

FACULTAD DE INGENIERÍA ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

Estabilización de Suelos Arcillosos Usando Caucho Granular de Neumático para fines De Carretera no Pavimentadas

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autor

Bach. Cosar Soto Frank Eder https://orcid.org/0000-0002-0146-7169

Asesor

Dr. Muñoz Pérez Sócrates Pedro https://orcid.org/0000-0003-3182-8735

Línea de Investigación

Ingeniería Infraestructura y Medio Ambiente

Pimentel – Perú 2023

ESTABILIZACIÓN DE SUELOS ARCILLOSOS USANDO CAUCHO GRANULAR DE NEUMÁTICO PARA FINES DE CARRETERAS NO PAVIMENTADAS

Aprobación del jurado
MG. SALINAS VASQUEZ NESTOR RAU
Presidente del Jurado de Tesis
MG. MEDRANO LIZARZABURU EITHEL Y
Secretario del Jurado de Tesis
MG. CHAVEZ COTRINA CARLOS OVIDI

Quien suscribe la DECLARACIÓN JURADA, soy egresado (s) del Programa de Estudios de **Escuela Profesional de Ingeniería Civil** de la Universidad Señor de Sipán S.A.C, declaro bajo juramento que soy autor del trabajo titulado:

ESTABILIZACIÓN DE SUELOS ARCILLOSOS CON CAUCHO GRANULAR PARA FINES DE CARRETERAS NO PAVIMENTADAS

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firman:

Bach. Cosar Soto Frank Eder DNI: 71554558

Pimentel, 07 de diciembre del 2023.

Dedicatoria

A mi hermano Hans Cosar Soto en el cielo por ser mi ejemplo de ser humano a seguir y por su apoyo incondicional en todos mis objetivos.

A mi abuela Dora Cabanillas Salazar por su entrega y por ser la prueba viviente de amor más puro e incondicional de toda mi vida.

A mis padres Roque Cosar Gallardo e Ymelda Soto Cabanillas por su amor desmedido, protección, enseñanzas y apoyo incondicional en todas las etapas de mi vida.

A mis hermanos Percy Cosar Soto y Jhordan Cosar Soto por su amor, entrega y apoyo desmedido y de quienes estoy muy orgulloso.

Agradecimientos

A Dios, por haberme dado todo lo que en vida tengo.

A mi familia, por brindarme el apoyo incondicional durante toda mi etapa universitaria.

A mis docentes de la Universidad, por las enseñanzas brindadas y experiencias compartidas necesarias para mi formación académica para afrontar mi posterior vida profesional.

A mis grandes amigos de la Universidad por tantas experiencias compartidas.

Índice

Dedicatoria	4
Agradecimientos	5
Índice de tablas	7
Índice de figuras	9
Resumen	11
Abstract	12
I. INTRODUCCIÓN	13
1.1. Realidad problemática	13
1.2. Formulación del problema	21
1.3. Hipótesis	21
1.4. Objetivos	21
1.5. Teorías relacionadas al tema	22
II. MATERIALES Y MÉTODO	33
2.1. Tipo y Diseño de Investigación	33
Tipo de investigación	33
Diseño de investigación:	33
2.2. Variables, Operacionalización	34
Variables	34
2.3. Población de estudio, muestra, muestreo y criterios de selección	36
Población	36
Muestra	36
Muestreo	36
2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad	37
2.5. Procedimiento de análisis de datos	37
2.6. Método de análisis de datos	56
2.7. Criterios éticos	56
III. RESULTADOS Y DISCUSIÓN	57
3.1. Resultados	57
3.2. Discusión de resultados	92
IV. CONCLUSIONES Y RECOMENDACIONES	98
4.1. Conclusiones	98
4.2. Recomendaciones	99
REFERENCIAS	100
ANEXOS	105

