

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

TESIS

ANÁLISIS DE LA DEFORMACIÓN MECÁNICA EN LA CÁMARA DE COMBUSTIÓN DE UN MOTOR **CONVERTIDO (GNV) DE CAPACIDAD 1497CC**

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO **MECÁNICO ELECTRICISTA**

Autores:

Bach. Alvis Valdivia James Manuel Orcid: http://orcid.org/0009-0001-1165-8153

Bach. Valdez Malca Richard Lenin

Orcid: http://orcid.org/0009-0007-7165-8706

Asesor

Mtro. Ing. Vives Garnique Juan Carlos

Orcid: https://orcid.org/0000-0003-0988-9881

Línea de Investigación Infraestructura, tecnología y medio ambiente

> Pimentel – Perú 2023

ANÁLISIS DE LA DEFORMACIÓN MECÁNICA EN LA CÁMARA DE COMBUSTIÓN DE UN MOTOR CONVERTIDO (GNV) DE CAPACIDAD 1497CC

Aprobación del jurado

Dra. GASTIABURU MORALES SILVIA YVONE

Presidente del Jurado de Tesis

Mg. POLO BRICEÑO ELMER ROLANDO

Secretario del Jurado de Tesis

Mtro. VIVES GARNIQUE JUAN CARLOS

Vocal del Jurado de Tesis

Universidad Señor de Sipán

Quien(es) suscribe(n) la **DECLARACIÓN JURADA**, somo(s) **egresado (s)** del Programa de Estudios de **Ingeniería Mecánica Eléctrica** de la Universidad Señor de Sipán S.A.C, declaro (amos) bajo juramento que soy (somos) autor(es) del trabajo titulado:

ANÁLISIS DE LA DEFORMACIÓN MECÁNICA EN LA CÁMARA DE COMBUSTIÓN DE UN MOTOR CONVERTIDO (GNV) DE CAPACIDAD 1497CC

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán (CIEI USS) conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando al derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firman:

Alvis Valdivia James Manuel	DNI: 70564337	Huturk
Valdez Malca Richard Lenin	DNI: 45639123	Cierfo

* Porcentaje de similitud turnitin:22%

Pimentel, 30 de julio de 2023.

	Reporte de similitud
NOMBRE DEL TRABAJO	AUTOR
ANÁLISIS DE LA DEFORMACIÓN MECÁN ICA EN LA CÁMARA DE COMBUSTIÓN D E UN MOTOR CONVERTIDO (GNV) DE CA PAC	james manuel y richard lenin alvis valdivi a y valdez malca
RECUENTO DE PALABRAS	RECUENTO DE CARACTERES
14182 Words	71464 Characters
RECUENTO DE PÁGINAS	TAMAÑO DEL ARCHIVO
81 Pages	9.2MB
FECHA DE ENTREGA	FECHA DEL INFORME
Aug 27, 2023 8:42 PM GMT-5	Aug 27, 2023 8:43 PM GMT-5
• 22% de similitud general	
22% Base de datos de Internet	1% Base de datos de publicaciones
Base de datos de Crossref	 Base de datos de publicado de Cros
• 6% Base de datos de trabajos entregados	
• Excluir del Reporte de Similitud	
 Material bibliográfico 	Material citado
 Coincidencia baja (menos de 8 palabras) 	

DEDICATORIA

"Dedico mi Tesis primeramente a Dios, por ayudarme a cumplir esta meta en mi vida, por brindarme su protección como también, estuvo para mí en cada segundo para escuchar mis angustias y llenarme de ánimo y fortaleza; además agradezco a mi madre, pues sin ella no lo había logrado. Tu bendición a diario a lo largo de mi vida me protege y me lleva por el camino del bien".

AGRADECIMIENTO

"La universidad Señor de Sipán me dio la bienvenida y me brindo múltiples oportunidades incomparables en el ámbito educativo, siendo una de estas el interés por la investigación que fue esencial en mi etapa como estudiante universitario y lo será en mi perfil profesional.

Agradezco mucho por la ayuda de mis maestros, mis compañeros, y a la universidad en general por todo lo anterior en conjunto, sobre todo por los conocimientos que me ha otorgado".

DED	DICATORIA	4
AGR	RADECIMIENTO	5
RES	UMEN	12
ABS	STRACT	13
I.	INTRODUCCIÓN	14
1.1.	Realidad Problemática:	14
1.2.	Formulación del Problema:	23
1.3.	Hipótesis:	23
1.4.	Objetivos:	24
1.5.	Teorías relacionadas al tema	24
II.	MATERIALES Y MÉTODOS	54
2.1.	Tipo y Diseño de Investigación:	54
2.2.	Variables, Operacionalización	54
2.3.	Población del estudio, muestreo y criterios de selección	57
2.4.	Técnicas e instrumentos de recolección de datos, validez y confiabilidad	57
2.5.	Procedimientos de análisis de datos.	57
2.6.	Criterios éticos	58
2.7.	Criterios de Rigor científico.	59
III.	RESULTADOS Y DISCUSIÓN	60
3.1.	Resultados	60
3.2.	Discusión	89
3.3.	Aporte de la investigación	90
IV.	CONCLUSIONES Y RECOMENDACIONES	91
4.1.	Conclusiones	91
4.2.	Recomendaciones	92

INDICE

REFERENCIAS	
ANEYOS	00
	ЭО

INDICE DE TABLAS

Tabla 1. Resultados de encuestas aplicados a propietarios con vehículos convertidos	a Bi-
combustible GNV	20
Tabla 2. Propiedades principales de materiales importados en ANSYS	42
Tabla 3: Variables Independientes y dependientes	55
Tabla 4. Parámetros del motor en estudio	60
Tabla 5. Dimensiones de componentes del motor	61
Tabla 6. Propiedades mecánicas de la aleación.	62
Tabla 7. Parámetros de las propiedades de la gasolina y el GNV	63
Tabla 8. Parámetros de funcionamiento del motor de gasolina y de GNV	64
Tabla 9. Temperaturas y presiones durante el ciclo Otto a gasolina	66
Tabla 10. Temperaturas y presiones durante el ciclo Otto a GNV	67
Tabla 11. Esfuerzos de la válvula de admisión	68
Tabla 12. Esfuerzos de la válvula de escape.	69
Tabla 13. Esfuerzos del pistón	70
Tabla 14. Esfuerzos del cilindro.	70
Tabla 15. Esfuerzos cortantes	71
Tabla 16. Factor de seguridad.	72

INDICE DE FIGURAS

Figura 1. Conversiones a GNV 2011-2020 19
Figura 2: Esquema para la obtención del par motor27
Figura 3. Gráficas de par motor en función de la velocidad del vehículo
Figura 4. Gráficas de potencia en función de la velocidad del vehículo
Figura 5. Tipos de Distribución de Válvulas. 1 regulación por varillas, 2 Regulación por
palanca de arrastre u oscilante, 3 Regulación por balancines, 4 Regulación por taqués de
platillos, OHV (Válvulas Suspendidas), OHC (Árbol de levas en la culata), DOHC (2 Árboles
de levas en la culata)
Figura 6. Diagrama de Distribución de Válvulas con carrera de válvula, velocidad de las
válvulas y aceleración de las válvulas29
Figura 7. Esquematización del cilindro durante el proceso de combustión
Figura 8. Cilindrada de un motor de Combustión interna
Figura 9. Tiempos de trabajo en un motor de 4 cilindros
Figura 10. Volumen de la Cámara de compresión o combustión 35
Figura 11. Presión del gas en el cilindro37
Figura 12. Desplazamiento del émbolo en el cilindro
Figura 13. Momento de giro (Par) del cigüeñal en un motor
Figura 14. Potencia indicada y efectiva 39
Figura 15. Zonas de interés utilizadas en el análisis para el pistón 47
Figura 16. Deformaciones del pistón según un ángulo α48
Figura 17. Deformaciones en el eje Y de la cabeza del pistón. Escala de deformaciones 1:1
(izquierda), 2:1 (derecha)
Figura 18. Deformaciones en eje Y de la falda del pistón. Escala deformaciones 1:1 49
Figura 19. Deformaciones en los ejes Y, Z de la hendidura en el pistón. Escala de
deformaciones 1:1 (izquierda), 2:1 (derecha) 49
Figura 20. Zonas de interés de la biela

Figura 21. Deformaciones en el eje X de la biela según un ángulo α	50
Figura 22. Deformaciones en el eje Y de la biela según un ángulo α	51
Figura 23. Representación de deformaciones en α = -330°. Escala de deformaciones	1:1
(izquierda), 2:1 (derecha	51
Figura 24. Representación de deformaciones en α = -60°	52
Figura 25. Representación de deformaciones en α = 10°	52
Figura 26. Vehículo Toyota Corola de 1.5 L	53
Figura 27. Geometría de la nomenclatura de la válvula	64
Figura 28. Esquema de flujo energético y de masa en el volumen de control	65
Figura 29. Esquema de volumen de control y puntos característicos para el flujo a través	s de
válvulas	65
Figura 30. Gráfico presión versus volumen	66
Figura 31. Diagrama de cuerpo libre	67
Figura 32. Esfuerzos en las válvulas de admisión y escape	68
Figura 33. Esfuerzos actuando en el pistón.	69
Figura 34. Dimensiones de la válvula de admisión	72
Figura 35. Dimensiones del pistón.	73
Figura 36. Ciclo de vida total	74
Figura 37. Factor de carga	74
Figura 38. Tensión de VON MISES	75
Figura 39. Desplazamientos	76
Figura 40. Deformaciones	76
Figura 41. Factor de seguridad.	76
Figura 42. Ciclo de vida total	77
Figura 43. Factor de carga	77
Figura 44. Tensión de Von Mises	78
Figura 45. Desplazamientos	78
Figura 46. Deformación unitaria	79

Figura 47. Factor de seguridad.	79
Figura 48. Ciclo de vida total	80
Figura 49. Factor de carga	80
Figura 50. Tensión Von Mises	81
Figura 51. Desplazamiento.	81
Figura 52. Deformación unitaria	82
Figura 53. Factor de seguridad.	82
Figura 54. Ciclo de vida total	83
Figura 55. Factor de carga	83
Figura 56.Área donde se sitúa mayor presión	84
Figura 57. Deformación unitaria	85
Figura 58. Desplazamiento.	85
Figura 59. Factor de carga	86
Figura 60. Desplazamiento.	86
Figura 61. Deformación unitaria	87
Figura 62. Desplazamiento.	87
Figura 63. Deformación unitaria.	88

RESUMEN

El presente proyecto de investigación propone un estudio de deformación mecánica sobre los elementos del motor cilindro – pistón, válvulas de escape y admisión de un auto que está adaptado a utilizar dos combustibles los cuales son gasolina y GNV. El estudio tiene un diseño no experimental siendo cuasi experimental y de tipo aplicado ya que utiliza teorías fundamentadas y validadas, enfocándose en un vehículo de la marca Toyota Corola y de modelo 1NZ-FE & 2NZ-FE, de la serie 120.En primer lugar, se identifica los parámetros de buen funcionamiento del motor en estudio y de los combustibles. En segundo lugar, se realizó el diagrama de cuerpo libre de los elementos para posteriormente pasar a realizar el dibujo en el software SolidWorks y luego realizar los análisis estáticos y de fatiga, los cuales arrojan datos donde se puede identificar que al utilizar un combustible diferente al que está diseñado el motor ocasiona mayores deformaciones y disminuye los ciclos de vida de los elementos.

Palabras Claves: Análisis de deformación, biocombustible, análisis estático y fatiga.

ABSTRACT

This research project proposes a study of mechanical deformation on the elements of the cylinder-piston engine, exhaust and intake valves of a car that is adapted to use two fuels which are gasoline and NGV. The study has a non-experimental design, being quasi-experimental and of an applied type since it uses grounded and validated theories, focusing on a vehicle of the Toyota Corola brand and 1NZ-FE & 2NZ-FE model, of the 120 series. In the first place, the parameters of good operation of the engine under study and of the fuels are identified. Second, the free-body diagram of the elements was made to later proceed to make the drawing in the solidworks software and then perform the static and fatigue analyzes, which yield data where it can be identified that when using a different fuel than that the engine is designed causes greater deformations and reduces the life cycles of the elements.

Keywords: Deformation analysis, biofuel, static analysis and fatigue.

I.INTRODUCCIÓN

1.1. Realidad Problemática:

Existen diversas fallas, sobre todo comúnmente en los elementos del motor de Combustión Interna para ello se empieza por predecir el comportamiento y parámetros importantes del proceso de combustión, se alterarán una serie de incertidumbres, y estas incertidumbres están relacionadas con la determinación precisa de la cantidad de control del proceso. Estas incertidumbres incluyen la deformación de la superficie del pistón, la deformación del pasador que soporta el pistón, las deformaciones existentes en cada parte de la biela y, lo que es más importante, el efecto de la temperatura sobre estas deformaciones, que en conjunto provocarán la deformación de los componentes del motor en movimiento, que esta a su vez provocan desviaciones evidentes en la predicción del modelo, lo que afecta directamente al diagnóstico termodinámico. [1]

La falla del pistón se observa a través del atasco del motor, contaminación del aceite, pérdida de energía y humo gris. Los factores que influyen en la falla del pistón son el uso de aros de pistón desgastados, montaje inadecuado de los aros de pistón, faldones de pistón dañados, pistón agrietado y quemado, etc. contribuyen a la falla del pistón y el atasco del motor. Temperatura fluctuaciones que surgen durante las carreras de potencia, calidad del combustible, fenómeno de combustión complejo dentro del cilindro y calidad del aire, La calidad de la mezcla de la relación aire-combustible también afecta el rendimiento del pistón. La falla del bloque de cilindros da como resultado una reducción en la eficiencia del motor y poder. Se observan abolladuras en el bloque de cilindros. La falla en el bloque de cilindros se debe a la falla de otros componentes. Las causas del cilindro Las fallas del bloque incluyen grietas debido a fallas de lubricación, sobrecarga, fugas en el sello, sobrecalentamiento, expansión rápida del metal que conduce a ya sean grietas internas o externas, la congelación del refrigerante en climas fríos conduce a grietas internas. [1]

El primer y segundo modo de pandeo son exactamente similares a los modos de falla en Conrod. Pandeo se convierte en un posible sospechoso de la falla de Conrod. Este modo de falla se conoce como HYDROLOCK o bloqueo hidrostático que ocurre en los motores de combustión interna. Esto puede suceder cuando un volumen de líquido mayor que el volumen disponible del cilindro ingresa al cilindro. Esto puede suceder al final de la carrera del pistón cuando el volumen restante del cilindro está al mínimo. Dado que los líquidos son casi incompresibles, bajo bloqueo hidrostático, el pistón no puede completar su recorrido; por lo tanto, el motor debe dejar de girar o un debe ocurrir una falla mecánica. [2]

Las geometrías comúnmente adoptadas en pasadores de pistón para motores de combustión interna se examinaron. Se han considerado varios métodos para reducir el peso del pasador. La selección se ha abordado la autorización adecuada. Es por ello que se centraron en los modos de falla más típicos, se han clasificado e interpretado a la luz del análisis de estrés. Los ciclos de fatiga de los parámetros relacionados con la tensión y el desplazamiento se han examinado en detalle. Se ha encontrado que, mientras que el ciclo de la ovalización horizontal del pasador se invierte aproximadamente, el ciclo de la ovalización vertical del pasador y el de las tensiones máximas de ovalización en el orificio del pasador los lados se repiten aproximadamente. Una grieta de fatiga típica en forma de Y se ha interpretado con la ayuda del círculo de Mohr. Un error en un enfoque de diseño clásico basado en la contención de la ovalización del pasador ha hipotetizado, y se ha propuesto una corrección y se ha apoyado con ejemplos numéricos. Es por ello que basado en este estudio a mi perspectiva nos debemos enfocar en los errores de diseño de los pistones donde estos no son los adecuados para el buen funcionamiento de los motores de combustión interna, mucho menos para someterlos a tensión y desplazamientos mayores de lo habiual. [3]

Pasando al pequeño extremo de la biela, se han empleado tanto estudios fotoelásticos como FE para evidencia de que la tensión máxima se produce en los lados del orificio del extremo pequeño. Pasando a la cabeza de biela, un modelo analítico clásico basado en varias aproximaciones teóricamente ha sido evaluado. Se ha realizado un análisis de EF para evidenciar notablemente altas tensiones en la zona de extremo grande adyacente al vástago, donde la sección transversal es mínima. Se ha demostrado que el empleo de tornillos pasantes es particularmente perjudicial. El colapso se ha discutido la copa del extremo de

biela y de los pernos empleados para conectar el extremo de biela a la tapa. Se ha considerado el daño por fatiga de frenado en el extremo grande, y se ha expresado una salida en términos definidos, Se ha proporcionado el parámetro de fatiga por fricción para una biela de titanio específica; esta salida justifica la iniciación de la grieta en el orificio de la biela Pasando a los aspectos tribológicos. [4]

"Toda eficiencia desarrollada en los motores los cuales funcionan con combustibles alternativos presentan debilidades y esto se debe a utilizar un biogás en los motores de combustión interna, los cuales están basadas en cambiar el volumen en la admisión del aire para así poder lograr un correcto funcionamiento. La aplicación que se tiene de estos motores es especialmente adecuada para generadores estacionarios, maquinaria, tractores y camiones ligeros. Analizar las características requeridas del biogás combustible, centrándose en el rendimiento en condiciones de trabajo específicas, a través del análisis de determinados parámetros se discute la viabilidad técnica, económica y el impacto en el medio ambiente". [5].

Hoy en día es común el uso de GNL (gas natural líquido) o también el GNC (gas natural comprimido) para poder operar en bicombustible. Los dos antes mencionados son utilizados principalmente en las conversiones de los conjuntos de generadores, esto ya que el motor no pierde la potencia de salida, se sabe que en los últimos tiempos se viene utilizando biogás, este último debido a su composición y su valor calorífico son conocidos para evaluar el tipo de biogás que sea el más adecuado. El valor del calor calorífico puede llegar a ser un gran problema debido a que este combustible se deriva de diferentes fuentes y en algunos casos se tiene un valor calorífico bajo. Se tiene que entender que se debe inyectar suficiente gas al cilindro para poder lograr sustituir el gasóleo. Si el valor calorífico es bajo se va a necesitar la inyección de un gran volumen de combustible y esto podría ser técnicamente imposible [7]

Los motores de combustible múltiple no necesariamente tienen potencia insuficiente, pero, de hecho, debido a que la quema de varios tipos de combustible en el mismo motor requiere compromisos de diseño, algunos motores han tenido problemas con la potencia. Desde un punto de vista militar, quizás el ejemplo más obvio es el motor L60 utilizado por el

tanque de batalla principal del Jefe Británico, pues su rendimiento es muy lento y de hecho, el Jefe Mark I (solo usado para entrenamiento y actividades similares) tiene algunas personas incapaces de instalar tanques para transporte. El poder de la herramienta es pequeño, además un problema igualmente grave es que normalmente se necesitan horas de preparación para cambiar de un combustible a otro.

La geometría del colector de admisión es muy importante en los motores de combustión interna modernos, porque incide directamente en la eficiencia volumétrica y las características del caudal de admisión del cilindro, lo que afectará al rendimiento general del motor, especialmente en todo lo relacionado con la potencia, el consumo de combustible y las emisiones contaminantes. Debido a la naturaleza del proceso del motor, el flujo de aire en el sistema de admisión es permanente. Además, suele ser turbulento y presenta cambios periódicos de alta frecuencia, lo que complica su investigación teórica. [8].

En China se identifica al parque automotor como la principal fuerza impulsadora de consumo de combustibles fósiles del país lo que trae consigo un crecimiento acelerado de las emisiones de gases de efecto invernadero superando a Estados Unidos, como consumidor de combustibles fósiles en el año 2013, y representado a nivel mundial el 26,4% de emisiones de CO₂ al año. Entonces mostrándose afectada la propia población debido a la contaminación generada, se pone en marcha con apoyo del gobierno un plan que implementa uso de GNV para mantener constante el crecimiento de la producción vehicular en el país y la reducción de gases contaminantes al ambiente, sin embargo, la escasez de suministro, y la relación de precios entre el gas natural vehicular y la gasolina en el país obstaculizan la popularidad de estos vehículos [9]

"Bolivia tiene muy presente que la emisión de gases de efecto invernadero es un problema global, recalcado en todo momento por el acuerdo firmado por la Convención de las Naciones Unidas sobre el Cambio Climático, acuerdo que plantea el objetivo de mantener el aumento de la temperatura mundial por debajo de dos grados centígrados con respecto a los niveles preindustriales y aumentar la capacidad de adaptación de cada país para consignar la implementación de energías renovables que produzcan baja emisión de gases de efecto

invernadero. Con todos los factores sobre la mesa el 20 de octubre de 2010 se conforma la entidad ejecutora, de Conversión a Gas Natural Vehicular, mediante su decreto supremo N°0675, cuyo compromiso principal con el país es reducir el alto consumo de Gasolina y Diesel oíl, mediante la conversión de vehículos a GNV, Con lo cual es necesario obtener una evaluación acerca del impacto que implica la conversión vehicular, tanto en el aspecto de desempeño del motor como en las emisiones finales para determinar la factibilidad de dicha implementación y asegurar que los usuarios finales no se vean afectados y mantener bajo control la producción de contaminantes que afectan el comportamiento climático natural" [9]

A principios del año 2000 el Perú vivió un cambio radical en lo que respecta a su comportamiento medioambiental, tomando conciencia del impacto mundial de la huella de carbono producto de la generación de gases contaminantes al ambiente, con lo cual se embarcó en una búsqueda constante de fuentes de energías alternativas, renovables y sustentables en el tiempo, es así que se empezaron a utilizar con gran acogida, gaseosos combustibles y estos son: el gas licuado de petróleo (GLP) y el gas natural vehicular (GNV) [6]. Este último según el reporte del Sector de Gas Natural en el Perú, presenta una reserva mundial estimada en 6,832 Tpc (Tera pies cúbicos) solo en el año 2017, con proyección a nuevos descubrimientos [7].

