

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autores

Bach. Garcia Villegas Jose Marcial https://orcid.org/0000-0001-6057-694X

Bach. Guevara Guevara Elber https://orcid.org/0000-0003-4595-7538

Asesor

Mg. Villegas Granados, Luis Mariano

https://orcid.org/0000-0001-5401-2566

Línea de Investigación

Tecnología e Innovación en Desarrollo de la Construcción y la Industria en un Contexto de Sostenibilidad

Sublínea de Investigación Innovación y Tecnificación en Ciencia de los Materiales, Diseño e Infraestructura

> Pimentel – Perú 2024

DECLARACIÓN JURADA DE ORIGINALIDAD

Quienes suscriben la DECLARACIÓN JURADA, somos egresados del Programa de Estudios de INGENIERIA CIVIL de la Universidad Señor de Sipán S.A.C, declaramos bajo juramento que somos autores del trabajo titulado:

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y auténtico.

En virtud de lo antes mencionado, firman:

Garcia Villegas Jose Marcial	DNI: 76948652	Down
Guevara Guevara Elber	DNI: 74374480	() milwell

Pimentel, 02 de mayo del 2024

REPORTE DE SIMILITUD TURNITIN

Reporte de similitud

NOMBRE DEL TRABAJO

AUTOR

GARCIA_VILLEGAS-GUEVARA_GUEVARA _TESIS CORTA.pdf

RECUENTO DE PALABRAS RECUENTO DE CARACTERES

8007 Words 37975 Characters

RECUENTO DE PÁGINAS TAMAÑO DEL ARCHIVO

31 Pages 522.1KB

FECHA DE ENTREGA FECHA DEL INFORME

Sep 15, 2024 1:11 PM GMT-5 Sep 15, 2024 1:12 PM GMT-5

22% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base de datos.

20% Base de datos de Internet

- 1% Base de datos de publicaciones
- Base de datos de Crossref
- Base de datos de contenido publicado de Crossref
- 12% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

Material bibliográfico

· Material citado

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO

Aprobación del jurado

Mg. BARRETO REQUEJO JHONATAN DAVID

Presidente del Jurado de Tesis

Mg. VILLEGAS GRANADOS LUIS MARIANO
Secretario del Jurado de Tesis

Mg. YOCTÚN RIOS ROBERTO
Vocal del Jurado de Tesis

Índice

Res	sumen	7
I.	INTRODUCCIÓN	9
II.	MATERIALES Y MÉTODO	17
III.	RESULTADOS Y DISCUSIÓN	27
	3.2 Discusión	36
IV.	CONCLUSIONES Y RECOMENDACIONES	38
	4.1 Conclusiones	38
	4.2 Recomendaciones	39
RE	FERENCIAS	40
ANI	EXOS	44

Índice de figuras

Fig. 1. Fibra de Polipropileno	09
Fig. 2. Fibra de Cabuya	10
Fig. 3. Muestreo de asentamiento	10
Fig. 4. Flujo de proceso de análisis de datos	16
Fig. 5. Curva granulometrica agregado fino	17
Fig. 6 Curva granulometrica agregado fino	17
Fig. 7. Resistencia a compresión - para el óptimo % de Fibras de Polipropileno	.18
Fig. 8. Resistencia a flexión - para el óptimo % de Fibras de Polipropileno	19
Fig. 9. Resistencia a la tracción - para el óptimo % de Fibras de Polipropileno	19
Fig. 10. Módulo de elasticidad - para el óptimo % de Fibras de Polipropileno	20
Fig. 11. Prueba de resistencia a compresión optimo 0.8% PP + %FC	32
Fig. 12. Prueba de resistencia a flexión optimo 0.8% PP + %FC	33
Fig. 13. Prueba de resistencia a la tracción optimo 0.8% PP + %FC	34
Fig. 14. Prueba de módulo de elasticidad optimo 0.8% PP + %FC	34
Fig. 15. Resumen de resultados de diseño de mixtura de 0.8%PP + 2%FC	35
Índice de Tablas	
Tabla I Granulometría de agregado fino (af) y agregado grueso (ag)	17
Tabla II Características de polipropileno	
Tabla III operacionalización de vd	
Tabla IV Operacionalización de vi	
Tabla V Ensayos de concreto patrón	
Tabla VI Ensayos % óptimo de pp	
Tabla VII Muestras de mixtura concreto patrón + óptimo pp y fc	
Tabla VIII Ensayos físicos agregado fino	
Tabla IX Ensayos físicos agregado grueso	
Tabla X Ensayos físicos FC	
Tabla XI Propiedades del polipropileno	

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO

Resumen

El concreto en su etapa de endurecimiento presenta un problema de agrietamiento y fisuras por los diferentes cambios climáticos y las mismas cargas aplicadas. Este estudio tiene como objetivo determinar el efecto de las propiedades mecánicas del concreto adicionando fibras de polipropileno y de cabuya F'c = 210 kg/cm2. Para ello, se analizó los ensayos tanto en estado fresco como endurecido, teniendo un curado de 7, 14 y 28 días. El tipo de investigación utilizada es aplicada, donde se adiciono porcentajes de fibra de polipropileno en 0.4%, 0.8% y 1.2% para obtener porcentaje deseado, a continuación, se realizó la mixtura con la fibra de cabuya 1.5%, 2% y 2.5%. Los resultados arrojaron que el óptimo porcentaje de fibra de polipropileno fue 0.8% evidenciando una mejora en la resistencia a compresión, tracción, módulo de elasticidad de 20.41%, 12.36% y 1.79% respectivamente, a diferencia de la mixtura de (%PP + %FC) la combinación (0.8%PP + 2%FC) presentó un comportamiento favorable con porcentaje superiores al control patrón de los ensayos en estado endurecido en un 22.54 %, 9.78%, 15.38% y 1.78 % respectivamente, donde el óptimo de fibra de polipropileno y fibra de cabuya es de 0.8%PP y en la mixtura 0.8%PP + 2%FC teniendo valores superiores al concreto patrón, por ende establecemos que los datos obtenidos de los ensayos en sus propiedades mecánicas si cumplen los parámetros para el diseño, concluyendo que adicionar fibra de polipropileno y fibra de cabuya favorece las propiedades mecánicas del concreto.

Palabras clave: Fibra de Polipropileno, fibra de cabuya, resistencia a la compresión, tracción, módulo elástico.

Abstract

Concrete in its hardening stage presents a cracking and cracking problem due to the different climatic changes and the same applied loads. The objective of this study is to determine the effect on the mechanical properties of concrete by adding polypropylene and cabuya fibers F'c = 210 kg/cm2. For this purpose, the tests were analyzed both in the fresh and hardened state, with a curing period of 7, 14 and 28 days. The type of research used is applied, where percentages of polypropylene fiber were added in 0.4%, 0.8% and 1.2% to obtain the desired percentage, then the mixture was made with cabuya fiber 1.5%, 2% and 2.5%. The results showed that the optimum percentage of polypropylene fiber was 0.8%, evidencing an improvement in compressive strength, tensile strength, modulus of elasticity of 20.41%, 12.36% and 1.79% respectively, unlike the mixture of (%PP + %FC) the combination (0.8%PP + 2%FC) presented a favorable behavior with a percentage higher than the standard control of the tests in the hardened state by 22.54%, 9.78%, 9.78% and 1.79%, respectively. 54%, 9.78%, 15.38% and 1.78% respectively, where the optimum of polypropylene fiber and cabuya fiber is 0.8%PP and in the mixture 0.8%PP + 2%FC having higher values than the standard concrete, therefore we establish that the data obtained from the tests in their mechanical properties do meet the parameters for the design, concluding that the addition of polypropylene fiber and cabuya fiber favors the mechanical properties of the concrete.

Keywords: Polypropylene fiber, cabuya fiber, compression resistance, traction, elastic modulus.

I. INTRODUCCIÓN

El concreto es uno de los componentes más utilizados en la construcción, a la vez económico y viable [1], también suele ser propenso a agrietarse debido a diferentes factores y exposiciones químicas y ambientales, esto está en continuo crecimiento debido a la acumulación de daños a largo plazo [2] Existen ventajas al producir agregados no naturales al utilizar reciclaje consumo de recursos no renovables, donde hace el agregado sea más livianos [3].

A nivel internacional la problemática sobre las cargas de impacto del hormigón con fibras también controla la degradación del hormigón simple bajo el ataque ácido y la acción de congelación y descongelación [4].

Polonia, piensan al hormigón como un material de alta compresión, el problema es que unas 10 veces menores a las resistencias a la tracción. Además, es caracterizado por un comportamiento quebradizo y no posibilita la transferencia de esfuerzos luego de la figuración. Para evadir fallas por fragilidad y aumentar las características mecánicas, es viable añadir fibras a la mezcla de concreto [5].

La influencia con fibras es una de las soluciones siendo la más común en la obra, el beneficio fundamental de aumentar los hilos de polipropileno en el hormigón en su estado endurecido, aumenta su consistencia y resistencia a la corrosión, ayuda en el control de contracción plástica. - Además, controla los problemas e inconvenientes asociados a la aparición de grietas a lo largo de la vida eficaz de la composición y ofrece más grande resistencia a el cansancio [6].

Las repercusiones de esto han resultado en que millones de mascarillas de un solo uso se viertan al medio ambiente, lleguen a las playas, floten bajo los océanos y terminen en lugares vulnerables.- La pandemia mundial amenazó gravemente el medio ambiente natural, el principal plástico de las mascarillas de un solo uso es el polipropileno que en los vertederos puede tardar más de 25 años en descomponerse [7].

Las estructuras de hormigón pueden verse afectadas por diversas condiciones, como congelación, cargas dinámicas, altas temperaturas, por otro lado, su bajo precio lo ha

convertido en una alternativa adecuada a otros elementos puzolánicos en la mezcla de hormigón, las PP aumentan la resistencia a la tracción . del hormigón, que es menos costosa que las fibras de acero [8].

A nivel Nacional, los residuos plásticos se generan en toneladas por día donde contaminan el medio ambiente, por lo que el PP fabricado puede reducir los residuos y también se puede utilizar como adyuvante, para aumentar la resistencia del hormigón añadiendo en diversas proporciones, por tanto, la evaluación del problema del plástico se realiza estadísticamente. Como resultado, el 81,3 % de empresas son de Lima dedicadas a producir el plástico [9].

Al transcurrir los años, generando nuevos materiales para la industria, tratando de reducir los costos en las construcciones, generando así alternativas innovadoras, buscando reutilizar los materiales que desperdiciamos y desechamos sin darnos cuenta de que al ser reutilizado puede generar grandes cambios al mundo entero [10]. Menciona que [11], las grietas y fisuras en las plantas de hormigón indican que puede producirse una contracción hidrófila debido a carga de tracción insuficiente al inicio de la instalación, en Ayacucho se alberga muchos monumentos naturales, como las cabuyas, pero no son muy utilizadas en la construcción porque no se comprenden su naturaleza y características [12].

A nivel local, en la provincia de Chiclayo buscamos las formas más innovadoras y rentables de realizar nuestros propios proyectos utilizando materiales de obra, tratando de descifrar las propiedades del concreto según reglas predefinidas. De esta forma, establece que con el uso desproporcionado del hilo de polipropileno se aprecia la bajada de valor obtenida de diferentes pruebas, por eso el uso de hilo de monofilamento de polipropileno se utiliza con moderación Óptimo y dentro del rango que es positivo, se observa crecimiento en lo que es las resistencias, así como remarcado, donde se utilizara aditivos externos como las cenizas volantes también optimiza las características físicas y mecánicas del hormigón [13].

La industria para este trabajo considera a las fibras de polipropileno como una microfibra en medio de las fibras sintéticas, esta fue desarrollada alrededor de investigaciones petroquímicas y textiles y puede ser procesada en matrices de hormigón, las fibras de

polipropileno tienen solidez a los solventes. Tiene un rango óptimo entre efectividad y rigidez, protege contra la humedad y actúa como barrera al vapor de agua, las aplicaciones de esta fibra son en hormigones [14].

Este agrietamiento es provocado por un aumento de micro fisuras provocadas por la sobrecarga de automóviles que circulan en la ciudad de Chiclayo, pero también está influenciado por una combinación de altas cambios de temperatura. Para minimizar los daños se propone mejorar las propiedades mecánicas del asfalto adaptando nuevos materiales al asfalto en función de la productividad del asfalto utilizando diferentes tipos de PP, en su proyecto se planteó que el concreto se caracteriza por la aparición de fisuras, lo que hace que la estructura no pueda sostener las cargas a las que es sometida, haciendo que su vida útil sea menor a la calculada o programada [15].

Añadiendo a lo expuesto, la problemática para esta investigación fue: ¿Qué efectos tiene la adición del PP y fibra de cabuya en sus características mecánicas del concreto F'c = 210 kg/cm²? Posee una justificación técnica y ambiental. Por lo que, a nivel técnico, es relevante tener un buen concreto, su característica sobresaliente ayuda a disminuir la contaminación ambiental.

Se tiene como objetivo general (OG) Determinar el efecto de las propiedades mecánicas del concreto adicionando fibras de polipropileno y de cabuya F'c = 210 kg/cm²; Como objetivos específicos, OE1 Determinar las propiedades físicas de los agregados y propiedades físico-mecánicas de fibra de cabuya y polipropileno. OE2 Determinar el porcentaje óptimo de fibra polipropileno con adición en pesos de 0.4%, 0.8%, y 1.2%. OE3 Evaluar las propiedades mecánicas del concreto F'c=210 kg/cm2 con porcentaje óptimo de polipropileno más la adición de fibra de cabuya en 1.5%, 2% y 2.5%. OE4 Determinar el porcentaje óptimo de la mixtura de fibra de polipropileno y fibra de cabuya. La hipótesis planteada, si incorporamos PP en proporciones de 0.4, 0.8 y 1.2 % y fibra de cabuya en 1.5, 2 y 2.5% favorece las características mecánicas del concreto.

Como antecedentes, a nivel internacional.

Según Machuca. [16], Su investigación se enfocó en analizar cómo la inclusión de fibra de polipropileno afecta las características físico-mecánicas de un concreto de resistencia 210 kg/cm². Realizaron un estudio aplicado donde probaron diferentes porcentajes de fibra (0.10%, 0.25%, 0.50%, 0.70% y 1.00%). Los resultados destacaron que el porcentaje más efectivo fue 0.50%, logrando una resistencia de 266.90 kg/cm². Sin embargo, notaron que, con el tiempo de fraguado, la resistencia tendía a reducirse para los porcentajes más altos de fibra.

Según Becerra y Delgado. [17], llevaron a cabo el diseño de concreto con resistencia f'c= 210 kg/cm² utilizando fibras de polipropileno para una estructura de 5 pisos. Realizaron pruebas con diferentes cantidades de fibra (400 gr/m³, 500 gr/m³ y 600 gr/m³) y encontraron mejoras en propiedades como tensión a la rotura y flexión en el concreto endurecido. Sin embargo, observaron que las fibras afectan la trabajabilidad del concreto en estado fresco.

Torres et al. [18], En su estudio evaluó el uso de áridos en hormigones que contienen microfibras de polipropileno. Se estimaron 3 porciones de microfibras de polipropileno en volumen de 0,39%, 0,63% y 0,79%, y los resultados de solidez a la compresión determinados variaron de 36 a 71 MPa, y la solidez a la flexión de 3.6 a 5.8 (MPa), significa que la microfibra de polipropileno es un hormigón de alto rendimiento.

Humberto et al. [19], en su estudio es comparar el modo de actuar del hormigón añadiendo fibras vegetales y PP, realizar ensayos sobre las características mecánicas y físicas del hormigón y verificar posibles alternativas, contiene fibra vegetal, PP 0,25%. -Los resultados respecto a la absorción capilar mostraron que la adición de fibras vegetales mejoró el desempeño del concreto y concluyeron que reemplazar el PP por fibras vegetales era razonable.

Alwesabi et al. [20], su investigación determino la adición de fibras de polipropileno 0%, 0,1%, 0,175, 0,25%, 1% y acero 0%, 0,75, 0,825, 0,9%, 1,0%, para incrementar sus características mecánicas del concreto. Diseñamos la composición y creamos una muestra de prisma de 100 x 100 x 500 mm (profundidad x ancho x largo). Los resultados para 0,9%

FA + 0,1% PP dieron un alto aumento de resistencia del 12,48% a semejanza con el hormigón estándar. Además, la mejora más significativa en las propiedades mecánicas se observó en la muestra que contenía 0,9% FA + 0,1% PP

Córdova et al. [21], investigó los efectos de añadir fibra de polipropileno al ecohormigón utilizando cenizas volantes. Encontró que aumentar la proporción volumétrica de fibras mejoró la resistencia a la compresión y el módulo de elasticidad hasta cierto punto. Sin embargo, volúmenes más altos (0.75% y 1.0%) resultaron en una leve disminución de la resistencia a la compresión.

Sudharshan. [22], Según este estudio, la cantidad de fibra de polipropileno utilizada fue 0,25%, 0,5%, 0,75% y 1,0%. Según resultados de PP podemos utilizar en el hormigón de cáscara de coco y así aumentar sus características mecánicas del material compuesto.

Sanipatín. [23], llevaron a cabo un estudio comparativo de las propiedades mecánicas de residuos de PP obtenidos por extrusión y reforzados con fibras de abacá y plátano. Crearon muestras con PP y refuerzo variando el peso de las fibras entre un 10 y un 20 % y compararon los resultados. En los ensayos de flexión se mejoran las propiedades utilizando un 20% de fibra y añadida.

Tumbaco. [24], en su investigación determinaron las características en bloques de hormigón elaborados con fibra natural de cabuya en diversas cantidades, de esta manera se busca incentivar el uso de fibras naturales que sean favorables con el medio ambiente. Los porcentajes de fibra en los bloques fueron examinados con 0; 3; 4; 5% obtuvo en sus pruebas que al incorporar fibra de cabuya en % efectivamente ayuda a mejorar la capacidad de resistencia a la compresión en cada bloque posteriormente realizó un ensayo con el 10% FC, evidenciando que dificulta la mixtura, además de una fuerte caída en los resultados del ensayo de resistencia a la compresión.

A nivel nacional, según Nascentes et al. [25], en su investigación tuvo como objetivo definir cómo afecta al compartir PP a la deducción de las características mecánicas de la grava", adquirió la solidez a compresión a 28 días con el unido de 4,5% de PET en su dosificación con un bando de grava convencional de 130 kg/cm2 fue de 83,47 kg/cm², lo que

indica que al compartir tereftalato de polietileno (PET), concluyo que utilizando la nos afirma si la cota de repercusión intraclase es último ya semejante a 0,05, rechazar la supuesta cercanía de medias, si es más elevado, alcanzar la hipótesis de relación de medias, lo que implica que jamás hay diferencias significativas entre los grupos.

Loayza y Mostacero. [26], La disección revela que el documento obtenido del ANOVA tiene valores de 0,0001, 0,003 en el testimonio del % de empapamiento y la cuajo a la compresión y de 0,43, 0,52 y 0,59 en la mudanza dimensional. Esto indica que sus características físicas y mecánicas primarias difieren significativamente.

Según López. [27], el propósito de su estudio fue aumentar su solidez a compresión del hormigón utilizando 0.15, 0.25 y 0.50 (%) PP que se iba a incorporar, fabricado en PP y obtener una solidez a compresión F'c=217.8; 227.7; 231; 220.8 (kg/cm²), y se concluye que la trabajabilidad del concreto disminuye en un 5.13% al agregar 0.15% de fibra y en un 7.89% al agregar 0.25% de fibra, por lo tanto, los mejores resultados se obtienen considerando que el PP incrementa la solidez a compresión en un 10,27% y a razón del 0,25% la solidez compresión pasa a ser F'c = 231 kg/cm².

Según Coaquira [28], el objetivo de su estudio de investigación era investigar el comportamiento mecánico del hormigón armado con fibras de polietileno recicladas. Según NTP, la gravedad específica del AF fue de 1,5 g/cm3, la tasa de absorción fue de 4,24%, la humedad fue de 6,18%, la masa seca de la unidad compacta fue de 1800 kg/m3 y el coeficiente de finura fue de 3,15

Ramos. [29], Realizó un estudio experimental para investigar los efectos de la adición de fibra de polipropileno en las propiedades plásticas y mecánicas del concreto. Estas fibras actúan como refuerzo secundario que, al mezclarse con el concreto, evita el agrietamiento tridimensional durante el fraguado, reduciendo las grietas tanto por contracción plástica en estado fresco como por efectos de temperatura una vez endurecido. La metodología consistió en aplicar diferentes dosis de fibra (0, 200, 300 y 400 gramos por metro cúbico de concreto) en mezclas con distintas resistencias al aplastamiento (175, 210 y 280 kg/cm²). Los resultados mostraron mejoras de manera considerable en las propiedades del hormigón al colocar

microfibras de PP.

Puican y Correa. [30], Se superaron los valores normativos de 400.037-2014, la gravedad específica del agregado grueso fue de 2.62 kg/cm3, la tasa de absorción fue de 0.82%, la masa seca del compacto fue de 1570 kg/cm3 y las partículas se encontraban podridas. dientes. Tamaño nominal máximo de partícula: 1/2 pulgada. -Por lo tanto, al sintetizar los resultados, encontramos que la adición de 2% de PPR dio como resultado la mayor solidez a compresión y la capacidad de construcción, así como estructuras de concreto con la mayor capacidad de construcción y un aumento de resistencia del 13,1%.

Paredes y Sevillano. [31], El objetivo principal de este estudio fue obtener un análisis comparativo de las propiedades mecánicas (compresión y flexión) del concreto con la adición de lana y fibras de PP en cantidades del 2%, 4% y 6%; los resultados demostraron que la durabilidad fue mejorada. La mayor proporción de fibras de lana y polipropileno aumenta su solidez a compresión hasta en un 80% y la resistencia a la flexión en un 14%.

A nivel local, Según Gamboa. [32], el objetivo tesis era diseñar formulaciones con F'c = 210 y F'c = 280 (kg/cm²) demostrando superioridad de la ceniza de maíz CRM reforzada (FC) sobre las propiedades mecánicas del hormigón, dosis se reemplaza por cemento con contenido de FC (0,5 % _ 1 % _ 1,5 % _ y a dosis 2%). Debido al desplazamiento, la unión de CRM y FC (combinación de 7% CRM y 0,5% FC) afectó los datos obtenidos de compresión, deflexión, tensión y módulo en menor medida que el concreto estándar. Los módulos elásticos son 14,25 %, 5,15 %, 11,05 % y 7,9 %, la ceniza de tocón de maíz reforzada con FC afecta las características mecánicas del concreto.

Según Mestanza y Tapia. [33], el objetivo de su estudio fue estimar la influencia de las fibras de vidrio y microfibras sintéticas de polipropileno en sus características físicas del concreto. Estos se evaluaron con aditivos de fibra de vidrio (FV) de 3, 6, 9, 12 (%), siendo el 3% de FV el porcentaje óptimo, luego 2 kg, 4 kg, mezclados con microfibra de polipropileno (MPP), 6 kg, seguido de 8 kg. de fibras sintéticas.

Mamani y Pancca. [34], el concreto convencional (CP) y se clasificó entre kg/m3 de concreto a 21 MPa (F21) y 28 MPa (F28) después de 28 días. La mejor mezcla fue 3 FV 2

FPP con F21 con un aumento del 37,20%, F28 aumentando el 31,98% en la resistencia a la compresión, 3 FV 4 FPP con un aumento del 66,16% en la resistencia a la tracción, 3 FV 6 FPP con F21, 3 FV 8 FPP con un aumento del 33,41%. La resistencia a la flexión aumentó en 23,55. El módulo elástico aumentó en % para 3 FV 8 FPP, 14,91% para F21 y F28, y 12,88% para 3 FV 2 FF.

II. MATERIALES Y MÉTODO

Clasificación de los agregados

Estos equivalen al (70 y 80)% del volumen general de la mezcla y los (20 y 30)% se encuentran en el agua y cemento, para lo cual se debe de respetar sus respectivos estándares de las normas del concreto [35] para las ensayos físicos del agrado fino (AF) se extrajo el material de (La Victoria – Pátapo) teniendo en cuenta su distribución granulométrica por ASTM C33-03 [36], para el contenido de humedad se consideró bajo ASMT C566 [37], el peso unitario por ASTM C29 [38], el peso específico y absorción por ASTM C127 [39].

TABLA I. **G**RANULOMETRÍA DE **A**GREGADO **F**INO (AF) Y **A**GREGADO **G**RUESO (AG)

Agregado Grueso		Agregado Fino		
Tamaño de Malla	% Que pasa	Tamaño de Malla	% Que pasa	
1 ½"	100	3/8"	100	
1"	95 a 100	# 4	95 a 100	
1/2"	25 a 60	#8	80 a 100	
Nº4	0 a 10	# 16	50 a 85	
Nº8	0 a 5	# 30	25 a 60	

Nota: Agregado fino y grueso.

Fibras de polipropileno

Loayza. [26], Nos menciona que el PP es una fibra superfina entre las fibras sintéticas, se desarrolla en torno a la investigación petroquímica y textil, creo que se puede producir en sustratos de cemento y concreto, las características de la PP es que es resistente a los solventes comunes, tiene un buen rango entre impacto y dureza.

Teniendo en cuenta estas propiedades, se logra una mezcla óptima con el hormigón, mejorando sus propiedades y capacidad portante, produciendo así un hormigón con ductilidad, resistencia y gran tolerancia [40].

Fig. 1. Fibra de Polipropileno

TABLA II. **C**ARACTERÍSTICAS DE **P**OLIPROPILENO

Fibra de Polipropileno				
Color	Gris			
Absorción	Ninguna			
Gravedad Especifica	0.9			
Resistencia a ácidos y sales	si			
Módulo de elasticidad	15,000 kg/m ²			
Punto de fusión	160-170 °C			
Alargamiento a la rotura	20-30%			
Resistencia a la tracción	560-765 MPa			

Nota. Características del polipropileno

Fibra de cabuya

La presente investigación busca usar la fibra de cabuya como material de refuerzo en el concreto ya que esta cuenta con bajo costo. Relación agua-cemento, Cabe señalar que esta relación cementosa permite alcanzar la solidez a compresión superiores a lo requerido para la resistencia; Este hecho evita disminuir el contenido de cemento y debe ser considerado por el Supervisor al realizar un control de calidad del concreto [41].

Fig. 2. Fibra de Cabuya

Cemento

El cemento Portland es un tipo de conglomerante. Actualmente existen cinco tipos de cemento, y la elección del tipo adecuado depende de las condiciones específicas del lugar donde se realizará la construcción, según ASTM C143 [42].

Concreto.

Se emplea una mezcla de agua, cemento, áridos gruesos, áridos finos y aditivos químicos, siguiendo las especificaciones ASTM C150 [43].

