

FACULTAD DE INGENIERÍA ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL TESIS

Efecto Combinado de Conchas de Mejillón Triturado y Fibra de Coco Tratado en las Propiedades Mecánicas del Concreto

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autores

Alvarado Juarez Johnny Alexander

(https://orcid.org/0000-0002-5430-6836)

Bances Acosta Kevin Jhan Franco

(https://orcid.org/0000-0002-8503-3877)

Asesor

MG. Delgado Pérez Milthon Jeiner (https://orcid.org/0000-0001-6779-0914)

Línea de Investigación

Tecnología e Innovación en el desarrollo de la Construcción y la Industria en un contexto de Sostenibilidad

Sublínea de Investigación

Innovación y tecnificación en Ciencias de los Materiales, Diseño e Infraestructura Pimentel — Perú

2024

Quienes suscriben la DECLARACIÓN JURADA, yo Alvarado Juarez Johnny Alexander y Bances Acosta Kevin Jhan Franco somos **egresados** del Programa de Estudios de **Escuela de Ingeniería Civil** de la Universidad Señor de Sipán S.A.C, declaro ambos bajo juramento que somos autores del trabajo titulado:

EFECTO COMBINADO DE CONCHAS DE MEJILLÓN TRITURADO Y FIBRA DE COCO TRATADO EN LAS PROPIEDADES MECÁNICAS DEL CONCRETO

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firman:

Alvarado Juarez Johnny Alexander	DNI: 76429214	
Bances Acosta Kevin Jhan Franco	DNI: 75957659	

Pimentel, 30 de mayo del 2024.

REPORTE DE SIMILITUD TURNITIN

PAPER NAME AUTHOR

ALVARADO & BANCES- TESIS FINAL -

WORD COUNT CHARACTER COUNT

7696 Words 38413 Characters

PAGE COUNT FILE SIZE

59 Pages 46.6KB

SUBMISSION DATE REPORT DATE

Sep 15, 2024 7:49 PM GMT-5 Sep 15, 2024 7:50 PM GMT-5

21% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

• 20% Internet database

• 1% Publications database

• 10% Submitted Works database

EFECTO COMBINADO DE CONCHAS DE MEJILLÓN TRITURADO Y FIBRA DE COCO TRATADO EN LAS PROPIEDADES MECÁNICAS DEL CONCRETO

_				
Δni	'Aha	CIAN	וםה	แเรลฝก
API	ODG	CIUII	uci	jurado

Mg. Ing. IDROGO PÉREZ CESAR ANTONIO

Presidente del Jurado de Tesis

Dr. Ing. CORONADO ZULOETA OMAR

Secretario del Jurado de Tesis

Mg. Ing. BARRETO REQUEJO JHONATAN DAVID

Vocal del Jurado de Tesis

ÍNDICE

Res	sumen	1
Abs	stract	2
l.	INTRODUCCIÓN	1
II.	MATERIALES Y MÉTODO	9
III.	RESULTADOS Y DISCUSIÓN	21
	3.1 Resultados	21
IV.	CONCLUSIONES Y RECOMENDACIONES	29
	4.1 Conclusiones	29
	4.2 Recomendaciones	29
RE	FERENCIAS	31
AN	EXOS	38

INDICE DE TABLAS

Tabla I: Ensayos del Cemento Tipo I- Pacasmayo9
Tabla II: Características de la Cal11
Tabla III: N° de muestras para el concreto patrón17
Tabla IV: N° de muestras de las combinaciones
Tabla V: Resultados de los ensayos en estado fresco21
Tabla VI: Análisis de precios del D125
Tabla VII: Análisis de precios del D2 (porcentaje óptimo)25
INDICE DE FIGURAS
Fig. 1: Conchas de mejillón enteras y trituradas para su utilización10
Fig. 2: Curva granulométrica del agregado grueso y conchas de mejillón10
Fig. 3: Fibra de coco cortado y después en fibra de hilos
Fig. 4: Diagrama de flujo del proyecto20
Fig. 5: Efecto de la combinación de las C'M+CF en resistencia a la compresión23
Fig. 6: Efecto de la combinación de las C'M+ CF en resistencia a la flexión23

EFECTO COMBINADO DE CONCHAS DE MEJILLÓN TRITURADO Y

FIBRA DE COCO TRATADO EN LAS PROPIEDADES MECÁNICAS DEL

CONCRETO

Resumen

El presente trabajo de investigación tuvo como propósito de evaluar las propiedades

físicas y mecánicas del concreto adicionando C'M y CF para un concreto de diseño de f'c=210

Kg/cm², Lambayeque 2023, de tal manera este sea un material alternativo sostenible, que

favorezcan a la mitigación del impacto ambiental y a la resistencia del concreto. Por

consiguiente, la metodología empleada en la investigación, fue de tipo aplicada de orientación

experimental ya que se analizó la variación de las propiedades mecánicas del concreto, en

base a la comparación del grupo control y grupo experimental, donde el agregado grueso fue

sustituido en 10, 30 y 60% por C'M respecto a su peso total, y adición de la CF al 0.5, 1.5 y

2.5%, reemplazo del cemento, en la cual se realizaron 120 probetas cilíndricas y 30 vigas por

cada una de ellas, posteriormente fueron evaluadas a edades de curado de 7, 14 y 28 días

respectivamente. Finalmente, de los resultados se demuestra que la C'M+CF influye

positivamente en las propiedades mecánicas del concreto, a los 28 días, en todos los ensayos

realizados, el diseño D2, es decir, C'M 10%+0.5%FC, en R_C, aumenta 16.95% la resistencia.

Además, en R_F aumentando 9.62%, y con respecto a M_E aumenta 4.40% la resistencia.

Concluyendo que el porcentaje óptimo de sustitución es el D2 produciendo un concreto

reduciendo la utilización del cemento y el agregado pétreo grueso, contribuyendo a una

investigación primordial a no contaminar, y así conservando los recursos.

Palabras Clave: concreto, conchas de mejillón, fibra de coco, mitigación, residuo.

1

Abstract

The present research aimed to evaluate the physical and mechanical properties of

concrete by adding C'M and CF for a design concrete with f'c=210 Kg/cm², Lambayeque 2023,

in such a way that it becomes a sustainable alternative material, favoring both environmental

impact mitigation and concrete strength. Therefore, the methodology used in the research was

of an applied type with experimental orientation since the variation of the concrete's

mechanical properties was analyzed based on the comparison between the control group and

the experimental group. In the experimental group, the coarse aggregate was replaced by

10%, 30%, and 60% with C'M with respect to its total weight, and CF was added at 0.5%,

1.5%, and 2.5%, replacing cement. A total of 306 cylindrical specimens and 153 beams were

made for each, which were then evaluated at curing ages of 7, 14, and 28 days, respectively.

Finally, the results demonstrate that C'M+CF positively influences the concrete's mechanical

properties at 28 days in all conducted tests. Design D2, which is C'M 10%+0.5% FC, in

compressive strength, increases by 16.95%. Additionally, in flexural strength, it increases by

9.62%, and concerning modulus of elasticity, it increases by 4.40%. It is concluded that the

optimal substitution percentage is D2, producing concrete by reducing the use of cement and

coarse aggregate, contributing to fundamental research in pollution prevention and resource

conservation.

Keywords: Concrete, mussel shells, coconut fiber, mitigation, waste.

2

I. INTRODUCCIÓN

En la Industria de la construcción a nivel mundial es el sector más intensivo en recursos. Por lo tanto, en Alemania, la sostenibilidad y el gran uso de los recursos de los materiales de construcción son temas cada vez más relevantes en tiempos de cambio climático [1]. Existe la urgencia de sustituir los materiales de construcción por materiales respetuosos con el medio ambiente y económicamente asequibles, a la vez generando enormes desechos de coco, claro ejemplo son las industrias de aceite comestible [2], cada vez va en aumento los residuos sólidos municipales de fibra de coco (CF), generando problemas de contaminación a las poblaciones, por lo que la eliminación de estos desechos en vertederos genera un impacto ambiental desastroso [3].

Cada vez, existen residuos que son llamativos, CF y otras fibras naturales, donde se han evaluado consecutivamente, como resultado su incorporación permite obtener mejores propiedades [4]. En el caso de Brasil, la aplicación de fibras, se hizo popular, luego de la identificación de problemas de salud relacionados al uso de asbesto, apareció la utilización de fibras como es la CF entre otros para adicionar al concreto, dándole un nuevo uso [5]. En Pakistán, los problemas ambientales como el agotamiento de las materias primas naturales y el vertido de desechos sólidos y gaseosos a la atmósfera, además la generación aumentativa de fibras artificiales causa impactos ambientales adversos debido al CO₂ emisiones [6].

Las empresas cementeras de concreto en el mundo están produciendo hasta 2.800 millones de toneladas de cemento al año. La eliminación incesante de estos desechos agrícolas contamina al medio ambiente [7]. La industrialización y el rápido crecimiento de las actividades de construcción han aumentado las preocupaciones económicas y ambientales en los países en desarrollo. Además de este escenario, se acumulan millones de toneladas de desechos industriales y domésticos, generando los riesgos para la salud de la humanidad y de diversas especies [8].

Residuos de conchas marinas, como conchas de ostras, conchas de mejillón (C'M) y vieiras, está disponible en grandes cantidades en ciertos países generalmente se vierte en vertederos. De hecho, respecto a la producción aumenta diariamente en los últimos 60 años, es decir pasando de casi 1 millón de t. en a 14,6 millones de t. Consistió en un 38% de almejas, 35% ostras, 14% (C'M) y 13% vieiras. China tiene el 70,8 % de la producción internacionalmente de moluscos, 80% de la producción acuícola mundial de moluscos bivalvos.

Japón es el segundo mayor productor, seguida por Estados Unidos (676.7 t), Y otros países que también representan la producción de grandes cantidades de moluscos

representa una importante actividad económica en países y a la vez acumulan una gran contaminación en vertederos y mares [9], [10].

La expansión de (C'M) en balsas en los estuarios de los ríos a nivel mundial produce alrededor de 1,4 millones de toneladas de desechos de conchas que terminan principalmente en los vertederos [11]. La (C'M) mayormente es utilizada por industrias conserveras, produciendo más de 1 millón de ton. de subproductos de la concha al año en todo el mundo, quedando a la deriva sus cáscaras. [12]. En Nigeria, la utilización de algunas conchas marinas como agregado grueso parcial en un nivel de sustitución de hasta el 50 % puede realizar una producción de concreto convencional y a la vez ser o no estructurales [13].

En Perú, en el sector industrial las fibras naturales donde son muy contaminantes al ambiente en nuestro entorno, la CF no es utilizada en su totalidad y causa un desecho encontrándose en grandes cantidades, comprobándose que la fibra sirve de gran resistencia al desgaste por lo que podría ser colocado en zonas transitorias como pasillos, entre otros medios que se pueda caminar, etc. [14]. A nivel Nacional, en sus departamentos la producción del coco por toneladas, es de San Martin 14.5 mil t, Loreto 8.7 mil t, Ucayali 4.8 mil t, Piura 1.5 mil t, Huánuco 1.4 mil t, Junín 415 mil, Madre de Dios 390 mil, Ayacucho 143. mil, Tumbes 140 mil, Cajamarca 90 mil y Lambayeque 54 mil [15].

En los antecedentes internacionales Revathi et al., [16], en su objetivo fue de evaluar en cuanto a resistencia a la compresión (R'C) y tenacidad concreto cuando la arena se reemplaza con escoria de cobre y se agrega CF como fibras. En su metodología utilizó las combinaciones sustanciales estaban listas con 40 % de escoria de cobre, y la cantidad de CF se cambió de 0,5 %, 1 %, 1,5 %, 2 % por el peso de cemento, para el grado M30. Los resultados muestran que el 1 % de CF y un 40 % de escoria de cobre como sustitución de la arena vigoriza con una alta R'C, resistencia a la tracción dividida (R'T), resistencia a la flexión (R'F), concluyendo que la CF mejora la resistencia del concreto mediante la prueba de R'C y la prueba de R'F.

En India, los autores MD y Unnikrishnan, [17], describe su objetivo investigar las propiedades mecánicas y la resistencia del concreto armado con (CF). En su metodología utilizaron CF de 50 mm y 75 mm de 0,2 %, 0,3 % y 0,4 % del volumen de concreto. Según los resultados de las pruebas, se seleccionaron CF (50 mm) para concreto simple, al variar el contenido, se observó que la mejora de la resistencia era máxima cuando el contenido total de fibras en el concreto con fibras híbridas era del 0,3 %.

La investigación de Usman et al. [18], mencionaron en su objetivo fue analizar el efecto de la variación del contenido de (CF) en las características del concreto, en los ensayos de R'C y R'F. En su metodología utilizó diferentes con variaciones del 0%, 0,2%, 0,3% y 0,4% en el peso del cemento. Los resultados mostraron que existe una disminución de la

trabajabilidad a medida que aumenta el contenido de fibra. La adición de composición de fibra conduce a un aumento en la R'C y la resistencia a la flexión (R'F). La máxima R'C con refuerzo de CF es de 58,04 MPa en una variación de fibra de 0,3 % y una R'F de 8,30 MPa en una variación de fibra de 0,4 %.

En Pakistán, los autores Ahmad et al., [19], en su investigación su objetivo fue explorar las propiedades mecánicas del concreto de alta resistencia incluyendo la (CF). En su metodología investiga la influencia de CF de 2.5, 5 y 7.5 cm de largo y contenidos de 0,5 %, 1 %, 1,5 % y 2 % en masa. Los mejores resultados generales se obtienen para el CFR-HSC que tiene CF de 50 mm de largo con un contenido de 1,5% por masa de cemento. Concluyendo que el concreto ha mejorado las R'C, R'T y a la R'F, e índices de absorción y tenacidad incorporando la CF.

En Pakistán, los autores Shah et al. [20], en su estudio su objetivo fue analizar las propiedades mecánicas y en fresco del concreto elaborado con agregados reciclados y fCF, con énfasis en el desarrollo de compuestos cementosos sostenibles y dúctiles a través de la valorización de la fibra y los desechos de la construcción. En su metodología utilizó porcentajes de CF, es decir, 0%, 1%, 2% y 3% en peso de cemento, para evitar el efecto negativo de CF sobre la trabajabilidad, El desempeño de las mezclas se evaluó con base en los resultados de trabajabilidad, densidad, R'C, R'T -fisuración (STS), R'F y absorción de agua. Se concluye que la adición de 2% CF para obtener el máximo rendimiento mecánico.

En Pakistán, los autores Ali, Farooq, et al., [21], en su investigación su objetivo fue determinar el uso de áridos en lugar de residuos de (CF) puede conducir a la producción de un concreto barato y ecológico. En su metodología prepararon mezclas de concreto con y sin CF, realizando ensayos de R'C, y la R'T por división y las propiedades de durabilidad de todas las mezclas. Los resultados revelaron que el CF al 2 % (en peso de cemento) mejoró la resistencia al corte del concreto simple en un 40 % y un 60 % con y sin (CF), respectivamente.

En Colombia, Gil et al. [22] En su investigación tuvo por objetivo examinar las CF adicionando como refuerzo al concreto. En su metodología los porcentajes de adición fueron de 0.46 y 0.62% en peso de (CF), Los resultados con respecto a la incorporación de porcentajes adicionando fibra disminuía la R'C comparado con el concreto convencional, indicando energía de 9.15% a 13.35% y el durante la fase de producción del material, sugiriendo las CF pueden ser útiles desde el punto de vista ambiental.

En Federación Rusa, los autores Shcherban' et al., [23], en su investigación tiene como objetivo investigar la base experimental para las propiedades de resistencia del concreto reforzado con fibras dispersas con (CF). En su metodología las muestras fueron de concreto con una R'C a los 28 días de 40 a 50 MPa. Se investigaron las principales características mecánicas como la R'C (cúbica y prismática) y R'T (axial y a la flexión), así

como las deformaciones a la R'C ya la R'T del material. En sus resultados las deformaciones últimas en R'C aumentaron en un 46% y en tensión en un 51%. El módulo elástico se incrementó en un 16%.

En Italia, los autores Foti & Cavallo [24], mencionan su objetivo fue de determinar el comportamiento mecánico del concreto elaborado con áridos calcáreos de origen orgánico no convencional, en su metodología adicionaron la (C'M), fueron limpiados con lejía y hervidos en agua, se prepararon tres diseños en la Mix1 la grava se sustituyó por 46.5% de (C'M) en la Mx2 fue el 100% de sustitución y en el Mx3 no fueron sustituidas, en los resultados del ensayo de R'C fueron en la Mix1 su valor promedio fue de 22.37KN/mm², en Mix2 se obtuvo 21.6 KN/mm² y en la Mix3 28.79 KN/mm².

En India, los autores Sangeetha et al. [25], en su investigación tiene por objetivo de determinar el uso potencial del desechos de conchas marinas como reemplazo agregados en el concreto, para producir un concreto más ecológico. En su metodología basada en la utilización de concha marina y los agregados en el concreto con respecto a la R'C, R'T y a la T'F. Al realizar el reemplazo del agregado grueso por cáscaras de conchas marina (10%, 20% y 30%) se compararon con muestras de mezcla de control de grado M25. Concluyendo que, es recomendable reemplazar un 10 % de agregados de conchas marinas.

En Omán, los autores Poloju et al. [26], en su investigación mencionan en su objetivo fue demostrar que las conchas marinas se pueden utilizar como reemplazo parcial del agregado grueso en el concreto para mejorar las propiedades de resistencia. En su metodología como parte de este intento fueron reemplazar las conchas marinas trituradas con agregado grueso al 10%, 20% y 30% y compararlo entre sí y con el concreto tradicional con respecto a las propiedades mecánicas siguientes 7 y 28 días. A pesar del hecho de que los resultados demostraron que utilizar un 20 % de conchas marinas para sustituir el agregado tiene propiedades de R'C y R'F un poco más altas que las del concreto convencional.

En Chile, los autores Peceño et al., [27], en su investigación tiene por objetivo de este estudio fue evaluar la sustitución total de los áridos gruesos naturales tradicionales por recursos alternativos y renovables, como los residuos de conchas de moluscos de la industria acuícola, para fabricar un concreto para el tráfico rodado. En su metodología utilizaron dos conchas diferentes: la vieira peruana y el mejillón mediterráneo. Además, se utilizaron dos tamaños, menores de 2 mm y entre 2 y 7 mm, se estudiaron R'C y R'F. Los resultados revelaron que desechos de conchas de moluscos con un tamaño de partícula entre 2 y 7 mm exhibieron un aumento del 40% en el coeficiente de absorción acústica ponderada en comparación con su diseño patrón.

Investigaciones a nivel nacional, en Lima, el autor Minaya [28], en su investigación su objetivo fue verificar en qué porcentaje de adición de la (CF)alcanza en la R'C F'c=210 kg/cm²,

en su metodología, de acuerdo a su volumen de fibra mencionada fue de 0%,1.5% y 2%, todo ello en base a la relación del peso de cemento, para los ensayos de R'C, R'F y R'T; en R'C que al incorporar el 1.5% de (CF) va aumentando en sus ensayos en 28% a comparación de los convencionales; y en lo que es el R'T y R'F fue del 2% de (CF) aumenta su resistencia 20%; 15% respectivamente a comparación del concreto convencional. Concluyendo que el 2% de (CF) beneficia en las propiedades mecánicas del concreto.

En Cajamarca, el autor Mejía, [29], en su objetivo fue de estudiar la influencia que tiene el concreto respecto a su resistencia mecánica adicionándole porcentualmente (CF) y el comportamiento mecánico de un concreto convencional. En su metodología la (CF), los porcentajes adicionados que menciona fue de 2%, 3.5%, 5%, cortados en 2.5 cm, se basan en relación al cemento, para R'C y R'F, el curado fue de: 7, 14, 21 y 28 días. En los resultados obtenidos al adicionar (CF) al concreto convencional no mejoró su R'C en ninguna adición, pero tuvo un mejor comportamiento en cuanto a la R'F en donde aumentó progresivamente en todas las adiciones que ya se han mencionado. Concluyendo que la (CF) es conveniente a realizar los ensayos de flexión.

En Huancayo, Medina et al., [30], en su investigación tuvo por objetivo determinar mediante resultados del análisis del efecto de los aditivos naturales como son la (CF) en la trabajabilidad, la R'C y R'F del concreto. En su metodología se elaboró un diseño de mezcla f'c=210kg/cm²; la evaluación de la R'C se optó por la elaboración de 4 tratamientos con porcentajes de adición de 1.5 % - 2.0 % de (CF), dichos porcentajes fueron adicionados en función al peso del cemento. En sus resultados la prueba del Slump permitió evaluar la trabajabilidad para evaluar la R'C, R'F, concluyendo la adición más óptima entre los tratamientos realizados que contiene 2.0 % de (CF), llegando a una R'C de 319.20 kg/cm² y un módulo de rotura de 44.57 kg/cm² a los 28 días de curado.

En Moyobamba, los autores Bacalla & Vega, [31], en su investigación analizó las propiedades mecánicas de un concreto convencional adicionando (CF), para así evaluar las propiedades mecánicas (R'C); en su metodología en la realización de ensayos de la R'C del F'c 210 kg/cm², con la (CF) adicionando el 3%, 5% y 8% para cada muestra realizada, mediante los esfuerzos sometidos a R'C; los resultados los diseños con 3% de (CF) dieron buenos resultados las cuales cumplen dentro las especificaciones técnicas.

En el contexto local se describe a Chiclayo, Guevara, [32], el autor tuvo por objetivo de analizar la influencia que tendrá el uso empleando las cáscaras de concha de abanico, en su metodología utilizó porcentajes de 0%, 5%, 10%, y 15% reemplazando al agregado grueso, para un diseño de mezcla convencional: (f´c=280kg/cm²), para ensayar a R'C y R'F, en sus resultados en su resistencia está por debajo del concreto convencional, concluyendo que esta fibra tienen una resistencia muy parecida al concreto convencional y que al incorporar concha

de abanico triturada como sustitución en pequeñas proporciones del agregado grueso si es factible la construcción de concreto de resistencia utilizada.

Esta investigación tiene como justificación e importancia del estudio investiga el potencial de utilizar las C'M triturado como reemplazo al agregado grueso, y la CF reemplazando también al peso de cemento, el desarrollo reducirá sustancialmente el consumo del cemento y el agregado pétreo grueso, contribuyendo así a la no contaminación ambiental, y así disminuyendo los costos a comparación del concreto convencional, conservando materias primas.

La problemática es ¿Cómo influyen las C'M y la CF en las propiedades mecánicas del concreto, Lambayeque 2023? En la hipótesis planteada, Hi: La adición de la C'M y CF, influye significativamente en caracterización física y mecánica del concreto, al incorporar el 20% de C'M con reemplazo del agregado grueso y 0.5% de CF con respecto al peso de cemento y Ho: La adición de la C'M y CF, influye significativamente en caracterización física y mecánica del concreto, al incorporar el 20% de C'M con reemplazo del agregado grueso y 0.5% de CF con respecto al peso de cemento.

En esta investigación tiene como objetivo principal, evaluar las propiedades físicas y mecánicas del concreto adicionando C'M y CF para un concreto de diseño de f'c=210 Kg/cm², Lambayeque 2023, y en los objetivos específicos: OE1: Determinar las propiedades físicas del concreto modificado con el uso combinado de C'M (10, 30 y 60%) y CF (0.5, 1.5 y 2.5%). OE2: Determinar las propiedades mecánicas del concreto modificado con el uso combinado de C'M reemplazando AG (10, 30 y 60%) y CF reemplazando C (0.5, 1.5 y 2.5%), OE3: Determinar el concreto óptimo de la combinación de las C'M y CF y OE4: Realizar el análisis de costos de resultados sobre la combinación de C'M y CF.

Teoría del Concreto: Teoría de Bolomey: Los autores Pérez y Rodríguez, [33], y es bastante utilizada para diseñar concretos en masas y de aplicación también para concretos armados, su granulometría la consistencia del concreto y el sistema de compactación que se va a usar. Si se utiliza la práctica de utilizar máquina vibradora debe considerarse plástica siempre que pueda ponerse en obra y compactarse adecuadamente o blanda y si estos van a consolidarse con vibración enérgica e incluso R'C, puede emplearse consistencia seca.

Concreto: es un material de construcción utilizado a gran escala: la producción mundial anual es de alrededor de 20 000 millones de toneladas. Compuesto por cemento, arena y varios áridos, solidifica y endurece a temperatura ambiente cuando se mezcla con agua [34].

Agregados:

Agregado grueso: Es una combinación de piedras trituradas, cuyos fragmentos deben ser resistentes y durables. Para cada fuente de agregado, hay un tamaño ideal para proporcionar mayor R'C de las unidades de concreto con partículas mayores que 5 mm (0.2") y en general se encuentran entre 9.5 mm y 37.5 mm (3/8 y 121".), esta porción de agregado debe ser retenido en el tamiz 4.75 mm (#4).

Agregado Fino: Está definida como el material que se obtiene por el proceso de desintegración de las rocas, sea de manera natural o artificial, que pasa el tamiz normalizado 9,5 mm (3/8") y queda retenido en el tamiz normalizado 75 μm (#200); deberá cumplir con los límites establecidos en la norma [35]

Cemento: se obtiene por la pulverización del Clinker, constituido por silicatos de calcio hidráulicos a los que habitualmente se les ha aportado algo de sulfato de calcio como aditivo intermolido. Es un polvo fino expuesto a temperatura como a 1400°C. En esta investigación se ha optado por utilizar el Tipo I.

