

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL TESIS

EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210KG/CM² INCORPORANDO FIBRA SINTÉTICA

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERA CIVIL

Autor

Bach. Doris Elizabeth Linares Olano https://orcid.org/0000-0002-7197-4174 **Asesor(a)**

Mg. Idrogo Pérez César Antonio https://orcid.org/0000-0003-4232-0144

Línea de Investigación

Tecnología e Innovación en Desarrollo de la Construcción y la Industria en un Contexto de Sostenibilidad

Sublínea de Investigación

Innovación y Tecnificación en Ciencia de los Materiales, Diseño e Infraestructura

> Pimentel – Perú 2024

DECLARACIÓN JURADA DE ORIGINALIDAD

Quien suscribe la DECLARACIÓN JURADA, soy egresada del Programa de Estudios de Ingeniería Civil de la Universidad Señor de Sipán S.A.C, declaro bajo juramento que soy autor del trabajo titulado:

Evaluación de las Propiedades Físicas y Mecánicas del Concreto Estructural F'c=210 Kg/cm² Incorporando Fibra Sintética

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firma:

Doris Elizabeth Linares Olano	70852974	Leffel !
-------------------------------	----------	----------

Pimentel, 07 de enero de 2024

REPORTE DE SIMILITUD DE TURNITIN

Reporte de similitud

NOMBRE DEL TRABAJO AUTOR

Linares Doris-Tesis Corta.pdf LINARES DORIS

RECUENTO DE PALABRAS RECUENTO DE CARACTERES

12969 Words 61722 Characters

RECUENTO DE PÁGINAS TAMAÑO DEL ARCHIVO

54 Pages 803.8KB

FECHA DE ENTREGA FECHA DEL INFORME

Jun 25, 2024 10:58 AM GMT-5 Jun 25, 2024 10:59 AM GMT-5

• 18% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base de datos.

- 14% Base de datos de Internet
- 1% Base de datos de publicaciones
- · Base de datos de Crossref
- Base de datos de contenido publicado de Crossref
- 13% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

· Material bibliográfico

- · Material citado
- Coincidencia baja (menos de 8 palabras)

EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM² INCORPORANDO FIBRA SINTÉTICA

Aprobación del jurado

NG. C	ÉSPEDES DEZA JOSE ALFREDO ROLANI
	Presidente de Jurado de tesis
ı	
	ING. SÁNCHEZ DÍAZ ELVER
	Secretario de Jurado de tesis

DEDICATORIA:

El presente trabajo está dedicado a mi madre Paquita Olano y a mi padre Milton Linares quieres con su apoyo moral me motivaron a culminar mis estudios, a mis hermanos Milton, Jorge y Consuelo, a mi esposo Luis Gonzales y a mi amado hijo Favio Misael que han sido, son y seguirán siendo mi motivación.

AGRADECIMIENTO:

A Dios en primer lugar, quien me permitió llegar hasta este momento de mi vida.

A mis padres por el apoyo económico y moral brindado durante mis estudios.

A mis compañeros, amigos y profesores que me brindaron su apoyo y enseñanzas a lo largo de mi carrera.

A mi esposo por apoyarme económicamente y también con el cuidado de nuestro hijo para yo poder culminar mis estudios con éxito

ÍNDICE

I.	INTRODUCCIÓN	14
1.1	Realidad Problemática.	14
1.2	Trabajos previos.	17
1.3	Teorías relacionadas al tema.	22
1.4	Formulación del Problema.	30
1.5	Justificación e importancia del estudio.	30
1.6	Hipótesis	30
1.7	Objetivos	31
II.	MATERIALES Y MÉTODO	32
2.1.	Tipo y Diseño de Investigación.	32
2.2.	Variables y Operacionalización.	33
2.3.	Población, Muestra y Muestreo	38
2.4.	Técnicas e instrumentos de recolección de datos, validez y confiabilidad	40
2.5.	Procedimiento para la recolección de datos	41
2.6.	Criterios éticos	48
III.	RESULTADOS Y DISCUSIÓN	49
3.1.	Resultados en tablas y figuras	49
3.2.	Discusión de resultados	66
IV.	CONCLUSIONES Y RECOMENDACIONES	68
4.1	Conclusiones	68
4.2	Recomendaciones	69

V.	Referencias	70
VI.	ANEXOS	70

ÍNDICE DE FIGURAS

Figura 1.	Resultados PU		57
-----------	---------------	--	----

ÍNDICE DE TABLAS

Tabla I	Operacionalización de variables	37
Tabla II	Ensayos de concreto fresco	38
Tabla III	Rotura de probetas cilíndrica para la resistencia a compresión	39
Tabla IV	Probetas rectangulares para la resistencia a flexión	39
Tabla V	Contenido de humedad del AF	49
Tabla VI	Contenido de humedad del AG	49
Tabla VII	Análisis granulométrico del AF	50
Tabla VIII	Análisis granulométrico del AG	51
Tabla IX	PU suelto del AF	51
Tabla X	PU compactado del AF	52
Tabla XI	PU suelto del AG	52
Tabla XII	PU compactado del AG	53
Tabla XIII	P.E. y absorción del AF	53
Tabla XIV	P.E. y absorción del AG	54
Tabla XV	Propiedades Físicas de la Fibra Sintética	54
Tabla XVI	Diseño de mezcla de concreto patrón 210 kg/cm²	55
Tabla XVII	Diseño de mezcla de concreto adicionando 1.25% de fibra sintética	55
Tabla XVIII	Diseño de mezcla concreto adicionando 2.5% de fibra sintética	56
Tabla XIX	Diseño de mezcla concreto adicionando 5% de fibra sintética	56
Tabla XX	Resultados de ensayo de PU	57
Tabla XXI	Ensayo de Slump	58
Tabla XXII	Resultados de ensayo de temperatura	58
Tabla XXIII	Resultados de resistencia a compresión de concreto base	59
Tabla XXIV	Resultados de resistencia a compresión de concreto con 1.25% de FS	59
Tabla XXV	Resultados de resistencia a compresión de concreto con 2.5% de FS	60
Tabla XXVI	Resultados de resistencia a compresión de concreto con 5% de FS	61

Tabla XXVII	Resultados de resistencia a la flexión de concreto base 62
Tabla XXVIII	Resultados de resistencia a flexión de concreto con 1.25% de FS 63
Tabla XXIX	Resultados de resistencia a flexión de concreto con 2.5% de FS 64
Tabla XXX	Resultados de resistencia a flexión de concreto con 5% de FS 65

EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO

ESTRUCTURAL F'C=210 KG/CM² INCORPORANDO FIBRA SINTÉTICA

RESUMEN

En Chiclayo, se evidencia problemas en los pavimentos, el cual se plantea su

reconstrucción a los pocos años de su creación. Por consiguiente, como una alternativa para

reutilizar productos desechables, se sugiere incorporar fibras sintéticas en la composición del

concreto, lo que resultaría en una mejora de sus propiedades para su aplicación.

El objetivo, determinar las caracteristicas físicas y mecánicas del concreto estructural F'c=21

Okg/cm² utilizando fibra sintéticas. El enfoque metodológico elegido fue descriptivo y experi

mental, trabajando con una muestra de 152 ensayos divididos en 32 ensayos para hormigó

fresco y 120 ensayos para hormigón endurecido. Con base en estos hallazgos, se obtuvo

como resultados que con la integración de un 5% de FS incrementó sus propiedades

mecánicas en un 14,62% respecto al hormigón estándar. En el ensayo de flexión, con la

integración del 5% de FS, se observa un aumento del módulo de elasticidad hasta alcanzar

los 28,15 kg/cm². Por lo que se concluye que el porcentaje de FS adecuado para mejorar las

propiedades del concreto es de 5%.

Palabra clave: Fibras sintéticas de polipropileno, pavimento rígido.

XII

ABSTRACT

In Chiclayo, problems are evident in the pavements, which are proposed for reconstruction a

few years after their creation. Therefore, as an alternative to reusing disposable products, it is

suggested to incorporate synthetic fibers into the composition of the concrete, which would

result in an improvement in its properties for its application. The objective is to determine the

physical and mechanical characteristics of structural concrete F'c=210kg/cm2 using synthetic

fibers. The methodological approach chosen was descriptive and experimental, working with

a sample of 152 tests divided into 32 tests for fresh concrete and 120 tests for hardened

concrete. Based on these findings, the results were obtained that with the integration of 5% of

FS, its mechanical properties increased by 14.62% compared to standard concrete. In the

bending test, with the integration of 5% of FS, an increase in the elastic modulus is observed

until reaching 28.15 kg/cm². Therefore, it is concluded that the percentage of FS appropriate

to improve the properties of the concrete is 5%.

Keyword: Synthetic polypropylene fibers, rigid pavement.

13

I. INTRODUCCIÓN

1.1 Realidad Problemática.

Dicen que no de los más grandes problemas universales en este siglo son los residuos sólidos; es por tal que se han realizan estudios para dar un uso adecuado a estos residuos y así poder contribuir con el medio ambiente, esto se debe a que la población de Pakistán va creciendo sin control y el requerimiento en la construcción también. En Pakistán sus carreteras y suelos no cumplen con las pautas especificadas en la norma de su país respecto a sus propiedades geotécnicas, por lo cual necesita ser tratadas antes de ser utilizadas y se ven maneras de poder utilizar estos residuos [1]

Menciona que los residuos son materiales generados con gran abundancia en varios productos del sector construcción, actualmente estos desechados sin un uso activo el cual pueda disminuir estos residuos, los cuales generan problemas ambientales; viendo cómo se podría utilizar como un material nuevo de construcción como la estabilización de suelos en Weifang, China donde se utilizó en porcentajes estos desechos junto con cemento para tener una mejor adherencia, duración y obtener mejores beneficios. [2]

Los RCD son fuente de preocupación para los interesados en el medio ambiente y el incremento económico, por este motivo se quiere tratar estos desechos con maquinarias especiales, amortizando y disminuyendo el problema entre la economía y el medio ambiente. Para ello se necesitan estrategias y de manera especial el apoyo de Municipios y empresas interesadas. [3]

En Estados Unidos, el hormigón se utiliza ampliamente como material de construcción debido a su alta resistencia a la compresión y su bajo costo. Sin embargo, puede causar problemas cuando se mezcla con cemento de silicato no reforzado debido a su fragilidad, lo

que resulta en baja resistencia, flexibilidad limitada y poca resistencia al agrietamiento. Para ello se desarrolló la norma ACI 544.1R-96. El tipo I incluye hormigón reforzado con FA (SRC), el tipo II incluye hormigón reforzado con fibra de vidrio (GRF) y el tipo III incluye hormigón con fibra sintética en el que se utiliza fibra de nailon (CRFN) como material de refuerzo. [4]

Un elemento crucial de las estrategias gubernamentales de sostenibilidad se centra en la gestión de los RCD. En este estudio, se empleó un enfoque de método mixto para investigar las prácticas actuales de gestión de RCD y el grado de comprensión del concepto de construcción circular (reutilización, reciclaje y recuperación de materiales) en el Reino Unido. El objetivo era establecer visiones comunes y promover un comportamiento más sostenible en todo el sector. Por eso se debería desmantelar inteligentemente de edificios y para optimizar procesos rentables, conduciendo a inversiones en enfoques innovadores para recuperar de recursos de RCD. [5]

En la región Piura existe un porcentaje mayor al 80% de sus trochas carrozables se encuentran en un estado deplorable, estas vías estan mayormente ubicadas en los sectores agrícolas, los cuales sufren las consecuencias de estas falencias como no poder girar su mercadería, este problema a su vez conlleva un problema en la región ya que los precios tienen un incremento; es por ello que se crean nuevos estudios para poder conllevar estos problemas. [6]

En el distrito de La Victoria, algunas de las fallas comunes asociadas con una mala capa de asfalto, son hundimiento o deformación permanente, agrietamiento por fatiga caracterizado por grietas con un patrón en forma de red parecida a la piel de cocodrilo, desgastes superficiales y desprendimientos, segregaciones y baches. En este estudio

lograron los efectos del uso simultáneo de escoria de acero y FP, como agregados alternativos en mezclas asfálticas para disminuir agrietamientos y desgaste de la capa asfáltica probada. [7]

Poco se habla de impactos al medio ambiente generados por RCD, estos en su mayoría son arrojados a botaderos informales. Por eso se requiere revisar las gestiones de los países para disminuir el impacto, teniendo en cuenta investigaciones de 29 Art., destacando lo importante que utilizar residuos con ayuda de procesadoras de Recuperación en Seso y clasificación de aire de calefacción, para convertirlos en agregados reciclados que puedas usarse en construcciones. [8]

En la ciudad se observa un colapso casi total del pavimento donde han empleado asfalto frio pese a su baja transpirabilidad. Y aunque se espera en las vías hechas con MAC (Mezclas elaboradas en plantas industriales bajo mayores estándares de calidad) como material de recubrimiento los pavimentos se encontraron en una condición aceptable o buena, problemas similares también ocurren sobre la carpeta de rodadura de la vía sin el devenir en su colapso total. Además, asentamiento y hoyos presentes en algunas zonas de la ciudad como resultante del pésimo drenaje, constante colapsos de desagües y las ocasionales inundaciones como producto del fenómeno del niño. [9]

En Chiclayo, existen los pavimentos flexibles en un 80% y los pavimentos rígidos en un 20% según la Municipalidad de Chiclayo. Además, en Radio Programas del Perú (2017), indicaron que el 95% de las redes viales de Chiclayo fueron azotadas por lluvias intensas del fenómeno del Niño Costero. Por otro lado, según Linares un 80% de las redes viales del distrito de Chiclayo se encuentra en un estado deficiente, por lo que se puede observar la gran cantidad de fisuras, aberturas y desgastes de gran magnitud en diversas zonas, las cuales no han tenido mejoras hasta la fecha.

1.2 Trabajos previos.

Amaya y Ramírez [10], tuvo como objetivo, evaluar la conducta mecánica del concreto incorporando fibras, analizando resultados de la compresión y flexión realizados a probetas y vigas respectivamente, para determinar qué fibra se comporta mejor en compresión y flexión. Según resultados se determinó que la adición del 10% de polietileno expandido (PE) es óptima para mejorar la resistencia a la compresión (RC), mientras que el 5% de PE es adecuado para mejorar la resistencia a la flexión (RF), tracción (RT) y el módulo de elasticidad (ME). Por otro lado, se observó que el incorporar 5% de plástico reciclado (PR) es la mejor opción para mejorar las resistencias, incluyendo el (ME).

Pastuña [11], tuvo como objetivo, comparar el comportamiento del concreto convencional y su reforzamiento con FSP. Además, se determinó la cantidad para alcanzar una resistencia a compresión de 240kg/cm² a los 28d utilizando el método de densidad, en el hormigón con FP se agregó una proporción de 3kg/m³ y 6kg/m³. Obteniendo como resultados la baja resistencia a compresión en probetas grandes respecto a las pequeñas es de hasta un 12%, y se concluye que el fenómeno de efecto tamaño afecta al comportamiento a compresión de cilindros sin fibra y dosificados con 3kg/m³ y 6 kg/m³.

Murillo [12] En su trabajo experimental, el objetivo es evaluar el comportamiento a flexión del concreto con fibras plásticas después de someterse a altas temperaturas. Esto se realizó mediante ensayos de compresión a cilindros de concreto con resistencias de 210 y 240kg/cm²., probetas tipo viga de dimensiones 10x10x35cm empleándose 2 dosificaciones con respecto a la macro fibra con el 0 y 3 kg/m3. Luego se curaron probetas por 28d y se sometieron a diferentes temperaturas: 20, 100, 280 y 600 C°, para poder realizar ensayos a flexión (ASTM 1609). Concluyendo que la inclusión de fibra no conduce a una disminución en la pérdida de masa. Por ejemplo, en las vigas R1, se observó que la mayor pérdida de masa

ocurrió en las probetas que tenían adición de fibra, tanto a 20, 100 y 280 °C. Además, las vigas R2, con una densidad de 3 kg/m3, experimentaron la mayor pérdida de masa entre todas las temperaturas de exposición. En el caso de las probetas de HRF, se observó una reducción en su tenacidad cuando fueron expuestas a 600 °C, debido a la ausencia de fibras de polipropileno. Sin embargo, en temperaturas de exposición de 100 y 280 °C, se observaron efectos normales de tenacidad, ya que las fibras estaban presentes y no experimentaban cambios físicos significativos.

R. Constantino [13], el objetivo de su artículo fue añadir al hormigón armado fibras sintéticas en la losa inferior de silos apoyados directamente en el suelo. El estudio experimental consistió en estudiar características mecánicas en el concreto a través de ensayo de tres concentraciones de fibra sintética (3,0, 4,5 y 6,0 kg m-3) en un hormigón simple, diseñando esta pieza en hormigón armado convencional y hormigón armado con fibras sintéticas. Los resultados mostraron que la concentración de fibra que contribuyó a un mejor desempeño mecánico de concreto fue de 3.0 kg/ m³.

Auza y Chambi [14], el objetivo fue evaluar el efecto de agregar fibras PET a la arcilla AASHTO A-6(12), para lo cual se sometieron a ensayos de Compactación Proctor Modificado T-180 y CBR las muestras de suelo arcilloso, incorporando % de fibras PET de 0,8%, 1%, 1.5% y 2% referente al peso del suelo con humedad higroscópica. Dando como resultados que la dosificación óptima se obtuvo adicionando 1.5% de fibras PET con relación al P. del suelo con humedad higroscópica, teniendo un valor de CBR95=6.11%, siendo un parámetro importante para diseñar el pavimento.

Zegarra [15] El propósito fue examinar cómo la inclusión de la fibra POLYTWIST PT54 Macro Synthetic Fiber Reinforcement afecta las características mecánicas del concreto

y a su vez , evaluar su impacto en el proceso de retracción del concreto al agregar microfibra sintética. Se han llevado a cabo pruebas comparativas a 28 d entre un concreto estándar y concretos con concentraciones de 2,0 kg/m³, 4,0 kg/m³ y 6,0 kg/m³. En conclusión al incrementar la cantidad de macro fibra sintética añadida, aumenta la resistencia a la flexión y a la tracción, alcanzando hasta 18,76 kg/cm² y 6,44 kg/cm², respectivamente. Además, mejora en el control de la retracción del concreto, reduciendo la figuración de hasta un 97%.

Chirinos y Cuervo [16] La finalidad fue analizar cómo las fibras sintéticas recicladas de polipropileno afectan los ensayos de contracción-retracción plástica (según ASTM C 1579), proponiendo la preparación de tres diseños de mezclas con distintas proporciones de fibras sintéticas recicladas y vírgenes. Durante el análisis experimental del concreto, se concluye que a medida que aumentaba la cantidad de fibras en el concreto, el tamaño de las fisuras debido a la retracción disminuía. Sin embargo, también se notó una reducción en la trabajabilidad y maleabilidad al realizar la prueba de asentamiento en el cono de Abrams.

Merma [17] La tesis tuvo como fin evaluar las diferentes resistencias, tanto de compresión como de flexión y la trabajabilidad, Además, se hizo una comparación de costos entre el concreto convencional y el que tiene fibra incorporada. Para esto, se fabricaron 12 probetas y 24 vigas, utilizando dosificaciones de fibra que variaron entre 100 g, 200 g, 300 g, 400 gy 500 g. Los resultados indicaron que la FP logró aumentar el (MR) del concreto en un 10% y la resistencia a la compresión en un 27.2%, a diferencia del concreto típico, utilizando una cantidad de 300 g de FP.

Asto y Quiroz [18] El propósito de este estudio fue evaluar el impacto de las macro fibras sintéticas en mejorar de las propiedades mecánicas del concreto, se utilizó un enfoque deductivo, con orientación aplicada y método cuantitativo, empleando instrumentos de recolección de datos retrospectivos de nivel descriptivo. Los resultados óptimos se

observaron en la fibra de polipropileno, con un rango de dosificación entre 4.6 y 9.30 kg/m³, lo cual demostró mejorar significativamente las propiedades mecánicas del concreto.

Herrera y Regalado [19] Objetivo, fue determinar cómo influye la FS en el diseño del pavimento rígido en la avenida Naranjal, San Martín de Porres. La metodología, es de tipo aplicada, cuantitativa, con diseño cuasi experimental, como población se consideró con una totalidad de 10km, considerando solo 1.5km como muestra de estudio, el resultado obtenido fue que la adición de 200gr y 400gr de fibra sintética tiene un aumento en su resistencia de 47.2kg/cm² y 49.07kg/cm² respectivamente, considerando que a una mayor cantidad de fibra obtendrá una mayor resistencia.

Vásquez y Huamán [20], en su tesis estudió las características físico y mecánicas del concreto con resistencias nominales de F'c=210kg/cm² y 280kg/cm², reforzados con FA y FP, en comparación con un concreto estándar. Se realizaron ensayos utilizando ambos tipos de fibras y en conclusión, la integración de FP mejora las características mecánicas del concreto en general. Sin embargo, la combinación de FP y FA mejora significativamente la resistencia a flexión y tracción del concreto, especialmente cuando aumenta la cantidad de fibra.

Bautista y Huamanchumo [21] El objetivo fue analizar el impacto al incorporar (PE) y (PR) en las características mecánicas del concreto. Se empleó una metodología de investigación aplicada y diseño experimental, llevando a cabo pruebas en concreto convencional al que se le añadió PE y PR en concentraciones del 5%, 10%, 15% y 20%. Los resultados indican que la adición del 10% de polietileno (PE) se considera adecuada para mejorar la resistencia a la compresión (RC), mientras que una concentración del 5% de PE es óptima para mejorar la resistencia a la flexión (RF), tracción (RT) y el módulo de elasticidad (ME). Por otro lado, la inclusión del 5% de polipropileno (PR) se identifica como la mejor opción para mejorar todas las resistencias, incluyendo el módulo de elasticidad (ME).

Arteaga y Gálvez [22] Su El objetivo fue determinar las propiedades físicas y mecánicas del hormigón con PET y VT. El método utilizado es el siguiente: se agrega PET al 0,5%, 1,0%, 1,5% y 2,0% en peso de agregado fino y se agrega VT al 1,0%, 2,0%, 3,0% y 4,0% del peso de fino. Agregar. Los resultados mostraron que el PET VT mejoró la resistencia mecánica del hormigón en la proporción óptima de 0,5% PET y 1,0% VT.

Martínez y Vásquez [23] El objetivo del estudio fue determinar las propiedades mecánicas del concreto al incorporar concreto reciclado y fibra de polipropileno. Se empleó una metodología con enfoque cuantitativo y un diseño experimental de nivel cuasi experimental. Se incorporaron diferentes porcentajes de concreto reciclado (2.0%, 4.0%, 6.0% y 8.0%) y fibras de polipropileno (0.2%, 0.4%, 0.6% y 0.8%) con respecto al peso del agregado fino. Estos porcentajes se evaluaron en concretos con resistencias f'c de 210 kg/cm². Los resultados mostraron que la combinación de concreto reciclado (RCD) y fibra de polipropileno mejoró las propiedades mecánicas del concreto, siendo los % óptimos de 2% y 4% de RCD, y 0.2% y 0.4% de FP.

Córdova [24] El investigó cómo el uso de plástico reciclado (PET) afecta las características mecánicas del concreto, al añadirlo en diferentes proporciones (2.5%, 5%, 10% y 15%) como reemplazo del agregado fino (AF), en mezclas con resistencias de 210 kg/cm² y 280 kg/cm². El estudio siguió un enfoque experimental y cuantitativo. Los resultados mostraron que agregar 2.5% y 5% de PET mejoró la resistencia en comparación con el concreto estándar, pero reemplazar el 10% y 15% tuvo un impacto negativo en las propiedades mecánicas del concreto.

1.3 Teorías relacionadas al tema.

A. Variable dependiente:

Propiedades físicas y mecánicas del concreto estructural F'c=210Kg/cm²

Pavimento Rígido

El pavimento autoportante se compone por una losa de hormigón que se coloca en una base estabilizada o sobre la subrasante del terreno, a causa de su rigidez y alto ME, este tipo de pavimento contiene la mayoría de los esfuerzos generados por las cargas que soporta, lo que permite una distribución eficiente de estas cargas a lo largo del pavimento. Cabe resaltar que se compone de losas de concreto hidráulico que en ocasiones presentan una estructura de acero, Finalmente, el precio de este pavimento es significativamente más alto que el flexible.

Los agregados

Son obtenidas mediante extracción de rocas naturales, provenientes de canteras o ríos. Compuestos de materiales geológicos como, arena, piedra y grava. Se usan en diferentes formas de construcción, y al mezclarse con cemento forman hormigón o mortero hidráulico. Hay diferentes tipos de agregados, es así como se tiene por el color, su composición química, su tamaño, modo de fragmentación, peso y su origen; en el mundo de la construcción se toma en cuenta la clasificación por tamaño, teniendo el agregado grueso y fino, los cuales tienen una relación con la resistencia del concreto dependiendo de requisitos que deben de cumplir.

Agregado Fino

Este agregado se puede encontrar de manera natural a través de las arenas o se puede obtener de manera artificia a través de la trituración, las mismas que deben de cumplir algunos parámetros como ser menores de 5mm y encontrarse limpias. Cabe resaltar que la

cantidad de arena molida no podrá conformar más del 30% del AF [25](ASTM C125, 2021)

Agregado Grueso

Ahora bien, el AG deberá obtenerse de la demolición de roca, grava o combinando ambas, los cuales deben estar limpios y ser resistentes. Otro punto importante es que debe quedar retenido en el tamiz N°4 (ASTM C125, 2021) [25].

Ensayo de granulometría

Este ensayo da como resultado la curva granulométrica, a través de la cual se podrá observar la distribución de los tamaños de agregados, los cuales se encuentran repartidos convenientemente para generar un concreto de buena calidad (ASTM C136, 2020) [26].

Módulo de finura AF

El factor empírico, según la norma ASTM C125 del año 2021, se calcula sumando y dividiendo por cien los porcentajes retenidos acumulados de una muestra de arena. Este factor proporciona información sobre la trabajabilidad y la segregación del concreto que se puede producir utilizando esa arena [25].