Peso unitario

Este ensayo da a conocer su propiedad del concreto fresco, para el control de la mezcla dado que es requerido, esto se evalúa dependiendo a la cantidad de concreto producido en volumen de materiales ya conocidos acorde al ASTM C150 [43].

Contenido de aire

La mezcla de los agregados da como resultado un concreto endurecido en donde empieza a fraguar y empieza a ganar resistencia dependiendo al tiempo y mediante un periodo donde se puede evaluar a los (7_14_28) días, las propiedades en el estado endurecido dan una resistencia al concreto según ASTM C39 [44].

Slump

El asentamiento, también conocido como "hundimiento", medimos mediante el cono de Abrams que se ha utilizado para esta. El objetivo es definir la manipulación, traslado y compactación del hormigón. Estos factores dependen en semejanza del cemento, contenido de humedad y agregado ASTM C143 [42].

Fig. 3. Muestreo de asentamiento

Fraguado. El tiempo de ajuste determinado por este método no necesariamente coincide con los valores de tiempo obtenidos por otros métodos de prueba en pasta de concreto. Endurecimiento: Una vez que el concreto comienza a generar a endurecerse, las características del hormigón en su resistencia y durabilidad [9]

Concreto en estado endurecido

La propiedad mecánica fundamental del concreto que permite determinar su máxima capacidad de carga se expresa en kg/cm². Este parámetro se evalúa mediante muestras cilíndricas de dimensiones específicas (300 mm de altura y 150 mm de diámetro), las cuales son sometidas a cargas en una prensa hidráulica a los 7, 14 y 28 días de curado, conforme a la norma ASTM C39 [44].

Ensayo de flexión

Por otro lado, el ensayo de flexión se realiza con muestras prismáticas de dimensiones (150 mm de ancho, 530 mm de alto y 150 mm de largo), también curadas durante 7, 14 y 28 días, y se evalúa según la norma ASTM C78 [45].

Módulo de elasticidad

El módulo de elasticidad del concreto se determina sometiendo las muestras cilíndricas a cargas lentas en una prensa hidráulica y registrando simultáneamente la deformación con un compresómetro, conforme a la norma ASTM C469 [46].

TIPO DE INVESTIGACIÓN

Se empleará un modelo de investigación aplicada; esta se identifica ya que se orienta hacia la aplicación o uso de los discernimientos logrados, mientras que otros se obtienen, luego de la implementación y sistematización del trabajo basado en la investigación. Uso del conocimiento y efecto de la investigación para conducir a la comprensión práctica de manera consistente, organizada y sistemática [47] De esta manera se describe nuestra investigación, ya que la finalidad es tener una aplicación práctica de adición de las PP y FC.

Enfoque cuantitativo, ya que se emplea la colección y la descomposición de resultados después que hayan desarrollado pruebas de laboratorio para argumentar interrogantes de investigación y evidenciar teorías formuladas previamente, se fundamenta en la evaluación,

cuenta números y frecuentemente, usa registros para establecer prototipos exactos de estilo en una comunidad [48], Este enfoque se utiliza porque durante la concepción en el laboratorio de SEGENMA.

DISEÑO DE INVESTIGACIÓN

El diseño es experimental, porque involucra el manejo directo o indirecto de un objeto en estudio, así como en el control de variables tanto (dependientes como independientes) y en su manipulación. El objetivo básico del plan experimental incluye precisar si se encuentra diferencia relevante entre los diversos tratamientos del experimento [49], en esta investigación utilizamos variables independientes, tal como es el polipropileno y cabuya, sobre la variable dependiente el concreto, de esta manera determinar sus características físicas y mecánicas.

Además, este estudio se lleva a cabo utilizando un grupo de control, por lo que es de nivel cuasiexperimental, por tal sentido, el modelo se asimila para permitir una analogía con los tipos de estudios experimentales presentados en la siguiente descripción general del diseño cuasiexperimental propuesto para este estudio.

Donde:

G1,2,3,4: Grupo experimental conformados por 186 testigos.

G5: Grupo control formado por 31 testigos (concreto patrón de 210 kg/cm2).

X (1_2_3_4): tratamiento del grupo experimental que establece la adición de las fibras en las siguientes proporciones (X1=0.4, X2= 0.8, yX3=1.2) (%).

O1,2,3,4: tratamiento del grupo experimental que establece % óptimo PP con adición FC en (O1= 1.5, O2=2 y 03=2.5) (%).

La operación de variables es un procedimiento de ordenar racionalmente los componentes más abstractos, los componentes teóricos, hasta llegar al nivel más exacto, los sucesos producidos en la realidad y que representan signos de un concepto que logramos

vigilar, resumir y evaluar, es decir, sus indicadores [50].

Tipos de variables

Variable dependiente: Propiedades del concreto

Variable independiente: Fibras de polipropileno y Fibra de cabuya

Variable Dependiente (VD)

TABLA III.

OPERACIONALIZACIÓN DE **V**D

Variable	Definición conceptual	Definición operacional	Propiedades Mecánicas (Resistencia)	Indicativo	Técnicas e Instrumentos de Recolección de Información
Propiedade s del concreto	El concreto se produce mezclando los tres ingredientes esenciales, cemento, agua y agregado, el cuarto ingrediente es el aditivo, pero es arbitraria	Se analizará las propiedades físicas y mecánicas del concreto, diseños de FC 210 kg/cm².	compresión tracción flexión Módulo de elasticidad	Probetas a edades de 7, 14 y 28 días	Observación, técnicas y equipos de laboratorio

Variable Independiente (VI): Fibras de polipropileno y Fibra de cabuya

TABLA IV.

OPERACIONALIZACIÓN DE **V**I

Variable	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores de % PP	Técnicas e Instrumentos de Recolección de Información
Fibras de polipropileno	La fibra polipropileno es una fibra sintética que es usada para dar una buena resistencia al concreto.	Se analizará muestras para diseño patrón f'c 210 kg/cm²	Diferentes Porcentaje de adición de fibra de polipropileno	0.4% 0.8% 1.2%	Observación Fichas Técnicas y Equipos de laboratorio
Fibras de cabuya	La fibra de cabuya es una fibra natural que se extrae de la penca.	Se analizará muestras con un diseño de mezcla f'c 210 kg/cm²	Diferentes Porcentaje de adición de fibra cabuya	1.5% 2% 2.5%	Observación Fichas Técnicas y Equipos de laboratorio

TABLA V. **E**NSAYOS DE **C**ONCRETO **P**ATRÓN

Ensayos		Tipe	o de Curado		sub total	total
210 kg/cm ²	77. 1.	7	14	28		
Resistencia a compresión	cilíndrica	3	3	3	9	9
Resistencia a tracción	cilíndrica	3	3	3	9	9
Resistencia a flexión	prismática	3	3	3	9	9
Módulo de elasticidad	cilíndrica			4	4	4
TOTAL						31

TABLA VI. **E**NSAYOS % **Ó**PTIMO DE **PP**

Ensayos		% PP	Tiem	po de curado		sub total	total
210 kg/cm ² Resistencia a		0.4	7 3	14 3	28 3	9	
compresión	cilíndrica	0.8	3	3	3	9	27
		1.2	3	3	3	9	
Resistencia a		0.4	3	3	3	9	
tracción	cilíndrica	0.8	3	3	3	9	27
		1.2	3	3	3	9	
Resistencia a		0.4	3	3	3	9	
flexión	prismática	8.0	3	3	3	9	27
		1.2	3	3	3	9	
Módulo de		0.4			4	4	
elasticidad	cilíndrica	8.0			4	4	12
		1.2			4	4	
TOTAL							93

TABLA VII.

MUESTRAS DE MIXTURA CONCRETO PATRÓN + ÓPTIMO PP Y FC

Ensayos	Tiempo de		Óptimo % PF	P + % FC	sub total	total
210 kg/cm2	curado	1.5%	2%	2.5%		
Resistencia	7	3	3	3	9	
а	14	3	3	3	9	27
compresión	28	3	3	3	9	
	7	3	3	3	9	
Resistencia						
а	14	3	3	3	9	27
tracción	28	3	3	3	9	
Resistencia	7	3	3	3		
					9	
а	14	3	3	3	9	27
flexión	28	3	3	3	9	
Módulo de	28	4	4	4	12	
						12
elasticidad						
TOTAL						93

La población de este estudio lo conforman todos los que intervienen en el fenómeno, del problema de investigación [51]. En este estudio, la población consta con 217 testigos que cubren todas las muestras de f'c = 210 kg/cm² para ellos se realizó los ensayos mecánicos.

La muestra es una fracción de la población, que también puede definirse como un subgrupo de la población o universo, consta de 31 muestras patrón de f'c = 210 Kg/cm², 93 pruebas adicionado PP en 3 porcentajes para obtener el porcentaje deseado, 93 muestras con el óptimo de fibra de PP + los % (1.5, 2 y 2.5) de fibra de cabuya, estos ensayos se

desarrollarán durante 7, 14 y 28 días.

Observación: Este es el mejor, más primitivo y a la vez más utilizado procedimiento experimental, se establece una relación específica y profunda entre el investigador y la realidad o agentes sociales, a partir de la cual se agregan los datos obtenidos para desarrollar la encuesta [20].

Instrumentos de recolección de datos

Guía de observación: el análisis competente para este apartado corresponderá a las fichas y guías realizadas para determinar la cantidad probetas lo que son ensayos, relacionados directamente con la normativa peruana.

Procedimiento de análisis de datos.

Primero se realiza el diseño de mezcla ACI (311) según corresponda, se realizara el diseño de mezcla 210 kg/cm2 para luego analizar el concreto incorporado PP Y FC, y en el laboratorio, se esperará a la obtención de las probetas en las edades de 7,14 y 28 días, para proceder con las pruebas de cada probeta, se determinarán con las guías proporcionadas por el laboratorio, para luego mostrarlos en una base de datos Excel, para finalmente elaborar gráficos con los cuales se evidencie de la mejor manera las diferencias de cada una de las mezcla con la proporción de % de incorporación de fibras de polipropileno.

La validez y confiabilidad se fundamentan en llevar a cabo los ensayos según las directrices de las normas NTP y ASTM, utilizando equipos e instrumentos adecuados en el laboratorio.

CRITERIOS ÉTICOS

Los criterios éticos para esta investigación se tomaron en cuenta los criterios éticos establecidos en la ACTUALIZACIÓN DEL CÓDIGO DE ÉTICA EN INVESTIGACIÓN DE LA UNIVERSIDAD SEÑOR DE SIPÁN S.A.C. VERSIÓN 9. La cual nos dice que: Todas las fases de la actividad científica deben conducirse en base a los principios generales y principios específicos establecido en los Art. 5 y Art. 6 en el Código de Ética en Investigación de la USS S.A.C [52].

Consideran los criterios de selección que influyen en la elección de muestras que

serán sujetas a los porcentajes de sustitución y delimitación de la población [53]. El criterio de inclusión evalúa las características que deben cumplir las muestras para formar parte de la población seleccionada, mientras que el criterio de exclusión determina las muestras que no cumplen con estos requisitos [54]

Diagrama de flujo de procesos

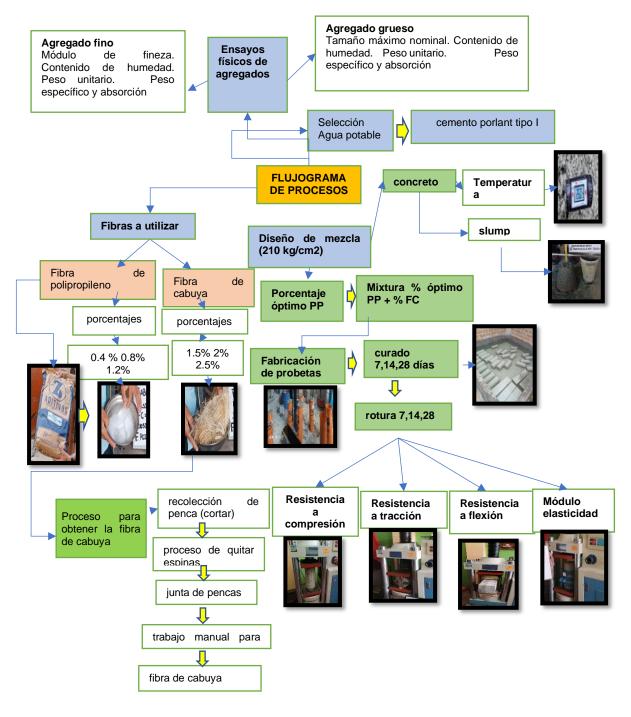


Fig. 4. Flujo de proceso de análisis de datos.

III. RESULTADOS Y DISCUSIÓN

3.1 Resultados

Con relación al primer objetivo específico (**OE1**). Determinar las propiedades físicas de los agregados y propiedades físico-mecánicos de fibra de cabuya y polipropileno.

TABLA VIII.

ENSAYOS FÍSICOS AGREGADOS FINO

AGREGADO FINO						
Propiedad Física	Valor	Und				
Módulo de Fineza	2.63	-				
Peso Unitario Suelto	1.295	Kg/cm³				
Peso Unitario Compactado	1.503	Kg/cm³				
Peso Específico	2.759	gr/cm³				
Contenido de Humedad	1.931	%				
Absorción	1.701	%				

Análisis Granulométrico: Agregado Fino (AF).

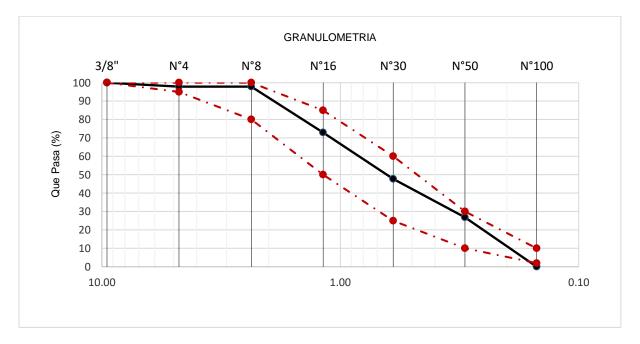


Fig. 5. Curva Granulométrica para el Agregado Fino.

En la Fig. 5. acataron con el indicador preestablecidos según norma internacional (ASTM C33/C33M – 18), se eligió la cantera la Victoria para el (AF) teniendo un módulo de fineza 2.63.

TABLA IX. **E**NSAYOS **FÍSICOS A**GREGADO **G**RUESO

AGREGADO GRUESO						
Propiedad Física	Valor	Und				
Tamaño Máximo Nominal	1/2"	pulg				
Peso Unitario Suelto	1.505	Kg/cm³				
Peso Unitario Compactado	1.627	Kg/cm³				
Peso Específico	2.771	gr/cm³				
Contenido de Humedad	0.328	%				
Absorción	0.883	%				

Análisis Granulométrico: Agregado Grueso (AG).

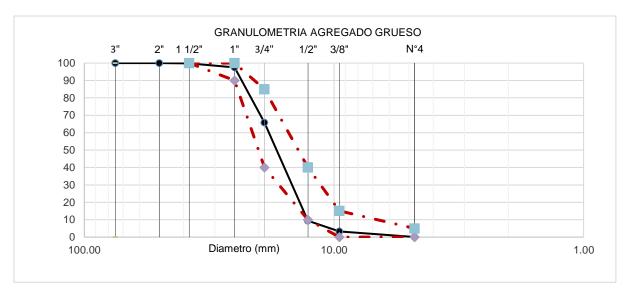


Fig. 6. Curva Granulométrica para el Agregado Grueso

Los datos obtenidos como se muestra en la Fig. 6. acataron con el indicador preestablecidos según norma internacional (ASTM C33/C33M – 18), se eligió la cantera la tres tomas para el (AG), donde su tamaño máximo nominal fue ½". Además, sus unidades de los parámetros son lo siguiente el peso Específico (gr/cm³), Absorción (%), Contenido de Humedad (%), Peso Unitario Suelto (Kg/cm³), Peso Unitario Compactado (Kg/cm³), Modulo de Fineza (----), Tamaño Máximo Nominal (in).

TABLA X.

ENSAYOS FÍSICOS DE FC

Fibra de Cabuya	
Largo (mm)	40
Ancho (mm)	0.02
Peso Específico de Masa (gr/cm³)	0.767
Peso Unitario Suelto Seco (kg/m³)	25.46
Peso Unitario Compactado Seco (Kg/m³)	58.65
Contenido humedad (%)	8.62
Porcentaje de Absorción (%)	3.30
Resistencia a la Tracción (Kg/cm²)	1312.0
Punto de Fluencia (Kg/cm²)	546.6
Modulo Elástico (Kgf/cm/cm)	14107.03

Nota. Ensayos físicos de la fibra de Cabuya

Los datos que se ven reflejados en la Tabla VIII. Son obtenidos mediante los ensayos realizados en laboratorio a la fibra, de cabuya para luego ser usada en el concreto.

TABLA XI.

Propiedades del Polipropileno	
Fibra de Polipropileno	
Gravedad Especifica	0.9
Resistencia a ácidos y sales	si
Módulo de elasticidad	15,000 kg/m ²
Alargamiento a la rotura	20-30%
Resistencia a la tracción	560-765 MPa

Nota. Tomado de [55]

Los datos que se ven reflejados en la Tabla IX. Son obtenidos de la ficha técnica que asido dada cuando se realizado la compra de PP de esta manera se ha realizado dicho resumen de cada una de sus propiedades.

Con respecto al segundo objetivo específico **(OE2).** Determinar el porcentaje óptimo de fibra polipropileno con adición de en pesos 0.4%,0.8% y 1.2%.

Resistencia a la Compresión

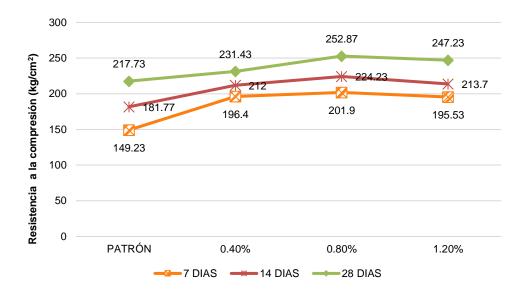
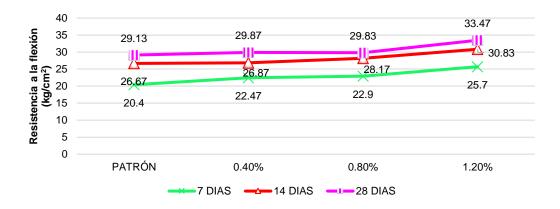



Fig. 7. Resistencia a compresión - ensayos para el óptimo % de Fibras de Polipropileno

Como se muestra en la Fig. 7. se da que él % óptimo de 0.8% de PP domina al control patrón con 252.87 Kg/cm2, incrementando en 20.41%, seguido de 1.2%, 0.4%PP con 247.23 y 231.43, teniendo un incremento 17.73 %, 10.21%, por lo tanto, 0.8%PP es nuestro óptimo de PP que aumenta sus propiedades del hormigón.

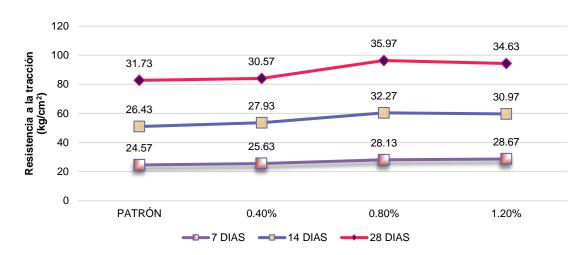

Resistencia a la Flexión

Fig. 8. Resistencia a flexión - ensayos para el óptimo % de Fibras de Polipropileno

Se ve reflejado en la Fig. 8. que el óptimo de 1.2% de PP es el que mayor domina al control patrón con 33.47 (Kg/cm2), incrementando el 11%, seguido del 0.4% de PP y 0.8% de PP con 29.87 kg/cm2 y 29.83 kg/cm2 respectivamente, venciendo al control patrón de 29.13 kg/cm2, por lo tanto, es nuestro porcentaje óptimo de acción al hormigón.

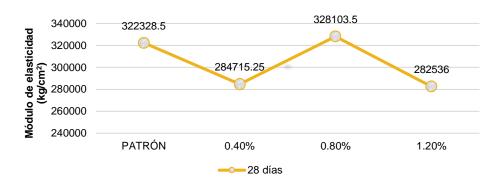

Resistencia a la Tracción

Fig. 9. Resistencia a la tracción - ensayos para el óptimo % de Fibras de Polipropileno

Según lo analizado en la Fig. 9. el óptimo de 0.8% de PP es el que mayor domina al control patrón con 35.97 Kg/cm2, incrementando el 12.36%; seguido del 1.2% de PP con 34.63 kg/cm2 incrementando el 8.2% respectivamente, venciendo al control patrón de 31.73 kg/cm2, por lo tanto, es nuestro porcentaje óptimo de acción al hormigón.

Módulo de Elasticidad

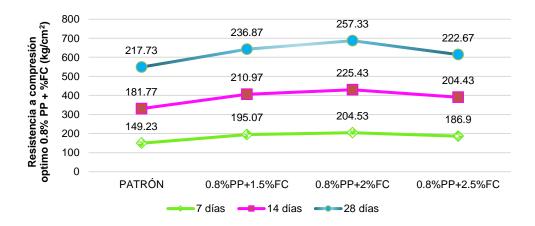


Fig. 10. Módulo de elasticidad - ensayos para el óptimo % de Fibras de Polipropileno

Se refleja en la Fig. 10. que el óptimo de 0.8% supera al control patrón con 328103.50, teniendo un incremento de 1.79%, a diferencia del 0.4 %PP y 1.2%PP con 284715.25kg/cm2 y 282536.00 kg/cm2 que no excede al concreto patrón de 322328.50 kg/cm2, por lo tanto, se define que al añadir el 0.8%PP mejora sus propiedades mecánicas.

Con respecto al tercer objetivo específico **OE3.** Evaluar las propiedades mecánicas del concreto f´c 210 Kg/cm2 en porcentaje óptimo de polipropileno más la adición de fibra de cabuya en 1.5%, 2% y 2.5%.

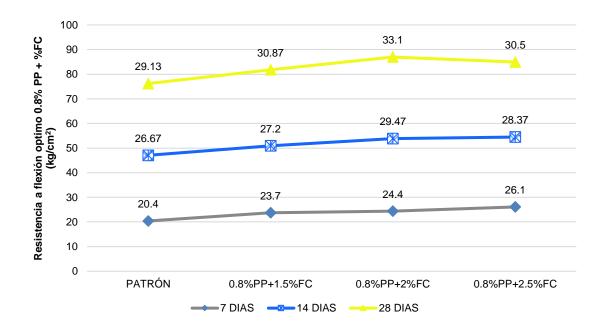

Resistencia a la compresión

Fig. 11. Prueba de resistencia a compresión optimo 0.8% PP + %FC.

Se observa en la Fig. 11. que la mixtura de solidez a compresión de PP + %FC el tratamiento que supero la estimación más alta fue el (0.8% PP +2%FC), (0.8% PP +1.5%FC) y (0.8% PP +2.5%FC) respectivamente, con 257.33, 236.87y 222.67 Kg/cm2 correlativamente, teniendo un incremento 22.54%, 12.79% y 6.03% respectivamente, superando el control patrón.

Resistencia a la flexión

Fig. 12. Prueba de resistencia a flexión optimo 0.8% PP + %FC.

Resultados reflejados en la Fig. 12. de mixtura a la resistencia a la flexión, con un curado de 7, 14 y 28 días. Se muestra que la mixtura del ensayo a flexión de PP + %FC el tratamiento que superó la estimación más alta fue el (0.8% PP +2%FC), (0.8% PP +1.5%FC) y (0.8% PP +2.5%FC) respectivamente, con 33.10, 30.87 y 30.50 Kg/cm² correlativamente, superando al concreto patrón de 29.13 kg/cm², por lo tanto, se define como porcentaje mixtura 0.8%PP+2%FC de acción al concreto y mejora sus propiedades mecánicas.

Resistencia a la Tracción

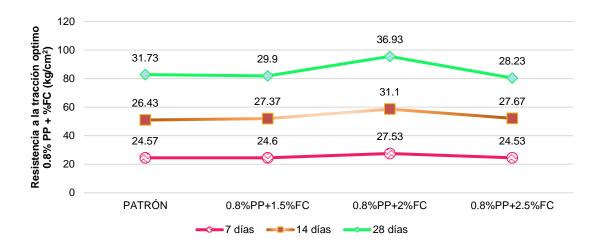
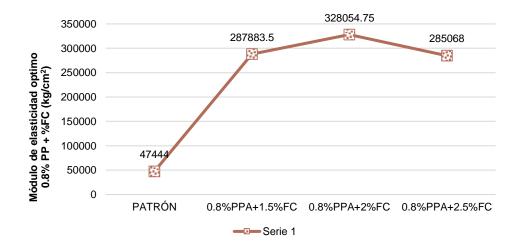



Fig. 13. Prueba de resistencia a la tracción optimo 0.8% PP + %FC

Según se observa en la Fig. 13, que la mixtura del ensayo a tracción de PP + %FC el tratamiento que superó la estimación más alta fue el (0.8% PP +2%FC) venciendo al control patrón con 36.93 Kg/cm², por otro lado, las mixturas de (0.8% PP +1.5%FC) y (0.8% PP +2.5%FC) no superan el control patrón con 29.90 kg/cm² y 28.23 Kg/cm², por lo tanto, se define como porcentaje de mixtura (0.8%PP + 2%FC) que mejora sus características mecánicas.

Módulo de Elasticidad

Fig. 14. Prueba de módulo de elasticidad optimo 0.8% PP + %FC.

Se muestra que la mixtura del ensayo de módulo de elasticidad con %PP + %FC vencieron al control patrón (0.8% PP +2%FC), (0.8% PP +1.5%FC) y (0.8% PP +2.5%FC) respectivamente, con 328054.75, 287883.50 y 285068.00 correlativamente, superando al concreto patrón de 47444.00, por lo tanto, Se define como porcentaje mixtura 0.8%PP+2%FC de acción al concreto, mejora sus propiedades mecánicas.

Con respecto al cuarto objetivo específico (**OE4**). Determinar el porcentaje óptimo de mixtura de fibra de polipropileno y fibra de cabuya.

El porcentaje óptimo de las fibras de polipropileno y fibra de cabuya se determinó mediante ensayos de propiedades de mecánica del concreto, el óptimo de PP es (0.8%PP) y la mixtura la que mejor comportamiento obtuvimos es de (0.8PP +2%FC), teniendo valores superiores concreto patrón respectivamente.