Agua: El agua a utilizar debe ser potable, libre de las impurezas para que no afecte esto al diseño planteado. Es decir, se utilizará el agua del mismo laboratorio a utilizar

Propiedades del concreto en estado endurecido

R'C: Es la característica mecánica principal, dado que es capaz de resistir cargas por unidad de área. Se expresa en término de esfuerzo, generalmente en Kg/cm² y con algunas frecuencias libras por pulgadas cuadradas. Esta propiedad, se evalúa mediante pruebas mecánicas, para lo cual se toman muestras para fallar.

R'F: Se define como la propiedad que tiene el concreto ante una falla por momento flector, cuyo valor está expresado como el Módulo de Rotura (Mr), generalmente representa entre 10% y 20% correspondiente de la R'C siendo dependientes de el volumen, tipo y dimensiones del agregado grueso utilizado. El módulo de Rotura es expresado en Megapascales (MPa) o en libras por pulgada cuadrada (PSI).

R'T: en el concreto es muy baja, pero tiene mucha importancia en el agrietamiento del concreto oportuno a la disminución de la retracción inducida por la disminución de temperatura. La R'T está relacionada directamente a la R'C, dado que, si la R'C disminuye, pasará lo mismo con la R'T.

Fibras naturales: se derivan de plantas o animales. En comparación con las fibras sintéticas, las fibras naturales tienen varias ventajas: el bajo costo, alta flexibilidad, alta resistencia al impacto, baja gravedad específica y respeto por el medio ambiente [36]. En comparación con los sintéticos, también son reutilizables [37].

Conchas de mejillón: Las conchas de los moluscos son compuestos orgánicos fascinantes con fuertes prestaciones mecánicas. Estas conchas están formadas

principalmente por polimorfos cristalinos de calcita y aragonito [38]. La utilización de la (C'M) como material de construcción tiene un potencial de aplicación prometedor para enfrentar los desafíos del tratamiento de desechos de C'M en las ciudades costeras [39], [40].

Fibra de Coco: es un producto que puede contener en promedio 250 ml de líquido, su masa promedia de 2.5 kg, y un perímetro de 30 cm. Este fruto es una especie fresca tropical; contribuye a una conservación de la buena salud por tener niveles altos de hierro y potasio [41]. Las (CF) son fibras naturales derivadas de la cáscara o capa exterior de palma inmadura o frutas maduras (Cocos nucifera). La (CF) es barata, verde y fácilmente disponible [42]. La utilización eficiente de los recursos de los desechos sólidos como alternativa a los materiales de construcción durante la producción de concreto podría brindar una solución potencialmente prometedora para enfrentar estos desafíos [43].

II. MATERIALES Y MÉTODO

- **2.1. Materiales:** para llevar a cabo esta investigación es necesario tener en cuenta los materiales que se usaron.
- **Cemento:** se utilizó el Portland tipo I, Cemento Pacasmayo, en la siguiente Tabla se detalla los ensayos.

TABLA 1:
ENSAYOS DEL CEMENTO TIPO IPACASMAYO

ENSAYOS QUÍMICOS							
	Resultados	Unidad	Normas de				
	Nesuitados	Officac	ensayos (NTP)				
Mg O	1.7						
SO3	2.82						
Álcalis equivalentes	0.8	%	334.086				
Pérdida por ignición	2.8		1				
Residuo insoluble	0.6						
ENSA	OS FÍSICOS						
Superficie Específico	4.1	cm²/g	334.002				
Expansión en autoclave	0.8	%	334.004				
Contenido de aire	7	/6	334.048				

Nota. Esta tabla se describe los resultados de los ensayos normalizados según NTP 334.009/ ASTM C150 del cemento Tipo I, según ficha informativa de Cementos Pacasmayo.

- **Agregados:** los agregados se adquirieron en canteras, el agregado grueso de la cantera "Pacherres", y el agregado fino de la cantera "La Victoria", procediendo a realizarse sus ensayos respectivos, a mayor detalle se encuentra en los anexos.
 - Agua: se utilizó del mismo laboratorio que se realizó todo el proceso del proyecto.
- Conchas de mejillón: este material se recopiló de forma entera como residuo la cáscara, las C'M, la recolección se dio en el lugar Terminal Pesquero ECOMPHISA, desde distrito de Santa Rosa, Provincia de Chiclayo, luego de ello se procedió a realizar el lavado para limpiar los residuos. Una vez lavado, se dejó secar durante 24 horas. Después de ello se comenzó a la trituración de forma manual con la comba. En el anexo ___ se encuentra el

proceso de obtención para su uso.

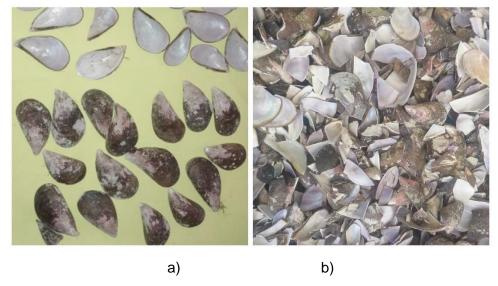


Fig. 1: Variables (a) Conchas de mejillón enteras y (b) conchas de mejillón trituradas.

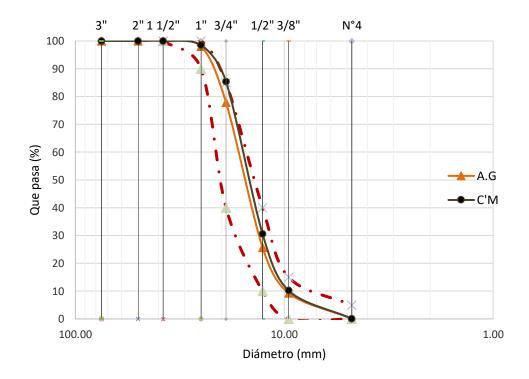


Fig. 2: Curva granulométrica del agregado grueso y conchas de mejillón

- **Fibra de coco**: este material se recopiló de los cocos enteros, se realizó el corte en varias partes, se realizó el secado durante dos semanas, después de ello, se procedió a colocar las partes en pedazos en seco en la máquina de molino triturador, teniendo hilos de los cocos, se realizó de esta manera siendo más efectivo el proceso, luego para el tratamiento de la CF se realizó el lavado con cal, finalmente se realizó el secado para su utilización. En

el anexo __ se encuentra el proceso de obtención para su uso.

Fig. 3: Fibra de coco (a) proceso de corte y (b) fibra en hilos.

- **Cal**: se utilizó cal "HADES", en la siguiente Tabla se detalla las características, y en anexos se verifica la ficha técnica.

TABLA 2: CARACTERÍSTICAS DE LA CAL

Características				
Aspecto	Polvo granulado			
Fórmula química	Ca (OH) ₂			
Pureza	10-12%			
Color	Variable de un blanco humo a grisáceo			
Bolsa	20 kg			

Nota. Esta tabla se describe las características de la cal, según ficha informativa de la Cal "Hades"

2.2. Metodología

En el tipo, es Aplicada, se refiere a la investigación científica y al estudio que se realiza para solucionar problemas prácticos, obteniendo previos conocimientos [44], [45]. El Diseño es experimental, es utilizada para probar la relación casual bajo una situación controlada. Se debe recordar que un experimento es una observación mediante el control de autores basados en los resultados [46]. Enfoque cuantitativo, es todo aquello que pueda numerarse o medirse, el verbo cuantificar significa expresar numéricamente una magnitud, mediante números aspectos cualitativos de la realidad, menciona que este enfoque la dificultad

metodológica central está relacionada con medir conceptos que orientan de manera teórica el proceso de conocimiento [47]. Nivel de investigación, cuasiexperimental, es decir se caracteriza por tener un grupo control intermedio de control de variables, en efecto, dispone de grupo experimental y del grupo control, cumpliendo con características que incluye la manipulación de la variable independiente, existe la comparación entre los grupos, incluyendo un control estadístico [48]. En esta investigación es de tipo aplicada, el enfoque cuantitativo, permitiendo que los resultados sean confiables, ante la realización de los ensayos respectivos, después de ello permitirá analizar y evaluar mediante gráficos los resultados adquiridos en las fichas de laboratorio después de haber realizado el trabajo de campo, trabajando y comparando a la vez con el concreto patrón establecido, midiendo cada comportamiento de cada variable y porcentajes en el proyecto de investigación.

Dónde:

 $G_{1,}$ $G_{2,}$ $G_{3,}$ $G_{4,}$ $G_{5,}$ $G_{6,}$ $G_{7,}$ $G_{8,}$ G_{9} = grupos experimentales de diseño de 210 kg/cm² incorporando las C'M reemplazando al agregado grueso y la CF con respecto al peso de cemento.

G₁₀= grupo experimental de diseño de 210 kg/cm²

 X_1, X_2, X_3 grupos experimentales con C'M

$$X_1=10\%$$
 $X_2=30\%$ $X_3=60\%$

 F_1 , F_2 , F_3 = grupos experimentales con CF

$$F_1=0.5\%$$
 $F_2=1.5\%$ $F_3=2.5\%$

0_{1,2,3,...,10}= Observación de resultados

En Variables y operacionalización: Tenemos a las variables independientes las conchas de mejillón (C'M) y fibra de coco (CF), Dimensión: dosificación (% peso de cemento a la CF) y (%peso del agregado grueso a las C'M), según Qian [49], las CM están formadas por polimorfos cristalinos de calcita y aragonito, propiedades debido a su estructura alineación

y nácares se considera como un estándar, declarando una mayor rigidez, resistencia y dureza debido a su microestructura.

TABLA 3: Operacionalización de Variable dependiente

Variable dependiente	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Ítems	Instrumento	Valores finales	Tipo de variable	Escala de medición
				Asentamiento	и				
	Se elaborará diez diseños de concreto f´c de 210 Kg/cm²	El concreto en estado	Temperatura	°C					
		concreto f´c de 210 Kg/cm².	fresco	Peso Unitario	Kg/m³			Variable	De
Propiedades	considerado el más utilizado	Primero de ello es el CP, luego		Contenido de aire	%	Fichas de observación			
del concreto	Mecanicas en el sector de los otros	diseños serán Diseño	Proporciones de diseño	m³	y equipos de laboratorio	%	numérica	razón	
combinado las variable		El concreto	R' a la compresión						
		en estado	R' a la flexión	Kg/cm²					
	endurecido	endurecido	Mód. De elasticidad						

TABLA 4: Operacionalización, Variables independientes

Variable independiente	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Ítems	Instrumento	Valores finales	Tipo de variable	Escala de medición
-	Las CM están			Granulometría	mm				
	formadas por		Propiedades	Densidad	gr/cm³				
	polimorfos cristalinos		físicas	Absorción	%				
	de calcita y aragonito,			Peso unitario	gr/cm³				
	propiedades debido a		5 4	CD.					
	su estructura		D1	СР					
	alineación y nácares								
	se considera como un		D2	10%CM+0.5%FC					
	estándar, declarando	Se realizará la							
	una mayor rigidez,	sustitución e	D3	10%CM+1.5%FC					
	resistencia y dureza	incorporación				Fichas de			
Conchas de	debido a su	señalada en	D4	10%CM+2.5%FC		observación			
Mejillón (C'M)	microestructura [38].	las variables				análisis de	0.4	Variable	_ ,
Triturado y	Las FC son fibras	mediante las	D5	30%CM+0.5%FC		documentos	%	numérica	De razón
Fibra de coco	naturales derivadas de	combinaciones							
(CF) Tratado	la capa exterior de	del diseño CP	D6	30%CM+1.5%FC	%				
	frutas maduras, se	para un diseño							
	puede extraer y utilizar	f'c de 210	D7	30%CM+2.5%FC					
	para preparar	Kg/cm ²							
	diferentes productos,		D8	60%CM+0.5%FC					
	como tableros de fibra								
	para reemplazo de		D9	60%CM+1.5%FC					
	madera, telas,								
	cemento y concreto armado y compuestos								
	poliméricos reforzados		D10	60%CM+2.5%FC					
	[42]								

1. Conchas de Mejillón Triturado

Granulometría

N° Tamiz	Abertura (mm)	% Retenido	% Acumulados Retenido	% Pasa Acumulados	HUSO 56
2"	50.00	0.0	0.0	100.0	
1 1/2"	38.00	0.0	0.0	100.0	100
1"	25.00	2.0	2.0	98.0	90 - 100
3/4"	19.00	20.1	22.1	77.9	40 - 85
1/2"	12.70	52.2	74.3	25.7	10-40
3/8"	9.52	16.4	90.7	9.3	0 - 15
N°4	4.75	9.2	99.9	0.1	0 - 5

| Tamaño Máximo Nominal | 3/4" |

Propiedades físicas

Conchas de mejillón triturada	Residuo
Peso Unitario Suelto Húmedo (kg/m³)	1210.81
Peso Unitario Suelto Seco (kg/m³)	1209.27
Contenido de Humedad (%)	0.13
Peso Unitario Compactado Húmedo (kg/m³)	1317.22
Peso Unitario Compactado Seco (kg/m³)	1315.54
Contenido de Humedad (%)	0.13
Absorción	0.000%
Peso Unitario (gr/cm³)	2.689

2. Fibras de Coco Triturado

Propiedad	Resultado
Resistencia a Tracción	220 MPa
Absorción de Agua	90%
Prueba de Elongación	30%
Longitud	10 - 30 cm

Según Abate [42], menciona a las FC son fibras naturales derivadas de la capa exterior de frutas maduras, se puede extraer y utilizar para preparar diferentes productos, como tableros de fibra para reemplazo de madera, telas, cemento y concreto armado y compuestos poliméricos reforzados. A la vez también la variable dependiente: las propiedades físicas y mecánicas del concreto. Las dimensiones e indicadores de ambas variables se detallan en anexos.

Población y muestra, La población en esta investigación son todas las muestras cilíndricas y prismáticas de concreto que se realizarán en un diseño f'c= 210 Kg/cm², donde serán realizadas sus respectivos ensayos, basadas en normas técnicas estandarizadas. En esta investigación, la cantidad total de muestras a realizar es de 150, se determinan de la siguiente manera:

TABLA5:

N° DE MUESTRAS PARA EL

CONCRETO PATRÓN

N° Diseño		Relación de ensayos	Tie	empo cu	Total		
'`	Discrio	relation de chayos	7	14	28	1 Stat	
		Compresión	3	3	3	9	
D_1	СР	Flexión	-	-	3	3	
	Módulo de elasticidad		-	-	3	3	
	Parcial muestras CP						

Nota. Esta Tabla muestra el parcial de muestras de CP es de 15 muestras en el primer diseño, es decir 12 probetas cilíndricas y 3 vigas

TABLA6:
N° DE MUESTRAS DE LAS
COMBINACIONES

N°	Diseño	Compresión		Flexión	Mód. de elasticidad	Total	
	Discilo		Iotai				
		7d	14d	28d	28d	28d	
D ₂	10%CM+0.5%FC	3	3	3	3	3	15
D_3	10%CM+1.5%FC	3	3	3	3	3	15
D ₄	10%CM+2.5%FC	3	3	3	3	3	15
D_5	30%CM+0.5%FC	3	3	3	3	3	15
D ₆	30%CM+1.5%FC	3	3	3	3	3	15
D ₇	30%CM+2.5%FC	3	3	3	3	3	15
D ₈	60%CM+0.5%FC	3	3	3	3	3	15
D ₉	60%CM+1.5%FC	3	3	3	3	3	15
D ₁₀	60%CM+2.5%FC	3	3	3	3	3	15
Parcial muestras CP+CM							

Técnicas de recolección de datos: Las técnicas fueron la observación directa: Se registra la información obtenida en campo, en lenguaje natural, lo que nos permitirá obtener datos sobre el comportamiento de las mezclas [50] y el análisis Documental: Se obtiene la información revisando diversas fuentes: Artículos, tesis, reportajes, normas nacionales e internacionales, textos; que permite tener alcance para una investigación correcta [51].

Los Instrumentos de recolección de datos: Guía de observación: Formatos de laboratorios, analizando e interpretando, es decir la observación es mediante la interacción con el medio, recopilando la información para que esto sirva de ayuda con las preguntas de la problemática de la investigación, las observaciones que realicemos puede contribuir en un futuro en nuestra posible solución [52] y guía de análisis de documentos: Normas vigentes que permita la realización de ensayos de laboratorios, donde describe los procedimientos a emplear.

Validez y confiabilidad: esas son las dos cualidades que toda investigación debe tener, tanto para que sea confiable debe pasar por un proceso para ser validado refiriéndose al grado de consistencia que hay entre el uso de una prueba con los puntajes del constructo, contenido o criterio que se ha medido del instrumento realizado sobre esta investigación, que

en este caso son los formatos con los datos establecido será validados por cinco ingenieros civiles con grado de maestría y con amplia experiencia, para obtener un documento donde indique mediante su firma, la validez de la revisión del presente proyecto de investigación. La confiabilidad del proyecto, fue dada por el laboratorio, cuyos equipos deben estar en buen estado y calibrados para no presentar errores en los resultados. Se visualiza el diagrama de flujo de todo el proceso del proyecto.

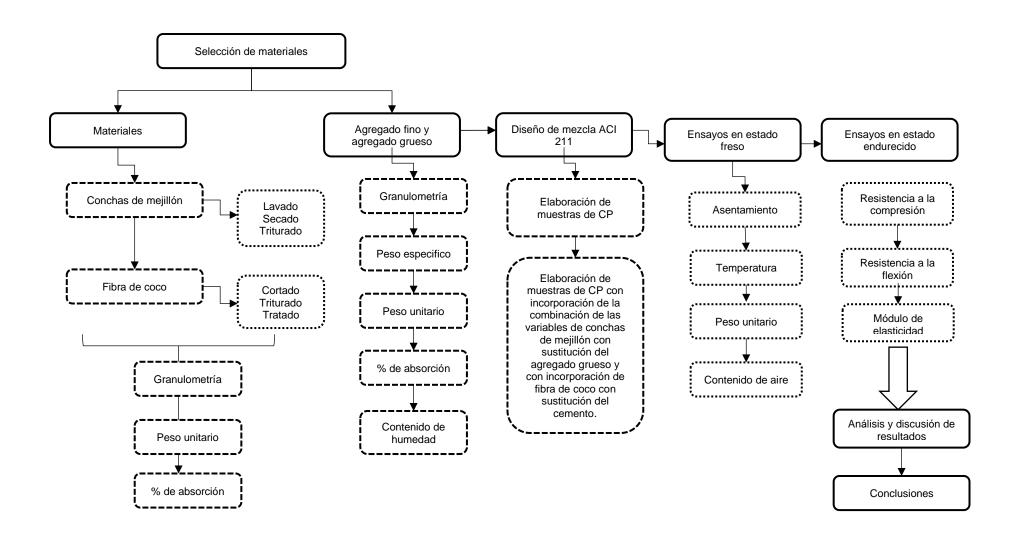


Fig. 4: Diagrama de flujo del proyecto

III. RESULTADOS Y DISCUSIÓN

3.1 Resultados

OE 1: Determinar las propiedades físicas del concreto modificado con el uso combinado de C'M (10, 30 y 60%) y CF (0.5, 1.5 y 2.5%), se realizaron cuatro ensayos considerando para cada uno de acuerdo a la normativa que esté vigente, como se detalla son; asentamiento cumpliendo con la ASTM C 143 [53], temperatura cumpliendo con la norma ASTM C1064 [54], peso unitario determinando la densidad cumpliendo con la norma ASTM C-138 [55], y contenido de aire cumpliendo con la ASTM C 231 [56], cuando el concreto fresco, se procedió a realizar, obteniendo como resultados en la siguiente Tabla V.

TABLA7:
RESULTADOS DE LOS ENSAYOS
EN ESTADO FRESCO

Diseño	Asentamiento	Temperatura	Peso unitario	Contenido de aire		
	(Pulgadas)	(°C)	(kg/m³)	(%)		
D ₁	4	23	2330.14	1.8		
D ₂	4	24	2308.57	1.5		
D ₃	3.8	26	2325.71	1.3		
D ₄	3.5	28	2360.00	0.5		
D ₅	3	28	2297.14	1.7		
D ₆	3	29	2318.57	2.5		
D ₇	2.8	30	2328.57	3.0		
D ₈	2.6	28	2278.57	3.5		
D ₉	2.5	27	2294.29	2.0		
D ₁₀	2	26	2312.86	1.7		

Nota. En esta tabla se describe cada resultado por cada ensayo en estado fresco, en cada uno de los diez diseños, el primero siendo el concreto patrón y el resto son de las combinaciones.

En los ensayos mencionados, en el ensayo de asentamiento de acuerdo a los diseños mientras se incorpore las C'M y CF este va disminuyendo, mostrando que el D1 cumple con una consistencia trabajable, mientras que el último diseño va teniendo una consistencia baja, en el ensayo de temperatura primeramente el primer diseño empieza con 23°C, cada vez con las combinaciones propuestas la temperatura a subiendo, como siguiente ensayo fue de peso unitario determinando que el D1 tiene una peso de 2330.14 kg/cm³, de acuerdo a la tabla se describe que el peso menor fue del D5 mientras que el D4 es el peso mayor a comparación de todos los diseños. Finalmente, en el último ensayo en estado fresco fue el contenido de aire, variando según la combinación de C'M+CF.

OE 2: Determinar las propiedades mecánicas del concreto modificado con el uso combinado de C'M reemplazando AG (10, 30 y 60%) y CF reemplazando C (0.5, 1.5 y 2.5%), En las propiedades mecánicas, en resistencia a la compresión, se determinó a los 28 días, en D2 superó a la D1, llevando un aumento 16.95%, es por ello que como porcentaje óptimo es el D2, en los diseños ya propuestos se ve que su resistencia disminuye no llegando a la resistencia propuesta.



Fig. 5: Efecto de la combinación de las C'M+CF en resistencia a la compresión

En las propiedades mecánicas, en resistencia a la flexión, se determinó a los 28 días, en D2 superó a la D1, llevando un aumento 9.62%, es por ello que como porcentaje óptimo es el D2, en los diseños ya propuestos se ve que su resistencia disminuye en los diseños con las combinaciones.

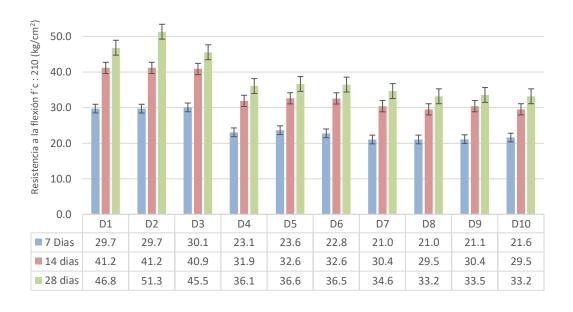


Fig. 6: Efecto de la combinación de las C'M+ CF en resistencia a la flexión

En las propiedades mecánicas, en el módulo elástico, se determinó a los 28 días, en D2 superó a la D1, llevando un aumento 4.40%, es por ello que como porcentaje óptimo es el D2, en los diseños ya propuestos se ve que su resistencia disminuye en los diseños con las combinaciones.

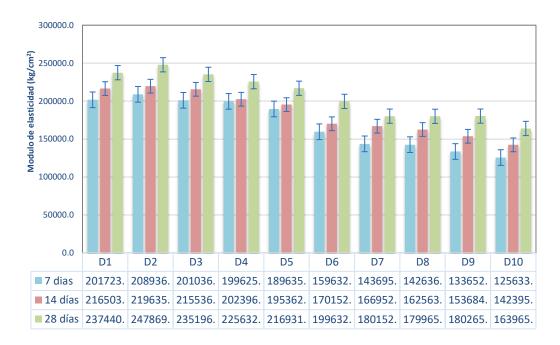


Fig. 7: Efecto de la combinación de las C'M+ CF en el módulo elástico

OE 3: Determinar el concreto óptimo de la combinación de las C'M y CF. De acuerdo los ensayos establecidos de esta investigación, el porcentaje óptimo nos muestra el D2, donde el 10% es de CM+0.5% de FC, a la vez se hizo un análisis estadístico parala determinación y comprobación de los resultados de acuerdo a la hipótesis planteada.

OE 4: Realizar el análisis de costos de resultados sobre la combinación de C'M y CF.

TABLA8:
ANÁLISIS DE PRECIOS DEL D1

Diseño	Material	Cantidad		Cantidad ed	uivalente	PU (S/.)	Parcial	Total
		Cantidad	Unidad	Cantidad	Unidad	, ,		
D1	Cemento	371.36	Kg	8.68	m3	33.00	286.33	
	A.F.	874.86	Kg	0.66	m3	65.00	42.95	388.90
	A.G.	914.06	Kg	0.63	m3	78.00	49.44	
	Agua	254.33	Lt	0.25	m3	40.00	10.17	
	C'M	0.00	Kg	0.00	Kg	0.00	0.00	
	CF	0.00	Kg	0.00	Kg	0.00	0.00	

TABLA9:
ANÁLISIS DE PRECIOS DEL D2
(PORCENTAJE ÓPTIMO)

Diseño	Material	Cantidad		Cantidad equivalente		PU (S/.)	Parcial	Total
		Cantidad	Unidad	Cantidad	Unidad			
D2	Cemento	334.23	Kg	7.81	m3	33.00	257.70	392.46
	A.F.	874.86	Kg	0.66	m3	65.00	42.95	
	A.G.	822.66	Kg	0.57	m3	78.00	44.50	
	Agua	254.33	Lt	0.25	m3	40.00	10.17	
	C'M	91.41	Kg	91.41	Kg	0.00	0.00	
	CF	37.14	Kg	37.14	Kg	0.00	37.14	

.