En el Perú Según el último informe emitido por el Sector Gas Natural en el Perú 2018, Lambayeque cuenta con 1 442 vehículos convertidos a GNV y junto con otros 5 departamentos representó el 97% de consumidores del país. Así mismo con apoyo de los recursos del FISE (Fondo de Inclusión Social Energético), se proporciona un programa de financiamiento de conversiones vehiculares a GNV, cuya finalidad es masificar el uso de este biocombustible a fin de reducir emisiones de gases contaminantes, que es el factor común a nivel mundial, y con ello traer beneficiosos ahorros al consumidor final [7].

"En el departamento de Lambayeque hace diez años, contaba con un solo centro para convertir motores de autos Diésel a gas natural (GNV) y una estación de venta de este tipo de combustible no contaminante. Respecto al motor de 1000cc, que se está tomando para realizar el análisis de deformación mecánica, respectiva de sus elementos del motor, este

pertenece al rango de autos o vehículo, pues según los expertos al utilizar GNV muchos se dañan y pierde potencia, eso dependiendo de la tecnología y modernidad del motor, esa pérdida puede oscilar entre 10 y 20 %, aun así, hay muchos de este tipo de vehículos que son convertidos a GLP o GNV y utilizados para el transporte público" [12]

En el Perú surgen diferentes interrogantes y problemáticas a tratar, dentro de ellas, la problemática que pretende abarcar este proyecto es que muchas personas toman como limitante el que los vehículos vengan diseñados de fábrica a gasolina y con ello el temor a convertirlos a GNV debido a la fuerte inversión inicial y a la perdida de garantía producto de la modificación [9].

En la región de Lambayeque la última década las conversiones de vehículos de gasolina a GNV a tenido gran variación, esto impulsado también por el bono del gobierno que entregaba GASCOP, siendo la suma de S/1,000.00 (mil con 0/00 soles) durante los años 2013 y 2014 lo muestra la siguiente figura 1.

Figura 1. Conversiones a GNV 2011-2020.

Nota: Empresa Centro de conversión Chiclayo.

Además, realizando una encuesta a los propietarios de vehículos convertidos a Bicombustible - GNV se obtuvo un diagnóstico de falla más común, siendo este la calibración de válvulas y una baja relación estequiométrica, tal y como muestra el siguiente cuadro:
 Tabla 1. Resultados de encuestas aplicados a propietarios con vehículos convertidos a Bi-combustible GNV.

Preguntas: Tiempo de Recorrido Diagnóstico de Falla¿El costo de ¿Cree usted que ¿Prefiere	su¿Cree usted que¿Qué opina sobre el
Frecuencia de (Km) de reparación de en un futuro vehículo	se debe realizarestudio de
Fallas: Frecuencia de falla es menorel buenconvertido	o a Bi-un estudio parasobretensiones
Fallas: en cuanto alfuncionamiento decombustib	ole hallar posiblesaltas presiones y
ahorro obtenidosu vehículo seríaGNV o	solo adaños frecuentestemperaturas
por haber usadodiferente; ¿siGasolina?	que ocasiona elocasionados por el
GNV? hubiera usado	GNV en el motor? GNV, y estos
solo gasolina?	dañarían los
liente:	elementos de su
	motor?
-Obstrucción en la	
Bodelfe Díoz	ro opino que es
2 meses 5000km -Cambio de Sí No lo sé GN	V Sí
Inyectores de Gas	
-Falla en la Bobina	motor de mi carro.
-Regulación del	
mínimo	Manazara
Gutiérere 3 meses 10600km -Falla en el Sí No lo sé GN	IV Sí
Conmutador GNV-	Interesante.
Gasolina.	
-Limpieza de	Me gustaría
Bomba de Gas.	informarme de lo
-Cambio de Bujías.	que me recomienda
-Calibración de	este estudio.

			Válvulas					
Cesar Sandoval	2 a 3 meses	7000 km a 10000km	-Falla de Bobina -Cambio de Bujías -Cambio de Inyectores	Sí	No lo sé	GNV	Sí	Sera de utilidad para ustedes y nosotros como choferes.
Damián Gómez	1 año	50000km	-Cambio del Filtro de Gas -Cambio de los inyectores de Gas -Cambio de la Bomba de Gas	Sí	No lo se	GNV	Sí	Bien por los que se preocupan en hacer un estudio de estos, además nos servirá a todos.
Jonathan Cornejo	6 meses	25000km	-Obstrucción de Bujías -Cambio de Inyectores	Sí	No lo se	GNV	Sí	Está muy bien para así enterarse, que parte lo estamos dañando en el motor de nuestro vehículo
Raúl de la Riva	1 semana	1000km	-Calibración de Válvulas	Sí	No lo sé	GNV	Sí	Es muy interesante sobre todo para nosotros que desconocemos
José Gómez	3 meses	12000km	-Calibración de válvula -Daño en el diafragma	Sí	No lo se	GNV	Sí	Está bien para ustedes, y para los técnicos que trabajan en el taller

Paul Ramos	Ninguno	Ninguno	Ninguno	Sí	No lo sé	GNV	Sí	Sería de gran ayuda para los que piensan convertir su vehículo a GNV
Luis Bances	4 meses	13000km	-Baja relación estequiométrica - Calibración de Válvulas	Sí	No lo sé	GNV	Sí	Está bien y sería un gran aporte para los clientes

Nota: Elaboración propia

La presente investigación busca mediante un análisis de ingeniería justificar la implementación de tecnologías de gas natural para los consumidores finales, a fin de mitigar los miedos relacionados con la modificación de los vehículos generando confianza gracias al estudio realizado en la localidad para contribuir con el desarrollo del país con lo que respecta a las energías sostenibles y aprovechamiento de nuestros recursos. Económicamente hablando este estudio contribuye a determinar la factibilidad económica de la conversión vehicular a GNV, contrastando la vida útil del vehículo, el coste inicial de inversión para la conversión y el ahorro generado por el menor costo de este combustible, brindando información técnica de confianza para los consumidores finales, facilitando la toma de decisiones respecto a esta tecnología. Implementar alternativas energéticas para el parque automotor del Perú, disminuyendo el uso de combustibles fósiles y la emanación de gases de efecto invernadero al ambiente, trae consigo beneficios ambientales y disminución de problemas respiratorios en general, por tal, esta investigación se justifica en medida de la necesidad de contar con datos de fidelidad para este campo en particular. Este estudio ayudará en la toma de decisiones al momento de implementar las tecnologías de conversión de los vehículos, permitirá responder de manera técnica usando datos de ingeniería y análisis computacional que validarán la respuesta final para el ciudadano interesado en generar ahorro y contribuir con la protección ambiental, formando parte del apoyo social necesario para movilizar esta tecnología.

1.2. Formulación del Problema:

¿Cómo afecta la deformación mecánica en los componentes principales un motor convertido a bicombustible GNV?

1.3. Hipótesis:

Los daños en la integridad estructural del sistema de válvula de admisión, cilindro-pistón y válvula de escape de un motor bicombustible serán mayores por el uso del GNV en comparación con la Gasolina, ya que el GNV tiene mayor poder calorífico ocasionando mayor

temperatura en la cámara de combustión, que trae como consecuencia la deformación de estos elementos anteriormente mencionados.

1.4. Objetivos:

Objetivo General:

Análisis de la deformación mecánica del sistema de válvula de admisión, cilindro-pistón, y válvula de escape de motor Bi-Combustible GNV aplicando simulación por elementos finitos e identificar los elementos con sobretensiones.

Objetivos Específicos:

- Determinar los parámetros óptimos de funcionamiento de un motor a Gasolina vs GNV
- Obtener los diagramas de cuerpo libre y cargas externas de los sistemas válvula de admisión, cilindro-pistón, y válvula de escape de motor Bi-Combustible GNV
- Modelar la cámara de combustión utilizando software CAD/CAE.
- Analizar la deformación mecánica específica de los componentes principales del motor (sistemas válvula de admisión, cilindro-pistón, y válvula de escape) comparando los resultados con la de otros autores

1.5. Teorías relacionadas al tema

Los trabajos previos que sustentan la presente investigación son las siguientes:

Los autores Grajales, López, & Quintero [11] introdujeron el estudio de análisis de vibraciones de motores de combustión interna que operan con diferentes mezclas de combustibles para utilizar un banco de pruebas para determinar las condiciones de operación de la falla. La falla estudiada fue el fallo de encendido. Se probaron tres combustibles mixtos: E8, E20 y E30. Al aplicar la transformada rápida de Fourier a la señal, se comparan las condiciones normales y de falla entre los combustibles, pues así encuentran los componentes de frecuencia característicos para evaluar la efectividad de la investigación sobre gasolina pura. Hasta ahora los resultados muestran que el comportamiento del uso de diferentes mezclas de combustible es similar al reportado para la gasolina pura, y los componentes de

frecuencia que distinguen entre condiciones normales y de falla también están presentes en el combustible mezclado. Las características estadísticas de la señal en el dominio de la frecuencia se extraen para simplificar el proceso de reconocimiento. La prueba comienza con la preparación del motor, que incluye hacer que el motor alcance una temperatura de funcionamiento estable y mantenga un funcionamiento fiable, una vez completado, se instala el sensor de presión y comience la medición. Comenzando con el combustible comercial E8, se tomaron tres medidas a 1500 rpm, 1700 rpm y 2000 rpm, luego se desconectó la bujía del cuarto cilindro y se repitió el proceso para la falla simulada. Una vez completada la prueba, antes de usar otras mezclas, primero retiramos el combustible del tanque y drene el sistema. Este mismo proceso se repitió para mezclas de combustibles E20 y E30.

Los autores Mejía y Armijos [15] en esta sección, lo principal es calcular las características del motor bajo diferentes revoluciones de la manivela, ya sea la potencia efectiva o el par del motor, además observar el rendimiento del motor y considerar las pérdidas de admisión y escape para luego determinar el volumen y el rendimiento térmico del motor. Hay dos tipos de masas de aire para el estudio: práctica y teórica. El cálculo de los cuatro puntos importantes del ciclo Otto se realiza en función del ciclo real de cada rango de rotación estudiado, y se dibujan los diagramas de rendimiento, potencia y par, a continuación, los analizaremos en profundidad en la siguiente parte para sacar conclusiones y Mejoras. Antes de sacar conclusiones sobre la pérdida de potencia y par motor (ya sea de admisión o de escape), hemos obtenido algunas curvas características del motor. En todos los apartados siguientes se consideran las pérdidas debidas a la caída de presión en el sistema de admisión. La base de cálculo es de Ø35 mm y la longitud equivalente L = 600 mm. Por otro lado, el sistema de escape ha elegido una longitud de L = 1500 y mantiene el mismo diámetro. En el gráfico obtenido de nuestro de estudio se pudo apreciar que la potencia es proporcional al aumento de la velocidad angular, hasta 10.000 rpm. Dado que la mezcla de aire y combustible ya no es compatible para proporcionar más potencia, excepto por la aerodinámica en la investigación híbrida, la potencia cae bruscamente en el motor. El gas fresco se acompaña de una disminución de la energía, generalmente llamada caída de presión, esta puede ser lineal y singular.

El autor Benlloch [12] En su trabajo, pudo comprender cómo simplificar y parametrizar el diseño de máquinas mediante el uso de nuevas técnicas asistidas por computadora. En este caso, es un motor, pues realizo operaciones simples de extrusión y rotación para dar forma a cada pieza. Dado que es un diseño paramétrico, los cambios, modificaciones o nuevas ideas hacen que se actualice inmediatamente en el modelado, los dibujos de ingeniería y el montaje. Esto facilita la verificación de la compatibilidad y unión entre piezas. Por otro lado, con la ayuda del modelado de piezas y la posterior simulación, se pueden obtener múltiples resultados de la máquina. Este tipo de tecnología puede visualizar la trayectoria de los objetos mientras la máquina está funcionando. De esta manera, se puede determinar la aplicabilidad del sistema de distribución activado y se pueden calcular las tensiones en diferentes partes del modelo y las tensiones resultantes. Usando el método utilizado, se puede determinar un conjunto de modificaciones en la biela para mejorar las propiedades mecánicas de la pieza, aunque el mismo proceso no se repite para todas las piezas, el proceso se puede extrapolar para verificar la integridad de todo el conjunto.

Par motor

Garcia [14] mencionan que: "La combustión de la mezcla de aire y combustible aumenta la presión y la temperatura en el cilindro del motor mediante la acción de chispas eléctricas. Esta presión interna genera a su vez un empuje F sobre el pistón, que desplaza al pistón, creando así el clásico mecanismo de biela-manivela de un motor alternativo de combustión interna. El movimiento lineal del pistón en el cilindro se transforma en movimiento, que a su vez gira el cigüeñal. La fuerza que actúa sobre el pistón es proporcional a la presión efectiva promedio durante la carrera de expansión, que depende del nivel de llenado del cilindro, la relación de compresión, el desplazamiento y la eficiencia de combustión. En esta figura, la fuerza que se aplica al pistón se descompone en la fuerza que actúa sobre la cabeza y se descompone en el empuje lateral en la pared del cilindro".

Figura 2: Esquema de la obtención del par motor.

Nota: [10].

$$T = F_b \times r \dots Ec. (1)$$

Donde:

T: Par motor (N.m)

 F_b : Fuerza de biela (N)

r: Radio de la manivela del cigüeñal (m).

Nota: [10].

Potencia

Bermudes y Castilla[20] mencionan que: " La potencia es expresada cuantas veces este disponible el par motor en el tiempo, esto quiere decir que la velocidad que dispone el par. Es decir que la potencia desarrollada por un motor directamente relacionada entre la compresión

y la cilindrada, esto debido a que más altos valores de estas corresponde a la explosión y la fuerza que es aplicada en el pistón, a su vez pide íntimamente a las revoluciones por minutos a los giros de motor.

$$P = T \times w = \frac{T \times n}{\frac{60}{2\pi}} \dots \dots EC.$$
(2)

Donde:

- P: Potencia de motor
- T: Par motor (N.m)
- w: Velocidad angular del eje del cigüeñal (rad/s)
- n: Revoluciones por minuto (rpm)

Figura 4. Gráficas de potencia en función de la velocidad del vehículo.

Nota: [10].

Válvulas

Guerra et al. [16] mencionan que: "Según como se determine la distribución se da el instante en donde empieza la apertura y cierre de las válvulas tanto de admisión y de escape. Para lograr implementar en el modelo del proceso de renovación de la carga es ahí que se requiere también tener de conocimiento el área instantánea del paso de los gases. El área donde es utilizada es llamada como área de cortina".

$$A_c = \pi D_V L_V \dots \dots Ec. (3)$$

Además, nos aclaran que: "El área de la cortina coincide con el área lateral del cilindro recto, el diámetro básico del cilindro recto es igual al diámetro de la cabeza de la válvula y la altura es igual a la elevación de la válvula. La elevación de la válvula es la distancia entre la parte inferior de la cabeza de la válvula y la parte inferior de la culata de cilindros, es decir, la altura libre de la transmisión de gas. La siguiente figura es un diagrama de las dimensiones discutidas para la válvula y otras dimensiones características, que no son necesarias para este modelo".

Figura 5. Tipos de Distribución de Válvulas. 1 regulación por varillas, 2 Regulación por palanca de arrastre u oscilante, 3 Regulación por balancines, 4 Regulación por taqués de platillos, OHV (Válvulas Suspendidas), OHC (Árbol de levas en la culata), DOHC (2 Árboles de levas en la culata).

Nota: Hütten, H. (1974). Tipos de Distribución de Válvulas.

Figura 6. Diagrama de Distribución de Válvulas con carrera de válvula, velocidad de

las válvulas y aceleración de las válvulas.

Nota: Bosch G. [16]. Diagrama de Distribución de Válvulas con carrera de válvula,

velocidad de las válvulas y aceleración de las válvulas.

Fase de compresión

Guerra et al. [16] indican que: " Al iniciar el proceso primero se produce con el cierre de ambas válvulas tanto la de admisión como de escape. La disociación de las reacciones del son valores despreciables y esto debido a las bajas temperaturas y presiones que se dan dentro del cilindro durante esta fase. Es aquí que se aplica el primer principio de la termodinámica al sistema y en donde se calcula las variaciones tanto de presión interna como de temperatura ocurrida dentro del cilindro"

$$\frac{dQ}{d \propto} = mc_{v}\frac{dT_{m}}{d \propto} + \frac{dV}{d \propto}p \dots Ec. (4)$$

Donde:

Q: calor (KJ)

m: Masa presente en el cilindro en el momento del cierre de la válvula (kg)

 c_v : Calor especifico a volumen constante (KJ/(kgK))

 $\frac{dT_m}{d\alpha}$: Variación de temperatura de la mezcla (k/grado)

 $\frac{dV}{d\alpha}$: Variación de volumen ($m^3/grado$)

P: Presión (Pa)

Encendido de la mezcla

[11] mencionan que: "Al identificar un salto de la chispa esto determina que el fin de esta fase se da e inicia la fase de combustión, esta no siendo de manera instantánea ya que se tiene un intervalo de tiempo finito donde se produce la formación completa de la llama, esta denominada periodo de incubación o también llamado desarrollo de la llama. Se tiene que los factores que intervienen en la duración de este fenómeno son varios y en donde es de mayor dificulta obtener resultados precisos. Los principales parámetros se tienen en el grado de turbulencia, el dosado y las propiedades termodinámicas presentes en la mezcla.

Las siguientes ecuaciones se expresa la relación y son:

Para la mezcla rica

$$\Delta \theta = \left(U_p v\right)^{1/3} \left(\frac{h}{U_l}\right)^{2/3} \frac{CF^{1/3}}{\lambda} \dots EC. (5)$$

Para la mezcla pobre

$$\Delta \theta = \left(U_p v\right)^{1/3} \left(\frac{h}{U_l}\right)^{2/3} \frac{CF^{1/3}}{\lambda} \dots \dots EC. (6)$$

Donde:

- Up: Velocidad del pistón (m/s)
- v: Velocidad cinemática (m^2/s)
- h: Durante el encendido su altura (m)
- U_l : La velocidad del encendido para la llama laminar (m/s)
- F: El dosado
- C: Valor constante característico del motor que es determinada de manera experimental

y que se pueden utilizar en otros motores con características similares.

Combustión

Figura 7. Proceso de combustión y graficación del cilindro en el proceso.

Nota: [19].

Se tiene las ecuaciones fundamentales y son las siguientes, en donde se tiene que el valor m tiene referencia a la carga de la mezcla fresca y el valor p son el residuo de la combustión (los gases):

- Energía interna: $E = m_m e_m + m_p e_p \dots \dots EC.$ (7)
- Primera ley de la termodinámica: $\frac{dQ}{d\alpha} = \frac{dE}{d\alpha} + \frac{dW}{d\alpha} \dots \dots EC.$ (8)
- Conservación de la masa: $\frac{dm_p}{d\alpha} = \frac{dm_m}{d\alpha} \dots \dots EC.$ (9)

En el termino $\frac{dm_p}{d\alpha}$ (la masa de los gases de combustión con variación con el ángulo del cigüeñal) y se determinado utilizando la siguiente formula:

$$\frac{dm_p}{d \propto} = \rho_m U_T F_L \dots \dots EC. (10)$$

Donde:

E: Energía interna total del sistema (KJ)

m: Masa de la zona (Kg)

e: Energía interna especifica (KJ/kg)

 $\frac{dm_p}{dt}$: Variación con el tiempo de la masa de los gases de combustión (kg/s)

 ρ_m : Densidad de la mezcla no quemada ($kg/m^3)$

 U_T : Velocidad turbulenta del frente de llama (m/s)

 F_L : Superficie del frente de llama en régimen laminar (m^2)

Se tiene que las temperaturas ubicadas en la parte superior y en la parte inferior de la cama de combustión, estas se asumen que son constantes durante todo el ciclo de potencia, se tiene que la superficie lateral varia de manera o en función al ángulo de giro del cigüeñal. A su vez se tiene que para la temperatura de la pared lateral se tiene referenciado según la siguiente relación.

$$T_{W,L} = T_{W,C} + 0.5 \left(T_{W,P} - T_{W,C} \right) \frac{X}{L} \dots \dots EC. (11)$$

Donde:

 $T_{W,L}$: Temperatura de la superficie lateral (K)

 $T_{W,C}$: Temperatura de la parte superior del cilindro (K)

 $T_{W,P}$: Temperatura de la cabeza del pistón (K)

X: Altura de la cámara de combustión en el instante considerado (m)

L: Altura de la cámara de combustión con el pistón en el PMI (m)

Cilindrada

Figura 8. Cilindrada de un motor de Combustión interna.

Nota: [19].

La cantidad de mezcla que ingresa al cilindro desde la apertura de la válvula de admisión hasta el cierre es una medida aproximada de la "respiración" del cilindro. Cuanto mayor sea, mayor será la fuerza generada en la explosión y, por tanto, más potente será el motor. Dado que este valor es muy importante, debe definirse claramente. Para hacer esto, primero debe observar las dos características básicas de cualquier tren motriz. La figura muestra un cilindro con un pistón ubicado en el PMI. La distancia entre PMI y TDC se llama "carrera" (C) del motor. El diámetro del émbolo se llama "D", que en realidad es el mismo que el diámetro del cilindro. Ambos suelen estar en milímetros. Si el diámetro del cilindro y la carrera del motor son muy similares, se denomina motor "cuadrado". Si este último es más grande que el primero, se puede decir que es la característica de "carrera larga" del propulsor de corte silencioso. Si ocurre lo contrario, nos enfrentaremos a un ejemplo del tipo "supercuadrado", que es muy común en situaciones donde está destinado a modelos de competición y deportivos, ya que puede aceptar fácilmente rotaciones de alta velocidad. Así mismo el volumen entre las dos posiciones del pistón se denomina desplazamiento unitario (V) y su valor será igual al área de la base (en este caso el pistón) multiplicada por su altura o carrera, mientras que el área (A) del pistón se dará en función del diámetro (D). Así pues, la cilindrada unitaria será [20]:

$$V_{unitario} = \pi \times r^2 \times C \dots \dots EC. (12)$$

Grado de admisión

Fierro y Ordoñez [20] mencionan que: " El cilindro reacciona durante los ciclos de trabajo generando gases remanentes, los cuales perturban el relleno de mezcla entre aire combustible, resultando de menor cantidad de la cilindrada, donde el grado de admisión tiene relación entre la aspiración de la mezcla del combustible nueva y de la cilindrada".