PU de agregados (NTP 400.017 / ASTM C29)

El ensayo puede realizarse de dos formas: suelto y compactado. Esta distinción se basa en cómo se acomoda el agregado en la muestra. Cuando el agregado se acomoda naturalmente por efecto de la gravedad, se llama PU suelto. Por otro lado, si el agregado se manipula y compacta manualmente, se denomina peso unitario compactado. La unidad utilizada para este ensayo es kg/m³. [27]

Contenido de Humedad de agregados (NTP 339.185 / ASTM C566)

Esta característica es importante para elaborar el diseño de mezcla, pues es necesario

conocer cuanta de humedad presentan los elementos que se usaran para elaborar el concreto. El contenido de humedad se establece a través de porcentaje, como es sabido no todas las canteras presentan un ambiente seco o húmedo, es por ello que se desconoce el estado del agregado respecto a su humedad, a través de un horno y una serie de fórmulas establecidas por la Norma Técnica Peruana se puede llegar a calcular el mismo [27]

Absorción de agregados pétreos (NTP 400.021- NTP 400.022)

Definido como un aumento en la calidad de los agregados provocado por el ingreso de H₂O en poros de las partículas durante un tiempo, independientemente de la adhesión del H₂O a la superficie de partículas. El valor se expresa como % de la masa ósea seca. [28]

Peso Específico de los agregados (ASTM C127-ASTM C128)

También conocido como densidad relativa del agregado, se define como la correlación entre su peso y el peso del volumen absoluto del H₂O desplazada durante el reposo. Este parámetro se utiliza en cálculos para determinar las proporciones de hormigón u otros materiales de construcción y para controlar la mezcla. [29]

Concreto

Compuesto de agua, cemento y agregados que al endurarse forman un material de construcción resistente muy importante, usado en la mayoría de edificaciones, las pruebas que se realizaran para definir la calidad del concreto, están establecidas en la ASTM y la NTP. [30]

Diseño de Mezclas

Este proceso está establecido por normativa la cual menciona una serie de fórmulas y tablas para saber la proporción necesaria de cada material, y poder elaborar un buen concreto, este depende esencialmente de la dosificación que se quiera, pues se puede diseñar un concreto para resistencia de 210kg/cm², 245kg/cm², 280kg/cm², entre otras. Cabe

resaltar que todo para 1m³ [31]

El Cemento

Es llamado conglomerante hidráulico, mayormente es utilizado con la combinación de otros materiales para generar una estructura más resistente, cuando es combinado con agua este se transforma en pasta y con el pasar de los minutos se endurece, para la elaboración del concreto es importante contar con un cemento de calidad, que cumpla con las exigencias que establece el RNE. [32]

Agua en el concreto

Este elemento es el principal para la fabricación del concreto, este líquido proporciona trabajabilidad a la mezcla, siendo e agua potable la más adecuada para este uso, pues se requiere de un agua limpia, libre de álcalis, sales, entre otros. [33]

Preparación y curado de probetas de concreto en laboratorio

Una vez preparado el concreto y puesto en los moldes que reciben el nombre de testigos o probetas, se debe de cubrir con un plástico o material no absorbente y esperar a que seque, una vez pasado esto el concreto debe ser desmoldado y puesto en agua para cumplir con el tiempo de curado [34]

Propiedades físicas del concreto fresco.

Trabajabilidad

Consiste en la capacidad que tiene el concreto fresco para adecuarse en cualquier molde y compactado de la manera correcta sin generar inconvenientes o deficiencias en el mismo; tiene como base dominar la fricción interna y tener como resultado final una buena compactación.

Consistencia o revenimiento

Este ensayo también recibe el nombre de ensayo por asentamiento o slump, busca determinar el grado de trabajabilidad del concreto fresco, este se lleva a cabo gracias un instrumento denominado Cono de Abrams, el cual con forma de cono como su nombre lo dice debe ser llenado por el concreto en tres partes y en cada llenado golpeado 25 veces para que el concreto se acomode de la mejor manera en el recipiente mencionado y se procede a levantar el cono para así poder medir cuanto el concreto baja para ser medido y analizado [35]

Temperatura

Esta es una característica super importante del concreto, como menciona el RNE. La temperatura del concreto debe superar los 10 grados centígrados y por debajo de los 32 grados centígrados, como se sabe no en todos los lugares la temperatura es constante, por lo cual recomiendan que el H₂O usada en la preparación del concreto sea alterada para que este sea de buena calidad cumpliendo con el reglamento, en el caso de que esta temperatura no sea la adecuada el concreto presentara problemas respecto al asentamiento o fraguado. [36] y [37]

Peso unitario

Este ensayo recibe el nombre en otras entidades como peso volumétrico, densidad; el mismo debe de encontrarse entre un rango de 220 kg/cm3 y 2400 kg/cm3 respecto al concreto, según lo que establece la normativa peruana [38] y [39]

Contenido de aire.

Este ensayo es realizado con el concreto en estado fresco, usando un instrumento denominado Olla de Washington, el cual contiene el concreto y a través de una serie de fórmulas establece de contenido de aire en porcentaje, cabe resaltar que es importante conocer la proporción de aire que contiene el concreto [40]

Propiedades del concreto endurecido

Ensayo a compresión axial del concreto: NTP 339.034 / ASTM C39 [41]

Es una propiedad del concreto endurecido que es conocido por muchos como el estrés del concreto al estar frente a cargas axiales [42]. Para la presente investigación esta característica mecánica es de suma importancia, pues este ensayo determina la llamada resistencia que se establece con F'c, dependiendo del diseño de mezcla esta resistencia debe de cumplir con lo diseñado, teniendo resistencias estándares como 210kg/cm², 245kg/cm², 280kg/cm²; es importante mencionar que esta resistencia también puede ser diferente respecto al tiempo de curado, pues se puede realizar con tiempo de curado de 7, 14, 21 y 28 días respectivamente [30]

Ensayo Flexión del concreto: NTP 339.079 / ASTM C293M - NTP 339.078 / ASTM C78M.

Este ensayo se lleva cabo para poder determinar o conocer la fuerza a la flexión de vigas, se realizan en un laboratorio bajo la ASTM C203M o NTP339.079 cuando la carga que se aplique a las vigas se encuentre en el centro, cabe resaltar cuando el concreto se encuentre endurecido y cumpliendo los tiempos de curados establecidos, también se puede aplicar en los tercios de su claro de poyo, esto bajo la norma ASTM C78M o NTP 339.078

B. Variable independiente: Incorporación de fibra sintética

Las fibras se encuentran en una variedad de materiales y tienen una variedad de us os estructurales en comparación con el hormigón, la tierra apisonada, la arcilla, el mortero d e yeso, etc. En la tierra apisonada y la arcilla siempre se utilizan fibras vegetales porque ayu dan a resistir la tensión, otorgando al elemento una mayor integridad (informabilidad). Las fi bras generalmente se clasifican según sus tipos originales como se muestra a continuación, y de cada tipo surgen nuevos subtipos gracias a las posibilidades tecnológicas.

- Fibra sintética, son fibras que se distribuyen aleatoriamente durante el proceso de

fabricación del hormigón. La mayoría de ellos son compuestos como: Carbón, aramida, acrílico, poliestireno, polipropileno, poliéster y Nylon

- Las Microfibras, su función principalmente es reducir el grado de fisuras en el concreto fresco o antes de las 24 h. La cantidad añadida en el concreto es del 0.03% al 0.15%. Generalmente, la presencia de grietas se reduce significativamente o incluso se eliminan en 24 horas Con frecuencia se produce un proceso en el que el concreto fresco pierde claramente su trabajabilidad y capacidad de hundimiento, El decir, el concreto que contiene fibra plantea problemas de seguimiento y ensayo durante el vertido del concreto.

Principales campos de aplicación de las fibras sintéticas: A pesar de que las microfibras tienen baja dosis en masa (menos de 1 kg/m³ de concreto) aseguran la distribución de fibras dentro de la matriz del hormigón y su funcionalidad es absorber las diminutas tensiones generadas por el concreto, previniendo la contracción del plástico y la expansión de grietas. Cuanto más pequeña sea la aplicación, el precio de integración por m² será menor y su operación más fácil.

Para la presente investigación se utilizarán fibras sintéticas de polipropileno, las cuales son un material que presenta muchas ventajas en el concreto debido a que presentas las siguientes características:

- Material que tiene un peso específico ligero.
- Puede alcanzar una buena rigidez al impacto.
- Evita el traspaso de humedad.
- Puede generar buena estabilidad dimensional en temperaturas húmedas.
- Presenta buena resistencia química.
- Se puede encontrar en los residuos industriales y fáciles de usar.
- Aporta tenacidad a los elementos estructurales.

- Permite la optimización de formaciones de grietas en el concreto.
- Permite una mayor trabajabilidad en el concreto

Propiedades químicas: La fibra sintética tiene una reacción química favorable ante solventes convencionales, además de ser un material liviano. Por lo que requiere menor cantidad para tener un producto terminado. Al mismo tiempo, es capaz de resistir altas temperaturas y posee una excelente estabilidad dimensional gracias a su capacidad para actuar como barrera contra el vapor de agua, lo que sugiere que restringe en cierta medida la entrada de humedad.

Propiedades mecánicas: Las fibras sintéticas son materiales sintéticos con un buen equilibrio entre rigidez y resistencia al impacto. Este producto versátil se adapta a la mayoría de las técnicas de construcción y fabricación existentes, además puede utilizarse en diferentes aplicaciones según sus necesidades.

Normativa

En esta investigación, se tiene en cuenta las siguientes normativas: NTP 400.012, la cual determina la repartición de partículas por el tamaño de los agregados; NTP 339.185, la misma que instituye como saber el porcentaje de humedad en los agregados; NTP 400.017, esta muestra como calcular vacíos entre partículas de agregados y determina su peso unitario en dos condiciones; NTP 400.022, muestra el método para definir la densidad del AF; NTP 400.021, igual que la anterior pero está destinada al agregado grueso; NTP 339.035, define el método para conocer el Slump del concreto fresco; NTP 339.183, muestra cómo debe de ser el procedimiento de curado del hormigón; La NTP 339.034 describe los pasos para determinar la resistencia a la compresión en muestras de concreto. Por otro lado, la norma ASTM C78 establece los métodos para evaluar la resistencia a la flexión usando una viga.

1.4 Formulación del Problema.

Con el propósito de mejorar necesidades del sector de la construcción utilizando materiales sustentables para obtener pavimentos resistentes, buscamos alternativas de solución que respondan a la pregunta de planteada:

¿Cómo influye la incorporación de fibra sintética en las propiedades físicas y mecánicas del concreto estructural F'c=210kg/cm2 para uso en la pavimentación de Chiclayo?

1.5 Justificación e importancia del estudio.

El propósito del proyecto radica en emplear recursos y procedimientos respaldados por teorías y resultados de investigaciones nacionales e internacionales, con el fin de utilizar la fibra sintética en proyectos futuros. Esto permitirá mejorar la durabilidad de obras de pavimentación, que son vitales para el desarrollo urbano, evitando gastos futuros en reparaciones. El estudio tiene como objetivo específico desarrollar un pavimento adecuado utilizando fibras sintéticas para la ciudad de Chiclayo, lo que contribuirá a reducir la contaminación asociada al material empleado.

1.6 Hipótesis.

Si se incorpora fibra sintética al concreto estructural F'c=210kg/cm², entonces permitirá mejorar las características físicas y mecánicas para la pavimentación de Chiclayo.

1.7 Objetivos.

Objetivo General

Estudiar las propiedades físicas y mecánicas del concreto estructural f'c=210kg/cm² incorporando fibra sintética para pavimentación, Chiclayo.

Objetivos específicos

- Estudiar las características de los agregados
- Determinar las propiedades físicas de la Fibra Sintética.
- Realizar diseño de mezclas de un concreto patrón y con la incorporación de 1.25%,
 2.5% y 5% de fibra sintética que reemplaza al AG.
- Determinar las propiedades físicas del concreto patrón y el que contiene fibra (Slum, temperatura, PU, contenido de aire).
- Determinar las propiedades mecánicas del concreto patrón y el que contiene fibra (resistencia a la compresión y resistencia a la flexión).
- Estimar la dosificación adecuada a partir de ensayos al concreto con fibra sintética.

II. MATERIALES Y MÉTODO

2.1. Tipo y Diseño de Investigación.

Tipo de investigación: El presente trabajo, teniendo en consideración fundamentos de [43], es una investigación Cuantitativa (según su enfoque) ya que los datos que se obtuvo de cada ensayo, permitieron asimilar los resultados del presente estudio. Además, busca brindar una nueva información sobre el tema y esté relacionada al concreto y su comportamiento físico y mecánico al añadirle fibras sintéticas para uso de pavimentación.

Diseño de investigación: Presentada como una investigación experimental, ya que al adicionarle al concreto diferentes proporciones de fibra sintética se busca mejorar las propiedades de esta y analizar qué caso es el más adecuado y óptimo, se puede considerar un análisis científico, ya que implica la formulación de una hipótesis con variables independientes y dependientes. Durante el proceso, se llevarán a cabo diversos ensayos en los que se medirán, calcularán y compararán los resultados para evaluar la relación entre las variables [44].

El proyecto se centra en la recopilación de datos y resultados para determinar si la inclusión de ciertos materiales respalda o contradice la hipótesis planteada. Este enfoque se basa en un método deductivo, también conocido como prueba de hipótesis. Para una comprensión más clara, se presenta un esquema que describe la estructura de la investigación.

$$G_{1} \longrightarrow P_{X} \longrightarrow O_{X}$$

$$G_{2} \longrightarrow P_{1} \longrightarrow O_{1}$$

$$G_{3} \longrightarrow P_{2} \longrightarrow O_{2}$$

$$G_{4} \longrightarrow P_{3} \longrightarrow O_{3}$$

Donde:

- G₁, G₂, G₃, G₄: Grupo de pruebas
- P_x: Muestra patrón
- P₁: Prueba experimental con el 1.25% de FS
- P2: Prueba experimental con el 2.5% de FS
- P₃: Prueba experimental con el 5% de FS
- O₁, O₂, O₃, O₄: Observaciones de resultados.

2.2. Variables y Operacionalización.

2.3.1. Variables.

Adición de fibra sintética en porcentaje de 1.25%, 2.5% y 5%

2.3.2. Variable dependiente

Propiedades del concreto estructural F'c=210kg/cm².

2.3.3. Operacionalización

Tabla I Operacionalización de variables.

Variable	Dimensión	Indicadores	Sub indicadores	Índice	Técnica de recolección de información	Instrumento de recolección de información	Instrumento de medición
		Granulometría	AF	ADIM.	Obs.	Guía de análisis de datos	Tamices
			AG		Obs.	Guía de análisis de datos	Tamices
Wastal Is	Ensayos de los	Contenido de Humedad	Agua	%	Obs.	Guía de análisis de datos	Báscula
Variable independiente:	agregados	PU compactado y suelto	AF	Kg/m³		Guía de análisis de datos	Recipiente peso unitario
Adición de	J J		AG	Kg/m³	Obs.		
1.25%, 2.5% y 5% de fibras		PE y Absorción	AF	Kg/m³	Obs.	Guía de análisis de datos	Báscula
sintéticas			AG	Kg/m ³			
	Diseño de Mezclas	Dosificación	0 (Concreto Patrón)	%	Obs.	Ficha técnica	Báscula
			1.25	%	Obs.	Ficha técnica	Báscula
			44318	%	Obs.	Ficha técnica	Báscula
			5	%	V	Ficha técnica	Báscula
Variable	Propiedades físicas del concreto	Trabajabilidad	Edición	Pulgadas	Análisis Documental	Guías de análisis documental	Cono de Abrams
dependiente: Propiedades físicas y mecánicas del			Relación entre masa y volumen	Kg/cm3	Análisis Documental	Guías de análisis documental	Recipiente PU
	Propiedades mecánicas del concreto	Compresión	Resistencia de fuerza sobre área	Kg/cm²	Análisis Documental	Guías de análisis documental	Máquina Compresora
concreto f'c=210Kg/cm ²		Flexión	Resistencia de fuerza sobre área	Kg/cm²	Análisis Documental	Guías de análisis documental	Máquina Compresora

Fuente: Propio

2.3. Población, Muestra y Muestreo

Población: Este estudio implica la creación de varios testigos de concreto, tanto cilíndricos como rectangulares, utilizando una mezcla con una resistencia característica especificada de 210 kg/cm² (f'c), los porcentajes de fibra agregada fueron del 1.25%, 2.5% y 5% y el tiempo de curado utilizado fue de 7, 14 y 28d.

Muestra: El total de ensayos fueron de 156, de los cuales 36 ensayos fueron del concreto en estado fresco, 60 fueron roturas para resistencia a compresión con un f'c= 210 kg/cm², de los cuales, 15 se realizaron al concreto base y 45 con adiciones de fibra sintética en un 1.25%, 2.5% y 5%, para roturas de resistencia a la flexión 60 ensayos distribuidos de la misma manera, todos en tiempos de 7, 14 y 28 días como se muestra en la tabla.

Tabla II Ensayos de concreto fresco.

	CONCRETO	% de	Fibra Sint	TOTAL, DE	
TIPOS DE ENSAYOS	PATRON f'c=210Kg/cm ²	1.25%	2.5%	5%	ENSAYOS
Asentamiento	3	3	3	3	12
PU	3	3	3	3	12
Temperatura	3	3	3	3	12

Fuente: Propio

((3 tipos de ensayos)) x N° de pruebas por ensayo (3) x (concreto patrón + concreto incorporando 1.25% fibra sintética + concreto incorporando 5% fibra de sintética (4)

Entonces: $((3 \times 3) \times (4)) = 36$ ensayos.

Tabla III
Rotura de probetas cilíndrica para la resistencia a compresión

RESISTENCIA A LA COMPI	RESIÓN				
Times de semenatos use des	Ti	Tiempo de curado			
Tipos de concretos usados	7	14	28		
Concreto patrón f'c=210Kg/cm².	5	5	5		
Concreto incorporando 1.25% de fibra sintética	5	5	5		
Concreto incorporando 2.5% de fibra sintética	5	5	5		
Concreto incorporando 5% de fibra sintética	5	5	5		

Fuente: Propia

((concreto patrón (5) + porcentaje de fibra sintética al 1.25% (5) + porcentaje de fibra sintética al 2.5% (5) + porcentaje de fibra sintética al 5% (5)) x tiempo de curado (3) N° de ensayos

Entonces: $((5 + 5 + 5 + 5) \times 3) = 60$ ensayos.

Tabla IV Probetas rectangulares para la resistencia a flexión.

RESISTENCIA A LA FLEXIÓN						
Times de consystes usados Tiempo de curado						
Tipos de concretos usados	7d	14d	28d			
Concreto patrón F'c=210Kg/cm².	5	5	5			
Concreto incorporando 1.25% de fibra sintética	5	5	5			
Concreto incorporando 2.5% de fibra sintética	5	5	5			
Concreto incorporando 5% de fibra sintética	5	5	5			

Fuente: Propia.

((concreto patrón (5) + porcentaje de fibra sintética al 1.25% (5) + porcentaje de fibra sintética al 2.5% (5) + porcentaje de fibra sintética al 5% (5)) x tiempo de curado (3) N° de ensayos.

Por lo tanto: $((5 + 5 + 5 + 5) \times 3) = 60$ ensayos

Por las tablas mencionadas anteriormente de los ensayos de laboratorio se puede decir que:

(36) + (60+60) = 152 total de ensayos.

Se realizaron 60ensayos de resistencia a compresión + 60ensayos de resistencia a flexión + 36ensayos de concreto fresco asiendo un total de 152 ensayos.

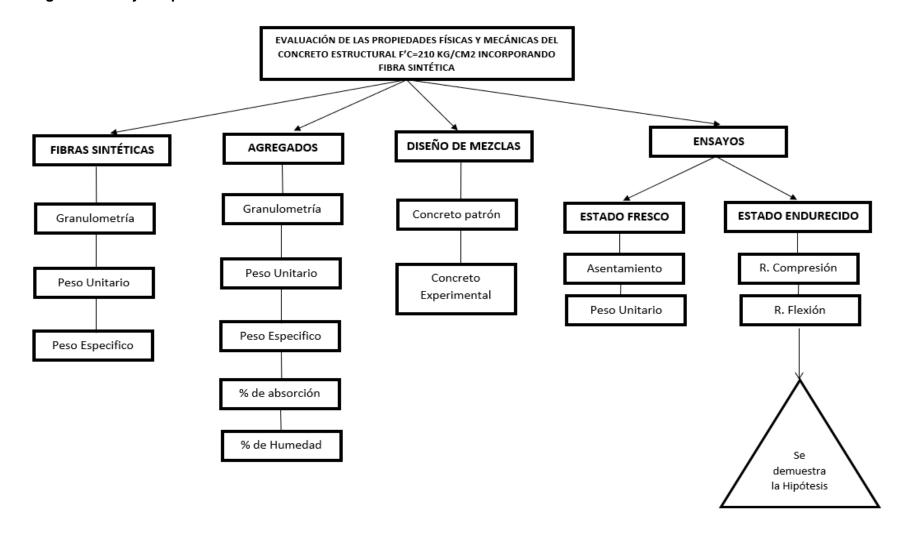
2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad.

2.4.1. Técnicas e instrumentos de recolección de datos.

- A. Observación: De pruebas realizadas en laboratorio, se observó características del concreto al adicionarle fibras sintéticas, para en cada ensayo para su posterior interpretación.
- **B.** Análisis de documental: para la presente, fue necesario el uso de material bibliográfico tanto físico como digital que estén relacionados a la materia de estudio.

2.4.2. Instrumentos de recolección de datos

Para el cumplimiento de objetivos, se tomó consideró fundamentos y guías de las normativas necesarias como la NTP y la ASTM, el cual brinda el procedimiento adecuado para las pruebas de materiales en laboratorio, como de la creación de especímenes de concreto para una mayor confiabilidad en la presenta investigación. Además, estos documentos explican y detallan el proceso del cálculo de cada ensayo para su posterior interpretación. Por ello, La matriz de procedimientos elaborada para la presente investigación está relacionada a los objetivos planteados y al procedimiento tomando en cuenta el orden de los objetivos ya que para el primer objetivo específico se utilizarán las normas respecto a la clasificación de los materiales y los formatos de ensayos de laboratorio de suelo para su respectivo análisis. Para el segundo objetivo, se utilizarán lo especificado en el Método ACI y formatos relacionados para diseñar la mezcla del concreto experimental. Para el tercer y cuarto objetivo, se utilizó los formatos de ensayos para rotura de probetas y vigas respectivamente con sus formatos correspondientes.


Procedimientos de Variables.

EVALUACIÓN DE PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO INCORPORANDO FIBRAS SINTÉTICAS

PROCEDIMIENTOS DE VARIABLES **VARIABLE VARIABLE INDEPENDIENTE DEPENDIENTE INSTRUMENTOS DE** Propiedades físicas y Adición de 1.25%, 2.5% RECOLECCIÓN DE INFORMACIÓN mecánicas del concreto y 5% de fibra sintética F'c=210Kg/cm2 Normas para la clasificación de los Χ Χ agregados Normas de diseño Χ Χ para elaborar probetas cilíndricas **GUÍA DE ANÁLISIS** Normas para realizar **DOCUMENTAL** Χ ensayo de Χ Asentamiento (Slump) Normas para Χ Χ ensayo de PU Normas para hacer el ensayo de resistencia Χ Χ a la compresión para Normas ensayo de resistencia Χ Χ a flexión Formato para Ensayo de Granulometría de Χ Χ Agregados. Anexos Formato para Ensayo de PU y Contenido de Χ Humedad de Anexo **GUÍA DE** Formato para Ensayo **OBSERVACIÓN** de PU y Contenido de Χ Humedad de Anexo Formato para Ensayo de P. Específico y Χ Absorción Agregados. Anexo

2.5. Procedimiento para la recolección de datos

2.5.1. Diagrama de flujo de procesos

2.5.2. Descripción del proceso

2.5.2.1. Obtención de las muestras de agregados

El material de agregados se extrajo de la cantera "Tres Tomas", ubicado en Mesones Muro, Ferreñafe, Lambayeque, con el objetivo de analizar y obtener su caracterización.

2.5.2.2. Ensayo de agregados y Fibra Sintética

Propiedades de los agregados

A. Granulometría

Normatividad

Tuvo como finalidad ver el tamaño de muestra en los agregados. Estos datos permitieron verificar el TMN del (AG) y el MF del (AF), y que cumpla lo especificado en ASTM C-33.

Equipos y herramientas. Entre los equipos que se utilizaron para este ensayo tenemos: Balanza, Horno (110 \pm 5 °C), Mallas, tamices y taras

Procedimiento

Del material extraído, se separó en muestras. Se escogió una de ellas para pesarla. Posteriormente fue puesto en un horno por 24 h con una temperatura de 110 ± 5 °C. Después la muestra seca fue colocada en los tamices y terminado de moverse, se pesó las cantidades retenidas en cada malla y se digitalizó en las hojas de Excel (MTC, 2016).

B. Peso unitario

Normatividad

Este ensayo según la ASTM C-29 se hizo para obtener el PU suelto y compactado del agregado que se usaron en la mezcla del concreto. Se debe de tener en cuenta que el ensayo se realiza en agregados menores a 5 pulgadas. Entre las herramientas que se emplearon

tenemos: La balanza, varilla de hacer (punta redondeada), molde y cucharon.

Procedimiento

Primero, se realizó el llenado del molde hasta la parte superior del molde, nivelando con una regla para que no sobrepase su altura total (ASTM C-29, 2014). Después, se realizó el mismo llenado, pero ahora en 3 capas iguales y con la varilla de acero dando 25 golpes en cada capa. Y finalmente, se pesó ambos materiales: suelto y compactado.

C. Peso específico y % de vacíos de los agregados

Normatividad

La ASTM C–127, indica el procedimiento para calcular el P.E. y el % de vacíos de los agregados, los instrumentos necesarios son: balanza, Horno (110 \pm 5°C), fiola (AF), canasta (AG), balde y tara.

