or stand
Modelo	NO INDICA	PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado
Número de Serie	NO INDICA	de este instrumento, ni de una incorrecta
Procedencia	NO INDICA	interpretación de los resultados de la calibración aqui declarados.
Identificación	LP-062	
Tipo	ANALOGICO	Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por
5. Fecha de Calibración	2023-05-16	escrito del laboratorio que lo emite.
		El certificado de calibración sin firma y sello carece
		Calacoultulate

Fecha de Emisión

Jefe del Laboratorio de Metrología

913 028 623 / 913 028 624

www.perutest.com.pe

O Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

() PERUTEST SAC

LABORATORIC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LP - 062 - 2023

Área de Metrología Laboratorio de Presión

Página 2 de 2

6. Método de Calibración

La calibración se realizo por la compracion directo según el ME-003 "Procedimiento para la calibracion de manometros, vacuometros y manovacuometros" Edicion digital 1 - CEM de España.

7. Lugar de calibración

Laboratorio de Presión de PERUTEST S.A.C. Avenida Chillon Lote 50B - Comas - Lima - Lima

8. Condiciones Ambientales

- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Inicial	Final
Temperatura	21.5 °C	21.5 °C
Humedad Relativa	53 % HR	53 % HR

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado de Calibración
INACAL	Manómetro Digital con Incertidumbre 0.15	LFP-018-2023
METROIL	TERMOHIGROMETRO DIGITAL BOECO	1AT-1704-2022

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.

11. Resultados de Medición

En la siguente tabla se presentan la series de los resultados obtenidos

6	Indicación Manómetro Patrón		Error			
Indicación	Indicación Mai	nometro Patron	de Indic	ación	de Histeresis	
A Calibrar (psi)	Ascendente (psi)	Descendente (psi)	Ascendente (psi)	Descendente (psi)	(psi)	
50	50.0	50.0	0.0	0.0	0.00	
100	100.1	100.3	0.1	0.3	0.20	
150	150.2	150.7	0.2	0.7	0,50	
200	200.8	200.9	0.8	9 0.9	0.10	
250	250.9	250.8	0.9	0.8	-0.10	
300	301.3	301.3	1.3	0 1.3	0.00	

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- () PERUTEST SAC

LIC. ESTADÍSTICA COESPE 659

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

COMPRENSIÓN f'c=210kg/cm²

Estadisticas de fiabilidad a Compresión

Alfa de Cronbach	N de elementos	
0.959		7

Estadisticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
M1	1552.2467	122.435	0.999	0.961
M2	1534.4633	146.774	0.998	0.941
M3	1519.1033	191.629	0.994	0.958
M4	1542.4267	189.391	0.999	0.956
M5	1534.4633	146.774	0.998	0.941
M6	1528.5567	199.737	0.992	0.964
M7	1514.4200	171.534	0.999	0.945

ANOVA

		Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter sujet	os	64.467	2	32.234		
Intra	Entre	3052.838	6	508.806	388.065	0.000
sujetos	Residuo	15.734	12	1.311		11111111111
	Total	3068.572	18	170.476		
Total		3133.039	20	156.652		

Media global = 255,3733

Jessica Elizabeth Ballena Acesta LIC. ESTADÍSTICA COESPE 659

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

COMPRENSIÓN f'c=280kg/cm²

Estadisticas de fiabilidad a Compresión

Alfa de Cronbach	N de elementos	
0.947		7

Estadísticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
MB	1941.8567	2044.155	0.944	0.936
M9	1954.1333	2763.695	0.984	0.934
M10	1944.2233	2862.359	0.978	0.939
M11	1965.1167	2850.274	0.967	0.939
M12	1933.2167	1897.810	0.996	0.936
M13	1931.7333	2488.396	0.889	0.933
M14	1923.6600	3077.168	0.985	0.950

ANOVA

		Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter sujet	los	990.346	2	495.173	nown file	Lawrence 1
intra sujetos	Entre elementos	3616.405	6	602.734	22.942	0.000
	Residuo	315.264	12	26.272		
	Total	3931.669	18	218.426		
Total		4922.015	20	246.101	9.	