Figura 9. Tiempos de trabajo en un motor de 4 cilindros.

Nota: Sanz, S. (2017).

$$\eta F = \frac{Vf}{Vh} \dots \dots EC. (13)$$

Donde:

- ηF : Grado de admisión
- Vf: Cantidad de gas nuevo en lts.
- Vh: Cilindrad del cilindro
- Relación de compresión

En un motor de cuatro tiempos, se ha observado que carburado la mezcla debe comprimirse en el cilindro antes de que la chispa salte en la bujía para que se queme en las condiciones adecuadas. La importancia de esta precompresión es que la potencia del motor depende de este valor, por lo que cada motor debe diseñarse de tal manera que pueda soportar el combustible disponible en el mercado, y su calidad se mide por el octanaje. Dentro del cilindro (generalmente en la cavidad hecha en la culata) hay un volumen adicional, generalmente llamado "volumen de la cámara de combustión". Esto no se puede incluir en el área donde se desplaza el émbolo, por lo que también se denomina "volumen residual" porque no se evacuará incluso al final de la carrera de escape. La relación de compresión es la suma del volumen del cilindro, de P.M.I. a P.M.S., más el volumen de la cámara, dividido por el volumen de la cámara en sí. La fórmula matemática es la siguiente (Heano et al., 2019):

$$RC = (VC + Vc)/Vc$$
 Ec. (14)

Donde:

RC: Relación de compresión

VC: Volumen del cilindro

Vc: Volumen de la cámara

Cámara de compresión

Heano et al., (2019): menciona que: "La cámara de compresión es el espacio sobre el punto muerto superior. El volumen del cilindro está compuesto por la cilindrada (correspondiente a la carrera) y el volumen de la cámara de compresión".

Figura 10. Volumen de la Cámara de compresión o combustión.

Nota: [19].

$$Vc = \frac{Vh}{\varepsilon - 1} \dots \dots EC. (15)$$

Donde:

Vc: Cámara de compresión (lts)

Vh: Cilindrada volumen carrera (lts)

E: Relación de compresión

Aumento de compresión

Se tiene de conocimiento que la relación de comprensión se puede lograr incrementar a través de reducir la cámara de comprensión mediante junta de culatas que sean más delgadas, esto aplana la culata o a su vez también el aumento de tamaño de los pistones, se tiene de conocimiento que un incremento de la compresión también aumenta la tendencia del deterioro del material [21].

$$X = \frac{S}{\varepsilon a - 1} - \frac{S}{\varepsilon n - 1} \dots \dots EC. (16)$$

Donde:

X: Aplanado (mm)

S: Carrera (mm)

 εa : Relación de compresión anterior al aplanado

en: Relación de compresión después de lo aplanado

Presión de gas en el cilindro

[12] nos menciona que: "Durante la admisión la línea de presión se sitúa por debajo de la línea de presión atmosférica, es donde aparece un vacío o depresión (0,1 bar a 0,2 bar de presión). Durante la comprensión esta se eleva hasta obtener valores en el ciclo Otto de 11 bar a 18 bar de sobrepresión y en el ciclo Diésel de 30 bar a 35 bar de sobrepresión".

Figura 11. Presión del gas en el cilindro

Nota: [19].

Fuerza de embolo

(Heano et al., 2019) nos menciona que: "La presión provocada por la combustión del gas actúa sobre cada centímetro cuadrado, y la presión se multiplica por la superficie de la cabeza del pistón para obtener la fuerza que ejerce".

Figura 12. Desplazamiento del émbolo en el cilindro.

Nota: [19].

$$Fe = 10 \times p \times Ae \dots EC.$$
 (17)

Donde:

Fe: Fuerza del embolo (N)

P: Presión del gas (bar)

Ae: Superficie de la cabeza del embolo (cm^2)

Momento de giro

Castañeda et al [27] menciona que: "La palabra momento se deriva del latín momentum, que significa movimiento, impulso. En la técnica, el par se entiende como el efecto de rotación de una fuerza que actúa sobre un objeto fijo para que pueda girar".

Figura 13. Momento de giro (Par) del cigüeñal en un motor

Nota: [23] $M = F \times r \dots Ec.$ (18) $M_M = Ft \times r \dots Ec.$ (19)

Donde:

M: Momento (Nm)

F: Fuerza (N)

r: Brazo de la palanca (m)

 M_M : Par (Nm)

Ft: Fuerza tangencial (N)

Velocidad de pistón

El movimiento alternativo del pistón acelera de cero a la aceleración máxima y luego desacelera a cero. Se supone que la velocidad promedio del pistón es la velocidad del movimiento uniforme, y el pistón pasará el mismo tiempo en hacer una carrera con su velocidad variable [27]

$$V_m = \frac{2 \times S \times n}{1000 \times 60} \dots Ec.$$
(20)

Donde:

V_m: Velocidad media (m/s)

S: Carrera (mm)

n: Numero de revoluciones (RPM)

Potencia indicada efectiva

Existen 2 clases de potencia y estas se muestran a continuación:

Figura 14. Potencia indicada y efectiva

Nota: [23] .

 $P_{i} = \frac{V_{H} \times pm \times n}{600} (Kw) \dots EC. (21)$ $P_{e} = \frac{M_{M} \times n}{9550} \dots EC. (22)$

Donde:

P_i: Potencia indicada (kw)

 P_e : Potencia efectiva (kw)

 V_H : Cilindrada total (L)

pm: Presión media de trabajo (bar)

 M_M : Par motor (Nm)

n: Numero de revoluciones (rpm)

Elaboración de un modelo de deformaciones del sistema pistón – biela – manivela de un motor alternativo.

[13] menciona que: "Para poder elaborar la metodología mediante la aplicación de un análisis mediante MEF se logra mediante el cálculo de las deformaciones mecánicas que son el producto del sistema pistón – biela – manivela de MCIA en el cilindro determinada la velocidad que es su régimen y a su vez de la distribución de las diferentes presiones que están presentes en la cabeza del pistón.

Pues a continuación se muestra un resumen del estudio realizado por Miguel Rueda en el 2017 partiendo desde la matriz de rigidez de una estructura pasando por los análisis y cálculos matemático, además simulados mediante FEA y por último obteniendo la deformación pistón".

La matriz de rigidez de la estructura

Según los grados de libertad:

[13] menciona que: "Las diversas direcciones que se puede mover un nodo definirá los grados de libertad de este. En toda se distinguen 2 tipos de grados de libertad: los que tienen algún tipo de restricción y los otros son aquellos que tienen un libre desplazamiento".

Los desplazamientos son esenciales en el método de los elementos finitos, pues para obtener una solución de elementos finitos se necesita como mínimo tener restringidos los movimientos de solido rígido. Por otro lado, para poder obtener el desplazamiento en el campo se requiere la relación de fuerza aplicada y del campo de desplazamiento como interrogante, es así que se utiliza el concepto de matriz de rigidez de una estructura.

Matriz de la rigidez de la estructura:

La matriz de rigidez nos da a conocer las propiedades mecánicas que tiene una estructura, y a la vez explica su movimiento. pues, existe la relación de las fuerzas aplicadas en la estructura con su desplazamiento que se generan en los nodos como resultado. Para hallar el número total de los elementos en una estructura se expresa mediante la siguiente manera:

$$[K]{U} = {F} EC. (25)$$

K: la matriz de rigidez del elemento

U: los desplazamientos nodales

F: las fuerzas nodales.

Cuando queremos el ensamblado de la matriz de rigidez, tomamos la aportación de cada elemento de manera individual, dejando así los GDL's desafectados como ceros, a fin de mantener la matriz de rigidez de la estructura con sus dimensiones estables. Entre sus dimensiones se debe considerar N filas y N columnas, pues N es el número de grados de libertad en una estructura. Cuando deseamos luego ensamblar la matriz de rigidez tenemos presente como única incógnita los desplazamientos libres que suceden en la estructura.

Problemas del solido elástico en forma lineal:

Existen dos tipos de sólidos, los sólidos rígidos como también existen los sólidos elásticos, pues en los cuerpos elásticos actúan fuerzas diversas, ya dependerá la forma de aplicarse, estas pueden ser: volumétricas, superficiales y puntuales.

En los elementos finitos se pueden encontrar diversos problemas centrados en el área de cálculo de estructuras, es decir en un espacio de 3 dimensiones y son definidos continuación:

- Relación entre tensión y deformación
- Relación entre deformación y desplazamiento

Relación entre tensión y deformación.

Si tomamos en cuenta la tensión y deformaciones iniciales, pues la ley de Hooke en este caso de 3 dimensiones lo expresamos así:

$$\sigma = D (\varepsilon - \varepsilon 0) + \sigma 0 \qquad \text{EC. (26)}$$

D: Representa la matriz que relaciona las tensiones con las deformaciones

 $(\epsilon - \epsilon 0)$: La deformación del solido respecto de su longitud original

σo: La tensión inicial a la que está sujeto el sistema.

Relación entre desplazamientos y deformaciones

En esta relación se calcula las deformaciones partiendo del campo de desplazamientos.

Para el caso 2D se muestran en las siguientes ecuaciones:

$\varepsilon x = \partial u / \partial x$	EC. (27)
$\varepsilon y = \partial v / \partial y$	EC. (28)
$\gamma x y = \partial u / \partial y + \partial v / \partial x$	EC. (29)

Por lo tanto, [13] menciona que: "las deformaciones (mayormente se denominan strains en los softwares de elementos finitos) es el resultado de las derivadas de los desplazamientos. Para los elementos finitos existe una relación entre el campo de desplazamientos con el campo de deformaciones a través de un operador matricial denominado L, en la que esta incluye las ecuaciones 27, 28, 29 denotadas de forma matricial y extendido a problemas 3-D. Como resultado el campo de desplazamientos extraídos de la solución de elementos finitos es el equivalente a las deformaciones producidas para cada uno de los nodos del dominio real".

Modelo de elementos finitos (desarrollo)

ANSYS

ANSYS se caracteriza por ser un software (junto con Abaqus FEA) estándar en la industria con el fin de realizar análisis mediante elementos finitos. Este software consta de distintas herramientas, pues de estas destaca ANSYS Mecánica APDL y Ansys Workbench, en la que generalmente son comúnmente usados en la industria civil, automovilística, aeroespacial, etc.

Para el desarrollo del siguiente proyecto se realizan dos tipos de análisis y son los siguientes:

Análisis dinámico del solido rígido (Rigid Dynamics) y el análisis estático (Static structural)

• Análisis dinámico del solido rígido: Mediante este análisis calculamos la respuesta dinámica de un mecanismo unido por joints (o pares de movimiento), a fin de obtener las reacciones entre componentes.

• Análisis estático: Este otro tipo de análisis lo utilizamos para calcular tensiones como deformaciones en modelos donde los efectos de amortiguamiento son irrelevantes.

Asignación de materiales

Esta asignación se determina en la siguiente tabla que se muestra:

Tabla 2.

	Material	$ ho Kg*m^3$	$\begin{array}{c} {\rm E} \\ {\rm MPa} \ (10^6 Pa) \end{array}$	$\begin{array}{c} S_y \\ \text{MPa (10^6Pa)} \end{array}$	$\begin{array}{c} S_u \\ \text{MPa} \ (10^6 Pa) \end{array}$
Pistón	Aleación de aluminio	2700	7,10E+10	2,80E + 08	3,10E + 08
Bulón	Acero inoxidable	7750	1,93E + 11	2,07E + 08	5,86E + 08
Biela	Acero de fundición	7850	2,00E + 11	5,50E + 08	9,00E + 08
Manivela	Acero de fundición	7850	1,80E + 11	4,20E + 08	7,00E + 08

Propiedades principales de materiales importados en ANSYS.

Nota: Rueda [13]

Análisis de sólido rígido:

En caso del análisis del solido rígido Rueda [13] nos menciona que: " Se inicia desde el ensamblaje completo del mecanismo en la posición inicial ($\alpha = 0^{\circ}$), aquí se utilizan dos condiciones del problema, la primera es la presión ubicada en la cabeza del pistón (varía según el avance del ángulo de ubicación del cigüeñal) y la segunda condición es la velocidad angular constante del cigüeñal de 3 500 RPM. Por último, se obtiene los resultados de ambos análisis del solido rígido".

Análisis de sólido flexible.

ANSYS es el software donde posibilita poder exportar las cargas que son producidas por cada ángulo de giro del cigüeñal. Es así que las reacciones producidas en las áreas de contacto entre componentes y sus condiciones del entorno a utilizar de los distintos análisis de solido flexible.

Condiciones geométricas usadas en el caso a estudiar.

Para la sección del pistón aquí se tomar el diámetro del pistón y diámetro del cilindro que se representa con "D".

$$AP = \pi \frac{D^2}{4}$$
 EC. (30)

Tamaño de la manivela: Se representa por la letra l.

Tamaño de la biela: Se representa con la letra L

Se sabe que el tamaño de la biela debe cumplir la siguiente condición:

$$\lambda = I/L < 1/2$$
 EC. (31)

Carrera del pistón: Se denomina con la letra "S" y es el doble de la longitud de la manivela del cigüeñal.

Cilindrada unitaria: Es el volumen que desplaza el pistón desde el PMS hasta el PMI, y se representa con VD.

$$VD = ApS$$
 EC. (33)

Cinemática del mecanismo pistón – biela – manivela.

Como se sabe, cuando la manivela gira a un determinado ángulo α , el punto B se desliza partiendo del PMS al PMI, de tal manera que la biela gira un ángulo β con respecto de la vertical. Estos dos ángulos se relacionan mediante la siguiente igualdad:

$$R. \sin \alpha = L \sin \beta$$
 EC. (34)

Es así que el ángulo α también conocido en cualquier instante, se determina la relación que hay entre ambos ángulos.

$$\arcsin \beta = R L \sin \alpha$$
 EC. (35)

Para lograr obtener la aceleración del sistema se deriva de la expresión antes mencionada en 2 veces y donde se obtiene la siguiente expresión:

$$R\frac{d\alpha}{dt}\cos\alpha = L\frac{d\beta}{dt}\cos\beta \quad \text{EC. (36)}$$

$$R\frac{d^{2}\alpha}{dt^{2}} - R\left(\frac{d\alpha}{dt}\right)^{2}\sin\alpha = L\frac{d^{2}\beta}{dt^{2}}\cos\beta - L\left(\frac{d\beta}{dt}\right)^{2}\sin\beta \quad \text{EC. (37)}$$

Al indicar que la velocidad angular del cigüeñal sea constante se obtiene lo siguiente:

$$\frac{d\alpha}{dt} = \omega; \frac{d^2\alpha}{dt^2} = 0$$
 EC. (38)

Se determinan los valores como aceleración angular de la biela y de su velocidad.

$$\frac{d\beta}{dt} = \frac{R\cos\alpha}{L\cos\beta}\omega \qquad \qquad \text{EC. (39)}$$
$$\frac{d^2\beta}{dt^2}\cos\beta = \left[\left(\frac{d\beta}{dt}\right)^2 - \omega^2\right]\tan\beta \quad \text{EC. (40)}$$

Punto A: Cinemática de la muñequilla – cabeza de biela.

La trayectoria de la muñequilla se define mediante un círculo, pues este en como centro el punto de apoyo del mecanismo (centro del apoyo del cigüeñal) y de radio, la longitud que inicia desde el punto de apoyo hasta el centro del extremo de la muñequilla (zona de conexión entre cigüeñal y biela).

$$xA = -Rsin\alpha; yA = Rcos\alpha$$
 EC. (41)

$$vxA = -R\omega cos\alpha; vyA = -R\omega sin\alpha$$
 EC. (42)

 $axA = R\omega 2 \sin \alpha; ayA = -R\omega 2 \cos \alpha$ EC. (43)

Punto G: Cinemática del centro de masas de la biela.

Según Rueda [13] nos indica que "El centro de masas se localiza a una longitud del punto B conocida como LG. La trayectoria de este punto se define por un movimiento de traslación, producto del movimiento lineal del pistón y otro de rotación, pues todo causado por el giro alrededor del bulón. De esta forma, la posición, velocidad y aceleración de mencionado punto son los siguientes":

$$x_{G} = L_{G} sen\beta; \ y_{G} = Rcos\alpha + L; L_{G} cos\beta \quad \text{EC. (44)}$$

$$v_{x}G = -L_{G} \frac{R}{L} \omega cos\alpha; \ y_{G} = Rcos\alpha + L; \ L_{G} cos\beta \quad \text{EC. (45)}$$

$$a_{x}G = -L_{G} \frac{R}{L} \omega^{2} sen\alpha; \ a_{y}G = R\omega^{2} \left[cos\alpha + \frac{L-L_{G}}{L} \left(\frac{Rcos^{2}\alpha}{Lcos^{3}\beta} \cdot sen\alpha \cdot tan\beta \right) \right] \text{EC. (46)}$$

Cinemática de pistón-pie de biela (punto B)

Rueda [13] nos indica que: "El pistón solamente se desplaza en dirección Y, por lo que no habrá ningún movimiento en el eje X. La posición, velocidad y aceleración son las siguientes":

$$xB = 0; yB = R\cos\alpha + L\cos\beta$$
 EC. (47)

$$v_x B = 0; v_y B = -R\omega \frac{sen(\alpha+\beta)}{cos\beta}$$
 EC. (48)

$$a_{\chi}B = 0; a_{\chi}B = -R\omega^2 \frac{\cos(\alpha+\beta)}{\cos\beta} + \frac{R\cos^2\alpha}{L\cos^3\beta}$$
 EC. (49)

Estudio de dinámica del pistón:

Rueda [13] nos menciona que: "En el pistón, como sabemos, existe la componente Y de la fuerza que inicia del pistón y va hasta el centro de la biela. Esto es debido a la presión ejercida por los gases, además hay que recordar que existe una fuerza que la biela ejerce sobre el pistón y otra fuerza en la dirección X que ejerce la pared del cilindro sobre el propio pistón. Tomando como referencia estos parámetros mencionados, la fuerza ejercida sobre la biela por parte del pistón pues será la suma de la fuerza ejercida sobre el pistón por el punto P y la presión ejercida por el gas":

$$\overrightarrow{Y_{bp}} = -m_p a_y B - \overrightarrow{Y_{gas}} \text{ EC. (50)}$$

El aumento o disminución de la fuerza a medida que gira el ángulo del cigüeñal es el resultado directo de la definición de presión.

$$P = F A \longrightarrow F = P * A$$
 EC. (51)

Pues A es el área de la sección y encima de esta se genera la fuerza con igual valor, aunque la diferencia es que tiene signo opuesto, en comparación de la que se produce sobre la biela.

$$\overrightarrow{Y_{pb}} = -\overrightarrow{Y_{bp}}$$
 EC. (52)

Estudio de dinámica de la biela

Rueda [13] nos indica que: "Sobre la biela se producen esfuerzos siendo estos en la zona de la cabeza de la biela (punto A) y también en el pie de la biela (punto B). estos esfuerzos se dan mediante la transferencia de las fuerzas ubicada en la manivela de la biela y del pistón de esta, de manera respectiva. Posterior a esto se incluye el componente de las fuerzas de inercia producto de la rotación. Es por ello que las fuerzas que se ejercen en dirección X son el producto de la suma de las fuerzas que se ejercen desde el punto A de la manivela hacia la biela y también de la fuerza del punto B ubicada del pistón por encima de la biela".

$$\xrightarrow{X_{mb}} + \xrightarrow{X_{pb}} = -m_b a_x G \text{ EC. (53)}$$

Como se sabe que existen movimientos de rotación, por lo tanto, habrá una componente análoga Y con el fin de transferir las fuerzas:

$$\xrightarrow[Y_{mb}]{} + \xrightarrow[Y_{pb}]{} = m_b a_y G \text{ EC. (54)}$$

Rueda [13] indica que "Para plantear las fuerzas de inercia sobre la biela necesitamos calcular los momentos para así expresar las acciones desde su centro de gravedad con respecto del eje Z (eje que define la rotación del cuerpo) De esta forma":

$$(L - L_G)COS\beta \xrightarrow{X_{mb}} + L_G cos\beta \xrightarrow{X_{pb}} + (L - L_G)sen\beta \xrightarrow{Y_{mb}} - L_G csen\beta \xrightarrow{Y_{pb}} = I_b \frac{d^2\beta}{dt^2} \text{ EC. (55)}$$

Al resolver estas reacciones mostradas, obtendremos las fuerzas para luego aplicarlos en cada componente.

Análisis de resultados

Desplazamientos sobre pistón

Figura 15. Zonas de interés utilizadas en el análisis para el pistón.

Nota: Rueda [13]

En estos resultados se obtuvieron deformaciones en distintas zonas de interés del pistón, explicadas a continuación:

Tomando en cuenta la dirección de las fuerzas sobre el pistón y las restricciones de movimiento sobre este, Rueda [13] nos menciona lo siguiente:

• "Las zonas de la cabeza (A1) primordialmente se deforman en el eje Y, esto se debe al efecto de compresión que se ha producido al aplicar la fuerza de presión. Se espera además desde $\alpha = 0^{\circ}$ a $\alpha = 60^{\circ}$ un esfuerzo de tracción. En el caso de este último fenómeno se debe a que de $\alpha = 0^{\circ}$ a $\alpha = 60^{\circ}$ la fuerza de inercia predomina sobre la presión y esta primera tiene el sentido opuesto al de la fuerza de presión".