Procedimiento

Inicialmente, se seleccionó la muestra la cual fue puesta en un horno con una temperatura de 110 ± 5 °C por 24 horas. Posteriormente, se sumergió en agua el material durante 1 día y se enfríó a temperaturas ambientes. Luego, se secó la muestra, para el AG, se usó una franela; y para el AF, se colocó al sol para ser secado.

Para ambos casos, se calculó de manera diferente: Para el AF, se realizó el peso de 500 gramos de la muestra trabajada y fue colocada en la fiola, donde se añadió una cantidad de 100ml de agua, se agitó para eliminar el aire atrapado. Posteriormente fue pesado con la fiola llena de agua. Luego se sacó la muestra y se esperó a que se sedimente (ASTM C-127, 2014).

Para el AG, la muestra fue colocada en la canasta llena de agua y se procedió a pesar.

Posteriormente se extrajo y se colocó al horno por un tiempo de 24 horas, para posteriormente

dejarlo enfriar y poder pesarlo.

D. Contenido de Humedad

Normatividad

Este ensayo tuvo como finalidad calcular la humedad (en porcentaje) de los agregados, para ello, fue necesario seguir los lineamientos de la norma ASTM C – 566. Entre los equipos que se utilizaron tenemos: Balanza, horno, tara y cucharon.

Procedimiento

Se escogió una muestra a estudiar y se pesó. Posteriormente, se puso la muestra en una tara pesada identificada y se procedió a pesar la tara junto al espécimen. Después, se puso el espécimen al horno (110 \pm 5 °C. 55) por un tiempo de 24h. Finalmente se extrajo el espécimen del horno y fue enfriado a temperatura ambiente para luego pesar la muestra seca junto con la tara.

Propiedades de la Fibra Sintética

A. Granulometría

Procedimiento

Se selecciona la fibra sintética asegurándose que tenga un solo tamaño en cuanto a longitud y diámetro, además que sea de un solo color.

B. Peso unitario

<u>Procedimiento</u>

Se procede a pesar las muestras de fibra sintética que serán usadas en cada ensayo para el diseño de mezcla.

2.5.2.3. Concreto en estado fresco

Propiedades físicas

A. Asentamiento

Normatividad

Su finalidad fue calcular el asentamiento de la mezcla del concreto para saber si es trabajable durante el proceso de vaciado. Este ensayo se puede realizar en laboratorio como in situ. Y los lineamientos para su procedimiento se encuentra en la ASTM C-143, Los equipos necesarios para este ensayo son: Cono de Abrams, varilla de acero con punta redondeada y wincha.

Procedimiento

Primero se realizó la limpieza del cono para luego ser colocado sobre una superficie plana durante el llenado. Posteriormente, se hizo el llenado del cono en 3 capas iguales dándole 25 golpes con la varilla de acero a cada una, luego se sacó el molde cuidadosamente y se colocó a un costado de la mezcla. Finalmente, medimos el asentamiento con una wincha (ya sea en centímetros o en pulgadas),

B. Temperatura del concreto

Normatividad

Se realiza en el concreto fresco con la finalidad de saber si se encuentra en la temperatura adecuada según lo especificado en la ASTM C- 1064, la cual también dispone el procedimiento adecuado para este ensayo. Las herramientas necesarias es el termómetro (medición de0 a 50°C)

Procedimiento

Realizado la mezcla del concreto, se procedió a colocar el termómetro donde la parte inferior del termómetro este sumergido (en la mezcla) unos 75 mm. Después, se dejó el

termómetro hasta que la temperatura en la lectura este estable o 2 minutos como mínimo. Y se registró en una hoja de Excel la temperatura obtenida.

C. Peso unitario

Normatividad

Este ensayo se calcula con la finalidad de obtener el peso que tiene el concreto y analizar si se encuentra en el peso adecuado o identificar si es liviano respecto a lo convencional. La norma que establece los lineamientos y procedimientos para su elaboración es la ASTM C-138. Para este ensayo es necesario el uso de: Balanza, varilla de acero con punta redondeada, molde y martillo de goma.

Procedimiento

Realizado la mezcla de concreto con las dosificaciones obtenida del diseño de mezclas, se procedió a colocar 3 capas iguales de la mezcla en un molde, dando 25 golpes en la parte inferior con la varilla de acero y 15 al exterior del molde con ayuda del martillo de goma por capa, después se niveló la mezcla hasta la parte superior del recipiente y se procedió a calcular el PU de la mezcla del concreto.

2.5.2.4. Concreto en estado endurecido

Propiedades mecánicas

A. Resistencia a compresión

Normatividad

Su finalidad es calcular la resistencia que alcanza las probetas cilíndricas elaboradas después del tiempo de curado (7, 14, 21 y 28 días) y verificar si las dosificaciones obtenidas cumplen con lo requerido para cada proyecto. La ASTM C-39 especifica los métodos para su correcta elaboración. Para este ensayo, se utilizó wincha, Maquina de prueba y Barnier.

Procedimiento

Primero realizamos el desencofrado de las probetas cilíndricas para ser llevados hacia el lugar de curado (estanque lleno de agua). Según el tiempo de curado, se retiraron del lugar de curado y se midió el testigo de concreto (diámetro y altura) para digitalizarlo en una hoja de apuntes o en hoja de Excel. La probeta, se colocó cuidadosamente en la máquina de prueba y se le aplicó las cargas. Cuando en la probeta aparece la primera fisura, la maquina deja de ejercer fuerza sobre ella. Finalmente, se retiró la probeta analizada y se calculó la resistencia alcanzada.

B. Resistencia a la flexión

Normatividad

La finalidad del ensayo es medir el módulo elástico de flexión a través de vigas rectangulares que son apoyadas y que se les ejercen fuerzas a 2/3 centrales. Los pasos están establecidos en la norma ASTM C-293. Los equipos utilizados en ensayo fueron: Maquina de prueba, cinta métrica, apoyos de acero y el Barnier.

Procedimiento

Las vigas al igual que las probetas se analizaron dependiendo al tiempo de curado que se quiere. Para ello, se retiró del lugar de curado y se secó para poder medir todas sus dimensiones. De igual manera, se realizó las medidas entre los apoyos. Cabe mencionar que es necesario obtener 3 medidas para obtener su promedio.

Posteriormente, se procedió a la colocación de la viga en los apoyos y se comprobó que este en cero el lector de la maquina y se le aplicó las fuerza hasta que se fisure. Finalmente, retiramos cuidadosamente la viga y anotamos la fuerza alcanzada, la cual mediante formula calcula la resistencia a la flexión alcanzada y pudimos observar la falla que presento después de la rotura.

2.6. Criterios éticos

El Códice Deontológico Del CIP (2012), Tiene artículos promoviendo la ética y valores que los profesionales en servicio deben tener frente a ellos, ya que actualmente existe corrupción y malversación de fondos que puede corromper a los profesionales según su moral. Sin embargo, para poder hacer las cosas con integridad sin lucrar con los demás, necesitamos fortalecer nuestra cultura y asegurarnos de poner en primer plano los valores que hemos llevado a lo largo de nuestras vidas.

En el Art. 9 de [45] tienen como objetivo garantizar el correcto guardia y idolatría en torno a la vida, la clase y la sanidad de los seres vivos involucrados en la investigación, en formación con los sostén éticos establecidos en la reglamento nacional e internacional, de esta manera como los compromisos asumidos por Perú en oriente ámbito.

Nos mencionan en el Art. 6 [45] sobre el cuidado sostenible del medio ambiente que se debe considerar en los trabajos de investigación, los cuales también deben ser transparentes y originales.

III. RESULTADOS Y DISCUSIÓN

3.1. Resultados en tablas y figuras

A continuación, daremos a conocer resultados alcanzados en un laboratorio, aplicados a los materiales como al concreto experimental y patrón.

3.1.1. Propiedades de los agregados

A. Contenido de Humedad

Tabla V
Contenido de humedad del AF

	E1	E2
P. M. húmeda	597.8	597.6
P. M. seca	595.3	595.6
P. de depósito	97.4	97.4
Contenido de humedad	0.50	0.40
Contenido de humedad (promedio)	0.4	5%

Fuente: Propio

Se aprecia en esta tabla, el contenido de humedad del AF, el cual fue 0.45%, este resultado fue utilizado en la elaboración del concreto analizado, adicionando fibra sintética en distintos porcentajes.

Tabla VI Contenido de humedad del AG

	E1	E2
P.M. húmeda	587.6	587.8
P.M. seca	585.2	585.2
P. de recipiente	47	47
Contenido de humedad	0.45	0.48
Contenido de humedad (promedio)	0.46%	

Fuente: Propio

Se observa el contenido de humedad del AG, el cual fue 0.46%, que fue utilizado en

la elaboración del concreto analizado, adicionando fibra sintética en distintos porcentajes.

B. Análisis granulométrico

Tabla VII
Análisis granulométrico del AF

Mal	la	P.	%	% Acumulado	%Acumulado
Pulg.	(mm)	Retenido	Retenido	Retenido	Que pasa
1/2"	12.700	0.0	0.0	0.0	100.0
3/8"	9.520	0.00	0.0	0.0	100.0
Nº 004	4.750	15.20	3.0	3.0	97.0
Nº 008	2.360	53.26	10.7	13.7	86.3
Nº 016	1.180	105.45	21.1	34.8	65.2
Nº 030	0.600	98.65	19.7	54.5	45.5
Nº 050	0.300	158.74	31.7	86.3	13.7
Nº 100	0.150	53.26	10.7	96.9	3.1
FONDO		15.44	3.1	100	0
		MF =		2.89)
		Hendidura referencia =	de malla de	2.36	5

Fuente: Propio.

Esta tabla 7, muestra que el MF es de 2.89 siendo la abertura de malla de referencia de 2.36mm, el cual fue utilizado en la elaboración del concreto analizado, adicionando fibra sintética en distintos porcentajes.

Tabla VIII Análisis granulométrico del AG

Mal	la	P.	% Acumulado		% Acumulado
Pulg.	(mm.)	Retenido	Retenido	Retenido	Que pasa
2"	50.000	0.0	0.00	0.0	100.0
1 1/2"	38.000	0.0	0.0	0.0	100.0
1"	25.000	0.0	0.0	0.0	100.0
3/4"	19.000	75.2	5.0	5.0	95.0
1/2"	12.700	750.1	50.0	55.0	45.0
3/8"	9.520	480.3	32.0	87.0	13.0
Nº 004	4.750	184.1	12.3	99.3	0.7
FONDO		10.3	0.7	100.0	0.0
		TM =		1"	
		TMN =		3/4"	

Fuente: Propio

En esta tabla, nos muestra el TMN de ¾" y el tamaño máximo de 1", este fue utilizado en la elaboración del concreto analizado, adicionando fibra sintética en distintos porcentajes.

C. PU de agregados

Tabla IX PU suelto del AF.

Descripción	UND	M1	M2
P.M. suelta + recipiente	(gr)	7530	7530.5
P. del recipiente	(gr)	3025	3025
P.M.	(gr)	4505	4505.5
Constante o volumen	(m3)	0.0028	0.0028
PU suelto húmedo	(kg/m3)	1594	1594
PU suelto húmedo (Promedio)	(kg/m3)		1594
PU suelto seco (Promedio)	(kg/m3)		1586

Fuente: Propia

En esta tabla, tras el ensayo a dos muestras de agregado se tuvo que el promedio de

PU suelto húmedo es 1594kg/m³ y del PU suelto seco es 1586 kg/m³, cabe resaltar que este agregado se utilizó en la elaboración del concreto analizado, adicionando fibra sintética en distintos porcentajes.

Tabla X
PU compactado del AF

Descripción	UND	M	1	M2
P.M. suelta + recipiente	(gr)	7807		7806
P. del recipiente	(gr)	3025		3025
P.M.	(gr)	4782		4781
Constante o Volumen	(m3)	0.0028		0.0028
PU suelto húmedo	(kg/m3)	1692		1691
PU compactado húmedo (Promedio)	(kg/m3)		1691	
PU seco compactado (Promedio)	(kg/m3)		1684	

Fuente: Propio

En la Tabla 10, tras el ensayo a dos muestras de agregado se tuvo que en promedio el PU compactado es 1691kg/m³ y el PU suelto seco compactado promedio es de 1684 kg/m³, cabe resaltar que este agregado fue utilizado en la elaboración del concreto analizado, adicionando fibra sintética en distintos porcentajes.

Tabla XI PU suelto del AG.

Descripción	Und	M1	M2
P.M. suelta + recipiente	(gr)	21736	21734.9
P. del recipiente	(gr)	6765	6765
P.M.	(gr)	14971	14969.9
Constante o Volumen	(m3)	0.0094	0.0094
PU suelto húmedo	(kg/m3)	1589	1589
PU suelto húmedo (Promedio)	(kg/m3)	158	39
PU suelto seco (Promedio)	(kg/m3)	15	82

Fuente: Propia

En la tabla 11, se ve que después del ensayo a dos muestras de agregado se tuvo que el PU suelto húmedo promedio es de 1589kg/m³ y el PU suelto seco promedio es

de 1582kg/m³, este resultado fue utilizado en la elaboración del concreto analizado, adicionando fibra sintética en distintos porcentajes.

Tabla XII
PU compactado del AG.

Descripción	UND	M1		M2
P.M. suelta + recipiente	(gr)	21719		21725
P. del recipiente	(gr)	6765		6765
P.M.	(gr)	14954		14960
Constante o Volumen	(m3)	0.0094		0.0094
PU suelto húmedo	(kg/m3)	1587		1588
PU suelto húmedo (Promedio)	(kg/m3)		1588	
PU suelto seco (Promedio)	(kg/m3)		1580	

Fuente: Propia.

En esta tabla, muestra resultados en el que después del ensayo a dos muestras de agregado, se tuvo que el PU compactado promedio fue 1588kg/m³ y el PU suelto seco compactado promedio fue 1580kg/m³, este agregado fue utilizado en la elaboración del concreto analizado, adicionando fibra sintética en distintos porcentajes.

D. PE y absorción del AF.

Tabla XIII P.E. y absorción del AF

P. específico y absorción				
P. de la arena superficialmente seca + P del recipiente + P de H ₂ O	(gr)	965.0	965.7	
P. de la arena superficialmente seca + P del frasco	(gr)	673.2	674.5	0
P. del H ₂ O	(gr)	291.8	291.2	EDI
P. de la arena secada al horno + P del frasco	(gr)	672.9	672.8	PROMEDIC
P. del frasco	(gr)	174.8	174.8	PR
P. de la arena secada al horno	(gr)	498.1	498.0	
Volumen del frasco	(cm ³)	500.0	500.0	
Resultados				
P. E. de Masa	(gr/cm ³)	2.392	2.385	2.389
P. E. de Masa Saturado Superficialmente Seco	(gr/cm ³)	2.402	2.395	2.398
P. E. Aparente	(gr/cm ³)	1.092	1.090	1.091

% de Absorción % 0.38 0.40 0.39

Fuente: Propio.

En esta tabla, nos indica los resultados promedios de PEM 2.389 gr/cm³, PE de M.S. superficialmente seca 2.398 gr/cm³, PE aparente 1.091 gr/cm³ y % de absorción 0.39%.

E. P. específico y absorción del AG.

Tabla XIV P.E. y absorción del AG

P. E. y absorción					
P.S. Humedo	(gr)	1723.4	1723.5		
P. Superficial Seco	(gr)	1731.7	1733.2	00	
P. dentro del H ₂ O + peso de la canastilla	gr)	2005.6	2005.6	PROMEDIC	
Canastilla	(gr)	928.0	928.0	PR	
Saturada	(gr)	1077.6	1077.6		
RE	SULTADOS				
P.E.M	(gr/cm ³)	2.635	2.629	2.632	
P.E.M Saturado S.	(gr/cm ³)	2.647	2.644	2.646	
P.E. Aparente	(gr/cm³)	2.669	2.668	2.668	
% De Absorción	%	0.48	0.56	0.52	

Fuente: Propio

En esta tabla, se aprecia los resultados promedio de PEM 2.632 gr/cm³, PE masa saturada superficialmente seca 2.646 gr/cm³, PE aparente 2.668 gr/cm³ y % de absorción 0.52%.

3.1.2. Propiedades de la Fibra Sintética

Tabla XV Propiedades Físicas de la Fibra Sintética

Material	Fibra sintética
♣ Longitud	12mm
Gravedad Especifica	0.9
Peso Unitario (Por bolsa de	2.9kg
cemento)	
Resistencia al ácido	Alta

Resistencia a la salinidad	Alta
Impermeabilidad	Alta
Conductividad térmica y eléctrica	Baja

3.1.3. Diseño de mezcla:

Para realizar las probetas que fueron analizadas en la presente investigación, fue necesario primero realizar un diseño de mezcla, el cual nos indicó cuanto material se utilizó en la fabricación de los diferentes concretos. Es por ello, que se presentan cada tipo de concreto en las tablas a continuación.

Tabla XVI
Diseño de mezcla de concreto patrón 210 kg/cm²

Cemento	460	Kg/m ³	: Tip	: Tipo I -Pacasmayo			
H2O	281	L	: Po	: Potable de la zona.			
AF	736	Kg/m³	: Arena - Cantera Tres Toma				
AG	926	Kg/m³	: Piedra Chancada - Cantera Tres Tomas				
		Proporción e	n peso				
Cemento	Arena	Piedra	H₂O	F. sintética	L/pie ³		
1	1.60	2.01	25.94	0.00	r/bie _s		

Fuente: Propia.

Muestra la tabla 15, que el concreto tiene una dosificación de 210 kg/cm²; cabe resaltar que los agregados utilizados son de la cantera Tres Tomas.

Tabla XVII

Diseño de mezcla de concreto adicionando 1.25% de fibra sintética.

Cemento H2O AF	460 281 740 922	Kg/m³ L Kg/m³ Kg/m³	: Tipo I -Pacasmayo : Potable de la zona. : Arena - Cantera Tres Tomas : Piedra Chancada - Cantera Tres Tomas		
Fibra sintética	9.25	Kg/m³			
		Proporc	ión en peso		
Cemento	Arena	Piedra	H ₂ O	F. sintética	L/pie ³
1	1.61	2.00	25.94	0.02	L/pie ^s

Fuente: Propia

Se aprecia el diseño de mezcla para el primer concreto experimental, el cual es adicionando 1.25% de fibra sintética, este concreto tiene una dosificación de 210 kg/cm²; cabe resaltar que los agregados utilizados son de la cantera Tres Tomas.

Tabla XVIII

Diseño de mezcla concreto adicionando 2.5% de fibra sintética

Cemento	460	Kg/m³	: Tipo I -Pacasmayo : Potable de la zona. : Arena - Cantera Tres Tomas				
H_2O	281	L					
AF	744	Kg/m ³					
AG	918	Kg/m³	: Piedra Tomas	Chancada - Can	tera Tres		
Fibra sintética	18.59	Kg/m ³					
-		Proporció	ón en peso				
Cemento	Arena	Piedra	H₂O	F. sintética	1 /5:53		
1	1.60	1.00	25.04	0.04	L/pie ³		

1.99

Fuente: Propia

1.62

En la tabla 17, podemos apreciar el diseño de mezcla para el segundo concreto experimental, el cual es adicionando 2.5% de fibra sintética, este concreto tiene una dosificación de 210 kg/cm²; cabe resaltar que los agregados utilizados son de la cantera Tres Tomas.

25.94

0.04

Tabla XIX
Diseño de mezcla concreto adicionando 5% de fibra sintética

1	1.63	1.98	25.94	0.08				
Cemento	Arena	Piedra	H2O	F. sintética	L/pie ³			
		Proporció	n en peso					
Fibra sintética	37.56	Kg/m ³						
AG	911	Kg/m ³	: Piedra Chancada - Cantera Ti Tomas					
AF	751	Kg/m ³	: Arena - Cantera Tres Tomas					
H2O	281	L	: Potable de la zona.					
Cemento	460	Kg/m ³	: Tipo I -Pacasmayo					

Fuente: Propia.

Se puede observar el diseño de mezcla para el tercer concreto experimental, el cual es adicionando 5% de fibra sintética, este concreto tiene una dosificación de

210kg/cm²; los agregados utilizados son de la cantera Tres Tomas.

3.1.4. Características físicas de concreto.

El concreto presenta características, estas se determinan con ayuda de ensayos; los cuales se llevaron a cabo para poder conocer el estado en que se trabajaría el análisis. Por consiguiente, se presentan las siguientes tablas con los resultados:

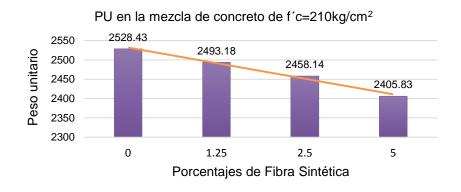

A. Peso unitario

Tabla XX Resultados de ensayo de PU

Muestra	% de Fibra Sintética	PU (Promedio)
F´c=210kg/cm²	0	2528.43
F´c=210kg/cm²+1.25% de Fibra Sintética	1.25	2493.18
F´c=210kg/cm²+2.5% de Fibra Sintética	2.5	2458.14
F´c=210kg/cm²+5% de Fibra Sintética	5	2405.83

Fuente: Propia.

Figura 1.
Resultados PU

Fuente: Propia

El ensayo sirve para saber la densidad del concreto fresco, en otras palabras, tener el

peso del concreto en m³ y así ver el rendimiento del mismo.

B. Ensayo de Slump

Tabla XXI Ensayo de Slump

Muestra	% de Fibra Sintética	SLUMP PROMEDIO (cm)
F'c=210kg/cm ²	0	7.64
F´c=210kg/cm²+1.25% de Fibra Sintética	1.25	7.47
F´c=210kg/cm²+2.5% de Fibra Sintética	2.5	7.19
F´c=210kg/cm²+5% de Fibra Sintética	5	6.82

Fuente: Elaboración propia.

Este ensayo, nos indica el estado en que se encuentra el estado fresco respecto a la trabajabilidad del mismo, en este caso se determina que al agregar más fibra sintética la trabajabilidad del concreto será menor.

C. Temperatura

Tabla XXII Resultados de ensayo de temperatura.

Muestra	% de fibra sintética	Temperatura
F'c=210kg/cm2	0	28.20
F'c=210kg/cm2+1.25% P. de Fibra Sintética	1.25	27.60
F'c=210kg/cm2+2.5% de Fibra Sintética	2.5	27.23
F'c=210kg/cm2+5% de Fibra Sintética	5	26.77

Fuente: Elaboración Propia

Esta tabla nos indica resultados de temperatura que se realizó al concreto fresco; así se determina que, al poner fibras sintéticas al concreto, la temperatura disminuye.

3.1.5. Características mecánicas de concreto.

A. Resistencia a la compresión.

Se hizo resistencia a compresión a distintos concretos, teniendo 09 probetas por cada concreto a analizar; dando como resultados lo siguiente:

Tabla XXIII

Resultados de resistencia a compresión de concreto base

CÓDIGO	Descripción	Fecha de	Fecha de	Edad	f'c	Promedio	Porcentaje
CODIGO	Descripcion	vaciado	ensayo	(días)	(kg/cm2)	Tromcaio	(%)
CP - 01		16/12/2021	23/12/2021	7	173.84		
CP - 02		16/12/2021	23/12/2021	7	172.31		
CP - 03	concreto patrón	16/12/2021	23/12/2021	7	173.48	173.21	82.48%
CP - 04	210 kg/cm2	16/12/2021	23/12/2021	7	173.50		
CP - 05		16/12/2021	23/12/2021	7	172.90		
CP - 06		16/12/2021	30/12/2021	14	185.18		
CP - 07		16/12/2021	30/12/2021	14	184.60		
CP - 08	concreto patrón	16/12/2021	30/12/2021	14	183.46	184.03	87.63%
CP - 09	210 kg/cm2	16/12/2021	30/12/2021	14	184.69		
CP - 10		16/12/2021	30/12/2021	14	183.57		
CP - 11		16/12/2021	13/01/2022	28	210.55		
CP - 12		16/12/2021	13/01/2022	28	212.35		
CP - 13	concreto patrón 210 kg/cm2	16/12/2021	13/01/2022	28	212.08	211.66	100.79%
CP - 14		16/12/2021	13/01/2022	28	211.54		
CP - 15		16/12/2021	13/01/2022	28	210.89		

Fuente: Propio

En esta tabla, están los resultados a compresión de 09 probetas del concreto base, de los cuales 3 se hicieron a los 7d de y el resultado promedio fue 173.21kg/cm², 3 a los 14d el resultado promedio fue 184.03kg/cm²; y 3 últimas a los 28d con un resultado promedio de 211.66 kg/cm²; llegando a obtener la resistencia de diseño.

Tabla XXIV
Resultados de resistencia a compresión de concreto con 1.25% de FS

CÓDIGO	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	f'c (kg/cm2)	Promedio	Porcentaje (%)
CE1 - 01		16/12/2021	23/12/2021	7	178.83		
CE1 - 02	concreto 210	16/12/2021	23/12/2021	7	178.35		
CE1 - 03	kg/cm2+ 1.25%	16/12/2021	23/12/2021	7	180.85	179.43	85.44%
CE1 - 04	de Fibra	16/12/2021	23/12/2021	7	179.98		
CE1 - 05	sintética	16/12/2021	23/12/2021	7	179.12		
CE1 - 06		16/12/2021	30/12/2021	14	198.27	197.74	94.16%

CE1 - 07	concreto 210	16/12/2021	30/12/2021	14	198.16		
CE1 - 08	kg/cm2+ 1.25%	16/12/2021	30/12/2021	14	196.79		
CE1 - 09	de Fibra	16/12/2021	30/12/2021	14	198.32		
CE1 - 10	sintética	16/12/2021	30/12/2021	14	197.16		
CE1 - 11		16/12/2021	13/01/2022	28	224.54		
CE1 - 12	concreto 210	16/12/2021	13/01/2022	28	222.71		
CE1 - 13	kg/cm2+ 1.25%	16/12/2021	13/01/2022	28	226.50	224.58	106.94%
CE1 - 14	de Fibra	16/12/2021	13/01/2022	28	222.33		
CE1 - 15	sintética	16/12/2021	13/01/2022	28	226.82		

Fuente: Propio

En esta tabla 23, están los resultados a compresión hecho a 09 probetas del concreto adicionando 1.25% de FS, de los cuales 3 se realizaron a los 7d dando un promedio de 179.43kg/cm², 3 a los 14d con un resultado promedio de 197.74kg/cm²; por ultimo 3 los 28d con resultado promedio de 224.58 kg/cm²; lo que quiere decir que superó la resistencia de diseño en un 6.94%.