Media global = 323,6652

LIC. ESTADÍSTICA COESPE 659

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

TRACCIÓN f'c=210kg/cm²

Estadisticas de fiabilidad a Tracción

e elementos	Alfa de Cronbach
	,935

Estadisticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
M1	185.8100	29.814	0.977	0.914
M2	183.3867	33.921	0.991	0.932
M3	181.9700	20.474	1.000	0.921
M4	184.1667	32.718	0.883	0.928
M5	183.3867	33.921	0.991	0.932
M6	181.9700	20.474	1.000	0.921
M7.	181.1900	32.505	1.000	0.925

ANOVA

		Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter sujet	tos	11.203	2	5.601		
Intra sujetos	Entre elementos	44.531	6	7.422	20.482	0.000
	Residuo	4.348	12	0.362		
	Total	48.879	18	2.715		
Total		60.082	20	3.004	196	

Media global = 30,5210

Jessica Elizabeth Ballena Acosta LIC. ESTADISTICA COESPE 659

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

TRACCIÓN f'c=280kg/cm²

Estadisticas de fiabilidad a Tracción

Alfa de Cronbach	N de elementos	
0.951		7

Estadisticas de total de elemento

Media de escala si el elemento se	el elemento se ha	elementos	Alfa de Cronbach si el elemento se ha suprimido
ha suprimido 213.2700			0.937
210.6867	43.732	0.992	0.931
209.7467	50.822	0.950	0.948
211.7900	40.453	0.966	0.931
210.2567	53.532	0.973	0.956
209.2667	52.562	0.987	0.952
206.4833	35.078	0.976	0.938
	escala si el elemento se ha suprimido 213.2700 210.8867 209.7467 211.7900 210.2567 209.2667	escala si el elemento se ha suprimido 213.2700 34.869 210.6867 43.732 209.7467 50.822 211.7900 40.453 210.2567 53.532 209.2667 52.562	escala si el elemento se ha suprimido elemento se ha suprimido 213.2700 34.869 0.986 210.6867 43.732 0.992 209.7467 50.822 0.950 211.7900 40.453 0.966 210.2567 53.532 0.973 209.2667 52.562 0.987

ANOVA

		cuadrados	gl	Media cuadrática	F	Sig
Inter sujet	tos	17.140	2	8.570		
Intra sujetos	Entre elementos	81.246	6	13.541	32.133	0.000
**************************************	Residuo	5.057	12	0.421		
	Total	86.302	18	4.795		
Total		103.442	20	5.172		

Media global = 35,0357

COESPE 659

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

PENETRACIÓN DE AGUA BAJO PRESIÓN f'c=210kg/cm²

Estadisticas de fiabilidad a Penetración de agua bajo presión

1	Alfa de Cronbach	N de	elementos	
	0.978			7

Estadísticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
M1	262.6567	276.558	0.997	0.970
M2	263.4233	320.435	0.975	0.974
M3	261.2333	367.722	0.964	0.989
M4	260.7767	315.654	0.999	0.972
M5	259.7133	254.798	1.000	0.974
M6	258.6800	295.273	0.997	0.970
M7	255.2767	269.444	0.999	0.971

ANOVA

		Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter sujet	los	116.243	2	58.121		
Intra sujetos	Entre elementos	133.780	6	22.297	17.796	0.000
	Residuo	15.035	12	1.253		
	Total	148.815	18	8.268		
Total		265.058	20	13.253		

Media global = 43,3752

Jessica Elizabeth Ballena Acosta LIC. ESTADISTICA COESPE 659

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

PENETRACIÓN DE AGUA BAJO PRESIÓN f'c=280kg/cm²

Estadisticas de fiabilidad a Penetración de agua bajo presión

Alfa de Cronbach	N de elementos
0.931	7

Estadisticas de total de elemento

escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
225.0933	408.852	0.985	0.931
223.2267	300.689	0.945	0.903
221.5800	412.564	1.000	0.933
221.4067	360.537	0.999	0.911
221.1000	321.451	0.854	0.913
219.0433	376.551	0.909	0.919
218.1100	222.021	1.000	0.931
	elemento se ha suprimido 225.0933 223.2267 221.5800 221.4067 221.1000 219.0433	elemento se ha suprimido 225.0933 408.852 223.2267 300.689 221.5800 412.584 221.4067 380.537 221.1000 321.451 219.0433 376.551	elemento se ha suprimido suprimido corregida corregida 225.0933 408.852 0.985 223.2267 300.689 0.945 221.5800 412.564 1.000 221.4067 380.537 0.999 221.1000 321.451 0.854 219.0433 376.551 0.909