"La falda (A2) también se observa la deformación en el eje Y, esto se debe a la existencia la camisa del cilindro que evita que se deforme en el eje X o Z, por lo tanto, el resultado de esta deformación es constante".

"La zona de la hendidura (A3) que se inserta el bulón se deforma en 2 direcciones, ya que por el efecto de compresión la pieza se comprimirá verticalmente en el eje Y, y por consiguiente se extenderá su área en el eje Z".

Figura 16. Deformaciones del pistón según un ángulo a

Nota: Rueda [13]

Figura 17. Deformaciones en el eje Y de la cabeza del pistón. Escala de

deformaciones 1:1 (izquierda), 2:1 (derecha)

Nota: Rueda [13]

Figura 18. Deformaciones en eje Y de la falda del pistón. Escala deformaciones 1:1

Nota: Rueda [13]

Figura 19. Deformaciones en los ejes Y, Z de la hendidura en el pistón. Escala de

deformaciones 1:1 (izquierda), 2:1 (derecha)

Nota: Rueda [13]

Deformaciones sobre biela

Con respecto al modelo se ha tomado en cuenta los siguientes aspectos según Rueda

[13] y nos menciona que:

• "Existe una restricción en el pie de biela que evita que el interior de este se deforme.

Esto se debe a que se debe restringir los 6 grados de libertad de la estructura".

- "De la misma manera, el interior de la cabeza se ha denegado los desplazamientos en
- Z, quedando libre de deformarse en X e Y".

• "En la presente componente está presente una fuerza de comprensión que favorece las deformaciones en los ejes existentes que son X e Y, mientras que la fuerza de inercia de dicho movimiento alternativo y también circular donde se aplica deformaciones en todo el eje X. es así que el pistón se llega a representar en una serie de zonas de gran interés de la biela, en donde se ha logrado calcular las deformaciones en las 3 direcciones, es así que lo antes mencionado se puede visualizar en la figura que se presenta a continuación".

Figura 20. Zonas de interés de la biela

Nota: Rueda [13]

Figura 21. Deformaciones del eje X de la biela dependiendo del ángulo α

Nota: Rueda [13]

Figura 22. Deformaciones en el eje Y de la biela según un ángulo α

Nota: Rueda [13]

*Figura 23. D*eformaciones en el valor de α = -330°. Con una escala de deformaciones

1:1 (izquierda), 2:1 (derecha)

Nota: Rueda [13]

Figura 24. Representación de deformaciones en α = -60°

Nota: Rueda [13]

Figura 25. Representación de deformaciones en α = 10°

Nota: Rueda [13]

Vehículo TOYOTA COROLA de 1.5 L.

El Toyota Corola de 1.5 L. es un vehículo de máxima demanda que brinda seguridad, alto rendimiento y con un estilo diferente es por ello que es muy utilizado para el servicio de taxi o transporte familiar en las diversas ciudades del país.

Este Toyota Corola cuenta con un motor de tipo 1.5L DOHC CVVT dual de 16 válvulas, un cilindraje de 1,497 *cm*³, 4 cilindros en línea, 106 hp de potencia máxima a 6000 rpm, 139 Nm de Torque Máximo a 4200 rpm, con un tipo de combustible a Gasolina, un sistema de alimentación de combustible con inyección multipunto.

Figura 26. Vehículo Toyota Corola de 1.5 L *Nota*: Motors, K. (2020).

Software CAD / CAE

Matlab

Bonilla y Monteza [14] mencionan que "Se sabe que la palabra Matlab provienen de las abreviaturas de Matriz laboratorio o matrices de laboratorio. En un sistema de programación para poder desarrollar cálculos numéricos utilizando vectores y también matrices, se deben trabajar con numero escalares, a su vez con cadenas de carácter y estructura de información complejas. Este programa proporciona una variedad de funciones predeterminadas las cuales permiten realizar cálculos de diferentes tipos, es así que la visualización de los resultados y de los datos".

Solidworks

Bonilla y Monteza [14] menciona que "SOLIDWORKS permite diseñar piezas en 2D y 3D, puede realizar componentes de relaciones de posición que consten de piezas para crear ensamblajes en 3D. También puede realizar dibujos en 2D a partir de los ensamblajes en 3D. Cuando diseñe un modelo, puede visualizarlo en tres dimensiones para ver su aspecto una vez fabricado".

II.MATERIALES Y MÉTODOS

2.1. Tipo y Diseño de Investigación:

En este proyecto de tesis se propone analizar la deformación Mecánica del sistema de válvula de admisión, cilindro-pistón y válvula de escape de motor bicombustible GNV aplicando simulación por elementos finitos.

El tipo de Investigación es aplicada debido a que los conocimientos extraídos en esta investigación tratan un problema práctico y descriptivo; asimismo los datos obtenidos serán por observación directa, para luego ser empleado en el análisis de deformación, mediante la simulación por elementos finitos.

El diseño de Investigación es cuasi Experimental, porque no se afectará de manera intencional las variables independientes, es por ello que se observarán los fenómenos que se presentarán se darán de acuerdo a su contexto. Como factor influyente ante esto son las limitaciones como el costo incrustado para este proyecto y el tiempo extendido que demanda a fin de obtener los resultados.

2.2. Variables, Operacionalización

Variables independientes

Integridad estructural del sistema de Válvula de admisión, cilindro – Pistón y Válvula de Escape del motor

Variables dependientes

Resultados del estado estructural de los elementos internos del motor

Tabla 3 Operacionalización de variables.

Variable	Definición	Definición	Dimensiones		í	I	Escala de	
de estudio	conceptual	operacional	Dimensiones	Indicadores	items	Instrumento	medición	
						Análisis de datos		
				Р	lb	bibliográficos		
Variable			Esfuerzo	$\sigma = \frac{1}{A}$	$\overline{pulg^2}$	/Guía de revisión		
Independiente:	Son mecanismos							
Integridad	capaces de	Estructura que				bibliográfico		
estructural del	transformar un	permiten				Análisis de datos		
sistema de	tipo de energía	desarrollar un	Resistencia	S'P	Knsi	bibliográficos	Racional	
Válvula de	(eléctrica, de	trabajo	a la Fatiga		Npst	/Guía de revisión	Radional	
admisión, cilindro	combustión, etc.)	mediante una				bibliográfico		
– Pistón y	en energía	combustión.				Análisis de datos		
Válvula de	mecánica.		Deformación	δ	Adimonsional	bibliográficos		
Escape del motor			Delotinacion	$\varepsilon = \frac{1}{L}$ Add	$\varepsilon = \frac{1}{L}$	AUITIENSIUNAI	/Guía de revisión	
						bibliográfico		

Variable Dependiente:	Elementos que	Obtención de	Eficiencia mecánica	$n_m = \frac{W_f}{W_i}$	%	Análisis de datos bibliográficos /Guía de revisión bibliográfico	
Resultados del estado de los elementos internos del motor	están presentes en un motor y que permiten desarrollar un	datos de funcionalidad del sistema que se a analizado.	Potencia	$P = \frac{T * \pi * N}{30000 * 0.746}$	Нр	Análisis de datos bibliográficos /Guía de revisión bibliográfico	Racional
	trabajo.		Par Motor o Torque	T = F * r	Nm	Análisis de datos bibliográficos /Guía de revisión bibliográfico	

Nota: Elaboración propia

2.3. Población del estudio, muestreo y criterios de selección.

Población:

Vehículos de funcionamiento bicombustible de inyecciones indirectas (Gasolina y GNV).

Muestra:

Motor de vehículo de la marca TOYOTA COROLA y modelo 1NZ-FE & 2NZ-FE, de la serie 120 y 121.

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad Técnicas e instrumentos de recolección de datos

A. Análisis de datos bibliográficos

Es utilizada para la recolección de información precisa y relevante, así como es las guías de desarrollo de tesis, para la recopilación de información que está siendo utilizada de las distintas fuentes bibliográficas que son extraídas de la navegación por las redes, de revistas, de libros, de tesis, de publicaciones científicas y mucho mas.

Guía de revisión bibliográfico

Se elaborarán guías, que servirán como referencia para tomar un registro ordenado de las fuentes consultadas durante la investigación, detallando el ítem, finalidad y aplicación.

Valides y Confiabilidad:

Validez:

La valides de lo anteriormente planteado será dada por la aprobación de 1 a 3 especialistas en la materia.

Confiabilidad:

Para este proyecto se espera la estabilidad, así como la consistencia de los resultados obtenidos, optando por nuevas mejoras en mis logros.

2.5. Procedimientos de análisis de datos.

En primer lugar, se procede a recolectar, clasificar, evaluar y procesar todos los datos obtenidos de la guía de observación (vehículo Toyota corola motor 1300 cc con bicombustible gasolina – GNV), siendo estos datos numerosos y de diferente valor y que son fiados según ciertos parámetros fijados, son categorizados, se analizan de forma definida como se desarrolle la investigación. Significando que la codificación de las respuestas que se asignan un número, lo que permitirá lograr registrar la información de una manera ordenada y resumida para después según el estudio. Esta codificación se puede hacerse iniciando la elaboración del instrumento para así luego sea aplicado con mayor facilidad.

2.6. Criterios éticos

En la presente investigación se tienen en cuanta los principios basados en valores como la responsabilidad, el respeto, la dedicación y la honestidad. Estará basado por dos documentos fundamentales: Código de Ética del Colegio de ingenieros (CIP, 1999) y el código de ética de investigación de la universidad señor de Sipán.

Código de Ética del Colegio de ingenieros (CIP). Aprobado en la III sesión ordinaria del congreso nacional de consejos departamentales del periodo 1998 – 1999 en la ciudad de Tacna 22, 23, 24 abril 1999.

Código de Ética de Investigación de la Universidad Señor de Sipán (USS), Ratificado por acuerdo de consejo universitario con resolución rectoral N° 0851-2017/USS

2.7. Criterios de Rigor científico.

Mi proyecto de investigación toma primordialmente estos principios de rigor científico que se mencionan a continuación.

Generalización:

Principal componente del proceso científico y el cual pretenderá que toda información que sea extraída mediante una encuesta o entrevista sea precisa, realizada y sobre todo organizada.

Validez:

En este punto se debe tener una gran atención al escoger las variables que sobresalen y que guarden gran relación con el problema de investigación.

Fiabilidad:

Toda información que se obtenga mediante los instrumentos utilizados deben ser fiables y reales, siendo estas obtenidas mediante metodologías científica y meticulosa.

Replicabilidad:

La presente investigación está abocada para ser replicada con el afán de poder incentivar la investigación científica y sea punto de partida para más estudios los cuales profundicen más el tema que ha tocado.

III.RESULTADOS Y DISCUSIÓN

En los resultados se inició por determinar los parámetros óptimos de funcionamiento de un motor a Gasolina vs GNV que se requiere para el buen desarrollo del vehículo; por consiguiente, obtuve los diagramas de cuerpo libre y cargas externas de los sistemas válvula de admisión, cilindro-pistón, y válvula de escape del motor Bi-Combustible GNV del vehículo a estudiar; posteriormente se realizó el Modelado de los sistemas a analizar en software CAD/CAE, por último se analizó la deformación mecánica específica de los componentes principales del motor (sistemas válvula de admisión, cilindro-pistón, y válvula de escape) donde interactúa el GNV.

3.1. Resultados

Determinar los parámetros óptimos de funcionamiento de un motor a Gasolina vs GNV.

Para poder determinar los parámetros óptimos primero se tiene que proporcionar los parámetros del motor que va ser objeto de estudios y son los siguientes:

Tabla 4.	Parámetros del	motor en	estudio
----------	----------------	----------	---------

Número de cilindros y posición.	4 cilindros en línea.
Mecanismo de válvula.	16 válvulas DOHC, accionado por cadenas (VVT-i)
Cámara de combustión.	Tipo Pentroof
Colectores.	Flujo cruzado.
Sistema de combustible.	SFI.
Sistema de encendido.	DIS
Desplazamiento en (cm^3).	1,497 cm ³ 0 91.3 in ³
Diámetro por carrera (mm).	75×84.7 mm o 2.95×3.33 in
Índice de compresión.	10.5:1
Potencia máxima de salida.	79kW a 6,000rpm o 106 HP a 6,000rpm
Torque máximo.	139N.m a 4,200rpm o 103ft.lbf a 4,200rpm

		Abierto	-7° - 33° BTDC	
	Consumo			
Sincronización		Cerrado	52° - 12° ABDC	
de válvulas	Cansancio	Abierto	42°BBDC	
	Canoanolo	Cerrado	2°ATDC	
Orden de encend	Orden de encendido.		1-3-4-2	
Octanaje recomendado.			90 a más.	
Octanaje de posible uso.			87 a más.	
Grado del aceite.			ILSAC	
Emisión del tubo de escape.			TIRE2, ULEV-II	
Regulación de emisión de evaporación.		aporación.	ORVR	
Peso del motor.	N	1/T	83.2kg o 183.4lb	
	A/T		77.8kg o 171.5lb	

Nota: [15].

Especificaciones técnicas de los componentes del motor: En el siguiente cuadro se

darán dimensiones de componentes a estudiar:

 Tabla 5. Dimensiones de componentes del motor.

Componentes	entes Dimensiones		
Presión de comprensión.	1.471kPa o 15	5 kg.f/cm o 2,213 psi.	
Presión mínima de compresión.	1.049 kPa o 1	1kg.f/cm o 2,156 psi.	
Longitud de válvula de admisión.	Estándar	89.25 mm (3.5138in),	
	Minino	88.75 mm (3.4941in)	
Diámetro del vástago de la válvula de admisión.	Estándar	4.970 mm o 0.1957 in	
	Minino	4.985 mm o 0.1963 in	
Espesor del margen de la válvula de admisión.	Estándar	1 mm o 0.039 in	
	Minino	0.5 mm o 0.020 in	
Longitud de válvula de escape.	Estándar	87.90 mm o 3.4606 in	
	Minino	87.40 mm o 3.4409 in	

Diámetro del vástago de la válvula de escape.	Estándar	4.980 mm o 0.1961 in	
	Minino	4.965 mm o 0.1955 in	
Espesor del margen de la válvula de escape.	Estándar	1.15 mm o 0.045 in	
	Minino	0.5 mm o 0.020 in	
Diámetro del cilindro.	Estándar	75 a 75.013 mm	
	Límite diferencial	0.10 mm	
Diámetro de pistón	7.935 a 74.945 mm		
Diámetro del orificio del pasador del pistón a	18.013 a 18.016 mm o 0.7092 a 0.7093 in.		
20°C.			
Diámetro del pasador del pistón	18.001 a 18.004 m	nm o 0.7087 a 0.7088 in.	
Holgura del pistón.	0.045 a 0.068 mm o 0.0018 a 0.0027 in.		
Temperatura durante la admisión	25	5 – 30 °C	
Temperatura durante la combustión	700	– 1,000 °C	

Nota: [15].

El bloque del cilindro y el pistón están compuesto por una aleación ligera de aluminio o también es la aleación A319T6, esta aleación contiene silicio y cobre; en esta aleación el cobre proporciona resistencia y el silicio facilita el vaciado; Esta aleación es la más utilizada en la industria automotriz. Y se tiene los siguientes datos:

 Tabla 6. Propiedades mecánicas de la aleación.

Muestra	Resistencia a la tensión	Resistencia a la cedencia	% de elongación	Dureza Brinell
Al-Si-Cu-Sr	200 MPa	160 MPa	4.1	66

En este objetivo se presentará los parámetros para un óptimo funcionamiento de un motor de gasolina y para gas natural vehicular y se tiene los siguientes resultados.

Propiedades de la gasolina y el GNV: En la siguiente tabla se presentará parámetro básico sobre las propiedades fisicoquímicas de los combustibles en mención.

Parámetros	Combustible			
	Gasolina 90 octanos	GNV 75 metanos		
Poder calorífico(m)	$42.8 \frac{MJoule}{Kg}$	$49.83 \frac{MJoule}{Kg}$		
Poder calorífico(v)	$380 - 500 \frac{MJoule}{M^3}$	$38.87 \frac{MJoule}{M^3}$		
Densidad relativa	0,679	0,65		
Densidad a 15 °C, 1 bar	736 $\frac{Kg}{M^3}$	$0,78 \ \frac{Kg}{M^3}$		
Resistencia a la detonación	90 octanos	75 metanos (equivalente a		
		123.45 octanos)		
Límite de relación de	11: 1	13.5: 1		
compresión				
Relación estequiométrica	15 a 1	17,1 a 1		
Temperatura de encendido	315°c	649 °C		
Velocidad de la llama	0.85 m/s	0.67 m/s		
Límite de inflamabilidad (%	1,4 a 7.6 %	5 a 15 %		
volumen del aire)	, ,			

 Tabla 7. Parámetros de las propiedades de la gasolina y el GNV.

Nota: OSINERMING

Propiedades de funcionamiento del motor de gasolina y el GNV: En la siguiente tabla indicará parámetros de funcionamiento correcto de un motor.

Parámetros	Vehículo a GNV	Vehículo a gasolina
Potencia efectiva (pe)	60.2 kW	53 kW
Potencia indicada (pi)	75.2 kW	62.35 kW
Presión media efectiva (PME)	1.2 m pascal	1.08 m pascal
Presión media indicada (PMI)	1.5 m pascal	1.27 m pascal
Consumo específico de combustible (sfc)	$249.96 \frac{gr}{Kw \times H}$	$260.97 \frac{gr}{Kw \times H}$
Potencia útil calculada	56.7 kW	50.1 kW

Tabla 8. Parámetros de funcionamiento del motor de gasolina y de GNV.

Nota: Elaboración propia.

Obtener los diagramas de cuerpo libre y cargas externas de los sistemas válvula de

admisión, cilindro-pistón, y válvula de escape de motor Bi-Combustible GNV.

Diagrama de cuerpo libre de la válvula de admisión y de escape.

La válvula de admisión y de escape tiene un modelo de proceso de renovación de carga la cual necesita un área instantánea de paso para los gases, esta área típica se denomina área cortina y se calcula con la siguiente formula.

$$A_c = \pi D_V L_V$$

Está área coincide con el área lateral del cilindro recto con el diámetro base al diámetro de cabeza de la válvula y con una altura igual al levantamiento de válvula. En la figura 27 muestra las dimensiones y características para el modelo de la válvula.

Figura 27. Geometría de la nomenclatura de la válvula.

Diagrama de cuerpo libre del cilindro y pistón del motor estudiado.

Este modelo determina la evolución de la masa, presión y de temperatura dentro del cilindro del motor a lo largo del ciclo termodinámico completo, en este modelo consideramos la conservación de masa y energía a un volumen de control que se forma dentro del cilindro y también se considera la ley de los gases ideales.

En la figura 28 y 29 se presenta el esquema del volumen de control, así como flujo de masa y de energía. En las figuras se expresan todo lo que ingresa es igual a lo que sale, por teorema de conservación de la energía, y se explica el combustible que se ingresa (dmadmisión) en un volumen controlado se inyecta una presión y calor (dQc) para producir la explosión y así obtener un trabajo (dW), residuo que sale por la válvula de escape tanto en masa como en energía (dmescape) y el calor que se genera en el proceso sin ser utilizado (dQt).

Figura 28. Esquema de flujo energético y de masa en el volumen de control.

Figura 29. Esquema de volumen de control y puntos característicos para el flujo a

través de válvulas.

Para un proceso ideal el cual se van a tomar para efecto de cálculo se determina en el gráfico de presión versus volumen y así obtener las temperaturas y presiones a la que se expone todo el cilindro y las partes de las válvulas y es por ello que se obtiene los siguientes datos:

Figura 30. Gráfico presión versus volumen.

Nota: http://portal.uned.es/Publicaciones/htdocs/pdf.jsp?articulo=0135184CU01A02

Se desarrolló el cálculo donde se obtuvo los siguientes resultados por el ciclo Otto (gasolina) y son los siguientes:

Etapa	Presión (KPa)	Temperatura (K)
1	100	293,15
2	2 870,45	763,76
3	18 298,77	4 845,67
4	637,49	1 865,82

Tabla 9. Temperaturas y presiones durante el ciclo Otto a gasolina

Nota: Elaboración propia.

Es así que las temperaturas y presiones más altas que soporta durante el ciclo Otto son de 18 298,77 kPa y una temperatura de 4 845,67 K.

Estás presiones y temperaturas está expuesto los componentes del motor.

En la admisión se trabaja bajo presión y temperatura ambiente y que son P1 y T1.

Durante el escape las T4 y P4.

Se desarrolló el cálculo donde se obtuvo los siguientes resultados por el ciclo otto (GNV) y son los siguientes:

Etapa	Presión (KPa)	Temperatura (K)
1	100	293,15
2	3 823,55	1 017,35
3	21 597,40	5 719,17
4	564,85	1 655,86

 Tabla 10. Temperaturas y presiones durante el ciclo Otto a GNV

Nota: Elaboración propia.

Es así que las temperaturas y presiones más altas que soporta durante el ciclo Otto son de 21 597,40 kPa y una temperatura de 5 719,17 K.

Estás presiones y temperaturas está expuesto los componentes del motor.

En la admisión se trabaja bajo presión y temperatura ambiente y que son P1 y T1.

Durante el escape las T4 y P4.

Figura 31. Diagrama de cuerpo libre.

Obtenido los datos se procede a realizar el cálculo de los esfuerzos admisibles, esfuerzos cortantes y los factores de seguridad, y se calcula mediante las siguientes ecuaciones:

$$E = P \times A(I)$$

- E = Esfuerzo admisible.
- P = Presión.
- A = Área influida.

Válvula de admisión, por catálogo tenemos que la medida del diámetro de admisión es de 4,970 mm y se obtiene los siguientes resultados por cada presión obtenida:

Figura 32. Esfuerzos en las válvulas de admisión y escape.