3.2 Discusión

OE1: Determinar las propiedades físicas del concreto modificado con el uso combinado de C'M (10, 30 y 60%) y CF (0.5, 1.5 y 2.5%).

En los ensayos mencionados, en el ensayo de trabajabilidad de acuerdo a los diseños mientras se incorpore las C'M y CF este va disminuyendo, mostrando que el D1 cumple con una consistencia trabajable, mientras que el último diseño va teniendo una consistencia baja, en el ensayo de temperatura primeramente el primer diseño empieza con 23°C, cada vez con las combinaciones propuestas la temperatura a subiendo, como siguiente ensayo fue de peso unitario determinando que el D1 tiene una peso de 2330.14 kg/cm³, de acuerdo a la tabla se describe que el peso menor fue del D5 mientras que el D4 es el peso mayor a comparación de todos los diseños. Finalmente, en el último ensayo en estado fresco fue el contenido de aire, variando según la combinación de C'M+CF.

La investigación de Usman et al. [18], el efecto de la variación del contenido de (CF) en las características del concreto, los resultados mostraron que existe una disminución de la trabajabilidad a medida que aumenta el contenido de fibra. Así mismo, los autores Shah et al. [20], para evitar el efecto negativo de CF sobre la trabajabilidad, además, Foti & Cavallo [24], utilizaron áridos calcáreos de origen orgánico no convencional, adicionando la (C'M), fueron limpiados con lejía y hervidos en agua, describiendo que su trabajabilidad disminuye cuando se le incorpora este residuo.

OE2: Determinar las propiedades mecánicas del concreto modificado con el uso combinado de C'M reemplazando AG (10, 30 y 60%) y CF reemplazando C (0.5, 1.5 y 2.5%) La investigación de Usman et al. [18], en los ensayos de R'C y R'F, mostrando que fibra conduce a un aumento en la R'C y la resistencia a la flexión (R'F). La máxima R'C con refuerzo de CF es de 58,04 MPa en una variación de fibra de 0,3 % y una R'F de 8,30 MPa en una variación de fibra de 0,4 %. Además, los autores Ali, Farooq, et al., [21], prepararon mezclas

de concreto con y sin CF, realizando ensayos de R'C, y la R'T por división y las propiedades de durabilidad de todas las mezclas, los resultados revelaron que el CF al 2 % (en peso de cemento) mejoró la resistencia al corte del concreto simple en un 40 % y un 60 % con y sin (CF), respectivamente. Manifestando, Gil et al. [22], los porcentajes de adición fueron de 0.46 y 0.62% en peso de (CF), respecto a la incorporación de porcentajes adicionando fibra disminuía la R'C comparado con el concreto convencional, indicando energía de 9.15% a 13.35%. Así como, Shcherban' et al., [23], las deformaciones últimas en R'C aumentaron en un 46% y en tensión en un 51%. El módulo elástico se incrementó en un 16%. Foti & Cavallo [24], se prepararon tres diseños en la Mix1 la grava se sustituyó por 46.5% de (C'M) en la Mx2 fue el 100% de sustitución y en el Mx3 no fueron sustituidas, en los resultados del ensayo de R'C fueron en la Mix1 su valor promedio fue de 22.37KN/mm², en Mix2 se obtuvo 21.6 KN/mm² y en la Mix3 28.79 KN/mm². Según, Peceño et al., [27], describe que los desechos de conchas de moluscos con un tamaño de partícula entre 2 y 7 mm exhibieron un aumento del 40% en el coeficiente de absorción acústica ponderada en comparación con su diseño patrón. Además, Minaya [28], al incorporar el 1.5% de (CF) va aumentando en sus ensayos en 28% a comparación de los convencionales; y en lo que es el R'T y R'F fue del 2% de (CF) aumenta su resistencia 20%; 15% respectivamente a comparación del concreto convencional. Concluyendo que el 2% de (CF) beneficia en las propiedades mecánicas del concreto.

OE3: Determinar el concreto óptimo de la combinación de las C'M y CF En, Revathi et al., [16], muestran que el 1 % de CF, concluyendo que la CF mejora la resistencia del concreto mediante la prueba de R'C y la prueba de R'F. también, Usman et al. [18], y Ahmad et al., [19], al incorporar CF de 50 mm de largo con un contenido de 1,5% por masa de cemento, concluyendo que el concreto ha mejorado las R'C, R'T y a la R'F, e índices de absorción y tenacidad incorporando la CF. También, Shah et al. [20], se concluye que la adición de 2% CF para obtener el máximo rendimiento mecánico. Asi mismo, Ali, Farooq, et al., [21], en su investigación su objetivo fue determinar el uso de áridos en lugar de residuos de (CF) revelando al 2 % (en peso de cemento) mejoró la resistencia al corte del concreto

simple en un 40 % y un 60 % con y sin (CF), respectivamente. También, los autores Foti & Cavallo [24], adicionaron la (C'M) que prepararon tres diseños en la Mix1 la grava se sustituyó por 46.5% de (C'M) en la Mx2 fue el 100% de sustitución y en el Mx3 no fueron sustituidas, en los resultados del ensayo de R'C fueron en la Mix1 su valor promedio fue de 22.37KN/mm², en Mix2 se obtuvo 21.6 KN/mm² y en la Mix3 28.79 KN/mm². Los autores, Sangeetha et al. [25], recomienda el 10 % de agregados de conchas marinas, ya que mejora las propiedades, también los autores Poloju et al. [26], demuestra que al utilizar un 20 % de conchas marinas para sustituir el agregado tiene propiedades de R'C y R'F un poco más altas que las del concreto convencional. También los autores Peceño et al., [27], del 40% en el coeficiente de absorción acústica ponderada en comparación con su diseño patrón. Minaya [28], su porcentaje óptimo fue 2.0% de (CF) beneficia en las propiedades mecánicas del concreto. También Medina et al., [30], la adición más óptima entre los tratamientos realizados que contiene 2.0 % de (CF), llegando a una R'C de 319.20 kg/cm² y un módulo de rotura de 44.57 kg/cm² a los 28 días de curado. Coincidiendo con los autores Bacalla & Vega, [31], el porcentaje 3% de (CF) dieron buenos resultados las cuales cumplen dentro las especificaciones técnicas, indicando el porcentaje óptimo.

OE4: Realizar el análisis de precios unitarios sobre la combinación de C'M y CF en las propiedades mecánicas del concreto, en la investigación se describió los análisis de precios unitarios demostrando que el porcentaje óptimo resultó un aumento comparado al patrón, También Medina et al., [30], así también el autor en su estudio mostró que también aumentaron sus costos de acuerdo al patrón.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

Se concluye conforme a los ensayos físicos, mecánicos realizados a las conchas de mejillón y fibra de coco que las características de las fibras, mostrando que el D1 cumple con una consistencia trabajable, va disminuyendo en el ensayo de temperatura primeramente el primer diseño empieza con 27°C, cada vez con las combinaciones propuestas la temperatura a subiendo, como siguiente ensayo fue de peso unitario determinando que el D1 tiene una peso de 2352.44 kg/cm³, de acuerdo a la tabla se describe que el peso menor fue del D2 mientras que el D4 es el peso mayor a comparación de todos los diseños. Finalmente, en el último ensayo en estado fresco fue el contenido de aire, variando según la combinación de C'M+CF.

Se concluye que el diseño de mezcla del concreto patrón fue elaborado con adición de 10%, 30% y 60% de C'M y 0.5%, 1.5% y 2.5% CF como referencia investigaciones previas.

Se concluye que, con la adición de la C'M al 10% y 0.5 FC permite mejorar las propiedades mecánicas, a diferencia de los otros diseños realizados que afectan dichas propiedades, las características físicas presentan cambios respecto al concreto convencional en compresión, flexión y módulos elásticos.

Se concluye que, de acuerdo a los resultados obtenidos, el porcentaje óptimo pertenece al D2, el aumento de costos comparado con el patrón demanda gastos en conseguir las fibras ya sea por el tratamiento de cada fibra y obtención del traslado del material.

4.2 Recomendaciones

Es fundamental llevar a cabo un análisis de los materiales a utilizar, seleccionando aquellos de óptima calidad de la región donde se producirán las muestras.

Se debe escoger ambientes adecuados para la fabricación en grandes cantidades de muestras, prestando especial atención a la curación y evitando la exposición a sales o contacto directo con el suelo, para mantener las proporciones adecuadas de la mezcla. Se

debe considerar cuidadosamente los moldes utilizados para la fabricación de las unidades, asegurándose de cumplir con las dimensiones estipuladas en el reglamento nacional de edificaciones.

Se sugiere realizar para futuras investigaciones otros ensayos mecánicos y además microestructurales, permitiendo tener más información del concreto utilizando las fibras mencionadas.

Se recomienda para que no afecte un aumento de gastos, se debe recolectar la fibra en zonas que estén con mayor desperdicio para estos utilizarlas en un diseño de mezcla.

REFERENCIAS

- [1] V. Overhage, L. Reiter, N. Schrömbgens, and T. Gries, "Bio-Based Fibre Materials as Reinforcement Materials in the Construction Industry," *RILEM Bookseries*, vol. 45, pp. 501–513, 2023, doi: 10.1007/978-3-031-33465-8 39.
- [2] A. Sankar, S. V. Srinivasarao, S. Sivasankaran, A. F. K. Basha, and Z. Ismail, "Survey on Applications of Coconut Timber, Shell and Coir in Construction Industry," AIP Conf. Proc., vol. 2643, Jan. 2023, doi: 10.1063/5.0110298.
- [3] B. Ponmohan Kumar and S. Suchithra, "Crack resistant concrete using municipal solid waste incineration ash and low cost natural fibres," *Int. J. Sci. Technol. Res.*, vol. 9, no. 3, pp. 6782–6786, Mar. 2020.
- [4] S. A. Hosseini, "Application of various types of recycled waste materials in concrete constructions," *Adv. Concr. Constr.*, vol. 9, no. 5, pp. 479–489, May 2020, doi: 10.12989/ACC.2020.9.5.479.
- [5] M. T. Marvila, H. A. Rocha, A. R. G. de Azevedo, H. A. Colorado, J. F. Zapata, and C. M. F. Vieira, "Use of natural vegetable fibers in cementitious composites: concepts and applications," *Innov. Infrastruct. Solut.*, vol. 6, no. 3, Sep. 2021, doi: 10.1007/S41062-021-00551-8.
- [6] B. Ali, A. Hawreen, N. Ben Kahla, M. Talha Amir, M. Azab, and A. Raza, "A critical review on the utilization of coir (coconut fiber) in cementitious materials," *Constr. Build. Mater.*, vol. 351, Oct. 2022, doi: 10.1016/J.CONBUILDMAT.2022.128957.
- [7] A. Kilani, C. Fapohunda, O. Adeleke, and C. Metiboba, "Evaluating the effects of agricultural wastes on concrete and composite mechanical properties: a review," Res. Eng. Struct. Mater., vol. 8, no. 2, pp. 307–336, Jun. 2022, doi: 10.17515/RESM2021.339ST0912.
- [8] C. Rahul, C. Venkata, K. Poloju, N. Juma, and Y. Venkat, "An experimental investigation

- on mechanical properties of concrete by partial replacement of cement with wood ash and fine sea shell powder," *Mater. Today Proc.*, vol. 43, pp. 1325–1330, 2020, doi: 10.1016/J.MATPR.2020.09.164.
- [9] C. Martínez, B. González, D. Carro, and F. Martínez, "Recycled mollusc shells," *New Trends Eco-efficient Recycl. Concr.*, pp. 191–205, Jan. 2019, doi: 10.1016/B978-0-08-102480-5.00008-7.
- [10] M. Odeh, C. Doscher, and T. A. Cochrane, "Removal of zinc from surface runoff by using recycled mussel shell waste as treatment media, with and without heat treatment," *Environ. Technol. Innov.*, vol. 28, p. 102814, Nov. 2022, doi: 10.1016/J.ETI.2022.102814.
- [11] J. L. Osa, G. Mondragon, N. Ortega, F. F. Marzo, and C. Peña-Rodriguez, "On the friability of mussel shells as abrasive," *J. Clean. Prod.*, vol. 375, p. 134020, Nov. 2022, doi: 10.1016/J.JCLEPRO.2022.134020.
- [12] C. Martínez-García, B. González-Fonteboa, F. Martínez-Abella, and D. Carro- López, "Performance of mussel shell as aggregate in plain concrete," *Constr. Build. Mater.*, vol. 139, pp. 570–583, May 2019, doi: 10.1016/J.CONBUILDMAT.2019.09.091.
- [13] U. G. Eziefula, J. C. Ezeh, and B. I. Eziefula, "Properties of seashell aggregate concrete: A review," Constr. Build. Mater., vol. 192, pp. 287–300, Dec. 2019, doi: 10.1016/J.CONBUILDMAT.2019.10.096.
- [14] Y. Ricapa, E. Saldaña, D. Samán, and M. Vilchez, "ELABORACIÓN DE ALFOMBRAS A PARTIR DE FIBRAS DE RESIDUOS DE COCO," Universidad San Ignasio de Loyola, 2020.
- [15] MIDAGRI, "Ministerio de Desarrollo Agrario y Riego MIDAGRI | Plataforma Nacional de Datos Abiertos," *MIDAGRI*, 2022. https://www.datosabiertos.gob.pe/group/ministerio-de-desarrollo-agrario-y-riego-midagri (accessed Jul. 09, 2023).
- [16] S. Revathi, M. Dinesh, and S. G. Suba Sri Varsan, "Mechanical properties of concrete

- incorporating coconut fibers and copper slag," *Mater. Today Proc.*, 2023, doi: 10.1016/J.MATPR.2023.02.276.
- [17] B. MaD and S. Unnikrishnan, "Mechanical strength and impact resistance of hybrid fiber reinforced concrete with coconut and polypropylene fibers," *Mater. Today Proc.*, vol. 65, pp. 1873–1880, Jan. 2022, doi: 10.1016/j.matpr.2022.05.048.
- [18] A. P. Usman, Saloma, Hanafiah, and M. Anen, "Physical and mechanical properties of self-compacting concrete (SCC) with coconut fiber and polypropylene," AIP Conf. Proc., vol. 2544, Apr. 2023, doi: 10.1063/5.0117395.
- [19] W. Ahmad et al., "Effect of coconut fiber length and content on properties of high strength concrete," Materials (Basel)., vol. 13, no. 5, Mar. 2020, doi: 10.3390/MA13051075.
- [20] S. H. A. Shah, M. T. Amir, B. Ali, and M. H. El Ouni, "Mechanical performance and environmental impact of normal strength concrete incorporating various levels of coconut fiber and recycled aggregates," *Environ. Sci. Pollut. Res.*, vol. 29, no. 55, pp. 83636–83651, Nov. 2022, doi: 10.1007/S11356-022-21608-W.
- [21] B. Ali, M. A. Farooq, M. H. El Ouni, M. Azab, and A. B. Elhag, "The combined effect of coir and superplasticizer on the fresh, mechanical, and long-term durability properties of recycled aggregate concrete," *J. Build. Eng.*, vol. 59, Nov. 2022, doi: 10.1016/J.JOBE.2022.105009.
- [22] H. H. Gil Sánchez, A. A. Zuleta Gil, and D. E. Reyes Campo, "Mechanical properties and sustainability aspects of coconut fiber modified concrete," *Sci. Tech. ISSN 0122-1701, Vol. 26, No. 1, 2021, págs. 64-71*, vol. 26, no. 1, pp. 64–71, 2021, doi: 10.22517/23447214.22901.
- [23] E. M. Shcherban' et al., "Normal-Weight Concrete with Improved Stress-Strain Characteristics Reinforced with Dispersed Coconut Fibers," Appl. Sci., vol. 12, no. 22, Nov. 2022, doi: 10.3390/APP122211734.
- [24] D. Foti and D. Cavallo, "Mechanical behavior of concretes made with non-conventional

- organic origin calcareous aggregates," *Constr. Build. Mater.*, vol. 179, pp. 100–106, Aug. 2019, doi: 10.1016/J.CONBUILDMAT.2019.05.042.
- [25] P. Sangeetha, M. Shanmugapriya, K. Santhosh Saravanan, P. Prabhakaran, and V. Shashankar, "Mechanical properties of concrete with seashell waste as partial replacement of cement and aggregate," *Mater. Today Proc.*, vol. 61, pp. 320–326, Jan. 2022, doi: 10.1016/J.MATPR.2021.09.501.
- [26] K. K. Poloju, V. Anil, S. H. N. A. Al-Yahmadl, and R. M. N. Al Maamari, "Investigating possibilities for using sea shell on compressive strength properties of concrete," *Int. J. Eng. Technol.*, vol. 7, no. 1, pp. 241–244, 2019, doi: 10.14419/IJET.V7I1.9399.
- [27] B. Peceño, C. Arenas, B. Alonso-Fariñas, and C. Leiva, "Substitution of Coarse Aggregates with Mollusk-Shell Waste in Acoustic-Absorbing Concrete," *J. Mater. Civ. Eng.*, vol. 31, no. 6, Jun. 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002719.
- [28] M. Minaya, "Influencia de la incorporación de fibra de coco para la incidencia en la resistencia del concreto F'C=210 KG/CM2 – Lima 2020," Universidad Privada del Norte, 2020.
- [29] I. Mejía, "Evaluar la fibra de estopa de coco para mejorar propiedades mecánicas del concreto en edificaciones de Tembladera – Cajamarca," Universidad Cesar Vallejo, 2020.
- [30] C. Medina, D. Pérez, and E. Luya, "Influencia fibra de estopa de coco al de 1.5 % 2 % y penca de tuna 1.5 % 2 % en la trabajabilidad, las resistencias a la compresión y flexión del concreto F'C=210 kg/cm2, Huancayo Junín 2021," Universidad Continental, 2021.
- [31] S. Bacalla and M. Vega, "Estudio comparativo de la resistencia a la compresión F´C 210 kg/cm? usando fibra natural de coco como material de construcción en la provincia de rioja," Universidad Católica Sedes Sapientiae, 2019.
- [32] E. Guevara, "Análisis de la losa de concreto hidráulico, utilizando desechos de conchas deabanico, Av. Mariano Cornejo. José Leonardo Ortiz. Chiclayo-2019," Universidad

- Cesar Vallejo, 2019.
- [33] C. Pérez and A. Rodríguez, Manual de problemas de dosificación de hormigones (II).
 Editorial Universidad de Burgos, 2019.
- [34] C. Martínez-García, B. González-Fonteboa, D. Carro-López, and J. L. Pérez-Ordóñez, "Mussel shells: A canning industry by-product converted into a bio-based insulation material," *J. Clean. Prod.*, vol. 269, p. 122343, Oct. 2020, doi: 10.1016/J.JCLEPRO.2020.122343.
- [35] Norma Técnica Peruana, "NTP 400.015:2020," *Norma Técnica Peru.*, vol. 4, pp. 1–6, 2020.
- [36] P. Viera, U. Central, and D. Ecuador, "Influenciade fibras naturales y sintéticas en la permeabilidad de morteros de cemento -arena, y cemento, cal y arena," *Period. Semest.*, vol. 13, no. 1, p. 2022, 2022, doi: 10.29166/revfig.v13i1.3410.
- [37] N. Y. Vegas Romero, N. S. Velasquez Rodriguez, M. L. Rivera Muñoz, M. W. Valderrama Puscan, G. I. Llaque Fernandez, and F. A. Calvanapon Alva, "Natural Fibers and the Mechanical Properties of Simple Concrete, a Systematic Review between the years 2012 2022," *Proc. LACCEI Int. Multi-conference Eng. Educ. Technol.*, vol. 2022-December, 2022, doi: 10.18687/LEIRD2022.1.1.32.
- [38] B. Vijaya Ramnath, J. Jeykrishnan, G. Ramakrishnan, B. Barath, E. Ejoelavendhan, and P. Arun Raghav, "Sea Shells and Natural Fibres Composites: A Review," *Mater. Today Proc.*, vol. 5, no. 1, pp. 1846–1851, 2020, doi: 10.1016/J.MATPR.2020.11.284.
- [39] B. Chen, L. Peng, H. Zhong, Y. Zhao, T. Meng, and B. Zhang, "Improving the mechanical properties of mussel shell aggregate concrete by aggregate modification and mixture design," *Case Stud. Constr. Mater.*, vol. 18, p. e02019, Jul. 2023, doi: 10.1016/J.CSCM.2023.E02019.
- [40] R. Ismail et al., "The potential use of green mussel (Perna Viridis) shells for synthetic calcium carbonate polymorphs in biomaterials," J. Cryst. Growth, vol. 572, p. 126282, Oct. 2021, doi: 10.1016/J.JCRYSGRO.2021.126282.

- [41] R. Estela, E. Contreras, Y. Carrasco, C. García, N. Mendoza, and D. Castro, "Comparación del poder calorífico de la fibra de coco con la madera del algarrobo (Prosopis pallida)," *Entorno*, vol. 1, no. 72, pp. 7–20, Dec. 2021, doi: 10.5377/ENTORNO.V1I72.13234.
- [42] L. Abate, A. Bachheti, R. K. Bachheti, A. Husen, D. P. Pandey, and M. B. Megra, "Coir fiber-based cellulose, nanocellulose, and their cutting-edge applications," *Coir Fiber its Compos.*, pp. 309–331, Jan. 2022, doi: 10.1016/B978-0-443-15186-6.00060-6.
- [43] B. Chen, L. Peng, H. Zhong, Y. Zhao, T. Meng, and B. Zhang, "Synergetic recycling of recycled concrete aggregate and waste mussel shell in concrete: Mechanical properties, durability and microstructure," *Constr. Build. Mater.*, vol. 371, p. 130825, Mar. 2023, doi: 10.1016/J.CONBUILDMAT.2023.130825.
- [44] J. R. González, D. C. Martínez, P. Castro-Carrasco, C. O. Véliz, and I. G. Palta, "Subjective theories in teachers about instructional time and its relationship with teaching-learning," *Estud. Pedagog.*, vol. 48, no. 3, pp. 79–101, 2023, doi: 10.4067/S0718-07052022000300079.
- [45] M. de Oca Rojas Yorberth, B. B. C. Isaac, and C. C. S. Nelson, "Research methodology in entrepreneurship: A strategy for the scientific production of university teachers," *Rev. Ciencias Soc.*, vol. 28, no. 2, pp. 381–391, 2022, doi: 10.31876/RCS.V28I2.37945.
- [46] D. Acosta Luis, W. A. Rodríguez López, M. F. Peñaherrera Larenas, S. García Hevia, and Y. La O Mendoza, "Methodology of the investigation in higher education," *Univ. y Soc.*, vol. 13, no. 4, pp. 283–293, 2021.
- [47] N. L. Pérez, R. V. E. Nelson, M. L. Fernández, and M. Á. H. de la Rosa, "INNOVATIVE IDEAS FOR LOCAL DEVELOPMENT FROM THE SUBJECT METHODOLOGY OF SCIENTIFIC RESEARCH," *Univ. y Soc.*, vol. 15, no. 1, pp. 588–595, Jan. 2023.
- [48] R. Tafur and M. Izaguirre, Cómo hacer un proyecto de investigación, Tercera.

 Colombia: Biblioteca Nacional de Colombia, 2022.
- [49] J. Qian, F. Deng, S. E. Shumway, M. Hu, and Y. Wang, "The thick-shell mussel Mytilus

- coruscus: Ecology, physiology, and aquaculture," *Aquaculture*, vol. 580, p. 740350, Feb. 2024, doi: 10.1016/J.AQUACULTURE.2023.740350.
- [50] M. Galeano, Diseños de proyectos de la investigación cualitativa, Primera Ed. EAFIT,2020.
- [51] P. Del Campo, Todas las bibliotecas a tu alcance, Primera Ed. Visión Libros, 2021.
- [52] A. Silva, L. Pedraza, and D. Gualdron, *Fundamentos de Investigación en Ingeniería civil*, Primera. Bogotá: Biblioteca Nacional de Colombia, 2023.
- [53] ASTM C143, "Standard Test Method for Slump of Hydraulic-Cement Concrete," ASTM Int., 2019, doi: 10.1520/C0143_C0143M-12.
- [54] ASTM C1064, "Método de prueba estándar para la temperatura del concreto de cemento hidráulico recién mezclado," ASTM Int., 2019, doi: 10.1520/C1064_C1064M-17.
- [55] ASTM C138, "Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete," *ASTM Int.*, 2020, doi: 10.1520/C0138_C0138M-17A.
- [56] ASTM C231, "Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method," *ASTM Int.*, 2020, doi: 10.1520/C0231-09A.

ANEXOS

Anexo 1: Acta de aprobación de asesor	40
Anexo 2: Carta o correo de recepción del manuscrito remitido por la revista	41
Anexo 3: Matriz de consistencia	43
Anexo 4: Operacionalización, Variable dependiente	46
Anexo 5: Operacionalización, Variables independientes	47
Anexo 6: Proporción de materiales por m³	48
Anexo 7: Informes de laboratorio	50
Anexo 8:PROCESO- Conchas de mejillón	90
Anexo 9: PROCESO- Fibra de coco	90
Anexo 10: Fotografías	91
Anexo 11: FICHA TÉCNICA - Cemento	97
Anexo 12: FICHA TÉCNICA- Cal	99
Anexo 13: Certificaciones de Calibraciones de equipo	100
Anexo 14:Informe estadístico	127
Anexo 15: Validaciones de jueces expertos	134

ACTA DE APROBACIÓN DEL ASESOR

Yo Delgado Pérez Milthon Jeiner. quien suscribe como asesor designado mediante Resolución de Facultad N° 0385-2024/FIAU-USS, del proyecto de investigación titulado EFECTO COMBINADO DE CONCHAS DE MEJILLÓN TRITURADO Y FIBRA DE COCO TRATADO EN LAS PROPIEDADES MECÁNICAS DEL CONCRETO, desarrollado por los estudiantes: Alvarado Juárez Johnny Alexander, Bances Acosta Kevin Jhan Franco, del programa de estudios de Ingeniería civil, acredito haber revisado, y declaro expedito para que continúe con el trámite pertinentes.