ANOVA

		Suma de cuadrados	gl	Media cuadrática	E	Sig
Inter sujet	los	131.968	2	65.984	100	-
Intra sujetos	Entre elementos	100.409	6	16.735	3.686	0.026
	Residuo	54.485	12	4.540	- 5	
	Total	154.894	18	8.605		
Total		286.862	20	14.343		

Media global = 36,8943

COESPE 659

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

FLEXIÓN f'c=210kg/cm²

Estadisticas de fiabilidad a Flexión

Alfa de Cronbach	N de elementos
0.968	7

Estadísticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
M1	278.3267	28.143	0.999	0.956
M2	275.7433	25.351	0.999	0.954
M3	274.6567	31.081	0.999	0.965
M4	276.8300	22.658	1.000	0.960
M5	274.3833	34.164	1.000	0.979
M6	272.0700	29.594	1.000	0.960
M7	270.0300	22.658	1.000	0.960

ANOVA

		Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter suje	etos	10.701	2	5.351		
intra	Entre	142.501	6	23.750	139.012	0.000
sujetos	Residuo	2.050	12	0.171		
	Total	144.552	18	8.031		
Total		155.253	20	7.763		

Media global = 45,7629

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

FLEXIÓN f'c=280kg/cm²

Estadisticas de fiabilidad a Flexión

Alfa de Cronbach	N de elementos	
0.976		7

Estadísticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
M8	335.8233	223.503	0.900	0.985
M9	331.1100	172.322	0.999	0.966
M10	329.7500	172.322	0.999	0.966
M11	332.9200	190.304	0.983	0.969
M12	327.0367	209.716	1.000	0.976
M13	325.2233	155.316	0.984	0.974
M14	322.9667	172.193	0.999	0.966

ANOVA

		Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter suje	tos	71.696	2	35.848		
Intra sujetos	Entre elementos	363.316	6	60.553	70.679	0.000
	Residuo	10.281	12	0.857		
	Total	373.597	18	20.755		
Total		445.293	20	22.265		

Media global = 54,8767

COESPE 659

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

MÓDULO DE ELASTICIDAD f'c=210kg/cm²

Estadisticas de fiabilidad a Módulo de elasticidad

Alfa de Cronbach	N de elementos	
,880		7

Estadisticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
M1	1438727.9367	54551309.404	0.901	0.939
M2	1430755.6733	108875390.499	0.940	0.843
M3	1420863.1667	119213695.763	0.987	0.861
M4	1426002.0833	117326978.967	0.717	0.866
M5	1430755.6733	108675390.499	0.940	0.843
M6	1429371.8567	124661573.065	0.989	0.871
M7	1398986.9300	105610624.242	0.773	0.851

ANOVA

		Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter suje	etos	40233444.279	2	20116722.139	500000	. seems
Intra sujetos	Entre elementos	2905774896.746	6	484295816.124	200.219	0.000
	Residuo	29025930.851	12	2418827.571		
	Total	2934800827.597	18	163044490.422		
Total		2975034271.875	20	148751713.594		

Media global = 237511,0314

COESPE 659

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

MÓDULO DE ELASTICIDAD

f'c=280kg/cm²

Estadisticas de fiabilidad a Módulo de elasticidad

Alfa de Cronbach	N de elementos
0.924	7

Estadisticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
M8	1601419.4733	737725612.841	1.000	0.893
M9	1606000.5000	641973886.775	0.999	0.885
M10	1601868.0133	906333037.091	1.000	0.925
M11	1610330.1733	874148152.036	0.846	0.920
M12	1592486.2600	518629744.469	0.869	0.942
M13	1593506.0400	739782475.951	0.793	0.909
M14	1588485.9400	848497751.569	0.986	0.913

ANOVA

		cuadrados	gl	Media cuadrática	F	Sig
Inter sujetos		288947772.997	2	144473886.499		
intra sujetos	Entre elementos	1123335945.274	6	187222657.546	17.012	0.000
E Constant	Residuo	132061493.567	12	11005124.464		
	Total	1255397438.841	18	69744302.158		
Total		1544345211.838	20	77217260.592		