Etapa	Valores con Gasolina	Esfuerzos	Valores con GNV	Esfuerzos
1	r=2,485 mm	1.04 Dr $\sim m^2$	r=2,485 mm	$101 \text{ Dr} \text{ m}^2$
I	P=100kPa	1,94 <i>Pa</i> × m ²	P=100kPa	1,94 Pa × m ²
2	r=2,485 mm	$55.60 \text{ Da } \times m^2$	r=2,485 mm	$74.19 \text{ Day} m^2$
2	P=2 870,45kPa	55,69 P a × m	P=3 823,55kPa	74,10 P u × m
2	r=2,485 mm	254.00 Da $\times m^2$	r=2,485 mm	$110.00 \text{ Pa} \times m^2$
3	P=18 298,77kPa	354,99 Pa × m-	P=21 597,40kPa	418,99 <i>Pa</i> × <i>m</i> -
4	r=2,485 mm	10.07 D = x = m ²	r=2,485 mm	$10.00 \text{ D}_{2} \times m^{2}$
4	P=637,49kPa	12,31 Pa × m²	P=564,85kPa	10,90 Pa × m²

 Tabla 11. Esfuerzos de la válvula de admisión.

Nota: Elaboración propia.

Válvula de escape, por catálogo tenemos que la medida del diámetro de admisión es de 4,980 mm y se obtiene los siguientes resultados por cada presión obtenida:

Etapa	Valores con Gasolina	Esfuerzos	Valores con GNV	Esfuerzos
1	r=2,490 mm	1,95 $Pa imes m^2$	r=2,490 mm	1,95 $Pa \times m^2$
	P=100kPa		P=100kPa	
2	r=2,490 mm	55.91 $Pa \times m^2$	r=2,490 mm	74.48 Pa $\times m^2$
	P=2 870,45kPa	,	P=3 823,55kPa	,
3	r=2,490 mm	356 43 $Pa \times m^2$	r=2,490 mm	420.68 $Pa \times m^2$
	P=18 298,77kPa		P=21 597,40kPa	0,001.07.11
4	r=2,490 mm	12 42 $Pa \times m^2$	r=2,490 mm	11 Pa $\times m^2$
	P=637,49kPa	· _ , · _ · · · / //	P=564,85kPa	

 Tabla 12. Esfuerzos de la válvula de escape.

Nota: Elaboración propia.

Pistón, por catálogo tenemos que la medida del diámetro de admisión es de 74,945 mm y se obtiene los siguientes resultados por cada presión obtenida:

Figura 33. Esfuerzos actuando en el pistón.

Tabla 13. Esfuerzos del pistón.

Etapa	Valores con Gasolina	Esfuerzos	Valores con GNV	Esfuerzos
1	r= 37.4725mm P=100kPa	441,14 <i>Pa</i> × m ²	r= 37.4725mm P=100kPa	441,14 <i>Pa</i> × m ²
2	r= 37.4725 mm P=2 870,45kPa	12 662,67 $Pa \times m^2$	r= 37.4725mm P=3 823,55kPa	16 867,46 $Pa \times m^2$
3	r= 37.4725mm P=18 298,77kPa	80 722,97 $Pa \times m^2$	r= 37.4725mm P=21 597,40kPa	95 274,0 Pa $ imes$ m^2
4	r= 37.4725mm P=637,49kPa	2 812,22 $Pa \times m^2$	r= 37.4725mm P=564,85kPa	2 491,77 $Pa \times m^2$

Nota: Elaboración propia,

En el cilindro del pistón tiene una peculiaridad para poder hallar los esfuerzos al que se encuentra expuesto es igual a la presión generada en el émbolo del cilindro por el área del pistón que actúa sobre está. Concluyendo que los esfuerzo son los mismos a los encontrados en el pistón.

Tabla 14. E	sfuerzos del	cilindro.
-------------	--------------	-----------

Etapa	Esfuerzos con Gasolina	Esfuerzos con GNV.
1	441,14 $Pa \times m^2$	441,14 $Pa \times m^2$
2	12 662,67 $Pa \times m^2$	16 867,46 $Pa \times m^2$
3	80 722,97 $Pa \times m^2$	95 274,0 $Pa \times m^2$
4	2 812,22 $Pa \times m^2$	2 491,77 $Pa \times m^2$

Nota: Elaboración propia,

Obtenidos estos valores se proceden a realizar el cálculo de los esfuerzos cortantes de cada pieza y se proceden a realizar mediante la siguiente expresión:

$$\tau_{max} = \frac{Tr}{j} (II)$$

Donde:

T = Esfuerzo admisible obtenido.

r = Radio.

 $j = \pi \times d^4 /_{32}$

Se calculan los esfuerzos cortantes en todos los elementos, mediante la siguiente ecuación obtenida.

$$\tau_{max} = \frac{32(Tr)}{\pi . d^4}$$

Tabla 15. Esfuerzos cortantes.

Elemento	Esfuerzos cortantes con Gasolina	Esfuerzos cortantes con GNV.
Válvula de admisión	147,27 MPa	173,82 MPa
Válvula de escape	146,98 MPa	173,47 MPa
Pistón	97,7 MPa	115,27 MPa
Cilindro	97,5 MPa	115,02 MPa

Nota: Elaboración propia,

Obtenido los valores de esfuerzo cortante se procede a calcular el factor de seguridad el cual permitirá indicar sobre el diseño de los elementos de motor a evaluar, teniendo en cuenta que el material utilizado en el motor tiene un esfuerzo ultimo de 200 MPa y se obtienen los siguientes resultados mediante el la siguiente formula:

$$FS = \frac{\sigma_{ultimo}}{\sigma_{cortante}}$$

Tabla 16. Factor de seguridad.

Elemento	F.S. con Gasolina	F.S. con GNV.
Válvula de admisión	1,358	1,151
Válvula de escape	1,361	1,153
Pistón	2,047	1,735
Cilindro	2,051	1,739

Nota: Elaboración propia,

Modelar los sistemas a analizar en software CAD/CAE

Se realiza el dibujado de cada pieza la cual esta dimensionada según catalogo que se buscó para posterior pasar al estudio CAE y determinar las deformaciones.

Válvula de admisión:

Figura 34. Dimensiones de la válvula de admisión.

Válvula de escape:

Figura 35. Dimensiones de la válvula de escape.

Pistón:

Figura 35. Dimensiones del pistón.

En la figura 36 se muestra el motor a estudiar con las especificaciones iniciales, en donde se construye todo el motor y solo se enfocará en un cilindro, un pistón y la válvula de admisión y de escape, esto permitirá que los estudios se puedan realizar ya con puntos fijados en una realidad.

Figura 37. Motor a realizar en su estudio.

Teniendo el CAD se procede a realizar dos estudios uno estático y el otro de fatiga para poder determinar las deformaciones el factor de seguridad los ciclos de vida útil en cada elemento a analizar (pistón, cilindro, válvulas de escape y válvulas de admisión) con el combustible inicial que es la gasolina.

Cilindro.

Análisis estático y fatiga.

Figura 36. Ciclo de vida total

En la anterior figura podemos determinar que los máximos daños ocurren dentro del cilindro en donde ahorra un ciclo de vida de 33 168 148 ciclos en los nodos 1185 y en la parte exterior tiene un ciclo de vida total de mil millones de ciclos en el nodo 1.

Figura 37. Factor de carga.

En la siguiente figura nos arroga los factores de carga en todo en monoblock del motor y donde arrojan los valores del mínimo de 2 370 en el nodo 1 185 y el máximo de 2 033 449 en el nodo 20 940. Arrojando que estos factores de cargas están aplicados del interior del monoblock del motor donde está el pistón y ocurre la combustión.

Pistón.

Análisis estático y fatiga.

Figura 38. Tensión de VON MISES.

En el estudio realizado en la cabeza del pistón ya que es donde actúan todas las fuerzas y temperaturas y es donde se obtienen los valores donde el mínimo es de 1 104 165 250 $^{N}/_{m^{2}}$ en el nodo 2 287 y un valor máximo de 470 597 472 000 $^{N}/_{m^{2}}$ en el nodo 96 254 y en donde se puede apreciar que son esfuerzos permisibles que no ocasionan gran daño.

Figura 39. Desplazamientos.

En la figura muestra que el desplazamiento máximo en la cabeza del pistón es de 0,222mm y está ubicado en el nodo 1 427, esto nos permite indicar que los esfuerzos no deforman la cabeza del pistón tan agresivamente.

Figura 40. Deformaciones.

En la figura muestra las deformaciones unitarias ocurridas en la cabeza del pistón y

donde se tiene una deformación máxima de 0,005 m/m en el nodo 34 604.

Figura 41. Factor de seguridad.

El valor mínimo de facto de seguridad de la cabeza del pistón es de 0,266 en el nodo 96 254 y un máximo de 113,208 en el nodo 2 287, esto nos indica que el material del pistón sufre grandes daños en la etapa de combustión del ciclo Otto, aunque esta etapa dura milésimas de segundos ocasiona pequeñas deformaciones.

Figura 42. Ciclo de vida total.

Como muestra la imagen la cabeza del pistón tiene un ciclo de vida mínimo en el nodo

96 254 de 278 416 ciclos, dando a conocer los diferentes desgastes que ocurren y lo deforma.

La figura muestra que el factor de carga presente en la cabeza del pistón es de 0,661.

Válvula de admisión.

Análisis estático y fatiga.

Figura 44. Tensión de Von Mises.

En la figura muestra que el mínimo valor de tensión de Von Mises 9 485 286 $N/_{m^2}$ en el nodo 76 950 y una tensión máxima de 1 268 266 112 $N/_{m^2}$ siendo esfuerzos presentes en las válvulas.

Figura 45. Desplazamientos.

El valor máximo de desplazamiento es de 0,669 mm en el nodo 715 lo cual está presente alrededor de la válvula lo cual produce posteriormente las deformaciones.

Figura 46. Deformación unitaria.

La figura muestra que la máxima deformación unitaria es de 0,012 en el elemento ubicado en el 8 792 lo cual son deformaciones pequeñas.

Figura 47. Factor de seguridad.

El valor obtenido es de 13,178 siendo un valor de buen dimensionamiento de la válvula.

Figura 48. Ciclo de vida total.

La figura muestra que la vida útil es de 100 000 ciclos para la válvula de admisión.

Se tiene un valor mínimo de factor de carga de 0,245 en el nodo 56 814 y un máximo de 32,805 en el nodo 76 950.

Válvula de escape.

Análisis estático y fatiga.

Figura 50. Tensión Von Mises.

La tensión máxima obtenida de Von Mises es de 7 417 376 $^{\rm N}/_{\rm m^2}$ y un valor máximo

presente de 1 342 460 216 en el nodo 53 367.

Figura 51. Desplazamiento.

Se tiene un valor máximo de desplazamiento de 0,664mm y está ubicado en el nodo 563 que este alrededor de la válvula.

Figura 52. Deformación unitaria.

Se muestra en la figura valores de deformación de 0,013 ubicado en el elemento 8 373

esto ubicado en la cabeza de la válvula.

Figura 53. Factor de seguridad.

El valor obtenido es de 16,852 siendo un valor de buen dimensionamiento de la válvula de escape.

Figura 54. Ciclo de vida total.

La figura muestra que la vida útil es de 100 000 ciclos para la válvula de escape ubicado

en el nodo 458.

Se tiene un valor mínimo de factor de carga de 0,232 en el nodo 53 367 y un máximo de 41 951 en el nodo 52 759.

Analizar la deformación mecánica específica de los componentes principales del motor (sistemas válvula de admisión, cilindro-pistón, y válvula de escape) donde interactúa el GNV

Para poder determinar una deformación mecánica de los componentes también se realiza un análisis estático y de fática de los elementos en el mismo ciclo de combustión, pero utilizando el combustible de gas natural vehicular y esto es lo que se obtiene.

Por ejemplo, en comparación con el autor Rueda, M. (2017) lo cual en la figura "A" la zona de interés se sitúa en la parte superior del pistón, al igual que en el estudio de esta investigación figura "B", se analizó de igual manera, ya que es el área con mayor presión, tal como se refleja a continuación.

En el pistón.

Figura 56. Área donde se sitúa mayor presión

Sin embargo realizando los resultados obtenidos para este análisis en comparación con el autor Rueda, M. (2017) son los siguientes. Cabe recalcar que la parte "A" le corrresponde al autor y la parte "B" es el resultado propio de esta investigación.

Figura 57. Deformación unitaria

En conclusión, en la figura "A" se obtiene que el valor máximo de deformación unitaria en la cabeza del pistón es de 6,9033e⁻⁶, y el resultado de esta investigación "figura B" tiene un valor máximo de 0,006 m en el elemento 34 604. Lo cual este resultado demuestra que la deformación es muy mínima y no causa efecto alguno en este componente.

Figura 58. Desplazamiento.

En conclusión, en la figura "A" se obtiene que el valor mínimo de deformación se da en la cabeza del pistón y en dirección del eje "Y", teniendo un valor mínimo de 1,8102e⁻⁶, y el resultado de esta investigación con respecto a los desplazamientos "figura B" tiene un valor máximo de 0,262 en el nodo 1 427. Lo cual este resultado demuestra que los desplazamientos

calculados son despreciables y que no generan ninguna alteración o falla mecánica en el pistón.

Sin embargo en esta investigacion se realizaron otras pruevas, tal como se muestra a continuación.

En el cilindro.

Figura 59. Factor de carga

Se obtiene que el valor mínimo de factor de carga con un valor de 5,434 ubicado en el nodo 1 185.

En la válvula de admisión.

Figura 60. Desplazamiento.

En la figura muestra que el máximo desplazamiento que ocurre es de 0,790 en el nodo

715.

Figura 61. Deformación unitaria.

La figura muestra que el máximo de deformación es de 0,014 ubicado en el elemento 8

792.

En la válvula de escape.

Figura 62. Desplazamiento.

En la figura muestra que el máximo desplazamiento que ocurre es de 0,784 en el nodo

563.

Figura 63. Deformación unitaria.

La figura muestra que el máximo de deformación es de 0,016 ubicado en el elemento 8

373.

3.2. Discusión

En esta investigación se desarrolló un estudio de deformación mecánica sobre los elementos del motor cilindro – pistón, válvulas de escape y admisión para un vehículo que utiliza como combustible gasolina y GNV, lo cual sus parámetros de funcionamiento se determinó a partir de catálogos y pruebas realizadas por empresas automovilísticas, lo cual coincide con los autores [11], donde realizaron pruebas con diferentes mezclas de combustibles y con diferentes revoluciones del motor, teniendo similitud a la investigación que se tiene ya que se utiliza dos tipos de combustibles y se hace el análisis en todo el ciclo de combustión. Por otro lado, para la realización de los cálculos teóricos del motor Bi-combustible GNV, se realizó en los cuatro puntos del ciclo Otto, en donde se consideró los dos tipos de combustibles sin variar el ciclo y es así que se obtiene volúmenes, rendimientos, potencia, par y posteriormente se analiza el motor para obtener conclusiones del comportamiento y datos obtenidos. Es por ello que coincide con el autor Rojo (2015) ya que utilizó la misma metodología para obtener los datos del motor en los cuatro puntos importantes del ciclo Otto para así determinar valores de diámetros y longitud de los elementos importantes del motor.

La investigación se apoya en el uso de software para dibujar y aplicarle estudios que permitan obtener datos que permitan interpretar como funcionan dicho elemento los cuales reaccionan al comportamiento de cada elemento analizado concordando con el autor [12], quien también se apoya en técnicas asistidas por computadora para simplificar y parametrizas un motor, es así que mediante esta técnica te permite visualizar y arroja datos interpretables del comportamiento del motor y sus elementos cuando son expuestos a trabajo.

89

3.3. Aporte de la investigación

La presente investigación permite realizar grandes aportes desde el área de diseño, el uso de software de diseño y la adquisición de conocimientos previos para poder interpretar dichos resultados lo cual permite identificar la ocurrencia de un fenómeno en una pieza mecánica la cual es expuesta a esfuerzos externos o a causa del trabajo que van a generar.

La investigación permite visualizar que es lo que ocurre cuando a un motor que es diseñado para un combustible determinado, pero lo adaptan para un uso de otro combustible fósil afectan de manera directa a los elementos que el desgaste de estos sea mayor y ocasione mayor daño en un menor tiempo.

IV.CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

Se obtuvieron los parámetros iniciales de funcionamiento del motor y de los dos combustibles que utilizara dicho motor, obtenido también sus propiedades físicas y químicas. Siendo el uso de un motor de un auto Toyota Corola y modelo 1NZ-FE & 2NZ-FE, de la serie 120 y de las propiedades de los combustibles de gasolina y de GNV.

Se dibujaron los diagramas de cuerpo libre de cada elemento como es el cilindro, pistón, válvula de admisión y la válvula de escape, y de las cargas también que interactúan dentro de los elementos, estos son obtenidos a través de un cálculo del ciclo Otto y obteniendo los 4 puntos más importantes de este ciclo y resultando las presiones y temperaturas a la que se exponen en cada punto. Ya teniendo los valores de esfuerzos, los materiales con el que está construido se pueden calculas los esfuerzos en cada punto y a su vez su factor de seguridad donde se tiene que el pistón tiene un valor de 2,047 en gasolina y en GNV de 1,735; el ciclando tiene un valor de 2,051 en gasolina y en GNV de 1,739; en la válvula de admisión tiene un valor de 1,358 en gasolina y en GNV de 1,151 y por último en la válvula de escape tiene un valor de 1,361 en gasolina y en GNV de 1,153.

Habiendo realizado el CAD en el SolidWorks se procede a realizar dos estudios uno estático y uno de fatiga, de los cuales se obtiene sus valores de ciclos de vida total, los desplazamientos y las deformaciones unitarias por cada elemento y también su comportamiento según el tipo de combustible con el que trabajan donde se puede identificar que con el GNV se incrementan estos valores.

Las deformaciones obtenidas en el estudio cuando se interactúa con el combustible del GNV se incrementan en un 20% y en realzaron con el ciclo de vida este disminuye en un 12%, permitiendo mostrar que al aplicar otro combustible a un motor que está diseñado para el uso de un combustible líquido y se adapta a uno de gas esto repercute en su ciclo de vida como en el trabajo que genera y añadiendo que la deformación incrementa y esto causa mayor daño a los elementos.

91

4.2. Recomendaciones

Se sugiere a nuevas investigaciones en análisis de modelos de vehículos con similares características con el fin de evidenciar tendencias de deformación mecánica en la cámara de combustión a los vehículos que son convertidos GNV, así como identificar el efecto según los kilometrajes recorridos.

Se identificó los diagramas de cuerpo libre y cargas externas de los componentes que se relacionan con la combustión, sin embargo, a futuras investigaciones se sugiere un mayor estudio de los materiales y pruebas de laboratorio con piezas.

Es fundamental la información que se obtiene de simuladores para establecer tendencias, por lo que se sugiere dar seguimiento a vehículos y almacenar la información a fin de evaluar la influencia de variables externas como temperatura, recorrido, mantenimiento, entre otros.

REFERENCIAS

- [1] E. R. Guamán, E. A. Llanes, S. F. Celi y J. Rocha, «Parámetros del Múltiple de Escape para su Diseño Computacional: una revisión,» 2019.
- [2] D. Vikas, I. Nupoor, B. Atharva, G. Sagar y A. Neha, «Failure analysis of diesel engine piston in transport utility vehicles,» *Engineering Failure Analysis*, p. 11, 2018.
- [3] M. Rezvani, D. Javanmardi y P. Mostaghim, «Diagnosis of EMD645 diesel engine connection rod failure through,» *Engineering Failure Analysis*, p. 11, 2018.
- [4] A. Strozzi, A. Baldini, M. Giacopini, E. Bertocchi y S. Mantovani, «A repertoire of failures in gudgeon pins for internal combustion engines, and a critical assessment of the design formulae,» *Engineering Failure Analysis*, p. 42, 2018.
- [5] A. Strozzi, A. Baldini, M. Giacopini, E. Bertocchi y S. Mantovani, «A REPERTOIRE OF FAILURES IN CONNECTING RODS FOR INTERNAL COMBUSTION ENGINES, AND INDICATIONS ON TRADITIONAL AND ADVANCED DESIGN METHODS,» Engineering Failure Analysis, p. 20, 2015.
- [6] J. Ponce Sánchez y C. Choque leaño, Artists, Influencia del Biogás en motores de combustión interna Diésel. [Art]. Universidad Tecnológica del Perú, 2019.
- [7] A. Porrón, «Uso Potencial de residuos con alto contenido en materia orgánica para la obtención de biogás en Asturias,» 2023.
- [8] J. I. Guerra, J. E. Guasumba, C. Taipe y C. Vilca, «Caracterización tecnológica de los sistemas de emisiones contaminantes de los motores de encendido en vehículos automotrices,» 2021.
- [9] M. Oliva, «China e India : path dependency a la hora de pensar en estrategias de desarrollo sustentable,» 2014.
- [10] S. A. López Rojas, «CONSIDERACIONES TÉCNICAS Y ECONÓMICAS DE VEHÍCULOS,» PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ, Lima, 2008.