Tabla XXV
Resultados de resistencia a compresión de concreto con 2.5% de FS

CÓDIGO	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	f'c (kg/cm2)	Promedio	Porcentaje (%)
CE2 - 01		16/12/2021	23/12/2021	7	185.55		
CE2 - 02	concreto 210	16/12/2021	23/12/2021	7	185.67		
CE2 - 03	kg/cm2+ 2.5% de	16/12/2021	23/12/2021	7	187.26	186.16	88.65%
CE2 - 04	Fibra sintética	16/12/2021	23/12/2021	7	184.44		
CE2 - 05		16/12/2021	23/12/2021	7	187.90		
CE2 - 06		16/12/2021	30/12/2021	14	205.50		
CE2 - 07	concreto 210	16/12/2021	30/12/2021	14	208.29		
CE2 - 08	kg/cm2+ 2.5% de	16/12/2021	30/12/2021	14	209.41	207.53	98.82%
CE2 - 09	Fibra sintética	16/12/2021	30/12/2021	14	206.04		
CE2 - 10		16/12/2021	30/12/2021	14	208.41		
CE2 - 11		16/12/2021	13/01/2022	28	231.60		
CE2 - 12	concreto 210	16/12/2021	13/01/2022	28	232.25		
CE2 - 13	kg/cm2+ 2.5% de	16/12/2021	13/01/2022	28	232.85	232.24	110.59%
CE2 - 14	Fibra sintética	16/12/2021	13/01/2022	28	233.19		
CE2 - 15		16/12/2021	13/01/2022	28	231.33		

Fuente: Propio

La tabla 24, presenta resultados a compresión realizados a 09 probetas del concreto adicionando 2.5% de FS, de los que 3 se realizaron a los 7d con un resultado promedio de 186.16kg/cm², 3 a los 14d y se obtuvo un resultado promedio de 207.53kg/cm²; y 3 a los 28d con un resultado promedio de 232.24kg/cm², lo que significa superó la resistencia de diseño en un 10.59%.

Tabla XXVI
Resultados de resistencia a compresión de concreto con 5% de FS

CÓDIGO	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	f'c (kg/cm2)	Promedio	Porcentaje (%)
CE3-01		16/12/2021	23/12/2021	7	192.93		
CE3-02	concreto 210	16/12/2021	23/12/2021	7	192.26		
CE3-03	kg/cm2+ 5% de	16/12/2021	23/12/2021	7	194.31	193.17	91.98%
CE3-04	Fibra sintética	16/12/2021	23/12/2021	7	193.21		
CE3-05		16/12/2021	23/12/2021	7	193.13		
CE3-06		16/12/2021	30/12/2021	14	221.07		104.76%
CE3-07	concreto 210	16/12/2021	30/12/2021	14	218.96		
CE3-08	kg/cm2+ 5% de	16/12/2021	30/12/2021	14	219.96	220.00	
CE3-09	Fibra sintética	16/12/2021	30/12/2021	14	220.70		
CE3-10		16/12/2021	30/12/2021	14	219.30		
CE3-11		16/12/2021	13/01/2022	28	241.83		
CE3-12	concreto 210	16/12/2021	13/01/2022	28	239.22		
CE3-13	kg/cm2+ 5% de	16/12/2021	13/01/2022	28	240.08	240.71	114.62%
CE3-14	Fibra sintética	16/12/2021	13/01/2022	28	242.09		
CE3-15		16/12/2021	13/01/2022	28	240.34		

Fuente: Propio

En la tabla, están resultados del ensayo a compresión de 09 probetas de concreto adicionando 5% de FS, 3 a los 7d de con un promedio de 193.17 kg/cm², 3 a los 14d con resultado promedio de 220.00 kg/cm²; y 3 a los 28d de con resultado promedio de 240.71 kg/cm², lo que significa superó la resistencia de diseño en un 14.62%.

B. Resistencia a la flexión:

Tabla XXVII

Resultados de resistencia a la flexión de concreto base

Muestra	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Mr	Mr promedio
Nº			(dias)	(P) (Kg)	(Kg/cm2)	(Kg/cm2)
CP-01	16/12/2021	23/12/2021	7	928	17.23	
CP-02	16/12/2021	23/12/2021	7	934	17.09	
CP-03	16/12/2021	23/12/2021	7	951	17.47	17.26
CP-04	16/12/2021	23/12/2021	7	948	17.62	
CP-05	16/12/2021	23/12/2021	7	922	16.89	
CP-06	16/12/2021	30/12/2021	14	1,075	19.46	
CP-07	16/12/2021	30/12/2021	14	1,091	18.77	
CP-08	16/12/2021	30/12/2021	14	1,085	19.54	19.26
CP-09	16/12/2021	30/12/2021	14	1,072	19.51	
CP-10	16/12/2021	30/12/2021	14	1,062	19.04	
CP-11	16/12/2021	13/01/2022	28	1,164	21.20	
CP-12	16/12/2021	13/01/2022	28	1,192	21.43	
CP-13	16/12/2021	13/01/2022	28	1,175	21.12	21.25
CP-14	16/12/2021	13/01/2022	28	1,169	21.29	
CP-15	16/12/2021	13/01/2022	28	1,181	21.23	

Fuente: Propia

En esta tabla, se aprecia los resultados de flexión hechos a 09 probetas del concreto base, 3 se realizaron a los 7d teniendo un promedio de 17.26kg/cm², 3 a los 14d y se obtuvo un promedio de 19.26 kg/cm²; por último los 3 se realizaron a 28d teniendo un módulo de rotura promedio de 21.25 kg/cm².

Tabla XXVIII

Resultados de resistencia a flexión de concreto con 1.25% de FS

Muestra	Fecha de	Fecha de ensayo	Edad	Carga	Mr	Mr promedio
Nº	vaciado		(dias)	(P) (Kg)	(Kg/cm2)	(Kg/cm2)
CE1-1	16/12/2021	23/12/2021	7	1,105	19.62	
CE1-2	16/12/2021	23/12/2021	7	1,102	19.74	
CE1-3	16/12/2021	23/12/2021	7	1,096	19.34	19.57
CE1-4	16/12/2021	23/12/2021	7	1,089	19.13	
CE1-5	16/12/2021	23/12/2021	7	1,120	20.02	
CE1-6	16/12/2021	30/12/2021	14	1,172	21.28	
CE1-7	16/12/2021	30/12/2021	14	1,154	20.74	
CE1-8	16/12/2021	30/12/2021	14	1,183	21.73	21.25
CE1-9	16/12/2021	30/12/2021	14	1,188	21.36	
CE1-10	16/12/2021	30/12/2021	14	1,159	21.13	
CE1-11	16/12/2021	13/01/2022	28	1,267	23.00	
CE1-12	16/12/2021	13/01/2022	28	1,284	23.08	
CE1-13	16/12/2021	13/01/2022	28	1,279	23.50	23.19
CE1-14	16/12/2021	13/01/2022	28	1,271	22.85	
CE1-15	16/12/2021	13/01/2022	28	1,305	23.53	

Fuente: Propio

La tabla 27, expone los resultados del ensayo de flexión que se realizó a 09 probetas del concreto adicionando 1.25% de fibras sintéticas, 3 se realizaron a los 7d teniendo un promedio de 19.57kg/cm², 3 a los 14d con un resultado promedio de 21.25 kg/cm²; y 3 a los 28d de curado teniendo un MR promedio de 23.19kg/cm².

Tabla XXIX
Resultados de resistencia a flexión de concreto con 2.5% de FS

Muestra	Fecha de	Fecha de	Edad	Carga	Mr	Mr promedio
Nº	vaciado	ensayo	(dias)	(P) (Kg)	(Kg/cm2)	(Kg/cm2)
1	16/12/2021	23/12/2021	7	1,264	22.45	
2	16/12/2021	23/12/2021	7	1,284	22.85	
3	16/12/2021	23/12/2021	7	1,291	23.38	22.89
4	16/12/2021	23/12/2021	7	1,258	22.63	
5	16/12/2021	23/12/2021	7	1,275	23.15	
6	16/12/2021	30/12/2021	14	1,325	24.05	
7	16/12/2021	30/12/2021	14	1,314	23.77	
8	16/12/2021	30/12/2021	14	1,301	24.06	23.96
9	16/12/2021	30/12/2021	14	1,344	24.66	
10	16/12/2021	30/12/2021	14	1,298	23.26	
11	16/12/2021	13/01/2022	28	1,426	25.89	
12	16/12/2021	13/01/2022	28	1,431	25.98	
13	16/12/2021	13/01/2022	28	1,405	25.69	25.85
14	16/12/2021	13/01/2022	28	1,444	26.33	
15	16/12/2021	13/01/2022	28	1,398	25.38	

Fuente: Propia

En esta tabla 28, se ve resultados del ensayo a flexión realizados en 09 probetas del concreto adicionando 2.5% de fibras sintéticas, 3 se realizaron a los 7d teniendo un promedio de 22.89kg/cm², 3 a los 14d con un resultado promedio de 23.96kg/cm²; y 3 a los 28d teniendo un MR promedio de 25.85kg/cm².

Tabla XXX
Resultados de resistencia a flexión de concreto con 5% de FS

Muestra Nº	Fecha de vaciado	Fecha de ensayo	Edad (dias)	Carga (P) (Kg)	Mr (Kg/cm2)	Mr promedio (Kg/cm2)
1	16/12/2021	23/12/2021	7	1,356	24.24	
2	16/12/2021	23/12/2021	7	1,354	24.20	
3	16/12/2021	23/12/2021	7	1,368	24.24	24.22
4	16/12/2021	23/12/2021	7	1,366	24.36	
5	16/12/2021	23/12/2021	7	1,347	24.08	
6	16/12/2021	30/12/2021	14	1,465	26.01	
7	16/12/2021	30/12/2021	14	1,452	25.78	
8	16/12/2021	30/12/2021	14	1,471	26.15	25.98
9	16/12/2021	30/12/2021	14	1,490	26.46	
10	16/12/2021	30/12/2021	14	1,415	25.49	
11	16/12/2021	13/01/2022	28	1,532	27.86	
12	16/12/2021	13/01/2022	28	1,548	27.77	
13	16/12/2021	13/01/2022	28	1,564	28.82	28.15
14	16/12/2021	13/01/2022	28	1,505	27.49	
15	16/12/2021	13/01/2022	28	1,594	28.78	

Fuente: Propio

La tabla 29, muestra resultados que se realizó a 09 probetas del concreto adicionando 5% de fibras sintéticas, 3 se realizaron a los 7d teniendo un promedio de 24.22kg/cm², 3 a los 14d con un resultado promedio de 25.98kg/cm²; y 3 a los 28d de curado teniendo un MR promedio de 28.15 kg/cm².

3.1.6. Dosificación óptima en el concreto con fibra sintética.

Tras los resultados anteriores mostrados respecto a la resistencia obtenida de los

diferentes tipos de concreto se tiene que la dosificación adecuada para una mejor resistencia es optando por agregar 5% de fibras sintética, donde se tiene una mejora de la resistencia de 14.62%.

Es por ello, que la dosificación obtenida y final de la investigación es de 1:1.63:1.98:0.08, teniendo en cuenta que se tiene que agregar 26 litros de agua.

3.2. Discusión de resultados

- En la tesis propuesta por Zegarra [15] obtuvo estándares permitidos de los agregados los cuales al ser mesclados con fibra sintética, dieron resultados favorables. Los resultados de los estudios hechos en esta investigación al AF y AG provenientes de la cantera tres tomas cumplen con estándares mínimos y máximos permisibles según la NTP 400.012 2001, Por lo tanto, debemos realizar los estudios de agregados correctamente para tener los resultados esperados.
- Para esta investigación se observó que la fibra Sintética ha tenido una buena adherencia al momento de ser mesclado con los agregados, el cemento y el agua y se ha seguido las recomendaciones del ACI, concordando con Bautista y Huamachumo [21], quienes siguiendo los parámetros, obtuvieron su dosificación adecuada.
- Vásquez y Huamán [20] determinaron un aumento máximo de la resistencia a comprensión cuando se añadió (FP en 900 g/m3 y FA en 10 kg/m3), obtuvo valores de 253 kg/cm2 y 320 kg/cm2, los cuales representan un incremento de 9.95% y 4.85%, para ambos diseños respectivamente. Y en el caso de esta investigación adicionado el 5% de FS, la resistencia a compresión aumenta en 14.62% y el Modulo de Resistencia en 28.15kg/cm³ respecto al concreto patrón.

- En comparación con Bautista y Huamachuco [21] que obtuvieron su dosificación de Cemento-Arena-Piedra-Agua en peso: 1 -1.73 - 2.11 - 21.95 y 1 - 1.36 - 1.66 - 17.93 para resistencias de f'c = 210 Kg/cm² y un de f'c = 280 kg/cm² respectivamente. En esta investigación para una mejor resistencia a compresión y flexión agregando fibra sintética, la dosificación adecuada de los materiales en cuanto a cemento, arena, piedra y fibra sintética es 1:1.63:1.98:0.08,(L/pie3) agregando 26 litros de agua.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- En cuanto a las características de los agregados, en la presente investigación los agregados de la cantera Tres Tomas presentan agregados bien graduados y óptimos para la creación de concreto. Teniendo un contenido de humedad 0.45% para el AF y 0.46% para el AG, y el módulo de fineza es 2.89 y el TMN es 3/4". Y en cuanto a la Fibra sintética, se concluye que es resistente al calor, a los ácidos, al salitre y además tiene una gran Impermeabilidad.
- Se determinó que se debe seguir los parámetros mostrados en el ACI y también con ayuda de Capeco para obtener las cantidades necesarias de materiales para un diseño de mezcla adecuado para un concreto patrón.
- El peso unitario y la temperatura del concreto con fibra sintética son menor en relación al concreto patrón, lo cual permite un mejor fraguado y una mayor resistencia, En cuanto a la trabajabilidad, el del concreto patrón es mayor al concreto con fibra sintética.
- La resistencia a la compresión de un concreto con 5% de fibra sintética aumento en un 14.62% con respecto al concreto patrón lo cual equivale a un f´c=240.71kg/cm² y un aumento la resistencia a la flexión en un 7% equivalente a 28.15 kg/cm² a los 28 días de curado.
- Como último objetivo se tiene la dosificación final para la creación de un concreto incorporando fibra sintética, es por ello, que la dosificación obtenida y final de la investigación es de 1:1.63:1.98:0.08 (pie³), teniendo en cuenta que se tiene que agregar 26 litros de agua.

4.2. Recomendaciones

- Para una buena calidad del concreto, se recomienda el estudio granulométrico de áridos y fibra sintética en la zona del proyecto del municipio, así como el uso de material de fibra sintética reciclado para mitigar y prevenir la contaminación ambiental.
- A la hora de hacer concreto, se debe tener en cuenta la dosis recomendada y el tipo de fibra sintética, pues su exceso o falta induce derivaciones negativas en sus propiedades.
- Es recomendable, una buena preparación, colocación y vibración para lograr los resultados deseados, por lo que sería mejor que la aplicación de la fibra sintética se haga luego de que todos los componentes estén colocados para que la mezcla sea uniforme, además se podría mejorar la trabajabilidad agregado algún aditivo.
- Se debería curar las muestras elaboradas que incluyen fibras sintéticas al igual que para el concreto patrón en un tanque de agua, para que las mezclas se hidraten antes de romperse y así obtener buenos resultados. de ensayos de compresión y ensayos de flexión.
- Se recomienda respetar la cantidad de material puesto en la dosificación, pues así se tendrán los resultados deseados respecto a la resistencia de compresión.

V. Referencias

- [1] D. P. D.S. Vijayan, «Effect of Solid waste based stabilizing material for strengthening of,» Environmental Technology & Innovation, https://sci-hub.hkvisa.net/10.1016/j.eti.2020.101108, 2020.
- [2] F. Wei, «Characterization of outdoor air pollution from solid fuel combustion in Xuanwei and Fuyuan, a rural region of China.,» *Nature Masterclasses*, pp. https://www.nature.com/articles/s41598-020-68229-2, 2020.
- [3] A. R. Oviedo Cogollo y J. C. Vega Sánchez, «Manejo de residuos de construcción y demolición y economía circular: revisión narrativa,» *Lámpsakos*, nº 26, p. 11, 2022.
- [4] D. Castillo y S. Hedjazi, «Relationships among compressive strength and UPV of concrete reinforced with different types of fibers,» https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109465/, 2020.
- [5] G. Seyed Hamidreza, M. Burman y N. Braimah, «Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery,» *Journal of Cleaner Production*, vol. 244, p. 9, 2020.
- [6] R. Montejo Rodolfo, J. E. Raymundo Juárez y J. S. Chávez Ancajima,
 «Materiales alternativos para estabilizar suelos: el uso de ceniza de cáscara de arroz
 en vías de bajo tránsito de Piura.,» Rev. Tzhoecoen, vol. 12, p.
 file:///C:/Users/DORIS/Downloads/MATERIALES_ALTERNATIVOS_PARA_ESTABI
 LIZAR_SUELOS_EL.pdf, 2020.
- [7] J. B. Ochoa Laurente y J. B. Ochoa Laurente, *Propuesta de incorporación de agregados de escoria de acero y fibras de polipropileno en mezclas asfálticas para reducir el agrietamiento por fatiga en la intersección de la Av. México y Parinacochas, La Victoria*, Lima: https://repositorioacademico.upc.edu.pe/handle/10757/669656,

2023.

- [8] S. P. Muñoz Pérez , M. J. Bayona Reyes y J. R. Yovera Santiesteban,
 «Gestión de residuos de construcción y demolición, para mitigar el impacto Ambiental
 y preservar nuestros recursos naturales: Una revisión de la literatura,» *Ecuadorian Science Journal*, vol. 5, nº 2, p.
 http://portal.amelica.org/ameli/jatsRepo/606/6062590009/index.html, 2021.
- [9] L. J. Ojeda Montalvo, *Linkedin*, pp. https://es.linkedin.com/pulse/las-v%C3%ADas-de-chiclayo-luis-jes%C3%BAs-eduardo-ojeda-montalvo, 2022.
- [10] S. Amaya Alarcon y M. A. Ramirez Zapata, Evaluación Del Comportamiento Mecánico Del Concreto Reforzado Con Fibras, Bogotá D.C. Colombia, 2019.
- [11] B. A. Pastuña Villegas, ANÁLISIS DEL EFECTO TAMAÑO EN EL COMPORTAMIENTO A FLEXIÓN Y COMPRESIÓN DE ELEMENTOS DE HORMIGÓN REFORZADO CON FIBRAS PLÁSTICAS, ECUADOR, 2023.
- [12] A. M. Murillo Estrada, Análisis del comportamiento a flexión del hormigón reforzado con fibras plásticas (polipropileno) después de las altas temperaturas, Ecuador, 2023.
- [13] C. R, «Fiber-reinforced concrete for the flat bottom of silos,» Revista Brasileira de Engenharia Agrícola e Ambiental, p. https://www.scielo.br/j/rbeaa/a/gh3HwFjMt9FzgWLVq4Nmh9c/?lang=en, 2020.
- [14] M. A. AUZA CHUNGARA y G. V. CHAMBI HILARI, "Evaluación del efecto de la adición de Fibras de Pet en un suelo arcilloso, aplicado a la Subrasante de la Carretera Lahuachaca Cruce San Jose (Tramo 35+700 37+100)", La Paz , 2022.
- [15] D. L. ZEGARRA QUEQUE, «ANÁLISIS DEL EFECTO DE LA FIBRA SINTÉTICA EN LAS PROPIEDADES MECÁNICAS Y RETRACCIÓN DEL CONCRETO REFORZADO RESPECTO A UNO CONVENCIONAL,» Tacna, 2023.
- [16] K. J. Chirinos Revilla y C. E. Cuervo Pavas, «Propuesta para usar fibras

- sintéticas de polipropileno reciclado en el control de fisuras generadas por la retracción en pavimentos de concreto en Lima.,» https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/654823/ChirinosR_ K.pdf?sequence=3, Lima, 2021.
- [17] R. D. Merma Hilario, "Influencia de fibra de polipropileno en las propiedades del concreto para pavimento rígido en av. La Florida Cusco 2021", Huancayo: file:///C:/Users/DORIS/Downloads/IV_FIN_105_TE_Merma_Hilario_2022.pdf, 2022.
- [18] J. A. ASTO QUISPE y R. E. QUIROZ FLORES, «DESEMPEÑO DE LA MACROFIBRA SINTÉTICA PARA MEJORAR LAS PROPIEDADES MECÁNICAS DEL CONCRETO,» Lima, 2021.
- [19] J. J. Herrera Tapara y N. A. Regalado Espinoza, «Diseño de pavimento rígido reforzado incorporando fibra sintética en la Avenida Naranjal, San Martin de Porres 2021.,» Lima, 2021.
- [20] J. Y. Vásquez Guivar y . J. K. Huamán Huamán, Evaluación de las Propiedades Físico-Mecánicas del Concreto Estructural Reforzado con Fibras de Acero y Polipropileno, Chiclayo, 2022.
- [21] J. F. Bautista Guerrero y R. Huamanchumo Echeandia, «Evaluación de las propiedades mecánicas del concreto con adición de polietileno expandido y plástico reciclado,» Pimentel-Chiclayo, 2023.
- [22] I. E. Arteaga Vásquez y A. D. O. Galvez Agreda, «Evaluación de las Propiedades Mecánicas del Concreto incorporando Viruta de Torno y Fibras de PET, Sustituyendo Parcialmente el Agregado Fino,» Chiclayo-Pimentel, 2023.
- [23] J. C. Martinez Torres y J. Vasquez Ducep, «Estudio de las Propiedades Físico-Mecánicas del Concreto, incorporando Concreto Reciclado y Fibra de Polipropileno, Reemplazando Parcialmente el Agregado Fino,» Chiclayo-Pimentel, 2023.
- [24] R. Córdova Guerrero , «Estudio de las propiedades mecánicas del concreto

- adicionando plástico reciclado como reemplazo parcial del agregado fino,» Chiclayo-Pimentel, 2023.
- [25] E. N. sanchez, «ASTM C125 20 tecnologia del concreto- astm c125-20,» https://www.studocu.com/pe/document/universidad-tecnologica-del-peru/tecnologia-del-concreto/astm-c125-20-tecnologia-del-concreto-astm-c125-20/40615205, Lima, 2021.
- [26] E. Martinez Calero, *ASTM-C-136*, https://es.scribd.com/doc/290637472/ASTM-C-136, 2020.
- [27] Zoungjin, 2011.
- [28] Kett, Engineered concrete: mix design and test methods [2nd ed], Los Angeles, 2010.
- [29] GCC, Ficha Tecnica- Agregados Petreos, 2020.
- [30] F. Lamus y S. Andrade, Concreto reforzado: Fundamentos, Ecoe Ediciones: https://books.google.com.pe/books?id=PcS4DQAAQBAJ&printsec=, 2015.
- [31] ACI 211.1, 1991.
- [32] E. Rivva Lopez, Diseño de Mezclas, https://civilarq.com/libro/diseno-de-mezclas-enrique-rivva-lopez/, 2005.
- [33] J. Porrero, Manual del Concreto Estructural, https://es.slideshare.net/nilsey/manual-del-concreto, 2014.
- [34] D. Carballo Retana, ASTM C192.
- [35] E. Vásquez, *ASTM C 143 REVENIMIENTO*, https://pdfcoffee.com/astm-c-143-revenimiento-3-pdf-free.html.
- [36] Enzo, NTP 339.184, Lima, 2021.
- [37] P. V. Corregidor Maldonado, *ASTM C1064*, Lima: https://pdfcoffee.com/astm-c1064-12-pdf-3-pdf-free.html, 2012.

- [38] S. Rodriguez Inuma, NORMA TÉCNICA PERUANA NTP 339.046, Lima, 2009.
- [39] ASTM C138 Peso Unitario Del Concreto, Lima: https://pdfcoffee.com/astm-c138-peso-unitario-del-concreto-4-pdf-free.html.
- [40] P. V. V. Corregidor Maldonado, Astm C231-14, 2014.
- [41] J. Rosales Yacila, Ntp 339.034 Metodo de Ensayo Normalizado Para La Determinacion de La Resistencia a La Compresion Del Concreto, 2015.
- [42] Z. Xianggang, W. Shuren y G. Xiang, Mechanical Properties of Recycled Aggregate Concrete Subjected to Compression Test, 2018.
- [43] R. Hernández Sampieri, *Metodologia de la Investigacion*, 2014.
- [44] R. Hernández Sampieri, C. Fernández Collado y M. d. P. Baptista Lucio, «Metodologia de la Investigación,» de *Metodologia de la Investigación*, Mexico, McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V, 2014, p. 632.
- [45] U. S. d. Sipan, «Código de Ética para la Investigación de la Universidad Señor de Sipan,» Pimentel, 2023.
- [46] Medallodim, Astm C 566 Contenido de Humedad Total Del Agregado, Lima: https://es.scribd.com/document/264667584/Astm-c-566-Contenido-de-Humedad-Total-Del-Agregado, 2021.
- [47] K. Escobar Riveros, *ASTM-C29 Peso Unitario*, https://es.scribd.com/document/362029309/ASTM-C29-Peso-Unitario, 2019.
- [48] R. Gambetta, NTP 400.021 Densidad y Absorción Agregado Grueso-convertido, Lima: https://pdfcoffee.com/ntp-400021-densidad-y-absorcion-agregado-grueso-convertido-pdf-free.html, 2018.
- [49] c. g. NTP 400.022 Densidad y Absorción Del Agregado Fino, Lima: https://pdfcoffee.com/ntp-400022-densidad-y-absorcion-del-agregado-fino-pdf-free.html, 2018.
- [50] K. APAESTEGUI, *NTP* 339.079, Lima:

- https://es.scribd.com/document/372901345/NTP-339-079-2012-pdf, 2012.
- [51] F. Sout, NTP 339 078 Ensayo de Flexion, Lima: https://www.udocz.com/apuntes/108486/ntp-339-078-ensayo-de-flexion-pdf, 2012.
- [52] D. Boyer, NTP-400.012-2013 (Revisión 2018), Lima: https://www.studocu.com/pe/document/universidad-catolica-santo-toribio-demogrovejo/tecnologia-del-concreto/ntp-400012-2013-revision-2018-analisis-granulometrico-del-agregado-fino-grueso-y-global/14744990, 2018.
- [53] A. C33, Especificación estándar para AGREGADOS PARA CONCRETO, https://pdfcoffee.com/astm-c33-03-espaol-5-pdf-free.html.
- [54] E. F. Castro Norato, *ASTM-C1064 Temperatura*, https://es.scribd.com/document/498906552/ASTM-C1064-Temperatura-en-espanol.
- [55] H. Yau B, Astm C-39-M-05 PDF, https://es.scribd.com/document/330171923/TRADUCCION-DE-LA-NORMA-ASTM-C-39-M-05-pdf.
- [56] L. A. Gutierrez, Astm C293, https://es.scribd.com/document/392076182/ASTM-C293-docx.
- [57] W. Millones Quesquen, Código Deontológico del Colegio de Ingenieros del Perú, https://pdfcoffee.com/codigo-deontologico-del-colegio-de-ingenieros-del-peru-1-4-pdf-free.html, 2013.
- [58] geologist84, ASTM C203-05a., 2017.