Media global = 266526,1048

LIC. ESTADÍSTICA COESPE 659

COESPE 659

En las tablas se presentan la validez y confiabilidad del instrumento de los ensayos realizados como lo son la Resistencia a Compresión, resistencia a la Tracción, Resistencia a la Flexión, Módulo de elasticidad y Profundidad de Penetración de agua bajo presión. El instrumento del estudio que pretende determinar la influencia de Perlitas de Poliestireno Expandido y la fibra de Polipropileno en las propiedades hidromecánicas del concreto, adicionando en función del volumen de concreto es válido, por presentar correlaciones de Pearson que superan el valor de 0.30 y el valor de la prueba de análisis de varianza ANOVA es altamente significativo p<0.001 por lo cual se rechaza la hipótesis nula demostrando significancia estadística; además, es confiable por presentar valores de consistencia alfa de Cronbach mayores a 0.80.

Anexo 9. Fichas de validación de expertos AIKEN

Colegiatura Nº 320474

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Cabanillas Hernandez Geiser Yamir	INGENIERO CIVIL EN CONSULTORIA RMG E I R.L	Hidromecánicas del Concreto	Molina Fernández Miner Orlando. Sánchez Ramírez José Elmer

Titulo de la Investigación:

"EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Conforme
2	A	Conforme
3	A	Conforme
4	A	Conforme
5	A	Conforme
6	A	Conforme

Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/İtems		0		Context o		Congruen cia		Dominio del constructo	
	F'c 210 Kg/cm2	Si	No	Si	No	Si	No	Si	No	
1	Compresión	X		Х		X		X		
2	Tracción	X		X		X		X.		
3	Flexión	X		Х		X		X		
4	Modulo de elasticidad	X		X		X		X		
5	Profundidad de penetración	Х		X		X		X		
	F'C 280 Kg/cm2									
1	Compresión	X		X		X		X		
2	Tracción	X		X		Х		X		
3	Flexion	X		X		X		X		

4	Módulo de elasticidad	×	X	X	X
1	Profundidad de	idad de		Y	X
5	penetración	X	X	X	X

Observaciones	(precisar	si hay	suficiencia)
---------------	-----------	--------	--------------

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: CABANILLAS HERNANDEZ GEISER YAMIR Especialidad: Ing. Civil

GENER YMMR CANADLAS HERNANDEZ INGENIERO CIVIL REG. CIP. 320474

ING. CABANILLAS HERNANDEZ GEISER YAIMIR

Colegiatura Nº 292169

Ficha de validación según AIKEN

. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde Jabora	Nombre del instrumento de evaluación	Autor del Instrumento
Paulo Cesar Tocto Yovera	INGENIERO SUPERVISOR EN CONSULTORIA 'RODOLFO VALENTINO MARTINEZ GONZALES E I.R.L'	Hidromecánicas del Concreto	Molina Fernández Miner Orlando. Sánchez Ramírez José Elmer

Título de la Investigación:

"EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Conforme
2	A	Conforme
3	A	Conforme
4	A	Conforme
5	A	Conforme
6	A	Conforme

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/İtems	0		ntext	Con	gruen	Dominio del construct		
	F'c 210 Kg/cm2	Si	No	Si	No	Si	No	Si	No
1	Compresión	Х		X		X		X	
2	Tracción	Х		X		X	1	X	
3	Flexión	X		X	1.5	X		X	
4	Módulo de elasticidad	Х		X		X		X	
5	Profundidad de penetración	Х		X		X		X	
	F'C 280 Kg/cm2								
1	Compresión	X		X		X		X	
2	Tracción	X		X		X		X	
3	Flexión	X	0	X		X		X	

4	Módulo de elasticidad	X	X	X	X
5	Profundidad de penetración	×	×	×	X

Opinión de aplicabilidad Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador TOCTO YOVERA PAULO CESAR Especialidad Ing Civil

PAULO CESAN TOCTO YOVERA INGENIERO CIVIL REG. CIP. 292169

ING. TOCTO YOVERA PAULO CESAR

Colegiatura Nº 166935

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
VICTOR HUGO BONILLA GONZALES	INGENIERO CIVIL EN INVERSIONES SACOPE E.I.R.L	Pruebas Hidromecánicas del Concreto	Molina Fernández Miner Orlando. Sánchez Ramírez José Elmer