Índice de tablas

Tabla I Categorías de sub rasante	23
Tabla II Tamaño de partículas	26
Tabla III Características en base al Índice de plasticidad	27
Tabla IV Tipología de suelo en base a Índice Grupo	29
Tabla V Nomenclatura de Clasificación Suelos AASHTO y SUCS	31
Tabla VI Operacionalización de variables	35
Tabla VII Georreferencia Calicatas	39
Tabla VIII Ensayos de laboratorio y su normativa	40
Tabla IX Granulometría, Resumen Muestras Patrón	59
Tabla X SUCS – AASHTO, Clasificación Muestras Patrón	63
Tabla XI Granulometría, Caucho Granular	68
Tabla XII Granulometría, Muestra Patrón C-1 + % Caucho Granular	69
Tabla XIII Granulometría, Muestra Patrón C-2 + % Caucho granular	69
Tabla XIV Granulometría, Muestra Patrón C-4 + % Caucho granular	72
Tabla XV Granulometría, Muestra patrón C-6 + % Caucho granular	72
Tabla XVI Peso Específico, Muestra patrón C-1 + % Caucho granular	75
Tabla XVII Peso Específico, Muestra patrón C-2 + % Caucho granular	76
Tabla XVIII Peso Específico, Muestra patrón C-4 + % Caucho granular	76
Tabla XIX Peso Específico, Muestra patrón C-6 + % Caucho granular	77
Tabla XX Proctor Modificado, Muestra patrón C-1 + % Caucho granular	78
Tabla XXI Proctor Modificado, Muestra patrón C-2 + % Caucho granular	78
Tabla XXII Proctor Modificado, Muestra patrón C-4 + % Caucho granular	81
Tabla XXIII Proctor Modificado, Muestra patrón C-6 + % Caucho granular	81
Tabla XXIV CBR, Muestra patrón C-1 + % Caucho granular	85
Tabla XXV CBR, Muestra patrón C-2 + % Caucho granular	86
Tabla XXVI CBR, Muestra patrón C-4 + % Caucho granular	86
Tabla XXVII CBR, Muestra patrón C-4 + % Caucho granular	87
Tabla XXVIII Valores Coeficiente de Correlación	89
Tabla XXIX Costo Fabricación Caucho granular	90
Tabla XXX Características Neumáticos en función al tipo de vehículo	91
Tabla XXXI Costo Unitario por m3, Suelo + 5% Caucho Granular	91
Tabla XXXII: Matriz de Consistencia	106
Tabla XXXIII: Comparativa de Investigaciones Observadas	107
Tabla XXXIV Contenido Humedad, cuadro resumen	108
Tabla XXXV Límite Líquido, Muestras patrón	108

Tabla XXXVI Límite Plástico, Muestras patrón	108
Tabla XXXVII Índice de Plasticidad, Muestras patrón	109
Tabla XXXVIII Peso Específico, Muestras patrón	109
Tabla XXXIX Proctor Modificado, Muestras patrón	109
Tabla XL CBR, Muestras patrón	109

Índice de figuras

Fig.	1. Carretera Túcume - Cachinche	38
Fig.	2. Excavación calicata 01 y extracción de muestras	39
Fig.	3. Pesado de muestras patrón	41
Fig.	4. Contenido humedad muestra patrón (6 calicatas)	42
Fig.	5. Muestras patrón colocadas al horno	42
Fig.	6. Granulometría muestra patrón + caucho granular	43
Fig.	7. Pesado caucho granular	44
Fig.	8. Tamizado y pesado de muestras retenidas	44
Fig.	9. Copa Casagrande, limite liquido	45
Fig.	10. Limite plástico	46
Fig.	11. Muestras de lime plástico para ser conectadas al horno	47
Fig.	12. Peso Específico	48
Fig.	13. Peso Específico, peso de muestra final	48
Fig.	14. Peso Específico de muestras patrón + caucho granular del 5%, 10%, 15% y 49 $$	20%
Fig.	15. Muestras listas para ensayos de Proctor Modificado	50
Fig.	16. Proceso de mezclado, muestra patrón + caucho granular	51
Fig.	17. Proctor modificado, compactado de la muestra	51
Fig.	18. Peso muestra compactada + molde	52
Fig.	19. CBR, compactación de la muestra	53
Fig.	20. CBR, muestra patrón +5% caucho granular	54
Fig.	21. CBR (equipo de penetración, muestra patrón +20% caucho granular	55
Fig.	22. Valores Contenido Humedad, Resumen	58
Fig.	23. Limite Liquido, Muestras Patrón Resumen	60
Fig.	24. Limite Liquido, Muestras Patrón Resumen	61
Fig.	25. Índice Plasticidad, Muestras Patrón Resumen	62
Fig.	26. Peso Específico, Muestras Patrón Resumen	64
Fig.	27 Curvas de Compactación, Muestra Patrón C-1, C-2, C-4, y C-6	65
Fig.	28. Comparativo Resumen Proctor Modificado, Muestras Patrón	66
Fig.	29. CBR Resumen, Muestras Patrón	67
Fig.	30. Granulometría Patrón C-1, Patrón + X% Caucho	70
Fig.	31. Granulometría Patrón C-2, Patrón + X% Caucho	71
Fig.	32. Granulometría Patrón C-4, Patrón + X% Caucho	73
Fia	33. Granulometría Patrón C-6. Patrón + X% Caucho	74