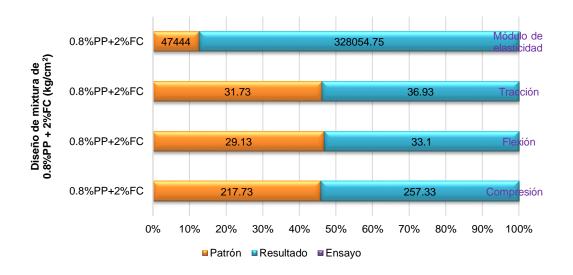


Fig. 15. Resumen de resultados de diseño de mixtura de 0.8%PP + 2%FC

De acuerdo a lo especificado en la Fig. 15. se observa que el diseño de mixtura de (0.8%PP + 2%FC) si cumplen los parámetros de diseño, superando al concreto patrón en todos sus ensayos mecánicos, con resultados de 257.33, 33.10, 36.93, 328054.75 (kg/cm2) respectivamente, por lo tanto, el óptimo de mixtura si ayuda a las características mecánicas del hormigón.

3.2 Discusión

Se realizó un análisis de las propiedades físicas de los agregados y se realizaron ensayos a dos tipos de agregados y se seleccionó las canteras de Tres Tomas, La victoria Pátapo, los resultados acataron los parámetros preestablecidos exigidos, se eligió a la cantera tres tomas AG donde su tamaño máximo nominal fue ½", ya la cantera la Victoria con módulo de fineza 2.63 resultados que tiene semejanza con [32] que tienen concordancia en sus resultados AF su módulo de fineza es 2.79 y agregado grueso ½" con el autor [33], ambos fueron similares por el motivo que eran de procedencia de la misma cantera, respecto a las propiedades físicas de la fibra no se ha encontrado antecedentes.

En relación a los ensayos mecánicos, para determinar el porcentaje óptimo de PP en volumen de 0.4%, 0.8%, 1.2%, se obtuvo que el porcentaje fue el 0.8% donde mejoro los ensayos mecánicos respecto al concreto patrón, tuvo un incremento de 20.41%, 12.36% y 1.79%, a la flexión el valor más alto fue 1.2 %, teniendo un incremento 11% a 28 días de curado, concluimos que el porcentaje optimo es el 0.8%, valores que reflejan similitud con [18] donde adiciono microfibras de polipropileno en 0.39%, 0.63% y 0.79%, demostrando que el 0.79 % da mayores resultados, por otro lado el autor [27] incorporo PP en % de 0.15, 0.25 y 0.50 al concreto, el que mejor comportamiento tuvo es 0.25% teniendo valores cercanos a la resistencia obtenida en la investigación realizada, concluyendo que la adición con el 0.8% si es recomendable por que supera su resistencia requerida.

Los resultados de los ensayos mecánicos para la mixtura que se obtuvieron fue el (0.8 % PP + 2 % FC) teniendo como resultados a compresión 257.33, tracción 36.93 flexión 33.10 y módulo de elasticidad 328054.75 kg/cm2 teniendo un incremento de 22.54, 15.38, 9.78 y 1.78%, los datos corroborados tienen una similitud con [20] demostrando que la mixtura de 0,9 % FA + 0,1 % PP, fue 10 veces mayor respecto al concreto patrón, respecto al autor [23] donde realizo muestras con variación de 10, 20 % en peso de fibra con PP con fibras de abacá y plátano donde se mejoran las propiedades utilizando un 20% de fibra, a diferencia

con [32] que no superan el concreto patrón debido a la cantidad de fibra utilizada que afectó los datos obtenidos de módulo de elasticidad en menor medida que el concreto estándar, los módulos elásticos son 14,25%, 5,15%, 11,05% y 7,9%, la ceniza de tocón de maíz reforzada con FC afecta las características mecánicas del concreto, es por eso que es recomendable nuestro tratamiento de (0.8 % PP + 2 % FC).

Se determinó mediante ensayos de propiedades mecánicas, con el óptimo de (0.8 % PP) y con la mixtura de (0.8 PP +2 %FC), teniendo valores superiores al concreto patrón, resultados que tienen similitud con [22] que al añadir fracciones en volumen de fibras de polipropileno y cáscara de coco en 0,25%, 0,5%, 0,75% y 1,0%, su mejor optimo que se desarrolla es 0.5 % FPP y 0.25 cm, teniendo un incremento de 15%, 11% y 13 % respectivamente, concluyendo que los datos obtenidos de este análisis pueden usarse en el concreto y así poder aumentar sus propiedades mecánicas.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

Con relación al **OE1**, a los agregados utilizados se concluyó lo siguiente: que están dentro de los parámetros establecidos por la normal ACI 311 de esta manera el agregado fino posee un módulo de fineza de 2.63 y el agregado grueso un tamaño máximo nominal de ½" y un asentamiento de 3 a 4 pulgadas y temperaturas de 26,1 °C y 28,3 °C en concreto fresco y la fibra de cabuya tiene una buena adherencia al concreto.

En cuanto al **OE2**, donde se buscó determinar el % óptimo de PP en el concreto endurecido se concluyó lo siguiente: Que al trabajar en porcentajes de 0,4%, 0,8%, 1,2%, el que mejor resultados arrojo fue el 0.8%, incrementando su resistencia en un 20,41%, 12,36% y 1,79% respectivamente, a diferencia de la resistencia a la flexión que su resultado de contenido óptimo de PP es 1.2%, obteniendo como resultado 33.47 kg/cm2, la cual aumenta el 11% respecto a su concreto patrón.

Con relación al **OE3**, los resultados obtenidos de la mixtura entre el (% óptimo PP + %FC) que son el 1.5%, 2%, 2.5%, se obtuvo que el óptimo de PP (0.8%) más el 2 % FC es el que mejor comportamiento posee analizando los ensayos mecánicos, respectivamente, datos obtenidos favorablemente incrementado su resistencia a la compresión, flexión, tracción y módulo de elasticidad con porcentajes de 22.54%, 9.78%, 15.38% y 1.78%, superando a cada control patrón de cada ensayo mecánico.

Con respecto al **OE4** los resultados obtenidos para los óptimos de PP Y FC el que mejor resultados arrojo fue el (0.8%PP+2%FC) esto mediante los ensayos mecánicos de resistencia a compresión, flexión, tracción y módulo de elasticidad, teniendo un mejor desempeño que el concreto patrón.

4.2 Recomendaciones

Se recomienda realizar los estudios de diferentes canteras donde se realizará, el estudio con fin de elegir el mejor material para la elaboración de diseño y hacer comparación a futuros resultados y a la FC siempre darle un tratamiento para eliminar impurezas ya que es una fibra natural.

Se recomienda reutilizar PP y darle un tratamiento adecuado, antes de realizar el diseño de mezcla para que así el concreto tenga buenos resultados respecto a sus ensayos mecánicos, también es necesario una buena compactación cuando se coloque el concreto a los moldes para evitar cangrejeras y vacíos.

Se recomienda utilizar el 0.8% de PP + 2% FC ya que con estos porcentajes en combinación mejora su resistencia del concreto, donde emos tenido buenos resultados con respecto a nuestro concreto patrón.

Se recomienda utilizar FC ya que es económica y viable ya que en el campo es vista como una maleza para la agricultura, es de fácil obtención y proceso rápido, se adhiere fácilmente al concreto, realizar su limpieza con cal y agua para desinfectar la fibra natural.

REFERENCIAS

- [1] O. J. Adrianzen Flores, J. J. Azula Vasquez, C. F. Pacherres Sánchez y S. P. Muñoz Pérez, «Uso de distintos tipos de fibras para mejorar las propiedades mecánicas de la mezcla asfáltica,» *Infraestructura Vial*, vol. 24, nº 43, pp. 1-16, Feb. 2022.
- [2] M. Castro Atao y S. K. Sovero Ancheyta, «Resistencia a la compresión axial simple de bloques huecos de concreto elaborados con fibras de polipropileno,» Revista Científico Cultural, vol. 7, nº 01, p. 389–395, Ago. 2019.
- [3] J. J. Castro Maldonado, L. K. Gómez Macho y E. Camargo Casallas, «La investigación aplicada y el desarrollo experimental en el fortalecimiento de las competencias de la sociedad del siglo XXI,» SciELO Analytics, vol. 27, nº 75, pp. 1-35, Ene. 2022.
- [4] W. Zhou, Jinxu Mo, Sheng Xiang y Lei Zeng, «Impact of elevated temperatures on the mechanical properties and microstructure of waste rubber powder modified polypropylene fiber reinforced concrete,» *Construction and Building Materials*, vol. 392, Jun. 2023.
- [5] J. Blazy and R. Blazy, "Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces," Case Studies in Construction Materials, vol. 14, 2021.
- [6] W. Qinghe, W. Yucheng, B. Zhou and W. Liangzhi, "Influence of polypropylene fibers on the mechanical properties of radiation shielding concrete with barite aggregates," China, 2023.
- [7] S. Kilmartin Lynch, M. Sabarian, J. LI, R. Roychand and G. Zhang, "Preliminary evaluation of the feasibility of using polypropylene fibres from COVID-19 single-use face masks to improve the mechanical properties of concrete.," 2021.

- [8] N. Balgourinejad, M. Haghighifar, R. Madandoust and S. Charkhtab, "Experimental Study on Mechanical Properties, Microstructural of Lightweight Concrete incorporating Polypropylene fibers and Metakaolin at High Temperatures," *Journal of Materials Research and Technology*, vol. 18, 2022.
- [9] D. C. Bonett, «Industria del Plástico en el perú,» jefe del INEI, Perú, 2022.
- [10] K. A. Huayama Montenegro y J. L. Ruesta Tejada, «Incorporación de Fibras de Polipropileno para aumentar la resistencia a la compresión de los ecoladrillos, Moyobamba, 2021,» Moyobamba, 2021.
- [11] R. F. Ruiz Perez y D. L. Yupanqui Huaman, «Influencia de la adición de ceniza de cabuya al 1%, 3% y 5% en las propiedades físicas y mecánicas del concreto F'C =210 kg/cm 2 , Ayacucho - 2022,» Ayacucho, Perú., 2023.
- [12] k. J. Chirinos Revilla y C. E. Cuervo Pavas, «Propuesta para usar fibras sintéticas de polipropileno reciclado en el control de fisuras generadas por la retracción en pavimentos de concreto en Lima,» Lima, 2021.
- [13] E. R. Ventura Carrillo, «Evaluación de perlas de poliestireno en las propiedades físicas y mecánicas del concreto para losas aligeradas, Chiclayo,» Chiclayo, Peru, 2021.
- [14] J. Linares durand , D. linares fonseca , L. melgarejo madueña , N. campos vasquez y R. Mnaturado chipano , «Influencia de Adición de Fibras de Polipropileno al Concreto,» 2021.
- [15] S. H. Oblitas Villanueva, « Diseño de un concreto permeable para pavimentos rígidos con agregados de la cantera La Victoria y adición del aditivo chema 3 y fibras polipropileno en una vía colectora en la ciudad de Chiclayo 2019,» Chiclayo, 2019.
- [16] Y. A. Machuca Campos, «Efecto de la Incorporacion de Fibra de Polipropileno en las Propiedades Fisico – Mecanicas de un Concreto 210 Kg/Cm2,»

- Huancayo, 2021.
- [17] D. G. Becerra Fonseca y E. Delgado Vela, «Diseño de concreto f'c= 210kg/cm2 con fibras de polipropileno para una edificación de 5 pisos, Tarapoto 2019,» Tarapoto, 2019.
- [18] R. Torres Ortegaa, E. Quiñonez Bolañosb, C. Tejada Tovar, Y. García Díazd y I. Cabarcas Torres, «High-strength Concrete with Natural Aggregates, Silica Fume, and Polypropylene Macrofibers,» Ciencia Ingeniería e Neogranadina, vol. 31, nº 2, pp. 27-40, Diciem. 2021.
- [19] G. Humberto Obando, Z. Carranza Muñoz, J. Díaz Quepuy, D. Serrano Otoy y S. Muñoz Perez, «Resistencia a la compresión de hormigones reforzados con fibra de polipropileno,» *paideia xxI*, vol. 11, nº 2, 2021.
- [20] D. A. Hilario Alvarez y F. U. Sifuentes Zorrilla, «Influencia de la fibra seca de agave amarillo en las propiedades físico-mecánicas del concreto f'c=210 kg/cm2, Huari, Ancash – 2021,» Ancash, 2021.
- [21] L. E. Rosario Cordova y F. A. d. J. Veliz Torres, «Fibra de polipropileno monofilamento para mejorar las propiedades físicas y mecánicas del concreto,» Lima, 2021.
- [22] R. Sudharshan, «Fibre reinforced concrete containing waste coconut shell aggregate, fly ash and polypropylene fibre,» *SciELO Analytics*, 2020.
- [23] S. N. Sanipatín Basantes, «Estudio Comparativo de las propiedades mecánicas de residuos de polipropileno obtenido por extrusión y reforzado con fibras de Abacá y de Plátano.,» Riobamba, 2019.
- [24] D. J. Tumbaco Toaquiza, «Utilización de la fibra de cabuya en la elaboración de bloques para mampostería para fortalecer la actividad productiva en las parroquias rurales del cantón Latacunga, provincia de Cotopaxi,» Ecuador, 2022.
- [25] A. P. S. Nascentes Borges, L. A. Castro Motta y E. Bernardes Pinto, «Estudo

- das propriedades de concretos com adição de fibras vegetais e de polipropileno para uso em paredes estruturais,» 2019.
- [26] J. M. Loayza Saavedra y B. S. Mostacero Nureña, «Adición del Tereftalato de Polietileno (PET) en las propiedades físicas y mecánicas en un bloque de concreto, Trujillo, 2020,» Trujillo, Peru, 2020.
- [27] K. R. López Quispe, «Incorporación de fibras de polipropileno para aumentar la resistencia a compresión del concreto f'c=210kg/cm2, Moyobamba 2021,» Moyobamba, Peru, 2021.
- [28] R. Coaquira Flores, «La Influencia de la fibra de polietileno reciclado en las propiedades del concreto f'c=175 kg/cm2 de la cantera de Sullu Hacca, Andahuaylas, 2022,» Callao, Peru, 2023.
- [29] S. G. Ramos Gallegos, «Aplicación de macrofibras de polipropileno para mejorar la resistencia del concreto en la losa de la edificación multifamiliar Varela-Breña-2019,» Chiclayo, 2019.
- [30] P. C. Puican Cumpa y A. O. Correa Carlos, «Caracterización física y mecánica del adobe incorporando fibras de cabuya y polímero reciclado PET en la ciudad de Ferreñafe, Lambayeque,» Ferreñafe, 2021.
- [31] A. S. Paredes Flores y J. E. Sevillano Mendoza, «Análisis comparativo del comportamiento del concreto adicionando fibras naturales y de polipropileno en la Urb. Nicolás Garatea Nuevo Chimbote-Ancash-2021,» Ancash, 2021.
- [32] O. G. Gamboa Idrogo y J. A. Leonardo Cespedes, «Caracterizacion de las propiedades mecanicas de un concreto sustituyendo cenizas de rastrojo de maíz reforzados con fibra de cabuya,» Pimentel, Peru, 2023.
- [33] A. D. Mestanza Espinal y L. V. Tarrillo Tapia, «Evaluación de las Propiedades Mecánicas del Concreto con Adición de Fibra de Vidrio y Macrofibra Sintética de Polipropileno,» Pimentel, Chiclayo, 2023.

- [34] V. R. Mamani Vilca y D. Pancca Quispe, «Estabilización de suelos con cáscara de semilla de girasol - fibra de cabuya en camino vecinal Ayaviri – Sunimarca, Puno - 2022,» Puno, 2022.
- [35] El Peruano, «Resolucion directoral Nº 016-2018-INACAL/DN,» p. 6, 18 Julio 2018.
- [36] ASTM International, «ASTM C 33 03 Especificación estándar para agregados para concretos,» ASTM International, 2018.
- [37] ASTM International, ASTM C566. Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying, ASTM International, 2019.
- [38] ASTM International, ASTM C29. Standard Test Method For Bulk Density ("Unit Weight") And Voids In Aggregate, ASTM International, 2017.
- [39] ASTM International, ASTM C127. Standard Test Method For Relative Density (Specific Gravity) And Absorption Of Coarse Aggregate, ASTM International, 2015.
- [40] Haniyeh Hosseinzadeh, Amir Masoud Salehi, Mojtaba Mehraein y Gholamreza Asadollahfardi, «The effects of steel, polypropylene, and high-performance macro polypropylene fibers on mechanical properties and durability of high-strength concrete,» Construction and Building Materials, 2023.
- [41] F. Velasco, L. Pruna y F. Chachapoya, «Elaboración de la fibra de cabuya en tejido plano como matriz de refuerzo para la construcción de un retrovisor,» *Ingenius*, nº 24, pp. 1-6, Jun. 2020.
- [42] ASTM International, ASTM C143. Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, 2012.
- [43] ASTM International, ASTM 150. Standard Specification for Portland Cement, ASTM International, 2012.
- [44] ASTM International, ASTM C39. Standard Test Method For Compressive

- Strength of Cylindrical Concrete Specimens, ASTM International, 2014.
- [45] ASTM International, ASTM C78. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, 2016.
- [46] ASTM International, ASTM C469. Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, 2014.
- [47] F. Chávez Caridad, Metodología de la investigación : así de fácil, 2019.
- [48] F. A. Sánchez Flores, «Fundamentos epistémicos de la investigación cualitativa y cuantitativa: Consensos y disensos,» *Revista Digital de Investigación en Docencia Universitaria*, vol. 13, nº 1, pp. 1-21, Jun. 2019.
- [49] C. Fresno Chávez, Metodología de la investigación : así de fácil, Córdoba: El Cid Editor., 2019.
- [50] W. Xiong, X. Wang y Chunmei, Li, «Effect of Nano-TiO2 and Polypropylene Fiber on Mechanical Properties and Durability of Recycled Aggregate Concrete,» International Journal of Concrete Structures and Materials, 2024.
- [51] C. M. Tamara Otzen, «Técnicas de Muestreo sobre una Población a Estudio,» International Journal of Morphology, vol. 35, nº 1, pp. 227-232, Mar. 2019.
- [52] Universidad Señor de Sipán, «RESOLUCIÓN DE DIRECTORIO N° 053-2023/PD-USS,» Pimentel, 2023.
- [53] S. R. Hernández, C. C. Fernández y L. M. d. P. Baptista, Metodología de la Investigación, 6 ed., México D.F.: McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V., 2018.
- [54] «RESOLUCIÓN DE DIRECTORIO Nº 053-2023/PD-USS,» Pimentel, 2023.
- [55] Z. Aditivos, El mejor amigo del concreto, p. 2, 2023.

ANEXOS

Anexo	I. Acta de aprobación de asesor	. 47
Anexo	II. Carta o correo de recepción de del manuscrito remitido por la revista	. 48
Anexo	III. Matriz de consistencia	. 50
Anexo	IV. Operacionalización de variables	. 51
Anexo	V. Informe del Laboratorio	. 52
Anexo	VI. Certificado de calibración de instrumentos de laboratorio	140
Anexo	VII. Juicio de Validación de Expertos	144
Anexo	VIII. Informe Estadístico	149
Anexo	IX. Costo-beneficio	156
Anexo	X. Panel fotográfico	157

Anexo I. Acta de aprobación de asesor

ACTA DE APROBACIÓN DEL ASESOR

Yo Mg. Villegas Granados Luis Mariano. quien suscribe como asesor designado mediante Resolución de Facultad N° 129-2023/PD-USS, del proyecto de investigación titulado EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO, desarrollado por el estudiante: Bach. Garcia Villegas Jose Marcial, Bach. Guevara Guevara Elber, del programa de estudios de la escuela profesional de Ingeniería Civil, acredito haber revisado, y declaro expedito para que continúe con el trámite pertinentes.

(Mg. Villegas Granados Luis Mariano) (Asesor)	DNI: 16665065
--	---------------

Pimentel, 02 de mayo de 2024

Anexo II. Carta o correo de recepción de del manuscrito remitido por la revista

Innovative Infrastructure Solutions USE OF POLYPROPYLENE FIBERS AND CABUYA TO IMPROVE THE PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETE --Manuscript Draft--

Manuscript Number:			
Full Title:	USE OF POLYPROPYLENE FIBERS AND CABUYA TO IMPROVE THE PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETE		
Article Type:	Technical papers		
Section/Category:	Sustainable Civil Infrastructure		
Funding Information:			
Abstract:	Concrete in its hardening stage has problems with cracking and fissures. Through the methodology used, the aim is to determine the effect of the physical and mechanical properties of the concrete by adding polypropylene and cabuya fibers, the level used i quasi-experimental, physical tests were carried out on the aggregates, for a pilot design of 21 MPa with standard dosage, for the optimal percentage of polypropylene fiber (PF) in addition to weights 0.4%, 0.8% and 1.2% and a mixture was continued with cabuya fiber (CF) 1.5%, 2%, 2.5%, the physical results obtained from fresh concrete such as Slump gave us a slump of 88.9 mm and a temperature of 26 °C, on the other hand the similarity in the mixture of (% PF + % CF) and the union (0.8% PF 2% CF), presented favorable behavior with percentages higher than standard concrete in mechanical tests. in 22.54%, 9.78%, 15.38% and 1.78% respectively, where the optimum of PF and CF is 0.8% PF and in the mixture 0.8 PF + 2% CF having values higher than the specific pattern, where we establish whose data are obtained the tests on their mechanical properties do comply with the design parameters, concluding that adding polypropylene fiber and rope fiber to concrete favors its mechanical characteristics and can be used in structural elements.		
Corresponding Author:	Juan Martin Garcia Chumacero, Engineer Universidad Senor de Sipan Chiclayo, Chiclayo PERU		
Corresponding Author Secondary Information:			
Corresponding Author's Institution:	Universidad Senor de Sipan		
Corresponding Author's Secondary Institution:			
First Author:	Jose Marcial Garcia Villegas, Bachelor		
First Author Secondary Information:			
Order of Authors:	Jose Marcial Garcia Villegas, Bachelor		
	Elber Guevara Guevara, Bachelor		
	Juan Martin Garcia Chumacero, Engineer		
Order of Authors Secondary Information:			
Author Comments:	Dear Editor, We submit the manuscript entitled "USE OF POLYPROPYLENE FIBERS AND CABUYA TO IMPROVE THE PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETE", we are aware of the usefulness and profit that this valuable manuscript		

JOSE MARCIAL GARCIA VILLEGAS < gvillegasjosema@uss.edu.pe>

IISS-D-24-00770 - Innovative Infrastructure Solutions - Submission Confirmation USE OF POLYPROPYLENE FIBERS AND CABUYA TO IMPROVE THE PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETE for co-author - [EMID:d76f881c3420073e]

Innovative Infrastructure Solutions (IISS) <em@editorialmanager.com>

29 de mayo de 2024, 12:05

Responder a: "Innovative Infrastructure Solutions (IISS)" <reddiroja.cherasala@springer.com>
Para: Jose Marcial Garcia Villegas <gvillegasjosema@uss.edu.pe>

IISS-D-24-00770

"USE OF POLYPROPYLENE FIBERS AND CABUYA TO IMPROVE THE PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETE"

Full author list: Jose Marcial Garcia Villegas; Elber Guevara Guevara; Juan Martin Garcia Chumacero

Dear Bachelor Jose Garcia Villegas,

We have just received the submission entitled: "USE OF POLYPROPYLENE FIBERS AND CABUYA TO IMPROVE THE PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETE" for possible publication in Innovative Infrastructure Solutions, and you are listed as one of the co-authors.

The manuscript has been submitted to the journal by Dr. JGarcia Juan Martin Garcia Chumacero who will be able to track the status of the paper through his/her login.

If you have any objections, please contact the editorial office as soon as possible. If we do not hear back from you, we will assume you agree with your co-authorship.

Thank you very much.

With kind regards,

Springer Journals Editorial Office Innovative Infrastructure Solutions

This letter contains confidential information, is for your own use, and should not be forwarded to third parties.

Recipients of this email are registered users within the Editorial Manager database for this journal. We will keep your information on file to use in the process of submitting, evaluating and publishing a manuscript. For more information on how we use your personal details please see our privacy policy at https://www.springernature.com/production-privacy-policy. If you no longer wish to receive messages from this journal or you have questions regarding database management, please contact the Publication Office at the link below.

In compliance with data protection regulations, you may request that we remove your personal registration details at any time. (Use the following URL: https://www.editorialmanager.com/iiss/login.asp?a=r). Please contact the publication office if you have any questions.

Anexo III. Matriz de consistencia

	Allexo III. Matriz de consistencia				
Formulación del problema	¿Qué efectos tiene la		ra de cabuya en sus c 0 kg/cm2, Chiclayo 20		cas del concreto
	Objetivo general		Objetivos	específicos	
Objetivos de investigación	Determinar el efecto de las propiedades mecánicas del concreto adicionando fibras de polipropileno y de cabuya f'c = 210 kg/cm2	Determinar las propiedades físicas de los agregados y propiedades físico- mecánicos de fibra de cabuya y polipropileno.	Determinar el porcentaje óptimo de fibra polipropileno con adición en pesos de 0.4%, 0.8%, y 1.2%	Evaluar las propiedades mecánicas del concreto f c=210 kg/cm2 con porcentaje óptimo de polipropileno más la adición de fibra de cabuya en 1.5%, 2% y 2.5%	Determinar el porcentaje óptimo de la mixtura de fibra de polipropileno y fibra de cabuya.
Hipótesis	Si incorporamos PP en		4, 0.8 y 1.2 % y fibra c des mecánicas del cor		2.5% favorece las
Variables		le dependiente (VI	•	Variable indep Fibras de Po Fibras de	olipropileno
Población y muestra	• == ==================================		Población Muestra Lo conforma todas las muestras de concreto en total los 217 testigos que abarcan el diseño de mezcla de 210 Kg/cm2. Muestra 31 muestras para concre muestras para el concre muestras para la mixtur.		oncreto patrón, 93 oncreto con PP, 93 ixtura de PP Y FC.
Tipo de investigación y diseño de investigación	Inve	de investigación stigación Aplicada enfoque cuantitativ	vo	Diseño de in diseño exp nivel cuasi e	perimental
Técnicas/ instrumentos	Guí	Técnica a de observación		Instrur Fichas Técnica labora	s y equipos de

Anexo IV. Operacionalización de variables

Variable Dependiente (VD): Propiedades del concreto

Tabla VII.

Operacionalización de VD

Variable	Definición conceptual	Definición operacional	Propiedades Mecánicas (Resistencia)	Indicativo	Técnicas e Instrumentos de Recolección de Información
	El concreto se produce	Se analizará las propiedades	compresión		
	mezclando los	físicas y	tracción	Probetas a	Observación, técnicas y
Propiedade	tres	mecánicas del	flexión	edades de	equipos de laboratorio
s del concreto	ingredientes esenciales.	concreto, diseños de FC	nexion	7, 14 y 28 días	
001101010	cemento, agua	210 kg/cm ² .	Módulo de	aido	
	y agregado, el	_	elasticidad		
	cuarto				
	ingrediente es el aditivo, pero				
	es arbitraria				
	[41]				

Variable Independiente (VI): Fibras de polipropileno, Fibra de cabuya

Tabla VIII.