VI. ANEXOS

ANEXO 1: Matriz de consistencia

Título	Problema	Hipótesis	Objetivos	Tipo y diseño de la investigación	Técnicas e instrumentos de recolección de datos		Presupuesto							
PROPIEDADES	¿Cuál es el cambio de propiedades físicas y	"La incorporación de la Fibra Sintética influye significativame nte en las propiedades	General: Determinar la caracterización física y mecánica de concreto	El tipo de investigación es descriptiva. Diseño de	T1: Observación	Formatos de ensayos, guías de observación, fichas técnicas	Mi presupuesto							
FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210	Y mecánicas físicas y mecánicas del concreto estructural	incorporando fibra sintética en la	investigación es experimental	T2: Análisis de datos secundarios	Guía de documentación	será de S/								
KG/CM2 INCORPORAND	el concreto estructural	Pavimento	Pavimento	Pavimento	Pavimento	Pavimento	Pavimento	Pavimento		Específicos:	Variables:	Método de an	álisis de datos	Financiamient o:
O FIBRA SINTÉTICA PARA	f'c=210 kg/cm2 para uso de	ciudad de Chiclayo".		Variable	Análisis de Campo		Propio:							
PAVIMENTACIÓ N, CHICLAYO "	uso de pavimentación en la ciudad	VIMENTACIÓ pavimentación CHICLAYO " en la ciudad	Justificación:	Evaluar las características de los agregados	dependiente: Propiedades del concreto estructural F'c=210 Kg/cm2	Análisis de laboratorio	resultados de	La presente investigación será financiada con recursos propios						

Técnica	diseño de mezclas del concreto patrón y concreto	fibras sintéticas en porcentaje de 1.25%, 2.5% y	Métodos estadísticos de comparación de los resultados	Programación
	3 Determinar las caracterizaciones físicas del	Población: Todas las probetas cilíndricas y rectangulares de	Aspectos éticos	Inicio:
Teórica	concreto patrón y concreto modificado (Slum, temperatura, peso unitario, contenido de aire)	concreto con sustitución de fibras sintéticas siguiendo los lineamientos normativos para la evaluación de las propiedades del concreto.	Ética en la recolección de datos	05 de octubre
	4 Determinar las	Muestra	Ética en la publicación	Fin:
Ambiental	características mecánicas del concreto patrón y concreto modificado (resistencia a la compresión y resistencia a la flexión)	152 ensayos	Ética en la aplicación	05 de febrero

ANEXO 2: Diseño de los instrumentos de recolección de datos.

ANEXO 1.1: Variables y operacionalización.

Variable	Dimensión	Indicadores	Sub indicadores	Índice	Técnica de recolección de información	Instrumento de recolección de información	Instrumento de medición	
			Agregado Fino		Observación	Guía de análisis de datos	Tamices	
		Granulometría	Agregado Grueso	ADIM.	Observación	Guía de análisis de datos	Tamices	
	Ensayos de	Contenido de Humedad	Agua	%	Observación	Guía de análisis de datos	Balanza	
	los agregados	Peso Unitario	Agregado Fino	Kg/m3	Observación	Guía de análisis de datos	Recipiente peso	
Variable independiente: Adición de las fibras		compactado y suelto	Agregado Grueso	Kg/m3	Observacion	Guia de arialisis de datos	unitario	
sintéticas en porcentaje		Peso Específico y Absorción	Agregado Fino	Kg/m3	Observación	Guía de análisis de datos	Ralanza	
de 1.25%, 2.5% y 5%			Agregado Grueso	Kg/m3	Observacion	Guia de arialisis de datos	Dalariza	
	Diseño de Mezclas	Dosificación	0 (Concreto Patrón)	%	Observación	Ficha técnica	Balanza	
			1.25	%	Observación	Ficha técnica	Balanza	
			44318	%	Observción	Ficha técnica	Balanza	
			5	%	Observación	Ficha técnica	Balanza	
	Propiedades físicas del	Trabajabilidad	Edición	Pulgadas	Análisis Documental	Guías de análisis de documentos	Cono de Abrams	
Variable dependiente: Propiedades físicas y mecánicas del concreto f'c=210 Kg/cm2	concreto	Peso Unitario	Relación entre masa y volumen	Kg/cm3	Análisis Documental	Guías de análisis de documentos	Recipiente Peso Unitario	
	Propiedades mecánicas del	Compresión	Resistencia de fuerza sobre área	Kg/cm ²	Análisis Documental	Guías de análisis de documentos	Máquina Compresora	
	concreto	Flexión	Resistencia de fuerza sobre área	Kg/cm²	Análisis Documental	Guías de análisis de documentos	Máquina Compresora	

ANEXO 3: Costos del concreto

3.1. Costo del concreto patrón

CONCRETO f´c = 210 kg/cm2 EN PAVIMENTO RIGIDO (CONCRETO CONVENCIONAL)							
Rendimiento	m3/DIA	48.0000	48.0000	Costo unitario	directo por : m3	488.48	
Código	Descripción Recu	rso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de O	bra				
OPERARIO			hh	2.0000	0.3333	22.96	7.65
OFICIAL			hh	2.0000	0.3333	18.16	6.05
PEON			hh	8.0000	1.3333	16.41	21.88
							35.58
		Materiale	es				
PIEDRA CHANCA	ADA 3/4"		m3		0.9260	55.00	50.93
ARENA GRUESA			m3		0.7360	40.00	29.44
CEMENTO PORT	LAND TIPO I (42.5 kg)		bol		9.5000	27.00	256.50
AGUA			m3		0.2810	5.00	1.41
							338.28
		Equipos	s				
HERRAMIENTAS	MANUALES		% mo		3.0000	36.38	109.14
REGLA DE ALUM	INIO		und		0.0200	45.29	0.91
VIBRADOR DE CO	ONCRETO 4 HP 1.25"		hm	1.0000	0.1667	10.54	1.76
MEZCLADORA D	E TROMPO 9 P3 (8 HP)		hm	1.0000	0.1667	16.92	2.82
							114.62

3.2. Costo del concreto adicionando 5% de fibra.

	CONCRE	TO f'c = 210 kg/cm	12 EN PAVIMENTO RIGIDO (CONCRETO ADICIONAND	O 5 % DE FIBRAS S	INTÉTICAS)	
Rendimiento	m3/DIA	48.0000	48.0000	Costo unitario	directo por : m3	484.75	
	Descripción Recu	rso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de O	bra				
OPERARIO			hh	2.0000	0.3333	22.96	7.65
OFICIAL			hh	2.0000	0.3333	18.16	6.05
PEON			hh	8.0000	1.3333	16.41	21.88
							35.58
		Materiale	s				
PIEDRA CHANC	CADA 3/4"		m3		0.8910	55.00	49.01
ARENA GRUESA	A		m3		0.7060	40.00	28.24
CEMENTO POR	TLAND TIPO I (42.5 kg)		bol		9.5000	27.00	256.50
FIBRAS SINTÉT	ICAS		bol		0.1000	8.00	0.80
AGUA			m3		0.2810	5.00	1.41
							334.55
		Equipos	i				
HERRAMIENTA	S MANUALES		% mo		3.0000	36.38	109.14
REGLA DE ALUI	MINIO		und		0.0200	45.29	0.91
VIBRADOR DE O	CONCRETO 4 HP 1.25"		hm	1.0000	0.1667	10.54	1.76
MEZCLADORA (DE TROMPO 9 P3 (8 HP))	hm	1.0000	0.1667	16.92	2.82
							114.62

ANEXO 4: Informe de laboratorio

ANEXO 4.1. Ensayos de agregados.

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F²C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO

Ensayo : Análisis granulométrico por tamizado del agregado fino

Referencia: Norma ASTM C-136 ó N.T.P. 400.012

Peso inicial 500.0

Muestra : Arena - Cantera Tres Tomas

Ma	alla	Peso	%	% Acumulado	% Acumulado
Pulg.	(mm.)	Retenido	Retenido	Retenido	Que pasa
1/2"	12.700	0.0	0.0	0.0	100.0
3/8"	9.520	0.00	0.0	0.0	100.0
Nº 004	4.750	15.20	3.0	3.0	97.0
Nº 008	2.360	53.26	10.7	13.7	86.3
Nº 016	1.180	105.45	21.1	34.8	65.2
Nº 030	0.600	98.65	19.7	54.5	45.5
Nº 050	0.300	158.74	31.7	86.3	13.7
Nº 100	0.150	53.26	10.7	96.9	3.1
FONDO		15.44	3.1	100	0
Módulo de fineza =			2.	89	
	Abertu	ra de malla de	2.	36	

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F²C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA"
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO

Ensayo : Análisis granulométrico por tamizado del agregado grueso

Referencia: Norma ASTM C-136 ó N.T.P. 400.012

Peso inicial 1500.0

Muestra : Piedra Chancada - Cantera Tres Tomas

Ma	alla	Peso	%	% Acumulado	% Acumulado
Pulg.	(mm.)	Retenido	Retenido	Retenido	Que pasa
2"	50.000	0.0	0.00	0.0	100.0
1 1/2"	38.000	0.0	0.0	0.0	100.0
1"	25.000	0.0	0.0	0.0	100.0
3/4"	19.000	75.2	5.0	5.0	95.0
1/2"	12.700	750.1	50.0	55.0	45.0
3/8"	9.520	480.3	32.0	87.0	13.0
N° 004	4.750	184.1	12.3	99.3	0.7
FONDO		10.3	0.7	100.0	0.0
			100.0		
		Tamaño Máximo =		1	"
		Tamaño Ma	áximo Nominal =	3/-	4"

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÚNICAS DEL CONCRETO ESTRUCTURAL F'C-210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "
Tesista:	BACH, DORIS ELIZABETH LINARES OLANO

Ensayo : Peso unitario del agregado fino **Referencia** : Norma ASTM C-29 ó N.T.P. 400.017

Muestra : Arena - Cantera Tres Tomas

1.- PESO UNITARIO SUELTO

Peso de la muestra suelta + recipiente	[40.]	7530	7530.5
Peso del recipiente	land.	3025	3025
Peso de muestra	[40.]	4505	4505.5
Constante ó Volumen	l='I	0.0028	0.0028
.– Peso unitario suelto húmedo	-/-'	1594	1594
Peso unitario suelto humedo (Promedio)	[kq/=']	1594	
Peso unitario suelto seco (Promedio)	-/='	1580	5

2.- PESO UNITARIO COMPACTADO

Peso de la muestra compactada + recipiente	land	7807	7806
Peso del recipiente	laed	3025	3025
Peso de muestra	land	4782	4781
Constante ó Volumen	='	0.0028	0.0028
Peso unitario suelto húmedo	[kq/=']	1692	1691
Peso unitario compactado humedo (Promedio)	[kg/=']	1691	
Peso unitario seco compactado (Promedio)	[447=1]	1684	4

Ensayo : Contenido de humedad del agregado fino **Referencia** : Norma ASTM C-535 ó N.T.P. 339.185

Peso de muestra húmeda	[ge.]	597.8	597.6	
Peso de muestra seca	[ged]	595.3	595.6	
Peso de recipiente	laed	97.4	97.4	
. – Contenido de humedad	ĮΧĮ	0.50	0.40	
Contenido de humedad (promedio)	ĮΧĮ	0.45		

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F"C-210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO

Ensayo : Peso unitario del agregado grueso Referencia : Norma ASTM C-29 6 N.T.P. 400.017

Muestra: Piedra Chancada - Cantera Tres Tomas

1.- PESO UNITARIO SUELTO

Peso de la muestra suelta + recipiente	laed	21736	21735
Peso del recipiente	[ges]	6765	6765
Peso de muestra	land	14971	14970
Constante ó Volumen	- '	0.0094	0.0094
. – Peso unitario suelto húmedo	[647=1]	1589	1589
Peso unitario suelto humedo (Promedio)	[kg/=']	1589	
Peso unitario suelto seco (Promedio)	[647=1]	1582	

2.- PESO UNITARIO COMPACTADO

. – Peso de la muestra suelta + recipiente	land	21719	21725
Peso del recipiente	[ges]	6765	6765
. – Peso de muestra	lar-l	14954	14960
Constante ó Volumen	-'	0.0094	0.0094
. – Peso unitario suelto húmedo	[64/="[1587	1588
Peso unitario compactado humedo (Promedio)	[647-1]	1588	
Peso unitario compactado seco (Promedio)	[647=1]	1580	

Ensayo : Contenido de humedad del agregado grueso **Referencia** : Norma ASTM C-535 ó N.T.P. 339.185

. – Peso de muestra húmeda	[qe.]	587.6	587.8
Peso de muestra seca	[95.]	585.2	585.2
Peso de recipiente	[95.]	47	47
. – Contenido de humedad	[X]	0.45	0.48
Contenido de humedad (promedio)	[X]	0.46	

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "
Tesist	
a:	BACH. DORIS ELIZABETH LINARES OLANO

Ensayo : Peso específico y Absorción del agregado fino Referencia : Norma ASTM C-128 ó N.T.P. 400.022

Muestra : Arena - Cantera Tres Tomas

I. DATOS

1 Peso de la arena Sat. superficialmente seca	(gr)	500.0	500.0
2Peso de la arena sat. superficialmente seca + peso del frasco + peso del a	(gr)	965.0	965.7
3 Peso de la arena sat. superficialmente seca + peso del frasco	(gr)	673.2	674.5
4 Peso del agua	(gr)	291.8	291.2
5 Peso de la arena secada al horno + peso del frasco	(gr)	672.9	672.8
6 Peso del frasco	(gr)	174.8	174.8
7 Peso de la arena secada al horno	(gr)	498.1	498.0
8 Volumen del frasco	(cm³)	500.0	500.0

II .- <u>RESULTADOS</u> 1.091606399

				PRUMEDIO
1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.392	2.385	2.389
2 PESO ESPECÍFICO DE MASA SATURADO SUPERFICIALMENTE SECO) (gr/cm³)	2.402	2.395	2.398
3 PESO ESPECIFICO APARENTE	(gr/cm³)	1.092	1.090	1.091
4 PORCENTAJE DE ABSORCIÓN	%	0.38	0.40	0.39

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO

Ensayo : Peso específico y Absorción del agregado grueso Referencia : Norma ASTM C-127 ó N.T.P. 400.021

Muestra: Piedra Chancada - Cantera Tres Tomas

I. DATOS

1 Peso de la muestra secada al horno	(gr)	1723.4	1723.5
2. – Peso de la muestra saturada superficialmente seca	(gr)	1731.7	1733.2
3 Peso de la muestra saturada dentro del agua + peso de la canastilla	(gr)	2005.6	2005.6
4 Peso de la canastilla	(gr)	928.0	928.0
5 Peso de la muestra saturada dentro del agua	(gr)	1077.6	1077.6

II .- RESULTADOS

			PROMEDIO
1 PESO ESPECIFICO DE MASA (gricm³)	2.635	2.629	2.632
2 PESO ESPECIFICO DE MASA SATURADO SUPERFICIALMENTE SEG(r/cm²)	2.647	2.644	2.646
3 PESO ESPECIFICO APARENTE (gr/cm³)	2.669	2.668	2.668
4 PORCENTAJE DE ABSORCIÓN %	0.48	0.56	0.52

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO

Ensayos físicos para diseño de mezcla de concreto.

1 GRANULOMETRIA:	N.T.P. 400.012
------------------	----------------

Agregado Fino

Muestra

Iodulo de	Fineza:	2.89		
Malla	Peso Retenido	% Retenido	% Ret. Acum.	% Que Pasa
3/8"	0	0	0	100
Nº4	15.2	3.0	3.0	97.0
Nº8	53.3	10.7	13.7	86.3
Nº16	105.5	21.1	34.8	65.2
Nº30	98.7	19.7	54.5	45.5
Nº50	158.7	31.7	86.3	13.7
Nº100	53.3	10.7	96.9	3.1
FONDO	15.4	3.1	100.0	0.0

Muestra	Agregado Grueso
T.M.N.:	3/4"

fc

1 .171.1 1	5/4			
Malla	Peso Retenido	% Retenido	% Ret. Acum.	% Que Pasa
2"	0	0	0	100
1 1/2"	0	0	0	100
1"	0	0.00	0.00	100.00
3/4"	75.16	5.01	5.01	94.99
1/2"	750.14	50.01	55.02	44.98
3/8"	480.325	32.02	87.04	12.96
Nº4	184.1	12.27	99.32	0.68
FONDO	10.3	0.7	100.0	0.0

210 Kg/cm2

2.- PESO UNITARIO: N.T.P. 400.017

SUELTO	A	В
- Peso de la muestra húmeda	7530	7530.5
- Volumen del molde		0.002827
- Peso unitario suelto húmedo		1594
- PESO UNIT. SUELTO SECO		1586

SUELTO		
- Peso de la muestra húmeda	21736	21734.9
- Volumen del molde		0.00942
- Peso unitario suelto húmedo		1588
- PESO UNIT SUELTO SECO		1580

COMPACTAI ((((A+B)/2)/V)/1000)/(1+(C.H./100)) - Peso de la muestra húmeda 7807 7806 - Volumen del molde 0.00283 - Peso unitario suelto húmedo 1691 - PESO UNIT. COMPACTADO SECO 1684

COMPACTADO		
- Peso de la muestra húmeda	21719	21725
- Volumen del molde		0.00942
- Peso unitario suelto húmedo		1588
- PESO UNIT. COMPACTADO SE	CO	1684

3.- PEOS ESPECIFICO Y ABSORCIÓN : N.T.P. 400.021 Arena A.- Datos de la arena N.T.P. 400.022 Piedra

A Datos de la afella 11.1.1.4	00.022 1 leui a		
1 Peso de la Muest. Sat. Sup. Seca.		g	500.0
2 Peso de la Muest. Sat. Sup. Seca + Peso frasco + Peso del	agua.	g	965.0
3 Peso de la Muest. Sat. Sup. Seca + Peso del frasco.	(1+5)	g	673.2
4 Peso del Agua.	(2-3)	g	291.8
5 Peso del Frasco		g	672.9
6 Peso de la muest. secada ahorno + Peso del frasco.	(5+7)	g	174.8
7 Peso de la muest. seca en el homo.		g	498.1
8 Volumen del frasco.		cm ³	500.0

B.- Resultados

A PESO ESPECIFICO DE LA ARENA.	7/(8-4)	g/cm ³	2.392
B PESO ESPECIFICO DE LA MASA S.S.S.	7/(7-4)	g/cm ³	2.402
C PESO ESPECIFICO APARENTE	7/((8-4)-(8-7))	g/cm ³	1.092
D PORCENTAJE DE ABSORCIÓN.	((1-7)/7)*100	%	0.38

A .- Datos de la grava

1 Peso de la muestra seca al horno	g	1723
2 Peso de la muestra saturada superficialmente seca	g	1732
3 peso de la muestra saturada dentro del agua + peso de la canastilla	g	2006
4 Peso de la canastilla	g	928
5 Peso de la muestra saturada dentro del agua (3-4)	g	1078

B.- Resultados

A PESO ESPECIFICO DE LA GRAVA.	1/(2-5)	g/cm ³	2.635
B PESO ESPECIFICO DE LA MASA S.S.S.	2/(2-5)	g/cm ³	2.647
C PESO ESPECIFICO APARENTE	1/(1-5)	g/cm ³	2.669
D PORCENTAJE DE ABSORCIÓN.	((2-1)/1)*100	%	0.48

4.- CONTENIDO DE HUMEDAD: N.T.P. 339.185

Aren ((A+B)/2)/(1+(C.H./100))

1 Peso de la muest. húmeda	597.8
2 Peso de la muestra seca	595.3
3 Cont. Humedad	0.50
4 Promedio	0.45

Grava

1 Peso de la muest. húmeda	587.6
2 Peso de la muestra seca	585.2
3 Cont. Humedad	0.45
4 Promedio	0.46

ANEXO 4.2: Diseño de mezcla de concreto

4.2.1. Concreto Patrón

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA"						
Tesista:							
Tesista.	BACH, DORIS EL	IZABETH	LINARES OL	ANO.			
	DISEÑO DE RI	SISTEN	CIA			F'c	= 210 Kg/cm ²
I.) Datos del	agregado grues	0	: Piedra C	hancada - C	antera Tre	s Tomas	
01	Tamaño máxim	o nominal					3/4" pulg.
02	Peso específico	seco de	masa				2632 Kg/m ³
	Peso Unitario o						1580 Kg/m ³
	Peso Unitario si)				1582 Kg/m³
	Contenido de h						0.5 %
	Contenido de a		. Arona	Cantara Dát	ann I a Viet	aria.	0.5 %
	agregado fino Peso específico			Cantera Pát	apo La VICI	Ona	2389 Kg/m ³
	Peso unitario se						1586 Kg/m ³
	Contenido de h		,				0.5 %
	Contenido de a						0.4 %
	Módulo de fine:		nsional)				2.892
III.) Datos de	la mezda y otr	os					% <u>20</u>
12	Resistencia esp	ecificada	a los 28 día	is		F'cr	252 Kg/cm ²
13	Relación agua o	emento				R a/c	0.610
	Asentamiento					·	3 Pulg.
	Volumen unitari	_	a	: Potable d	e la zona.	205	205 L/m ³
	Contenido Inco	-					0 2.0 %
	Volumen del ag			. T I D-			0.602 m³
	Peso específico			: Tipo I -Pa			3150 Kg/m ³
aCemen	e volúmenes ab	solutos, o 336	orreccion p 0.107	or numedad	y aporte o	e agua	
bAgua		205	0.205				
cAire		2.0	0.020	Correc	ción por h	umedad	Agua Efectiva
dArena		733	0.307	44	736		-0.4
eGrava		951	0.361	56	956		0.6
		2227	1.000				0
V.) Resultado	final de diseño	(húmedo)	VI.) Tanda	de ensavo	0.02	15 m³
)	-	Kg/m³	-	kg	F/ ^{cemento (e}	n bolsas)
AGUA		205	L/m ³	5.128		R a/c de disei	io .
ARENA		736	Kg/m³	18.407		R a/c de obra	1
PIEDRA		956	Kg/m³	23.894			
	_	2233		55.830			
VII). Dosificación en volumen (materiales con humedad natural)							
En bolsa de 1		1.0	2.19	2.84	25.9	Lts/pie ³	
	pie3 Volumen	1.0	2.19	2.71	25.9	Lts/pie ³	
En boise de 1	pico rolullicii	210	2.00	21/1	2015	Luspic	

ENSAYO : DISEÑO DE MEZCLAS DE CONCRETO REFERENCIA : RECOMENDACIÓN ACI 211

AJUSTE DE LA MEZCLA DE PRUEBA :

peso de tanda de ensayo55.830Peso unitario de la mezcla teorica2403Rendimiento0.0232

		254
Ajuste de agua de mezclado		281
Ajuste de cantidad de cemento		460
Ajuste de grava	(húmedo)	926
Ajuste de arena	(húmedo)	736
Ajuste por slump		-5.08
Ajuste de % de Grava		-10

Ra/c final	0.610
F. Cemento	10.8
% de grava	56
% de arena	44

Materiales	Tanda		
	0.024		
Cemento	10.984		
Agua	6.704		
Arena	17.562		
Grava	22.083		
Total	57.333		

Arena Grava

	Dosificación			
	Volumen	Peso		
Pie ³	1.00	1.00		
Litros	25.9	25.9		
Pie ³	1.52	1.60		
Pie ³	1.91	2.01		
Pie ³	3.4			

Peso unitario teorico final de la mezcla Peso unitario de la mezcla corregida

2403 kg/m3 2403 kg/m3

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÚNICAS DEL CONCRETO ESTRUCTURAL F'C-210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA"
Tesista:	BACH, DORIS ELIZABETH LINARES OLANO

DISEÑO DE MEZCLA FINAL

F'c = 210 kg/cm²

CEMENTO

1.- Tipo de cemento : Tipo I-Pacasmayo 2.- Peso específico :3150 Kg/m3

AGREGADOS:

Agregado fino:

Agregado grueso:

: Arena - Cantera Tres Tomas : Piedra Chancada - Cantera Tres Tomas 2.635 gr/cm3 1.- Peso específico de masa 2.392 gr/cm³ 1.- Peso específico de masa 2.- Peso específico de masa S.S.S. 2.402 gr/cm³ 2.- Peso específico de masa S.S.S.2.647 gr/cm3 1586 Kg/m³ Kg/m³ 3.- Peso unitario suelto 1582 3.- Peso unitario suelto 1684 Kg/m³ Kg/m³ 4.- Peso unitario compactado 4.- Peso unitario compactado 1580 5.- % de absorción 0.38 % 5.- % de absorción 0.48 % 6.- Contenido de humedad 0.45 % 6.- Contenido de humedad 0.46 % 7.- Módulo de fineza 2.89 7.- Tamaño máximo 1" Pulg. 3/4" 8.- Tamaño máximo nominal

Granulometría:

Malla	%	% Acumulado
Malia	Retenido	que pasa
3/8"	0.0	100.0
N• 04	3.0	97.0
N• 08	10.7	86.3
N• 16	21.1	65.2
N• 30	19.7	45.5
N•50	31.7	13.7
N• 100	10.7	3.1
Fondo	3.1	0.0

Malla	% % Acumulad		
	Retenido	que pasa	
2"	0.0	100.0	
11/2"	0.0	100.0	
1"	0.0	100.0	
3/4"	5.0	95.0	
1/2"	50.0	45.0	
3/8"	32.0	13.0	
N• 04	12.3	0.7	
Fondo	0.7	0.0	

Pulg.