- [11] PROMIGAS-QUAVII, «Informe del sector Gas natural en Perú 2018,» PROMIGAS, Perú, 2018.
- [12] C. Dávila, «Análisis de parámetros de un motor vehicular de 1000 cc convertido a GNV para determinar la vida útil, Chiclayo 2018,» Universidad César Vallejo, Chiclayo, 2018.
- [13] G. E. Garamendi Durán y L. . R. Wakeham Nieri, «Mercado de gas natural vehicular en el Perú: impulso y desarrollo,» Universidad De Piura, Lima, 2019.
- [14] J. A. Grajales, J. F. López y H. Quintero, «Diagnostico de un motor de gasolina de cuatro cilindros mediante el análisis de vibraciones,» *Ingeniería Mecánica*, vol. 8, nº 3, pp. 188-195, 2015.
- [15] a. Mejía y A. Fernando, «Rojo (2015) +"características del motor bajo diferentes revoluciones de manivela",» 2015.
- [16] J. Benlloch, «Diseño de motor V6 de combustión interna. Generación de su prototipo virtual y simulación dinámica,» 2015.
- [17] M. Aranda y J. P. Reverte, «Sistema de admisión y escape,» 2017.
- [18] A. Garcia, P. Carlucci y S. Marinez, «Comparación de estrategias de gestión energética para un vehículo eléctrico totalmente híbrido en paralelo que utiliza combustión de encendido por compresión controlada por reactividad,» 2020.
- [19] J. Castillo, V. Rojas y J. Martinez, «Determinación del Torque y Potencia de un Motor de Combustión Interna a Gasolina Mediante el Uso de Bujía con Sensor de Presión Adaptado y Aplicación de un Modelo Matemático,» *Revista Politécnica,* pp. 1-2, 2017.
- [20] A. d. d. l. p. y. e. t. d. u. m. D. o. c. m. d. b. d. palma, «Análisis del desempeño de la potencia y el torque de un motor diésel operando con mezclas de biodiésel de palma,» 2020.
- [21] G. Bosch, Sistema de inyección Diesel por acumulador Common Rail, 2005.

- [22] G. Benvenuto, U. Campora, M. Laviola y G. Terlizzi, «Simulation model of a Dual-Fuel four stroke engine for low emission ship propulsion applications,» *Internatioanl review of mechanical engineering*, pp. 817-823, 2017.
- [23] C. Martín, «Optimización del cierre de la válvula de admisión de un motor de combustión interna alternativa,» 2017.
- [24] R. Fierro y A. Ordóñez, La ingeniería automotriz clave para el desarrollo sostenible de Ecuador, 2018.
- [25] D. Plaza, «El motor diésel: funcionamiento y aplicaciones,» 2022. [En línea]. Available: https://www.motor.es/que-es/motor-diesel.
- [26] E. Paguatian, «Cálculo de motores de combustión interna,» 12 Noviembre 2016. [En línea]. Available: https://es.slideshare.net/ingpaguatiant2/clculo-de-motores-decombustin-interna.
- [27] E. Castañeda, C. Romero y M. Jaramillo, «Ciclo Atkinson: una alternativa para mejorar la eficiencia en motores de combustión interna,» 2019.
- [28] M. Rueda, Artist, Desarrollo de un modelo de deformaciones del mecanismo pistón biela - manivela de un motor alternativo. [Art]. Universidad Politécnica de Valencia, 2017.
- [29] O. Bonilla y H. Monteza, Artists, Diseño de un banco de ensayos de rotores con rodamientos magneticos para investigación en pregrado. [Art]. Universidad Señor de Sipán, 2018.
- [30] Toyota Motors, Manual de reparación de motor, 2000.

ANEXOS

Anexo N° 01

Código de ética del colegio de ingenieros del Perú

CÓDIGO DE ETICA DEL CIP

APROBADO EN LA III SESIÓN ORDINARIA DEL CONGRESO NACIONAL DE CONSEJOS Departamentales del período 1998 - 1999 En la ciudad de tacna 22, 23 y 24 Abril 1999

Fuente: (Colegio de Ingenieros del Perú, 1999)

Anexo N° 02

Código de ética de la universidad señor de sipán (uss)

UNIVERSIDAD SEÑOR DE SIPÁN

www.uss.edu.pe

CÓDIGO DE ÉTICA DE INVESTIGACIÓN DE LA USS

VERSIÓN 03

RATIFICADO POR ACUERDO DE CONSEJO UNIVERSITARIO CON RESOLUCIÓN RECTORAL Nº 0851-2017/USS

CHICLAYO - PERÚ

Version D3	Cóeign: VRHCE	P. Implementación	Página I de 29
Elaborado por:	Mendoado po	r: Planticación y Desarrolio	Hattleadu con Headlución Hactural Nº 0851-
Dirección de Investigación	Institucional	- Asecoria Legal	2017/USS

Fuente: (Dirección de Investigación, 2017)

Anexo N° 03

Índice de causas de cada falla y evaluación de ocurrencia de las fallas

Calificación		Criterio		
Cuantitativa	Probabilidad	índice de fallas (tanto por piezas)	Cpk	
1	Remota: falla improbable.	< 0,01 por 1000 piezas	>1,67	
2	Paia: Pacas fallas	0,1 por 1000 piezas	> 1,30	
3	Baja. Pocas fallas.	0,5 por 1000 piezas	> 1,20	
4		1 por 1000 piezas	> 1,10	
5	Moderada: Fallas ocasionales.	2 por 1000 piezas	> 1,00	
6		5 por 1000 piezas	>0,94	
7	Alta: Falles frequentos	10 por 1000 piezas	>0,86	
8	Alta. Fallas frecuentes.	20 por 1000 piezas	>0,78	
9	Muwalta, Fallas porsistantos	50 por 1000 piezas	> 0,55	
10	wuy alta: rallas persistentes.	>100 por 1000 piezas	< 0,55	

Fuente: Tomado de <u>https://www.ingenieriaindustrialonline.com/lean-manufacturing/analisis-</u> del-modo-y-efecto-de-fallas-amef/ Anexo N° 04. Estudios realizados en el cilindro de un motor bicombustible – gasolina,

GNV.

Anexo 4.1. Análisis estático del cilindro utilizando gasolina.

Simulación de BLOQUE DE 4 CILINDROS

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Análisis estático monoblock gasolina

Tipo de análisis: Análisis estático

Información de modelo

Sólidos						
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación			
Cortar-Extruir19	Sólido	Masa:27.8725 kg Volumen:0.00999016 m^3 Densidad:2790 kg/m^3 Peso:273.151 N	E:\AUSAT\BIELA\BLOQUE DE 4 CILINDROS.SLDPRT Jul 11 02:51:47 2021			

Propiedades de estudio

Nombre de estudio	Análisis estático monoblock gasolina	
Tipo de análisis	Análisis estático	
Tipo de malla	Malla sólida	
Efecto térmico:	Activar	
Opción térmica	Incluir cargas térmicas	
Temperatura a tensión cero	298 Kelvin	
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar	
Tipo de solver	FFEPlus	
Efecto de rigidización por tensión (Inplane):	Desactivar	
Muelle blando:	Desactivar	
Desahogo inercial:	Desactivar	
Opciones de unión rígida incompatibles	Automático	
Gran desplazamiento	Desactivar	
Calcular fuerzas de cuerpo libre	Activar	
Fricción	Desactivar	
Utilizar método adaptativo:	Desactivar	
Carpeta de resultados	Documento de SOLIDWORKS (E:\AUSAT\BIELA)	

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propiedades	Componentes
Referencia de modelo	Propiedades Nombre: A319T6 Tipo de modelo: Isotrópico elástico lineal Criterio de error predeterminado: Tensión de VON Mises máx. Límite elástico: 1.25e+008 N/m^2 Límite de tracción: 4.20507e+008 N/m^2 Módulo elástico: 7.4e+010 N/m^2 Coeficiente de Poisson: 0.33 Densidad: 2790 kg/m^3 Módulo cortante: 1.5e+008 N/m^2	Componentes Sólido 1(Cortar- Extruir19) (BLOQUE DE 4 CILINDROS)
	Módulo cortante: 1.5e+008 N/m^2	
	Módulo cortante: 1.5e+008 N/m^2 Coeficiente de dilatación térmica:	
	1.5e-005 /Kelvin	

Cargas y sujeciones

Nombre de sujeción	Imagen de sujeción	Detalles de sujeción				
	Contraction of the second	Entidades:		2	2 cara(s)	
Fijo-1	+	Tipo:		Geo	Geometría fija	
Fuerzas resultantes						
Compon	entes	Х	Y	Z	Resultante	
Fuerza de re	acción(N)	1.96429	171.946	93.6509	195.806	
Momento de re	acción (N.m)	0	0	0	0	

Nombre de carga	Cargar imagen	Detalles de carga		
		Entidades:	4 cara(s)	
		Tipo:	Normal a cara seleccionada	
Presión-1		Valor:	18.2988	
		Unidades:	N/mm^2 (MPa)	
		Ángulo de fase:	0	
		Unidades:	deg	

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar

Incluir bucles automáticos de malla:	Desactivar		
Puntos jacobianos	4 Puntos		
Tamaño de elementos	21.5406 mm		
Tolerancia	1.07703 mm		
Trazado do colidad do malla	Elementos cuadráticos de		
Hazado de Calidad de Malia	alto orden		

Información de malla – Detalles

Número total de nodos	40684
Número total de elementos	24279
Cociente máximo de aspecto	32.845
% de elementos cuyo cociente de aspecto es < 3	73.5
% de elementos cuyo cociente de aspecto es > 10	0.717
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:06

Fuerzas resultantes

Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	Ν	-1.96429	-171.946	93.6509	195.806

Momentos de reacción

Conjunto de seleccion	nes	Unidades	Sum X	~~~	Sum Y	Sum Z	2	Resultante
Todo el modelo		N.m	0		0	0 0		0
Nombre	Nombre Tipo			Mín.			Máx.	
Desplazamientos1		URES: Despla:	splazamientos 0.000 mm 0.125		0.125 mm			
		resultant	tes		Nod	Nodo: 6		Nodo: 1277
BLOQUE DE 4 CILINDROS-Análisis estático monoblock gasolina-Desplazamientos-								
Desplazamientos1								

Resultados del estudio

Nombre	Тіро	Mín.	Máx.			
Tensiones1	VON: Tensión de	153.023,797N/m^2	131.305.720,000N/m^2			
I ENSIONES I	von Mises	Nodo: 20940	Nodo: 1185			
BLOQUE DE 4 CILINDROS-Análisis estático monoblock gasolina-Tensiones-Tensiones1						

Nombre	Тіро	Mín.	Máx.				
Deformaciones	ESTRN: Deformación	0.000	0.001				
unitarias1	unitaria equivalente	Elemento: 8905	Elemento: 24251				
BLOQUE DE 4 CILINDROS-Análisis estático monoblock gasolina-							
Deformaciones unitarias-Deformaciones unitarias1							

Nombre	Tipo	Mín.	Máx.	
Factor de	Automático	1.952	816.866	
seguridad1	Automatico	Nodo: 1185	Nodo: 20940	
Service & Strengenski Kolor (6 1) inder en enskalan i biter en engenski izran biterarie.	nereita in mar e generation den e set in mar		144 mm 144 mm 144 mm 144 mm 144 mm 144 mm 144 mm 144 mm 144 mm	
BLOQUE DE 4 CILINDROS-Análisis estático monoblock gasolina-Factor de				
seguridad-Factor de seguridad1				

Anexo 4.2. Análisis de fatiga del cilindro utilizando gasolina.

Simulación de BLOQUE DE 4 CILINDROS

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Fatiga monoblock gasolina

Tipo de análisis: Fatiga (Amplitud constante

Información de modelo.

Sólidos				
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación	
		Masa:27.8725 kg	E:\AUSAT\BIELA\B	
Cortar-Extruir19		Volumen:0.00999016	de modificación E:\AUSAT\BIELA\B LOQUE DE 4 CILINDROS.SLDP RT	
*	Sólido	m^3	CILINDROS.SLDP	
	001100	Densidad:2790 kg/m^3	RT	
		Peso:273.151 N	Jul 11 02:51:47	
			2021	

Propiedades de estudio

Nombre de estudio	Fatiga monoblock gasolina	
Tipo de análisis	Fatiga (Amplitud constante)	
Interacción entre sucesos	Aleatoria	
Calcular tensiones alternas usando	Tensión equivalente (von Mises)	
Cara de elemento SHELL	Cara superior	
Corrección de la tensión media	Soderberg	
Factor de reducción de resistencia a la fatiga	1	
Vida infinita	Desactivar	
Carpeta de resultados	Documento de SOLIDWORKS	
	(E:\AUSAT\BIELA)	

Unidades.

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Prop	Componentes	
	Nombre:	A319T6	
4	Tipo de modelo: Criterio de error predeterminado:	Isotrópico elástico lineal Tensión de von Mises máx.	Sólido 1(Cortar- Extruir19) (BLOQUE DE 4 CILINDROS)

Opciones de carga

N.º de ciclos	Tipo de carga	Asocia	ción de estudi	os
		Nombre de	Factor de	Incremento
	Completame	estudio	escala	
1000	nte invertida	Análisis estático		
	(LR=-1)	monoblock	1	0
		gasolina		
	N.º de ciclos 1000	N.º de ciclosTipo de carga1000Completame nte invertida (LR=-1)	N.º de ciclosTipo de cargaAsociacicloscargaNombre de estudio1000nte invertidaAnálisis estático monoblock gasolina	N.º de ciclosTipo de cargaAsociación de estudicicloscargaNombre de estudioFactor de escala1000nte invertida (LR=-1)Análisis estático gasolina1

Nombre	Тіро	Mín.	Máx.
Resultados1	Daño acumulado	0.100. Nodo: 1	3.015 Nodo: 1185
BLOQUE DE 4 CIL	INDROS-Fatiga monoblock	a gasolina-Resultad	os-Resultados1

Nombre	Тіро	Mín.	Máx.
Resultados2	Resultados2 Vida total		1.000.000,000ciclos
		Nodo: 1185	Nodo: 1
		E SANTA E SANT	
BLOQUE DE 4 CILINDROS-Fatiga monoblock gasolina-Resultados-			
	F	Resultados2	

Nombre	Tipo	Mín.	Máx.
Resultados3	Factor de carga	2.370 Nodo: 1185	2.033,449 Nodo: 20940
l Sanning Ad - verdated Salarines de revolution f Tape de revolution Fais Lam Dedates et verger	COLA DE la OLIZIONI Na manufactular de professo de manufactular de Na manufactular de professo de manufactular de Na manufactular de la del namero de la Distance el Falle		
~			Factor Strates
BLOQUE DE 4 CILINDROS-Fatiga monoblock gasolina-Resultados-			
		Resultados3	

Nombre	Tipo	Mín.	Máx.
Resultados4	Trazado de indicador de	-1.000	0.977
Resultation -	biaxialidad	Nodo: 1264	Nodo: 19466
BLOQUE D	E 4 CILINDROS-Fatiga mon	oblock gasolina-R	esultados-
	Resultados	4	

Anexo 4.3. Análisis estático del cilindro utilizando GNV.

Simulación de BLOQUE DE 4 CILINDROS

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Análisis estático monoblock GNV

Tipo de análisis: Análisis estático

Información de modelo.

Sólidos				
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación	
Cortar-Extruir19	Sólido	Masa:78.9222 kg Volumen:0.00999016 m^3 Densidad:7900 kg/m^3	E:\AUSAT\BIELA\BLO QUE DE 4	
		Peso:773.438 N	CILINDROS.SLDPRT Jul 11 02:51:47 2021	

Propiedades de estudio

Nombre de estudio	Análisis estático monoblock GNV
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS (E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propiedades	Componentes
	Nombre: AISI 1020 Tipo de modelo: Isotrópico elástico lineal. Criterio de error predeterminado: Límite elástico: Desconocido Límite de tracción: 3.51571e+008 N/m^2 Módulo elástico: 4.20507e+008 N/m^2 Coeficiente de Poisson: 2e+011 N/m^2 Densidad: 0.29 Módulo cortante: 7900 kg/m^3 Coeficiente de dilatación térmica: 7.7e+010 N/m^2, 1.5e-005 /Kelvin	Sólido 1(Cortar-Extruir19) (BLOQUE DE 4 CILINDROS)

Cargas y sujeciones

Nombre de sujeción	Imagen de sujeción		Deta	alles de suje	ción
	6	20	Entidade	es:	2 cara(s)
Fijo-1	*		Tipo:		Geometría fija
		Fuerzas re	sultantes		
Compor	nentes	Х	Y	Z	Resultante
Fuerza de re	eacción(N)	-1.39443	-202.827	110.697	231.072
Momento de re	acción (N.m)	0	0	0	0

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	21.5406 mm
Tolerancia	1.07703 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden

Información de malla - Detalles

Número total de nodos	40684
Número total de elementos	24279
Cociente máximo de aspecto	32.845
% de elementos cuyo cociente de aspecto es < 3	73.5
% de elementos cuyo cociente de aspecto es > 10	0.717
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:06

Fuerzas resultantes

Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-1.39443	-202.827	110.697	231.072

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Nombre	Тіро	Mín.	Máx.				
Tanaianaa1	VON: Tensión de	192.750,109N/m^2	154.768.112,000N/m^2				
TensionesT	von Mises	Nodo: 487	Nodo: 1185				
BLOOLIE DE 4 CIL INDROS-Análisis estático monoblock GNV-Tensiones-							
Tensiones1							

Nombre	Тіро	Mín.	Máx.
Deenlezemientee1	URES: Desplazamientos	0.000 mm	0.054 mm
Desplazamientos1	resultantes	Nodo: 6	Nodo: 1277

Nombre	Тіро	Mín.	Máx.
		JUN 19 10 10 10 10 10 10 10 10 10 10 10 10 10	
BLOQU	E DE 4 CILINDROS-Análisis	estático monoblo	ck GNV-
	Desplazamientos-Despl	azamientos1	

Nombre	Тіро	Mín.	Máx.			
Deformaciones	ESTRN: Deformación	0.000	0.001			
unitarias1	unitaria equivalente	Elemento: 8905	Elemento: 24251			
unitarias-Deformaciones unitarias1						

Anexo 4.4. Análisis de fatiga del cilindro utilizando GNV.

Simulación de BLOQUE DE 4 CILINDROS

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Fatiga monoblock GNV

Tipo de análisis: Fatiga (Amplitud constante)

Información de modelo.

Configuración actual: Predeterminado

Sólidos						
Nombre de	Trotodo		Ruta al			
documento y	TTALAUU	Propiedades volumétricas	documento/Fecha de			
referencia	como		modificación			
Cortar-Extruir19		Masa:78.9222 kg	E:\AUSAT\BIELA\BLOQ			
	Sálido	Volumen:0.00999016 m^3	UE DE 4			
	301100	Densidad:7900 kg/m^3	CILINDROS.SLDPRT			
		Peso:773.438	Jul 11 02:51:47 2021			

Propiedades de estudio

Nombre de estudio	Fatiga monoblock GNV	
Tipo de análisis	Fatiga (Amplitud constante)	
Interacción entre sucesos	Aleatoria	
Calcular tensiones alternas usando	Tensión equivalente (Von Mises)	
Cara de elemento SHELL	Cara superior	
Corrección de la tensión media	Soderberg	
Factor de reducción de resistencia a la fatiga	1	
Vida infinita	Desactivar	
Carpeta de resultados	Documento de SOLIDWORKS	
	(E:\AUSAT\BIELA)	

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propiedades	Compo	onentes
	Nombre: AISI 1020.	Sólido	1(Cortar
	Tipo de modelo: Isotrópico elástico	Extruir19)	(BLOQUE
CO B	lineal.	DE 4 CILIN	IDROS)
	Criterio de error predeterminado:		
	Tensión de VON Mises máx.		
Datos de curva:		I	

Opciones de carga

Nombre del evento	N.º de ciclos	Tipo de carga	Asociación de estudios		
Suceso-1 1000	Completam ente	Nombre de estudio	Factor de escala	Incremento	
		invertida (LR=-1)	Análisis estático monoblock	1	0

Nombre	Tipo	Mín.	Máx.		
Resultados1	Daño acumulado	0.100 Nodo: 1	0.100 Nodo: 1		
	Ine D.1-Marks	-			
1					
BLOQUE DE 4 CILINDROS-Fatiga monoblock GNV-Resultados-Resultados1					

Nombre	Тіро	Tipo Mín. Má		Тіро		Mín.		Mín. Máx	
Nombre	Tipo	Mín.		Mín. Máx.					
Resultados2	Vida total	1.000.000,000ciclos Nodo: 1		1.000.000,000ciclos		clos 1.000.000,000ciclos			
BLOQ	JE DE 4 CILINDRO	DS-Fatiga Resulta	a nonoblock G dos2	NV-R	Resultados-				

Nombre	Тіро	Mín.	Máx.			
Resultados3	Factor de carga	5.434 Nodo: 1185	4.363,107 Nodo: 487			
BLOQUE DE 4 CILINDROS-Fatiga nonoblock GNV-Resultados-Resultados3						

Nombre	Tipo	Mín.	Máx.
Resultados4	Trazado de indicador de	-1.000	0.987
	biaxialidad	Nodo: 30314	Nodo: 32152

Anexo 4.5. Análisis estático del pistón utilizando gasolina.

1

Simulación de Pistón -estudio

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Análisis estático Pistón

Tipo de análisis: Análisis estático.

Información de modelo

Sólidos						
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación			
Redondeo1	Sólido	Masa:0.263986 kg Volumen:9.46185e-005 m^3 Densidad:2790 kg/m^3 Peso:2.58706 N	E:\AUSAT\BIELA\Pi ston - estudio.SLDPRT Jul 20 00:03:49 2021			

Propiedades de estudio.