Título de la Investigación:

"EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Conforme
2	A	Conforme
3	A	Conforme
4	A	Conforme
5	A	Conforme
6	A	Conforme

Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/İtems				Context o		Congruen cia		Dominio del constructo	
	F'c 210 Kg/cm2	Si	No	Si	No	Si	No	Si	No	
1	Compresión	X		X		X		X		
2	Tracción	Х		X		X		Х		
3	Flexión	Х		X		X		X		
4	Módulo de elasticidad	X		X		X		X		
5	Profundidad de penetración	X		X		X		X		
	F'C 280 Kg/cm2									
1	Compresión	X		X		X		X		
2	Tracción	X		X		X		X		
3	Flexión	X		X		X		X		

4	Módulo de elasticidad	X	X	X	X
5	Profundidad de penetración	Х	×	×	X

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: BONILLA GONZALES VICTOR HUGO Especialidad: Ing. Civil

ING. BONILLA GONZALES VICTOR HUGO

Hugo Bondla Gonzales INGOVIERO CIVIL CIP Nº 165938

Colegiatura Nº 332789

Ficha de validación según AIKEN

I. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento	
IDROGO IRIGOIN ALEXANDER	INGENIERO SUPERVISOR EN CONSORCIO SAN ANTONIO.	Hidromecánicas del	Molina Fernández Miner Orlando.	
			Sánchez Ramirez José Elmer	

Título de la Investigación:

"EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Conforme
2	A	Conforme
3	A	Conforme
4	Α-	Conforme
5	A	Conforme
6	A	Conforme

Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/İtems	07.07	ridad	Cor	ntext	Con	gruen	Dom del con:	inio structo
	F'c 210 Kg/cm2	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		Х		X	
2	Tracción	Х		X		X		Х	
3	Flexión	X		X		X		X	
4	Módulo de elasticidad	Х		X		X		X	
5	Profundidad de penetración	Х		X		X		X	
	F'C 280 Kg/cm2								
1	Compresión	X		X		X		X	
2	Tracción	X		X		X		X	
3	Flexión	X		X		X		X	

4	Módulo de elasticidad	X	X	X	X
5	Profundidad de		V		x
0	penetración	_ X		^	^

Opinión de aplicabilidad. Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: IDROGO IRIGOIN ALEXANDER Especialidad: Ing. Civil

INGENIERO CIVIL REG. CIP. 332789

Colegiatura Nº 75063

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde Jabora	Nombre del instrumento de evaluación	Autor del Instrumento
VILLEGAS GRANADOS LUIS MARIANO.	INGENIERO CIVIL EN UNIVERSIDAD SEÑOR DE SIPAN (DOCENTE).	Hidromecánicas del Concreto	Molina Fernández Miner Orlando Sánchez Ramirez José Elmer

Titulo de la Investigación:

"EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO"

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Conforme
2	A	Conforme
3	A	Conforme
4	A	Conforme
5	A	Conforme
6	A	Conforme

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/İtems	Claridad		Context o		Congruen		Dominio del constructo	
	F'c 210 Kg/cm2	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		Х		X	
2	Tracción	Х		X		X		X	
3	Flexión	Х		Х		X		X	
4	Módulo de elasticidad	X		Х		X		X	
5	Profundidad de penetración	X		X		X		X	
	F'C 280 Kg/cm2								
1	Compresión	X		X		X		X	
2	Tracción	X		X		X		X	
3	Flexión	X		X		X		X	

4	Módulo de elasticidad	X	X	X	X	
5	Profundidad de penetración	X	×	X	×	

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: VILLEGAS GRANADOS LUIS MARIANO. Especialidad: Ing. Civil

ING. VILLEGAS GRANADOS LUIS MARIANO.