En virtud de lo antes mencionado, firman:

There

Pimentel, 27 de mayo de 2024

28/5/24, 10:20

Correo de Universidad Señor de Sipan - [CI] Submission Acknowledgement

JOHNNY ALEXANDER ALVARADO JUAREZ <ajuarezjhonyale@uss.edu.pe>

[CI] Submission Acknowledgement

1 mensaje

Periodica Polytechnica Civil Engineering <pp.ci@bme.hu> Responder a: Periodica Polytechnica Civil Engineering <pp.ci@bme.hu> Para: Johnny Alexander Alvarado Juárez <ajuarezjhonyale@uss.edu.pe>

5 de mayo de 2024, 1:05

Hello,

Kevin Jhan Franco Bances has submitted the manuscript, "the Influence of the incorporation of mussel shells and coconut fiber on the mechanical properties of concrete" to Periodica Polytechnica Civil Engineering.

If you have any questions, please contact me. Thank you for considering this journal as a venue for your work.

Periodica Polytechnica Civil Engineering https://pp.bme.hu/ci

Matriz de consistencia

Anexo 3: Matriz de consistencia

FORMULACIÓN DEL PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES	POBLACIÓN Y MUESTRA	ENFOQUE/ TIPO / DISEÑO	TÉCNICAS/ INSTRUMENTO
Problema: ¿Cómo influye el efecto combinado de conchas de mejillón triturado y fibra de coco tratado en las propiedades mecánicas del concreto?	Objetivo General: Evaluar el efecto combinado de conchas de mejillón triturado y fibra de coco tratado en las propiedades mecánicas en un concreto fc=210 kg/cm². Objetivos Específicos: • Determinar las propiedades físicas (asentamiento, peso unitario, temperatura y contenido de aire) del concreto modificado con el uso combinado de C'M (10, 30 y 60%) y CF (0.5, 1.5 y 2.5%). • Determinar las propiedades mecánicas (resistencia a la compresión, resistencia a la flexión y módulo de elasticidad) del concreto modificado con el uso combinado de C'M reemplazando AG (10, 30 y 60%) y CF reemplazando C (0.5, 1.5 y 2.5%)	Hipótesis La adición de la C'M y CF, influye significativamen te en caracterización física y mecánica del concreto, al incorporar el 20% de C'M con reemplazo del agregado grueso y 0.5% de CF con respecto al peso de cemento, Lambayeque 2023.	V.I: Conchas de mejillón (C'M) y fibra de coco (CF) V.D Propiedades mecánicas del concreto para una resistencia 210 Kg/cm².	Población: Son todas las probetas de concreto que se realizarán, las cuales serán sometidas a ensayos Muestra: la cantidad total de muestras a realizar es de 150 muestras	Enfoque: Cuantitativo Tipo: Aplicada Diseño: Experimental Nivel: Cuasiexperim ental	Observación- Recolección de datos

Determinar el concreto óptimo de la combinación de las C'M y CF		
 Realizar la correlación de resultados sobre la 		
combinación de C'M y CF en las propiedades mecánicas del concreto.		

Tabla de operacionalización de variables

Anexo 4: Operacionalización, Variable dependiente

Variable dependiente	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Ítems	Instrumento	Valores finales	Tipo de variable	Escala de medición								
				Asentamiento	u												
		Se elaborará diez diseños de	El concreto en estado fresco	Temperatura	°C												
	El concreto	concreto f´c de 210 Kg/cm². Primero de ello es el CP, luego	210 Kg/cm ² . Primero de ello	concreto f´c de 210 Kg/cm² . Primero de ello	estado fresco				de lo	Peso Unitario Kg/m³ Contenido de % Fichas de							
Propiedades	considerado el más utilizado															%	Fichas de observación y
Mecánicas del Concreto	en el sector de la construcción para diversas	los otros diseños serán con el	Diseño	Proporciones de diseño	m³	equipos de laboratorio	%	numérica	De razón								
	infraestructuras.	combinado de las variables	El concreto en	R' a la compresión													
		independientes.	estado	R' a la flexión	Kg/cm²												
			endurecido	Mód. De elasticidad													

Anexo 5: Operacionalización, Variables independientes

Variable independiente	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Ítems	Instrumento	Valores finales	Tipo de variable	Escala de medición															
	Las CM están formadas por polimorfos		Propiedades físicas	Granulometría Densidad Absorción	mm gr/cm³																			
	cristalinos de calcita y aragonito, propiedades		1131083	Peso unitario	gr/cm ³																			
	debido a su estructura alineación y nácares se considera como un		D1	СР																				
	estándar, declarando una mayor rigidez,	Se realizará la	D2	10%CM+0.5%FC																				
Conchas de	esistencia y dureza inc	sustitución e incorporación	D3	10%CM+1.5%FC		Fichas de																		
Mejillón (C'M) Triturado y	microestructura [38]. Las FC son fibras	mediante las combinacione s del diseño CP para un diseño f'c de 210 Kg/cm²	las variables	las variables	las variables	las variables	las variables	las variables	las variables	las variables	las variables	las variables	las variables	las variables	las variables	las variables	las variables	D4	10%CM+2.5%FC		observación análisis de	%	Variable	De razón
Fibra de Coco (CF) Tratado	naturales derivadas de la capa exterior de		D5	30%CM+0.5%FC	doc	documentos		numérica																
	frutas maduras, se		D6	30%CM+1.5%FC	70																			
			D7	30%CM+2.5%FC																				
	para reemplazo de madera, telas, cemento		D8	60%CM+0.5%FC																				
	y concreto armado y compuestos		D9	60%CM+1.5%FC																				
	poliméricos reforzados [42]		D10	60%CM+2.5%FC																				

Anexo 6: Proporción de materiales por m³

N°	Descripción	Cemento	Agua	AF	AG	C'M	CF
D1	СР	371.36	254.33	874.86	914.06	-	-
D2	10%CM+0.5%FC	369.51	254.33	874.86	822.66	91.41	1.86
D3	10%CM+1.5%FC	365.79	254.33	874.86	822.66	91.41	5.57
D4	10%CM+2.5%FC	362.08	254.33	874.86	822.66	91.41	9.28
D5	30%CM+0.5%FC	369.51	254.33	874.86	639.85	274.22	1.86
D6	30%CM+1.5%FC	365.79	254.33	874.86	639.85	274.22	5.57
D7	30%CM+2.5%FC	362.08	254.33	874.86	639.85	274.22	9.28
D8	60%CM+0.5%FC	369.51	254.33	874.86	365.63	548.44	1.86
D9	60%CM+1.5%FC	365.79	254.33	874.86	365.63	548.44	5.57
D10	60%CM+2.5%FC	362.08	254.33	874.86	365.63	548.44	9.28

Instrumento de recolección de datos

Anexo 7: Informes de laboratorio

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

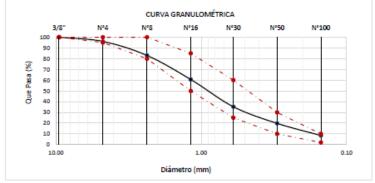
Solicitante :Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Proyecto :TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado

en las propiedades mecánicas del concreto

Ubicación :Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura :jueves, 21 de Setiembre de 2023 Inicio de Ensayo : jueves, 21 de Setiembre de 2023 Fin de Ensayo : jueves, 21 de Setiembre de 2023


ENSAYO :AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

NORMA :N.T.P. 400.012

Muestra : Arena Gruesa Cantera: La Victoria-Pátapo

M	alla	%	% Retenido	% Que Pasa	GRADACIÓN
Pulg.	(mm.)	Retenido	Acumulado	Acumulado	"C"
3/8"	9.520	0.0	0.0	100.0	100
Nº 4	4.750	4.0	4.0	96.0	95 - 100
No 8	2.360	13.0	17.0	83.0	80 - 100
Nº 16	1.180	22.3	39.3	60.7	50 - 85
No 30	0.600	25.4	64.8	35.2	25 - 60
Nº 50	0.300	15.5	80.2	19.8	10 - 30
Nº 100	0.150	11.3	91.5	8.5	2 - 10

MODULO DE FINEZA

Observaciones:
- Muestreo, identificación y ensayo realizado por el solicitante. LEMS WEC ERL.

WILSON ARTURO CLAYA AGUILAR YEC, ENSATOS DE MATERIALES Y SUILOS

MIGUEL ANGEL RUIZ PERALES

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado

en las propiedades mecánicas del concreto

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura : jueves, 21 de Setiembre de 2023 Inicio de ensayo : jueves, 21 de Setiembre de 2023 Fin de Ensayo : viernes, 22 de Setiembre de 2023

Ensayo : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado

Referencia : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra : Conchas de mejillón triturada Residuo

Peso Unitario Suelto Humedo	(Kg/m³)	1210.81
Peso Unitario Suelto Seco	(Kg/m³)	1209.27
Contenido de Humedad	(%)	0.13

Peso Unitario Compactado Humedo	(Kg/m³)	1317.22
Peso Unitario Compactado Seco	(Kg/m³)	1315.54
Contenido de Humedad	(%)	0.13

OBSERVACIONES:

- Muestreo, identificación y ensayo-realizado por el solicitante.

WILSON ARTURO CLAYA AGUILAR TEC. ENSATOS DE MATERIALES Y SUELOS LEMS WEC EIRL.

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

: TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado Proyecto

en las propiedades mecánicas del concreto

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación

Fecha de Apertura : jueves, 21 de Setiembre de 2023 Inicio de ensayo : jueves, 21 de Setiembre de 2023 Fin de Ensayo : viernes, 22 de Setiembre de 2023

; AGREGADOS. Método de ensayo normalizado para determinar la masa por Ensayo

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado

: NTP 400.017:2011 (revisada el 2016) Referencia

NTP 339.185:2013

Muestra: Piedra Chancada Cantera: Pacherres

Peso Unitario Suelto Humedo	(Kg/m³)	1347.52
Peso Unitario Suelto Seco	(Kg/m³)	1344.52
Contenido de Humedad	(%)	0.22

Peso Unitario Compactado Humedo	(Kg/m³)	1453.93
Peso Unitario Compactado Seco	(Kg/m³)	1450.69
Contenido de Humedad	(%)	0.22

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitant

LEMS W&D EIRL.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

MIGUEL ANGEL RUIZ PERALES

52

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334 Email: serviclos@lemswycelrl.com

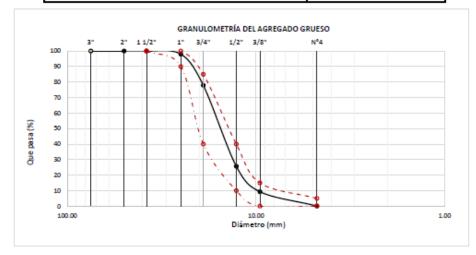
Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en las

propiedades mecánicas del concreto

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación


Fecha de Apertura : jueves, 21 de Setiembre de 2023 Inicio de ensayo : jueves, 21 de Setiembre de 2023 Fin de Ensayo : jueves, 21 de Setiembre de 2023

ENSAYO NORMA DE REFERENCIA : AGREGADOS, Análisis granulométrico del agregado fino, Grueso y global. : N.T.P. 400.012 / ASTM C-136

Muestra : Conchas de mejillón Cantera: Residuo

Analisis Granulométrico por tamizado					
N* Tamiz			% Que pasa Acumulados	HUSO 56	
2"	50.00	0.0	0.0	100.0	
1 1/2"	38.00	0.0	0.0	100.0	100
1"	25.00	2.0	2.0	98.0	90 - 100
3/4"	19.00	20.1	22.1	77.9	40 - 85
1/2*	12.70	52.2	74.3	25.7	10 - 40
3/8"	9.52	16.4	90.7	9.3	0 - 15
N°4	4.75	9.2	99.9	0.1	0 - 5

TAMAÑO MÁXIMO NOMINAL	3/4"

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante. WILSON ARTURO OLAVA AGGIRAR

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

: Alvarado Juárez Johnny Alexander Solicitante

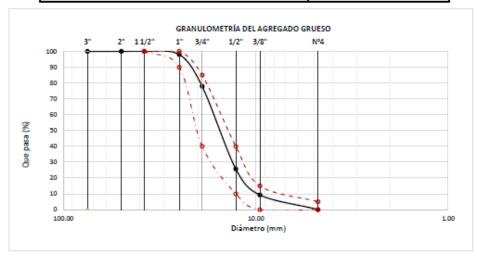
Bances Acosta Kevin Jhan Franco

Proyecto . TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en las

propiedades mecánicas del concreto

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

: jueves, 21 de Setiembre de 2023 Fecha de Apertura : jueves, 21 de Setiembre de 2023 Inicio de ensayo Fin de Ensayo : jueves, 21 de Setiembre de 2023


: AGREGADOS, Análisis granulométrico del agregado fino, Grueso y global. : N.T.P. 400.012 / ASTM C-136 ENSAYO

NORMA DE REFERENCIA

Muestra: Conchas de mejillón Cantera: Residuo

Analisis Granulométrico por tamizado						
N° Tamiz	Abertura (mm)	% Retenido	% Acumulados Retenido	% Que pasa Acumulados	HUSO 56	
2"	50.00	0.0	0.0	100.0		
1 1/2"	38.00	0.0	0.0	100.0	100	
1"	25.00	2.0	2.0	98.0	90 - 100	
3/4"	19.00	20.1	22.1	77.9	40 - 85	
1/2"	12.70	52.2	74.3	25.7	10 - 40	
3/8"	9.52	16.4	90.7	9.3	0 - 15	
Nº4	4.75	9.2	99.9	0.1	0 - 5	

TAMAÑO MÁXIMO NOMINAL	3/4"

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

WILSON ARTURO CLAYA ACULLAR THE CHAMBER OF MATERIALS Y SURLOS

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado

en las propiedades mecánicas del concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura : jueves, 21 de Setiembre de 2023 Inicio de Ensayo : viernes, 22 de Setiembre de 2023 Fin de Ensayo : viernes, 22 de Setiembre de 2023

Ensayo : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado

Referencia : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra : Arena Gruesa Cantera: La Victoria- Pátapo

Peso Unitario Suelto Humedo	(Kg/m³)	1504.97
Peso Unitario Suelto Seco	(Kg/m³)	1496.19
Contenido de Humedad	(%)	0.59

Peso Unitario Compactado Humedo	(Kg/m³)	1605.84
Peso Unitario Compactado Seco	(Kg/m³)	1596.48
Contenido de Humedad	(%)	0.59

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

LEME WEC EIRL

MIGUEL ANGEL RUIZ PERALE

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

INFORME

Solicitante : Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en

las propiedades mecánicas del concreto

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura :: jueves, 21 de Setiembre de 2023 Inicio de ensayo :: jueves, 21 de Setiembre de 2023 Fin de Ensayo : viernes, 22 de Setiembre de 2023

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado grueso.

REFERENCIA: N.T.P. 400.021

Muestra: Conchas de mejillón Muestra: Residuo

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.689
2 PORCENTAJE DE ABSORCIÓN	%	0.000

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

VILSON ARTURO CLAVA AGUILAR

Prolongación Bolognesi Km. 3.5
Pimentel – Lambayeque
R.U.C. 20480781334
Email: servicios@lemswyceirl.com

INFORME

Solicitante : Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en

las propiedades mecánicas del concreto

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura :: jueves, 21 de Setiembre de 2023 Inicio de ensayo :: jueves, 21 de Setiembre de 2023 Fin de Ensayo : viernes, 22 de Setiembre de 2023

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado grueso.

REFERENCIA: N.T.P. 400.021

Muestra: Piedra Chancada Muestra: Cantera Pacherres - Pacherres

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.598
2 PORCENTAJE DE ABSORCIÓN	%	1.312

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

LEMS WEG EIRL.

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

INFORME

Pag. 1 de 1

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en

las propiedades mecánicas del concreto

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura : jueves, 21 de Setiembre de 2023 Inicio de Ensayo : jueves, 21 de Setiembre de 2023 Fin de Ensayo : viernes, 22 de Setiembre de 2023

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado fino.

REFERENCIA: N.T.P. 400.022

Muestra : Arena Gruesa Cantera : La Victoria-Pátapo

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.531
2 PORCENTAJE DE ABSORCIÓN	%	0.994

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

LEMS W& C EIRL.

MIGUEL ANDEL RUIZ PERALES

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20548885974 Email: servicios@lemswyceirl.com

INFORME

Pag. 01 de 02

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

; TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en Proyecto / Obra

las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : miércoles, 25 de Octubre de 2023 Ubicación

Fecha de vaciado

DISEÑO DE MEZCLA FINAL $F'c = 210 \text{ kg/cm}^2$

CEMENTO

: Tipo I-PACASMAYO 1.- Tipo de cemento 2.- Peso específico 3120 kg/m3

AGREGADOS:

Agregado fino : : Arena Gruesa - La Victoria - Patapo Agregado grueso :

i ni ella di desa - La Victoria - Patapo			i Ficula Cilalicada - Calica a Faciletti	es - Facileires	
1 Peso específico de masa	2.503	gr/cm ³	1 Peso específico de masa	2.630	gr/cm ³
2 Peso específico de masa 5.5.5.	2.529	gr/cm ³	2 Peso específico de masa 5.5.5.	2.657	gr/cm ³
3 Peso unitario suelto	1496.19	Kg/m ³	3 Peso unitario suelto	1347.52	Kg/m ³
4 Peso unitario compactado	1596.48	Kg/m ³	4 Peso unitario compactado	1450.69	Kg/m ³
5 % de absorción	1.03	%	5 % de absorción	1.03	%
6 Contenido de humedad	0.59	%	6 Contenido de humedad	0.22	%
7 Módulo de fineza	2.97		7 Tamaño máximo	1"	Pulg.
			8 Tamaño máximo nominal	3/4"	Pula.

Granulometría:

Malla	%	% Acumulado
	Retenido	que pasa
3/8"	0.0	100.0
Nº 04	4.0	96.0
Nº 08	13.0	83.0
Nº 16	22.3	60.7
No 30	25.4	35.2
Nº 50	15.5	19.8
Nº 100	11.3	8.5
Fondo	8.5	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	1.5	98.5
3/4"	13.1	85.4
1/2"	54.8	30.6
3/8"	20.4	10.2
Nº 04	10.1	0.1
Fondo	0.1	0.0

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20548885974 Email: servicios@jemswyceirl.com

INFORME

Pag. 02 de 02

Solicitante : Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en

las propiedades mecánicas del concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : miércoles, 25 de Octubre de 2023

DISEÑO DE MEZCLA FINAL $f'c = 210 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas
Peso unitario del concreto fresco : 2415 Kg/m³
Resistencia promedio a los 7 días : 0 Kg/cm²
Porcentaje promedio a los 7 días : 0 %
Factor cemento por M³ de concreto : 8.7 bolsas/m³
Relación agua cemento de diseño : 0.685

Cantidad de materiales por metro cúbico :

 Cemento
 371.36
 Kg/m³
 : Tipo I-PACASMAYO

 Agua
 254.33
 L
 : Potable de la zona.

Agregado fino 874.86 Kg/m³ : Arena Gruesa - La Victoria - Patapo

Agregado grueso 914.06 Kg/m³ : Piedra Chancada - Cantera Pacherres - Pacherres

Proporción en peso : Cemento Arena Piedra Agua 1.0 2.36 2.46 29.1 Lts/pie³

Proporción en volumen : 1.0 2.37 2.75 29.1 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

LEME WEG EINL.

- En obra corregir por humedad.

MOUEL ANCEL RUZ PERALES

Email: servicios@lemswycseirl.com

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en

las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque Ubicación

Fecha de Apertura : miércoles, 25 de Octubre de 2023 Inicio de Ensayo : miércoles, 25 de Octubre de 2023 : miércoles, 25 de Octubre de 2023 Fin de Ensayo

: HORMIGON (CONCRETO). Método por presión para la determinación del contenido de aire en mezclas frescas. Ensayo

: NTP 339.080 Referencia Tipo de Medidor : Medidor "B"

Diseño	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Contenido de aire (%)
D1	C.P- f'c= 210 kg/cm2	210	25/10/2023	1.8

OBSERVACIONES:

Muestreo, ensayo e identificación realizados por el solicitante

WILSONARTURO OLAYA AGULAR ICC DISAYES DE MATERIALES Y BURLOS

Email: servicios@lemswycseirl.com

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades

mecánicas del concreto

: Dist. Pimentei, Prov. Chiclayo, Depart. Lambayeque Ubicación

Fecha de Apertura miércoles, 25 de Octubre de 2023 Inicio de Ensayo miércoles, 25 de Octubre de 2023 Fin de Ensayo miércoles, 25 de Octubre de 2023

. HORMIGON (CONCRETO). Método por presión para la determinación del contenido de aire en mezclas frescas. Ensayo

: NTP 339.080 Referencia Tipo de Medidor : Medidor "B"

Diseño	IDENTIFICACIÓN	Diseño fo (kg/om²)	Feoha de vaolado (Diac)	Contenido de aire (%)		
D2	CP+ 10%CM+0.5%FC	210	25/10/2023	08:00 a.m	Medido "B"	1.50
D3	CP+ 10%CM+1.5%FC	210	25/10/2023	09:30 a.m	Medido "B"	1.30
D4	CP+ 10%CM+2.5%FC	210	25/10/2023	10:30 a.m	Medido "B"	0.50
D5	CP+ 30%CM+0.5%FC	210	25/10/2023	11:30 a.m	Medido "B"	1.70
D6	CP+ 30%CM+1.5%FC	210	25/10/2023	12:30 a.m	Medido "B"	2.50
D7	CP+ 30%CM+2.5%FC	210	25/10/2023	01:30 p.m	Medido "B"	3.00
D8	CP+ 60%CM+0.5%FC	210	25/10/2023	02:30 p.m	Medido "B"	3.50
D9	CP+60%CM+1.5%FC	210	25/10/2023	03:30 p.m	Medido "B"	2.00
D10	CP+ 60%CM+2.5%FC	210	25/10/2023	04:30 p.m	Medido "B"	1.70

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante. WILSON ANTURO OLANA ANGILLAR

Email: lemswyceirl@gmail.com

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en

las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque Ubicación

Fecha de Apertura : miércoles, 25 de Octubre de 2023 Inicio de Ensayo : miércoles, 25 de Octubre de 2023 Fin de Ensayo : miércoles, 25 de Octubre de 2023

: CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del concreto. 2ª Edición Ensayo

: N.T.P. 339.046 : 2008 (revisada el 2018) Referencia

Muestra N°	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	DENSIDAD (Kg/m³)
D1	C.P- f'c= 210 kg/cm2	210	25/10/2023	2330

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

WILSONARTURO CLAYA AGUILAN

Email: lemswyceirl@gmail.com

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

: TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en Proyecto / Obra

las propiedades mecánicas del concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

: miércoles, 25 de Octubre de 2023 Fecha de Apertura Inicio de Ensayo : miércoles, 25 de Octubre de 2023 : miércoles, 25 de Octubre de 2023 Fin de Ensayo

: CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del concreto. 2ª Edición Ensayo

Referencia : N.T.P. 339.046 : 2008 (revisada el 2018)

Muestra N°	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	DENSIDAD (Kg/m³)
D2	CP+ 10%CM+0.5%FC	210	25/10/2023	2309
D3	CP+ 10%CM+1.5%FC	210	25/10/2023	2326
D4	CP+ 10%CM+2.5%FC	210	25/10/2023	2360
D5	CP+ 30%CM+0.5%FC	210	25/10/2023	2297
D6	CP+ 30%CM+1.5%FC	210	25/10/2023	2319
D7	CP+ 30%CM+2.5%FC	210	25/10/2023	2329
D8	CP+ 60%CM+0.5%FC	210	25/10/2023	2279
D9	CP+ 60%CM+1.5%FC	210	25/10/2023	2294
D10	CP+ 60%CM+2.5%FC	210	25/10/2023	2313

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante,

WILSON ARTURO CLAYA ACIULAN TEC. DISANS DE MATERINAES Y SURLOS

Prolongación Bolognesi Km. 3,5 Pimentel – Lambayeque R.U.C. 20548885974

Email: servicios@lemswycseirl.com

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en las

propiedades mecánicas del concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura : miércoles, 25 de Octubre de 2023 Inicio de Ensayo : miércoles, 25 de Octubre de 2023 Fin de Ensayo : miércoles, 25 de Octubre de 2023

Ensayo : HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del

concreto de cemento Portland.

Referencia : N.T.P. 339.035:2009

Diseño	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Asent	tamiento
Disello	IDENTIFICACION	f'c (kg/cm²)	(Días)	Obtenido (pulg)	Obtenido (cm)
D1	C.P- f'c= 210 kg/cm2	210	25/10/2023	4	10.16

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON ARTURO CLAYA AGUSLAR

Prolongación Bolognesi Km. : Pimentel - Lambayeque R.U.C. 20548885974

Email: servicios@lemswycseirl.c

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado en las

propiedades mecánicas del concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura : miércoles, 25 de Octubre de 2023 Inicio de Ensayo : miércoles, 25 de Octubre de 2023 Fin de Ensayo : miércoles, 25 de Octubre de 2023

Ensayo : HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del concreto

de cemento Portland.