Operacionalización de VI

Técnicas e Instrum s de Recolección Información	de
Observación Fich	has
Técnicas y Equipo	
laboratorio	
Observación Fich	has
Técnicas y Equipo	os de
laboratorio	
,)	laboratorio

Anexo V. Informe del Laboratorio

AUTORIZACIÓN PARA RECOLECCIÓN DE LA INFORMACIÓN

Ferreñafe, diciembre del 2023

Quien suscribe:

Sr. VICENTE LEONIDAS MURGA VASQUEZ
Representante Legal – Empresa SEGENMA

AUTORIZA: Permiso para recojo de información pertinente en función del proyecto de investigación, denominado EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO.

Por el presente, el que suscribe, señor Vicente Leonidas Murga Vásquez representante legal de la empresa SEGENMA, AUTORIZO a los estudiantes Garcia Villegas Jose Marcial identificado con DNI: 76948652 y Guevara Guevara Elber identificado con DNI:74374480, de la Escuela Profesional de Ingeniería Civil, y autores de investigación denominado EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO, al uso de dicha información que conforma el expediente técnico, así como hojas de memoria, cálculos entre otros como planos para efectos exclusivamente académicos de la elaboración de tesis, enunciada líneas arriba de quien solicita se garantice la absoluta confidencialidad de la información solicitada.

Atentamente

Leanidas Murga Vasaues
16000 Lecanous

Nombre y Apellidos: Leonidas Murga Vásquez

DNI N° 17432465

Cargo de la Empresa: Representante Legal

Prolongación Bolognesi Km. 3.5
Pimentel – Lambayeque
R.U.C. 20480781334
Email: servicios@lemswyceirl.com

Solicitud de Ensayo : **0706J_24/ LEMS W&C**Solicitante : García Villegas José Marcial

Guevara Guevara Elber

Proyecto / Obra : Tesis: Efectos de Fibras de Polipropileno y Cabuya Sobre

la Mejora de Propiedades Físicas y Mecánicas del Concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de apertura : Viernes, 07 de junio del 2024 Inicio de ensayo : Viernes, 07 de junio del 2024 Fin de ensayo : Viernes, 07 de junio del 2024

NORMA: MÉTODO DE ENSAYO NORMALIZADO PARA DETERMINAR LA DENSIDAD DEL

CEMENTO PORTLAND

REFERENCIA: N.T.P. 334.005-2011

INSTRUMENTOS: Botella de Le Chatelier

Termómetro digital Balanza digital

MATERIAL: FIBRA DE CABUYA

1 PESO ESPECÍFICO DE MASA	(gr/cm³)	0.767	
---------------------------	----------	-------	--

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.
- '- El líquido utilizado es Kerosene.
- ´- Se realizó ciclos de baño maría con agua regulada a tempretura de 20°C .
- '- La lectura inicial se tomó luego de estabilizar el volumen del líquido .

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo

: 0706J_24/ LEMS W&C

Solicitante

: García Villegas José Marcial Guevara Guevara Elber

Proyecto / Obra

[:] Tesis: Efectos de Fibras de Polipropileno y Cabuya Sobre la Mejora de Propiedades

Físicas y Mecánicas del Concreto

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de apertura : Viernes, 07 de junio del 2024 Inicio de ensayo : Viernes, 07 de junio del 2024 Fin de ensayo : Viernes, 07 de junio del 2024

Ensayo

: AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados. 3a. Edición

(Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado.

Referencia

: NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra: FIBRA DE CABUYA

Peso Unitario Suelto Seco	(Kg/m³)	25.46
Contenido de Humedad	(%)	8.62

Peso Unitario Compactado Seco	(Kg/m³)	58.65	
Contenido de Humedad	(%)	8.62	

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo: 0706J_24/ LEMS W&C García Villegas José Marcial Solicitante Guevara Guevara Elber

Proyecto Tesis: Efectos de Fibras de Polipropileno y Cabuya Sobre la Mejora de Propiedades Físicas y Mecánicas del Concreto

Ubicación Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura : Viernes, 07 de junio del 2024 Inicio de ensayo : Viernes, 07 de junio del 2024 : Viernes, 07 de junio del 2024 Fin de ensayo

ABSORCIÓN ENSAYO: NORMA DE REFERENCIA: N.T.P. 400.022

Muestra: FIBRA DE CABUYA Proveniencia: Chota-Cajamarca

I. DATOS

		F-2	F-3
1 Masa del material superficialmente seco	(gr)	20.40	20.30
2 Masa del material secado al horno	(gr)	19.80	19.60

II .- RESULTADOS

				PROMEDIO
1 PORCENTAJE DE ABSORCIÓN	%	3.03	3.57	3.30

<u>Observaciones :</u>
- Muestreo e identificación realizados por el solicitante.

ALEMS WEC EIRL

Solicitud de Ensayo : 0706J_24/ LEMS W&C
Solicitante : García Villegas José Marcial

: Guevara Guevara Elber

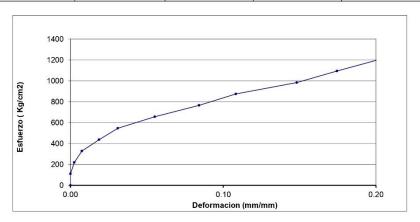
Proyecto / Obra : Tesis: Efectos de Fibras de Polipropileno y Cabuya Sobre la Mejora de Propiedades Físicas y Mecánicas del

Concreto

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de apertura : Viernes, 07 de junio del 2024 Inicio de ensayo : Viernes, 07 de junio del 2024 Fin de ensayo : Viernes, 07 de junio del 2024

Muestras : FIBRA DE CABUYA


Código	Norma
NTP 339.517:2003	GEOSINTÉTICOS. Método normalizado para propiedades de tensión de tela
(revisada el 2019)	delgada de plástico.

Datos de la Muestra

Longitud Total	Longitud Calibrada	Ancho	Espesor	Área
(mm)	(mm)	(mm)	(mm)	(cm²)
41.30	40.00	0.02	0.05	0.00103

Resultados de Ensayo

Longitud Calibrada Final (pulg)	Energía de Tensión a la rotura (pulg-lbs- fuerza/pulg³)	Módulo Secante (PSI/pulg/pulg)	Módulo Elástico (Kgf/cm/cm)	Elongación a la Fluencia (%)
49.4		-	14107.03	3.1
Punto de Fluencia (Kg/cm²)	Resistencia a la Tracción (Kg/cm2)	Punto de Rotura (Kg/cm2)	Resiliencia (PSI/pulg ³)	Elongación a la Rotura (%)
546.6	1312.0	1312.0	8.5	151

OBSERVACIONES :

Muestreo, identificación y ensayo realizado por el solicitante.

Fibra para concreto

Fibra Z de Polipropileno

Descripción: Fibra inerte de polipropileno 100% vírgenes químicamente para la prevención de las rajaduras en el concreto. Cumple con las Normas ASTM C1116 Tipo I – II, ASTM C 1399 y resistencia residual. ASTM C 1116–95.

Ventajas

- Reduce la permeabilidad.
- Reduce la contracción y resistencia al impacto y la ductilidad.
- Bloquea la propagación de fisura quedando como micro rajaduras.
- Resistente a álcalis.
- No corrosivo.
- Reduce la pérdida de agua en las primeras 3 horas al 50%.
- No afecta el proceso de hidratación del cemento.
- Resistente a la abrasión.

Usos

En cualquier hormigón de cemento Portland que necesite tenacidad, resistencia al agrietamiento y mejore el sello contra el agua.

Aplicación

- -400gr x m³
- 6 a 8kg. Reemplazo de la fibra metálica.
- -400gr x m³ para concreto menor de F′c = 300 Kg/cm²
- -950gr Concreto mayor de F'c = 300kg/cm²
- Reemplazo Fierro de temperatura 1.5 a 1.6kg por m³ de concreto.
- Concreto: 50gr x Bolsa de cemento.
- Mortero: 30gr x Bolsa de cemento.

Información técnica

- Absorción: Ninguna.
- Gravedad específica: 0.9.
- Temperatura de encendido: 590°C.
- Conductividad térmica: Menor de 1 BTU-in/hr-ft2-°F.
- Conductividad eléctrica: Mayor de 1e + 10 ohm-cm.
- Resistencia a ácidos y sales.
- Ácido acético al 10% durante 28 días: Resistente.

E-mail: ventas@zaditivos.com.pe | cotizacion@zaditivos.com.pe | web site: www.zaditivos.com.pe

San Borja: Av. San Luis 3051. Telf: (01) 715 5744 / 981 288 456 | Callao: Av. Elmer Faucett 1631. Telf: (01) 715 -5770 / 998 128 493

Chiclayo: Calle Los Tumbos 505. Urb. San Eduardo. Telf: (074) 223 718 / 994 278 778 | Pucallpa: Jr. Coronel Portillo 744. Telf: (061) 573 591 / 998 128 495

Piura: Av. Bolognesi 311. Int. 3. Telf: (073) 321 480 / 972 001 351 | Sullana: Av. José de Lama 344. Telf: (073) 509 408 / 923 055 398

Cuzco: Av. Tomasa Titto Condemayta 1032 - Wanchaq. Telf: (084) 257 111 / 994 268 292

Arequipa: Calle Paucarpata 323A - Cercado. Telf: (054) 203 388 / 994 044 894 | Trujillo: Av. América Sur 818. Urb. Palermo Telf.: (044) 425 548 - 998 127 657

El mejor amigo del concreto

(3) Av. Los Faisanes N° 675. Urb. La Campiña, Chorrillos. Lima - Perú.

② (01) 2523058 □ 950 093 271 / 994 268 534 / 998 128 514 / 996 330 130

Ficha técnica - Edición 19 - Versión 0718

- Salmuera durante 28 días: Resistente.
- Punto de fusión: 160 170°C.
- Resistencia antialcalina: 100% resistente.
- Módulo de elasticidad: 15,000 Kg./cm².
- Alargamiento a la rotura: 20 30%.
- Resistencia a la tracción: 560 765 MPA.

Resistencia Residual

La resistencia residual media deberá ser mayor a 3 kg/cm² con un coeficiente de variación de 10% según la Norma ASTM C-1399.

Envases

Bolsa 1.6Kg. Medidas de 2" y 2 1/4".

Cuidados

Se recomienda el uso de guantes, lentes y mascarilla. Para mayor detalle remítase a la hoja de seguridad del producto.

E-mail: ventasezaditivos.com.pe | cotizacionezaditivos.com.pe | web site: www.zaditivos.com.pe

San Borja: Av. San Luis 3051. Telf: (01) 715 5744 / 981 288 456 | Callao: Av. Elmer Faucett 1631. Telf: (01) 715-5770 / 998 128 493

Chiclayo: Calle Los Tumbos 505. Urb. San Eduardo. Telf: (074) 223 718 / 994 278 778 | Pucallpa: Jr. Coronel Portillo 744. Telf: (061) 573 591 / 998 128 495

Piura: Av. Bolognesi 311. Int. 3. Telf: (073) 321 480 / 972 001 351 | Sullana: Av. José de Lama 344. Telf: (073) 509 408 / 923 055 398

Cuzco: Av. Tomasa Titto Condemayta 1032 - Wanchaq. Telf: (084) 257 111 / 994 268 292

Arequipa: Calle Paucarpata 323A - Cercado. Telf: (054) 203 388 / 994 044 894 | Trujillo: Av. América Sur 818. Urb. Palermo Telf.: (044) 425 548 - 998 127 657

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

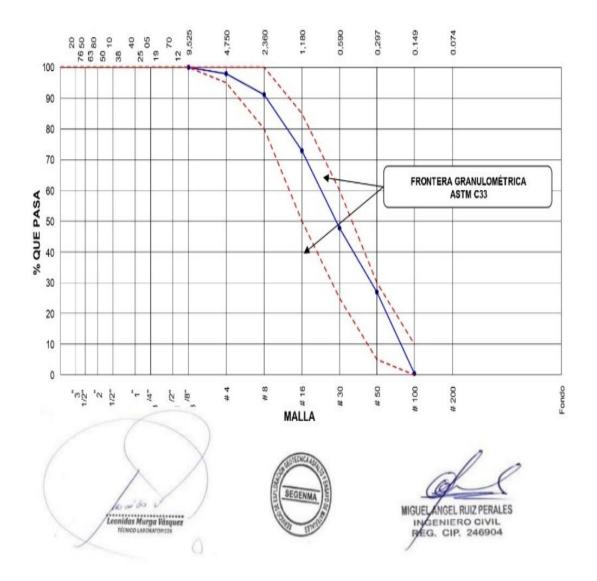
LABORATORIO SEGENMA

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE **TESIS**

PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO.


UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

PROCEDENCIA : La Victoria Pátapo **FECHA** : MAYO DEL 2023

3 1/2" 90.00 mm 100.00 100.00 100.00 2 1/2" 63.00 mm 100.00 100.		/lalla	Peso Retenido g	% Parcial Retenido	% Acumulado Retenido	% Acumulado que pasa	ASTM "LIM INF"	ASTM "LIM SUP
3" 75.00 mm 100.00 100.00 21/2" 63.00 mm 100.00 100	4"	100.00 mm					100.00	100.00
2 1/2" 63.00 mm 100.00 100.00 100.00 11/2" 37.50 mm 100.00	3 1/2"	90.00 mm					100.00	100.00
2" 50.00 mm 100.00 100.00 11/2" 37.50 mm 100.00 100.00 1" 25.00 mm 100.00 100.00 3/4" 19.00 mm 100.00 100.00 1/2" 12.50 mm 100.00 100.00 3/8" 9.50 mm 100.00 100.00 #4 4.75 mm 23.2 2.10 2.10 97.90 95.00 100.00 #8 2.36 mm 75.1 6.80 8.90 91.10 80.00 100.0 # 16 1.18 mm 201.3 18.22 27.12 72.88 50.00 85.00 # 30 600 μm 277.4 25.11 52.23 47.77 25.00 60.00 # 50 300 μm 230.4 20.86 73.09 26.91 5.00 30.00 # 100 150 μm 292.1 26.44 99.53 0.47 0.00 10.00 Fondo - 5.2 0.47 100.00 0.00 - - -	3"	75.00 mm					100.00	100.00
1 1/2" 37.50 mm 100.00	2 1/2"	63.00 mm					100.00	100.00
1" 25.00 mm 100.00 100.00 100.00 100.00 1/2" 12.50 mm 100.00 100	2"	50.00 mm					100.00	100.00
3/4" 19.00 mm 100.00 100.00 100.00 1/2" 12.50 mm 100.00 1	1 1/2"	37.50 mm					100.00	100.00
1/2" 12.50 mm 100.00 1	1"	25.00 mm					100.00	100.00
3/8" 9.50 mm 100.00 100.00 100.00 100.00	3/4"	19.00 mm					100.00	100.00
#4 4.75 mm 23.2 2.10 2.10 97.90 95.00 100.0 #8 2.36 mm 75.1 6.80 8.90 91.10 80.00 100.0 #16 1.18 mm 201.3 18.22 27.12 72.88 50.00 85.00 #30 600 µm 277.4 25.11 52.23 47.77 25.00 60.00 #50 300 µm 230.4 20.86 73.09 26.91 5.00 30.00 #100 150 µm 292.1 26.44 99.53 0.47 0.00 10.00 Fondo - 5.2 0.47 100.00 0.00	1/2"	12.50 mm					100.00	100.00
#8 2.36 mm 75.1 6.80 8.90 91.10 80.00 100.0 #16 1.18 mm 201.3 18.22 27.12 72.88 50.00 85.00 #30 600 μm 277.4 25.11 52.23 47.77 25.00 60.00 #50 300 μm 230.4 20.86 73.09 26.91 5.00 30.00 #100 150 μm 292.1 26.44 99.53 0.47 0.00 10.00 Fondo - 5.2 0.47 100.00 0.00	3/8"	9.50 mm				100.00	100.00	100.00
# 16	#4	4.75 mm	23.2	2.10	2.10	97.90	95.00	100.00
# 30 600 µm 277.4 25.11 52.23 47.77 25.00 60.00 # 50 300 µm 230.4 20.86 73.09 26.91 5.00 30.00 # 100 150 µm 292.1 26.44 99.53 0.47 0.00 10.00 - 5.2 0.47 100.00 0.00	#8	2.36 mm	75.1	6.80	8.90	91.10	80.00	100.00
# 50 300 μm 230.4 20.86 73.09 26.91 5.00 30.00 # 100 150 μm 292.1 26.44 99.53 0.47 0.00 10.00 Fondo - 5.2 0.47 100.00 0.00	# 16	1.18 mm	201.3	18.22	27.12	72.88	50.00	85.00
# 100 150 µm 292.1 26.44 99.53 0.47 0.00 10.00 Fondo - 5.2 0.47 100.00 0.00	# 30	600 µm	277.4	25.11	52.23	47.77	25.00	60.00
Fondo - 5.2 0.47 100.00 0.00	# 50	300 µm	230.4	20.86	73.09	26.91	5.00	30.00
	# 100	150 µm	292.1	26.44	99.53	0.47	0.00	10.00
MF 2.63	Fondo	-	5.2	0.47	100.00	0.00	-	-
							MF	2.63

CURVA GRANULOMÉTRICA

TMN

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 — PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

PESO UNITARIO Y VACIOS

(MTC E-203 / ASTM C-29)

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

GUEVARA GUEVARA ELBER

TESIS : EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

PROCEDENCIA : Agregado fino - La victoria Patapo

FECHA : MAYO DEL 2023

1. AGREGADO FINO

1. Contenido de Humedad

Descripcion	1	2
Peso de tara (gr)		
Peso de la tara + muestra húmeda (gr)	745.2	750.3
Peso de la tara + muestra seca (gr)	731.8	735.4
Peso del agua contenida (gr)	13.4	14.9
Peso de la muestra seca (gr)	731.8	735.4
Contenido de Humedad (%)	1.8	2.0
Contenido de Humedad Promedio (%)	1.9	31

1. Peso Unitario Suelto

Descripcion	1	2	3
Peso del recipiente + muestra (gr)	2881.6	2881.2	2883.6
Peso del recipiente (gr)	181.1	181.1	181.1
Peso de la muestra (gr)	2700.5	2700.1	2702.5
Volumen (m*)	2086.0	2086.0	2086.0
Peso Unitario Suelto Humedo (kg/cm²)	1.295	1.294	1.296
Peso Unitario Suelto Seco		1.295	

2. Peso Unitario Compacto

Descripcion	1	2	3	
Peso del recipiente + muestra (gr)	3334.5	3332.3	3327.5	
Peso del recipiente (gr)	197.2	197.2	197.2	
Peso de la muestra (gr)	3137.3	3135.1	3130.3	
Volumen (m³)	2086.0	2086.0	2086.0	
Peso Unitario Suelto Humedo (kg/cm²)	1.504	1.503	1.501	
Peso Unitario Suelto Seco	1.503			

MIGUEL ANGEL RUIZ PERALES
INGENIERO CIVIL
BEG. CIP. 246904

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

GRAVEDAD ESPECIFICA Y ABSORCIÓN

(MTC E-205,206 / ASTM C-127,128 / AASHTO T-84, T-85)

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

GUEVARA GUEVARA ELBER

TESIS : EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

PROCEDENCIA: Agregado fino - La victoria Patapo

FECHA : MAYO DEL 2023

1. AGREGADO FINO

	DATOS		1	2	3	4
1	Peso Mat. Sat. Sup. Seco (en Aire) (gr)	gr.	227.3	227.4	227.4	
2	Peso Frasco + agua	gr.	366,95	366.95	366.95	
3	Peso Frasco + agua + A (gr)	gr.	594.3	594.3	596.8	
4	Peso del Mat. + agua en el frasco (gr)	gr.	510.20	510.40	510.20	
5	Vol de masa + vol de vacío = C-D (gr)	gr.	84.1	83.9	86.6	
6	Pe. De Mat. Seco en estufa (105°C) (gr)	gr.	223.90	223.50	223.30	
7	Vol de masa = E - (A - F) (gr)		80.7	80.1	82.5	

	RESULTADOS		DOS			
8	Pe bulk (Base seca) o Peso específico de masa= F/E	2.664	2.663	2.579	2.635	
9	Pe bulk (Base saturada) o Peso específico SSS= A/E	2.704	2.709	2.626	2.680	
10	Pe aparente (Base Seca) o Peso específico aparente= F/G	2.776	2.792	2.707	2.759	
11	% de absorción = ((A - F)/F)*100	1.519	1.740	1.845	1.701	

MIGUEL ANGEL RUIZ PERALES
INGENIERO CIVIL
REG. CIP. 246904

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

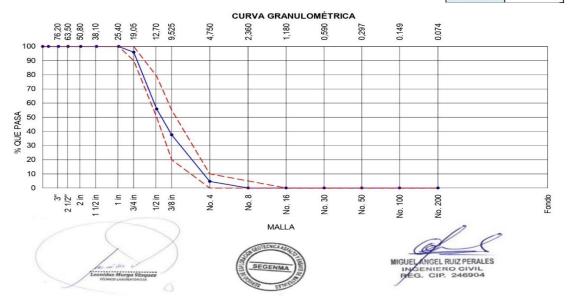
RESOLUCION N° 001083-2009/DSD-INDECOPI
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE N° S0090112

LABORATORIO SEGENMA

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO. TESIS


UBICACIÓN

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE PROCEDENCIA : Chancada Tres Tomas

FECHA MAYO DEL 2023

AGREGADO GRUESO ASTM C33/C33M - 18 - HUSO # 67

	RA DE TAMICES 8" de diámetro	Peso Retenido	% Parcial	% Acumulado	% Acumulado	ESPECIF	ICACIÓN
Nombre	mm	g	Retenido	Retenido	que Pasa	Mínimo	Máximo
4 in'	100.00 mm				100.00	100.00	100.00
3 1/2 in	90.00 mm				100.00	100.00	100.00
3 in	75.00 mm				100.00	100.00	100.00
2 1/2 in	63.00 mm				100.00	100.00	100.00
2 in	50.00 mm				100.00	100.00	100.00
1 1/2 in	37.50 mm				100.00	100.00	100.00
1 in	25.00 mm				100.00	100.00	100.00
3/4 in	19.00 mm	230.2	4.07	4.07	95.93	90.00	100.00
1/2 in	12.50 mm	2264.8	40.07	44.15	55.85	50.00	79.00
3/8 in	9.50 mm	1035.6	18.32	62.47	37.53	20.00	55.00
No. 4	4.75 mm	1857.3	32.86	95.33	4.67	0.00	10.00
No. 8	2.36 mm	261.7	4.63	99.96	0.04	0.00	5.00
No. 16	1.18 mm					0.00	0.00
No. 30	600 µm					0.00	0.00
No. 50	300 µm					0.00	0.00
No. 100	150 µm					0.00	0.00
No. 200	75 μm				0.04	0.00	0.00
< No. 200	< No. 200	2.0	0.04	100.00	0.00	(2)	121
						MF	7.07
						TMN	1/2 in

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

PESO UNITARIO Y VACIOS

(MTC E-203 / ASTM C-29)

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

GUEVARA GUEVARA ELBER

TESIS : EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO.
PROCEDENCIA
LAMBAYEQUE: Chancada - Tres tomas

FECHA : MAYO DEL 2023

1. AGREGADO GRUESO

1. Contenido de Humedad

Descripcion	1	2	
Peso de tara (gr)			
Peso de la tara + muestra húmeda (gr)	1525.6	1524.6	
Peso de la tara + muestra seca (gr)	1520.8	1519.4	
Peso del agua contenida (gr)	4.8	5.2	
Peso de la muestra seca (gr)	1520.8	1519.4	
Contenido de Humedad (%)	0.3	0.3	
Contenido de Humedad Promedio (%)	0.3	328	

1. Peso Unitario Suelto

Descripcion	1	2	3	
Peso del recipiente + muestra (gr)	3326.3	3318.5	3325.2	
Peso del recipiente (gr)	183.1	183.1	183.1	
Peso de la muestra (gr)	3143.2	3135.4	3142.1	
Volumen (m²)	2086.0	2086.0	2086.0	
Peso Unitario Suelto Humedo (kg/cm³)	1.507	1.503	1.506	
Peso Unitario Suelto Seco		1.505		

1. Peso Unitario Compactado

Descripcion	1	2	3
Peso del recipiente + muestra (gr)	3570.5	3574.5	3578.8
Peso del recipiente (gr)	181.4	181.4	181.4
Peso de la muestra (gr)	3389.1	3393.1	3397.4
Volumen (m²)	2086.0	2086.0	2086.0
Peso Unitario Compactado Humedo (kg/cm³	1.625	1.627	1.629
Peso Unitario Compactado Seco		1.627	

Leonidas Murga Vásquez

SEGENMA STREET

MIGUEL ANGEL RUIZ PERALES
INGENIERO CIVIL
REG. CIP. 246904

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

GRAVEDAD ESPECIFICA Y ABSORCIÓN

(MTC E-205,206 / ASTM C-127,128 / AASHTO T-84, T-85)

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

GUEVARA GUEVARA ELBER

TESIS : EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO, LAMBAYEQUE

PROCEDENCIA : Chancada - Tres tomas FECHA : MAYO DEL 2023

1. AGREGADO GRUESO

	DATOS		1	2	3	4
1	Peso de la muestra saturada con superficie seca (B) (aire)	gr.	1484.1	1484.8	1484.8	
2	Peso de la canastilla dentro del agua	gr.				
3	Peso de la muestra saturada+peso canastilla dentro del agi	gr.	940.6	941	940.2	
4	Peso de la muestra saturada dentro del agua (C)	gr.	940.6	941	940.2	
5	Peso de la tara	gr.				
6	Peso de la tara + muestra seca (horno)	gr.	1471.6	1471.50	1471.6	
7	Peso de la muestra seca (A)	gr.	1471.6	1471.50	1471.6	

	RESULTADOS					PROMEDIO
8	Peso Específico de masa		2.708	2.706	2.702	2.705
9	Peso Específico de masa saturada superficie seco		2.731	2.730	2.726	2.729
10	Peso específico aparente		2.771	2.774	2.769	2.771
11	Porcentaje de absorción		0.85	0.90	0.90	0.883

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL PEG. CIP. 246904

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la temperatura De mezcla de hormigón N.T.P. 339.184

Autores : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

Tesis : EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE

PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO.