DISEÑO DE MEZCLA FINAL $F'c = 210 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido : 3 Pulgadas

Peso unitario del concreto fresco : 2403 Kg/m³

Resistencia promedio a los 7 dias : 168 Kg/cm²

Porcentaje promedio a los 7 dias : 80 %

Factor cemento por M³ de concreto : 10.8 bolsas/m³

Relación agua cemento de diseño : 0.610

Cantidad de materiales por metro cúbico:

Cemento $460 \text{ Kg/m}^3 \text{ : Tipo I -Pacasmayo}$ Agua 281 L : Potable de la zona.

Agregado fino 736 Kg/m³ : Arena - Cantera Tres Tomas

Agregado grueso 926 Kg/m³ : Piedra Chancada - Cantera Tres Tomas

Proporción en peso: Cemento Arena Piedra Agua 1.0 25.9 Lts/pie3 1.60 2.01 Proporción en volumen: 1.52 1.91 25.9 Lts/pie3 1.0

4.2.2. Concreto con 1.25% de Fibra Sintética

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C±210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO

DISEÑO DE RI	SISTEN	IIA			F'	c = 210 Kg/cm ²
I.) Datos del agregado grues 01 Tamaño máxim 02 Peso específico	o nominal		hancada - Ti	res Tomas		3/4" pulg. 2632 Kg/m³
03 Peso Unitario d	ompactad	o seco				1580 Kg/m ³
04 Peso Unitario s)				1582 Kg/m³
05 Contenido de h						0.5 %
06 Contenido de a II.) Datos del agregado fino	bsorcion	· Arena -	Tres Tomas			0.5 %
07 Peso específico	seco de i		ires romas			2389 Kg/m ³
08 Peso unitario se						1586 Kg/m ³
09 Contenido de h		,				0.5 %
10 Contenido de a						0.4 %
11 Módulo de fine:		nsional)				2.892
III.) Datos de la mezda y otro		l 22 l'			-1	% 20
12 Resistencia esp		a los 28 dia	S		F' _{cr} R ^{a/c}	252 Kg/cm²
13 Relación agua (14 Asentamiento	emento				Ruje	0.610 3 Pulg.
15 Volumen unitari	o del agu	=	: Potable de	a la zona	205	205 L/m ³
16 Contenido Inco		a	. FOTABLE G	e la zoria.	203	0 2.0 %
17 Volumen del ag		ueso				0.602 m ³
18 Peso específico	del ceme	nto	: Tipo I -Pa	casmayo		3150 Kg/m ³
IV.) Calculo de volúmenes ab	solutos.	corrección p	or humedad	v aporte d	de agua	
aCemento	336	0.107		, -,		
bAgua	205	0.205				
cAire	2.0	0.020		cción por l	humedad	Agua Efectiva
dArena eGrava	733 951	0.307 0.361	44 56	736 956		-0.4 0.6
eGrava	2227	1.000	36	930		0.0
V.) Resultado final de diseño	(húmedo)	VI.) Tanda	de ensay		.025 m³
CEMENTO	336	Kg/m³	8.402	2 kg		to (en bolsas)
AGUA	205	L/m ³	5.128	B L	R a/cde	
ARENA	736	Kg/m³	18.407	kg kg	R a/cde	obra
PIEDRA	956	Kg/m³	23.894	ł kg		
FIBRA SINTÉTICA	9	_Kg/m³	0.230	kg		
	2242		56.060)		
VII). Dosificación en volumer	n (materia	les con hum	edad natura	al)		
En bolsa de 1 pie3 Peso	1.0	2.19	2.84	0.02	27 25.	9 Lts/pie ³
En bolsa de 1 pie3 Volumen	1.0	2.08	2.71	0.02	26 25.	9 Lts/pie ³

: DISEÑO DE MEZCLAS DE CONCRETO **ENSAYO** : RECOMENDACIÓN ACI 211 REFERENCIA

AJUSTE DE LA MEZCLA DE PRUEBA:

peso de tanda de ensayo 56.060 Peso unitario de la mezcla teorica 2403 Rendimiento 0.0233

		254
Ajuste de agua de mezclado		281
Ajuste de cantidad de cemento		460
Ajuste de grava	(húmedo)	922
Ajuste de arena	(húmedo)	740
Ajuste por slump		-5.08
Ajuste de % de Grava		-10

antidad de cemento		460	F. Cemento	10.8
rava	(húmedo)	922	% de grava	55
rena	(húmedo)	740	% de arena	45
slump		-5.08		
o de Grava		-10		

Arena Grava

Materiales	Tanda
	0.024
Cemento	10.984
Agua	6.704
Arena	17.653
Grava	21.993
Total	57.333

Dosifi		
Peso		
1.00	1.00	Pie ³
25.9	25.9	Litros
1.61	1.52	Pie ³
2.00	<u>1.90</u>	Pie ³
	3.4	Pie ³

Ra/c final

0.610

Peso unitario teorico final de la mezcla 2403 kg/m3 Peso unitario de la mezcla corregida 2403 kg/m3

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C-210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "
Tesista	BACH, DORIS ELIZABETH LINARES OLANO

DISEÑO DE MEZCLA FINAL F'c = 210 kg/cm²

CEMENTO

1.- Tipo de cemento : Tipo I - Pacasmayo 2.- Peso específico : 3150 Kg/m³

AGREGADOS:

Agregado fino: Agregado grueso:

: Arena - Tres Tomas : Piedra Chancada - Tres Tomas gr/cm³ 1.- Peso específico de masa 2.392 gr/cm3 1.- Peso específico de masa 2.635 2.402 gr/cm3 2.- Peso específico de masa S.S.S. 2.647 gr/cm³ 2.- Peso específico de masa S.S.S. 1586 Kg/m³ Kg/m³ 3.- Peso unitario suelto 3.- Peso unitario suelto 1582 1684 Kg/m³ 1580 Kg/m³ 4.- Peso unitario compactado 4.- Peso unitario compactado 5.- % de absorción 0.38 % 5.- % de absorción 0.48 % 0.45 % 0.46 6.- Contenido de humedad 6.- Contenido de humedad % 1" Pulg. 7.- Módulo de fineza 2.89 7.- Tamaño máximo

8.- Tamaño máximo nominal

Granulometría:

Malla	%	% Acumulado
Malia	Retenido	que pasa
3/8"	0.0	100.0
N• 04	3.0	97.0
N• 08	10.7	86.3
N• 16	21.1	65.2
N• 30	19.7	45.5
N•50	31.7	13.7
N• 100	10.7	3.1
Fondo	3.1	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
11/2"	0.0	100.0
1"	0.0	100.0
3/4"	5.0	95.0
1/2"	50.0	45.0
3/8"	32.0	13.0
N• 04	12.3	0.7
Fondo	0.7	0.0

3/4"

Pulg.

DISEÑO DE MEZCLA FINAL $F'c = 210 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido : 3 Pulgadas
Peso unitario del concreto fresco : 2403 Kg/m³
Resistencia promedio a los 7 días : 168 Kg/cm²
Porcentaje promedio a los 7 días : 80 %

Factor cemento por M³ de concreto : 10.8 bolsas/m³

Relación agua cemento de diseño : 0.610

Cantidad de materiales por metro cúbico :

Agregado grueso 922 Kg/m³ : Piedra Chancada - Tres Tomas

Fibra sintética 9.25 Kg/m³

Proporción en peso :	Cemento	Arena	Piedra	Fibra sintética	Agua	
	1.0	1.61	2.00	0.02	25.9	Lts/pie ³
Proporción en volumen :						
	1.0	1.52	1.90	0.02	25.9	Lts/pie ³

4.2.3. Concreto con 2.5% de Fibra Sintética

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "						
Tesista:	BACH. DORIS	ELIZABE	THLINARES	DLANO			
	DISEÑO DE RI	ESISTEN	ICIA			F'c =	210 Kg/cm ²
01 02 03 04 05 06 II.) Datos de 07 08 09 11 III.) Datos de	agregado grues Tamaño máxim Peso específico Peso Unitario o Peso Unitario s Contenido de la Contenido de a lagregado fino Peso específico Peso unitario s Contenido de la Contenido de la Módulo de fines la mescla y otro Resistencia esp	o nomina o seco de ompacta uelto sec umedad ibsorción o seco de eco suelt umedad ibsorción za (adime os pecificada	masa do seco co : Arena - masa o ensional)	chancada - Tres	F	9/ cr pa/c	3/4" pulg. 2632 Kg/m³ 1580 Kg/m³ 1582 Kg/m³ 0.5 % 2389 Kg/m³ 1586 Kg/m³ 0.5 % 0.4 % 2.892 20 252 Kg/cm² 0.610
14 15 16 17 18 IV.) Calculo d a C e m e n	Asentamiento Volumen unitari Contenido Inco Volumen del ag Peso específico le volúmenes ab	io del agu rporado regado g del ceme solutos, 336	grueso ento corrección p 0.107	: Potable de la : Tipo I -Pacas or humedad y a	a zona.	205	3 Pulg. 205 L/m³
bAgua cAire dArena eGrava		205 2.0 733 <u>951</u> 2227	0.205 0.020 0.307 <u>0.361</u> 1.000	Correcció 44 73 56 95	_	edad	Agua Efectiva -0.4 <u>0.6</u> 0
CEMENTO AGUA ARENA PIEDRA FIBRA SINTÉ	TICA _	336 205 736 956 18 2252	Kg/m ³ L/m ³ Kg/m ³ Kg/m ³ _Kg/m ³	VI.) Tanda de 8.402 kg 5.128 L 18.407 kg 23.894 kg 0.460 kg 56.290	F R R	0.025 premento (en a/c de diseño a/c de obra	bolsas)
En bolsa de 1	ción en volumen Lpie3 Peso Lpie3 Volumen	1.0 1.0	2.19 2.08	2.84 2.71	0.055 0.052	25.9 25.9	Lts/pie ³ Lts/pie ³

ENSAYO : DISEÑO DE MEZÇLAS DE CONCRETO

254

Arena

Grava

REFERENCIA : RECOMENDACIÓN ACI 211

AJUSTE DE LA MEZCLA DE PRUEBA:

peso de tanda de ensayo56.290Peso unitario de la mezcla teorica2403Rendimiento0.0234

		231
Ajuste de agua de mezclado		281
Ajuste de cantidad de cemento		460
Ajuste de grava	(húmedo)	918
Ajuste de arena	(húmedo)	744
Ajuste por slump		-5.08
Ajuste de % de Grava		-10

arena		(humedo)	
r slump			-5
% de Grava			-
Materiales	Tanda		
	0.024		
Cemento	10.984		

6.704

17.743

Grava 21.903 **Total** 57.333

Dosificación]
Peso	Volumen	
1.00	1.00	Pie ³
25.9	25.9	Litros
1.62	1.53	Pie ³
1.99	1.90	Pie ³
	3.4	Pie ³

Ra/c final

F. Cemento

% de grava

% de arena

0.610

10.8

55

45

Peso unitario teorico final de la mezcla Peso unitario de la mezcla corregida

Agua Arena

> 2403 kg/m3 2403 kg/m3

Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL KG/CM2 INCORPORANDO FIBRA SINTÉTICA "	
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO	

DISEÑO DE MEZCLA FINAL

 $F'c = 210 \text{ kg/cm}^2$

CEMENTO

1.- Tipo de cemento : Tipo I -Pacasmayo
2.- Peso específico : 3150 Kg/m³

AGREGADOS:

Agregado fino : Agregado grueso :

: Arena - Tres Tomas : Piedra Chancada - Tres Tomas

1 Peso específico de masa	2.392	gr/cm ³	1 Peso específico de masa	2.635	gr/cm ³
2 Peso específico de masa S.S.S.	2.402	gr/cm ³	2 Peso específico de masa S.S.S.	2.647	gr/cm ³
3 Peso unitario suelto	1586	Kg/m ³	3 Peso unitario suelto	1582	Kg/m ³
4 Peso unitario compactado	1684	Kg/m ³	4 Peso unitario compactado	1580	Kg/m ³
5 % de absorción	0.38	%	5 % de absorción	0.48	%
6 Contenido de humedad	0.45	%	6 Contenido de humedad	0.46	%
7 Módulo de fineza	2.89		7 Tamaño máximo	1"	Pulg.
			8 - Tamaño máximo nominal	3/4"	Pulg

Granulometria:

Malla	%	% Acumulado		
Ivialia	Retenido	que pasa		
3/8"	0.0	100.0		
N° 04	3.0	97.0		
N° 08	10.7	86.3		
N° 16	21.1	65.2		
N° 30	19.7	45.5		
N° 50	31.7	13.7		
N° 100	10.7	3.1		
Fondo	3.1	0.0		

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	5.0	95.0
1/2"	50.0	45.0
3/8"	32.0	13.0
N° 04	12.3	0.7
Fondo	0.7	0.0

DISEÑO DE MEZCLA FINAL

 $F'c = 210 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido : 3 Pulgadas

Peso unitario del concreto fresco : 2403 Kg/m³

Resistencia promedio a los 7 días : 168 Kg/cm²

Porcentaje promedio a los 7 días : 80 %

Factor cemento por M³ de concreto : 10.8 bolsas/m³

Relación agua cemento de diseño : 0.610

Cantidad de materiales por metro cúbico :

Agregado grueso 918 Kg/m³ : Piedra Chancada - Tres Tomas

Fibra sintética 18.59 Kg/m³

Proporción en peso:	Cemento	Arena	Piedra	Fibra sintética	Agua	
	1.0	1.62	1.99	0.04	25.9	Lts/pie ³
Proporción en volumen :						
	1.0	1.53	1.90	0.04	25.9	Lts/pie ³

4.2.4. Concreto con 5% de Fibra Sintética

VII). Dosificación en volumen (materiales con humedad natural)

1.0

1.0

2.19

2.08

2.84

2.71

25.9

25.9

0.110

0.104

Lts/pie3

Lts/pie3

En bolsa de 1 pie3 Peso

En bolsa de 1 pie3 Volumen

Tesis:

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES

"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2

INCORPORANDO FIBRA SINTÉTICA "

Tesista: BACH. [OORIS ELIZABETH	LINARES	OLANO			
DISEÑO	DE RESISTENC	IA			F'	c = 210 Kg/cm
I.) Datos del agregado	grueso	: Piedra	Chancada -	Tres Tomas	S	
	náximo nominal					3/4" pulg.
02 Peso espe	ecífico seco de m	asa				2632 Kg/m ³
03 Peso Unit	ario compactado	seco				1580 Kg/m ³
04 Peso Unit	ario suelto seco					1582 Kg/m ³
05 Contenido	o de humedad					0.5 %
06 Contenido						0.5 %
II.) Datos del agregado			- Tres Toma	S		
•	ecífico seco de m	asa				2389 Kg/m ³
	ario seco suelto					1586 Kg/m ³
09 Contenido						0.5 %
10 Contenido	o de absorcion e fineza (adimen:	(lenoie				0.4 %
III.) Datos de la mezcla	•	sional)				2.892 % 20
•	ia especificada a	los 28 di	íae		F'cr	252 Kg/cm
13 Relación a		1 105 20 U	ias		R a/c	·
14 Asentami	-				K	0.610 3 Pulg.
	unitario del agua		· Potable	de la zona.	205	205 L/m ³
16 Contenido	_		. i otabic	ac la zoria.	200	0 2.0 %
	del agregado gru	ieso				0.602 m ³
	ecífico del cemen		: Tipo I -F	acasmayo		3150 Kg/m ³
IV.) Calculo de volúmen					agua	
aCemento	336	0.107				
bAgua	205	0.205				_
cAire	2.0	0.020		cción por hu	ımedad	Agua Efectiva
dArena eGrava	733	0.307	44 56	736 956		-0.4
eGrava	<u>951</u> 2227	0.361 1.000	30	930		0.6 0
V.) Resultado final de di	seño (húmedo)		VI.) Tanda	de ensayo	0.02	.5 m ³
CEMENTO	336 H	Kg/m³	8.402	kg	F/cemento (e	
AGUA	205 l	_/m³	5.128	L	R a/c de disei	
ARENA	736 H	Kg/m³	18.407	kg	R a/c de obra	
PIEDRA	956 H	Kg/m³	23.894	kg		
FIBRA SINTÉTICA	37H	Kg/m³	0.920	kg		
	2270		56.750			

: DISEÑO DE MEZCLAS DE CONCRETO ENSAYO

: RECOMENDACIÓN ACI 211 REFERENCIA

AJUSTE DE LA MEZCLA DE PRUEBA:

peso de tanda de ensayo 56.750 Peso unitario de la mezcla teorica 2403 Rendimiento 0.0236

		254
Ajuste de agua de mezclado		281
Ajuste de cantidad de cemento		460
Ajuste de grava	(húmedo)	911
Ajuste de arena	(húmedo)	751
Ajuste por slump		-5.08
Ajuste de % de Grava		-10

Materiales	Tanda
	0.024
Cemento	10.984
Agua	6.704
Arena	17.920
Grava	21.725
Total	E7 222

Total 57.333

Dosi	Dosificación					
Peso	Peso Volumen					
1.00	1.00	Pie ³				
25.9	25.9	Litros				
1.63	1.55	Pie ³				
1.98	1.88	Pie ³				
	3.4	Pie ³				

Ra/c final

F. Cemento

% de grava

% de arena

0.610

10.8

55

45

Peso unitario teorico final de la mezcla Peso unitario de la mezcla corregida

2403 kg/m3 2403 kg/m3

Arena Grava

	Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "
Г	Tesista:	BACH. DORIS ELIZABETH LINARES OLANO

DISEÑO DE MEZCLA FINAL

F'c = 210 kg/cm²

8.- Tamaño máximo nominal

CEMENTO

1.- Tipo de cemento : Tipo I -Pacasmayo 2.- Peso específico : 3150 Kg/m³

AGREGADOS:

Agregado fino : Agregado grueso: : Arena - Tres Tomas : Piedra Chancada - Tres Tomas 2.392 gr/cm³ gr/cm³ 1.- Peso específico de masa 1.- Peso específico de masa 2.635 2.402 gr/cm³ gr/cm3 2.- Peso específico de masa S.S.S. 2.- Peso específico de masa S.S.S. 2.647 Kg/m³ Kg/m³ 3.- Peso unitario suelto 1586 3.- Peso unitario suelto 1582 Kg/m³ Kg/m³ 4.- Peso unitario compactado 1684 4.- Peso unitario compactado 1580 % 5.- % de absorción 0.38 5.- % de absorción 0.48 % 6.- Contenido de humedad 0.45 6.- Contenido de humedad 0.46 % 7.- Módulo de fineza 7.- Tamaño máximo 1"

Granulometria:

Malla	%	% Acumulado		
Ivialia	Retenido	que pasa		
3/8"	0.0	100.0		
N° 04	3.0	97.0		
N° 08	10.7	86.3		
N° 16	21.1	65.2		
N° 30	19.7	45.5		
N° 50	31.7	13.7		
N° 100	10.7	3.1		
Fondo	3.1	0.0		

2.89

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	5.0	95.0
1/2"	50.0	45.0
3/8"	32.0	13.0
N° 04	12.3	0.7
Fondo	0.7	0.0

Pulg.

Pulg.

3/4"

DISEÑO DE MEZCLA FINAL $F'c = 210 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido : 3 Pulgadas

Peso unitario del concreto fresco : 2403 Kg/m³

Resistencia promedio a los 7 días : 168 Kg/cm²

Porcentaje promedio a los 7 días : 80 %

Factor cemento por M³ de concreto : 10.8 bolsas/m³

Relación agua cemento de diseño : 0.610

Cantidad de materiales por metro cúbico :

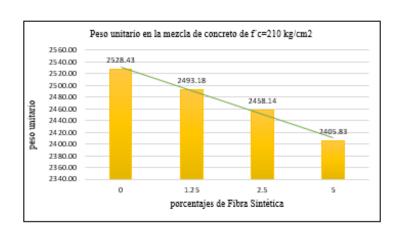
Agregado grueso 911 Kg/m³ : Piedra Chancada - Tres Tomas

Fibra sintética 37.56 Kg/m³

Proporción en peso :	Cemento	Arena	Piedra	Fibra sintética	Agua	
	1.0	1.63	1.98	0.08	25.9	Lts/pie ³
Proporción en volumen :						
	1.0	1.55	1.88	0.08	25.9	Lts/pie ³

ANEXO 4.3. Ensayo peso unitario del concreto fresco

RESULTADO DE ENSAYO DE PESO UNITARIO			
TESIS	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "		
TESISTA	BACH. DORIS ELIZABETH LINARES OLANO		


Ensayo de Peso Unitario

PESO UNITARIO DE LA MEZCLA DE F'C=210 kg/cm2 CON LOS DISTINTOS PORCENTAJES DE FIBRA SINTÉTICA

Muestra	Peso de la muestra + molde(kg)	Peso del molde(kg)	Area (cm2)	Altura (cm)	Volumen(cm 3)	Peso unitario (Kg/m3)
f'c=210kg/cm2	12.150	5.225	0.177	0.016	0.003	2528.433
f'c=210kg/cm2	12.170	5.225	0.177	0.016	0.003	2535.736
f'c=210kg/cm2	12.130	5.225	0.177	0.016	0.003	2521.131
f'c=210 kg/cm2+1.25% de Fibra Sintética	19.320	2.440	0.031	0.215	0.007	2499.103
f'c=210 kg/cm2+1.25% de Fibra Sintética	19.250	2.440	0.031	0.215	0.007	2488.739
f'c=210 kg/cm2+1.25% de Fibra Sintética	19.270	2.440	0.031	0.215	0.007	2491.700
f'c=210 kg/cm2+2.5% de Fibra Sintética	19.030	2.440	0.031	0.215	0.007	2456.168
f'c=210 kg/cm2+2.5% de Fibra Sintética	19.060	2.440	0.031	0.215	0.007	2460.609
f'c=210 kg/cm2+2.5% de Fibra Sintética	19.040	2.440	0.031	0.215	0.007	2457.648
f'c=210 kg/cm2+5% de Fibra Sintética	18.710	2.440	0.031	0.215	0.007	2408.792
f'c=210 kg/cm2+5% de Fibra Sintética	18.690	2.440	0.031	0.215	0.007	2405.831
f'c=210 kg/cm2+5% de Fibra Sintética	18.670	2.440	0.031	0.215	0.007	2402.870

PESO UNITARIO DE LA MEZCLA DE F'C=210 kg/cm2 CON LOS DISTINTOS PORCENTAJES DE FIBRA SINTÉTICA

muestra	% de Fibra Sintética	peso unitario (Promedio)
f'c=210kg/cm2	0	2528.43
f'c=210 kg/cm2+1.25% de Fibra Sintética	1.25	2493.18
f'c=210 kg/cm2+2.5% de Fibra Sintética	2.5	2458.14
f'c=210 kg/cm2+5% de Fibra Sintética	5	2405.83

ANEXO 4.4. Ensayo Slump

RESULTADO DE ENSAYO DE SLUMP				
TESIS:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "			
TESISTA:	BACH, DORIS ELIZABETH LINARES OLANO			

Ensago Ensago de Slump

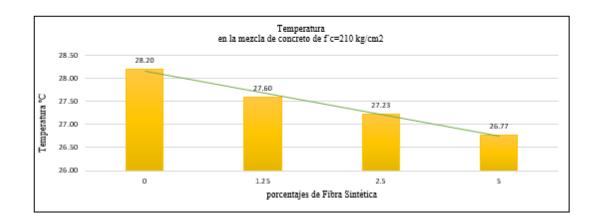
MUESTRA	% FIBRA SINTÉTICA	SLUMP(cm)	SLUMP PROMEDIO(cm)
f'c=210kg/cm2	0	7.65	
f'c=210kg/cm2	0	7.64	
f'c=210kg/cm2	0	7.633	7.64
f'c=210 kg/cm2+1.25% de Fibra Sintética	1.25	7.46	
f'c=210 kg/cm2+1.25% de Fibra Sintética	1.25	7.47	
f'c=210 kg/cm2+1.25% de Fibra Sintética	1.25	7.48	7.47
f'c=210 kg/cm2+2.5% de Fibra Sintética	2.5	7.18	
f'c=210 kg/cm2+2.5% de Fibra Sintética	2.5	7.2	
f'c=210 kg/cm2+2.5% de Fibra Sintética	2.5	7.19	7.19
f'c=210 kg/cm2+5% de Fibra Sintética	5	6.81	
f'c=210 kg/cm2+5% de Fibra Sintética	5	6.84	
f'c=210 kg/cm2+5% de Fibra Sintética	5	6.8	6.82

ANEXO 4.5. Ensayo de temperatura

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES

	RESULTADO DE ENSAYO DE PESO UNITARIO									
	*EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F²C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA"									
TESISTA	BACH. DORIS ELIZABETH LINARES OLANO									