Fig. 35. Curvas De Compactación C-1, Muestra Patrón, Muestra Patrón + X% Caucho Fig. 36. Curvas De Compactación C-2, Muestra Patrón, Muestra Patrón + X% Caucho Fig. 37. Curvas De Compactación C-4, Muestra Patrón, Muestra Patrón + X% Caucho Fig. 38. Curvas De Compactación C 6. Muestra Patrón - Muestra Patrón + X% Caucho Fig. 38. Curvas De Compactación C 6. Muestra Patrón	77
Fig. 37. Curvas De Compactación C-4, Muestra Patrón, Muestra Patrón + X% Caucho	79
•	80
Fig. 29. Curves De Compostoción C. G. Musetre Detrón, Musetre Detrón, L. VV/ Couche	82
Fig. 38. Curvas De Compactación C-6, Muestra Patrón, Muestra Patrón + X% Caucho	83
Fig. 39. Proctor Modificado, Resumen Muestra patrón + Caucho granular	84
Fig. 40. CBR, Resumen Muestras patrón + % Caucho granular	88
Fig. 41. Coeficiente de correlación, CBR - % Caucho	90
Fig. 42. Número de calicatas para exploración de suelos acorde al tipo de carretera1	10

ESTABILIZACIÓN DE SUELOS ARCILLOSOS USANDO CAUCHO GRANULAR DE NEUMÁTICO PARA FINES DE CARRETERAS NO PAVIMENTADAS

Resumen

La presente investigación tuvo objetivo general estabilizar el suelo arcilloso usando caucho granular de neumático para fines de carreteras no pavimentadas, el tipo de investigación fue aplicada y el diseño de investigación de tipo experimental, se tomó como muestra de estudio la Carretera Túcume - Cachinche, Distrito Túcume, Provincia Lambayeque, Departamento Lambayeque - Perú, de donde se analizaron 3 Km de vía no pavimentada y se realizaron 6 calicatas a fin de estudiar sus propiedades físico-mecánicas, ya que se pretende estabilizar suelos arcillosos con la incorporación de caucho granular en porcentajes del 5%, 10%, 15%, y 20%; para el análisis de propiedades físicas se realizaron los ensayos de Contenido de Humedad, Granulometría, Límites de Atterberg, Clasificación de suelos SUCS - AASHTO y Peso Específico, mientras que para el análisis de las propiedades mecánicas se hizo en base a los ensayos de Proctor Modificado y CBR. Se concluyó que no se logró estabilizar los suelos arcillosos adicionando caucho granular para fines de carreteras no pavimentadas para ser aplicable a nivel subrasante debido a que con los porcentajes de diseño establecidos no se lograron mejoras significativas en las propiedades físicas y mecánicas de los suelos en estudio, sin embargo la muestra patrón cuyo CBR natural=5.6% combinada con el 5% de caucho granular logró un ligero incremento en el CBR=6.60%, mientras que adicionando el 10% de caucho tiene un CBR=3.1%, adicionando el 15% de caucho un CBR=2.5% y finalmente con el 20% de caucho se reduce considerablemente hasta un valor de CBR=1.5%.