Ubicación : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Tempe	eratura
Muestra	IDENTII IOACION	f'c (Días) Obi	Obtenido	unidad	
01	Diseño fc 210 Kg/cm² - 0.8% Polipropileno + 1.5% Fibra Cabuya	210	17/06/2023	26.1	C°
02	Diseño fc 210 Kg/cm² - 0.8% Polipropileno + 2% Fibra Cabuya	210	19/06/2023	26.1	C°
03	Diseño fc 210 Kg/cm² - 0.8% Polipropileno + 2.5% Fibra Cabuya	210	20/06/2023	28.3	C°

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

nidas Murga Vásques

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del concreto de cemento Portland N.T.P. 339.035:2009

Autores : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

Tesis EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE

PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO.

Ubicación : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Asentamiento			
muestra	IDENTII TOAGION	Diseno Vaciado Asentamiento	Obtenido (cm)				
01	Diseño fc 210 Kg/cm² - 0.8% Polipropileno + 1.5% Fibra Cabuya	210	17/06/2023	3	7.62		
02	Diseño fc 210 Kg/cm² - 0.8% Polipropileno + 2% Fibra Cabuya	210	19/06/2023	3	7.62		
03	Diseño fc 210 Kg/cm² - 0.8% Polipropileno + 2.5% Fibra Cabuya	210	20/06/2023	3 1/2	8.89		

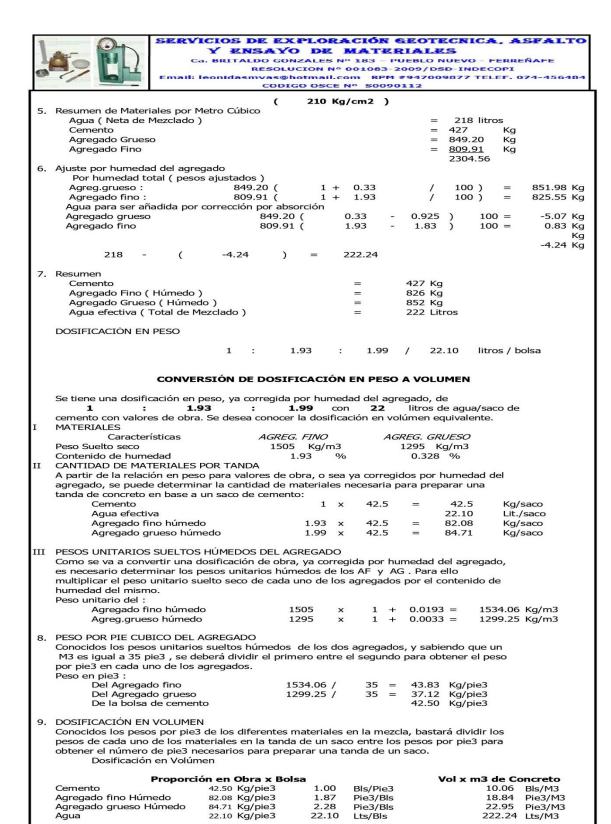
OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

LABORATORIO SEGENMA

Ca. BRITALDO GONZALES Nº 183 – PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI
Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE Nº S0090112

AUTORES: GARCÍA VILLEGAS JOSÉ MARCIAL- GUEVARA GUEVARA ELBER


TESIS: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS

Y MECÁNICAS DEL CONCRETO.

UBICACIÓN DE LA OBRA PROVINCIA CHICLAYO

REGIÓN LAMBAYEQUE

KEGIGH EANDATEC	
DISEÑO DE MEZCLAS	(210 Kg/cm2)
A. REQUERIMIENTOS :	
Resistencia Especifícada :	210 Kg/cm².
Uso	VARIOS
Cemento Portland Tipo :	I
Coeficiente de Variación estimado :	
Agregados :	
	- Tres tomas
Arena Cantera : la victoria	a - Patapo
	ADEMA DIEDDA
Características :	ARENA PIEDRA
Humedad Natural Absorción	1.931 0.328 1.828 0.925
Peso Específico de Masa	2.635 2.705
Módulo de Fineza	2.63
Tamaño Max. Nominal del A. Grueso	1/2"
Peso Unitario Suelto Seco	1.505 1.295
Peso Unitario Varillado	1.627 1.503
B. DOSIFICACION	
1. Selección de la relación Agua - Cemento (A/C	
Para lograr una resist. característica de :	= 210 Kg / Cm2.
se requiere una relación A/C =	0.52
Por condiciones de exposición se requiere una A/C =	0.52
Relación A/C de diseño =	0.52
Relacion Ay C de diserio =	0.31
Para lograr un asentamiento de 3" a 4 "	218 litros/m3 Aire: 2.5 %
2. Contenido de cemento	
	27 Kg. ; Aprox. 10.06 Bolsas/m3
3. Estimacion del contenido de agregado grueso	
0.565 m3 x 1503	Kg/m3 = 849.20 Kg
 Estimación del contenido de Agregado Fino Volumen de Agua 	= 0.218 m3
Volumen sólido de cemento :	427.5 / 3150 = 0.136 m3
Volumen sólido de Agreg, grueso :	849.2 / 2705 = 0.314 m3
Volumen de aire	= 0.025 m3
	0.693 m3
Volumen sólido de arena requerido:	1 - 0.693 = 0.307 m3
Peso de arena seca requerida :	$0.307 \times 2635 = 809.91 \text{ Kg}$

22.10

AG. GRUESO

CEMENTO

1.0

AG. FINO

Lts/Bls

Ferreñafe, Mayo del 2023

AGUA

222.24 Lts/M3

Litros/bolsa

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECȚO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO : Cemento Portland tipo I
DESCRIPCIÓN : Probeta Patron
F'C DE DISEÑO : 210 Kg/cm²

NO de Coulou y Messa de la Doubata	Fecha de	Fecha del	Edad de la Probeta	Diseño f'c	Carga de	Pro	beta	Carga de		
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	(en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	Resister Comp (Kg/cm2) 149.8 148.6 149.3	•
01 P-001 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/23	18/05/23	7	210	259.6	15.00	176.7	26,472	149.8	71.3
02 P-002 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/23	18/05/23	7	210	257.6	15.00	176.7	26,268	148.6	70.8
03 P-003 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/23	18/05/23	7	210	258.8	15.00	176.7	26,390	149.3	71.1

Ferreñafe, 18 Mayo del 2023.

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF. 0/4-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I

DESCRIPCIÓN ; Probeta Patron

DESCRIPCIÓN : Probeta Patron F'c DE DISEÑO : 210 Kg/cm²

No de Carlos y Marco de la Danhata	Fecha de	Fecha del	Edad de la Probeta	Diseño f'c	Carga de	Pro	beta	Carga de	Comp (Kg/cm2) 181.5 182.5	ncia a la resión
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	(en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Probeta Patron, Diseño l'c 210 Kg/cm²	11/05/23	25/05/23	14	210	314.5	15.00	176.7	32,070	181.5	86.4
02 P-002 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/23	25/05/23	14	210	316.3	15.00	176.7	32,254	182.5	86.9
03 P-003 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/23	25/05/23	14	210	314.2	15.00	176.7	32,040	181.3	86.3
	\	\	/	\		/		/	/	

Ferreñafe, 25 Mayo del 2023.

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI
Email: leunidasmvas@hotmail.com RPM #947009877 TELEF, 074-456484
CODIGO OSCF Nº S0090112
LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO : Cemento Portland tipo I
DESCRIPCIÓN : Probeta Patron
F' c DE DISEÑO : 210 Kg/cm²

NA J. A. J M J. L. B. L	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Prol	beta	Carga de	(Kg/cm2)	
N° de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)		%
01 P-001 Probeta Patron, Diseño f'c 210 Kg/cm²	11/05/23	08/06/23	28	210	376.3	15.00	176.7	38,372	217.1	103.4
02 P-002 Probeta Patron, Diseño f'c 210 Kg/cm²	11/05/23	08/06/23	28	210	378.5	15.00	176.7	38,596	218.4	104.0
03 P-003 Probeta Patron, Diseño f'c 210 Kg/cm²	11/05/23	08/06/23	28	210	377.2	15.00	176.7	38,464	217.7	103.6
				/	/	/	/	/	/	

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL REG. CIP. 246904

Ferreñafe, 08 Junio del 2023.

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

GARCIA VILLEGAS JOSE MARCIAL

AUTORES :

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO : Cemento Portland tipo I
DESCRIPCIÓN : 0.4% Polipropileno
F'c DE DISEÑO : 210 Kg/cm²

No de Calares Marca de la Dachata	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Comp	
№ de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.4%, Diseño f'c 210 Kg/cm²	18/05/23	25/05/23	7	210	336.6	15.00	176.7	34,324	194.2	92.5
02 P-002 Polipropileno 0.4%, Diseño f'c 210 Kg/cm²	18/05/23	25/05/23	7	210	345.6	15.00	176.7	35,242	199.4	95.0
03 P-003 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/23	25/05/23	7	210	338.9	15.00	176.7	34,558	195.6	93.1

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL REG. CIP. 246904

Ferreñafe, 25 de Mayo de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF: 0/4-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

: GARCIA VILLEGAS JOSE MARCIAL AUTORES

GUEVARA GUEVARA ELBER

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

: PROVINCIA. CHICLAYO, DEPARTAMENTO. UBICACIÓN

LAMBAYEQUE

CEMENTO : Cemento Portland tipo I DESCRIPCIÓN : 0.4% Polipropileno F'c DE DISEÑO : 210 Kg/cm²

NA L A J N	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Comp	
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.4%, Diseño f'c 210 Kg/cm²	18/05/23	01/06/23	14	210	365.3	15.00	176.7	37,250	210.8	100.4
02 P-002 Polipropileno 0.4%, Diseño f'c 210 Kg/cm²	18/05/23	01/06/23	14	210	369.6	15.00	176.7	37,689	213.3	101.6
03 P-003 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/23	01/06/23	14	210	367.2	15.00	176.7	37,444	211.9	100.9
		_			/	/	_	/	/	

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL BEG. CIP. 246904

Ferreñafe, 1 de Junio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF. 0/4-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I
DESCRIPCIÓN ; 0.4% Polipropileno
F'C DE DISEÑO ; 210 Kg/cm²

NO de Cadara y Marca de la Producta	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Comp	ncia a la resión
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.4%, Diseño f'c 210 Kg/cm²	18/05/23	15/06/23	28	210	400.6	15.00	176.7	40,850	231.2	110.1
02 P-002 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/23	15/06/23	28	210	403.3	15.05	177.9	41,125	232.7	110.8
03 P-003 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/23	15/06/23	28	210	399.3	15.01	177.0	40,717	230.4	109.7
	_	\	/	/	/	/		_	/	/

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL PEG. CIP. 246904

Ferreñafe, 15 de Junio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECUPI
Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF. 0/4-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

TESIS MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I
DESCRIPCIÓN ; 0.8% Polipropileno
F'C DE DISEÑO ; 210 Kg/cm²

NO de Cadan y Marco de la Brahada	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Comp	ncia a la resión
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8%, Diseño f'c 210 Kg/cm²	18/05/23	25/05/23	7	210	349.8	15.00	176.7	35,670	201.8	96.1
02 P-002 Polipropileno 0.8%, Diseño f'c 210 Kg/cm²	18/05/23	25/05/23	7	210	351.2	15.00	176.7	35,813	202.7	96.5
03 P-003 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/23	25/05/23	7	210	348.7	15.00	176.7	35,558	201.2	95.8
	_		_	\		/	_	_	/	

MIGUEL ANGEL RUIZ PERALES
INGENIERO CIVIL
REG. CIP. 246904

Ferreñafe, 25 de Mayo de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF: 0/4-456484
CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I
DESCRIPCIÓN ; 0.8% Polipropileno
F'C DE DISEÑO ; 210 Kg/cm²

No. de Cordona Marco do la Cordona	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Comp	ncia a la resión
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8%, Diseño f'c 210 Kg/cm²	18/05/23	01/06/23	14	210	386.7	15.00	176.7	39,433	223.1	106.3
02 P-002 Polipropileno 0.8%, Diseño f'c 210 Kg/cm²	18/05/23	01/06/23	14	210	390.3	15.00	176.7	39,800	225.2	107.2
03 P-003 Polipropileno 0.8%, Diseño f'c 210 Kg/cm²	18/05/23	01/06/23	14	210	388.8	15.00	176.7	39,647	224.4	106.8
			\	/	/	/		/	/	

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL REG. CIP. 246904

Ferreñafe, 1 de Junio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF. 0/4-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECȚO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I
DESCRIPCIÓN ; 0.8% Polipropileno
F'C DE DISEÑO ; 210 Kg/cm²

No de Carlos y Marco de la Darlos	Fecha de	Fecha del	Edad de la Probeta	Diseño f'c	Carga de	Pro	beta	Carga de		ncia a la resión
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	(en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/23	15/06/23	28	210	437.2	15.00	176.7	44,582	252.3	120.1
02 P-002 Polipropileno 0.8%, Diseño f'c 210 Kg/cm²	18/05/23	15/06/23	28	210	440.2	15.05	177.9	44,888	254.0	121.0
03 P-003 Polipropileno 0.8%, Diseño f'c 210 Kg/cm²	18/05/23	15/06/23	28	210	437.2	15.01	177.0	44,582	252.3	120.1
	/	/		/	/	/		/	/	/

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL DEG. CIP. 246904

Ferreñafe, 15 de Junio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF. 0/4-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I
DESCRIPCIÓN ; 1.2% Polipropileno
F'C DE DISEÑO ; 210 Kg/cm²

NO de Corlan y Marco de la Dochata	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Compr	
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	9/0
01 P-001 Polipropileno 1.2%, Diseño f'c 210 Kg/cm²	19/05/23	26/05/23	7	210	340.3	15.00	176.7	34,701	196.4	93.5
02 P-002 Polipropileno 1.2%, Diseño f'c 210 Kg/cm²	19/05/23	26/05/23	7	210	337.7	15.00	176.7	34,436	194.9	92.8
03 P-003 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/23	26/05/23	7	210	338.4	15.00	176.7	34,507	195.3	93.0
	_		\	/	/	/	_		/	

Ferreñafe, 26 de Mayo de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF: 0/4-456484 CODIGO OSCE Nº S0090112

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

LABORATORIO SEGENMA

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE UBICACIÓN

: Cemento Portland tipo I CEMENTO DESCRIPCIÓN ; 1.2% Polipropileno F'c DE DISEÑO : 210 Kg/cm²

No de Order y Marco de la Brekata	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Compr	
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 1.2%, Diseño f'c 210 Kg/cm²	19/05/23	02/06/23	14	210	370.3	15.00	176.7	37,760	213.7	101.8
02 P-002 Polipropileno 1.2%, Diseño f'c 210 Kg/cm²	19/05/23	02/06/23	14	210	371.2	15.00	176.7	37,852	214.2	102.0
03 P-003 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/23	02/06/23	14	210	369.5	15.00	176.7	37,679	213.2	101.5
		_	/	/	/	/	_	/	/	

Ferreñafe, 2 de Junio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF: 0/4-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

: GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO.LAMBAYEQUE TESIS

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

: Cemento Portland tipo I CEMENTO DESCRIPCIÓN ; 1.2% Polipropileno F'c DE DISEÑO ; 210 Kg/cm²

NO de Codos y Marco de la Conhate	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Comp	
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 1.2%, Diseño f'c 210 Kg/cm²	19/05/23	16/06/23	28	210	429.3	15.00	176.7	43,777	247.7	118.0
02 P-002 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/23	16/06/23	28	210	427.5	15.05	177.9	43,593	246.7	117.5
03 P-003 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/23	16/06/23	28	210	428.6	15.01	177.0	43,705	247.3	117.8
		\	/	/	/	/	_	_	/	

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL DEG. CIP. 246904

Ferreñafe, 16 de Junio de 2023

Ca. BRITALDO GONZALES № 183 – PUEBLO NUEVO - FERREÑAFE

RESOLUCION № 001083-2009/DSD-INDECUPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF. 0/4-456484

CUDIGO OSCE № 50090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECȚO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO : Cemento Portland tipo I

DESCRIPCIÓN ; 0.8% Polipropileno + 1.5% Fibra Cabuya

F'c DE DISEÑO ; 210 Kg/cm²

NA J. A. J Married J. L. Barbara	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Comp	ncia a la resión
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8% + Fibra Cabuya 1.5, Diseño f'c 210 Kg/cm²	17/06/23	24/06/23	7	210	334.8	15.00	176.7	34,140	193.2	92.0
02 P-002 Polipropileno 0.8% + Fibra Cabuya 1.5, Diseño fc 210 Kg/cm²	17/06/23	24/06/23	7	210	340.2	15.00	176.7	34,691	196.3	93.5
03 P-003 Polipropileno 0.8% + Fibra Cabuya 1.5, Diseño fc 210 Kg/cm²	17/06/23	24/06/23	7	210	339.2	15.00	176.7	34,589	195.7	93.2
	_	\	\	/	\	/	_		/	

Ferreñafe, 24 de Junio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF. 0/4-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECȚO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I

DESCRIPCIÓN : 0.8% Polipropileno + 1.5% Fibra Cabuya

F'c DE DISEÑO ; 210 Kg/cm²

No de Carlos y Marco de la Carlos	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Compi	
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8% + Fibra Cabuya 1.5, Diseño f'c 210 Kg/cm²	17/06/23	01/07/23	14	210	360.3	15.00	176.7	36,741	207.9	99.0
02 P-002 Polipropileno 0.8% + Fibra Cabuya 1.5, Diseño fc 210 Kg/cm²	17/06/23	01/07/23	14	210	369.3	15.00	176.7	37,658	213.1	101.5
03 P-003 Polipropileno 0.8% + Fibra Cabuya 1.5, Diseño fc 210 Kg/cm²	17/06/23	01/07/23	14	210	367.2	15.00	176.7	37,444	211.9	100.9
				/	/	/			/	_

MIGUEL ANGEL RUIZ PERALES
INGENIERO CIVIL
REG. CIP. 246904

Ferreñafe, 1 de Julio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF: 0/4-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO : Cemento Portland tipo I

DESCRIPCIÓN ; 0.8% Polipropileno + 1.5% Fibra Cabuya

F'c DE DISEÑO ; 210 Kg/cm²

NO de Cadas y Massa de la Bashata	Fecha de	Fecha del	Edad de la Probeta	Diseño f'c	Carga de	Proi	beta	Carga de	Resister Comp	
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	(en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8% + Fibra Cabuya 1.5, Diseño fc 210 Kg/cm²	17/06/23	15/07/23	28	210	408.6	15.00	176.7	41,666	235.8	112.3
02 P-002 Polipropileno 0.8% + Fibra Cabuya 1.5, Diseño fc 210 Kg/cm²	17/06/23	15/07/23	28	210	413.3	15.05	177.9	42,145	238.5	113.6
03 P-003 Polipropileno 0.8% + Fibra Cabuya 1.5, Diseño fc 210 Kg/cm²	17/06/23	15/07/23	28	210	409.5	15.01	177.0	41,758	236.3	112.5
	\			/	/	/	/	/	/	

MIGUEL ANGEL RUIZ PERALES INGENIERO GIVIL INGENIERO GIVIL

Ferreñafe, 15 de Julio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF. 0/4-456484 CODIGO OSCE № S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I

DESCRIPCIÓN : 0.8% Polipropileno + 2% Fibra Cabuya

F'c DE DISEÑO ; 210 Kg/cm²

No. de Carlana Maria de la Radia	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resistencia a la Compresión	
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8% + Fibra Cabuya 2%, Diseño fc 210 Kg/cm²	19/06/23	26/06/23	7	210	350.8	15.00	176.7	35,772	202.4	96.4
02 P-002 Polipropileno 0.8% + Fibra Cabuya 2%, Diseño fc 210 Kg/cm²	19/06/23	26/06/23	7	210	360.3	15.00	176.7	36,741	207.9	99.0
03 P-003 Polipropileno 0.8% + Fibra Cabuya 2%, Diseño fc 210 Kg/cm²	19/06/23	26/06/23	7	210	352.4	15.00	176.7	35,935	203.3	96.8
		_	\	\	/	/	_		/	_

MIGUEL ANGEL RUIZ PERALES IN SENIERO GIVIL REG. CIP. 246904

Ferreñafe, 26 de Junio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF. 0/4-456484 CODIGO OSCE № S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I

DESCRIPCIÓN : 0.8% Polipropileno + 2% Fibra Cabuya

F'c DE DISEÑO ; 210 Kg/cm²

No. de Carlos a Marca da la Carlos	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resister Compr	
N° de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8% + Fibra Cabuya 2%, Diseño fc 210 Kg/cm²	19/06/23	03/07/23	14	210	390.6	15.00	176.7	39,830	225.4	107.3
02 P-002 Polipropileno 0.8% + Fibra Cabuya 2%, Diseño fc 210 Kg/cm²	19/06/23	03/07/23	14	210	392.2	15.00	176.7	39,993	226.3	107.8
03 P-003 Polipropileno 0.8% + Fibra Cabuya 2%, Diseño fc 210 Kg/cm²	19/06/23	03/07/23	14	210	389.3	15.00	176.7	39,698	224.6	107.0
	/	/	/	/	/	/	_	/	/	

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL PEG. CIP. 246904

Ferreñafe, 3 de Julio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmyas@hotmail.com RPM #94/0098// TELEF. 0/4-456484

CODIGO OSCE Nº S0090112

LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I

DESCRIPCIÓN ; 0.8% Polipropileno + 2% Fibra Cabuya

F'c DE DISEÑO ; 210 Kg/cm²

N° de Orden y Marca de la Probeta	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Pro	beta	Carga de	Resistencia a la Compresión	
N* de Urden y Marca de la Prodeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8% + Fibra Cabuya 2%, Diseño fc 210 Kg/cm²	19/06/23	17/07/23	28	210	448.5	15.00	176.7	45,734	258.8	123.2
02 P-002 Polipropileno 0.8% + Fibra Cabuya 2%, Diseño fc 210 Kg/cm²	19/06/23	17/07/23	28	210	445.7	15.05	177.9	45,449	257.2	122.5
03 P-003 Polipropileno 0.8% + Fibra Cabuya 2%, Diseño fc 210 Kg/cm²	19/06/23	17/07/23	28	210	443.6	15.01	177.0	45,235	256.0	121.9
				_		/		_	/	

MIGUEL ANGEL RUIZ PERALES INGENIERO GIVIL BEG. CIP. 246904

Ferreñafe, 17 de Julio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF. 0/4-456484 CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL TESIS : GUEVARA GUEVARA ELBER

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

: Cemento Portland tipo I CEMENTO

DESCRIPCIÓN ; 0.8% Polipropileno + 2.5% Fibra Cabuya

F'c DE DISEÑO ; 210 Kg/cm²

N° de Orden y Marca de la Probeta	Fecha de	Fecha del	Edad de la Probeta	Diseño f'c	Carga de	Pro	beta	Carga de	Resistencia a la Compresión	
N* de Orden y Marca de la Probeta	Vaciado	Ensayo	(en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8% + Fibra Cabuya 2.5%, Diseño f'c 210 Kg/cm²	20/06/23	27/06/23	7	210	320.3	15.00	176.7	32,662	184.8	88.0
02 P-002 Polipropileno 0.8% + Fibra Cabuya 2.5%, Diseño fc 210 Kg/cm²	20/06/23	27/06/23	7	210	326.6	15.00	176.7	33,304	188.5	89.7
03 P-003 Polipropileno 0.8% + Fibra Cabuya 2.5%, Diseño fc 210 Kg/cm²	20/06/23	27/06/23	7	210	324.7	15.00	176.7	33,110	187.4	89.2
		_	\	/	/	/		/	/	

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL BEG. CIP. 246904

Ferreñafe, 27 de Junio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF: 0/4-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO ; Cemento Portland tipo I

DESCRIPCIÓN ; 0.8% Polipropileno + 2.5% Fibra Cabuya

F'c DE DISEÑO ; 210 Kg/cm²

N° de Orden y Marca de la Probeta	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Proi	Probeta	Carga de	Resistencia a la Compresión	
n* de Orden y Marca de la Prodeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8% + Fibra Cabuya 2.5%, Diseño f'c 210 Kg/cm²	20/06/23	04/07/23	14	210	353.7	15.00	176.7	36,067	204.1	97.2
02 P-002 Polipropileno 0.8% + Fibra Cabuya 2.5%, Diseño fc 210 Kg/cm²	20/06/23	04/07/23	14	210	356.3	15.00	176.7	36,333	205.6	97.9
03 P-003 Polipropileno 0.8% + Fibra Cabuya 2.5%, Diseño fc 210 Kg/cm²	20/06/23	04/07/23	14	210	352.8	15.00	176.7	35,976	203.6	96.9
				/	/	/		/	/	

MIGUEL ANGEL RUIZ PERALES INCENIERO CIVIL REG, CIP. 246904

Ferreñafe, 4 de Julio de 2023

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #94/0098// TELEF: 0/4-456484

CODIGU OSCE Nº S0090112 LABORATORIO SEGENMA

RESULTADOS DE ENSAYOS DE RESISTENCIA A LA COMPRESIÓN AXIAL ESTÁNDAR DE CONCRETO MTC E-704 / ASTM C-39 / AASHTO T-22

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO : Cemento Portland tipo I

DESCRIPCIÓN ; 0.8% Polipropileno + 2.5% Fibra Cabuya

F'c DE DISEÑO ; 210 Kg/cm²

No. J. Calara Marca J. L. Barbara	Fecha de	Fecha del	Edad de la	Diseño f'c	Carga de	Probeta		Carga de	Resistencia a la Compresión	
Nº de Orden y Marca de la Probeta	Vaciado	Ensayo	Probeta (en días)	(Kg/cm²)	Rotura (KN)	Ø	Area (cm2)	Rotura (Kg.F)	(Kg/cm2)	%
01 P-001 Polipropileno 0.8% + Fibra Cabuya 2.5%, Diseño f'c 210 Kg/cm²	20/06/23	18/07/23	28	210	382.2	15.00	176.7	38,974	220.5	105.0
02 P-002 Polipropileno 0.8% + Fibra Cabuya 2.5%, Diseño f'c 210 Kg/cm²	20/06/23	18/07/23	28	210	390.3	15.05	177.9	39,800	225.2	107.2
03 P-003 Polipropileno 0.8% + Fibra Cabuya 2.5%, Diseño fc 210 Kg/cm²	20/06/23	18/07/23	28	210	385.3	15.01	177.0	39,290	222.3	105.9
		\	\	\	/	/		/	/	

Ferreñafe, 18 de Julio de 2023

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001.083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112

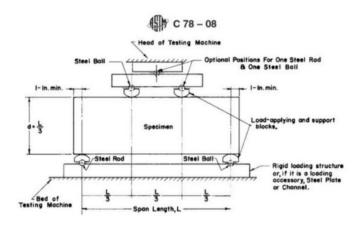
LABORATORIO SEGENMA

GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO. TESIS

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


CEMENTO : Cemento Portland tipo I : Concreto endurecido Tipo de muestra : Probeta Patron