Referencia : N.T.P. 339.035:2009

s: «	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Asent	tamiento
Diseño	IDENTIFICACIÓN	f'c (kg/cm²)	(Días)	Obtenido (pulg)	Obtenido (cm)
D2	CP+10%CM+0.5%FC	210	25/10/2023	4.00	10.16
D3	CP+10%CM+1.5%FC	210	25/10/2023	3.80	9.65
D4	CP+ 10%CM+2.5%FC	210	25/10/2023	3.50	8.89
D5	CP+30%CM+1.5%FC	210	25/10/2023	3.00	7.62
D6	CP+30%CM+1.5%FC	210	25/10/2023	3.00	7.62
D7	CP+30%CM+2.5%FC	210	25/10/2023	2.80	7.11
D8	CP+ 60%CM+0.5%FC	210	25/10/2023	2.60	6.60
D9	CP+ 60%CM+1.5%FC	210	25/10/2023	2.50	6.35
D10	CP+ 60%CM+2.5%FC	210	25/10/2023	2.00	5.08

LEMB W&C EVAL.

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

MIGUEL ANGEL RUZ PERALES

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: servicios@lemswycseirl.com

Solicitantes : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto / Obra : TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado

en las propiedades mecánicas del concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura : miércoles, 25 de Octubre de 2023 Inicio de Ensayo : miércoles, 25 de Octubre de 2023 Fin de Ensayo : miércoles, 25 de Octubre de 2023

Ensayo : HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la

temperatura de mezcla de hormigón.

Referencia: N.T.P. 339.184

Diseño	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Temperatura (C°)
D1	C.P- f'c= 210 kg/cm2	210	25/10/2023	23.0

LEMS WAC EIRL.

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

LEMS WEG FIRE.

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: servicios@lemswycseirl.com

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Proyecto / Obra

: TESIS: Efecto combinado de conchas de mejillón triturado y fibra de coco tratado

en las propiedades mecánicas del concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura : miércoles, 25 de Octubre de 2023 Inicio de Ensayo : miércoles, 25 de Octubre de 2023 Fin de Ensayo : miércoles, 25 de Octubre de 2023

Ensayo : HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la

temperatura de mezcla de hormigón.

Referencia: N.T.P. 339.184

Diseño	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Temperatura (C°)
D2	CP+ 10%CM+0.5%FC	210	25/10/2023	24.0
D3	CP+ 10%CM+1.5%FC	210	25/10/2023	26.0
D4	CP+ 10%CM+2.5%FC	210	25/10/2023	28.0
D5	CP+ 30%CM+0.5%FC	210	25/10/2023	28.0
D6	CP+ 30%CM+1.5%FC	210	25/10/2023	29.0
D7	CP+ 30%CM+2.5%FC	210	25/10/2023	30.0
D8	CP+ 60%CM+0.5%FC	210	25/10/2023	28.0
D9	CP+ 60%CM+1.5%FC	210	25/10/2023	27.0
D10	CP+ 60%CM+2.5%FC	210	25/10/2023	26.0

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR

68

Solicitante : Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco

Tesis : TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : miércoles, 25 de Octubre de 2023

Ensayo CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en

muestras cilindricas. : N.T.P. 339.034:2015 Referencia

Muestra N°	IDENTIFICACIÓN	Diseño	Fecha de vaciado (Dias)	Fecha de ensayo (Días)	Edad (Dias)	Carga (Kgf)	Diámetro (Cm)	Área (cm²)	Fc (Kg/Cm²)
01	D1-CP- f'c- 210 kg/cm ²	210	6/02/2023	1/11/2023	7	13869	15.00	177	78.48
02	D1-CP- f'c- 210 kg/cm2	210	25/10/2023	1/11/2023	7	13870	15.00	177	78.49
03	D1-CP-1'c-210 kg/cm2	210	25/10/2023	1/11/2023	7	13865	15.00	177	78.46
04	D1=CP= f'c= 210 kg/cm2	210	25/10/2023	8/11/2023	14	19274	15.00	177	109.07
05	D1=CP= f'c= 210 kg/cm2	210	25/10/2023	8/11/2023	14	19273	15.00	177	109.06
06	D1=CP= f'c= 210 kg/cm2	210	25/10/2023	8/11/2023	14	19269	15.00	177	109.04
07	D1=CP= f'c= 210 kg/cm2	210	25/10/2023	22/11/2023	28	37218	15.00	177	210.61
08	D1=CP= f'c= 210 kg/cm2	210	25/10/2023	22/11/2023	28	37221	15.00	177	210.63
09	D1=CP= f'c= 210 kg/cm2	210	25/10/2023	22/11/2023	28	37220	15.00	177	210.62

Solicitante : Alvarado Juárez Johnny Alexander

Tesis

Bances Acosta Kevin Jhan Franco

TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : miércoles, 25 de Octubre de 2023 Ubicación

Fecha de vaciado

Ensayo CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras

clindricas. : N.T.P. 339.034:2015 Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
Nº	IDENTIFICACION	fc	(Dias)	(Dlas)	(Dias)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D2= CP+10%CM+0.5%FC	280	25/10/2023	1/11/2023	7	16324	15.00	177	92.38
02	D2= CP+10%CM+0.5%FC	280	25/10/2023	1/11/2023	7	16324	15.00	177	92.38
03	D2= CP+10%CM+0.5%FC	280	25/10/2023	1/11/2023	7	16324	15.00	177	92.38
04	D2= CP+10%CM+0.5%FC	280	25/10/2023	8/11/2023	14	22604	15.00	177	127.91
05	D2= CP+10%CM+0.5%FC	280	25/10/2023	8/11/2023	14	22604	15.00	177	127.91
06	D2= CP+10%CM+0.5%FC	280	25/10/2023	8/11/2023	14	22604	15.00	177	127.91
07	D2= CP+10%CM+0.5%FC	280	25/10/2023	22/11/2023	28	43524	15.00	177	246.29
80	D2= CP+10%CM+0.5%FC	280	25/10/2023	22/11/2023	28	43524	15.00	177	246.29
09	D2= CP+10%CM+0.5%FC	280	25/10/2023	22/11/2023	28	43524	15.00	177	246.29

Solicitante : Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Bances Acosta Kevin Jhan Fra Tesis :

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. Fecha de vaciado : miércoles, 25 de Octubre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la diterminación de la resistencia a la compresión del concreto en muestras

TESIS: Efecto combinado de conchas de mejlión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

cliindricas.

Referencia : N.T.P. 339.034:2015

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Агеа	fc
N°	IDENTIFICACION	fe	(Dlas)	(Dias)	(Dias)	(Kgf)	(Cm)	(cm²)	(Kg/Cm²)
01	D3= CP+10%CM+1.5FC	280	25/10/2023	1/11/2023	7	11172	15.00	177	63.22
02	D3= CP+10%CM+1.5FC	280	25/10/2023	1/11/2023	7	11172	15.00	177	63.22
03	D3= CP+10%CM+1.5FC	280	25/10/2023	1/11/2023	7	11172	15.00	177	63.22
04	D3= CP+10%CM+1.5FC	280	25/10/2023	8/11/2023	14	15468	15.00	177	87.53
05	D3= CP+10%CM+1.5FC	280	25/10/2023	8/11/2023	14	15468	15.00	177	87.53
06	D3= CP+10%CM+1.5FC	280	25/10/2023	8/11/2023	14	15468	15.00	177	87.53
07	D3= CP+10%CM+1.5FC	280	25/10/2023	22/11/2023	28	29784	15.00	177	168.55
08	D3= CP+10%CM+1.5FC	280	25/10/2023	22/11/2023	28	29784	15.00	177	168.55
09	D3= CP+10%CM+1.5FC	280	25/10/2023	22/11/2023	28	29784	15.00	177	168.55

: Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Tesis

TESIS: Efecto combinado de conchas de mejilión triturado y flora de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : miércoles, 25 de Octubre de 2023 Ubicación

Fecha de vaciado

CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras Ensayo

clindricas. : N.T.P. 339.034:2015 Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	Гc
Nº	BENTIFICACION	fc	(Dias)	(Dias)	(Dias)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D4=CP+10%CM+2.5FC	280	25/10/2023	1/11/2023	7	11208	15.00	177	63.42
02	D4=CP+10%CM+2.5FC	280	25/10/2023	1/11/2023	7	11208	15.00	177	63.42
03	D4=CP+10%CM+2.5FC	280	25/10/2023	1/11/2023	7	11208	15.00	177	63.42
04	D4=CP+10%CM+2.5FC	280	25/10/2023	8/11/2023	14	15518	15.00	177	87.81
05	D4=CP+10%CM+2.5FC	280	25/10/2023	8/11/2023	14	15518	15.00	177	87.81
06	D4=CP+10%CM+2.5FC	280	25/10/2023	8/11/2023	14	15518	15.00	177	87.81
07	D4=CP+10%CM+2.5FC	280	25/10/2023	22/11/2023	28	29881	15.00	177	169.09
08	D4=CP+10%CM+2.5FC	280	25/10/2023	22/11/2023	28	29881	15.00	177	169.09
09	D4=CP+10%CM+2.5FC	280	25/10/2023	22/11/2023	28	29881	15.00	177	169.09

: Alvarado Juárez Johnny Alexander

Bances Acosta Kevin Jhan Franco Tesis

. TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiciayo, Depart. Lambayeque. : miércoles, 25 de Octubre de 2023 Ubicación Fecha de vaciado

CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras cilindricas. Ensayo

: N.T.P. 339.034:2015 Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	F c
N°	IDENTIFICACION	fc	(Dias)	(Dlas)	(Dias)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D5=CP+30%CM+0.5%FC	280	25/10/2023	1/11/2023	7	12660	15.00	177	72
02	D5=CP+30%CM+0.5%FC	280	25/10/2023	1/11/2023	7	12660	15.00	177	72
03	D5=CP+30%CM+0.5%FC	280	25/10/2023	1/11/2023	7	12660	15.00	177	72
04	D5=CP+30%CM+0.5%FC	280	25/10/2023	8/11/2023	14	17529	15.00	177	99
05	D5=CP+30%CM+0.5%FC	280	25/10/2023	8/11/2023	14	17529	15.00	177	99
06	D5=CP+30%CM+0.5%FC	280	25/10/2023	8/11/2023	14	17529	15.00	177	99
07	D5=CP+30%CM+0.5%FC	280	25/10/2023	22/11/2023	28	33753	15.00	177	191
08	D5=CP+30%CM+0.5%FC	280	25/10/2023	22/11/2023	28	33753	15.00	177	191
09	D5=CP+30%CM+0.5%FC	280	25/10/2023	22/11/2023	28	33753	15.00	177	191

: Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco Solicitante

Tesis

TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : miércoles, 25 de Octubre de 2023 Ubicación

Fecha de vaciado

Ensayo : CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras

: N.T.P. 339.034:2015 Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	rc
N°	IDENTIFICACION	fc	(Dlas)	(Dlas)	(Dias)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D6=CP+30%CM+1.5%FC	280	25/10/2023	1/11/2023	7	8195	15.00	177	46
02	D6=CP+30%CM+1.5%FC	280	25/10/2023	1/11/2023	7	8195	15.00	177	46
03	D6=CP+30%CM+1.5%FC	280	25/10/2023	1/11/2023	7	8195	15.00	177	46
04	D6=CP+30%CM+1.5%FC	280	25/10/2023	8/11/2023	14	11348	15.00	177	64
05	D6=CP+30%CM+1.5%FC	280	25/10/2023	8/11/2023	14	11348	15.00	177	64
06	D6=CP+30%CM+1.5%FC	280	25/10/2023	8/11/2023	14	11348	15.00	177	64
07	D6=CP+30%CM+1.5%FC	280	25/10/2023	22/11/2023	28	21852	15.00	177	124
08	D6=CP+30%CM+1.5%FC	280	25/10/2023	22/11/2023	28	21852	15.00	177	124
09	D6=CP+30%CM+1.5%FC	280	25/10/2023	22/11/2023	28	21852	15.00	177	124

: Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco Solicitante

Tesis

TESIS: Efecto combinado de conchas de mejilión triturado y flora de coco tratado en las propiedades mecánicas del concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : miércoles, 25 de Octubre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras

cllindricas.

: N.T.P. 339.034:2015 Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	Fc
N°	IDENTIFICACION	fc	(Dias)	(Dlas)	(Dias)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D7=CP+30%CM+2.5%FC	280	25/10/2023	1/11/2023	7	8884	15.00	177	50
02	D7=CP+30%CM+2.5%FC	280	25/10/2023	1/11/2023	7	8884	15.00	177	50
03	D7=CP+30%CM+2.5%FC	280	25/10/2023	1/11/2023	7	8884	15.00	177	50
04	D7=CP+30%CM+2.5%FC	280	25/10/2023	8/11/2023	14	12300	15.00	177	70
05	D7=CP+30%CM+2.5%FC	280	25/10/2023	8/11/2023	14	12300	15.00	177	70
06	D7=CP+30%CM+2.5%FC	280	25/10/2023	8/11/2023	14	12300	15.00	177	70
07	D7=CP+30%CM+2.5%FC	280	25/10/2023	22/11/2023	28	23686	15.00	177	134
08	D7=CP+30%CM+2.5%FC	280	25/10/2023	22/11/2023	28	23686	15.00	177	134
09	D7=CP+30%CM+2.5%FC	280	25/10/2023	22/11/2023	28	23686	15.00	177	134

WILSON ANTURO OLAYA NGURLAN TEC ONUMBER WILKINGS YOURGE

MOUEL ANCEL ROLE PERALES

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante. ALEME WAS SINL

Solicitante : Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Tesis

TESIS: Efecto combinado de conchas de mejlilón triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación

Fecha de vaciado : miércoles, 25 de Octubre de 2023

Ensayo : CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras

cllindricas. : N.T.P. 339.034:2015 Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc
N°	IDENTIFICACION	fc	(Dias)	(Dlas)	(Dias)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D8=CP+60%CM+0.5%FC	280	25/10/2023	1/11/2023	7	12477	15.00	177	71
02	D8=CP+60%CM+0.5%FC	280	25/10/2023	1/11/2023	7	12477	15.00	177	71
03	D8=CP+60%CM+0.5%FC	280	25/10/2023	1/11/2023	7	12477	15.00	177	71
04	D8-CP+60%CM+0.5%FC	280	25/10/2023	8/11/2023	14	17276	15.00	177	98
05	D8-CP+60%CM+0.5%FC	280	25/10/2023	8/11/2023	14	17276	15.00	177	98
06	D8-CP+60%CM+0.5%FC	280	25/10/2023	8/11/2023	14	17276	15.00	177	98
07	D8=CP+60%CM+0.5%FC	280	25/10/2023	22/11/2023	28	33267	15.00	177	188
08	D8=CP+60%CM+0.5%FC	280	25/10/2023	22/11/2023	28	33267	15.00	177	188
09	D8=CP+60%CM+0.5%FC	280	25/10/2023	22/11/2023	28	33267	15.00	177	188

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

WILSONARTURE OLAMANGULAR

Solicitante : Alvarado Juárez Johnny Alexander

Tesis

Bances Acosta Kevin Jhan Franco

TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : miércoles, 25 de Octubre de 2023 Ubicación

Fecha de vaciado

 CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras clindricas. Ensayo

: N.T.P. 339.034:2015 Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	Fc
N°	BENTITIOACION	fc	(Dias)	(Dlas)	(Dias)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)
01	D9=CP+60%CM+1.5%FC	280	25/10/2023	1/11/2023	7	10272	15.00	177	58
02	D9=CP+60%CM+1.5%FC	280	25/10/2023	1/11/2023	7	10272	15.00	177	58
03	D9=CP+60%CM+1.5%FC	280	25/10/2023	1/11/2023	7	10272	15.00	177	58
04	D9=CP+60%CM+1.5%FC	280	25/10/2023	8/11/2023	14	14224	15.00	177	80
05	D9=CP+60%CM+1.5%FC	280	25/10/2023	8/11/2023	14	14224	15.00	177	80
06	D9=CP+60%CM+1.5%FC	280	25/10/2023	8/11/2023	14	14224	15.00	177	80
07	D9=CP+60%CM+1.5%FC	280	25/10/2023	22/11/2023	28	27389	15.00	177	155
08	D9=CP+60%CM+1.5%FC	280	25/10/2023	22/11/2023	28	27389	15.00	177	155
09	D9=CP+60%CM+1.5%FC	280	25/10/2023	22/11/2023	28	27389	15.00	177	155

MIGUEL ANCEL BUZZ PERALES

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

ALEME WEE SIM. WILSONARTURO CLAYA AGGILAR TEC CMAND IS MITERIAREY SURVING

Solicitante : Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Tesis

TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : miércoles, 25 de Octubre de 2023 Ubicación

Fecha de vaciado

Ensayo CONCRETO. Método de ensayo normalizado para la diterminación de la resistencia a la compresión del concreto en muestras

clindricas. : N.T.P. 339.034:2015 Referencia

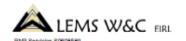
Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Агеа	re
Nº	BETTITIONOIST	fc	(Dias)	(Dias)	(DI38)	(Kgf)	(Cm)	(cm²)	(Kg/Cm²)
01	D10=CP+60%CM+2.5%FC	280	25/10/2023	1/11/2023	7	8507	15.00	177	48
02	D10=CP+60%CM+2.5%FC	280	25/10/2023	1/11/2023	7	8507	15.00	177	48
03	D10=CP+60%CM+2.5%FC	280	25/10/2023	1/11/2023	7	8507	15.00	177	48
04	D10=CP+60%CM+2.5%FC	280	25/10/2023	8/11/2023	14	11881	15.00	177	67
05	D10=CP+60%CM+2.5%FC	280	25/10/2023	8/11/2023	14	11881	15.00	177	67
06	D10=CP+60%CM+2.5%FC	280	25/10/2023	8/11/2023	14	11881	15.00	177	67
07	D10=CP+60%CM+2.5%FC	280	25/10/2023	22/11/2023	28	22680	15.00	177	128
08	D10=CP+60%CM+2.5%FC	280	25/10/2023	22/11/2023	28	22680	15.00	177	128
09	D10=CP+60%CM+2.5%FC	280	25/10/2023	22/11/2023	28	22680	15.00	177	128

: Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco Solicitante

TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentei, Prov. Chiciayo, Departamento de Lambayeque : miércoles, 25 de Octubre de 2023

Fecha de vaciado


 CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
 N.T.P. 339.078:2012 Ensayo

Referencia

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de encayo	Edad	P	L	ь	h	Mr	Mr
Nº	IDENTIFICACION	(Diac)	(Diac)	(Diac)	(N)	(mm)	(mm)	(mm)	(Mpa)	(Kg/om2)
01	D1=CP=f'c= 210 kg/cm ²	25/10/2023	1/11/2023	7	18970	530	150.00	150	2.98	30.38
02	D1=CP=f'c= 210 kg/cm2	25/10/2023	1/11/2023	7	18550	530	150.00	150	2.91	29.70
03	D1=CP= f'c= 210 kg/cm2	25/10/2023	1/11/2023	7	18140	530	150.00	150	2.85	29.05
04	D1=CP= f'c= 210 kg/cm2	25/10/2023	8/11/2023	14	26140	530	150.00	150	4.10	41.86
05	D1=CP=f'c= 210 kg/cm2	25/10/2023	8/11/2023	14	25850	530	150.00	150	4.06	41.39
06	D1=CP=f'c= 210 kg/cm2	25/10/2023	8/11/2023	14	25110	530	150.00	150	3.94	40.21
07	D1=CP=f'c= 210 kg/cm2	25/10/2023	22/11/2023	28	29560	530	150.00	150	4.64	47.34
08	D1=CP=f'c= 210 kg/cm2	25/10/2023	22/11/2023	28	29110	530	150.00	150	4.57	46.61
09	D1=CP=f'c=210 kg/cm ²	25/10/2023	22/11/2023	28	29050	530	150.00	150	4.56	46.52

Bances Acosta Kevin Jhan Franco

Tesis TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades mecánicas del concreto


: Dist. Pimentel, Prov. Chiclayo, Departamento de Lambayeque Ubicación

Fecha de vaciado : Lunes 6 de febrero del 2023

 CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
 N.T.P. 339,078:2012 Ensayo

Referencia

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	ь	h	Mr	Mr
Nº	IDENTIFICACION	(Diac)	(Diac)	(Diac)	(N)	(mm)	(mm)	(mm)	(Mpa)	(Kg/om2)
01	D2= CP+10%CM+0.5%FC	6/02/2023	13/02/2023	7	18970	530	150.00	150	2.98	30.38
02	D2= CP+10%CM+0.5%FC	6/02/2023	13/02/2023	7	18550	530	150.00	150	2.91	29.70
03	D2= CP+10%CM+0.5%FC	6/02/2023	13/02/2023	7	18140	530	150.00	150	2.85	29.05
04	D2= CP+10%CM+0.5%FC	6/02/2023	20/02/2023	14	26140	530	150.00	150	4.10	41.86
05	D2= CP+10%CM+0.5%FC	6/02/2023	20/02/2023	14	25850	530	150.00	150	4.06	41.39
06	D2= CP+10%CM+0.5%FC	6/02/2023	20/02/2023	14	25110	530	150.00	150	3.94	40.21
07	D2= CP+10%CM+0.5%FC	6/02/2023	6/03/2023	28	32110	530	150.00	150	5.04	51.42
08	D2= CP+10%CM+0.5%FC	6/02/2023	6/03/2023	28	32120	530	150.00	150	5.01	51.09
09	D2= CP+10%CM+0.5%FC	6/02/2023	6/03/2023	28	32120	530	150.00	150	5.04	51.43

: Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco Solicitante

Tesis ¹ TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiciayo, Departamento de Lambayeque Ubicación

Fecha de vaciado Ensayo : Martes 7 de febrero del 2023

CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
: N.T.P. 339.078:2012

Referencia

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de encayo	Edad	P	L	b	h	Mr	Мг
Nº	BENTIFICACION	(Diac)	(Dias)	(Diac)	(N)	(mm)	(mm)	(mm)	(Mpa)	(Kg/om2)
01	D3= CP+10%CM+1.5FC	7/02/2023	14/02/2023	7	18750	530	150.00	150	2.94	30.03
02	D3= CP+10%CM+1.5FC	7/02/2023	14/02/2023	7	18770	530	150.00	150	2.95	30.06
03	D3= CP+10%CM+1.5FC	7/02/2023	14/02/2023	7	18800	530	150.00	150	2.95	30.11
04	D3= CP+10%CM+1.5FC	7/02/2023	21/02/2023	14	25510	530	150.00	150	4.01	40.85
05	D3= CP+10%CM+1.5FC	7/02/2023	21/02/2023	14	25520	530	150.00	150	4.01	40.87
06	D3= CP+10%CM+1.5FC	7/02/2023	21/02/2023	14	25500	530	150.00	150	4.00	40.83
07	D3= CP+10%CM+1.5FC	7/02/2023	7/03/2023	28	28580	530	150.00	151	4.43	45.16
08	D3= CP+10%CM+1.5FC	7/02/2023	7/03/2023	28	28570	530	150.00	150	4.49	45.75
09	D3= CP+10%CM+1.5FC	7/02/2023	7/03/2023	28	28560	530	150.00	150	4.48	45.73

Solicitante : Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Tesis TESIS: Efecto combinado de conchas de mejilión triturado y flora de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiclayo, Departamento de Lambayeque

Fecha de vaciado Ensayo

CONCRETO. Método de ensayo para determinar la resistencia a la fiexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.

 N.T.P. 339.078:2012

Referencia

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Feoha de encayo	Edad	P	L	b	h	Mr	Mr
Nº	IDENTIFICACION	(Diac)	(Dias)	(Diac)	(N)	(mm)	(mm)	(mm)	(Mpa)	(Kg/om2)
01	D4=CP+10%CM+2.5FC	8/02/2023	15/02/2023	7	14550	530	150.00	151	2.27	23.14
02	D4=CP+10%CM+2.5FC	8/02/2023	15/02/2023	7	18550	530	150.00	152	2.23	22.71
03	D4=CP+10%CM+2.5FC	8/02/2023	15/02/2023	7	18140	530	150.00	150	2.29	23.33
04	D4=CP+10%CM+2.5FC	8/02/2023	22/02/2023	14	26140	530	150.00	150	3.13	31.88
05	D4=CP+10%CM+2.5FC	8/02/2023	22/02/2023	14	25850	530	150.00	150	3.13	31.90
06	D4=CP+10%CM+2.5FC	8/02/2023	22/02/2023	14	25110	530	150.00	150	3.13	31.87
07	D4=CP+10%CM+2.5FC	8/02/2023	8/03/2023	28	29560	530	150.00	150	3.55	36.19
08	D4=CP+10%CM+2.5FC	8/02/2023	8/03/2023	28	29110	530	150.00	151	3.50	35.73
09	D4=CP+10%CM+2.5FC	8/02/2023	8/03/2023	28	29050	530	150.00	150	3.55	36.24

: Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco Solicitante

Tesis TESIS: Efecto combinado de conchas de mejilión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentei, Prov. Chiciayo, Departamento de Lambayeque Ubicación

Fecha de vaciado Ensayo : Jueves 9 de febrero del 2023

CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo. : N.T.P. 339.078:2012

Referencia

Muestra	IDENTIFICACIÓN	Feoha de vaolado	Feoha de encayo	Edad	P	L	b	h	Mr	Mr
Nº	IDENTIFICACION	(Diac)	(Diac)	(Diac)	(N)	(mm)	(mm)	(mm)	(Mpa)	(Kg/om2)
01	D5=CP+30%CM+0.5%FC	9/02/2023	16/02/2023	7	14780	530	150.00	150	2.32	23.67
02	D5=CP+30%CM+0.5%FC	9/02/2023	16/02/2023	7	14750	530	150.00	150	2.32	23.62
03	D5=CP+30%CM+0.5%FC	9/02/2023	16/02/2023	7	14760	530	150.00	150	2.32	23.64
04	D5=CP+30%CM+0.5%FC	9/02/2023	23/02/2023	14	20510	530	151.00	150	3.20	32.63
05	D5=CP+30%CM+0.5%FC	9/02/2023	23/02/2023	14	20500	530	151.00	150	3.20	32.61
06	D5=CP+30%CM+0.5%FC	9/02/2023	23/02/2023	14	20490	530	151.00	150	3.20	32.59
07	D5=CP+30%CM+0.5%FC	9/02/2023	9/03/2023	28	22890	530	150.00	150	3.59	36.65
08	D5=CP+30%CM+0.5%FC	9/02/2023	9/03/2023	28	22880	530	150.00	150	3.59	36.64
09	D5=CP+30%CM+0.5%FC	9/02/2023	9/03/2023	28	22870	530	150.00	150	3.59	36.62

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- Muestreo, identificación y ensayo realizado por el solicitante.