Nombre de estudio	Análisis estático Pistón
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS (E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Prop	Componentes	
	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico:	A319T6 Isotrópico elástico lineal Desconocido 1.25e+008 N/m^2 4.20507e+008 N/m^2 7.4e+010 N/m^2	Sólido 1(Redondeo1)
	Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de	0.33 2790 kg/m^3 1.5e+008 N/m^2 1.5e-005 /Kelvin	(Piston -estudio)
	dilatación térmica:		

Cargas y sujeciones

Nombre de sujeción	Imagen	i de sujeción	Detalles de sujeción				
Eija 1			Entidades:	2 cara(s)	2 cara(s)		
гіјо-і			Тіро:	Geometría fij	ja		
Fuerzas resultantes							
Componente	S	Х	Y	Z	Resultante		
Fuerza de reacci	ón(N)	-0.247651	91979.8	0.420959	91979.8		
Momento de reacció	on (N.m)	0	0	0	0		

Nombre de carga	Cargar imagen	Detalles de carga		
		Entidades:	2 cara(s)	
Presión-1		Tipo:	Normal a cara	
		Tipo.	seleccionada	
		Valor:	18.2988	
		Unidades:	N/mm^2 (MPa)	
		Ángulo de fase:	0	
		Unidades:	deg	

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	2.27885 mm
Tolerancia	0.113942 mm
Trazado de calidad de malla	Elementos cuadráticos de alto
	orden

Fuerzas resultantes

Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-0.247651	91979.8	0.420959	91979.8

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Nombre	Tipo	Mín.	Máx.		
Tonsionos1	VON: Tensión de	1.104.165,250N/m^2	470.597.472,000N/m^2		
Tensiones	von Mises	Nodo: 2287	Nodo: 96254		
Piston -estudio-Análisis estático Piston-Tensiones-Tensiones1					

Nombre	Тіро	Mín.	Máx.	
Desplazamientos1	URES: Desplazamientos	0.000 mm	0.222 mm	
	resultantes	Nodo: 11	Nodo: 1427	

Nombre	Tipo	Mín.	Máx.
Anation of watch to find	when the restriction is the restriction of the restriction is the restriction of the restriction is the restriction of the rest	342 (144) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	
1			
Pistón -estudio-/	Análisis estático Piston-Desp	olazamientos-Des	plazamientos1

Nombre	Tipo	Mín.	Máx.
Deformaciones	ESTRN: Deformación	0.000	0.005
unitarias1	unitaria equivalente	Elemento: 21201	Elemento: 34604
Piston -estudio-Analisis estatico Piston-Deformaciones unitarias-			
Deformaciones unitarias1			

Nombre	Тіро	Mín.	Máx.
Factor de	Automático	2.266	113.208
seguridad1		Nodo: 96254	Nodo: 2287
Pistón -estudio-Ana	Allisis estático Pistón-Factor	de seguridad-Facto	or de seguridad1

Anexo 4.6. Análisis de fatiga del pistón utilizando gasolina.

Simulación de Pistón -estudio

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Fatiga pistón

Tipo de análisis: Fatiga (Amplitud constante)

Información de modelo

Sólidos				
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación	
Redondeo1	Sólido	Masa:0.263986 kg Volumen:9.46185e-005 m^3 Densidad:2790 kg/m^3 Peso:2.58706 N	E:\AUSAT\BIELA\Pist on -estudio.SLDPRT Jul 20 00:03:49 2021	

Propiedades de estudio

Fatiga pistón
Fatiga (Amplitud constante)
Aleatoria
Tensión equivalente (von Mises)
Cara superior
Soderberg
1
Desactivar
Documento de SOLIDWORKS
(E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propiedades		Componentes
	Nombre:	A319T6	
and	Tipo de modelo:	Isotrópico elástico	Sólido
No.		lineal	1(Redondeo1)
	Criterio de error	Tensión de von	(Pistón -estudio)
	predeterminado:	Mises máx.	

Opciones de carga

Nombre del evento	N.º de ciclos	Tipo de carga	Asoci	ación de estu	dios
Suceso-1	1000	Completamente	Nombre de estudio	Factor de escala	Incremento
		invertida (LR=-1)	Análisis estático Pistón	1	0

Nombre	Тіро	Mín.	Máx.
Resultados1	Daño acumulado	0.100 Nodo: 1	359.175 Nodo: 96254
Pis	tón -estudio-Fatiga pis	ston-Resultados-Resu	lltados1

Nombre	Тіро	Mín.	Máx.
Resultados3	Factor de carga	0.661 Nodo: 96254	281.811 Nodo: 2287
Annual of the second se	exemptions and the second seco		Maran Marang Calaba Maran Alaba Maran Maran Maran Maran Maran
Pistón -estudio-Fatiga piston-Resultados-Resultados3			

Nombre	Тіро	Mín.	Máx.
Resultados4	Trazado de indicador de biaxialidad	-1.000 Nodo: 31909	0.996 Nodo: 51910
land Territori	Pistón -estudio-Fatiga pis	ton-Resultados-Resultad	dos4

Anexo 4.7. Análisis estático del pistón utilizando GNV.

Simulación de Pistón -estudio

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Análisis estático 2 pistón GNV

Tipo de análisis: Análisis estático

Información de modelo.

Sólidos					
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación		
Redondeo1	Sólido	Masa:0.263986 kg Volumen:9.46185e-005 m^3 Densidad:2790 kg/m^3 Peso:2.58706 N	E:\AUSAT\BIELA\Piston - estudio. SLDPRT Jul 20 00:03:49 2021		

Propiedades de estudio

Nombre de estudio	Análisis estático 2 pistón GNV
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS (E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propied	Componentes		
	Nombre:	A319T6		
	Tipo de modelo:	Isotrópico elástico lineal		
	Criterio de error predeterminado:	Desconocido]	
	Límite elástico:	1.25e+008 N/m^2	Sólido 1(Redondeo1) (Pistón - estudio)	
	Límite de tracción:	4.20507e+008 N/m^2		
	Módulo elástico:	7.4e+010 N/m^2		
	Coeficiente de Poisson:	0.33		
	Densidad:	2790 kg/m^3		
	Módulo cortante:	1.5e+008 N/m^2		
	Coeficiente de dilatación térmica:	1.5e-005 /Kelvin		

Cargas y sujeciones

Nombre de sujeción	Imagen de sujeción	Detalles de sujeción			
		Entidades		2 cara(s))
Fijo-1	o-1			Geometría fija	
	Fuerzas resultantes				
Com	nponentes	Х	Y	Z	Resultante
Fuerza de reacción(N)		-0.29365	108560	0.495893	108560
Momento de reacción (N.m)		0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga		
		Entidades:	2 cara(s)	
		Tipo:	Normal a cara seleccionada	
Presión-1	Contraction of the second	Valor:	21.5974	
		Unidades:	N/mm^2 (MPa)	
		Ángulo de fase:	0	
		Unidades:	deg	

Información de malla.

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	2.27885 mm
Tolerancia	0.113942 mm
Trazado de calidad de malla	Elementos cuadráticos de alto
	orden

Información de malla - Detalles

Número total de nodos	97652
Número total de elementos	62620
Cociente máximo de aspecto	13.302
% de elementos cuyo cociente de aspecto es < 3	99.3
% de elementos cuyo cociente de aspecto es > 10	0.00958
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:05
Nombre de computadora:	
Transmission Control	

Fuerzas resultantes

Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-0.29365	108560	0.495893	108560

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Nombre	Тіро	Mín.	Máx.
Tensiones1	VON: Tensión de 1.303.207,625N/m^2 Tensiones1		555.429.760,000N/m^2
	von Mises	Nodo: 2287	Nodo: 96254
Pistón -	esstudio-Análisis estát	tico 2 pistón GNV-Tensi	ones-Tensiones1

Nombre	Тіро	Mín.	Máx.			
Desplazamientos1	URES: Desplazamientos	0.000 mm	0.262 mm			
	resultantes	Nodo: 11	Nodo: 1427			
Pistón -estudio-Análisis estático 2 pistón GNV-Desplazamientos-						
Desplazamientos1						

Anexo 4.8. Análisis de fatiga del pistón utilizando GNV.

Simulación de Pistón -estudio

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Fatiga 2 Pistón GNV

Tipo de análisis: Fatiga (Amplitud constante).

Información de modelo

Sólidos				
Nombre de documento	Tratado	Propiedades	Ruta al documento/Fecha	
y referencia	como	volumétricas	de modificación	
Redondeo1	Sólido	Masa:0.263986 kg Volumen:9.46185e- 005 m^3 Densidad:2790 kg/m^3 Peso:2.58706 N	E:\AUSAT\BIELA\Piston - estudio.SLDPRT Jul 20 00:03:49 2021	

Propiedades de estudio.

Nombre de estudio	Fatiga 2 Pistón GNV	
Tipo de análisis	Fatiga (Amplitud constante)	
Interacción entre sucesos	Aleatoria	
Calcular tensiones alternas usando	Tensión equivalente (von Mises)	
Cara de elemento SHELL	Cara superior	
Corrección de la tensión media	Soderberg	
Factor de reducción de resistencia a la fatiga	1	
Vida infinita	Desactivar	
Carpeta de resultados	Documento de SOLIDWORKS (E:\AUSAT\BIELA)	

Unidades.

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material.

Referencia de modelo	Propiec	Componente s		
	Nombre:	A319T6	Sálido	
	Tipo de modelo:	Isotrópico elástico lineal	1(Redondeo1) (Pistón -	
	Criterio de error	Tensión de von Mises	estudio)	
	predeterminado:	máx.		
	Datos de cu	irva:		
	SN curve 1,00+09 1,00+09 1,00+00 1,00+02 1,00+03 1,00+03 Ciclos(NA) 0,0	1.00-05 1,00-06		

Opciones de carga

Nombre del evento	N.º de ciclos	Tipo de carga	Asociac	ión de estudios	
Co Suceso-1 1000 nt	Completame	Nombre de estudio	Factor de escala	Increment o	
	((LR=-1)	Análisis estático Pistón gasolina	1	0
Nombre	Тіро	Mín.	Máx.		
--	----------------	---------------	---	--	
Resultados1	Daño acumulado	0.100 Nodo: 1	359.175 Nodo: 96254		
			man ang ang ang ang ang ang ang ang ang a		
Pistón -estudio-Fatiga 2 Pistón GNV-Resultados-Resultados1					

Resultados3 I	Factor de carga	0.661 Nodo: 96254	281.811 Nodo: 2287
Pistón -ee	estudio-Fatiga 2 I	Pistón GNV-Resultado	os-Resultados3

Nombre	Тіро	Mín.	Máx.
Resultados4	Trazado de indicador de biaxialidad	-1.000 Nodo: 31909	0.996 Nodo: 51910
Pis	etón -estudio-Fatiga 2 Pistón	GNV-Resultados-Resu	ultados4

Anexo 4.9. Análisis estático de la válvula de admisión utilizando gasolina.

Simulación de Válvula de admisión

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

1

Nombre de estudio: Análisis estático válvula admisión GNV

Tipo de análisis: Análisis estático

Sólidos				
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación	
Chaflán1		Masa:0.0100951 kg Volumen:3.61832e-006 m^3	E:\AUSAT\BIELA\Val vula de	
	Sólido	Densidad:2790 kg/m^3 Peso:0.0989321 N	admision.SLDPRT Jul 19 23:57:03 2021	

Propiedades de estudio

Nombre de estudio	Análisis estático válvula admisión GNV
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos	Desactivar
desde SOLIDWORKS Flow Simulation	
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS
	(E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Prop	Componentes	
	Nombre:	A319T6	
	Tipo de modelo:	Isotrópico elástico lineal	
	Criterio de error	Tensión de von Mises	
	predeterminado:	máx.	
	Límite elástico:	1.25e+008 N/m^2	Sólido
1	Límite de tracción:	4.20507e+008 N/m^2	1(Chaflán1)
	Módulo elástico:	7.4e+010 N/m^2	(Válvula de
	Coeficiente de	0.33	admisión)
	Poisson:		,
	Densidad:	2790 kg/m^3	
	Módulo cortante:	1.5e+008 N/m^2	
	Coeficiente de dilatación térmica:	1.5e-005 /Kelvin	

Cargas y sujeciones

Nombre de sujeción	Imagen de sujeción		Detalles de sujeción			
Fijo-1	Fijo-1		Entidades:		2 cara(s)	
			Tipo:		Geometría fija	
Fuerzas resultantes						
Compo	onentes		Х	Y	Z	Resultante
Fuerza de reacción(N) C		0.0	478712	0.0101228	12828	12828
Momento de reacción (N.m)			0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga		
		Entidades:	2 cara(s)	
Presión-1		Tipo:	Normal a cara	
			seleccionada	
		Valor:	21.5974	
		Unidades:	N/mm^2 (MPa)	
		Ángulo de fase:	0	
		Unidades:	deg	

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	0.767928 mm
Tolerancia	0.0383964 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden

Información de malla - Detalles

Número total de nodos	77043
Número total de elementos	50769
Cociente máximo de aspecto	11.629
% de elementos cuyo cociente de aspecto es < 3	98.8

% de elementos cuyo cociente de aspecto es > 10	0.00197
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:04
Nombre de computadora:	

Fuerzas resultantes

Fuerzas de reacción.

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	0.0478712	0.0101228	12828	12828

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Nombre	Тіро	Mín.	Máx.		
Tonsionos1	VON: Tensión	11.195.151,000N/m^2	1.496.890.112,000N/m^2		
I ENSIONES I	de von Mises	Nodo: 76950	Nodo: 56814		
	North-Braddiness & particul Article & countrel de video data annue - Nor-reasonnesses North-Braddinesses North-Probability - CO				
L P					
Válvula de admisión-Análisis estático válvula admisión GNV-Tensiones-					
Tensiones1					

Nombre	Тіро	Mín.	Máx.				
Decolozomientes1	URES: Desplazamientos	0.000 mm	0.790 mm				
Despiazamientos i	resultantes	Nodo: 1	Nodo: 715				
Annual of Annual	anna fa falan air. Ia pananan						
		1000 1000 1000					
	ALC: NO	999 999 900 900 900 900					
Valvula de admisión-Análisis estático válvula admisión GNV-Desplazamientos-							
Desplazamientos1							

Nombre	Тіро	Mín.	Máx.			
Deformaciones	ESTRN: Deformación	0.000	0.014			
unitarias1	unitaria equivalente	Elemento: 8269	Elemento: 8792			
Válvula de admisión-Análisis estático válvula admisión GNV-Deformaciones						
unitarias-Deformaciones unitarias1						

Nombre	Тіро	Mín.	Máx.			
Factor de	Automótico	1.084	11.166			
seguridad1	Automatico	Nodo: 56814	Nodo: 76950			
Have an experimental states of the first energy in the state of the first energy in the state of the states of the						
Válvula de admisión-Análisis estático válvula admisión GNV-Factor de						
seguridad-Factor de seguridad1						

Anexo 4.10. Análisis de fatiga de la válvula de admisión utilizando gasolina.

Simulación de Válvula de admisión

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Fatiga válvula de admisión gasolina

Tipo de análisis: Fatiga (Amplitud constante)

Sólidos						
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación			
Chaflán1		Masa:0.0100951 kg	E:\AUSAT\BIELA\Val			
	Sálido	Volumen:3.61832e-006 m^3	vula de			
	301100	Densidad:2790 kg/m^3	admision.SLDPRT			
4		Peso:0.0989321 N	Jul 20 01:35:18 2021			

Propiedades de estudio

Nombre de estudio	Fatiga válvula de admisión gasolina
Tipo de análisis	Fatiga (Amplitud constante)
Interacción entre sucesos	Aleatoria
Calcular tensiones alternas usando	Tensión equivalente (von Mises)
Cara de elemento SHELL	Cara superior
Corrección de la tensión media	Soderberg
Factor de reducción de resistencia a la fatiga	1
Vida infinita	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS
	(E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Opciones de carga

Nombre del evento	N.º de ciclos	Tipo de carga	Asociación de estudios		5
		Completament	Nombre de estudio	Factor de escala	Incremento
Suceso-1	1000	e invertida (LR=-1)	Análisis estático válvula de admisión Gasolina	1	0

Nombre	Тіро	Mín.	Máx.			
Resultados1	Daño acumulado	0.100 Nodo: 1	1.000,000 Nodo: 2878			
			anana Marina Marina Marina Marina			
			Second Andrea Andre Andre			
1	2 T. S.					
Válvula de admisión-Fatiga válvula de admisión gasolina-Resultados-Resultados1						

Nombre	Tipo	Mín.	Máx.		
Resultados2	Vida total	100.000 ciclos Nodo: 2878	1.000.000,000ciclos Nodo: 1		
			A A A A A A A A A A A A A A A A A A A		
Válvula de admisión-Fatiga valvular de admisión gasolina-Resultados-					
Kesultados2					

Nombre	Тіро	Mín.	Máx.
Resultados3	Factor de carga	0.245 Nodo: 56814	32.805 Nodo: 76950
			Marar Be ange Marar Mara Mara Mara Mara Mara Mara Ma
Válvula o	le admisión-Fatiga	valvular de admisión gas	solina-Resultados-
		Resultados3	

Nombre	Тіро	Mín.	Máx.	
Resultados4	Trazado de indicador de	-1.000	0.999	
Nesulados-	biaxialidad	Nodo: 19736	Nodo: 25391	
Sector Sector	Construction de alement Al Maria Para a col de acousta apopula à mana constat Al Maria Para a col de acousta apopula à mana constat Al Maria Para a de acousta a constat			
		1111		
Ĭ				
^				
Válvula de adn	nisión-Fatiga válvula de admis	ión gasolina-Result	ados-Resultados4	

Anexo 4.11. Análisis estático de la válvula de admisión utilizando GNV.

Simulación de Válvula de admisión

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Análisis estático válvula admisión GNV

Tipo de análisis: Análisis estático

	Sólidos					
Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación				
Sólido	Masa:0.0100951 kg Volumen:3.61832e-006 m^3 Densidad:2790 kg/m^3 Peso:0.0989321 N	E:\AUSAT\BIELA\Val vula de admision.SLDPRT Jul 19 23:57:03 2021				
	Tratado como Sólido	Tratado como Propiedades volumétricas Masa:0.0100951 kg Volumen:3.61832e-006 m^3 Densidad:2790 kg/m^3 Peso:0.0989321 N				

Propiedades de estudio.

Nombre de estudio	Análisis estático valvula admision GNV
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos	Desactivar
desde SOLIDWORKS Flow Simulation	Doddinal
Tipo de solver	FFEPlus
Efecto de rigidización por tensión	Desactivar
(Inplane):	
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS
	(E:\AUSAT\BIELA)

Unidades.

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Prop	Componentes	
	Nombre:	A319T6	
	Tipo de modelo:	Isotrópico elástico lineal	
	Criterio de error predeterminado:	Tensión de von Mises máx.	
	Límite elástico:	1.25e+008 N/m^2	Sólido
	Límite de tracción:	4.20507e+008 N/m^2	1(Chaflán1)
	Módulo elástico:	7.4e+010 N/m^2	(Válvula de
	Coeficiente de Poisson:	0.33	admisión)
	Densidad:	2790 kg/m^3	
	Módulo cortante:	1.5e+008 N/m^2	
	Coeficiente de dilatación térmica:	1.5e-005 /Kelvin	

Cargas y sujeciones.

Nombre de sujeción	lmagen de sujec	ión	Detalles de sujeción			
Filo-1	-1		Entidades:		2 cara(s)	
1 190-1			Tipo:		Geometría fija	
Fuerzas resultantes						
Com	ponentes		Х	Y	Z	Resultante
Fuerza d	e reacción(N)	0.	.0478712	0.0101228	12828	12828
Momento de	e reacción (N.m)		0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga			
		Entidades:	2 cara(s)		
		Tipo:	Normal a cara		
			seleccionada		
Presión-1		Valor:	21.5974		
		Unidades:	N/mm^2 (MPa)		
	Y	Ángulo de fase:	0		
		Unidades:	deg		

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	0.767928 mm
Tolerancia	0.0383964 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden

Información de malla - Detalles

Número total de nodos	77043
Número total de elementos	50769
Cociente máximo de aspecto	11.629
% de elementos cuyo cociente de	98.8
aspecto es < 3	

% de elementos cuyo cociente de aspecto es > 10	0.00197
% de elementos distorsionados	
(Jacobiana)	0
Tiempo para completar la malla	22.22.24
(hh;mm;ss):	00:00:04
Nombre de computadora:	
A second se	

Fuerzas resultantes

Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	0.0478712	0.0101228	12828	12828

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante	
Todo el modelo	N.m	0	0	0	0	

Nombre	Tipo	Mín.	Máx.
Tensiones1	VON: Tensión de	11.195.151,000N/m^2	1.496.890.112,000N/m^2
	von Mises	Nodo: 76950	Nodo: 56814

Nombre	Tipo	Mín.	Máx.
nam 2015 Aleren Aleren de 10 Verte de 1000 Verte de 1000 Verte de 1000	Management of a second se		
		-	 Methods of M Address of Methods of Metho
7	~ /		
Válvula de admi	sión-Análisis estátic	o válvula admisión G	NV-Tensiones-Tensiones1

Nombre	Tipo	Mín.	Máx.			
Desplazamientos1	URES: Desplazamientos	0.000 mm	0.790 mm			
Desplazamientos i	resultantes	Nodo: 1	Nodo: 715			
Válvula de admisión-Análisis estático válvula admisión GNV-Desplazamientos-						
Desplazamientos1						

Nombre	Тіро	Mín.	Máx.
Deformaciones	ESTRN: Deformación	0.000	0.014
unitarias1	unitaria equivalente	Elemento: 8269	Elemento: 8792

Nombre	Тіро	Mín.	Máx.
Instantion And Analysis and Ana	n og ekkon o måga Lana, aksen före som ekkonomiser og ekkonomiser (aksenanter och ekkonomiser) og ek		
	i la	100 100 100 100 100 100 100 100	
7		■ 185°	
Válvula de adm	nisión-Análisis estático vál	vula admisión GNV	-Deformaciones
	unitarias-Deformacio	ones unitarias1	

Nombre	Тіро	Mín.	Máx.				
Eastar da saguridad1	Automático	1.084	11.166				
Factor de Segundad i	Automatico	Nodo: 56814	Nodo: 76950				
National States of the States	Hand Carlo and Samana and Carlo and Annual Annual Annual Annual Annual Samana and Annual Annual Annual Annual Samana and Annual Annual Annual Annual Samana annual Annua Annual Annual Annu						
	- /	40 40 40 40 40					
1							
Válvula de admisión-Análisis estático válvula admisión GNV-Factor de							
seguridad-Factor de seguridad1							

Anexo 4.12. Análisis de fatiga de la válvula de admisión utilizando GNV.