Palabras Clave: Estabilización de suelos arcillosos, Caucho Granular, CBR, Proctor Modificado

Abstract

The present research had the general objective of stabilizing the clay soil using granular tire

rubber for the purposes of unpaved roads, the type of research was applied and the research

design was experimental, the Túcume - Cachinche Highway, District, was taken as a study

sample. Túcume, Lambayeque Province, Lambayeque Department - Peru, where 3 km of

unpaved road were analyzed and 6 pits were made in order to study their physical-mechanical

properties, since the aim is to stabilize clay soils with the incorporation of granular rubber in

percentages. 5%, 10%, 15%, and 20%; For the analysis of physical properties, the tests of

Moisture Content, Granulometry, Atterberg Limits, SUCS - AASHTO soil classification and

Specific Weight were carried out, while for the analysis of the mechanical properties it was

done based on the Modified Proctor tests. and CBR. It was concluded that it was not possible

to stabilize the clay soils by adding granular rubber for the purposes of unpaved roads to be

applicable at the subgrade level because with the established design percentages no

significant improvements were achieved in the physical and mechanical properties of the soils

under study. However, the standard sample whose natural CBR=5.6% combined with 5%

granular rubber achieved a slight increase in CBR=6.60%, while adding 10% rubber has a

CBR=3.1%, adding 15%. of rubber a CBR=2.5% and finally with 20% rubber it is considerably

reduced to a value of CBR=1.5%.

Keywords: Stabilization of clay soils, Granular Rubber, CBR, Modified Proctor.

12

I. INTRODUCCIÓN

1.1. Realidad problemática.

El proceso de reforzar o estabilizar el suelo es uno de los procedimientos de ingeniería que más se realiza en la actualidad debido a que existen suelos de baja calidad que no cumplen los requisitos indispensables para poder ejecutar una obra de ingeniería. El concepto de estabilización fue acuñado de la mano del principio del suelo refuerzo, demostrando que al combinar las fibras con el suelo incrementa la resistencia a la corte [1]. La razón principal de reforzar la masa del suelo es para brindarle mayor estabilidad e incrementar su capacidad portante para minimizar asentamientos diferenciales del suelo y la deformación lateral [2]. La preliminar dificultad que tiene todo especialista en diseño de pavimentación, cuando no se cuenta con materiales adecuados para la ejecución de obras viales, es la toma de decisiones respecto del modo para estabilización que mejor se adapte al proyecto a fin de optimizar las características del material de suelo tipo C, A fin de volverlos adecuados para la construcción de la capa de subbase o subrasante puesto que estos presentan inconvenientes los cuales tienden a generar dificultades que comúnmente se manifiestan en deformaciones, agrietamientos, baja capacidad portante y estabilidad volumétrica [3]. En referencia a los suelos expansivos, las arcillas tienden a expanderse y manifiestan variaciones volumétricas por acción de la humedad, del fenómeno de ascencion capilar del agua, como tambien debido al proceso de infiltración. Todo tipo de obra civil edificada sobre suelos arcillosos manifestará cambios volumetricos generadas por la dilatación del suelo arcilloso, los cuales generan fisuras y grietas sobre muros además elevaciones de los falsos pisos, et al., [4]. Los suelos arcillosos son materiales cuyos tamaños son inferiores a 0.05 milímetros, además de presentar alta plasticidad la cual genera problemas de inestabilidad para la construcción de obras civiles, como se da en la construcción de carreteras, ya que de presentarse en el terreno de subrasante se debe proceder a realizar el mejoramiento o reemplazar el suelo con material de préstamo para poder optimizar su estabilidad y serviciabilidad de la vía [5]. Además, es sabido que a nivel local en la región Lambayeque la presencia de suelos cohesivos se da en gran porcentaje, siendo una de las principales problemáticas debido a su inestabilidad, baja capacidad portante y por presentar problemas de expansión, lo cual dificulta la ejecución de proyectos de ingeniería vial como en edificaciones, ya que es necesario realizar un mejoramiento del suelo previo a ejecutar algún proyecto [6]. Por otro lado los neumáticos en desuso son uno de los más materiales de desecho más nocivos de esta época. Según una estimación, aproximadamente 1.500 millones de unidades de neumáticos se producen en todo el mundo, de los cuales 1000 millones cumplen su función subsidiaria [7]. La producción y el consumo de caucho aumentan continuamente en todo el mundo. La demanda de caucho está aumentando a una tasa del 3,9% cada año y se espera que alcance las 51,7 millones de toneladas métricas en 2023 [8]. En la decada del 90, multiples investigadores geotecnistas plantearon la alternatica de reutilizar caucho de llantas recicladas (ELT) en distintos modos a fin de conseguir estabilizar el suelo. Algunos subproductos son creados en el tratamiento de ELT, como son las Fibrosas de neumático de reciclado en grado de textilería (WTTF). Este tipo de fibra se ha clasificado como residuos particulares y de riesgo alto. Es sabido que estos desechos son incenerados o sepultados, por consecuente genera un impacto ambiental [9]. Las propiedades únicas de los neumáticos de desecho, como la alta flexibilidad, además de su bajo peso han suscitado interés en aplicar estos materiales como refuerzo del suelo. Por esta razón, en los últimos años, muchos se han realizado búsquedas sobre las cualidades de la mezcla que consisten en suelo y varios tamaños de caucho [10].