Descripción Presentación : Prismas de concreto endurecido

210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	18/05/2023	7 días	TERCIO CENTRAL	45.0	20.7 kg/cm2
2 F-002 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	18/05/2023	7 días	TERCIO CENTRAL	45.0	20.0 kg/cm2
3 F-003 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	18/05/2023	7 días	TERCIO CENTRAL	45.0	20.5 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112

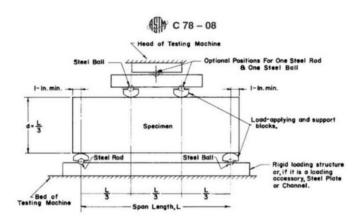
LABORATORIO SEGENMA

: GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO. TESIS

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


CEMENTO : Cemento Portland tipo I Tipo de muestra : Concreto endurecido Descripción : Probeta Patron

: Prismas de concreto endurecido Presentación

: 210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	25/05/2023	14 días	TERCIO CENTRAL	45.0	26.7 kg/cm2
2 F-002 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	25/05/2023	14 días	TERCIO CENTRAL	45.0	26.4 kg/cm2
3 F-003 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	25/05/2023	14 días	TERCIO CENTRAL	45.0	26.9 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASPALTO Y ENSAYO DE MATERIALES Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 80090112

LABORATORIO SEGENMA

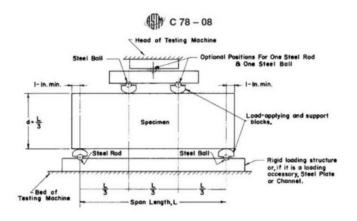
AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS : EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO Cemento Portland tipo I Tipo de muestra : Concreto endurecido


: Probeta Patron Descripción

: Prismas de concreto endurecido Presentación

F'c de diseño : 210 Kg/cm²

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
	VACIADO	KOTOKA		FALLA		KOTOKA
1 F-001 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	08/06/2023	28 días	TERCIO CENTRAL	45.0	29.1 kg/cm2
2 F-002 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	08/06/2023	28 días	TERCIO CENTRAL	45.0	29.4 kg/cm2
3 F-003 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	08/06/2023	28 días	TERCIO CENTRAL	45.0	28.9 kg/cm2

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112

LABORATORIO SEGENMA

: GARCIA VILLEGAS JOSE MARCIAL AUTORES

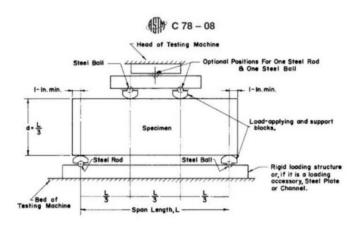
: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECANICAS DEL CONCRETO. TESIS

UBICACIÓN

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE CEMENTO

: Cemento Portland tipo I


Tipo de muestra : Concreto endurecido : 0.4% Polipropileno Descripción

: Prismas de concreto endurecido Presentación

F'c de diseño : 210 Kg/cm²

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	TERCIO CENTRAL	45.0	22.7 kg/cm2
2 F-002 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	TERCIO CENTRAL	45.0	22.3 kg/cm2
3 F-003 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	TERCIO CENTRAL	45.0	22.4 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 LABORATORIO SEGENMA

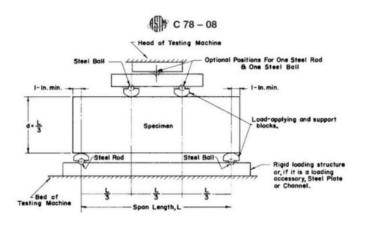
GARCIA VILLEGAS JOSE MARCIAL AUTORES

:GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I CEMENTO


: Concreto endurecido Tipo de muestra Descripción : 0.4% Polipropileno

Presentación : Prismas de concreto endurecido

F'c de diseño : 210 Kg/cm²

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	01/06/2023	14 días	TERCIO CENTRAL	45.0	27.0 kg/cm2
2 F-002 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	01/06/2023	14 días	TERCIO CENTRAL	45.0	26.7 kg/cm2
3 F-003 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	01/06/2023	14 días	TERCIO CENTRAL	45.0	26.9 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES № 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION № 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE № 50090112

LABORATORIO SEGENMA

AUTORES GARCIA VILLEGAS JOSE MARCIAL

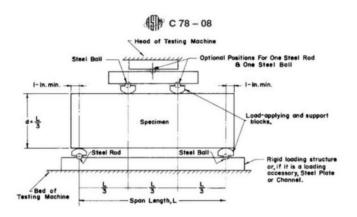
:GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I

CEMENTO


Concreto endurecido Tipo de muestra : 0.4% Polipropileno Descripción

: Prismas de concreto endurecido Presentación

: 210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	TERCIO CENTRAL	45.0	29.6 kg/cm2
2 F-002 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	TERCIO CENTRAL	45.0	30.2 kg/cm2
3 F-003 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	TERCIO CENTRAL	45.0	29.8 kg/cm2

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112

LABORATORIO SEGENMA

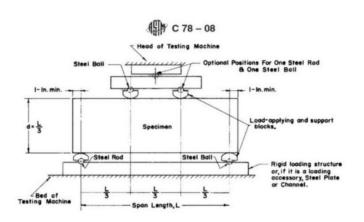
GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I CEMENTO


Tipo de muestra : Concreto endurecido

Descripción : 0.8% Polipropileno Presentación : Prismas de concreto endurecido

: 210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	TERCIO CENTRAL	45.0	22.7 kg/cm2
2 F-002 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	TERCIO CENTRAL	45.0	23.0 kg/cm2
3 F-003 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	TERCIO CENTRAL	45.0	23.0 kg/cm2

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES Ca. BRITALDO GONZALES Nº 103 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112

LABORATORIO SEGENMA

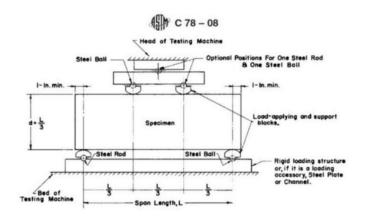
GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

UBICACIÓN PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE Cemento Portland tipo I


CEMENTO Tipo de muestra : Concreto endurecido Descripción 0.8% Polipropileno

Presentación Prismas de concreto endurecido

210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

	2010-2010-0010-0010-001	annous more account				
IDENTIFICACIÓN	VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	01/06/2023	14 días	TERCIO CENTRAL	45.0	28.4 kg/cm2
2 F-002 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	01/06/2023	14 días	TERCIO CENTRAL	45.0	27.9 kg/cm2
3 F-003 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	01/06/2023	14 días	TERCIO CENTRAL	45.0	28.2 kg/cm2

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES № 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION № 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE № 500901112

LABORATORIO SEGENMA

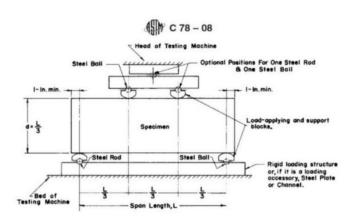
GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

TESIS : EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I


CEMENTO : Concreto endurecido Tipo de muestra : 0.8% Polipropileno Descripción

Presentación : Prismas de concreto endurecido

F'c de diseño : 210 Kg/cm²

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	TERCIO CENTRAL	45.0	30.2 kg/cm2
2 F-002 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	TERCIO CENTRAL	45.0	29.4 kg/cm2
3 F-003 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	TERCIO CENTRAL	45.0	29.9 kg/cm2

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES № 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION № 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112

LABORATORIO SEGENMA

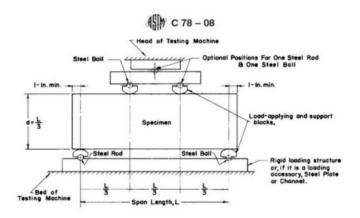
AUTORES GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I


CEMENTO : Concreto endurecido Tipo de muestra Descripción : 1.2% Polipropileno

: Prismas de concreto endurecido Presentación

: 210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

						V-
IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	26/05/2023	7 días	TERCIO CENTRAL	45.0	25.4 kg/cm2
2 F-002 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	26/05/2023	7 días	TERCIO CENTRAL	45.0	26.1 kg/cm2
3 F-003 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	26/05/2023	7 días	TERCIO CENTRAL	45.0	25.6 kg/cm2

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES N° 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION N° 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE N° 50090112

LABORATORIO SEGENMA

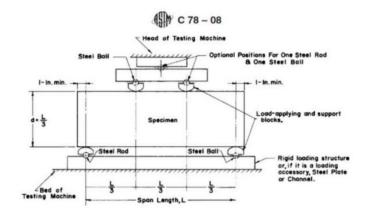
GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I


CEMENTO Concreto endurecido Tipo de muestra : 1.2% Polipropileno

Descripción : Prismas de concreto endurecido Presentación

: 210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	02/06/2023	14 días	TERCIO CENTRAL	45.0	30.7 kg/cm2
2 F-002 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	02/06/2023	14 días	TERCIO CENTRAL	45.0	31.0 kg/cm2
3 F-003 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	02/06/2023	14 días	TERCIO CENTRAL	45.0	30.8 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES № 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION № 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE № 50090112

LABORATORIO SEGENMA

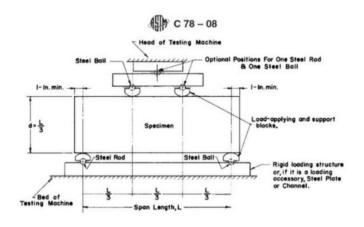
AUTORES GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I UBICACIÓN


CEMENTO Tipo de muestra Concreto endurecido : 1.2% Polipropileno Descripción

: Prismas de concreto endurecido Presentación

: 210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	16/06/2023	28 días	TERCIO CENTRAL	45.0	33.4 kg/cm2
2 F-002 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	16/06/2023	28 días	TERCIO CENTRAL	45.0	33.6 kg/cm2
3 F-003 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	16/06/2023	28 días	TERCIO CENTRAL	45.0	33.4 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

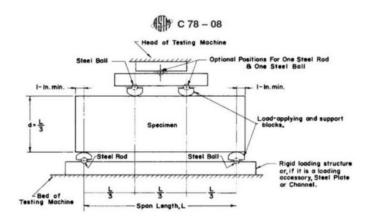
GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECANICAS DEL CONCRETO. TESIS

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO Cemento Portland tipo I


Concreto endurecido Tipo de muestra

: 0.8% Polipropileno + 1.5% Fibra Cabuya Descripción : Prismas de concreto endurecido Presentación

F'c de diseño : 210 Kg/cm²

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	24/06/2023	7 días	TERCIO CENTRAL	45.0	24.1 kg/cm2
2 F-002 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	24/06/2023	7 días	TERCIO CENTRAL	45.0	23.7 kg/cm2
3 F-003 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	24/06/2023	7 días	TERCIO CENTRAL	45.0	23.3 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

Ý ENSAÝO DE MATERIALES Ca. BRITALDO GONZALES N° 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION N° 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112

LABORATORIO SEGENMA

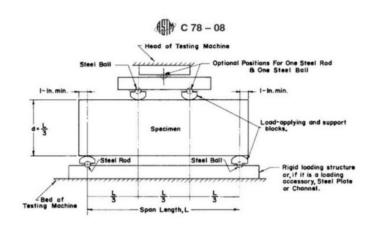
AUTORES GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÀNICAS DEL CONCRETO. TESIS

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE UBICACIÓN

CEMENTO Cemento Portland tipo I Tipo de muestra : Concreto endurecido


: 0.8% Polipropileno + 1.5% Fibra Cabuya Descripción

Presentación : Prismas de concreto endurecido

F'c de diseño : 210 Kg/cm²

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	01/07/2023	14 días	TERCIO CENTRAL	45.0	27.5 kg/cm2
2 F-002 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	01/07/2023	14 días	TERCIO CENTRAL	45.0	27.4 kg/cm2
3 F-003 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	01/07/2023	14 días	TERCIO CENTRAL	45.0	26.7 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensavo

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES № 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION № 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

GARCIA VILLEGAS JOSE MARCIAL AUTORES

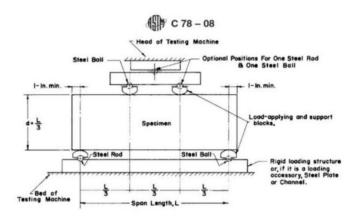
: GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO. TESIS

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I UBICACIÓN

CEMENTO

Tipo de muestra Concreto endurecido


: 0.8% Polipropileno + 1.5% Fibra Cabuya Descripción

Presentación : Prismas de concreto endurecido

: 210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

	FECHA DE	FECUA DE		UBICACIÓN DE		MÓDULO DE
IDENTIFICACIÓN	VACIADO	FECHA DE ROTURA	EDAD	FALLA	LUZ LIBRE	ROTURA
1 F-001 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	15/07/2023	28 días	TERCIO CENTRAL	45.0	30.7 kg/cm2
2 F-002 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	15/07/2023	28 días	TERCIO CENTRAL	45.0	31.3 kg/cm2
3 F-003 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	15/07/2023	28 días	TERCIO CENTRAL	45.0	30.6 kg/cm2

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES № 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION № 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

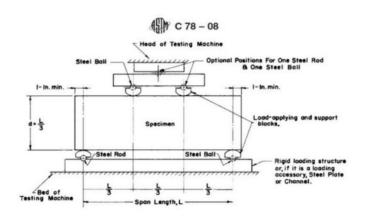
GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO. TESIS

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

CEMENTO Cemento Portland tipo I


: Concreto endurecido Tipo de muestra

: 0.8% Polipropileno + 2% Fibra Cabuya Descripción : Prismas de concreto endurecido Presentación

F'c de diseño : 210 Kg/cm²

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	26/06/2023	7 días	TERCIO CENTRAL	45.0	24.3 kg/cm2
2 F-002 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	26/06/2023	7 días	TERCIO CENTRAL	45.0	24.5 kg/cm2
3 F-003 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	26/06/2023	7 días	TERCIO CENTRAL	45.0	24.4 kg/cm2

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI Email: leonidasmvas⊕hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112

LABORATORIO SEGENMA

AUTORES GARCIA VILLEGAS JOSE MARCIAL

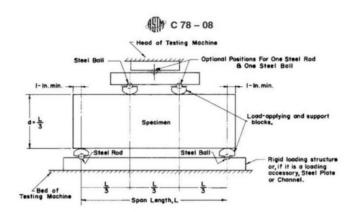
: GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I UBICACIÓN

CEMENTO Tipo de muestra


: Concreto endurecido

Descripción : 0.8% Polipropileno + 2% Fibra Cabuya Presentación : Prismas de concreto endurecido

: 210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	03/07/2023	14 días	TERCIO CENTRAL	45.0	29.4 kg/cm2
2 F-002 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	03/07/2023	14 días	TERCIO CENTRAL	45.0	29.6 kg/cm2
3 F-003 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	03/07/2023	14 días	TERCIO CENTRAL	45.0	29.4 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES № 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION № 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE № 50090112

LABORATORIO SEGENMA

GARCIA VILLEGAS JOSE MARCIAL AUTORES

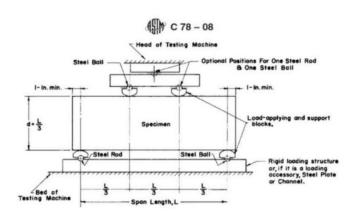
: GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I

CEMENTO


Tipo de muestra Concreto endurecido

Descripción : 0.8% Polipropileno + 2% Fibra Cabuya

Presentación : Prismas de concreto endurecido : 210 Kg/cm² F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

	55			50	94	
IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	17/07/2023	28 días	TERCIO CENTRAL	45.0	32.8 kg/cm2
2 F-002 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	17/07/2023	28 días	TERCIO CENTRAL	45.0	33.5 kg/cm2
3 F-003 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	17/07/2023	28 días	TERCIO CENTRAL	45.0	33.0 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES № 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION № 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE № 80090112

LABORATORIO SEGENMA

AUTORES GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

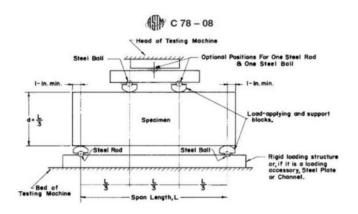
:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I UBICACIÓN

CEMENTO

: Concreto endurecido Tipo de muestra


: 0.8% Polipropileno + 2.5% Fibra Cabuya Descripción

Presentación : Prismas de concreto endurecido

F'c de diseño 210 Kg/cm²

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	27/06/2023	7 días	TERCIO CENTRAL	45.0	26.1 kg/cm2
2 F-002 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	27/06/2023	7 días	TERCIO CENTRAL	45.0	26.3 kg/cm2
3 F-003 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	27/06/2023	7 días	TERCIO CENTRAL	45.0	25.9 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112

LABORATORIO SEGENMA

AUTORES GARCIA VILLEGAS JOSE MARCIAL

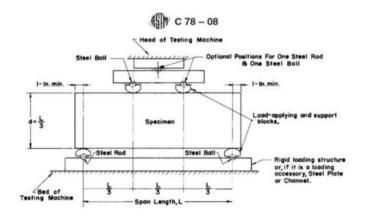
: GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y TESIS

MECÁNICAS DEL CONCRETO.

PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE Cemento Portland tipo I UBICACIÓN

CEMENTO : Concreto endurecido


Tipo de muestra : 0.8% Polipropileno + 2.5% Fibra Cabuya Descripción

Presentación : Prismas de concreto endurecido

F'c de diseño 210 Kg/cm²

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
1 F-001 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	04/07/2023	14 días	TERCIO CENTRAL	45.0	28.0 kg/cm2
2 F-002 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	04/07/2023	14 días	TERCIO CENTRAL	45.0	28.3 kg/cm2
3 F-003 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	04/07/2023	14 días	TERCIO CENTRAL	45.0	28.8 kg/cm2

OBSERVACIONES:

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES Ca. BRITALDO GONZALES № 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION № 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

LABORATORIO SEGENMA

GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

URICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE : Cemento Portland tipo I

CEMENTO Tipo de muestra


Concreto endurecido

: 0.8% Polipropileno + 2.5% Fibra Cabuya Descripción : Prismas de concreto endurecido Presentación

F'c de diseño : 210 Kg/cm²

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78 - 08

	FFOUL DE	FEOUR DE		UBICACIÓN DE		MÓDULO DE
IDENTIFICACIÓN	VACIADO	ROTURA	EDAD	FALLA	LUZ LIBRE	ROTURA
1 F-001 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	19/06/2023	17/07/2023	28 días	TERCIO CENTRAL	45.0	30.2 kg/cm2
2 F-002 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	19/06/2023	17/07/2023	28 días	TERCIO CENTRAL	45.0	30.7 kg/cm2
3 F-003 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	19/06/2023	17/07/2023	28 días	TERCIO CENTRAL	45.0	30.6 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112

LABORATORIO SEGENMA

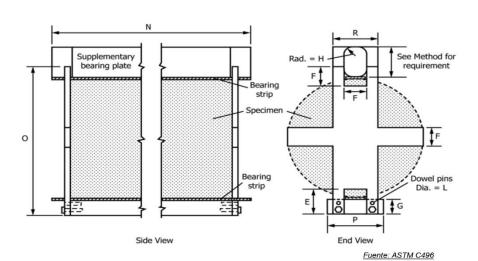
AUTORES :GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido
Descripción : Probeta patron

Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	18/05/2023	7 días	30.0	15.0	17365.83	24.6 kg/cm2
02 P-002 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	18/05/2023	7 días	30.0	15.0	17294.45	24.5 kg/cm2
03 P-003 Probeta Patron, Diseño f'c 210 Kg/cm²	11/05/2023	18/05/2023	7 días	30.0	15.0	17416.82	24.6 kg/cm2

OBSERVACIONES:

* Las muestras cumplen con las dimensiones dadas en la norma de ensayo

eonidas Murga Vásquez

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-CODIGO OSCE N° S0090112

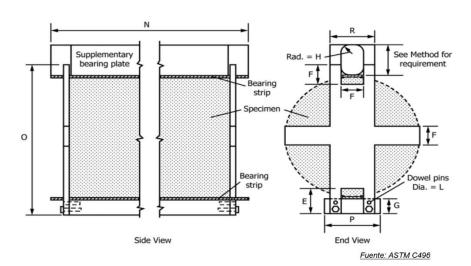
LABORATORIO SEGENMA

:GARCIA VILLEGAS JOSE MARCIAL AUTORES

:GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO. TESIS

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido : Probeta patron Descripción

Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	25/05/2023	14 días	30.0	15.0	18915.81	26.8 kg/cm2
02 P-002 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	25/05/2023	14 días	30.0	15.0	18426.34	26.1 kg/cm2
03 P-003 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	25/05/2023	14 días	30.0	15.0	18691.47	26.4 kg/cm2

OBSERVACIONES:

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074 CODIGO OSCE N° 50090112

LABORATORIO SEGENMA

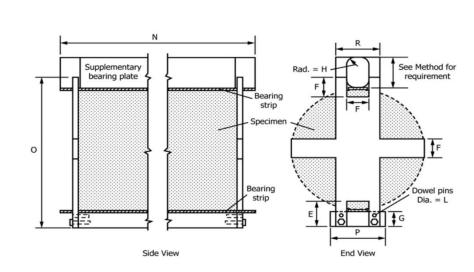
AUTORES :GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES TESIS

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido : Probeta patron Descripción

: Especímenes cilíndricos 6" x 12" Presentación


F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	08/06/2023	28 días	30.0	15.0	22393.05	31.7 kg/cm2
02 P-002 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	08/06/2023	28 días	30.0	15.0	22382.85	31.7 kg/cm2
03 P-003 Probeta Patron, Diseño fc 210 Kg/cm²	11/05/2023	08/06/2023	28 días	30.0	15.0	22454.23	31.8 kg/cm2

Fuente: ASTM C496

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE N° 50090112

LABORATORIO SEGENMA

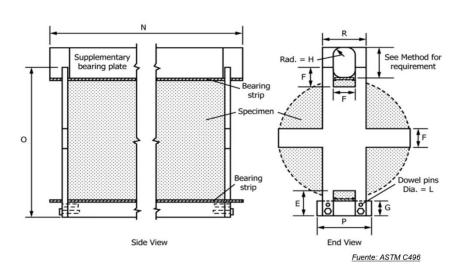
AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido
Descripción : 0.4% Polipropileno

Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	30.0	15.0	17906.28	25.3 kg/cm2
02 P-002 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	30.0	15.0	18385.55	26.0 kg/cm2
03 P-003 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	30.0	15.0	18120.42	25.6 kg/cm2

OBSERVACIONES:

* Las muestras cumplen con las dimensiones dadas en la norma de ensayo

MIGUELANGEL RUIZ PERALES
INGENIERO CIVIL
REG. CIP. 246904

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

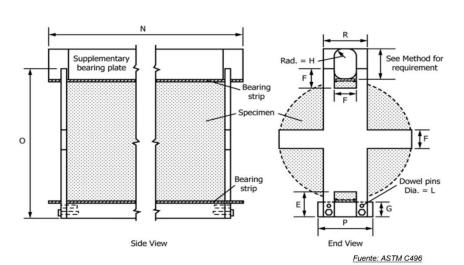
: GARCIA VILLEGAS JOSE MARCIAL **AUTORES**

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES TESIS

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


: Concreto endurecido Tipo de muestra Descripción : 0.4% Polipropileno

: Especímenes cilíndricos 6" x 12" Presentación

: 210 Kg/cm² F'c de diseño

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	01/06/2023	14 días	30.0	15.0	19639.81	27.8 kg/cm2
02 P-002 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	30.0	15.0	19945.72	28.2 kg/cm2
03 P-003 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	30.0	15.0	19650.00	27.8 kg/cm2

OBSERVACIONES:

Y ENSAYO DE MATERIALES

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

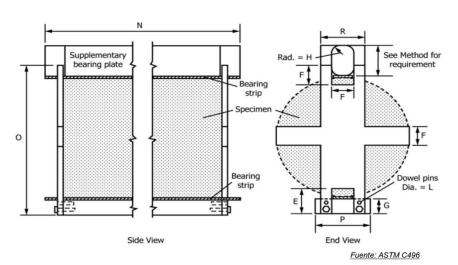
CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

: GARCIA VILLEGAS JOSE MARCIAL AUTORES

: GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO. **TESIS**

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE **UBICACIÓN**


Tipo de muestra : Concreto endurecido Descripción : 0.4% Polipropileno

Presentación : Especímenes cilíndricos 6" x 12"

: 210 Kg/cm² F'c de diseño

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	30.0	15.0	21638.46	30.6 kg/cm2
02 P-002 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	30.0	15.0	21781.22	30.8 kg/cm2
03 P-003 Polipropileno 0.4%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	30.1	15.0	21485.50	30.3 kg/cm2

OBSERVACIONES:

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074
CODIGO OSCE N° 50090112

LABORATORIO SEGENMA

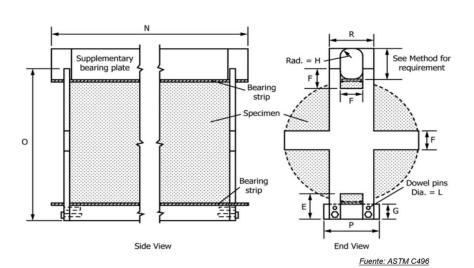
AUTORES :GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES TESIS

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


: Concreto endurecido Tipo de muestra : 0.8% Polipropileno Descripción

: Especímenes cilíndricos 6" x 12" Presentación

: 210 Kg/cm² F'c de diseño

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	30.0	15.0	20047.70	28.4 kg/cm2
02 P-002 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	30.0	15.0	19629.61	27.8 kg/cm2
03 P-003 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	25/05/2023	7 días	30.0	15.0	19935.53	28.2 kg/cm2

OBSERVACIONES:

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484
CODIGO OSCE Nº 50090112

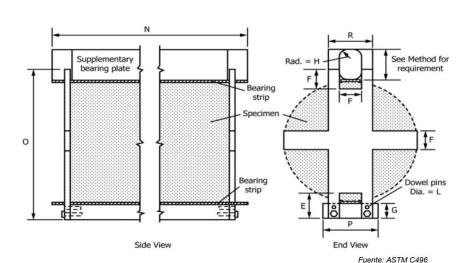
LABORATORIO SEGENMA

AUTORES : GARCIA VILLEGAS JOSE MARCIAL
TESIS : GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE

PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido
Descripción : 0.8% Polipropileno

Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	01/06/2023	14 días	30.0	15.0	22688.77	32.1 kg/cm2
02 P-002 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	01/06/2023	14 días	30.0	15.0	23106.86	32.7 kg/cm2
03 P-003 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	01/06/2023	14 días	30.0	15.0	22647.98	32.0 kg/cm2

OBSERVACIONES:

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-

CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

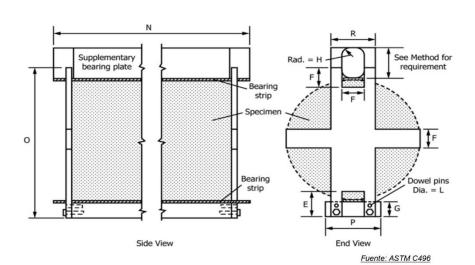
AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES TESIS

FÍSICAS Y MECÁNICAS DEL CONCRETO.