Simulación de Válvula de admisión

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Fatiga 1

Tipo de análisis: Fatiga (Amplitud constante)

Sólidos				
Nombre de	Tratado		Ruta al	
documento y		Propiedades volumétricas	documento/Fecha de	
referencia	como		modificación	
Chaflán1		Masa:0.0100951 kg	E:\AUSAT\BIELA\Valvu	
1	Sólido	Volumen:3.61832e-006 m^3	la de	
	301100	Densidad:2790 kg/m^3	admision.SLDPRT	
		Peso:0.0989321 N	Jul 19 23:57:03 2021	

Propiedades de estudio

Nombre de estudio	Fatiga 1
Tipo de análisis	Fatiga (Amplitud constante)
Interacción entre sucesos	Aleatoria
Calcular tensiones alternas usando	Tensión equivalente (von Mises)
Cara de elemento SHELL	Cara superior
Corrección de la tensión media	Soderberg
Factor de reducción de resistencia a la fatiga	1
Vida infinita	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS (E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propie	Componentes	
	Nombre:	A319T6	
	Tipo de modelo:	Isotrópico elástico lineal	Sólido 1(Chaflán1) (Válvula de admisión)
*:	Criterio de error	Tensión de von	
	predeterminado:	Mises máx.	

Opciones de carga

Nombre del evento	N.º de ciclos	Tipo de carga	Asociación de estudios		
		Completam	Nombre de estudio	Factor de escala	Incremento
Suceso-1	1000	invertida (LR=-1)	Análisis estático válvula admisión GNV	1	0

Nombre	Тіро	Mín.	Máx.
Resultados1	Daño acumulado	0.100 Nodo: 1	1.000,000 Nodo: 449
	-		4000 4000
			Marke Marke Com
1	-		
Válvula de admisión-Fatiga 1-Resultados-Resultados1			

Nombre	Tipo	Mín.	Máx.
Resultados2	Vida total	100.000 ciclos	1.000.000,000ciclos
		Nodo: 449	Nodo: 1
	Sandan da Vandari kanan a data me Manten da saman dagi Yanakamangka Yana di Katalah Yangalah (Sandara)		
			name Manual Lakan
			MARKAN Annum Markan Markan
		V '	ana an ana
	7	-	
Vá	ilvula de admi	sión-Fatiga 1-Resultados	s-Resultados2

Nombre	Tipo	Mín.	Máx.
Resultados3	Factor de carga	0.208 Nodo: 56814	27.795 Nodo: 76950
			2 C C C C C C C C C C C C C C C C C C C
	Válvula de admisión	-Fatiga 1-Resultados-R	esultados3

Nombre	Тіро	Mín.	Máx.
Resultados4	Trazado de indicador de biaxialidad	-1.000 Nodo: 19736	0.999 Nodo: 25391

Nombre	Тіро	Mín.	Máx.
	Investore del Francesco (2014) del alternativo del construcción del construcción del construcción del del construcción del construcción del construcción		
		<i>~</i>	
			5491 5485 5497
	7		
	Válvula de admisión-Fat	iga 1-Resultados-Resul	tados4

Anexo 4.13. Análisis estático de la válvula de escape utilizando gasolina.

Simulación de Válvula de escape

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

L

Nombre de estudio: Análisis estático válvula escape

Tipo de análisis: Análisis estático

Sólidos				
Nombre de		Propiedades	Ruta al	
documento y	Tratado como	volumétricas	documento/Fecha	
referencia			de modificación	
Choflán1		Masa:0.00977641 kg	E:\AUSAT\BIELA\Va	
Chanan		Volumen:3.50409e-006	lvula de	
1	Sólido		escape.SLDPRT	
		Densidad:2790 kg/m ² 3	Jul 20 00:59:03	
*		F 80.0.090000 N	2021	

Propiedades de estudio

Nombre de estudio	Análisis estático válvula escape
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS (E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propie	Componentes	
	Nombre:	A319T6	
	Tipo de modelo:	Isotrópico elástico lineal	
	Criterio de error predeterminado:	Desconocido	
	Límite elástico:	1.25e+008 N/m^2	Sólido
1	Límite de tracción:	4.20507e+008 N/m^2	1(Chaflán1)
	Módulo elástico:	7.4e+010 N/m^2	(Válvula de
	Coeficiente de Poisson:	0.33	escape)
	Densidad:	2790 kg/m^3	
	Módulo cortante:	1.5e+008 N/m^2	
	Coeficiente de dilatación térmica:	1.5e-005 /Kelvin	

Cargas y sujeciones

Nombre de sujeción	Imagen de sujeción			Detalles	de sujeción		
Fijo-1			Entidades:		2 0	2 cara(s)	
				Tipo:	Geor	netría fija	
	-	Fuer	zas res	ultantes			
Compo	onentes	Х		Y	Z	Resultante	
Fuerza de	reacción(N)	-0.0782	2226	-0.041357	10868.7	10868.7	
Momento o	o de reacción 0 (N.m)			0	0	0	

Nombre de carga	Cargar imagen	De	talles de carga
		Entidades:	2 cara(s)
	ón-1	Tipo:	Normal a cara seleccionada
Presión-1		Valor:	18.2988
		Unidades:	N/mm^2 (MPa)
		Ángulo de fase:	0
		Unidades:	deg

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	0.759761 mm
Tolerancia	0.037988 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden

Información de malla - Detalles

Número total de nodos	73401
Número total de elementos	48023
Cociente máximo de aspecto	11.629
% de elementos cuyo cociente de aspecto es < 3	98.7
% de elementos cuyo cociente de aspecto es > 10	0.00208
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:05

Nombre de computadora:	
nen ta katika katika da katika Katika da katika da ka	

Fuerzas resultantes

Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	Ν	- 0.0782226	-0.041357	10868.7	10868.7

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Nombre	Тіро	Mín.	Máx.
Tanaianaa1	VON: Tensión de	7.417.376,000N/m^2	1.342.460.416,000N/m^2
Tensiones i	von Mises	Nodo: 52759	Nodo: 53367

Nombre	Tipo	Mín.	Máx.
Names and Annual	enter en el la compositiva de la compositiva d compositiva de la compositiva de la		
7			 Martine Martine Martine Martine Martine Martine Martine Martine Martine Martine Martine <l< th=""></l<>
Válvula de	escape-Análisis es	tático válvula escape-	Tensiones-Tensiones1

	про	IVIITI.	iviax.	
Desplazamientos1	URES: Desplazamientos	0.000 mm	0.664 mm	
Desplazamientos	resultantes	Nodo: 1	Nodo: 563	
Válvula de escape-Análisis estático válvula escape-Desplazamientos- Desplazamientos1			zamientos-	

Nombre	Tipo	Mín.	Máx.
Deformaciones	ESTRN: Deformación	0.000	0.013
unitarias1	unitaria equivalente	Elemento: 7612	Elemento: 8373

Nombre	Tipo	Mín.	Máx.
Válvula de esca	pe-Análisis estático válvula Deformaciones u	a escape-Deformad	tiones unitarias-
Nombre	Tipo	Mín.	Máx.
Factor de seguridad1	Automático	1.093 Nodo: 53367	16.852 Nodo: 52759
Válvula de escape-Análisis estático válvula escape-Factor de seguridad-Factor de seguridad1			
	seguridad1		

Anexo 4.14. Análisis de fatiga de la válvula de escape utilizando gasolina.

Simulación de Válvula de escape

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Fatiga de válvula de escape a gasolina

Tipo de análisis: Fatiga (Amplitud constante)

		Sólidos	
Nombre de documento	Tratado	Duo nio do do o violum átrico o	Ruta al
y referencia	como	Propiedades volumetricas	de modificación
Chaflán1		Masa:0.00977641 kg	E:\AUSAT\BIELA\Va
Ghanarr		Volumen:3.50409e-006	lvula de
6	Sólido	m^3	escape.SLDPRT
		Densidad:2790 kg/m^3	Jul 20 00:59:03
*		Peso:0.0958088 N	2021

Propiedades de estudio

Nombre de estudio	Fatiga de valvula de escape a gasolina
Tipo de análisis	Fatiga(Amplitud constante)
Interacción entre sucesos	Aleatoria
Calcular tensiones alternas usando	Tensión equivalente (von Mises)
Cara de elemento SHELL	Cara superior
Corrección de la tensión media	Soderberg
Factor de reducción de resistencia a la fatiga	1
Vida infinita	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS
	(E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propie	Componentes		
	Nombre:	A319T6		
	Tipo de modelo:	Isotrópico elástico lineal	Sólido 1(Chaflán1) (Valvula de escape)	
	Criterio de error	Tensión de von		
	predeterminado:	Mises máx.		

Opciones de carga

Nombre del evento	N.º de ciclos	Tipo de carga	Asociación de estudios		
Suceso-1 1000	Completame nte invertida	Nombre de estudio	Factor de escala	Incremento	
		(LR=-1)	Análisis estático válvula escape	1	0

Nombre	Тіро	Mín.	Máx.					
Resultados1	Daño acumulado	0.100 Nodo: 1	1.000,000 Nodo: 458					
Válvula de escape-Fatiga de válvula de escape a gasolina-Resultados-Resultados1								

Nombre	Tipo	Mín.	Máx.			
Resultados3	Factor de carga	0.232 Nodo: 53367	41.951 Nodo: 52759			
			Tar or I na Article			
Válvula de escape-Fatiga de válvula de escape a gasolina-Resultados-						
		Resultados3				

Nombre	Tipo	Mín.	Máx.			
Resultados4	Trazado de indicador de biaxialidad	-1.000 Nodo: 11351	0.999 Nodo: 14752			
	nelle de realization de la companya de la companya La companya de la compa					
			Seree A series Series Series Comment			
Válvula de escape-Fatiga de válvula de escape a gasolina-Resultados-						
	Re	esultados4				

Anexo 4.15. Análisis estático de la válvula de escape utilizando GNV.

Simulación de Válvula de escape

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

1

Nombre de estudio: Análisis estático 2 válvula de escape GNV

Tipo de análisis: Análisis estático

Información de modelo

Sólidos					
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación		
Chaflán1	Sólido	Masa:0.00977641 kg Volumen:3.50409e-006 m^3	E:\AUSAT\BIELA\V alvula de escape.SLDPRT		
		Densidad:2790 kg/m^3 Peso:0.0958088 N	Jul 20 01:19:02 2021		

Propiedades de estudio

Nombre de estudio	Análisis estático 2 válvula de
	escape GNV
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde	Desactivar
SOLIDWORKS Flow Simulation	Desactival
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carneta de resultados	Documento de SOLIDWORKS
Calpela de resultados	(E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Prop	Componentes	
	Nombre:	A319T6	
	Tipo de modelo:	Isotrópico elástico lineal	
	Criterio de error	Tensión de von Mises	
	predeterminado:	máx.	
	Límite elástico: 1.25e+008 N/m^2		Sólido
	Límite de tracción:4.20507e+008 N/m^2Módulo elástico:7.4e+010 N/m^2		1(Chaflán1)
			(Válvula de
*	Coeficiente de Poisson:	0.33	escape)
	Densidad:	2790 kg/m^3	
	Módulo cortante:	1.5e+008 N/m^2	
	Coeficiente de dilatación térmica:	1.5e-005 /Kelvin	

Cargas y sujeciones

Nombre de sujeción	Imagen de sujeción		Detalles de su			jeción		
Fijo-1				Entidades:			2 cara(s)	
			Tipo:		G	Geometría fija		
Fuerzas resultantes								
Componentes		X Y Z			Resultante			
Fuerza de reacción(N	-0.092873	-0.0)489774 12827.9		.9	12827.9		
Momento de reacción (N.m)		0		0	0		0	

Nombre de carga	Cargar imagen	Detalles de carga			
		Entidades:	2 cara(s)		
		Tipo:	Normal a cara		
Presión-1			seleccionada		
		Valor:	21.5974		
	*	Unidades:	N/mm^2 (MPa)		
	-	Ángulo de fase:	0		
		Unidades:	deg		

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	0.759761 mm
Tolerancia	0.037988 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden

Información de malla - Detalles

Número total de nodos	73401
Número total de elementos	48023
Cociente máximo de aspecto	11.629
% de elementos cuyo cociente de aspecto es < 3	98.7
% de elementos cuyo cociente de aspecto es > 10	0.00208
% de elementos distorsionados (Jacobiana)	0

Tiempo para completar la malla (hh;mm;ss):	00:00:05
Nombre de computadora:	

Fuerzas resultantes

Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	Ν	-0.092873	-0.0489774	12827.9	12827.9

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Resultados del estudio

Nombre	Тіро	Mín.	Máx.	
Tensiones1	VON: Tensión de	8.754.470,000N/m^2	1.584.459.136,000N/m^2	
	von Mises	von Mises Nodo: 52759		
	André de l'adressemente de constr andrés de l'adressement (d'Alta e Laborato Tima Analitanovada) de la constant valence (d'Alta e construction de l'Analitanovada) angle de adhesse que (d'Alta			
		1	ene balan dara til. Hanna de balante Hanna de balante Hanna de balante Hanna de balante	
			- CECTER EDGE 27 - CECTER EDG 26 - CECTER EDG 27 - CECTER EDG	
	1			
Válvula de escape-Análisis estático 2 válvula de ESCAPE GNV-Tensiones-Tensiones1				

Nombre	Tipo	Mín.	Máx.	
Deformaciones ESTRN: Deformación		0.000	0.016	
unitarias1	unitarias1 unitaria equivalente Elen		Elemento: 8373	
Nacional de constitución de las entres en Nacional de constitución de las entres en Nacional de las entres de las entres de las entres en Nacional de administración de las entres Nacionals de las entres Nacio	al a la constructiva de la construcción e e e e e e e e e e e e e e e e e e e			
×				
Válvula de escape-Análisis estático 2 válvula de escape GNV-Deformaciones unitarias-				
Deformaciones unitarias1				

Anexo 4.16. Análisis de fatiga de la válvula de escape utilizando GNV.

Simulación de Válvula de escape

Fecha: martes, 20 de julio de 2021

Diseñador: SolidWorks

Nombre de estudio: Fatiga válvula de escape GNV

Tipo de análisis: Fatiga (Amplitud constante

Información de modelo

Sólidos				
Nombre de			Ruta al	
documento y	Tratado como	Propiedades volumétricas	documento/Fecha	
referencia			de modificación	
Chaflán1		Masa:0.00977641 kg	E:\AUSAT\BIELA\Val	
-	Sólido	Volumen:3.50409e-006 m^3	vula de	
	001100	Densidad:2790 kg/m^3	escape.SLDPRT	
		Peso:0.0958088 N	Jul 20 01:19:02 2021	

Propiedades de estudio

Nombre de estudio	Fatiga válvula de escape GNV
Tipo de análisis	Fatiga (Amplitud constante)
Interacción entre sucesos	Aleatoria
Calcular tensiones alternas usando	Tensión equivalente (von Mises)
Cara de elemento SHELL	Cara superior
Corrección de la tensión media	Soderberg
Factor de reducción de resistencia a la fatiga	1
Vida infinita	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS
	(E:\AUSAT\BIELA)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propiedades		Componentes	
	Nombre:	A319T6		
	Tipo de modelo:	Isotrópico elástico lineal	Sólido 1(Chaflán1) (Válvula de	
	Criterio de error predeterminado:	Tensión de von Mises máx.	escape)	
Datos de curva:				

Opciones de carga

Nombre del evento	N.º de ciclos	Tipo de carga	Asociación de estudios		
		Completam ente	Nombre de estudio	Factor de escala	Incremento
Suceso-1	1000	invertida (LR=-1)	Análisis estático 2 válvula de escape GNV	1	0

Resultados del estudio

Nombre	Тіро	Mín.	Máx.	
Resultados1	Daño acumulado	0.100 Nodo: 1	1.000,000 Nodo: 457	
	entering and the second se		Marca A and Anada Marca	
Válvula de escape-Fatiga válvula de escape GNV-Resultados-Resultados1				

Nombre	Тіро	Mín.	Máx.
Resultados2	Vida total	100.000 ciclos	1.000.000,000ciclos
		Nodo: 457	Nodo: 1
Installant (p) installant installant (p) and (
			A Constanting of the second se
			A CARLENS AND
			10000
1			
Válvula de escar	pe-Fatiga válvula de esc	ape GNV-Resultado	os-Resultados2

Nombre	Tipo	Mín.	Máx.	
Resultados3	Factor de carga	0.196 Nodo: 53367	35.544 Nodo: 52759	
	entra de lander altra a la recent entra de contentario que prese en acesar timo incomensario en encontentario de la contentario en encontente terra destante en encontentario de la contentario en encontente terra de la contente en el contente de la contentario de la contente en encontente terra de la contente en el contente de la contente encontente encontente encontente encontente en el contente de la contente encontente encontente encontente encontente encontence encontente encontente encontente encontente encontente enco			
		-		
			2000 2000 2000	
			2.00 0.00	
	7			
Válvula de escape-Fatiga válvula de escape GNV-Resultados-Resultados3				

Nombre	Тіро	Mín.	Máx.
Resultados4	Trazado de indicador de	-1.000	0.999
	biaxialidad	Nodo: 11351	Nodo: 14752

Nombre	Тіро	Mín.	Máx.
inacción del mantecipión de la compa resoluto de arcicular degle contra de escape interacional Nen en resoluto i regularización del bioxidantes	An including		
Válvula de esca	pe-Fatiga válvula de esca	ne GNV-Resultados.	Posultados/
valvula ue esca	pe-raliya valvula ue esca		nesullau054

Manual de Toyota Corola

ENGINE UNIT

COMPONENTS

Cuadros comparativos de resultados del cálculo manual y el obtenido en el SOLIDWORKS.

CONCEPTO	RESULTADOS TEORICOS	RESULTADOS SOLIDWORKS
Esfuerzo cortante gasolina (válvula de admisión)	147,27 MPa	149,69 MPa
Esfuerzo cortante gas (válvula de admisión)	173,82 MPa	149,69 MPa
Esfuerzo cortante gasolina (válvula de escape)	146,98 MPa	134,27 MPa
Esfuerzo cortante gas (válvula de escape)	173,47 MPa	158,45 MPa
Esfuerzo cortante gasolina (pistón)	97,7 MPa	110,41 MPa
Esfuerzo cortante gas (pistón)	115,27 MPa	130,32 MPa
Esfuerzo cortante gasolina (cilindro)	97,5 MPa	131,4 MPa
Esfuerzo cortante gas (cilindro)	115,02 MPa	154,8 MPa
Factor de seguridad gasolina (válvula de admisión)	1,358	1,084
Factor de seguridad gas (válvula de admisión)	1,151	1,208
Factor de seguridad gasolina (válvula de escape)	1,361	1,093
Factor de seguridad gas (válvula de escape)	1,153	1,079
Factor de seguridad gasolina (pistón)	2,047	2,26
Factor de seguridad gas (pistón)	1,735	2,23
Factor de seguridad gasolina (cilindro)	2,051	1.952
Factor de seguridad gas (cilindro)	1,739	1,82

Cuadros comparativos de resultados de deformación con otros estudios.

CONCEPTO	RESULTADOS ESTUDIO PROPIO	RESULTADOS ESTUDIO [12]
Desplazamiento gasolina (válvula de admisión)	0,790	0,585
Desplazamiento gas (válvula de admisión)	0,790	0,585
Desplazamiento gasolina (válvula de escape)	0,664	0,476
Desplazamiento gas (válvula de escape)	0,784	0,535
Desplazamiento gasolina (pistón)	0,222	0,132
Desplazamiento gas (pistón)	0,262	0,164
Desplazamiento gasolina (cilindro)	0,125	0,075
Desplazamiento gas (cilindro)	0,054	0,032
Deformación gasolina (válvula de admisión)	0,014	0,011
Deformación gas (válvula de admisión)	0,014	0,011
Deformación gasolina (válvula de escape)	0,013	0,009
Deformación gas (válvula de escape)	0,018	0,009
Deformación gasolina (pistón)	0,005	0,003
Deformación gas (pistón)	0,004	0,003
Deformación gasolina (cilindro)	0,001	0,001
Deformación gas (cilindro)	0,001	0,001

Índice de los controles (medidas de detección) que se tienen para detectar fallas y evaluarlas

Calificación		Tipos de inspección		
Cuantitativa	Criterio	А	в	с
1	Controles seguros para detectar: El ítem ha pasado a prueba de errores. Es casi improbable el hecho de realizar partes no conformes.	x		
2	Controles casi seguros para detectar: El ítem ha pasado por medición automática. No puede pasar la parte no conforme.	x	x	
3	Controles con buena oportunidad de detectar: Detección inmediata del error en la estación o en la estación siguiente. No pasa la unidad no conforme.	x	x	
4	Controles con buena oportunidad de detectar: Detección del error en la estación siguiente. No pasa la unidad no conforme.	x	x	
5	Controles que pueden detectar: Mediciones "pasa" o "no pasa" realizado en el 100% de las partes después de dejar la estación.		x	
6	Controles que pueden detectar: Control en menos del 100% de las partes; puede estar apoyado en métodos estadísticos.		x	x
7	Controles con poca oportunidad de detectar: Control logrado con doble inspección visual.			x
8	Controles con poca oportunidad de detectar: Control efectuado con una inspección visual.			x
9	Controles que probablemente no detectarán: Control logrado con verificaciones indirectas o al azar.			x
10	Certeza absoluta de no detección: No se controla, no se detecta.			

A = Prueba de error.

B = Medición automatizada.

C= Inspección visual/manual.

Nota: Tomado de <u>https://www.ingenieriaindustrialonline.com/lean-manufacturing/analisis-del-</u> <u>modo-y-efecto-de-fallas-amef/</u>