- Muestreo, identificación y ensayo realizado por el solicitante.

- Muestreo, identificación y ensayo realizado por el solicitante.

- Muestreo, identificación y ensayo realizado por el solicitante.

- Muestreo, identificación y ensayo realizado por el solicitante.

- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Tesis ² TESIS: Efecto combinado de conchas de mejlión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentei, Prov. Chiciayo, Departamento de Lambayeque Ubicación

Fecha de vaciado Ensayo : Viernes 10 de febrero del 2023

CONCRETO. Método de ensayo para determinar la resistencia a la fiexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
: N.T.P. 339.078:2012

Referencia

Muestra	IDENTIFICACIÓN	Feoha de vaolado	Feoha de encayo	Edad	Р	L	b	h	Mr	Mr
Nº	IDENTIFICACION	(Diac)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(Mpa)	(Kg/om2)
01	D6=CP+30%CM+1.5%FC	10/02/2023	17/02/2023	7	14230	530	150.00	150	2.23	22.79
02	D6=CP+30%CM+1.5%FC	10/02/2023	17/02/2023	7	14220	530	150.00	150	2.23	22.77
03	D6=CP+30%CM+1.5%FC	10/02/2023	17/02/2023	7	14200	530	150.00	150	2.23	22.74
04	D6=CP+30%CM+1.5%FC	10/02/2023	24/02/2023	14	20480	530	151.00	150	3.19	32.58
05	D6=CP+30%CM+1.5%FC	10/02/2023	24/02/2023	14	20490	530	151.00	150	3.20	32.59
06	D6=CP+30%CM+1.5%FC	10/02/2023	24/02/2023	14	20470	530	151.00	150	3.19	32.56
07	D6=CP+30%CM+1.5%FC	10/02/2023	10/03/2023	28	22790	530	150.00	150	3.58	36.49
08	D6=CP+30%CM+1.5%FC	10/02/2023	10/03/2023	28	22760	530	150.00	150	3.57	36.45
09	D6=CP+30%CM+1.5%FC	10/02/2023	10/03/2023	28	22770	530	150	150	3.58	36.46

Solicitante : Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

Tesis ² TESIS: Efecto combinado de conchas de mejilión triturado y flora de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentel, Prov. Chiciayo, Departamento de Lambayeque : Viernes 10 de febrero del 2023 Ubicación

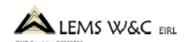
Fecha de vaciado Ensayo

CONCRETO. Método de ensayo para determinar la resistencia a la fiexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.

: N.T.P. 339.078:2012

Muestra	IDENTIFICACIÓN	Feoha de vaolado	Fecha de encayo	Edad	P	L	b	h	Mr	Mr
Nº		(Diac)	(Diac)	(Diac)	(N)	(mm)	(mm)	(mm)	(Mpa)	(Kg/om2)
01	D7=CP+30%CM+2.5%FC	10/02/2023	17/02/2023	7	14230	530	150.00	150	2.06	21.04
02	D7=CP+30%CM+2.5%FC	10/02/2023	17/02/2023	7	14220	530	150.00	150	2.07	21.06
03	D7=CP+30%CM+2.5%FC	10/02/2023	17/02/2023	7	14200	530	150.00	150	2.06	21.01
04	D7=CP+30%CM+2.5%FC	10/02/2023	24/02/2023	14	20480	530	151.00	150	2.98	30.40
05	D7=CP+30%CM+2.5%FC	10/02/2023	24/02/2023	14	20490	530	151.00	150	2.98	30.41
06	D7=CP+30%CM+2.5%FC	10/02/2023	24/02/2023	14	20470	530	151.00	150	2.98	30.37
07	D7=CP+30%CM+2.5%FC	10/02/2023	10/03/2023	28	22790	530	150.00	150	3.40	34.64
08	D7=CP+30%CM+2.5%FC	10/02/2023	10/03/2023	28	22760	530	150.00	150	3.40	34.65
09	D7=CP+30%CM+2.5%FC	10/02/2023	10/03/2023	28	22770	530	150	150	3.40	34.62

OBSERVACIONES:
- Muestreo, identificación y ensayo realizado por el solicitante.


LEMB WEG DIAL

WEGNATURA CHARACTER

WEGNATURA

WEGNATURA CHARACTER

WEGNAT

: Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco Solicitante

Tesis ETESIS: Efecto combinado de conchas de mejilión triturado y flora de coco tratado en las propiedades mecânicas del concreto

Ubicación

Fecha de vaciado Ensayo

Dist. Pimentel, Prov. Chiclayo, Departamento de Lambayeque
 Viernes 10 de febrero del 2023
 CONCRETO, Método de ensayo para determinar la resistencia a la fiexión del concreto en vigas simplemente apoyadas con

cargas a los tercios del tramo. : N.T.P. 339.078:2012 Referencia

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Feoha de encayo	Edad	Р	L	b	h	Mr	Mr
Nº	IDENTIFICACION	(Diac)	(Diac)	(Diac)	(N)	(mm)	(mm)	(mm)	(Mpa)	(Kg/om2)
01	D8=CP+60%CM+0.5%FC	29/10/2023	5/11/2023	7	14230	530	150.00	150	2.07	21.06
02	D8=CP+60%CM+0.5%FC	29/10/2023	5/11/2023	7	14220	530	150.00	150	2.07	21.07
03	D8=CP+60%CM+0.5%FC	29/10/2023	5/11/2023	7	14200	530	150.00	150	2.06	21.01
04	D8=CP+60%CM+0.5%FC	29/10/2023	12/11/2023	14	20480	530	151.00	150	2.90	29.52
05	D8=CP+60%CM+0.5%FC	29/10/2023	12/11/2023	14	20490	530	151.00	150	2.90	29.54
06	D8=CP+60%CM+0.5%FC	29/10/2023	12/11/2023	14	20470	530	151.00	150	2.89	29.44
07	D8=CP+60%CM+0.5%FC	29/10/2023	26/11/2023	28	22790	530	150.00	150	3.26	33.20
08	D8=CP+60%CM+0.5%FC	29/10/2023	26/11/2023	28	22760	530	150.00	150	3.25	33.16
09	D8=CP+60%CM+0.5%FC	29/10/2023	26/11/2023	28	22770	530	150	150	3.25	33.18

: Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco Solicitante

Tesis

[†] TESIS: Efecto combinado de conchas de mejlión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

Ubicación

Fecha de vaciado Ensayo

Dist. Pimentel, Prov. Chiclayo, Departamento de Lambayeque
 Viernes 10 de febrero del 2023
 CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con

cargas a los tercios del tramo. : N.T.P. 339.078:2012

Muestra	IDENTIFICACIÓN	Feoha de vaolado	Feoha de ensayo	Edad	Р	L	b	h	Mr	Mr
Nº		(Diac)	(Dias)	(Diac)	(N)	(mm)	(mm)	(mm)	(Mpa)	(Kg/om2)
01	D9=CP+60%CM+1.5%FC	29/10/2023	5/11/2023	7	14230	530	150.00	150	2.07	21.11
02	D9=CP+60%CM+1.5%FC	29/10/2023	5/11/2023	7	14220	530	150.00	150	2.07	21.12
03	D9=CP+60%CM+1.5%FC	29/10/2023	5/11/2023	7	14200	530	150.00	150	2.07	21.14
04	D9=CP+60%CM+1.5%FC	29/10/2023	12/11/2023	14	20480	530	151.00	150	2.98	30.38
05	D9=CP+60%CM+1.5%FC	29/10/2023	12/11/2023	14	20490	530	151.00	150	2.98	30.40
06	D9=CP+60%CM+1.5%FC	29/10/2023	12/11/2023	14	20470	530	151.00	150	2.98	30.41
07	D9=CP+60%CM+1.5%FC	29/10/2023	26/11/2023	28	22790	530	150.00	150	3.29	33.53
08	D9=CP+60%CM+1.5%FC	29/10/2023	26/11/2023	28	22760	530	150.00	150	3.29	33.53
09	D9=CP+60%CM+1.5%FC	29/10/2023	26/11/2023	28	22770	530	150	150	3.29	33.56

Bances Acosta Kevin Jhan Franco

² TESIS: Efecto combinado de conchas de mejlión triturado y fibra de coco tratado en las propiedades mecánicas del concreto

: Dist. Pimentei, Prov. Chiclayo, Departamento de Lambayeque

Fecha de vaciado Ensayo : Viernes 10 de febrero del 2023

CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
 N.T.P. 339.078:2012

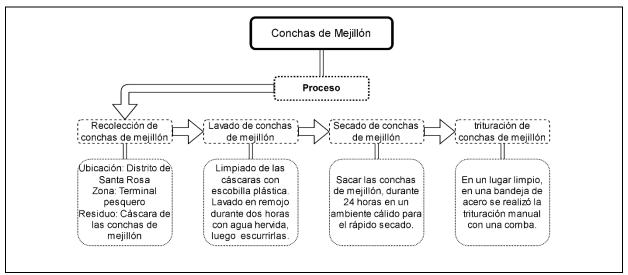
Referencia

Muestra	IDENTIFICACIÓN	Feoha de vaolado	Feoha de encayo	Edad	Р	L	b	h	Mr	Мг
Nº	IDENTIFICACION	(Diac)	(Diac)	(Diac)	(N)	(mm)	(mm)	(mm)	(Mpa)	(Kg/om2)
01	D10=CP+60%CM+2.5%FC	29/10/2023	5/11/2023	7	14230	530	150.00	150	2.12	21.59
02	D10*CP+60%CM+2.5%FC	29/10/2023	5/11/2023	7	14220	530	150.00	150	2.12	21.60
03	D10=CP+60%CM+2.5%FC	29/10/2023	5/11/2023	7	14200	530	150.00	150	2.11	21.55
04	D10=CP+60%CM+2.5%FC	29/10/2023	12/11/2023	14	20480	530	151.00	150	2.89	29.46
05	D10=CP+60%CM+2.5%FC	29/10/2023	12/11/2023	14	20490	530	151.00	150	2.89	29.51
06	D10=CP+60%CM+2.5%FC	29/10/2023	12/11/2023	14	20470	530	151.00	150	2.90	29.57
07	D10=CP+60%CM+2.5%FC	29/10/2023	26/11/2023	28	22790	530	150.00	150	3.26	33.20
08	D10=CP+60%CM+2.5%FC	29/10/2023	26/11/2023	28	22760	530	150.00	150	3.25	33.18
09	D10=CP+60%CM+2.5%FC	29/10/2023	26/11/2023	28	22770	530	150	150	3.25	33.16

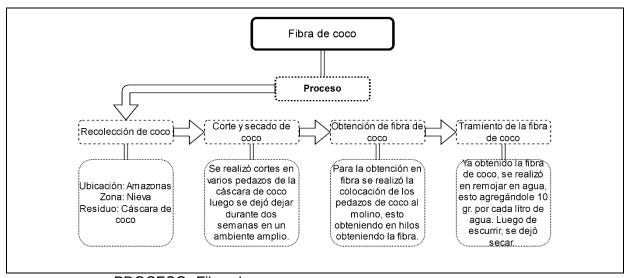
OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- Muestreo, identificación y ensayo realizado por el solicitante.


- Muestreo, identificación y ensayo realizado por el solicitante.

- Muestreo, identificación y ensayo realizado por el solicitante.


- Muestreo, identificación y ensayo realizado por el solicitante.

Cuadros, figuras, fotos.

Anexo 8:PROCESO- Conchas de mejillón

Anexo 9: PROCESO- Fibra de coco

Anexo 10: Fotografías

FOTO- Ensayo de los agregados y conchas de mejillón

FOTO- Realización de los diseños

FOTO- Ensayos al concreto en estado fresco

FOTO- Probetas y vigas antes de realizar las roturas

FOTO- Ensayo de módulo de elasticidad

FOTO- Ensayo a compresión

FOTO- Ensayo a flexión

Documentos o cualquier otro que ayude a esclarecer más la investigación, etc.

Anexo 11: FICHA TÉCNICA - Cemento

DESCRIPCIÓN

Cemento Portland de uso general Tipo I. Gracias a su diseño de clinker, se logra una mejor resistencia a la compresión garantizando óptimos resultados en tu obra.

ATRIBUTOS

Altas resistencias a todas las edades

- Desarrolla altas resistencias iniciales que garantiza un adecuado avance de obra.
- El diseño correcto en concreto garantiza un menor tiempo de desencofrado.

PRESENTACIONES

*En cumplimiento de la Norma Metrológica Peruana (NMP 002:2018)

RECOMENDACIONES DE USO

Utilizar agregados y materiales de buena calidad.

A mayor sea la humedad de los agregados, se debe dosificar menor cantidad de agua.

DOSIFICACIONES RECOMENDADAS

Las proporciones de los materiales están sujetas a la calidad de los agregados de la zona, y a la ejecución de un diseño de mezclas por un experto, pero es aceptado que con materiales aprobados para construcción se usen las siguientes proporciones.

Aplic	ación	Resistencia (f'c)	Cemento	Arena limpia	Piedra de tamaño máximo 19 mm	Agua
alige pla	sas radas, cas y ros	175	1	2	3	0.5 (*)
Vig	as y mnas	210	1	2	2	0.5 (*)

(*) El agua debe ser la suficiente para lograr una consistencia trabajable (slump de 5 a 6 pulgadas), la mezda no debe estar muy aguada, debe poder levantarse con un badilejo sin escurrirse rápidamente.

- Para otro tipo de concreto se requiere un diseño de mezclas específico, si se usan aditivos el agua debe
- Usar un único recipiente de medida.

RECOMENDACIONES DE ALMACENAMIENTO

- Los primeros cementos que entren, deben ser los primeros en salir.
- Las bolsas de cemento deben almacenarse a una distancia de 15 cms como mínimo de las paredes del almacén y 60 cms de otras pilas.
- 3 Cubrir con una capa impermeable para evitar la humedad.
- Reducir tiempo de almacenamiento cuando las temperaturas sean menores a 10°C.
- Revisar la bolsa de cemento antes de usarla para verificar si es que tiene grumos. En caso tenga grumos, antes de su uso tamizar la bolsa.
- Colocar parihuelas de madera para evitar la humedad del suelo.
- Evitar la circulación del aire entre bolsas en el

Pacasmayo

Cemento Tipo I Cemento Portland de uso general Tipo I

Requisitos normalizados - NTP 334.009 / ASTM C150

REQUISITOS QUÍMICOS

ENSAYOS	TIPO	VALOR	UNIDAD	NORMAS DE ENSAYO	RESULTADOS*
MgO	Máximo	6.0	%	NTP 334.086	1.7
SO ₃	Máximo	3.00	%	NTP 334.086	2.82
Alcalis equivalente	(5)	45	%	NTP 334.086	0.8
Pérdida por ignición	Máximo	3.5	%	NTP 334.086	2.8
Residuo insoluble	Máximo	1.5	%	NTP 334.086	0.6

REQUISITOS FÍSICOS

ENSAYOS	TIPO	VALOR	UNIDAD	NORMAS DE ENSAYO	RESULTADOS*
Finura					
Superficie específica	Mínimo	2,600	cm²/g	NTP 334.002	4100
Expansión en autoclave	Máximo	0.80	%	NTP 334.004	0.08
Contenido de aire	Máximo	12	%	NTP 334.048	7
Resistencia a la compresión					-
3 días	Mínimo	12.0 (1740)	MPa (psi)	NTP 334.051	27.6 (4000)
7 días	Mínimo	19.0 (2760)	MPa (psi)	NTP 334.051	33.3 (4830)
28 días**	Mínimo	28.0 (4060)	MPa (psi)	NTP 334.051	40.5 (5870)
Tiempo de Fraguado Vicat			//		
Fraguado inicial	Mínimo	45	Minutos	NTP 334.006	148
Fraguado final	Máximo	375	Minutos	NTP 334.006	274
Expansión en barra de mortero curada en agua a 14 días	Máximo	0.020	%	NTP 334.093	0.008

^{*}Valores promedios referenciales de lotes despachados / **Requisito opcional.

El cemento descrito arriba, al tiempo del envío, cumple con los requisitos físicos y químicos de la NTP 334.009 / ASTM C150

Para más información ingresa a: www.cementospacasmayo.com.pe O escanea el código QR:

SOLUTIONS & TRADING S.A.C.

Fabricación de Productos para Limpieza Pública, Industria, y Minería. Agregados para la Construcción, Pinturas y Artículos de Ferretería en General

Ficha Técnica: Cal de Obra "HADES"

Sku Promart: 16863 Sku Proveedor: KRL29 Departamento: Agregados

Descripción del Producto: Cal de Obra bolsa x 20 kg.

Descripción:

Composición: Hidróxido de calcio 10 - 12 %

Características:

Aspecto : Polvo granulado

Color Variable de un blanco humo a grisáceo

Olor Inodoro Formula química : Ca(OH)2 10 % a 12 % Pureza

Usos:

- Demarcación de terrenos.
- Regulación de pH y fungicidas en suelos agrícolas.
- Desinfección de silos y rellenos sanitarios.

Almacenaje:

12 meses en lugares frescos, limpios y bajo techo.

Precauciones:

Evitar el contacto con los ojos, en caso contrario lávese con abundante agua, durante 10 minutos manteniendo los ojos abiertos, después consulte con su médico.

La presente información es proporcionada en base a la experiencia de KRL SOLUTIONS & TRADING SAC, siempre que los productos sean adecuadamente manipulados, almacenados y transportados. En la práctica los productos muchas veces son utilizados en función de la experiencia y asesoría que pueda recibir el usuario, por lo que no se puede deducir ninguna garantía respecto a la adaptabilidad del producto a un fin en particular. Cualquier duda o consulta con nuestro Dpto. Técnico.

PERUTEST S.A.C

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 056 - 2023

Área de Metrología Laboratorio de Fuerza

1. Expediente 1912-2023

2. Solicitante LABORATORIO DE ENSAYOS DE

MATERIALES Y SUELOS W&C E.I.R.L.

3. Dirección CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS

MILAGROS - CHICLAYO - LAMBAYEQUE

4. Equipo **PRENSA MULTIUSOS**

Capacidad 5000 kgf

Marca FORNEY

Modelo 7691F

Número de Serie 2491

Procedencia U.S.A.

Identificación NO INDICA

Indicación DIGITAL **OHAUS** Modelo **DEFENDER 300 NO INDICA** Número de Serie Resolución 0.1 kgf

Ubicación NO INDICA

5. Fecha de Calibración 2023-03-01

calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

LABORATORIC

Fecha de Emisión

Jefe del Laboratorio de Metrología

Sello

2023-03-02

JOSE ALEJANDRO FLORES MINAYA

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

O Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN PT - LF - 056 - 2023

Página 2 de 3

6. Método de Calibración

La calibración se realiza por comparación directa entre el valor de fuerza indicada en el dispositivo indicador de la máquina a ser calibrada y la indicación de la fuerza real tomada del instrumento de medición de fuerza patrón siguiendo la PC-032 "Procedimiento para la calibración de máquinas de ensayos uniaxiales" Edición 01 del INACAL - DM.

7. Lugar de calibración

Las instalaciones del cliente.

CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

all or all	Inicial	Final
Temperatura	27.8 °C	27.8 °C
Humedad Relativa	65 % HR	65 % HR

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe de calibración
Celdas patrones calibradas en PUCP -	Celda de Carga	G. 72 12. 6.
Laboratorio de estructuras	Código: LF-001	INF-LE 093-23 A/C
antísismicas	Capacidad: 10,000 kg.f	P C R R

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de ensayo uniaxiales de clase de 1.0 según la norma UNE-EN ISO 7500-1.
- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología PT - LF - 056 - 2023
Laboratorio de Fuerza

Página 3 de 3

11. Resultados de Medición

	icación Equipo	Start Con.		uerza (Ascenso) Referencia	LOV SEP SE
%	$F_i(kgf)$	F ₁ (kgf)	F ₂ (kgf)	F ₃ (kgf)	F _{Promedio} (kgf
10	500	500.6	499.3	499.3	499.7
20 9	1000	1002.0	1000.2	1000.6	1000.8
30	1500	1501.6	1499.9	1500.7	1500.6
40	2000	2003.1	2001.9	2004.8	2003.3
50	2500	2501.4	2499.5	2500.4	2500.5
60	3000	3001.9	2999.4	3000.4	3000.4
70	3500	3502.1	3499.7	3501.7	3500.8
80	4000	4002.3	4000.0	4001.0	4000.8
90 9	4500	4502.8	4500.2	4501.2	4501.1
100	5000	5003.7	5000.4	5001.4	5001.3
Retorr	o a Cero	0.0	0.0	0.0	200

Indicación	Er	Errores Encontrados en el Sistema de Medición				
del Equipo F (kgf)	Exactitud q (%)	Repetibilidad b (%)	Reversibilidad v (%)	Resol. Relativa a (%)	U (k=2) (%)	
500	0.07	0.26	-0.02	0.02	0.36	
1000	-0.08	0.18	-0.03	0.01	0.35	
1500	-0.04	0.11	G -0.03	0.01	0.34	
2000	-0.17	0.14	-0.07	0.01	0.35	
2500	-0.02	0.08	-0.04	0.00	0.34	
3000	-0.01	0.08	-0.01	0.00	0.34	
3500	-0.02	0.07	0.01	0.00	0.34	
4000	-0.02	0.06	0.00	0.00	0.34	
4500	-0.02	0.06	0.00	0.00	0.34	
5000	0.02	0.07	0.00	9000	0.01	

MÁXIMO ERROR RELATIVO DE CERO (f₀) 0.00 %

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%. La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

Área de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN PT - LF - 0104 - 2023

1. Expediente 4686-2023

2. Solicitante LABORATORIO DE ENSAYOS DE

MATERIALES Y SUELOS W & C E.I.R.L. -

LEMS W & C E.I.R.L.

3. Dirección CAL.LA FE NRO. 0167 UPIS SEÑOR DE LOS

MILAGROS LAMBAYEQUE - CHICLAYO -

CHICLAYO

131214

CHINA

4. Equipo PRENSA DE CONCRETO

Capacidad 2000 kN

Marca A Y A INSTRUMENT

Modelo STYE-2000B

Número de Serie

Procedencia

Indicación

Identificación NO INDICA

DIGITAL Marca MC STYLE-2000B Modelo Número de Serie

Resolución 0.01 / 0.1 kN (*

Ubicación NO INDICA

5. Fecha de Calibración 2023-09-02

Fecha de Emisión 2023-09-02

Jefe del Laboratorio de Metrología

JOSE A EJANDRO FLORES MINAYA

documenta la trazabilidad a los nacionales internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Este certificado de calibración

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función uso, conservación mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

Sello

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **O PERUTEST SAC**

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 0104 - 2023

Área de Metrología Laboratorio de Fuerza

Página 2 de 3

6. Método de Calibración

La calibración se realiza por comparación directa entre el valor de fuerza indicada en el dispositivo indicador de la máquina a ser calibrada y la indicación de fuerza real tomada del instrumento de medición de fuerza patrón siguiendo la PC-032 "Procedimiento para la calibración de máquinas de ensayos uniaxiales" Edicion 01 de INACAL - DM

7. Lugar de calibración

En el laboratorio del cliente Laboratorio de Materiales de LEMS W & C E.I.R.L.

8. Condiciones Ambientales

	Inicial	Final
Temperatura	26.0 °C	26.0 °C
Humedad Relativa	58 % HR	58 % HR

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración	
Celdas patrones calibradas en PUCP - Laboratorio de estructuras antísismicas	Celda de Carga Capacidad: 150,000 kg.f	INF-LE N° 093-23 (B)	
ELICROM	TERMOHIGROMETRO DIGITAL BOECO	CCP-0102-001-23	

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de ensayo uniaxiales de clase de 2.0 según la norma UNE-EN ISO 7500-1.