Ensayo


Ensayo de Temperatura del Concreto

TEMPERATURA DEL CONCRETO DE LA MEZCLA DE F'C=210 kg/cm2 CON LOS DISTINTOS PORCENTAJES DE FIBRA SINTÉTICA

MUESTRA N°	IDENTIFICACIÓN	FECHA	TEMPERATURA	PROMEDIO
1	fc=210 kg/cm2	16/12/2021	28.2	
2	fc=210 kg/cm2	16/12/2021	28.1	
3	fc=210 kg/cm2	16/12/2021	28.3	28.20
4	f'c=210 kg/cm2+1.25% P. de Fibra Sintética	16/12/2021	27.7	
5	f'c=210 kg/cm2+1.25% de Fibra Sintética	16/12/2021	27.5	27.60
6	f'c=210 kg/cm2+1.25% de Fibra Sintética	16/12/2021	27.6	
7	f'c=210 kg/cm2+2.5% de Fibra Sintética	16/12/2021	27.3	
8	f'c=210 kg/cm2+2.5% de Fibra Sintética	16/12/2021	27.2	27.23
9	f'c=210 kg/cm2+2.5% de Fibra Sintética	16/12/2021	27.2	
10	f´c=210 kg/cm2+5% de Fibra Sintética	16/12/2021	26.7	
11	f´c=210 kg/cm2+5% de Fibra Sintética	16/12/2021	26.8	26.77
12	f'c=210 kg/cm2+5% de Fibra Sintética	16/12/2021	26.8	

TEMPERATURA DEL CONCRETO DE LA MEZCLA DE F'C=210 kg/cm2 CON LOS DISTINTOS PORCENTAJES DE FIBRA SINTÉTICA

muestra	% de Fibra Sintética	Temperatura
fc=210 kg/cm2	0	28.20
f'c=210 kg/cm2+1.25% P. de Fibra Sintética	1.25	27.60
f'c=210 kg/cm2+2.5% de Fibra Sintética	2.5	27.23
f'c=210 kg/cm2+5% de Fibra Sintética	5	26.77

ANEXO 4.6. Ensayo de Resistencia a la compresión

4.6.1. Resistencia a la compresión del concreto patrón

	RESISTENCIA A LA COMPRESIÓN								
Tesis:	Tesis: "EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA"								
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO								
	Muestra:	Probetas cilíndricas de concreto de f´c=210 kg/cm2							

CÓDIGO	B111	Fecha de	Fecha de	-1-164	Altura (L)	D	iámetro (c	m)	Factor		Carga	fe
CODIGO	Descripción	vaciado	ensayo	Edad (días	(cm)	1	2	Promedio	R L/D	de correcci	(P) (Kg)	Obtenido (ka/cm2)
CP - 01		16/12/2021	23/12/2021	7	30.25	15.15	15.10	15.13	2.00	1.00	31,247.00	173.84
CP - 02		16/12/2021	23/12/2021	7	30.40	15.20	15.20	15.20	2.00	1.00	31,274.00	172.31
CP - 03	concreto patrón 210	16/12/2021	23/12/2021	7	30.40	15.20	15.20	15.20	2.00	1.00	31,487.00	173.48
CP - 06	kg/cm²	16/12/2021	23/12/2021	7	30.33	15.18	15.15	15.17	2.00	1.00	31,316.00	173.50
CP - 07		16/12/2021	23/12/2021	7	30.35	15.15	15.20	15.18	2.00	1.00	31,252.00	172.90
CP - 08		16/12/2021	30/12/2021	14	30.20	15.10	15.10	15.10	2.00	1.00	33,147.00	185.18
CP - 11		16/12/2021	30/12/2021	14	30.30	15.10	15.20	15.15	2.00	1.00	33,274.00	184.60
CP - 12	concreto patrón 210	16/12/2021	30/12/2021	14	30.40	15.20	15.20	15.20	2.00	1.00	33,298.00	183.46
CP - 13	kg/cm²	16/12/2021	30/12/2021	14	30.28	15.10	15.18	15.14	2.00	1.00	33,245.00	184.69
CP - 10		16/12/2021	30/12/2021	14	30.40	15.20	15.20	15.20	2.00	1.00	33,318.00	183.57
CP - 11		16/12/2021	13/01/2022	28	30.40	15.10	15.10	15.20	2.00	1.00	38,215.00	210.55
CP - 12	concrete patrón 310	16/12/2021	13/01/2022	28	30.40	15.15	15.20	15.20	2.00	1.00	38,541.00	212.35
CP - 13	concreto patrón 210 kg/cm²	16/12/2021	13/01/2022	28	30.40	15.20	15.20	15.20	2.00	1.00	38,493.00	212.08
CP - 14		16/12/2021	13/01/2022	28	30.40	15.20	15.20	15.20	2.00	1.00	38,394.00	211.54
CP - 15		16/12/2021	13/01/2022	28	30.40	15.20	15.20	15.20	2.00	1.00	38,276.00	210.89

	RESISTENCIA A LA COMPRESIÓN										
Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "										
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO										
Muestra:	Probetas cilíndricas de concreto de f´c=210 kg/cm2										

CÓDIGO	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	f'c (kg/cm2)	Promedio	Porcentaje (%)
CP - 01		16/12/2021	23/12/2021	7	173.84		
CP - 02	concrete patrón 210	16/12/2021	23/12/2021	7	172.31		
CP - 03	concreto patrón 210	16/12/2021	23/12/2021	7	173.48	173.21	82.48%
CP - 04	kg/cm2	16/12/2021	23/12/2021	7	173.50		
CP - 05		16/12/2021	23/12/2021	7	172.90		
CP - 06		16/12/2021	30/12/2021	14	185.18	184.03	
CP - 07	concreto patrón 210	16/12/2021	30/12/2021	14	184.60		87.63%
CP - 08	•	16/12/2021	30/12/2021	14	183.46		
CP - 09	kg/cm2	16/12/2021	30/12/2021	14	184.69		
CP - 10		16/12/2021	30/12/2021	14	183.57		
CP - 11		16/12/2021	13/01/2022	28	210.55		
CP - 12	concrete patrón 210	16/12/2021	13/01/2022	28	212.35		
CP - 13	concreto patrón 210 kg/cm2	16/12/2021	13/01/2022	28	212.08	211.66	100.79%
CP - 14		16/12/2021	13/01/2022	28	211.54		
CP - 15		16/12/2021	13/01/2022	28	210.89		

4.6.2. Resistencia a la compresión incorporando 1.25% de fibra sintética

	RESISTENCIA A LA COMPRESIÓN									
Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "									
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO									
Muestra:	Probetas cilíndricas de concreto de f´c=210 kg/cm2 adicionado con 1.25% de Fibra sintética									

CÓDIGO	DIII-	Fecha de	Fecha de	Fall (all)	Altura (L)		Diámetro (cm	1)	В	Factor de	Carga (P)	f'c Obtenido
CODIGO	Descripción	vaciado	ensayo	Edad (días)	(cm)	1	2	Promedio	R _{L/D}	corrección	(Kg)	(kg/cm2)
CE1-01		16/12/2021	23/12/2021	7	30.30	15.10	15.20	15.15	2.00	1.00	32,234.00	178.83
CE1 - 02		16/12/2021	23/12/2021	7	30.30	15.20	15.10	15.15	2.00	1.00	32,147.00	178.35
CE1-03	concreto 210 kg/cm²+c	16/12/2021	23/12/2021	7	30.30	15.10	15.20	15.15	2.00	1.00	32,598.00	180.85
CE1 - 04		16/12/2021	23/12/2021	7	30.31	15.10	15.20	15.15	2.00	1.00	32,442.00	179.98
CE1 - 05		16/12/2021	23/12/2021	7	30.30	15.20	15.10	15.15	2.00	1.00	32,286.00	179.12
CE1-06		16/12/2021	30/12/2021	14	30.35	15.15	15.20	15.18	2.00	1.00	35,837.00	198.27
CE1 - 07		16/12/2021	30/12/2021	14	30.20	15.00	15.20	15.10	2.00	1.00	35,471.00	198.16
CE1 - 08	concreto 210 kg/cm2+c	16/12/2021	30/12/2021	14	30.40	15.20	15.20	15.20	2.00	1.00	35,718.00	196.79
CE1 - 09	_	16/12/2021	30/12/2021	14	30.30	15.15	15.15	15.15	2.00	1.00	35,748.00	198.32
CE1 - 10		16/12/2021	30/12/2021	14	30.20	15.20	15.10	15.15	1.99	1.00	35,574.00	197.16
CE1 - 11		16/12/2021	13/01/2022	28	30.40	15.20	15.20	15.20	2.00	1.00	40,754.00	224.54
CE1 - 12		16/12/2021	13/01/2022	28	30.50	15.20	15.30	15.25	2.00	1.00	40,701.00	222.71
CE1 - 13	concreto 210 kg/cm2+c	16/12/2021	13/01/2022	28	30.30	15.10	15.20	15.15	2.00	1.00	40,826.00	226.50
CE1 - 14		16/12/2021	13/01/2022	28	30.30	15.20	15.30	15.25	1.99	1.00	40,672.00	222.33
CE1 - 15		16/12/2021	13/01/2022	28	30.40	15.10	15.20	15.15	2.01	1.00	40,884.00	226.82

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES

RESISTENCIA A LA COMPRESIÓN

"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "

BACH, DORIS ELIZABETH LINARES OLANO

Probetas cilíndricas de concreto de f'c=210 kg/cm2 adicionado con 1.25% de Fibra sintética

CÓDIGO	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	f'c (kg/cm2)	Promedio	Porcentaje (%)
CE1-01		16/12/2021	23/12/2021	7	178.83		
CE1 - 02		16/12/2021	23/12/2021	7	178.35		
CE1-03	concreto 210 kg/cm2+	16/12/2021	23/12/2021	7	180.85	179.43	85.44%
CE1 - 04	1.25% de Fibra sintética	16/12/2021	23/12/2021	7	179.98		
CE1 - 05		16/12/2021	23/12/2021	7	179.12		
CE1 - 06		16/12/2021	30/12/2021	14	198.27	197.74	
CE1 - 07	concrete 310 kg/cm3	16/12/2021	30/12/2021	14	198.16		
CE1 - 08	concreto 210 kg/cm2+	16/12/2021	30/12/2021	14	196.79		94.16%
CE1 - 09	1.25% de Fibra sintética	16/12/2021	30/12/2021	14	198.32		
CE1 - 10		16/12/2021	30/12/2021	14	197.16		
CE1 - 11		16/12/2021	13/01/2022	28	224.54		
CE1 - 12	concreto 210 kg/cm2+	16/12/2021	13/01/2022	28	222.71		
CE1 - 13		16/12/2021	13/01/2022	28	226.50	224.58	106.94%
CE1 - 14	1.25% de Fibra sintética	16/12/2021	13/01/2022	28	222.33		
CE1 - 15		16/12/2021	13/01/2022	28	226.82		

4.6.3. Resistencia a la compresión incorporando 2.5% de fibra sintética

	RESISTENCIA A LA COMPRESIÓN									
Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "									
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO									
Muestra:	Probetas cilíndricas de concreto de f´c=210 kg/cm2 adicionado con 2.5% de Fibra sintética									

CÓDIGO	Descripción	Fecha de	Fecha de	Edad (dias)	Altura (L)	I	Diámetro (cm	1)	Р.	Factor de	Carga (P)	f'c Obtenido
CODIGO	Descripcion	vaciado	ensayo	Edad (días)	(cm)	1	2	Promedio	R _{L/D}	corrección	(Kg)	(kg/cm2)
CE2 - 01		16/12/2021	23/12/2021	7	30.20	15.10	15.20	15.15	1.99	1.00	33,478.00	185.55
CE2 - 02	2401-1-2-2-2-50	16/12/2021	23/12/2021	7	30.30	15.20	15.10	15.15	2.00	1.00	33,467.00	185.67
CE2 - 03	concreto 210 kg/cm²+ 2.5%	16/12/2021	23/12/2021	7	30.30	15.10	15.20	15.15	2.00	1.00	33,754.00	187.26
CE2 - 04	de Fibra sintética	16/12/2021	23/12/2021	7	30.35	15.20	15.15	15.18	2.00	1.00	33,338.00	184.44
CE2 - 05		16/12/2021	23/12/2021	7	30.20	15.10	15.10	15.10	2.00	1.00	33,634.00	187.90
CE2 - 06		16/12/2021	30/12/2021	14	30.30	15.15	15.20	15.18	2.00	1.00	37,145.00	205.50
CE2 - 07		16/12/2021	30/12/2021	14	30.20	15.00	15.20	15.10	2.00	1.00	37,284.00	208.29
CE2 - 08	concreto 210 kg/cm2+ 2.5%	16/12/2021	30/12/2021	14	30.20	15.10	15.10	15.10	2.00	1.00	37,485.00	209.41
CE2 - 09	de Fibra sintética	16/12/2021	30/12/2021	14	30.35	15.20	15.15	15.18	2.00	1.00	37,242.00	206.04
CE2 - 10		16/12/2021	30/12/2021	14	30.20	15.00	15.20	15.10	2.00	1.00	37,305.00	208.41
CE2 - 11		16/12/2021	13/01/2022	28	30.30	15.20	15.20	15.20	1.99	1.00	42,078.00	231.60
CE2 - 12		16/12/2021	13/01/2022	28	30.40	15.10	15.30	15.20	2.00	1.00	42,154.00	232.25
CE2 - 13	concreto 210 kg/cm2+ 2.5% de Fibra sintética	16/12/2021	13/01/2022	28	30.40	15.20	15.20	15.20	2.00	1.00	42,263.00	232.85
CE2 - 14		16/12/2021	13/01/2022	28	30.40	15.15	15.25	15.20	2.00	1.00	42,324.00	233.19
CE2 - 15		16/12/2021	13/01/2022	28	30.50	15.20	15.30	15.25	2.00	1.00	42,276.00	231.33

	RESISTENCIA A LA COMPRESIÓN
Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA"
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO
Muestra:	Probetas cilíndricas de concreto de f´c=210 kg/cm2 adicionado con 2.5% de Fibra sintética

CÓDIGO	Descripción	Fecha de vaciado	Fecha de ensayo	Edad (días)	f'c (kg/cm2)	Promedio	Porcentaje (%)	
CE2 - 01		16/12/2021	23/12/2021	7	185.55			
CE2 - 02	concreto 210 kg/cm2+ 2.5%	16/12/2021	23/12/2021	7	185.67			
CE2 - 03	de Fibra sintética	16/12/2021	23/12/2021	7	187.26	186.16	88.65%	
CE2 - 04	de Fibra sifitetica	16/12/2021	23/12/2021	7	184.44			
CE2 - 05		16/12/2021	23/12/2021	7	187.90			
CE2 - 06		16/12/2021	30/12/2021	14	205.50		98.82%	
CE2 - 07	concreto 210 kg/cm2+ 2.5%	16/12/2021	30/12/2021	14	208.29	207.53		
CE2 - 08	de Fibra sintética	16/12/2021	30/12/2021	14	209.41			
CE2 - 09	de ribia silitetica	16/12/2021	30/12/2021	14	206.04			
CE2 - 10		16/12/2021	30/12/2021	14	208.41			
CE2 - 11		16/12/2021	13/01/2022	28	231.60			
CE2 - 12	concreto 210 kg/cm2+ 2.5%	16/12/2021	13/01/2022	28	232.25			
CE2 - 13	de Fibra sintética	16/12/2021	13/01/2022	28	232.85	232.24	110.59%	
CE2 - 14	ue ribi a sifitetica	16/12/2021	13/01/2022	28	233.19			
CE2 - 15		16/12/2021	13/01/2022	28	231.33			

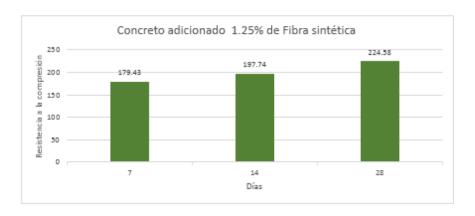
4.6.4. Resistencia a la compresión incorporando 5% de fibra sintética

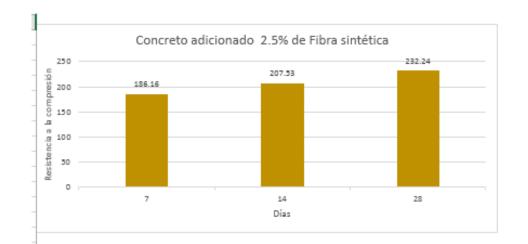
	RESISTENCIA A LA COMPRESIÓN						
Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "						
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO						
Muestra:	Probetas cilíndricas de concreto de f´c=210 kg/cm2 adicionado con 5% de Fibra sintética						

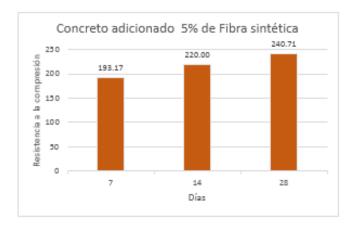
CÓDIGO	Docarinalón	Descripción Fecha de Fecha de Edad (días) Altura (L) Diámetro (cm)		1)	R _{UD}	Factor de	Carga (P)	f'c Obtenido				
CODIGO	Descripcion	vaciado	ensayo	Edad (dias)	(cm)	1	2	Promedio	IV I/D	corrección	(Kg)	(kg/cm2)
CE3-01		16/12/2021	23/12/2021	7	30.35	15.20	15.15	15.18	2.00	1.00	34,872.00	192.93
CE3-02		16/12/2021	23/12/2021	7	30.35	15.15	15.20	15.18	2.00	1.00	34,751.00	192.26
CE3-03	concreto 210 kg/cm²+5% de	16/12/2021	23/12/2021	7	30.10	15.00	15.10	15.05	2.00	1.00	34,587.00	194.31
CE3-04	Fibra sintética	16/12/2021	23/12/2021	7	30.30	15.10	15.20	15.15	2.00	1.00	34,826.00	193.21
CE3-05		16/12/2021	23/12/2021	7	30.25	15.15	15.10	15.13	2.00	1.00	34,715.00	193.13
CE3-06		16/12/2021	30/12/2021	14	30.30	15.20	15.10	15.15	2.00	1.00	39,847.00	221.07
CE3-07	concreto 210 kg/cm2+5% de	16/12/2021	30/12/2021	14	30.40	15.20	15.20	15.20	2.00	1.00	39,741.00	218.96
CE3-08		16/12/2021	30/12/2021	14	30.30	15.20	15.10	15.15	2.00	1.00	39,647.00	219.96
CE3-09	Fibra sintética	16/12/2021	30/12/2021	14	30.30	15.15	15.15	15.15	2.00	1.00	39,781.00	220.70
CE3-10		16/12/2021	30/12/2021	14	30.40	15.20	15.20	15.20	2.00	1.00	39,803.00	219.30
CE3-11		16/12/2021	13/01/2022	28	30.30	15.10	15.20	15.15	2.00	1.00	43,589.00	241.83
CE3-12	concrete 210 kg/cm2.F% do	16/12/2021	13/01/2022	28	30.40	15.20	15.20	15.20	2.00	1.00	43,418.00	239.22
CE3-13	concreto 210 kg/cm2+5% de Fibra sintética	16/12/2021	13/01/2022	28	30.30	15.20	15.10	15.15	2.00	1.00	43,274.00	240.08
CE3-14		16/12/2021	13/01/2022	28	30.30	15.15	15.15	15.15	2.00	1.00	43,637.00	242.09
CE3-15		16/12/2021	13/01/2022	28	30.30	15.10	15.20	15.15	2.00	1.00	43,322.00	240.34

	RESISTENCIA A LA COMPRESIÓN							
Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "							
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO							
Muestra:	Probetas cilíndricas de concreto de f´c=210 kg/cm2 adicionado con 5% de Fibra sintética							

CÓDIGO	Descripción	Descripción Fecha de vaciado ensayo Edad (días)		f'c (kg/cm2)	Promedio	Porcentaje (%)		
CE3-01		16/12/2021	23/12/2021	7	192.93			
CE3-02	concreto 210 kg/cm2+5% de	16/12/2021	23/12/2021	7	192.26			
CE3-03	Fibra sintética	16/12/2021	23/12/2021	7	194.31	193.17	91.98%	
CE3-04	Fibra sintetica	16/12/2021	23/12/2021	7	193.21			
CE3-05		16/12/2021	23/12/2021	7	193.13			
CE3-06		16/12/2021	30/12/2021	14	221.07		104.76%	
CE3-07	concreto 210 kg/cm2+5% de	16/12/2021	30/12/2021	14	218.96	220.00		
CE3-08	Fibra sintética	16/12/2021	30/12/2021	14	219.96			
CE3-09	Fibra sintetica	16/12/2021	30/12/2021	14	220.70			
CE3-10		16/12/2021	30/12/2021	14	219.30			
CE3-11		16/12/2021	13/01/2022	28	241.83			
CE3-12	concrete 210 kg/cm2 i E% do	16/12/2021	13/01/2022	28	239.22			
CE3-13	Fibra cintática	16/12/2021	13/01/2022	28	240.08	240.71	114.62%	
CE3-14		16/12/2021	13/01/2022	28	242.09			
CE3-15		16/12/2021	13/01/2022	28	240.34			


4.6.5. Resumen de Resistencia a la compresión



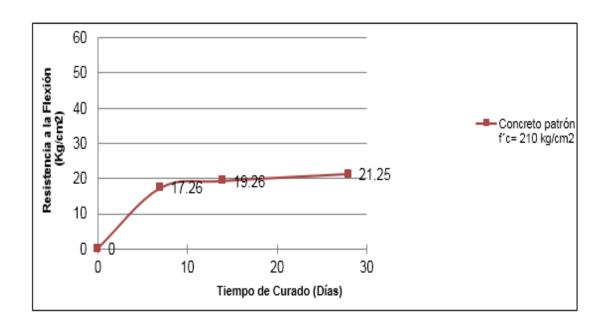

	CUADRO RESUMEN
Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA"
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO

Días	Concreto Patrón f'c=210 kg/cm2	Concreto adicionado 1.25% de Fibra sintética	Concreto adicionado 2.5% de Fibra sintética	Concreto adicionado 5% de Fibra sintética
0	0.00	0	0	0
7	173.21	179.43	186.16	193.17
14	184.03	197.74	207.53	220.00
28	211.66	224.58	232.24	240.71
		106.10%	109.73%	113.73%

ANEXO 4.7. Ensayo de Resistencia a la Flexión

4.7.1. Ensayo de Resistencia a la Flexión del concreto patrón.

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES


	RESULTADO DE RESISTENCIAS A FLEXIÓN - CONCRETO PATRÓN						
Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F°C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "						
Tesista:	BACH, DORIS ELIZABETH LINARES OLANO						

Ensayo : CONCRETO. Metodo de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.

Referencia 3° Edición. NTP 339.079 2012 Identificación : Concreto Patron f'c= 210 kg/cm²

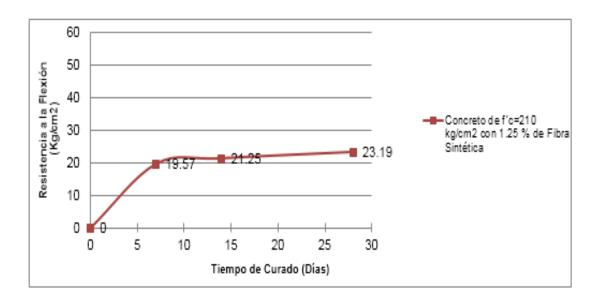
Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	longitud	ancho	altura	luz libre entre apoyos	Carga	ancho de falla	altura de falla	Tipo de falla	a	Mr	Mr promedi o
N-				(dias)	(cm)	(cm)	(cm)	(L) (cm)	(P) (Kg)	(b) (cm)	(h) (cm)	rana	(cm)	Kg/cm2	(Kgłcm2)
CP-01	Concreto patrón f´c= 210 kg/cm2	16/12/2021	23/12/2021	7	50.90	15.20	15.10	42.90	928	15.20	15.10	1	-	17.23	
CP-02	Concreto patrón f´c= 210 kg/cm2	16/12/2021	23/12/2021	7	50.85	15.20	15.20	42.85	934	15.20	15.20	1	-	17.09	
CP-03	Concreto patrón f´c= 210 kg/cm2	16/12/2021	23/12/2021	7	51.00	15.20	15.20	43.00	951	15.20	15.20	1	-	17.47	17.26
CP-04	Concreto patrón f´c= 210 kg/cm2	16/12/2021	23/12/2021	7	50.95	15.20	15.10	42.95	948	15.20	15.10	1	-	17.62	
CP-05	Concreto patrón f´c= 210 kg/cm2	16/12/2021	23/12/2021	7	50.90	15.20	15.20	42.90	922	15.20	15.20	1	ı	16.89	
CP-06	Concreto patrón f´c= 210 kg/cm2	16/12/2021	30/12/2021	14	50.80	15.35	15.20	42.80	1,075	15.35	15.20	1	-	19.46	
CP-07	Concreto patrón f´c= 210 kg/cm2	16/12/2021	30/12/2021	14	50.70	15.30	15.60	42.70	1,091	15.30	15.60	1	-	18.77	
CP-08	Concreto patrón f´c= 210 kg/cm2	16/12/2021	30/12/2021	14	51.00	15.30	15.30	43.00	1,085	15.30	15.30	1	-	19.54	19.26
CP-09	Concreto patrón f´c= 210 kg/cm2	16/12/2021	30/12/2021	14	50.90	15.30	15.20	42.90	1,072	15.30	15.20	1	-	19.51	
CP-10	Concreto patrón f´c= 210 kg/cm2	16/12/2021	30/12/2021	14	50.80	15.30	15.30	42.80	1,062	15.30	15.30	1	-	19.04	
CP-11	Concreto patrón f´c= 210 kg/cm2	16/12/2021	13/01/2022	28	50.50	15.35	15.10	42.50	1,164	15.35	15.10	1	-	21.20	
CP-12	Concreto patrón f´c= 210 kg/cm2	16/12/2021	13/01/2022	28	50.50	15.35	15.20	42.50	1,192	15.35	15.20	1	-	21.43	
CP-13	Concreto patrón f´c= 210 kg/cm2	16/12/2021	13/01/2022	28	50.50	15.35	15.20	42.50	1,175	15.35	15.20	1	-	21.12	21.25
CP-14	Concreto patrón f´c= 210 kg/cm2	16/12/2021	13/01/2022	28	50.50	15.35	15.10	42.50	1,169	15.35	15.10	1	-	21.29	
CP-15	Concreto patrón f´c= 210 kg/cm2	16/12/2021	13/01/2022	28	50.50	15.35	15.20	42.50	1,181	15.35	15.20	1	-	21.23	

Concreto patrón f'c= 210 kg/cm2						
Dias	Kg/cm2					
0	0					
7	17.26					
14	19.26					
28	21.25					

4.7.2. Ensayo de Resistencia a la Flexión incorporando 1.25% de fibra sintética.

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES

	RESULTADO DE RESISTENCIAS A FLEXIÓN						
Tesis:	«EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F*C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "						
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO						


Ensayo : CONCRETO. Metodo de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.