Mano Villegas Grovados INDENIERO EN IL CIR 75063

Anexo 10. Validez de instrumento

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

Claridad

		1	f'c=210kg/c	om²	f'c=280kg/cm²					
	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración
Juez 01	1	1	1	1	1	1	1	1	1	1
Juez 02	1	0	1	1	1	1	1	1	1	1
Juez 03	1	1	1	1	1	1	1	1	0	1
Juez 04	1	1	1	1	0	1	1	1	1	1
Juez 05	1	1	1	1	1	1	1	1	1	1

 $V = \frac{S}{n \ (c-1)} \qquad \begin{array}{l} \text{S = Suma de valoración de todos los expertos por ítems.} \\ \text{n = Número de expertos que participaron en el estudio.} \\ \text{c = Número de niveles de la escala de valorización utilizada.} \end{array}$

	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración
(8)	5	4	5	5	4	5	5	5	4	5
(N)	5									
(C)	2									
V de	1	0.8	4	1	0.8	4	1	4	0.8	4
Alken		0.0			0.0				0.0	

V de Aiken 0.94

Contexto

		1	f'c=210kg/	cm²	f'c=280kg/cm²					
	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración
Juez 01	1	1	1	1	1	1	1	1	1	0
Juez 02	1	1	1	1	1	1	1	1	1	0
Juez 03	1	0	1	1	1	1	1	0	1	1
Juez 04	1	1	1	1	1	1	0	1	1	1
Juez 05	1	1	1	0	1	1	1	1	1	1

 $V = \frac{S}{n \ (c-1)} \hspace{1cm} \begin{array}{l} S = \text{Suma de valoración de todos los expertos por ítems.} \\ n = \text{Número de expertos que participaron en el estudio.} \\ c = \text{Número de niveles de la escala de valorización utilizada.} \end{array}$

	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración
(S)	5	4	5	4	5	5	4	4	5	3
(N)	5									
(C)	2									
V de Alken	1	8.0	1	0.8	1	1	0.8	0.8	1	0.6

V de Aiken 0.88

COESPE 659

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTUDIO EVALUACIÓN DEL COMPORTAMIENTO HIDROMECÁNICO DEL CONCRETO INCORPORANDO PARCIALMENTE PERLITAS DE POLIESTIRENO EXPANDIDO Y FIBRAS DE POLIPROPILENO

Congruencia

		1	f'c=210kg/	cm²	f'c=280kg/cm²					
	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración
Juez 01	1	1	1	1	1	1	1	1	1	1
Juez 02	1	1	0	1	1	1	1	1	1	1
Juez 03	1	1	1	1	1	1	1	1	1	1
Juez 04	1	1	0	1	1	1	1	1	1	1
Juez 05	1	1	1	1	1	1	1	1	1	1

 $V \equiv \frac{S}{n \ (c-1)}$ S = Suma de valoración de todos los expertos por ítems. n = Número de expertos que participaron en el estudio. c = Número de niveles de la escala de valorización utilizada.

	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración
(S)	5	5	3	5	5	5	5	5	5	5
(N)	5									
(C)	2									
V de Alken	1	1	0.6	1	1	1	1	1	1	1

Congruencia
V de Aiken 0.96

Dominio del constructo

			f'c=210kg/c	:m²	f'c=280kg/cm²					
	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración
Juez 01	1	1	1	1	1	1	1	1	1	1
Juez 02	1	1	1	1	1	1	1	0	1	1
Juez 03	1	1	1	1	1	1	1	1	1	1
Juez 04	1	1	1	1	1	1	0	1	1	1
Juez 05	1	1	1	1	1	1	0	1	1	0

 $V \equiv \frac{S}{n\;(c-1)} \qquad \begin{array}{l} \text{S = Suma de valoración de todos los expertos por ítems.} \\ \text{n = Número de expertos que participaron en el estudio.} \\ \text{c = Número de niveles de la escala de valorización utilizada.} \end{array}$

	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración	Comprensión	Tracción	Flexión	Módulo de Elasticidad	Profundidad de penetración
(8)	5	5	5	5	5	5	3	4	5	4
(N)	5									
(C)	2									
V de	1	1	1	1	1	1	0.6	0.8	1	0.8

Dominio del constructo
V de Aiken 0.92
V de Aiken 0.925

En las tablas expuestas lineas arriba, se observa que el instrumento aplicado para la investigación realizada sobre la "Evaluación del comportamiento hidromecánico del concreto incorporando parcialmente perlitas de poliestireno expandido y fibras de polipropileno" es válida por haber obtenido el coeficiente 0.925, ya que ientras más cerca esté el coeficiente al valor 1, indica que es mayor la v alidez del contenido.

181

COESPE 659

Anexo 11. Panel Fotográfico