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE UBICACIÓN


Tipo de muestra : Concreto endurecido : 0.8% Polipropileno Descripción

: Especímenes cilíndricos 6" x 12" Presentación

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	30.0	15.0	25554.18	36.2 kg/cm2
02 P-002 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	30.0	15.0	25238.07	35.7 kg/cm2
03 P-003 Polipropileno 0.8%, Diseño fc 210 Kg/cm²	18/05/2023	15/06/2023	28 días	30.0	15.0	25421.62	36.0 kg/cm2

OBSERVACIONES:

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE N° 50090112

LABORATORIO SEGENMA

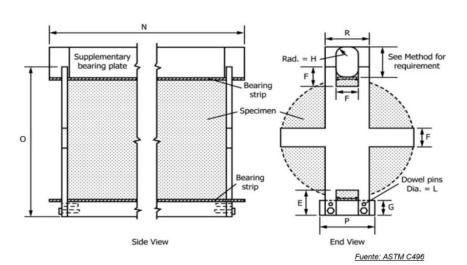
AUTORES :GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido Descripción : 1.2% Polipropileno

Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	26/05/2023	7 días	30.0	15.0	19915.13	28.2 kg/cm2
02 P-002 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	26/05/2023	7 días	30.0	15.0	20649.33	29.2 kg/cm2
03 P-003 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	26/05/2023	7 días	30.0	15.0	20241.44	28.6 kg/cm2

OBSERVACIONES:

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE N° S0090112

LABORATORIO SEGENMA

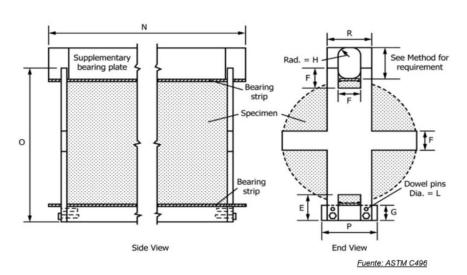
AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS

Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido Descripción : 1.2% Polipropileno

Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	02/06/2023	14 días	30.0	15.0	21974.97	31.1 kg/cm2
02 P-002 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	02/06/2023	14 días	30.0	15.0	21638.46	30.6 kg/cm2
03 P-003 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	02/06/2023	14 días	30.0	15.0	22056.54	31.2 kg/cm2

OBSERVACIONES:

TESIS

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº S0090112

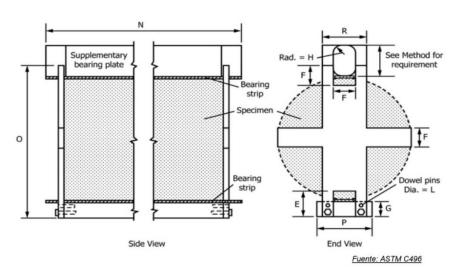
CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

AUTORES : GARCIA VILLEGAS JOSE MARCIAL : GUEVARA GUEVARA ELBER

:EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido
Descripción : 1.2% Polipropileno

Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	16/06/2023	28 días	30.0	15.0	25115.70	35.5 kg/cm2
02 P-002 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	16/06/2023	28 días	30.0	15.0	24024.60	34.0 kg/cm2
03 P-003 Polipropileno 1.2%, Diseño fc 210 Kg/cm²	19/05/2023	16/06/2023	28 días	30.0	15.0	24350.91	34.4 kg/cm2

OBSERVACIONES:

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE N° 50090112

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

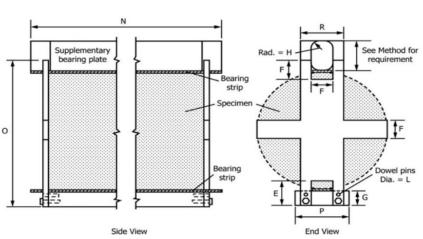
AUTORES :GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido

Descripción : 0.8% Polipropileno + 1.5% Fibra Cabuya
Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

P.							
IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	24/06/2023	7 días	30.0	15.0	17365.83	24.6 kg/cm2
02 P-002 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	24/06/2023	7 días	30.0	15.0	17192.48	24.3 kg/cm2
03 P-003 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	17/06/2023	24/06/2023	7 días	30.0	15.0	17590.17	24.9 kg/cm2

Fuente: ASTM C496

OBSERVACIONES:

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE N° S0090112

LABORATORIO SEGENMA

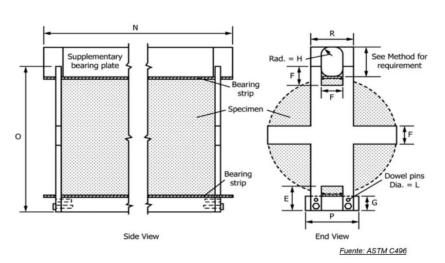
AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido

: 0.8% Polipropileno + 1.5% Fibra Cabuya Descripción Presentación : Especímenes cilíndricos 6" x 12"

: 210 Kg/cm² F'c de diseño

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	18/06/2023	02/07/2023	14 días	30.0	15.0	19262.51	27.2 kg/cm2
02 P-002 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	18/06/2023	02/07/2023	14 días	30.0	15.0	19405.27	27.5 kg/cm2
03 P-003 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	18/06/2023	02/07/2023	14 días	30.0	15.0	19333.89	27.4 kg/cm2

OBSERVACIONES:

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE Nº 50090112

LABORATORIO SEGENMA

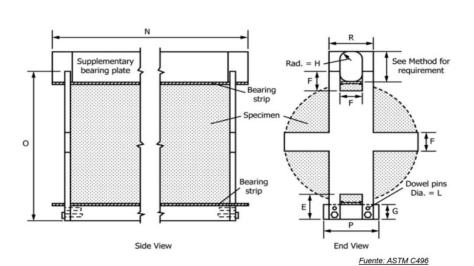
AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido

Descripción : 0.8% Polipropileno + 1.5% Fibra Cabuya
Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	18/06/2023	16/07/2023	28 días	30.0	15.0	20924.65	29.6 kg/cm2
02 P-002 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	18/06/2023	16/07/2023	28 días	30.0	15.0	21373.33	30.2 kg/cm2
03 P-003 Polipropileno 0.8% + Fibra Cabura 1.5%, Diseño fc 210 Kg/cm²	18/06/2023	16/07/2023	28 días	30.0	15.0	21148.99	29.9 kg/cm2

OBSERVACIONES:

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

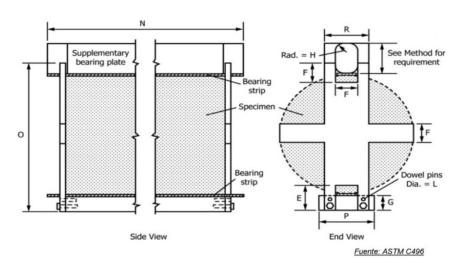
CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

AUTORES : GARCIA VILLEGAS JOSE MARCIAL
TESIS : GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido

Descripción : 0.8% Polipropileno + 2% Fibra Cabuya
Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	26/06/2023	7 días	30.0	15.0	19435.86	27.5 kg/cm2
02 P-002 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	26/06/2023	7 días	30.0	15.0	19303.30	27.3 kg/cm2
03 P-003 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	26/06/2023	7 días	30.0	15.0	19629.61	27.8 kg/cm2

OBSERVACIONES:

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION N° 001083-2009/DSD-INDECOPI Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112

LABORATORIO SEGENMA

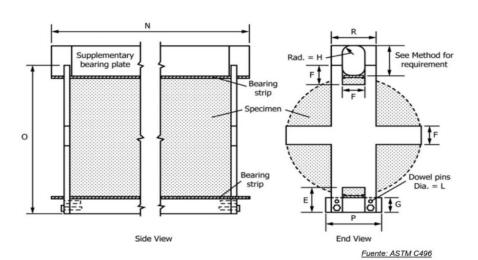
AUTORES :GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

TESIS :EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido

Descripción : 0.8% Polipropileno + 2% Fibra Cabuya Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	03/07/2023	14 días	30.0	15.0	21648.66	30.6 kg/cm2
02 P-002 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	03/07/2023	14 días	30.0	15.0	22362.46	31.6 kg/cm2
03 P-003 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	03/07/2023	14 días	30.0	15.0	21995.36	31.1 kg/cm2

OBSERVACIONES:

* Las muestras cumplen con las dimensiones dadas en la norma de ensayo

MIGUEL ANGEL RUIZ PERALES IN GENIERO GIVIL 1966. GIP. 246904

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE N° S0090112

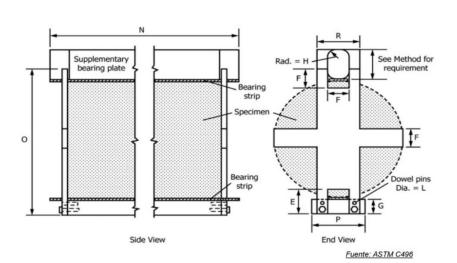
CODIGO OSCE Nº S0090117 LABORATORIO SEGENMA

AUTORES : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

TESIS : IEFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.


UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

Tipo de muestra : Concreto endurecido

Descripción : 0.8% Polipropileno + 2% Fibra Cabuya
Presentación : Especímenes cilíndricos 6" x 12"
F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	17/07/2023	28 días	30.0	15.0	26522.92	37.5 kg/cm2
02 P-002 Polipropileno 0.8% + Fibra Cabura 2%, Diseño f'c 210 Kg/cm²	19/06/2023	17/07/2023	28 días	30.0	15.0	25523.59	36.1 kg/cm2
03 P-003 Polipropileno 0.8% + Fibra Cabura 2%, Diseño fc 210 Kg/cm²	19/06/2023	17/07/2023	28 días	30.0	15.0	26329.17	37.2 kg/cm2

OBSERVACIONES:

* Las muestras cumplen con las dimensiones dadas en la norma de ensayo

nidas Murga Vásquez

MIGUEL ANGEL RUIZ PERALES
INCENIERO GIVIL
INCENIERO GIVIL

UBICACIÓN

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

Y ENSAYO DE MATERIALES

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

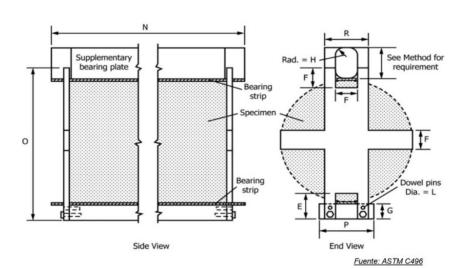
CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

: GARCIA VILLEGAS JOSE MARCIAL AUTORES TESIS : GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido

Descripción : 0.8% Polipropileno + 2.5% Fibra Cabuya : Especímenes cilíndricos 6" x 12" Presentación

F'c de diseño 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	27/06/2023	7 días	30.0	15.0	17365.83	24.6 kg/cm2
02 P-002 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	27/06/2023	7 días	30.0	15.0	17090.51	24.2 kg/cm2
03 P-003 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	27/06/2023	7 días	30.0	15.0	17559.58	24.8 kg/cm2

OBSERVACIONES:

Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE N° S0090112

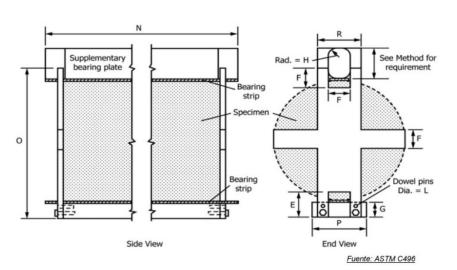
LABORATORIO SEGENMA

AUTORES : GARCIA VILLEGAS JOSE MARCIAL
TESIS : GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

UBICACIÓN : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido

Descripción : 0.8% Polipropileno + 2.5% Fibra Cabuya
Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	04/07/2023	14 días	30.0	15.0	19405.27	27.4 kg/cm2
02 P-002 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	04/07/2023	14 días	30.0	15.0	19395.07	27.4 kg/cm2
03 P-003 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	04/07/2023	14 días	30.0	15.0	19904.93	28.2 kg/cm2

OBSERVACIONES:

Las muestras cumplen con las dimensiones dadas en la norma de ensayo

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL REG. CIP. 246904

UBICACIÓN

SERVICIOS DE EXPLORACIÓN GEOTECNICA, ASFALTO Y ENSAYO DE MATERIALES

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484 CODIGO OSCE N° 50090112

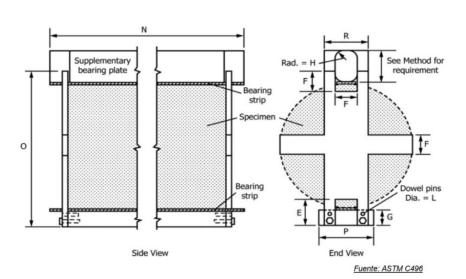
LABORATORIO SEGENMA

AUTORES : GARCIA VILLEGAS JOSE MARCIAL
TESIS : GUEVARA GUEVARA ELBER

: EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES

FÍSICAS Y MECÁNICAS DEL CONCRETO.

: PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido

Descripción : 0.8% Polipropileno + 2.5% Fibra Cabuya
Presentación : Especímenes cilíndricos 6" x 12"

F'c de diseño : 210 Kg/cm²

MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL ESFUERZO A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL (ASTM C496/C496M-17)

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	LONGITUD (cm)	DIAMETRO (cm)	FUERZA MÁXIMA (kg)	TRACCIÓN POR COMPRESIÓN DIAMETRAL
01 P-001 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	18/07/2023	28 días	30.0	15.0	20047.70	28.4 kg/cm2
02 P-002 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	18/07/2023	28 días	30.0	15.0	19599.02	27.7 kg/cm2
03 P-003 Polipropileno 0.8% + Fibra Cabura 2.5%, Diseño fc 210 Kg/cm²	20/06/2023	18/07/2023	28 días	30.0	15.0	20210.85	28.6 kg/cm2

OBSERVACIONES:

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

Autores : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER :

Tesis EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

Ubicación : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

Tipo de muestra : Concreto endurecido

Presentación : Especímenes CILÍNDRICOS DE 6" x 12"

F'c de diseño : 210 Kg/cm2 Identificación : **0.4 % Polipropileno**

MÓDULO DE ELASTICIDAD ESTÁTICO ASTM C469

Fecha de	Fecha Ensayo	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
vaciado	(Días)	(Kg/cm ²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm ²	
18/05/2023	15/06/2023	28	231.23	92.5	25.44502	0.000284	286443	
18/05/2023	15/06/2023	28	232.79	93.1	24.88798	0.000287	287677	284715.07
18/05/2023	15/06/2023	28	230.48	92.2	24.00474	0.000291	282375	284/13.0/
18/05/2023	15/06/2023	28	232.79	93.1	25.54104	0.000289	282366	

Fuente: ASTM C496

Observaciones:

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

MIGUEL ANGEL RUIZ PERALES
INGENIERO CIVIL
BEG. CIP. 246904

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

Autores :GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

Tesis EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

Ubicación : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

Tipo de muestra : Concreto endurecido

Presentación : Especímenes CILÍNDRICOS DE 6" x 12"

F'c de diseño : 210 Kg/cm2 ldentificación : **0.8 % Polipropileno**

MÓDULO DE ELASTICIDAD ESTÁTICO ASTM C469

Fecha de	Fecha Ensavo	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
vaciado	(Días)	(Kg/cm ²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm ²	
18/05/2023	15/06/2023	28	252.35	100.9	19.85271	0.000303	320978	
18/05/2023	15/06/2023	28	254.08	101.6	19.24600	0.000301	328144	328103.51
18/05/2023	15/06/2023	28	252.35	100.9	19.14985	0.000294	335242	328103.51
18/05/2023	15/06/2023	28	252.76	101.1	20.05989	0.000297	328050	

Fuente: ASTM C496

Observaciones:

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

MIGUEL ANGEL RUIZ PERALES
INGENIERO CIVIL
DEG. CIP. 246904

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

Autores

:GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

Tesis

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

Ubicación : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido

Presentación : Especímenes CILÍNDRICOS DE 6" x 12"

F'c de diseño : 210 Kg/cm2 Identificación : **1.2 % Polipropileno**

MÓDULO DE ELASTICIDAD ESTÁTICO ASTM C469

Fecha de	Fecha Ensayo	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
vaciado	(Días)	(Kg/cm ²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm²	Kg/cm²	
19/05/2023	16/06/2023	28	247.79	99.1	90.32983	0.000081	284726	
19/05/2023	16/06/2023	28	246.75	98.7	90.84113	0.000078	282562	282536.05
19/05/2023	16/06/2023	28	246.87	98.7	90.67070	0.000079	279003	282336.03
19/05/2023	16/06/2023	28	246.87	98.7	90.67070	0.000078	283853	

Fuente: ASTM C496

Observaciones:

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

Autores :GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

Tesis EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

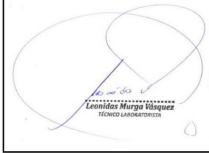
Ubicación : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE


Tipo de muestra : Concreto endurecido

Presentación : Especímenes CILÍNDRICOS DE 6" x 12"

F'c de diseño : 210 Kg/cm2 Identificación : **Probeta Patron**

MÓDULO DE ELASTICIDAD ESTÁTICO ASTM C469


Fecha de	Fecha Ensayo	Edad	σ_{u}	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
vaciado	r cona znayo	(Días)	(Kg/cm ²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm ²
11/06/2023	09/07/2023	28	241.44	96.6	25.27219	0.000270	324753	
11/06/2023	09/07/2023	28	250.79	100.3	25.46423	0.000279	327208	322328.33
11/06/2023	09/07/2023	28	250.33	100.1	25.22418	0.000286	317700	322326.33
11/06/2023	09/07/2023	28	250.22	100.1	25.32020	0.000284	319653	

Fuente: ASTM C496

Observaciones:

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

MIGUEL ANGEL RUIZ PERALES
INGENIERO CIVIL
BEG. CIP. 246904

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE

RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº 50090112 LABORATORIO SEGENMA

Autores :GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

Tesis EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

Ubicación : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

Tipo de muestra : Concreto endurecido

Presentación : Especímenes CILÍNDRICOS DE 6" x 12"

F'c de diseño : 210 Kg/cm2

Identificación : 0.8 % Fibra Polipropileno + 1.5% Fibra Cabuya

MÓDULO DE ELASTICIDAD ESTÁTICO ASTM C469

Fecha de	Fecha Ensayo	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
vaciado	(Días)	(Kg/cm ²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm ²	
17/06/2023	15/07/2023	28	235.84	94.3	26.33104	0.000289	284328	
17/06/2023	15/07/2023	28	238.56	95.4	24.90225	0.000297	285977	287883.35
17/06/2023	15/07/2023	28	236.36	94.5	24.10076	0.000289	294252	267663.33
17/06/2023	15/07/2023	28	238.10	95.2	25.16657	0.000294	286977	

Fuente: ASTM C496

Observaciones:

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL REG. CIP. 246904

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE
RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

Autores :GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

Tesis EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

Ubicación : PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

Tipo de muestra : Concreto endurecido

Presentación : Especímenes CILÍNDRICOS DE 6" x 12"

F'c de diseño : 210 Kg/cm2

Identificación : 0.8 % Fibra Polipropileno + 2% Fibra Cabuya

MÓDULO DE ELASTICIDAD ESTÁTICO ASTM C469

Fecha de	Fecha de Fecha Ensayo	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
vaciado Fecha Ensayo	(Días)	(Kg/cm²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm²	
19/06/2023	17/07/2023	28	258.88	103.6	23.71643	0.000289	333811	
19/06/2023	17/07/2023	28	257.26	102.9	23.57665	0.000288	332883	328054.56
19/06/2023	17/07/2023	28	256.05	102.4	23.26539	0.000297	320410	328054.56
19/06/2023	17/07/2023	28	257.72	103.1	25.31060	0.000289	325115	

Fuente: ASTM C496

Observaciones:

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

Leonidas Murga Vásquez
TÉCNICO LABORATORISTA

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL BEG. CIP. 246904

Ca. BRITALDO GONZALES Nº 183 - PUEBLO NUEVO - FERREÑAFE RESOLUCION Nº 001083-2009/DSD-INDECOPI

Email: leonidasmvas@hotmail.com RPM #947009877 TELEF. 074-456484

CODIGO OSCE Nº S0090112 LABORATORIO SEGENMA

Autores

:GARCIA VILLEGAS JOSE MARCIAL

:GUEVARA GUEVARA ELBER

Tesis

EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y

MECÁNICAS DEL CONCRETO.

Ubicación : P

PROVINCIA. CHICLAYO, DEPARTAMENTO. LAMBAYEQUE

Tipo de muestra

: Concreto endurecido

Presentación

: Especímenes CILÍNDRICOS DE 6" x 12"

F'c de diseño

: 210 Kg/cm2

Identificación

: 0.8 % Fibra Polipropileno + 2.5% Fibra Cabuya

MÓDULO DE ELASTICIDAD ESTÁTICO ASTM C469

Eooba da	Fecha de	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
vaciado	Fecha Ensayo	(Días)	(Kg/cm ²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm²	Kg/cm ²
20/06/2023	18/07/2023	28	220.61	88.2	23.71643	0.000277	284513	
20/06/2023	18/07/2023	28	225.28	90.1	23.57665	0.000283	285900	285067.91
20/06/2023	18/07/2023	28	222.40	89.0	23.26539	0.000279	286305	283067.91
20/06/2023	18/07/2023	28	224.36	89.7	25.31060	0.000277	283554	

Fuente: ASTM C496

Observaciones:

- Las muestras cumplen con las dimensiones dadas en la norma de ensayo
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de SEGENMA

MIGUEL ANGEL RUIZ PERALES
INGENIERO CIVIL
DEG. CIP. 246904

Anexo VI. Certificado de calibración de instrumentos de laboratorio.

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

913028621 - 913028622 913028623 - 913028624

ventas@perutest.com.pe

www.perutest.com.pe

CERTIFICADO DE CALIBRACIÓN

Area de Metrología aboratorio de Masas		PTC - LM - 004 - 2022
19,19,19,19,19	172, 12, 12, 12, 12, 12, 12, 12, 12, 12, 1	Página 1 de
1. Expediente	012-2022	Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales
2. Solicitante	MURGA VASQUEZ VICENTE LEONIDAS	que realizan las unidades de la medición de acuerdo con el Sistema
3. Dirección	CALLE BRITALDO GONZALES N°183 - PUEBLO NUEVO - FERREÑAFE -	Internacional de Unidades (SI).
	LAMBAYEQUE	Los resultados son validos en e momento de la calibración. A
4. Equipo de medición	BALANZA ELECTRÓNICA	solicitante le corresponde disponer er su momento la ejecución de una
Capacidad Máxima	2000 g	recalibración, la cual está en función del uso, conservación y mantenimiento
División de escala (d)	0.1 g	del instrumento de medición o a reglamento vigente.
Div. de verificación (e)	1 g	PERUTEST S.A.C. no se responsabiliza
Clase de exactitud		de los perjuicios que pueda ocasiona el uso inadecuado de este instrumento
Marca	JM	ni de una incorrecta interpretación de los resultados de la calibración aqu
Modelo	CENTAURO:	declarados.
Número de Serie	NO INDICA	Este certificado de calibración no podrá ser reproducido parcialmente sir la aprobación por escrito de
Capacidad mínima	1.0 g	laboratorio que lo emite.
Procedencia	CHINA	El certificado de calibración sin firma y sello carece de validez.
Identificación	NQ INDICA	
5. Fecha de Calibración	2022-11-17	
Fecha de Emisión	Jefe del Laboratorio de Metrología	Sello PERUTESTS
2022-11-23		Sello PERUTESTS
24 24 24 24 24 24	MANUEL ALEJANDRO ALIAGA TORRES	LABORATORIO

140

O Jr. La Madrid S/N Mz D lote 25 urb Los Olivos

SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

San Martín de Porres - Lima

PERUTEST S.A.C

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN PTC - LM - 004 - 2022

Página 2 de 4

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase III y Clase IIII" del SNM- INACAL

7. Lugar de calibración

Las instalaciones del cliente.

CALLE BRITALDO GONZALES Nº183 - PUEBLO NUEVO - FERREÑAFE -LAMBAYEQUE

8. Condiciones Ambientales

2 19 19 19 19	Inicial	Final
Temperatura	28	28
Humedad Relativa	56%	56%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de referencia	JGO DE PESAS DE 1 g a 1 Kg (Clase de Exactitud: F1)	METROIL - M0547 - 2020

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (**) Código indicada en una etiqueta adherido al equipo.