Referencia 3° Edición. NTP 339.079 2012

Identificación : Concreto de fíc=210 kg/cm2 con 1.25 % de Fibra Sintética

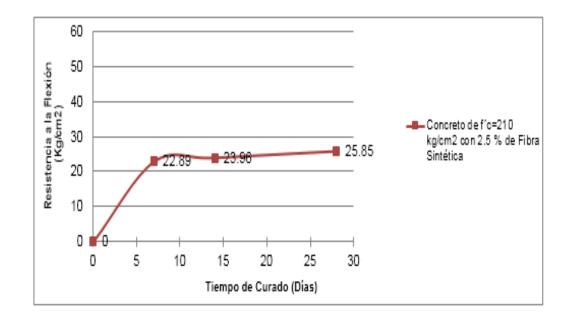
Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	longitud	ancho	altura	luz libre entre apoyos	Carga	ancho de falla	de	tip o de	a	Mr	Mr promedi o
N°				(dias)	(cm)	(cm)	(cm)	(L) (cm)	(P) (Kg	(b) (cm)	(h) (cm)	rai Ia	(cm)	Kg/cm2	(Kg/cm2)
CE1-1	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.40	15.30	15.30	42.40	1,105	15.30	15.30	1	ı	19.62	
CE1-2	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.50	15.20	15.30	42.50	1,102	15.20	15.30	1	1	19.74	
CE1-3	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.40	15.20	15.40	42.40	1,096	15.20	15.40	1	1	19.34	19.57
CE1-4	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.50	15.30	15.40	42.50	1,089	15.30	15.40	1	1	19.13	
CE1-5	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.40	15.20	15.30	42.40	1,120	15.20	15.30	1	-	20.02	
CE1-6	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.50	15.20	15.20	42.50	1,172	15.20	15.20	1	1	21.28	
CE1-7	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.50	15.35	15.20	42.50	1,154	15.35	15.20	1	-	20.74	
CE1-8	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.45	15.20	15.10	42.45	1,183	15.20	15.10	1	-	21.73	21.25
CE1-9	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.50	15.35	15.20	42.50	1,188	15.35	15.20	1	-	21.36	
CE1-10	Concreto de f´c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.40	15.30	15.10	42.40	1,159	15.30	15.10	1	-	21.13	
CE1-11	Concreto de f´c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.50	15.20	15.20	42.50	1,267	15.20	15.20	1	1	23.00	
CE1-12	Concreto de f´c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.50	15.35	15.20	42.50	1,284	15.35	15.20	1	-	23.08	
CE1-13	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.45	15.20	15.10	42.45	1,279	15.20	15.10	1	-	23.50	23.19
CE1-14	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.50	15.35	15.20	42.50	1,271	15.35	15.20	1	-	22.85	
CE1-15	Concreto de l'c=210 kg/cm2 con 1.25 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.50	15.30	15.20	42.50	1,305	15.30	15.20	1	-	23.53	

Concreto de f'c=210 kg/cm2 con 1.25 % de Fibra Sintética										
Dias	Kg/cm2									
0	0									
7	19.57									
14	21.25									
28	23.19									

4.7.3. Ensayo de Resistencia a la Flexión incorporando 2.5% de fibra sintética.

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES

	RESULTADO DE RESISTENCIAS A FLEXIÓN
Tesis:	/ALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F?C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA"
Tesista:	CH. DORIS ELIZABETH LINARES OLANO


Ensayo: CONCRETO. Metodo de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.

Referencia 3º Edición, NTP 339,079 2012

Identificación : Concreto de fíc=210 kg/cm2 con 2.5% de Fibra Sintética

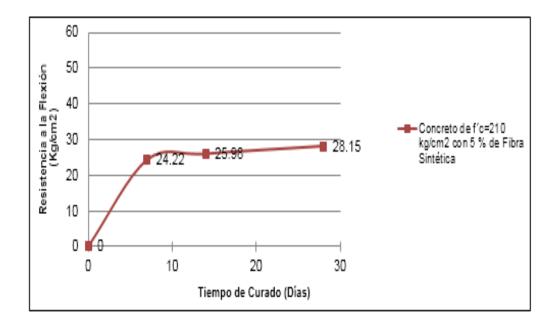
Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	longitud	ancho	altura	luz libre entre apoyos	Carga	ancho de falla	altura de falla	tip o de	a	Mr	Mr promedi o
N*			,	(dias)	(cm)	(cm)	(cm)	(L) (cm)	(P) (Kg	(b) (cm)	(h) (cm)	fal la	(cm)	Kg/cm2	(Kg/cm2)
1	Concreto de f´c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.40	15.30	15.30	42.40	1,264	15.30	15.30	1	-	22.45	
2	Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.50	15.30	15.30	42.50	1,284	15.30	15.30	1	-	22.85	
3	Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.40	15.20	15.20	42.40	1,291	15.20	15.20	1	-	23.38	22.89
4	Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.40	15.30	15.20	42.40	1,258	15.30	15.20	1	-	22.63	
5	Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.50	15.20	15.20	42.50	1,275	15.20	15.20	1	-	23.15	
6	Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.50	15.20	15.20	42.50	1,325	15.20	15.20	1	-	24.05	
7	Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.50	15.25	15.20	42.50	1,314	15.25	15.20	1	-	23.77	
8	Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.45	15.10	15.10	42.45	1,301	15.10	15.10	1	-	24.06	23.96
9	Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.40	15.20	15.10	42.40	1,344	15.20	15.10	1	-	24.66	
10	Concreto de f´c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.50	15.20	15.30	42.50	1,298	15.20	15.30	1	-	23.26	
11	Concreto de f´c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.50	15.20	15.20	42.50	1,426	15.20	15.20	1	-	25.89	
12	Concreto de f´c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.50	15.20	15.20	42.50	1,431	15.20	15.20	1	-	25.98	
13	Concreto de f´c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.25	15.20	15.10	42.25	1,405	15.20	15.10	1	-	25.69	25.85
14	Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.40	15.30	15.10	42.40	1,444	15.30	15.10	1	-	26.33	
15	Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.50	15.20	15.20	42.50	1,398	15.20	15.20	1	-	25.38	

Concreto de f'c=210 kg/cm2 con 2.5 % de Fibra Sinté	tica
Dias	Kg/cm2
0	0
7	22.89
14	23.96
28	25.85

4.7.4. Ensayo de Resistencia a la Flexión incorporando 5% de fibra sintética.

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES

	RESULTADO DE RESISTENCIAS A FLEXIÓN
Tesis:	"EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F°C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA "
Tesista:	BACH. DORIS ELIZABETH LINARES OLANO


Ensayo: CONCRETO. Metodo de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.

Referencia 3º Edición, NTP 339,079 2012

Identificación: Concreto de fíc=210 kg/cm2 con 5 % de Fibra Sintética

¶uestra N°	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad (dias)	ongitu	ancho (cm)	altura (cm)	luz libre entre apoyos (L) (cm)	Carga (P) (Kg)	ue rana	altura de falla (h) (cm)	fall	a (cm)	Mr [Kg/cm2	Mr promed io [Kg/cm2)
1	Concreto de f'c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.40	15.30	15.25	42.40	1,356	15.30	15.25	1	-	24.24	
2	Concreto de f´c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.40	15.20	15.30	42.40	1,354	15.20	15.30	1	-	24.20	
3	Concreto de f´c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.30	15.30	15.30	42.30	1,368	15.30	15.30	1	-	24.24	24.22
4	Concreto de f'c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.30	15.30	15.25	42.30	1,366	15.30	15.25	1	-	24.36	
5	Concreto de f´c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	23/12/2021	7	50.40	15.20	15.30	42.40	1,347	15.20	15.30	1	-	24.08	
6	Concreto de f´c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.40	15.30	15.30	42.40	1,465	15.30	15.30	1	-	26.01	
7	Concreto de f'c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.40	15.30	15.30	42.40	1,452	15.30	15.30	1	-	25.78	
8	Concreto de f´c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.45	15.30	15.30	42.45	1,471	15.30	15.30	1	-	26.15	25.98
9	Concreto de f´c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.40	15.20	15.35	42.40	1,490	15.20	15.35	1	-	26.46	
10	Concreto de f'c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	30/12/2021	14	50.45	15.10	15.30	42.45	1,415	15.10	15.30	1	-	25.49	
11	Concreto de f'c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.30	15.10	15.20	42.30	1,532	15.10	15.20	1	-	27.86	
12	Concreto de f´c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.00	15.20	15.20	42.00	1,548	15.20	15.20	1	-	27.77	
13	Concreto de l'c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.30	15.10	15.10	42.30	1,564	15.10	15.10	1	-	28.82	28.15
14	Concreto de f'c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.20	15.20	15.10	42.20	1,505	15.20	15.10	1	-	27.49	
15	Concreto de f´c=210 kg/cm2 con 5 % de Fibra Sintética	16/12/2021	13/01/2022	28	50.00	15.10	15.20	42.00	1,594	15.10	15.20	1	-	28.78	

Concreto de f'c=210 kg/cm2 con 5 % de Fibra Sintética									
Dias	Kg/cm2								
0	0								
7	24.22								
14	25.98								
28	28.15								

ANEXO 5: Certificado de calibración de instrumentos de laboratorio

LABORATORIO DE SUELOS, CONCRETO & MATERIALES, ARQUITECTURA, INGENIERÍA, TOPOGRAFÍA Y SERVICIOS GENERALES

AUTORIZACIÓN PARA EL RECOJO DE INFORMACIÓN

Pimentel, 12 de diciembre de 2021

Quien suscribe:

Sr. Jorge M. Llican Jacinto

Jefe de Área Técnica - Grupo LLIFI EIRL

AUTORIZA: Permiso para recojo de información pertinente en función del proyecto de investigación, denominado: "Evaluación de las Propiedades Físicas y Mecánicas del Concreto Estructural F'c=210 Kg/Cm2 Incorporando Fibra Sintética"

Por el presente, el que suscribe, señor Jorge M. Llican Jacinto, Jefe de Área Técnica –Grupo LLIFI EIRL, AUTORIZO a la estudiante: Doris Elizabeth Linares Olano, identificado con DNI N° 70852974, estudiante de la Escuela Profesional de Ingeniería Civil, y autor del trabajo de investigación denominado "Evaluación de las Propiedades Fisicas y Mecánicas del Concreto Estructural F'c=210 Kg/Cm2 Incorporando Fibra Sintética", al uso de dicha información que conforma los instrumentos de recolección de datos para efectos exclusivamente académicos de la elaboración de tesis enunciada líneas arriba, de quien solicita se garantice la absoluta confidencialidad de la información solicitada.

Atentamente.

Sr. Jorge M. Llican Jacinto Jefe de Área Técnica del Grupo LLIFI EIRL

RUC: 20609763125

ANEXO 6. Análisis estadístico

VALIDEZ Y CONFIABILIDAD POR 5 JUECES EXPERTOS

EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA

								Clario	dad									
			1	.25% de fib	ra			2.5	% de fibr	a a		5% de fibra						
		Compresi ón	Flexión	Asentami ento	Peso unitario	Temperat ura	Compresi ón	Flexión	Asenta miento	Peso unitario	Temper atura	Compre sión	Flexión	Asenta miento	Peso unitario	Temper atura		
	JUEZ 1	1	1	1	0	1	1	1	0	1	1	1	1	1	1	1		
	JUEZ 2	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1		
	JUEZ 3	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1		
	JUEZ 4	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1		
	JUEZ 5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	S	5	5	4	4	5	5	5	3	4	5	5	5	5	5	5		
	n	5																
	С	2																
V de Alk preg	·	1	1	0.8	0.8	1	1	1	0.6	0.8	1	1	1	1	1	1		
V de Aik dimei	•			0.92					0.88					1				
V de Aik crite	•							0.93333	33333									

									Contexto	<u> </u>							
			1.	סבט/ אָב נּיִו			1					l		-0/ da f:b.			
			1.4 I	25% de fil		<u> </u>			5% de fib	ra T	<u> </u>	5% de fibra					
		Compre sión	Flexión	Asenta miento	Peso unitario	Temper atura	Compre sión	Flexión	Asenta miento	Peso unitario	-	Compre sión	Flexión	Asenta miento	Peso unitario	Temper atura	
	JUEZ 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	JUEZ 2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	
	JUEZ 3	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	
	JUEZ 4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	JUEZ 5	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	
	S	5	5	4	4	5	5	5	4	5	5	5	5	5	5	4	
	n																
	С																
V de Al	ken por																
preg	gunta	1	1	0.8	0.8	1	1	1	0.8	1	1	1	1	1	1	0.8	
V de Ai	ken por																
dime	nsión			0.92					0.96					0.96			
	ken por erio							0	.94666666	67							

							С	ongruend	ia								
		1.2	25% de fil	bra			2.	5% de fib	ra		5% de fibra						
	Compre sión	Flexión	Asenta miento	Peso unitario	Temper atura	Compre sión	Flexión	Asenta miento	Peso unitario	-	Compre sión	Flexión	Asenta miento	Peso unitario	Temper atura		
JUEZ 1	1	1	0	1	1	1	1	1	0	1	1	1	1	1	1		
JUEZ 2	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1		
JUEZ 3	1	1	1	1	1	1	1	1	1	0	1	1	0	1	1		
JUEZ 4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
JUEZ 5	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1		
s	5	5	4	5	5	5	5	4	3	4	5	5	4	5	5		
n																	
С																	
lken por gunta	1	1	0.8	1	1	1	1	0.8	0.6	0.8	1	1	0.8	1	1		
iken por ensión			0.96					0.84					0.96				
iken por erio								0.92									

			1.25% d	e fibra		National Services		2.5% de fibra					5% de fibra		
	Compre sión	Flexión	Asenta miento	Peso unitario	Temperatur a	Compresión	Flexión	Asentamien to	Peso unitario	Temperatur a	Compresión	Flexión	Asentamien to	Peso unitario	Temperatur a
JUEZ 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
JUEZ 2	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
JUEZ 3	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
JUEZ 4	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1
JUEZ 5	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
s	5	5	3	4	5	5	5	5	4	5	5	5	4	5	5
n															
c											07:0				
V de Alken por pregunta	1	1	0.6	0.8	1	1	1	1	0.8	1	1	1	0.8	1	1
V de Aiken por dimensión			0.8	8				0.96					0.96		
V de Aiken por criterio								0.93333	3333						

V de Aiken del instrumento por jueces expertos

0.9333

Luis Arano Hontenegro Camacho
Lic. ESTADISTICA
MG. INVESTIGACIÓN
DR. EDUCACIÓN
COESPE 262

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ESTRUCTURAL F'C=210 KG/CM2 INCORPORANDO FIBRA SINTÉTICA

Estadísticas de fiabilidad

Alfa de Cronbach	N de elementos
,918	15

		Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
Compresión		,824	,906
Flexión		,834	,912
Asentamiento	1.25% de fibra	,927	,911
Peso unitario		,844	,912
Temperatura		,859	,906
Compresión		,969	,908
Flexión		,897	,902
Asentamiento	2.5% de fibra	,930	,910
Peso unitario		,890	,903
Temperatura		,818	,922
Compresión		,909	,923
Flexión		,909	,922
Asentamiento	5% de fibra	,950	,922
Peso unitario		,834	,912
Temperatura		,927	,911

ANOVA

		Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter sujetos		7974,157	4	1993,539		
Intra sujetos	Entre elementos	82125632,700	14	5866116,621	35982,286	000
	Residuo	9129,563	56	163,028		
	Total	82134762,263	70	1173353,747		
Tota	ıl	82142736,420	74	1110036,979		

En las tablas se observa que, el instrumento sobre Evaluación de las Propiedades Físicas y Mecánicas del Concreto Estructural F'c=210 Kg/Cm2 Incorporando Fibra Sintética es válido (correlaciones de Pearson superan al valor de 0.30 y el valor de la prueba del análisis de varianza es altamente significativo p < 0.01) y confiable (el valor de consistencia alfa de cronbach es mayor a 0.80).

Luis Arturo Montenegro Camacho
Lic. Estadistica
MG. INVESTIGACIÓN
DR. EDUCACIÓN
COESPE 262

ANEXO 7. Validación de expertos

Colegiatura Na .110 771

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Reimos Tennes Jonge Jenny Junion	Ingeniens civil, Doceme ensencico, USS, UEV, UTP.	Propiedades físicas y mecánicas del concreto estructural F'c=210 Kg/Cm2 incorporando fibras sintéticas	Doris Elizabeth Linares Olano

Título de la Investigación:

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	ACUERDO	APLICABLE
2	ACUERDO	APLICABLE
3	ACUERDO	APLICABLE
4	ACUERDO	APLICABLE
5	ACUERDO	APLICABLE

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/İtem s	Clar	ridad	Context		Congruenci a		Dominio del constructo	
	1.25% de fibra	S	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		×	
2	Flexión	X		X		X		X	
3	Asentamiento	X		X			X	×	
4	Peso Unitario		X	X		X		X	
5	Temperatura	X		X		X		×	
	2.5% de fibra								
1	Compresión	X		X		X		X	
2	Flexión	X		X.		X		X	

[&]quot;Evaluación de las Propiedades Físicas y Mecánicas del Concreto Estructural F'c=210 Kg/Cm2 Incorporando Fibra Sintética"

Universidad Señor de Sipán

3	Asentamiento	AND THE RESERVE THE	X	X	×		X	
4	Peso Unitario	×		×		X	X	-
5	Temperatura	×		×	X		×	
	5% de fibra							
1	Compresión	X	Agrico I	V	Y		×	
2	Flexión	X		X	V		X	
3	Asentamiento	X		X	X		X	
4	Peso Unitario	X		X	×		X	
5	Temperatura	X		X	X		x	

Observaciones (precisar si hay suficiencia):		
Ninguna		
Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () Apellidos y nombres del juez validador:)	No aplicable (
James James James Fortes ING. CIVIL CIP 110771		

Colegiatura Na 294564

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Nino Díaz	Jugariero	Propiedades físicas y mecánicas del concreto estructural F'c=210 Kg/Cm2 incorporando fibras sintéticas	Doris Elizabeth
Elmer Alberto	Civil		Linares Olano

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	ACUERDO	APLICABLE
2	ACUERDO	APLICABLE
3	ACUERDO	APLICABLE
4	ACUERDO	APLICABLE
5	ACUERDO	APLICABLE

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Ítem s	Cla	ridad	Context		Congruenci a		Dominio del constructo	
	1.25% de fibra	S	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		X	
2	Flexión	X		X		X		X	
3	Asentamiento	X			X	X		X	
4	Peso Unitario	X		×		X			×
5	Temperatura	X		X		X		X	
	2.5% de fibra								
1	Compresión	×		X		X		X	
2	Flexión	X		X		×		X	

							10	7
3 Asentamiento		X	X		X	1100	X	
4 Peso Unitario	X		1	X	X		X	
5 Temperatura	X		X			X	X	
5% de fibra								
1 Compresión	X		X		X	Description of the	X	
2 Flexión	×		X		X		X	
3 Asentamiento	X		X			X	X	
4 Peso Unitario	X		×		X		K	
5 Temperatura	×		X	100000	×	Name of the last	K	

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Niño Diag Elmer....

Especialidad: Ing. Civil

Observaciones (precisar si hay suficiencia):

ELMERALBERTO NINO DÍAZ INGENIERO CIVIL REG. CIP. Nº 294564

Colegiatura Nº . 289189.

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento	
Blames Somethy DESTRITAL PLOTE Februs TUCUME		Propiedades físicas y mecánicas del concreto estructural F'c=210 Kg/Cm2 incorporando fibras sintéticas	Doris Elizabeth Linares Olano	

Título de la Investigación:

"Evaluación de las Propiedades Físicas y Mecánicas del Concreto Estructural F'c=210 Kg/Cm2 Incorporando Fibra Sintética"

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	ACUERDO	APLICABLE
2	ACUERDO	APLICABLE
3	ACUERDO	APLICABLE
4	ACUERDO	APLICABLE
5	ACUERDO	APLICABLE

Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

×57000	Dimensiones/Ítems	Claridad		Contexto		Congruencia		Dominio del constructo	
	1.25% de fibra	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		X	
2	Flexión	X		X	and how exects	X		X	
3	Asentamiento		X	X		X		X	
4	Peso Unitario	×		X		×			X
5	Temperatura	X		X		X		X	
	2.5% de fibra								
1	Compresión	X		X		X		X	
2	Flexión	X		X		X		X	
3	Asentamiento	X		X			X	X	
4	Peso Unitario	X		×		X		X	
5	Temperatura	X			X	X.		X	

					Unive Seño
1 0	5% de fibra ompresión	V	v	20	
	exión	X	X	X	ŵ
3 As	sentamiento	X	*	X	X
4 Pe	eso Unitario	X	X	X	V
5 Te	emperatura	X	×	×	X

Observaciones (precisar si hay suficiencia):		
NINEUNA		
Opinión de aplicabilidad: Aplicable (X) Aplicable después de correg	gir () No aplica	able (
) Apellidos y nombres del juez validador:BLANCOSANCHEZ	JHORDANN	PIER
Especialidad: Ing. Civil		-CI

JHORGANN PERRE FELYPE BLANCO SANCHEZ INGENIERO CIVIL REG. CIP N° 289189

Colegiatura Na ... 182294

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Céspedes Dezu José Alfredo Rolando	Ingeniero Civil	Propiedades físicas y mecánicas del concreto estructural F'c=210 Kg/Cm2 incorporando fibras sintéticas	Doris Elizabeth Linares Olano

Titulo de la Investigación:

"Evaluación de las Propiedades Físicas y Mecánicas del Concreto Estructural F'c=210 Kg/Cm2 Incorporando Fibra Sintética"

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	ACUERDO	APLICABLE
2	ACUERDO	APLICABLE
3	ACUERDO	APLICABLE
4	ACUERDO	APLICABLE
5	ACUERDO	APLICABLE

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Ítem s	Claridad		Context		Congruenci a		Dominio del constructo	
	1.25% de fibra	S	No	Si	No	Si	No	Si	No
1	Compresión	X		У		X		X	
2	Flexión	X		×		X		X	
3	Asentamiento	X		X		X			X
4	Peso Unitario	X		- Wilesenia	X	X		X	CHIONE
5	Temperatura	X		X		X		X	
	2.5% de fibra								Emposiopes
1	Compresión	×		X		X		X	
2	Flexión	X		X	A.S. 10.5	×		λ	

1	10	C	Universidad Señor de Sipán
			A THE R

_			13.1				
3	Asentamiento	X	X	×		$-\tau$	
4	Peso Unitario	X	×		X	X	
5	Temperatura	X	Y	X		×	
	5% de fibra						188
1	Compresión	χ	X	X		X	
2	Flexión	X	×	X		X	
3	Asentamiento	X	×	×		C	
4	Peso Unitario	X	X	X		X	UIII-388
5	Temperatura	X	X	文		×	

Observaciones (precisar si hay sufici	encia):
NINGUNA	
Opinión de aplicabilidad: Aplicable (X)) Apellidos y nombres del juez validad	Aplicable después de corregir () No aplicable (or:
Especialidad: Ing. Civil	
	SSEA ADIANA CESPERS DE23 INGENTERO CIVIL CIPN * 182294
	/

Colegiatura Nº ...317452

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Fernando Llatar Villanuero	Docente	Propiedades físicas y mecánicas del concreto estructural F'c=210 Kg/Cm2 incorporando fibras sintéticas	Doris Elizabeth Linares Olano

Título de la Investigación:

II. Aspectos de validación de cada Ítem

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	ACUERDO	APLICABLE
2	ACUERDO	APLICABLE
3	ACUERDO	APLICABLE
4	ACUERDO	APLICABLE
5	ACUERDO	APLICABLE

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/İtem s	Claridad		Context		Congruenci a		Dominio del constructo	
	1.25% de fibra	S	No	Si	No	Si	No	Si	No
1	Compresión	X		X		Х		X	
2	Flexión	×		×		X		X	
3	Asentamiento	X		Y		X		X	
4	Peso Unitario	X		X		×			X
5	Temperatura	*		X		X		K	
annag.	2.5% de fibra								
1	Compresión	×		X		×		X	Conference of the Conference o
2	Flexión	X		X	00000000000	X		X	Consulting A Uses

[&]quot;Evaluación de las Propiedades Físicas y Mecánicas del Concreto Estructural F'c=210 Kg/Cm2 Incorporando Fibra Sintética"

E	Universidad Señor de Sipán

3	Asentamiento	X		X	X	×	
4	Peso Unitario		K	X	Y	X	
5	Temperatura	X		X	· ×	X	
	5% de fibra						SEATION
1	Compresión	X		V	×	X	
2	Flexión	- V		×	X	×	
3	Asentamiento	×		X	×		X
4	Peso Unitario	X		X	X	×	
5	Temperatura	\mathcal{L}		Y	17	X	

Observaciones (precisar si hay suficiencia):		
Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () Apellidos y nombres del juez validador: Fernando datas la después)	No aplicable (
Especialidad: Ing. Civil		
FERNANDUPLE ROLLATAS VILLAMENA HIGENIERO CIVIL REG. CIP. 217452		

ANEXO 8. PANEL FOTOGRAFICO. ANEXO 8.1. ENSAYO DE AGREGRADOS

ANEXO 8.2. PESADO DE LA FIBRA

ANEXO 8.3. PRUEVA DE SLUMP

ANEXO 8.4. PRUEVA DE TEMPERATURA

ANEXO 8.5. DISEÑO DE MEZCLAS

ANEXO 8.6. Llenado de probetas y vigas

ANEXO 8.7. ROTURAS DE PROBETAS

ANEXO 8.8. ROTURAS VIGAS