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

PERUTEST S.A

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

> CERTIFICADO DE CALIBRACIÓN PT - LF - 0104 - 2023

Área de Metrología Laboratorio de Fuerza

11. Resultados de Medición

	cación Equipo	Indicación de Fuerza (Ascer Patrón de Referencia			V 800 (8)
%	$F_i(kN)$	F ₁ (kN)	F ₂ (kN)	F ₃ (kN)	F _{Promedio} (kN
10	100	100.8	101.1	100.9	101.0
20	200	201.0	201.4	201.1	201.3
30	300	301.6	301.6	301.5	301.5
40	400	400.8	400.8	400.7	400.8
50	500	501.7	500.7	501.6	501.2
60	600	600.5	600.0	600.4	600.2
70	700	700.7	700.7	700.5	700.7
80	800	799.6	790.9	799.3	795.2
90	900	899.8	900.5	899.6	900.1
100	1000	1001.6	1000.3	1001.3	1000.8
Retorn	o a Cero	0.0	0.0	0.0	340

Indicación	Eri	Errores Encontrados en el Sistema de Medición				
del Equipo F (kN)	Exactitud q (%)	Repetibilidad b (%)	Reversibilidad v (%)	Resol. Relativa a (%)	U (k=2) (%)	
100	-0.97	0.29	0.00	0.10	0.60	
200	-0.62	0.19	0.00	0.05	0.58	
300	-0.51	0.03	0.00	0.03	0.58	
400	-0.20	0.04	0.00	0.03	0.58	
500	-0.23	0.21	0.00	0.02	0.59	
600	-0.04	0.07	0.00	0.02	0.58	
700	-0.09	0.03	0.00	0.01	0.57	
800	0.60	1.10	0.00	0.01	0.85	
900	-0.01	0.11	0.00	0.01	0.58	
1000	-0.08	0.13	0.00	0.01	250	

MÁXIMO ERROR RELATIVO DE CERO (f₀) 0.00 %

0.13

BORATORIC

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

ERUTEST S.A

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0110 - 2023

Área de Metrología Laboratorio de Masas

Página 1 de 4

1. Expediente 1912-2023

2. Solicitante LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W&C E.I.R.L.

CALLE LA FE NRO 0167 UPIS SEÑOR DE Internacional de Unidades (SI). 3. Dirección

MILAGROS CHICLAYO

LAMBAYEQUE

BALANZA ELECTRÓNICA 4. Equipo de medición

Capacidad Máxima 30000 g

División de escala (d)

Div. de verificación (e)

Clase de exactitud III

OHAUS Marca

Modelo R31P30

Número de Serie 8336460679

Capacidad mínima 20 g

Procedencia U.S.A.

Identificación NO INDICA Este certificado de calibración documenta

la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y

instrumento

medición o a reglamento vigente.

mantenimiento

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí

declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma sello carece de validez

5. Fecha de Calibración 2023-03-01

Fecha de Emisión Jefe del Laboratorio de Metrología

2023-03-02

Sello

LABORATORIC

ERU

108E ALEJANDRO FLORES MINAYA

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0110 - 2023

Área de Metrología Laboratorio de Masas

Página 2 de 4

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase III y Clase IIII" del SNM- INACAL

7. Lugar de calibración

Las instalaciones del cliente.
CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

5 JY 8 6	Inicial	Final
Temperatura	26.4 °C	26.4 °C
Humedad Relativa	51%	51%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (Si) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	Patrón utilizado	Certificado de calibración	
PESATEC	JUEGO DE PESAS 10 kg (Clase de Exactitud: M1)	1158-MPES-C-2022	
PESATEC	JUEGO DE PESAS 20 kg (Clase de Exactitud: M1)	1159-MPES-C-2022	
ELICROM	JUEGO DE PESAS 1 kg a 5 kg (Clase de Exactitud: F1)	CCP-0938-001-22	
ELICROM	JUEGO DE PESAS 1 mg a 1 kg (Clase de Exactitud: F1)	CCP-0908-001-22	
METROIL	TERMOHIGROMETRO DIGITAL BOECO	1AT-1704-2022	

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (**) Código indicada en una etiqueta adherido al equipo.

1

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

1 PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0110 - 2023

Página 3 de 4

Área de Metrología Laboratorio de Masas

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO TIENE		PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	NO TIENE	CURSOR	NO TIENE
× 12 11 0		NIVELACIÓN	TIENE	5 75 V	C A

ENSAYO DE REPETIBILIDAD

Inicial Final
Temperatura 26.4 °C 26.4 °C

Medición	Carga L1 =	15,000	g	Carga L2 =	30,000	g
N _o	1(g)	ΔL (mg)	E(mg)	1(g)	ΔL (mg)	E(mg)
1	15,000	600	-100	30,000	200	300
20	15,000	500	0	30,000	500	9 00
3	15,001	700	800	30,000	500	0
, 4,9	15,000	500	600	29,999	200	-700
5	15,000	600	-100	30,000	500	0
56	15,000	500	000	30,001	700	800
7	15,000	500	0	30,000	500	0
48	15,000	200	300	30,000	800	-300
9	14,999	300	-800	29,999	300	-800
_ 10	15,000	500	0 0	30,000	500	0
Diferencia		a Máxima	1,600	Diferenci	a Máxima	1,600
	Error Máxim	o Permisible	± 3,000	Error Máxim	o Permisible	± 3,000

ENSAYO DE EXCENTRICIDAD

2 5 Posición de las 3 4 cargas

Inicial Final
Temperatura 26.4 °C 26.4 °C

Posición	Posición Determinación de			ero Eo	201	Determina	ción del Erro	Corregido E	ic e
de la Carga	Carga Mínima*	l (g)	ΔL (mg)	Eo (mg)	Carga L(g)	1 (g)	ΔL(mg)	E(mg)	Ec (mg)
01.6	100	. 10	500	0	6 6	10,001	800	700	700
2	60. 6	10	400	100	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10,000	500	00 6	-100
3	10 g	10	500	000	10,000	10,000	400	100	9 100
4	100	10	400	100	. " "	9,999	200	-700	-800
95	D C.	910	500	J. 000	965 P	10,000	500	29 0 5	100
* Valo	r entre 0 y 10	0e 0	200	100 C	, ,6	Error máx	mo permisible	e 💉	± 3,000

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- () PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0110 - 2023

Área de Metrología Laboratorio de Masas

N 61 10 10 5 6

ENSAYO DE PESAJE

Inicial Final
Temperatura 26.4 °C 26.4 °C

Carga	A. 73.	CRECIENTES				DECRECIENTES			
L(g)	1 (g)	ΔL(mg)	E(mg)	Fa (ma)	1.60	W/	F()	F (6)	e.m.p **
10	10	500	0	Ec (mg)	l (g)	$\Delta L(mg)$	E(mg)	Ec (mg)	(± mg)
20	20	400	100	100	20	500	0	0	1,000
100	100	500	000	0 49	100	500	00	0 6	1,000
500	500	400	100	100	500	400	100	100	2,000
1,000	1,000	500	0.0	200	1,000	500	0 0	0	2,000
5,000	5,000	400	100	100	5,000	400	100	100	3,000
10,000	10,000	600	-100	-100	10,000	500	0	0	3,000
15,000	15,000	500	0	000	15,000	500	0.9	000	3,000
20,000	20,000	600	-100	-100	20,000	600	-100	-100	3,000
25,000	25,000	500	0	8 00	25,000	500	0	90 4	3,000
30,000	30,000	600	G-100	-100	30,000	600	-100	-100	3,000

^{**} error máximo permisible

Leyenda: L: Carga aplicada a la balanza.

ΔL: Carga adicional.

E_o: Error en cero.

I: Indicación de la balanza.

E: Error encontrado

E_C: Error corregido.

Incertidumbre expandida de medición

2. 2

 $2 \times \sqrt{(0.3787222)}$ g²

0.00000000237

Lectura corregida

R CORREGIDA

R

0.0000032 R

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

Área de Metrología Laboratorio de Masas

9 913 028 623 / 913 028 624

www.perutest.com.pe

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

72 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	JOSE ALEJANDRO FLORES MINAYA	PERU
2023-03-02	Jefe del Laboratorio de Metrología	Sello (LABORATORI
5. Fecha de Calibración Fecha de Emisión	2023-03-01	RUTEST S.
		PERUTEST S.A.C
Identificación	NO INDICA	seno carece de validez.
Procedencia	NO INDICA	El certificado de calibración sin firma sello carece de validez.
Capacidad mínima	0.2 g	aprobación por escrito del laborator que lo emite.
Número de Serie	NO INDICA	Este certificado de calibración no pod ser reproducido parcialmente sin
Modelo	457	declarados.
Marca	AMPUT	de una incorrecta interpretación de l resultados de la calibración aq
Clase de exactitud	THE HEST REPUT TO ST ST PRINTED AND	de los perjuicios que pueda ocasionar uso inadecuado de este instrumento,
Div. de verificación (e)	0.1 g	PERUTEST S.A.C. no se responsabili
División de escala (d)	0.01 g	del instrumento de medición o reglamento vigente.
Capacidad Máxima	2000 g	recalibración, la cual está en funcion del uso, conservación y mantenimien
4. Equipo de medición	BALANZA ELECTRÓNICA	momento de la calibración. solicitante le corresponde disponer su momento la ejecución de u
3. Dirección	CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE	Internacional de Unidades (SI). Los resultados son validos en
2. Solicitante	LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W&C E.I.R.L.	que realizan las unidades de medición de acuerdo con el Sister
1. Expediente	1912-2023	Este certificado de calibraci documenta la trazabilidad a patrones nacionales o internacional

ventas@perutest.com.pe

O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Área de Metrología Laboratorio de Masas

Página 2 de 4

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase III y Clase IIII" del SNM- INACAL

7. Lugar de calibración

En las instalaciones del cliente.

CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

7 " " 6. 21	Inicial	Final
Temperatura	26.5 °C	26.5 °C
Humedad Relativa	53%	55%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	Patrón utilizado	Certificado de calibración
ELICROM	JUEGO DE PESAS 1 mg a 1 kg (Clase de Exactitud: F1)	CCP-0908-001-22

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO
- (**) Código indicada en una etiqueta adherido al equipo.

LABORATORIC

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Área de Metrología Laboratorio de Masas

ABORATORIO

PERU

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	I NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	TIENE	CURSOR	NO TIENE
" " " " " " " " " " " " " " " " " " "	16, 26	NIVELACIÓN	TIENE		V V

ENSAYO DE REPETIBILIDAD

Inicial Final Temperatura 26.4 °C 26.4 °C

Medición	Carga L1 =	1,000	g	Carga L2 =	2,000	g
Nº	!(g)	ΔL (mg)	E(mg)	1(g)	ΔL(mg)	E (mg)
1 20	1000.00	5	0	2000.00	5 4	0
2	1000.00	4 0	39 0	2000.01	8 9	07
6.3	1000.01	8	700	2000.00	3	. 2
4	1000.00	95 0	00 4	2000.00	6	19-1 a
5 0	1000.00	6	P -10	2000.00	2	3
6	1000.01	9 6	6	2000.00	5	0
67	1000.00	4	9 1 P	2000.00	4	10
8	1000.00	5 0	0	2000.00	9 6	021
9	1000.00	6	(-10 V	2000.01	8	7
10	1000.00	.94 8	di.	2000.00	6	4-1
All C	Diferencia	a Máxima	8 4	Diferencia	a Máxima	8
x 61	Error Máxim	o Permisible	200	Error Máxim	o Permisible	300

ENSAYO DE EXCENTRICIDAD

de las

Inicial Final Temperatura 26.4 °C 26.4 °C

Posición	Dete	rminación o	lel Error en Ce	ero Eo	19 X	Determina	ción del Erro	r Corregido E	ic & S
de la Carga	Carga Mínima*	I (g)	ΔL (mg)	Eo (mg)	Carga L(g)	I (g)	ΔL(mg)	E(mg)	Ec (mg)
10	0. 19	0.10	5	00	Ua.	1000.00	5	0	0.0
22	160	0.11	6 8 W	6.7 9	1. 16.	1000.00	34 8	61 4	-6
3	0.10	0.10	6	7 -19	1000.00	1000.00	6	5 1 1 C	000
4	0. 28.	0.10	6.5	00	S. S.P.	1000.00	5 5	00 0	0
50	ar as	0.10	6	-10	15 18	1000.01	8	7-7	10° 80°
* Valor	entre 0 y 10)e	- C.	4 1		Error máxir	no permisible	15 18	200

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Página A do A

ENSAYO DE PESAJE

Temperatura

Inicial Final 26.4 °C 26.4 °C

Carga	100	CREC	IENTES	P 16	1 28	DECRE	CIENTES	Y 2 Y 28	
L(g)	1 (g)	ΔL(mg)	E(mg)		N. A. V	100	8	A 20	e.m.p **
0.10	0.10	6	29-1 X	Ec (mg)	1 (g)	$\Delta L(mg)$	E(mg)	Ec (mg)	(± mg)
0.20	0.20	5	0.00	1, 1, 5	0.20	5	0	1.4	100
10.00	10.00	6	9-1	0	10.00	5 5	0	1	100
100.00	100.00	7	-2	20 -1.	100.00	4	105	200	100
500.00	500.00	6 9	(-1 <	0	500.00	0.5	0	1 1	200
800.00	800.00	5	00	1º10	800.00	6	-10 G	50,00	200
1000.00	1000.00	6	,91 (0	1000.00	27 0	-2	1	200
1200.00	1200.00	6	5 -100	0.00	1200.00	2	6 3 de	24 6	200
1500.00	1500.00	4	9	2	1500.00	93	2	5 3	200
1800.00	1800.01	8	07.5	8	1800.00	3	2 0	3 0	200
2000.00	2000.01	8	7	8	2000.01	8	7	8	300

^{**} error máximo permisible

Levenda:

L: Carga aplicada a la balanza.

I: Indicación de la balanza.

ΔL: Carga adicional.

Eo: Error en cero.

E: Error encontrado

E_c: Error corregido.

Incertidumbre expandida de medición

U = 2 x 1

g² +

0.00000000001

LABORATORIC

Lectura corregida

R CORREGIDA

R +

0.0000026 R

0.000028

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **O PERUTEST SAC**

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA

RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT-LP-061-2023

Área de Metrología Laboratorio de Presión

3. Dirección

Página 1 de 3

1. Expediente 2605-2023

2. Solicitante LABORATORIO DE ENSAYOS DE MATERIALES Y

SUELOS W & C E.I.R.L. - LEMS W & C E.I.R.L.

LAMBAYEQUE - CHICLAYO - CHICLAYO

4. Instrumento de Medición **OLLA WASHINGTON**

(PRESS-AIR METER)

Volumen

Marca **ELE INTERNATIONAL**

Modelo 34-3265

Número de Serie H190611

U.S.A. Procedencia

Identificación NO INDICA

Tipo de Indicación Analógico

Alcance de indicación 100% a 0% (Contenido de aire)

0 a 15 psi

5. Fecha de Calibración 2023-05-16 Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento CAL.LA FE NRO. 0167 UPIS SEÑOR DE LOS MILAGROS de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

> PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de calibración aqui declarados.

> Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que

> El certificado de calibración sin firma

Fecha de Emisión

Jefe del Laboratorio de Metrología

Sello

2023-05-16

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT- LP - 061 - 2023

Área de Metrología Laboratorio de Presión

Página 2 de 3

6. Método de Calibración

La calibración ha sido realizada por el método de comparación directa entre las indicaciones de lectura del manómetro de deformación elástica y el manómetro patrón tomando como referencia el método descrito en la norma ASTM C 231-04 "Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method" y el documento INDECOPI/SNM PC - 004: 2012 "Procedimiento de calibración de manómetros, vacuómetros y manovacuometros de deformación elástica".

7. Lugar de calibración

En el laboratorio de Presion de PERUTEST S.A.C. Avenida Chillon Lote 50 B - Comas - Lima

8. Condiciones Ambientales

5. 40	Inicial	Final
Temperatura	23 °C	23 °C
Humedad Relativa	65 % HR	65 % HR

9. Patrones de Referencia

Trazabilidad	Patrón utilizado	Certificado de calibración
INACAL	Manómetro Digital con Incertidumbre 0.15	LFP-018-2023
METROIL	TERMOHIGROMETRO DIGITAL BOECO	1AT-1704-2022

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT- LP - 061 - 2023

Área de Metrología Laboratorio de Presión

Página 3 de 3

10. Resultados de Medición

26° 0	79. (2)	Medidor de	Aire tipo Bourdon	5 60 CV	5 60
Indicación	Indicación Ma	nómetro Patrón	de Ir	Error	18 0 N
A Calibrar (psi)	Ascendente (psi)	Descendente (psi)	Ascendente (psi)	Descendente (psi)	de Histeresis (psi)
0	0.0	0.0	0.0	0.0	0.0
5	5.1	5.1	-0.1	0.0	0.0
10	10.1	10.1	-0.1	-0.3	-0.2
15	15.1	14.8	-0.2	6 -0.3	-0.1

Ensayo de Contenido de Aire (%)									
% De Aire Indicación del N		cación del Manón	netro	Promedio	Error (%)				
5.0	5.00	5.00	5.00	5.00	9 0.00				
10.0	10.20	10.00	10.00	10.07	0.07				
015.0	15.20	15.20	15.20	15.20	0.20				
20.0	20.30	20.20	20.20	20.23	0.23				
30.0	30.30	30.30	30.30	30.30	0.30				
50.0	50.35	50.35	50.35	50.35	0.35				
100.0	100.00	100.00	100.00	100.00	0.00				
		G. X.	Error Máxim	o Permitido (EMP)	1.0 (%)				

Nota 1.- El punto inicial se determinó en 100%, para obtener el cero.

11. Observaciones

- (*) Serie grabado en el instrumento.
- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- La densidad en el lugar de calibración es de 1.184 kg/m³

12. Incertidumbre

La incertidumbre expandidad de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **O PERUTEST SAC**

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Temperatura

CERTIFICADO DE CALIBRACIÓN PT - LT - 036 - 2023

Página 1 de 5

Expediente 1912-2023
 Solicitante LABORATORIO DE ENSAYOS DE

MATERIALES Y SUELOS W & C E.I.R.L.

3. Direction CAL.LA FE NRO. 0167 UPIS SEÑOR DE LOS

MILAGROS - CHICLAYO - CHICLAYO -

LAMBAYEQUE

4. Equipo HORNO

Alcance Máximo 300 °C

Marca PERUTEST

Modelo PT-H76

Número de Serie 0176

Procedencia PERÚ

Identificación NO INDICA

Ubicación NO INDICA

Este	certificado	de	calibració	n
docun	nenta la trazal	oilidad a	los patrone	s
nacion	nales o in	ternacio	onales, qu	е
realiza	in las unidade	es de la	medición d	e
acuero	do con el Siste	ema Inte	ernacional d	е
Unida	des (SI).			

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

Descripción	Controlador / Selector	Instrumento de medición		
Alcance	30 °C a 300 °C	30 °C a 300 °C		
División de escala / Resolución	0.1 °C	0.1 °C		
Tipo 5	CONTROLADOR ELECTRONICO	TERMÓMETRO DIGITAL		

5. Fecha de Calibración 2023-03-01

2023-03-0

Jefe del Laboratorio de Metrología

Sello

Fecha de Emisión 2023-03-02

JOSE ALEJANDRO FLORES MINAYA

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Temperatura CERTIFICADO DE CALIBRACIÓN PT - LT - 036 - 2023

Página 2 de 5

6. Método de Calibración

La calibración se efectuó por comparación directa con termómetros calibrados que tiene trazabilidad a la Escala Internacional de Temperatura de 1990 (EIT 90), se utilizó el Procedimiento para la Calibración de Medios Isotérmicos con aire como Medio Termostático PC-018 2da edición.

7. Lugar de calibración

En las instalaciones del cliente.

CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

A 10 15	Inicial	Final
Temperatura	26.3°C	26.3°C
Humedad Relativa	64 %	64 %

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado y/o Informe de calibración		
SAT	Termometro de indicacion digital	LT-0417-2023		
METROIL	THERMOHIGROMETRO DIGITAL BOECO MODELO: HTC-8	1AT-1704-2022		

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de CALIBRADO.
- La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición.
- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- 1 PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 036 - 2023

Área de Metrología

Laboratorio de Temperatura

Página 3 de 5

11. Resultados de Medición

Temperatura ambiental promedio

26.3 °C

Tiempo de calentamiento y estabilización del equipo

2 6 0 000

El controlador se seteo en 110

PARA LA TEMPERATURA DE 110 °C

Tiempo	Termómetro		TEMPERATURAS EN LAS POSICIONES DE MEDICIÓN (°C)							160	70		
Hempo	del equipo	X	NIVEL SUPERIOR					NIVE	L INFE	RIOR	7.7	Tprom	Tmax-Tm
(min)	(°C)	1	2	3	4	5	6	7	8	9	10	(°C)	(°C)
00	110.0	110.5	110.0	110.1	108.6	109.1	108.7	112.0	112.8	110.6	112.2	110.5	4.2
02	110.0	110.3	111.8	110.0	108.5	109.1	108.4	112.2	112.0	111.3	112.4	110.6	4.0
04	110.0	109.3	111.1	109.3	108.8	109.0	108.1	112.6	112.4	111.7	112.5	110.5	4.5
06	110.0	109.0	111.3	109.1	108.8	109.4	107.4	112.1	112.5	111.3	112.5	110.3	5.1
08	110.0	109.3	110.8	108.3	108.4	109.1	107.7	112.7	112.3	111.6	112.8	110.3	5.1
10	110.0	109.0	110.5	108.8	108.2	109.4	107.3	112.3	112.5	111.3	112.0	110.1	5.2
12	110.0	108.5	110.7	109.1	108.5	109.1	107.5	112.4	112.5	111.4	112.4	110.2	5.0
14	110.0	109.2	110.4	109.3	108.4	109.2	107.3	112.7	112.0	111.6	112.4	110.2	5.4
16	110.0	109.2	110.3	109.4	108.3	109.3	107.1	112.3	112.4	111.5	112.2	110.2	5.3
18	110.0	109.1	110.1	109.6	108.7	109.1	107.4	112.1	112.3	110.8	112.3	110.1	4.9
20	110.0	109.3	110.4	109.3	108.7	109.1	107.3	112.4	112.2	110.6	111.8	110.1	5.1
22	110.0	109.2	110.4	109.2	108.4	109.0	107.5	112.2	112.8	111.2	111.7	110.2	5.3
24	110.0	109.0	110.7	109.5	108.2	109.4	107.1	112.7	112.4	110.9	112.4	110.2	5.6
26	110.0	109.1	110.8	109.5	108.5	109.5	107.2	112.3	112.0	110.7	112.3	110.2	5.1
28	110.0	109.3	110.4	109.4	108.2	109.6	107.4	112.1	112.0	110.4	112.4	110.1	5.0
30	110.0	109.1	110.5	109.4	108.5	109.1	107.5	112.4	112.3	110.7	112.2	110.2	4.9
32	110.0	109.1	110.3	109.3	108.8	109.4	107.1	112.8	112.3	110.7	112.4	110.2	5.7
34	110.0	108.9	110.4	109.2	108.5	109.1	107.4	112.2	112.4	110.8	112.7	110.2	5.3
36	110.0	109.4	110.1	109.5	108.3	109.4	107.7	112.3	112.4	110.4	112.5	110.2	4.8
38	110.0	109.2	110.4	109.6	108.6	109.3	107.7	112.4	112.3	110.6	112.4	110.2	4.7
40	110.0	109.1	110.4	109.2	108.4	109.4	107.4	112.1	112.0	110.8	112.4	110.1	5.0
42	110.0	109.4	110.5	109.3	108.8	109.1	107.2	112.0	112.4	110.4	112.8	110.2	5.6
44	110.0	109.1	110.5	109.5	108.3	109.4	107.4	112.8	112.1	110.5	112.4	110.2	5.4
46	110.0	109.1	110.7	109.7	108.4	109.2	107.5	112.4	112.3	110.3	112.3	110.2	4.9
48	110.0	109.2	110.2	109.4	108.2	109.1	107.1	112.4	112.2	110.1	112.2	110.0	5.3
50	110.0	108.9	110.5	109.4	108.4	109.1	107.3	112.6	112.3	110.5	112.7	110.2	5.4
52	110.0	109.1	110.5	109.2	108.2	109.5	107.3	112.2	112.8	110.7	112.1	110.2	5.5
54	110.0	109.0	110.3	109.7	108.1	109.1	107.5	112.3	112.7	110.1	111.9	110.1	5.2
56	110.0	109.3	110.5	109.4	108.1	109.5	107.5	112.6	112.6	110.4	112.2	110.2	5.1
58	110.0	109.1	110.3	109.2	108.0	109.3	107.6	112.3	112.1	110.5	112.4	110.1	4.8
60	110.0	109.0	110.3	109.6	108.4	109.2	107.4	112.7	112.5	110.7	112.4	110.2	5.3
r.PROM	110.0	109.2	110.5	109.4	108.4	109.2	107.5	112.4	112.3	110.8	112.3	110.2	1
T.MAX	110.0	110.5	111.8	110.1	108.8	109.6	108.7	112.8	112.8	111.7	112.8	. P.	14
T.MIN	110.0	108.5	110.0	108.3	108.0	109.0	107.1	112.0	112.0	110.1	111.7	13.	To a
THE PERSON NAMED IN		The real Party lies and	THE OWNER WHEN		PROPERTY AND INCIDENT		THE REAL PROPERTY.	NAME OF TAXABLE PARTY.	STATE OF THE PERSON NAMED IN	STATEMENT OF THE PARTY OF	-	1000	

- 913 028 621 / 913 028 622
- **9** 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Temperatura

CERTIFICADO DE CALIBRACIÓN PT - LT - 036 - 2023

Página 4 de

PARÁMETRO	VALOR (°C)	INCERTIDUMBRE EXPANDIDA (°C)		
Máxima Temperatura Medida	112.8	22.0		
Mínima Temperatura Medida	107.1	0.1		
Desviación de Temperatura en el Tiempo	2.0	9 (0.1		
Desviación de Temperatura en el Espacio	4.9	24.3		
Estabilidad Medida (±)	1.0	0.04		
Uniformidad Medida	5.7	24.3		

T.PROM : Promedio de la temperatura en una posición de medición durante el tiempo de calibración.