Ahora bien, también existen investigaciones efectuadas para evaluar el uso de caucho granulado en estabilizaciones de suelos arcillosos. Desde esta perspectiva, Yadav & Tiwari [7], tuvieron como objetivo "Analizar la dependecia de adicionar dibras de caucho reciclado en algunos aspectos geotécnicos, propiedades de la arcilla cementada / no cementada". Para esta investigación se usaron tres porcentajes de cemento (0%, 3% y 6%) y se consideraron cinco porcentajes de fibra de caucho (0%, 2.5%, 5%, 7.5% y 10%). Llegando a concluir que "el estudio ha demostrado que las mezclas de fibras de arcilla, cemento y caucho que

contiene un 6% de cemento y hasta un 7,5% de fibra de caucho se puede utilizar como material de relleno, material de relleno para retener muro, subbase de vías de tránsito de bajo volumen y talud lateral del canal".

Asimismo, Yadav, et al., [11], tuvieron como objetivo "Valorar las propiedades de compactación y resistencia del terreno arcilloso incorporado con caucho de miga de desecho y cemento para su uso sostenible en aplicación geotécnica", llegando a concluir que "La MDS y el OCH del caucho-cementostabilizado del suelo arcilloso disminuye a razón que se aumenta el caucho granular. La resistencia compresión confinada y resistencia a la tracción dividida de la arcilla incorporada con 5% de goma de miga son ligeramente mayores que la arcilla. El cemento aumenta la resistencia de compresión cofinada y la tracción dividida fuerza notable, pero existe disminución de las cepas axiales y diametrales correspondientes a la carga máxima".

También Yadav, et al., [11], tuvieron objetivo "Evaluar el impacto de inclusión de neumáticos de caucho de desecho en las características físico-mecánicas del terreno arcilloso, con caucho desechado a nivel granular con partículas de 0,8 y 2 mm variando del 0 al 10%." llegando a concluir que "la inclusión del caucho desmenuzado reduce la MDS y el OCH presente en la arcilla. Adicionando restos de neumático granulado hasta un 5% en la arcilla provoca un incremento insignificante en su resistencia a la compresión y su resistencia a la tracción dividida. Comparado con un arcilloso suelo, la inclusión de caucho granulado hasta un 5% mejora la relación de carga de California del Suelo arcilloso en estado no empapado. También se ha observado que al implementar caucho granulado ayuda a disminuir el coeficiente de compresión y la presión de hinchamiento del suelo arcilloso".

Por otro lado, Hanan et al., [12], tuvieron como objetivo "Estudiar el impacto del desmoronamiento de los residuos de caucho de los neumáticos en se densidad deshidratada máxima, su contenido de humedad optimizado y la respuesta de hinchazón unidimensional de la hinchazón del suelo, la consolidación y el coeficiente de compresión. También estudio mejorado en las propiedades de la fuerza de cizallamiento (c y o)." llegando a concluir lo

siguiente "La densidad máxima se redujo cuando se aumentaba el porcentaje de neumático granular, menor densidad de la mezcla a un mayor contenido de caucho, mientras que hubo poca disminución en el OCH fueron porcentaje de caucho de neumáticos superior al 1%. La incorporación de la mayor cantidad de contenido de caucho superior al 5% reduce la resistencia a la compresión confinada, aunque el suelo mantuvo una consistencia rígida.".