913028621 - 913028622 913028623 - 913028624

ventas@perutest.com.pe

@ www.perutest.com.pe

① Jr. La Madrid S/N Mz D lote 25 urb Los Olivos San Martín de Porres - Lima SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

PERUTEST S.A.C

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN PTC - LM - 004 - 2022

Página 3 de 4

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	NO TIENE	CURSOR	NO TIENE
80 80 80 80 8	00 00	NIVELACIÓN	TIENE	20 00 0V	04 04 0

ENSAYO DE REPETIBILIDAD

Temperatura | Inicial Final | Final | 22.2 °C | 22.2 °C |

Medición	Carga L1 =	1,000	g	Carga L2 =	3,000	9
Nº	1(g)	ΔL (mg)	E(mg)	1(g)	ΔL (mg)	E(mg)
1	1000.00	5	45	3000.00	3	47
2	1000.00	4	46	3000.00	5	45
3	1000.00	6 6	44	3000.00	4 9	46
4 9	1000.00	97.9	9 43	3000.00	969	44
5	1000.00	6	44	3000.00	7	43
6	1000.00	00700	43	3000.00	3	47
7	1000.00	7 0	43	3000.00	4.0	46
8	1000.00	5	45	3000.00	6	44
9	1000.00	6	44	3000.00	2	48
10	1000.00	7 8	43	3000.00	6	44
CALO	Diferencia Máxima		3	Diferenci	a Máxima	5
	Frror Mávim	o Permisible	3.000	Error Mávimo Dormiciblo		2 000

ENSAYO DE EXCENTRICIDAD

2 5 Posición de las cargas

Inicial Final
Temperatura 26.3 °C 28.3 °C

Posición de la Carga	Determinación del Error en Cero Eo				Determinación del Error Corregido Ec					
	Carga Minima*	I (g)	ΔL (mg)	Eo (mg)	Carga L(g)	1 (g)	ΔL(mg)	E(mg)	Ec (mg)	
1	16 16	0.10	5	45	10 16	100.00	7	43	-2	
2	8 48 6	0.10	7	43	8 18 18	100.00	4	46	3	
3 0	0.10	0.10	6	44	100.00	100.00	40	46	2	
4 9		0.10	97,9	43		100.00	5	45	20	
5	7 10 10	0.10	7 0	43		100.00	7	43	000	
* Valor entre 0 y 10e					Nº 18 1	1.000				

- 913028621 913028622 913028623 - 913028624
- ventas@perutest.com.pe
- www.perutest.com.pe

Jr. La Madrid S/N Mz D lote 25 urb Los Olivos San Martín de Porres - Lima

SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

PERUTEST S.A.C

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS-MATERIALES-CONCRETOS-ASFALTO-ROCAS-FISICA-QUIMICA RUC N° 20602182721

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN PTC - LM - 004 - 2022

Página 4 de 4

ENSAYO DE PESAJE

Temperatura Inicial Final 26.3 °C 28.3 °C

Carga L (g) 1.00	80 30	CREC	IENTES	60 60 6	00 00	00.00			
	1 (g) 1.00	ΔL(mg)	E(mg)	Ec (mg)	1 (g)	ΔL(mg)	E(mg)	Ec (mg)	e.m.p ** (± mg)
100.00	100.00	6	44	0	100.00	5	45	100	1,000
200.00	200.00	07.0	43	0-10	200.00	4 0	46	0 00	1,000
500.00	500.00	9 6	9 44	0 9	500.00	9 5	45	5 6 9	2.000
800.00	800.00	5	45	10 10 1	800.00	6	9 44	1000	2,000
1000.00	1000.00	6	44	00	1000.00	7	43	8 01 00	2,000
1200.00	1200.00	6	44	0 0	1200.00	3	47	3	2,000
1500.00	1500.00	9 4	46	2	1500.00	9 5	45	9 10 9	2,000
1800.00	1800.00	95	45	9 19	1800.00	94.5	9 46	225	2,000
2000.00	2000.00	5	45	31 5	2000.00	5	45	S of W	3,000

^{**} error máximo permisible

Leyenda:

L: Carga aplicada a la balanza.

l: Indicación de la balanza.

ΔL: Carga adicional.

Eo: Error en cero.

0.00000000021

E: Error encontrado

Ec: Error corregido.

 $U = 2 \times \sqrt{(0.001669 \quad g^2 +)}$

Incertidumbre expandida de medición

 $R_{CORREGIDA} = R + 0.00000006 R$

12. Incertidumbre

Lectura corregida

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

LABORATORIO

913028621 - 913028622 913028623 - 913028624

ventas@perutest.com.pe

@ www.perutest.com.pe

O Jr. La Madrid S/N Mz D lote 25 urb Los Olivos San Martín de Porres - Lima

SUCURSAL: Sinchi Roca 1320-la Victoria - Chiclayo

Anexo VII. Juicio de Validación de Expertos

Ficha de validación según AIKEN

i. Datos generales:

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del instrumento
SALINAS VASQUES NESTOR RAUL	SOCENTE DE	ensayo de compresión, Tracción, flexión y módulo de elesticidad	EARCIA VILLE EAS JOSE MARCIA L EURUARA EURUARA ELBE
		s de polipiopileno y mealnices del con	cabuya sobre

II. Aspectos de validación de cada Ítem:

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	No
2	A	NO
3	A	NO
4	A	NO

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento:

	Dimensiones/Ítems	Claridad		Contexto		Congruencia		Dominio del constructo	
	F'c = 210 kg/cm ²	Sí	No	Sí	No	Sí	No	Sí	No
1	Resistencia a compresión	X		X		X		X	
2	Resistencia a tracción	X		X		X		X	
3	Resistencia a flexión	X		X		X		X	
4	Módulo de elasticidad	X		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: SALINAS VASQUEZ NESTOR RAVIL

.....

Carrera profesional: INBENIERO CIVIL

Grado académico: MAESTRIA EN GERENCIA DE OBRAS Y CONSTRUCCION

d

Colegiatura N° 23 5575

Ficha de validación según AIKEN

Da	toe	70	no	rol	es:

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del instrumento
Dictor Daniel	Ingeniero	Ensuyo compressión, Flexión, Tracción y módulo elasticidal.	Garcia Villegas Jusé Marcial Guevara Buevara Ebe
		s de polipropilences cas y mecánicas	y cabuga sobre

II. Aspectos de validación de cada Ítem:

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACION Y OPINION			
1	Α	NO			
2	À	No			
3	A	No			
4	A	VIO			

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento:

	Dimensiones/Ítems	Claridad Contexto		texto	Congruencia		Dominio del constructo		
	F'c = 210 kg/cm ²	Sí	No	Sí	No	Sí	No	Sí	No
1	Resistencia a compresión	×		大		\times		×	
2	Resistencia a tracción	X	- 7	X		X		×	
3	Resistencia a flexión	×		×		×		×	
1	Módulo de elasticidad	X		×		×		×	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable 🗴 Aplicable después de corregir () No aplicable ()

Apellidos y nombres del juez validador: Guevara Diaz victor Daniel

Carrera profesional: Ingeniero Civil

145

Colegiatura Nº 110771

Ficha de validación según AIKEN

. Datos generales:

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del instrumento
Beinoso Toins Jorge Jeremy Junior	Docente de	Enayo compresión Tracción, Flexión y módulo de dasticidad	Everara Everara Elber
		ras de polipiopiler Esicas y mecámica	no y cabuga

II. Aspectos de validación de cada Ítem:

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACION Y OPINION
1	A	No
2	A	No
3	A	NO
4	A	No

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento:

	Dimensiones/Ítems		Claridad		Contexto		Congruencia		io del ructo
	F'c = 210 kg/cm ²	Sí	No	Sí	No	Sí	No	Sí	No
1	Resistencia a compresión	X		X		X		×	
2	Resistencia a tracción	X		×		X		×	
	Resistencia a flexión	X		×		X		×	
4	Módulo de elasticidad	X		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (x) Aplicable después de corregir () No aplicable ()

Apellidos y nombres del juez validador: Reinoso Torres Jarge Jeremy Junion

Carrera profesional: Ingeniero Civil
Grado académico: Ingeniero Civil

une Jeremy Junior Reinoso Torres

Colegiatura Nº 183453

Ficha de validación según AIKEN

1.	Datos	g	enera	iles:
-		-		

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del instrumento		
Carogo Por	Docesto as	Ensayo de compresión, Tracción, Flerión y módulo de elastecidad.	Earcia Villegas Jose Marciol Evenara Evenara Elber		
		de polipio pileno y o	abuga sobre la		

II. Aspectos de validación de cada Ítem:

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓ			
1	A	NO			
2	A	No			
3	Al	NO			
4	A	a/O			

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento:

	Dimensiones/Ítems	Claridad		Contexto		Congruencia		Dominio de constructo	
	$F'c = 210 \text{ kg/cm}^2$	Sí	No	Sí	No	Sí	No	Sí	No
1	Resistencia a compresión	20		X		X		X	
2	Resistencia a tracción	20		20		X		R	
3	Resistencia a flexión	80		20		X		X	
4	Módulo de elasticidad	20		20		d		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (x) Aplicable después de corregir () No aplicable (
Apellidos y nombres del juez validador: Idrogo Pers, Bod Albin.
Grado académico: Maetrica en do cauais O do Todes Della Ti sin
Grado académico: Maetria en do cauai y Ostrasa Luctos
CESAPERATONIO IDROGO PEREZ
INGENIERO CIVIL

REG. CIP. 183753

Colegiatura Nº 161061

Ficha de validación según AIKEN

	-		
	Datas	general	00.
1.	Datos	denera	ES.

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del instrumento
Porto Portero Oscar Severo	Inganiero	Flexion, Fraction y	Hora:al
		s de polipiopilano y y mecánicas del	rabuga sobre

II. Aspectos de validación de cada Ítem:

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACION Y OPINION
1	A	No
2	A	NO
3	A	No
4	Δ	ND

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento:

	Dimensiones/Ítems	Claridad Context		texto	Congruencia		Dominio del constructo		
	F'c = 210 kg/cm ²	Sí	No	Sí	No	Sí	No	Sí	No
1	Resistencia a compresión	X		×		×		×	
2	Resistencia a tracción	X		×		1/20		×	
3	Resistencia a flexión	×		×		X		>	
4	Módulo de elasticidad	X		X		×		×	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable M Aplicable después de corregir () No aplicable ()

SCAR SEVERO PORTO PORTERO INGENIERO CIVIL CIP Nº 161061 ONI Nº 44600048

Apellidos y nombres del juez validador: Porro portero Oscar Severo

Carrera profesional: Ingeniero Civil

Anexo VIII. Informe Estadístico

ESCUELA PROFESIONAL INGENIERIA CIVIL
LABORATORIO DE ENSAYO DE MATERIALES

: GARCIA VILLEGAS JOSE MARCIAL Solicitantes

: GUEVARA GUEVARA ELBER

Proyecto / Obra . Tesis "EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO"

: CAMPUS USS - Km. 5 CARRETERA A PIMENTEL - PIMENTEL - CHICLAYO Ubicación

Fecha de Análisis : Lunes, 11 de diciembre del 2023

Referencia : Análisis Estadístico de datos mediante el SOFWARE IBM SPSS

Edad : 28 días

: RESISTENCIA A LA COMPRESIÓN , (CONCRETO CON PP) Ensayo

Muestra		fc
N°	IDENTIFICACIÓN	(Kg/Cm ²)
01	CP - f'c = 210 kg/cm2	217.1
02	CP - f'c = 210 kg/cm2	231.2
03	CP - f'c = 210 kg/cm2	252.3
04	0.4% PP- f'c = 210 kg/cm2	231.2
05	0.4% PP-f'c = 210 kg/cm2	252.3
06	0.4% PP- f'c = 210 kg/cm2	247.7
07	0.8% PP-f'c = 210 kg/cm2	252.3
08	0.8% PP-f'c = 210 kg/cm2	254.0
09	0.8% PP- f'c = 210 kg/cm2	245.3
10	1.2% PP- f'c = 210 kg/cm2	247.7
11	1.2% PP- f'c = 210 kg/cm2	246.7
12	1.2% PP- f'c = 210 kg/cm2	247.3

1. Análisis de varianza ANOVA

Fuentes de variación	Suma de cuadrados	Grados de libertad	Media Cuadrática	Frecuencia	Significancia
Entre grupos	1045454.25	3	348484.75	0.816	0.52
Dentro de grupos	3417060.667	8	427132.583		
Total	4462514.917	11			

2. Prueba de comparación de medias TUKEY (p<0.005)

Dosificacione	N	Subconjunto para alfa = 0.005
5	5/21	1
0.8% PP	3	1743.3333
СР	3	2335.3333
0.4% PP	3	2437.3333
1.2% PP	3	2472.3333
Sig.		0.551

OBSERVACIONES:

⁻ Muestreo, ensayo e identificación realizados por el solicitante.

ACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

Solicitantes : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

Proyecto / Obra

: Tesis "EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS

DEL CONCRETO"

Ubicación : CAMPUS USS - Km. 5 CARRETERA A PIMENTEL - PIMENTEL - CHICLAYO

Fecha de Análisis : Lunes, 11 de diciembre del 2023

Referencia : Análisis Estadístico de datos mediante el SOFWARE IBM SPSS

Edad : 28 días

Ensayo : RESISTENCIA A LA COMPRESIÓN , (CONCRETO CON PP + FC)

Muestra	IDENTIFICACIÓN	fc
Nº	IDENTIFICACION	(Kg/Cm ²)
01	0.8% PP + 1.5% FC - f'c = 210 kg/cm2	235.8
02	0.8% PP + 1.5% FC - f'c = 210 kg/cm2	238.5
03	0.8% PP + 1.5% FC - f'c = 210 kg/cm2	236.3
04	0.8% PP + 2% FC - f'c = 210 kg/cm2	258.8
05	0.8% PP + 2% FC - f'c = 210 kg/cm2	257.2
06	0.8% PP + 2% FC - f'c = 210 kg/cm2	256.0
07	0.8% PP + 2.5% FC - f'c = 210 kg/cm2	220.5
08	0.8% PP + 2.5% FC - f'c = 210 kg/cm2	225.2
09	0.8% PP + 2.5% FC - f'c = 210 kg/cm2	222.3

1. Análisis de varianza ANOVA

Fuentes de variación	Suma de cuadrados	Grados de libertad	Media Cuadrática	Frecuencia	Significancia
Entre grupos	515030.222	2	257515.111	0.429	0.67
Dentro de grupos	3602316	6	600386		
Total	4117346.222	8			

2. Prueba de comparación de medias TUKEY (p<0.005)

Dosificacione		Subconjunto para alfa = 0.005
s	N	1
0.8% PP + 2% FC	3	1805.3333
0.8% PP + 2.5% FC	3	2226.6667
0.8% PP + 1.5% FC	3	23,686,667
Sig.		0.065

OBSERVACIONES:

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

Solicitantes : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

Proyecto / Obra : Tesis: "EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS

DEL CONCRETO"

Ubicación : CAMPUS USS - Km. 5 CARRETERA A PIMENTEL - PIMENTEL - CHICLAYO

Fecha de Análisis : Martes, 12 de diciembre del 2023

Referencia : Análisis Estadístico de datos mediante el SOFWARE IBM SPSS

Edad : 28 días

Ensayo : RESISTENCIA A LA TRACCIÓN , (CONCRETO CON PP)

Muestra	IDENTIFICACIÓN	т
N°	IDENTIFICACION	(Kg/Cm ²)
01	CP - f´c = 210 kg/cm2	31.7
02	CP - f'c = 210 kg/cm2	31.7
03	CP - f'c = 210 kg/cm2	31.8
04	0.4% PP- f'c = 210 kg/cm2	30.6
05	0.4% PP- f'c = 210 kg/cm2	30.8
06	0.4% PP- f'c = 210 kg/cm2	30.3
07	0.8% PP- f'c = 210 kg/cm2	36.2
08	0.8% PP- f'c = 210 kg/cm2	35.7
09	0.8% PP- f'c = 210 kg/cm2	36.0
10	1.2% PP- f'c = 210 kg/cm2	35.5
11	1.2% PP- f'c = 210 kg/cm2	34.0
12	1.2% PP- f´c = 210 kg/cm2	34.4

1. Análisis de varianza ANOVA

Fuentes de variación	Suma de cuadrados	Grados de libertad	Media Cuadrática	Frecuencia	Significancia
Entre grupos	12381.583	3	4127.194	0.242	0.864
Dentro de grupos	136214.667	8	17026.833		
Total	148596.25	11			

2. Prueba de comparación de medias TUKEY (p<0.005)

Dosificacione	N	Subconjunto para alfa = 0.005
S	s N	
1.2% PP	3	244.3333
0.8% PP	3	251.6667
0.4% PP	3	305.6667
СР	3	317.3333
Sig.		0.9

OBSERVACIONES:

ACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

Solicitantes : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

Proyecto / Obra

: Tesis "EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS

DEL CONCRETO'

Ubicación : CAMPUS USS - Km. 5 CARRETERA A PIMENTEL - PIMENTEL - CHICLAYO

Fecha de Análisis : Martes, 12 de diciembre del 2023

Referencia : Análisis Estadístico de datos mediante el SOFWARE IBM SPSS

Edad : 28 días

Ensayo : RESISTENCIA A LA TRACCIÓN, (CONCRETO CON PP + FC)

Muestra	IDENTIFICA OLÓN	T
N°	IDENTIFICACIÓN	(Kg/Cm ²)
01	0.8% PP + 1.5% FC - f'c = 210 kg/cm2	29.6
02	0.8% PP + 1.5% FC - f'c = 210 kg/cm2	30.2
03	0.8% PP + 1.5% FC - f'c = 210 kg/cm2	29.9
04	0.8% PP + 2% FC - f'c = 210 kg/cm2	37.5
05	0.8% PP + 2% FC - f'c = 210 kg/cm2	36.1
06	0.8% PP + 2% FC - f'c = 210 kg/cm2	37.2
07	0.8% PP + 2.5% FC - f'c = 210 kg/cm2	28.4
08	0.8% PP + 2.5% FC - f'c = 210 kg/cm2	27.7
09	0.8% PP + 2.5% FC - f'c = 210 kg/cm2	28.6

1. Análisis de varianza ANOVA

Fuentes de variación	Suma de cuadrados	Grados de libertad	Media Cuadrática	Frecuencia	Significancia	
Entre grupos	12793.556	2	6396.778	224.012	0	
Dentro de grupos	171.333	6	28.556			
Total	12964.889	8				

2. Prueba de comparación de medias TUKEY (p<0.005)

		Subconjunto para alfa = 0.005		
Dosificaciones	N	1	2	3
0.8% PP + 2.5% FC	3	282.3333		
0.8% PP + 1.5% FC	3		299	
0.8% PP + 2% FC	3			369.3333
Sig.		1	1	1

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

NAM MEDARDO MORALES CHAYARRY LICENCIADO EN ESTADISTICA COESPE Nº 311 FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

Solicitantes : GARCIA VILLEGAS JOSE MARCIAL : GUEVARA GUEVARA ELBER

Proyecto / Obra

: Tesis "EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS

DEL CONCRETO"

Ubicación : CAMPUS USS - Km. 5 CARRETERA A PIMENTEL - PIMENTEL - CHICLAYO

Fecha de Análisis : Míercoles, 13 de diciembre del 2023

Referencia : Análisis Estadístico de datos mediante el SOFWARE IBM SPSS

Edad : 28 días

Ensayo : RESISTENCIA A LA FLEXIÓN, (CONCRETO CON PP)

Liibayo	. NEOIOTENO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Muestra Nº	IDENTIFICACIÓN	M _r (Kg/Cm ²)
01	CP - f'c = 210 kg/cm2	29.1
02	CP - f'c = 210 kg/cm2	29.4
03	CP - f'c = 210 kg/cm2	28.9
04	0.4% PP- f'c = 210 kg/cm2	29.6
05	0.4% PP- f'c = 210 kg/cm2	30.2
06	0.4% PP- f'c = 210 kg/cm2	29.8
07	0.8% PP- f'c = 210 kg/cm2	30.2
08	0.8% PP- f'c = 210 kg/cm2	29.4
09	0.8% PP- f'c = 210 kg/cm2	29.9
10	1.2% PP- f´c = 210 kg/cm2	33.4
11	1.2% PP- f´c = 210 kg/cm2	33.6
12	1.2% PP- f'c = 210 kg/cm2	33.4

1. Análisis de varianza ANOVA

Fuentes de variación	Suma de cuadrados	Grados de libertad	Media Cuadrática	Frecuencia	Significancia
Entre grupos	3447.583	3	1149.194	137.903	0.000
Dentro de grupos	66.667	8	8.333		
Total	3514.25	11			

2. Prueba de comparación de medias TUKEY (p<0.005)

Dosificacione	N	Subconjunto para alfa = 0.	
S		1	2
СР	3	291.3333	
0.8% PP	3	298.3333	
0.4% PP	3	298.6667	
1.2% PP	3		334.6667
Sig.		0.057	1.000

OBSERVACIONES:

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO ESCUELA PROFESIONAL INGENIERIA CIVIL LABORATORIO DE ENSAYO DE MATERIALES

Solicitantes : GARCIA VILLEGAS JOSE MARCIAL

: GUEVARA GUEVARA ELBER

Proyecto / Obra

. Tesis "EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS

DEL CONCRETO

Ubicación : CAMPUS USS - Km. 5 CARRETERA A PIMENTEL - PIMENTEL - CHICLAYO

Fecha de Análisis : Martes, 12 de diciembre del 2023

Referencia : Análisis Estadístico de datos mediante el SOFWARE IBM SPSS

Edad : 28 días

Ensayo : RESISTENCIA A LA FLEXIÓN, (CONCRETO CON PP + FC)

Muestra	IDENTIFICACIÓN	M _r
Nº	IDENTIFICACION	(Kg/Cm ²)
01	0.8% PP + 1.5% FC - f'c = 210 kg/cm2	30.7
02	0.8% PP + 1.5% FC - f'c = 210 kg/cm2	31.3
03	0.8% PP + 1.5% FC - f'c = 210 kg/cm2	30.6
04	0.8% PP + 2% FC - f'c = 210 kg/cm2	32.8
05	0.8% PP + 2% FC - f´c = 210 kg/cm2	33.5
06	0.8% PP + 2% FC - f'c = 210 kg/cm2	33.0
07	0.8% PP + 2.5% FC - f'c = 210 kg/cm2	30.2
08	0.8% PP + 2.5% FC - f'c = 210 kg/cm2	30.7
09	0.8% PP + 2.5% FC - f'c = 210 kg/cm2	30.6

1 /	Análicie	do	varianza	$\Delta NIO VA$

Fuentes de variación	Suma de cuadrados	Grados de libertad	Media Cuadrática	Frecuencia	Significancia
Entre grupos	11220.222	2	5610.111	0.566	0.595
Dentro de grupos	59468.667	6	9911.444		
Total	70688.889	8			

2. Prueba de comparación de medias TUKEY (p<0.005)

Dosificacione		Subconjunto para alfa = 0.005
s	N	1
0.8% PP + 2% FC	3	232
0.8% PP + 2.5% FC	3	305
0.8% PP + 1.5% FC	3	308.6667
Sig.		0.635

OBSERVACIONES:

ESCUELA PROFESIONAL INGENIERIA CIVIL
LABORATORIO DE ENSAYO DE MATERIALES

: GARCIA VILLEGAS JOSE MARCIAL Solicitantes

: GUEVARA GUEVARA ELBER

Proyecto / Obra Tesis "EFECTO DE FIBRAS DE POLIPROPILENO Y CABUYA SOBRE LA MEJORA DE PROPIEDADES FÍSICAS Y MECÁNICAS

Ubicación : CAMPUS USS - Km. 5 CARRETERA A PIMENTEL - PIMENTEL - CHICLAYO

Fecha de Análisis : Lunes, 11 de diciembre del 2023

Referencia : Análisis Estadístico de datos mediante el SOFWARE IBM SPSS

Edad : 28 días

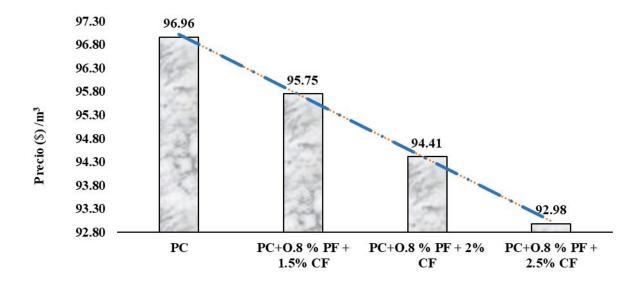
Ensayo : MÓDULO DE ELASTICIDAD, (CONCRETO CON PP)

Liidayo	. Mobole Bl	LENGTIOL
Muestra	IDENTIFICACIÓN	Ec
Ν°	IDENTIFICACION	(Kg/Cm ²)
01	CP - f'c = 210 kg/cm2	324753.0
02	CP - f'c = 210 kg/cm2	327208.0
03	CP - f'c = 210 kg/cm2	317700.0
04	CP - f'c = 210 kg/cm2	319653.0
05	0.4% PP-f'c = 210 kg/cm2	286443.0
06	0.4% PP- f'c = 210 kg/cm2	287677.0
07	0.4% PP- f'c = 210 kg/cm2	282375.0
08	0.4% PP- f'c = 210 kg/cm2	282366.0
09	0.8% PP- f'c = 210 kg/cm2	320978.0
10	0.8% PP- f'c = 210 kg/cm2	328144.0
11	0.8% PP- f'c = 210 kg/cm2	335242.0
12	0.8% PP- f'c = 210 kg/cm2	328050.0
13	1.2% PP- f'c = 210 kg/cm2	284726.0
14	1.2% PP- f'c = 210 kg/cm2	282562.0
15	1.2% PP- f'c = 210 kg/cm2	279003.0
16	1.2% PP- f'c = 210 kg/cm2	283853.0

1. Análisis de varianza ANOVA

Fuentes de variación	Suma de cuadrados	Grados de libertad	Media Cuadrática	Frecuencia	Significancia			
Entre grupos	6995236682	3	2331745561	138.677	0.00			
Dentro de grupos	201770650.8	12	16814220.9					
Total	7197007332	15						

2. Prueba de comparación de medias TUKEY (p<0.005)


Dosificaciones	N	Subconjunto para alfa = 0.005	
		1	2
1.2% PP	4	282536	
0.4% PP	4	284715.25	
СР	4		322328.5
0.8% PP	4		328103.5
Sig.		0.874	0.244

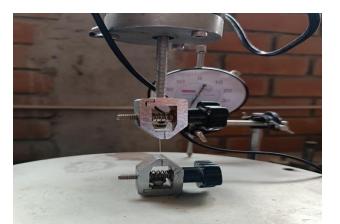
<u>OBSERVACIONES:</u>
- Muestreo, ensayo e identificación realizados por el solicitante.

Anexo IX. Costo-beneficio

Combinación	Cemento (bls)	Agua (m3)	AF (m3)	AG (m3)	PF+CP (m3)	Total (S/.)	Total (\$)USD
u	8.02	1.34	10.70	15.51	2.23	37.79	10.10
СР	80.59	0.30	5.87	10.20	0.00	96.96	25.93
CP+0.8% PP+1.5% FC	80.59	0.30	4.40	10.20	0.26	95.75	25.60
CP+0.8% PP+2% FC	80.59	0.30	2.93	10.20	0.38	94.41	25.24
CP+0.8% PP+2.5% FC	80.59	0.30	1.47	10.20	0.42	92.98	24.86

Anexo X. Panel fotográfico

Proceso para obtener la fibra de cabuya


Fotografía 01: Retiro de espinas de cabuya.

Ensayo Para Propiedades Físicas de Fibra de Cabuya

TESIS: EFELTO DE F.JAAS DE POUPROPULENA Y
L'ABUYA CIGAR LA HETORA DE
PROPIEMADES FÍSILAS Y MELÁNICAS
DEL LONGERTO,
TESISTAS: SARLA VILLEAS DOLE MARCHAL
SURANA SUEVARA ELSER
MATERIAL: FÍSICA DE LASUYA

Fotografía 02: Longitud de Fibra de Cabuya

Fotografía 03. Peso Unitario Suelto FC

Fotografía 04: Fibra de Cabuya Sometida a Tensión

Fotografía 05: Probetas.

Fotografía 05: Vaciado de probetas y vigas

Fotografía 06: Mezcla de concreto con polipropileno y de fibra de cabuya.

Propiedades mecánicas del concreto

Fotografía 07: Ensayo resistencia a compresión.

Fotografía 08: Ensayo resistencia a tracción.

Fotografía 09: Ensayo resistencia a flexión.

Fotografía 10: Ensayo Módulo elasticidad