T prom : Promedio de las temperaturas en la diez posiciones de medición para un instante dado.

T.MAX : Temperatura máxima.
T.MIN : Temperatura mínima.

DTT : Desviación de Temperatura en el Tiempo.

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

Incertidumbre expandida de las indicaciones del termómetro propio del Medio Isotermo :

0.06 °C

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

La Estabilidad es considerada igual a ± 1/2 DTT.

Durante la calibración y bajo las condiciones en que ésta ha sido hecha, el medio isotermo SI CUMPLE con los límites especificados de temperatura.

913 028 621 / 913 028 622

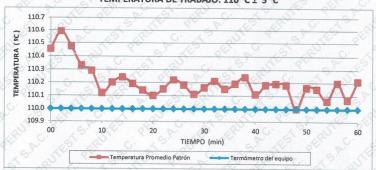
913 028 623 / 913 028 624

www.perutest.com.pe

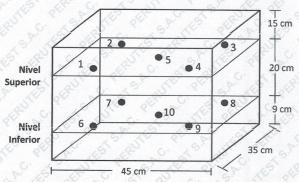
🕜 Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

1 PERUTEST SAC



VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721


Área de Metrología Laboratorio de Temperatura CERTIFICADO DE CALIBRACIÓN PT - LT - 036 - 2023

Página 5 de 5

DISTRIBUCIÓN DE TEMPERATURAS EN EL EQUIPO TEMPERATURA DE TRABAJO: 110 °C ± 5 °C

DISTRIBUCIÓN DE LOS TERMOPARES

Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles.

Los sensores del 1 al 4 y del 6 al 9 se colocaron a 8 cm de las paredes laterales y a 8 cm del fondo y frente del equipo a calibrar.

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estandar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

Fin del documento

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **O PERUTEST SAC**

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Area de Metrología

Laboratorio de Temperatura

2. Solicitante

1. Expediente 1912-2023

> LABORATORIO DE **ENSAYOS** MATERIALES Y SUELOS W & C E.I.R.L.

3. Dirección CALLE LA FE NRO. 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - CHICLAYO -

LAMBAYEQUE

HORNO 4. Equipo

Alcance Máximo 300 °C

Marca PERUTEST

Modelo PT-H225

Número de Serie 0120

Procedencia PERÚ

Identificación NO INDICA

Ubicación NO INDICA

Este certificado documenta la trazabilidad a los patrones DE nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Página 1 de 5

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

LABORATORI

PERU

Descripción	Controlador / Selector	medición		
Alcance	30 °C a 300 °C	30 °C a 300 °C		
División de escala / Resolución	0.1℃	0.1 °C		
Tipo of Tipo	CONTROLADOR ELECTRONICO	TERMÓMETRO DIGITAL		

5. Fecha de Calibración

2023-03-01

Fecha de Emisión

Jefe del Laboratorio de Metrología

Sello

2023-03-02

JOSE ALEJANDRO FLORES MINAYA

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

O Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Temperatura CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Página 2 de 5

6. Método de Calibración

La calibración se efectuó por comparación directa con termómetros calibrados que tiene trazabilidad a la Escala Internacional de Temperatura de 1990 (EIT 90), se utilizó el Procedimiento para la Calibración de Medios Isotérmicos con aire como Medio Termostático PC-018 2da edición.

7. Lugar de calibración

En las instalaciones del cliente.

CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

Can real	Inicial	Final
Temperatura	26.3 °C	26.3 °C
Humedad Relativa	64 %	64 %

9. Patrones de referencia

	Trazabilidad	Patrón utilizado	Certificado y/o Informe de calibración			
SEG	SAT	Termometro de indicacion digital	LT-0417-2023			
560	METROIL	THERMOHIGROMETRO DIGITAL	1AT-1704-2022 /			

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (*) Código indicado en una etiqueta adherido al equipo.
- La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición.
- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **O PERUTEST SAC**

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Área de Metrología Laboratorio de Temperatura

Página 3 de 5

11. Resultados de Medición

Temperatura ambiental promedio

26.3 °C

Tiempo de calentamiento y estabilización del equipo

2 horas

El controlador se seteo en 110

PARA LA TEMPERATURA DE 110 °C

Tiempo	Termómetro	TEMPERATURAS EN LAS POSICIONES DE MEDICIÓN (°C)							199	10 0			
Hempo	del equipo		- Character Contraction	L SUP	ATTACK TO SELECT	1	0,9	CONTRACTOR CONTRACTOR	EL INFE	-		T prom	Tmax-Tmi
(min)	(°C)	1	2	3	4	5	6	7	8	9	10	(°C)	(00)
00	110.0	105.8	107.1	105.8	109.7	112.4	109.7	112.3	111.0	109.0	109.7	109.2	6.6
02	110.0	105.8	107.1	105.8	109.7	113.0	109.7	111.9	109.7	108.6	109.7	109.1	C7.2
04	110.0	105.8	106.9	105.8	109.6	112.6	109.6	112.4	111.3	108.6	109.6	109.2	6.8
06	110.0	105.5	107.0	105.5	109.7	112.6	109.7	112.5	110.5	108.6	109.7	109.1	7.1
08	110.0	105.7	107.1	105.7	109.7	112.4	109.7	112.4	111.0	109.0	109.7	109.2	6.7
10	110.0	105.6	107.0	105.7	109.6	113.0	109.6	112.3	109.7	108.6	109.6	109.1	7.4
12	110.0	105.5	107.1	105.5	109.7	112.6	109.7	112.4	111.0	108.6	109.7	109.2	7.1
14	110.0	105.5	106.9	105.5	109.7	112.6	109.7	112.7	109.7	109.0	109.7	109.1	7.2
16	110.0	106.1	107.0	106.1	109.6	112.4	109.6	112.5	111.3	108.6	109.6	109.3	6.4
18	110.0	106.3	107.1	106.3	109.7	113.0	109.7	112.6	110.5	109.0	109.7	109.4	6.7
20	110.0	106.2	107.1	106.2	109.7	112.6	109.7	112.3	111.3	108.6	109.7	109.3	6.4
22	110.0	106.1	107.1	106.1	109.6	112.6	109.6	112.7	110.5	108.6	109.6	109.2	6.6
24	110.0	106.2	106.9	106.2	109.7	112.6	109.7	112.6	111.0	108.6	109.7	109.3	6.4
26	110.0	106.5	107.0	106.5	109.7	112.4	109.7	112.3	109.7	108.6	109.7	109.2	5.9
28	110.0	106.3	106.9	106.3	109.6	113.0	109.6	112.6	111.3	108.6	109.6	109.4	6.7
30	110.0	106.4	107.0	106.4	109.7	112.4	109.7	112.5	110.5	109.0	109.7	109.3	6.1
32	110.0	106.4	107.1	106.4	109.7	113.0	109.7	112.7	111.0	108.6	109.7	109.4	6.6
34	110.0	106.3	107.0	106.3	109.6	112.6	109.6	112.6	109.7	109.0	109.6	109.2	6.3
36	110.0	106.2	107.1	106.2	109.7	112.6	109.7	112.3	111.3	108.6	109.7	109.3	6.4
38	110.0	106.3	107.1	106.3	109.7	113.0	109.7	112.4	110.5	108.6	109.7	109.3	6.7
40	110.0	106.4	106.9	106.4	109.6	112.6	109.6	112.4	111.0	109.0	109.6	109.3	6.2
42	110.0	105.9	107.0	105.9	109.7	112.4	109.7	112.8	109.7	108.6	109.7	109.1	6.9
44	110.0	106.7	107.0	106.7	109.7	113.0	109.7	112.7	111.0	108.6	109.7	109.5	6.3
46	110.0	106.7	107.1	106.7	109.6	112.6	109.6	112.7	109.7	108.6	109.6	109.3	6.0
48	110.0	106.6	107.1	106.6	109.7	112.6	109.7	112.3	111.3	109.0	109.7	109.5	6.0
50	110.0	106.3	106.9	106.3	109.7	112.4	109.7	112.4	110.5	108.6	109.7	109.2	6.1
52	110.0	106.4	107.0	106.4	109.6	113.0	109.6	112.5	111.3	108.6	109.6	109.4	6.6
54	110.0	106.2	107.1	106.2	109.6	112.6	109.6	112.7	111.0	108.6	109.6	109.3	6.5
56	110.0	106.4	107.1	106.4	109.7	112.6	109.7	112.6	109.7	108.6	109.7	109.2	6.2
58	110.0	106.3	106.9	106.3	109.7	113.0	109.7	112.4	111.3	109.0	109.7	109.4	67
60	5 110.0	106.1	107.0	106.1	109.6	112.6	109.6	112.4	110.5	108.6	109.6	109.2	6.7
.PROM	110.0	106.1	107.0	106.1	109.7	112.7	109.7	112.5	110.6	108.7	109.7	109.3	for t
T.MAX	110.0	106.7	107.1	106.7	109.7	113.0	109.7	112.8	111.3	109.0	109.7	21	19
TRAIN	1100	10E E	1000	105 5	100 6	112 4	100.0			1	Min	2	ADO

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **O PERUTEST SAC**

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Temperatura

CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Página 4 de

PARÁMETRO	VALOR (°C)	INCERTIDUMBRE EXPANDIDA (°C)		
Máxima Temperatura Medida	113.0	22.0		
Mínima Temperatura Medida	105.5	0.0		
Desviación de Temperatura en el Tiempo	1.6	0.1		
Desviación de Temperatura en el Espacio	6.5	23.4		
Estabilidad Medida (±)	0.8	0.04		
Uniformidad Medida	7.4	23.4		

T.PROM : Promedio de la temperatura en una posición de medición durante el tiempo de calibración.
 T prom : Promedio de las temperaturas en la diez posiciones de medición para un instante dado.

T.MAX : Temperatura máxima.
T.MIN : Temperatura mínima.

TT : Desviación de Temperatura en el Tiempo.

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

Incertidumbre expandida de las indicaciones del termómetro propio del Medio Isotermo :

0.06 °C

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

La Estabilidad es considerada igual a ± 1/2 DTT.

Durante la calibración y bajo las condiciones en que ésta ha sido hecha, el medio isotermo SI CUMPLE con límites especificados de temperatura.

PER

ABORATORI

913 028 621 / 913 028 622

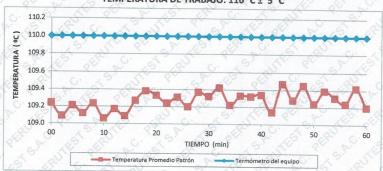
913 028 623 / 913 028 624

www.perutest.com.pe

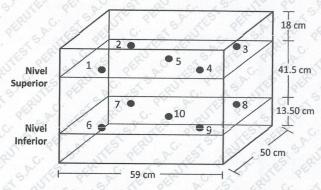
Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

1 PERUTEST SAC



VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721


Área de Metrología Laboratorio de Temperatura CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Página 5 de s

DISTRIBUCIÓN DE TEMPERATURAS EN EL EQUIPO TEMPERATURA DE TRABAJO: 110 °C ± 5 °C

DISTRIBUCIÓN DE LOS TERMOPARES

Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles.

Los sensores del 1 al 4 y del 6 al 9 se colocaron a 9 cm de las paredes laterales y a 9 cm del fondo y frente del equipo a calibrar.

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estandar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

Fin del documento

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **O PERUTEST SAC**

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE "TESIS: "EFECTO COMBINADO DE CONCHAS DE MEJILLÓN TRITURADO Y FIBRA DE COCO TRATADO EN LAS PROPIEDADES MECÁNICAS DEL CONCRETO"

TESISTAS : Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

DESCRIPCION	MUESTRA PATRON	CP+ 10%CM+0.5%FC	CP+ 10%CM+1.5%FC	CP+ 10%CM+2.5%FC	CP+ 30%CM+0.5%FC	CP+ 30%CM+1.5%FC	CP+ 30%CM+2.5%FC	CP+ 60%CM+0.5%FC	CP+ 60%CM+1.5%FC	CP+ 60%CM+2.5%FC
SIMBOLO	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10

TESISTA: Alvarado Juárez Johnny Alexander Bances Acosta Kevin Jhan Franco

127

ENSAYO RESISTENCIA A LA COMPRESION

Estadísticas de fiabilidad

Alfa de

Cronbach

basada en

Alfa de

elementos

Cronbach estandari

estandarizados N de elementos

,917 ,924

Estadísticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Correlación múltiple al cuadrado	Alfa de Cronbach si el elemento se ha suprimido
D1_7	3179,6000	147,328	-,185		,919
D1_14	3148,5400	158,383	-,755		,930
D1_28	3046,5533	143,996	,261		,917
D2_7	3164,9533	132,728	,981		,909
D2_14	3128,8767	132,679	1,000		,909
D2_28	3010,6767	136,132	,653		,912
D3_7	3194,4133	143,896	,581		,916
D3_14	3169,3800	141,504	,655		,915
D3_28	3088,7533	148,532	-,243		,921
D4_7	3193,5100	134,661	,270		,925
D4_14	3169,4600	124,211	,501		,922
D4_28	3088,8133	135,705	,317		,920
D5_7	3184,8733	140,798	,436		,915
D5_14	3157,8133	131,883	,997		,908
D5_28	3066,2533	147,704	-,197		,920
D6_7	3211,1300	133,882	,858		,910
D6_14	3193,5733	157,055	-,806		,928
D6_28	3132,8100	139,869	,463		,915
D7_7	3206,1400	121,713	,922		,905
D7_14	3186,7333	140,252	,357		,916
D7_28	3122,8033	131,934	,994		,908
D8_7	3185,6733	130,804	,960		,908
D8_14	3159,2367	134,690	,749		,911

D8_28	3068,8733	129,818	,971	,907
D9_7	3198,6967	130,677	,976	,908
D9_14	3176,6900	132,555	,907	,909
D9_28	3101,8933	130.271	,969	,907
D10_7	3209,4800	139,474	,480	,915
D10_14	3189,8067	131,917	,995	,908
D10_28	3128,8800	129,789	,967	,907

ANOVA con prueba de Cochran

		Suma de cuadrados	gl	Media cuadrática	Q de Cochran	Sig
Inter sujetos		9,758	2	4,879		
Intra sujetos	Entre elementos	246307,256	29	8493,354	86,992	,000
	Residuo	23,498	58	,405		
	Total	246330,754	87	2831,388		
Total		246340,511	89	2767,871		

Media global = 108,5803

En la tabla donde se muestra la prueba de confiabilidad "Alfa de Cronbach", podemos observar que el valor obtenido es 0,91 lo que nos permite inferir que los datos son confiables, asimismo en la tabla donde se muestra el análisis de varianza (ANOVA), podemos observar que el P Valor (0.00) es < 0.05, por lo que se rechaza la H₀, y se concluye que los porcentajes de los testigos del concreto, es decir que es óptimo para las propiedades mecánica de resistencia a la compresión.

ENSAYO RESISTENCIA A LA FLEXION

Estadísticas de fiabilidad

Alfa de

Cronbach

basada en

Alfa de elementos

Cronbach estandarizados N de elementos

,918 ,900 30

Estadísticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Correlación múltiple al cuadrado	Alfa de Cronbach si el elemento se ha suprimido
D1_7	939,1067	38,353	,956		,905
D1_14	927,6633	35,781	1,000		,904
D1_28	921,9933	42,092	,750		,911
D2_7	939,1067	38,353	,956		,905
D2_14	927,6633	35,781	1,000		,904
D2 28	917,5033	47,443	-,303		,921
D3_7	939,0833	39,906	,949		,906
D3_14	927,9667	46,481	,701		,918
D3_28	923,2700	49,944	-,715		,929
D4_7	945,7567	49,075	-,563		,927
D4_14	936,9333	46,556	,554		,918
D4_28	932,7633	48,048	-,373		,924
D5_7	945,5067	39,274	,970		,906
D5_14	936,2067	46,408	,967		,918
D5_28	932,1800	46,464	.998		.918
D6_7	946,3833	39,086	,962		,906
D6_14	936,2400	46,500	,824		,918
D6_28	932,3500	46,524	,520		,918
D7_7	948,1133	39,158	,952		,906
D7_14	938,4233	46,424	,872		,918
D7_28	934,1800	46,500	,824		,918

D8_7	948,1033	39,036	,954	 ,906
D8_14	939,3167	46,027	,895	,917
D8_28	935,6367	46,600	,262	,919
D9_7	948,0267	39,591	,955	,906
D9_14	938,4200	46,861	-,903	,919
D9_28	935,2767	46,901	-,964	,919
D10_7	947,5700	39,105	,955	,906
D10_14	939,3033	47,412	-,980	,921
D10 28	935,6367	46,408	,967	,918

ANOVA con prueba de Cochran

		Suma de cuadrados	gl	Media cuadrática	Q de Cochran	Sig
Inter sujetos		3,111	2	1,556		
Intra sujetos	Entre elementos	5600,180	29	193,110	86,885	,000
	Residuo	7,436	58	,128		
	Total	5607,616	87	64,455		
Total		5610,728	89	63,042		

Media global = 32,2939

En la tabla donde se muestra la prueba de confiabilidad "Alfa de Cronbach", podemos observar que el valor obtenido es 0.91 lo que nos permite inferir que los datos son confiables, asimismo en la tabla donde se muestra el análisis de varianza (ANOVA), podemos observar que el P Valor (0.00) es < 0.05, por lo que se rechaza la H_0 , y se concluye que los porcentajes de los testigos de concreto, es decir que es óptimo para las propiedades mecánica de resistencia a la flexión.

ENSAYO MODULO DE ELASTICIDAD

Estadísticas de fiabilidad

Alfa de

Cronbach

basada en elementos

,995

Alfa de Cronbach

estandarizados N de elementos ,997

Estadísticas de total de elemento

		Estaulsticas de l	iotal de element	,	
	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Correlación múltiple al cuadrado	Alfa de Cronbach si el elemento se ha suprimido
D1	1654691,0000	26885027976,617	,999		,994
D2	1647765,9467	26235043376,610	,990		,994
D3	1655990,0033	27151123998,639	,999		,994
D4	1663595,0767	28353836547,224	,964		,996
D5	1672603,4600	28159888117,512	,978		,995
D6	1696774,1367	26048796337,379	,988		,994
D7	1709646,3600	26987054333,047	,950		,995
D8	1711524,7467	26737195923,282	,983		,994
D9	1717379,1433	25138552529,548	,999		,995
D10	1729248.3267	26478301571.969	.998		.994

ANOVA con prueba de Cochran

		Suma de cuadrados	gl	Media cuadrática	Q de Cochran	Sig
Inter sujetos		6617893845,166	2	3308946922,583		
Intra sujetos E	Entre elementos	24617689254,028	9	2735298806,003	26,675	,002
	Residuo	300239965,214	18	16679998,067		
	Total	24917929219,242	27	922886267,379		
Total		31535823064,408	29	1087442174,635		

Media global = 187324,6467

En la tabla donde se muestra la prueba de confiabilidad "Alfa de Cronbach", podemos observar que el valor obtenido es 0.99 lo que nos permite inferir que los datos son confiables, asimismo en la tabla donde se muestra el análisis de varianza (ANOVA), podemos observar que el P Valor (0.00) es < 0.02, por lo que se rechaza la H_0 , y se concluye que los porcentajes de los testigos de concreto, es decir que es óptimo para las propiedades mecánica del módulo de elasticidad.

Rene (J. Marmani Merydon ING. ESTADISTICO E NEORMATIK CHP. 283324

Anexo 15: Validaciones de jueces expertos

Colegiatura Nº 320550

Ficha de validación según AIKEN

I. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Pinedo Chicchon Mark Anthony	Asistente de Obra	Prueba de Compresión, Flexión y Modulo Elástico	Alvarado Juárez, Johnny Alexander. Bances Acosta Kevin Jhan Franco.

Título de la Investigación:

Efecto Combinado de conchas de mejilla triturado y fibra de coco tratado en las propiedades mecánicas del concreto.

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
Compresión	Α	CONFORME
Flexión	Α	CONFORME
Modulo Elástico	А	CONFORME

	Dimensiones/Ítems	Cla	ridad	Con	itexto	Cong	gruencia		inio del structo
	F'c= 210kg/cm ²	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		Х		Х		Х	
2	Flexión	Х		Х		Х		Х	
3	Modulo Elástico	Х		Х		Х		Х	

Observaci			bla damanión do no	omanir () No	anlicable ()	
	e aplicabilidad: Apli y nombres del juez ad:		nie despues de d	unegii () No	apricesore ()	
		Marck Anthony	Pinedo Chicchon NIERO CIVIL Nº 320550			

Colegiatura Nº 242053

Ficha de validación según AIKEN

I. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Talledo Piedra Juan Carlos	Supervisor de Obra	Prueba de Compresión, Flexión y Modulo Elástico	Alvarado Juárez, Johnny Alexander. Bances Acosta Kevin Jhan Franco.

Título de la Investigación:

Efecto Combinado de conchas de mejilla triturado y fibra de coco tratado en las propiedades mecánicas del concreto.

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
Compresión	Α	CONFORME
Flexión	Α	CONFORME
Modulo Elástico	А	CONFORME

30	Dimensiones/Ítems	Cla	ridad	Cor	itexto	Cong	gruencia		inio del structo
	F'c= 210kg/cm ²	Si	No	Si	No	Si	No	Si	No
1	Compresión	Х	1	Х		Х		Х	
2	Flexión	Х	1	Х		Х		Х	
3	Modulo Elástico	X	1	X		X		Х	

Observaciones:							
Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable ()							
Apellidos y nombres del juez validador:							
Especialidad:							
111							
JUAN CARLOS TALLEDO PIEDRA							
INGÉNIERO CIVIL							
Reg. C.I.P Nº 242053							

Colegiatura Nº 40670

Ficha de validación según AIKEN

I. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Regalado Deza María del Carmen	Inspector Técnico de Seguridad en Edificaciones	Prueba de Compresión, Flexión y Modulo Elástico	Alvarado Juárez, Johnny Alexander. Bances Acosta Kevin Jhan Franco.

Título de la Investigación:

Efecto Combinado de conchas de mejilla triturado y fibra de coco tratado en las propiedades mecánicas del concreto.

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
Compresión	Α	CONFORME
Flexión	Α	CONFORME
Modulo Elástico	А	CONFORME

	Dimensiones/Ítems	Cla	ridad	Cor	ntexto	Cong	gruencia		inio del structo
	F'c= 210kg/cm ²	Si	No	Si	No	Si	No	Si	No
1	Compresión	Х	1	Х		Х		Х	
2	Flexión	Х		Х		Х		Х	
3	Modulo Elástico	X	1	X		X		X	

Observaciones:
Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable ()
Apellidos y nombres del juez validador. REGALADO DEZA HARIA DEL CARHEN Especialidad: INGENIERO CIVIL
Mario del Parmen Xegalada Dies ING. CIVIL Reg. CIP. N° 40670

Colegiatura № 214350

Ficha de validación según AIKEN

I. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Saavedra Larreategui Juan Carlos	Seguridad en Obra	Prueba de Compresión, Flexión y Modulo Elástico	Alvarado Juárez, Johnny Alexander. Bances Acosta Kevin Jhan Franco.

Título de la Investigación:

Efecto Combinado de conchas de mejilla triturado y fibra de coco tratado en las propiedades mecánicas del concreto.

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN			
Compresión	Α	CONFORME			
Flexión	Α	CONFORME			
Modulo Elástico	А	CONFORME			

	Dimensiones/Ítems	Cla	ridad	Cor	itexto	Cong	gruencia		inio del structo
	F'c= 210kg/cm ²	Si	No	Si	No	Si	No	Si	No
1	Compresión	Х	3	Х		Х		Х	
2	Flexión	Х		Х		X		Х	
3	Modulo Elástico	X	1	X		Х		Х	

Opinión de aplicabilidad: Aplicable (X) Apellidos y nombres del juez validador:	Aplicable después de corregir () No aplicable ()				
Especialidad:	ATANCARLOS SAMEDRA LARREATEGO INGENIERO CIVIL REG. CIP 214350				

Colegiatura Nº 324436

Ficha de validación según AIKEN

I. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Farroñan Santamaría, María del Carmen	Asistente de Obra	Prueba de Compresión, Flexión y Modulo Elástico	Alvarado Juárez, Johnny Alexander. Bances Acosta Kevin Jhan Franco.

Título de la Investigación:

Efecto Combinado de conchas de mejilla triturado y fibra de coco tratado en las propiedades mecánicas del concreto.

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
Compresión	Α	CONFORME
Flexión	Α	CONFORME
Modulo Elástico	А	CONFORME

	Dimensiones/Ítems	Cla	ridad	Cor	itexto	Cong	gruencia		ominio del onstructo	
1	F'c= 210kg/cm ²	Si	No	Si	No	Si	No	Si	No	
1	Compresión	Х		Х		Х		Х		
2	Flexión	Х		Х		Х		Х		
3	Modulo Elástico	Х		X		X		Х		

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Falls Kan Santamana Maña del Carmen						
Especialidad: Inj	Civil					
		TO ALS				
	1	Maj Maria del Camun Farroñ	a Security			
		(LE)_ GP 3	8430			