Al mismo tiempo, Li et al., [13], tuvieron como objetivo "Explorar los roles de las inclusiones suaves en la modificación de la rigidez mezclas granulares e identificar los efectos del tamaño y fracción sobre la respuesta dinámica y la licuefacción resistencia de la mezcla de caucho/suelo. Presentar interacción entre partículas rígidas y blandas y discutir el mecanismo que domina el comportamiento de la mezcla Microscópico." llegando a concluir que "El módulo de cizallamiento de la mezcla fue influenciado significativamente por los parámetros utilizados en este estudio. Específicamente el módulo de cizallamiento en el rango de tensión pequeño aumentó significativamente SCR1 debido al proceso de llenado vacío, que significativamente aumentó la cantidad de contacto y proporcionó soporte lateral".

Por su lado, Nanari et al., [14], plantearon el objetivo de "Reutilizar las Fibras Textiles de Neumáticos de Desecho (W.T.T.F) para reforzar los suelos mediante una estructura diseñada y en base a estudios efectuados en laboratorio", para ese proposito, las muestras son estudiadas mediante pruebas de compactación, cizallamiento directo, resistencia a la compresión sin confinar (UCS), (CBR) y resistencia tracción sectorizada (STS), implementando porcentajes de 0.5 %, 1 %, 2 %, 3 % y 4 % W.T.T.F, en un suelo arcilloso y y un suelo de tipo arenoso. W.T.T.F tienen la capacidad de brindar mejoras a la propiedad de resistencia com también la ductilidad del suelo arenoso. Sin embargo, en suelo arcilloso, a pesar de la reducción en UCS y CBR, se incrementan la ductilidad y la resistencia a la tracción. Llegando a concluir que " El MDD se reduce linealmente en un 0.55%, 1.025%, 1.42% y 1.97%, respectivamente, para WTTF contenidos de fc = 1%, 2%, 3% y 4%. Por otro lado, OMC se incrementa marginalmente en un 0,26%, 0,26%, 0,52% y 0,79% con un aumento en el contenido de WTTF sobre fc = 1%, 2%, 3% y 4%, respectivamente".

Luego, Akbulú et al., [15], plantearon el objetivo de "Investigar el grado de sujeción de la inclusión de fibra de residuos de neumaticos orientada aleatoriamente para el comportamiento geotécnico en los suelos finos con presencia de arcilla", Este proyecto de investigación evaluó el implemento de fibras obtenidas de neumáticos de desecho, polietileno y polipropileno en fibras aplicables en la modificación de un suelo arcilloso. El presente estudio indaga a fondo la capacidad y el comportamiento antes cargas dinámicas de los suelos reforzados con materiales de fibra de desecho incluidos aleatoriamente. Llegando a concluir que "Las fibras de neumaticos desechados, polietileno y fibras de polipropileno pueden se utilizadas para mejorar la fuerza y el comportamiento dinámico de los arcillosos suelos en aplicaciones geotécnicas. Además, estas fibras de refuerzo son materiales de desecho, por lo que el suelo la estabilización con fibra de desecho puede reducir potencialmente costos de estabilización".

Ahora bien, Anvar et al., [10], tuvieron como objetivo "Estudiar el comportamiento del caucho granulado en el asentamiento de la base que descansa sobre la mezcla de caucho granulado de arena", Se utilizaron diferentes tamaños de caucho granulado. Según los resultados, el caucho granulado de 4 a 9 mm tenía el mayor efecto sobre la mejora de la capacidad de carga y reducción del asentamiento de arena de grano fino. Los resultados mostraron que las mezclas de caucho granulado en arena con caucho granulado en el rango de 4 a 9 mm y un contenido del 10% en peso de La mezcla puede aumentar la capacidad de carga de la arena hasta en un 50%. Llegando a concluir que "Los resultados de las pruebas de pie de modelo en arenas reforzadas indican que el caucho granulado puede aumentar la capacidad de rodamiento de arena. Al considerar el efecto del caucho granulado en el asentamiento, excepto en el caso de utilizar caucho granulado de 1-4 mm, los otros tamaños de caucho granulado disminuyen el asentamiento de la base, en un 17 y un 27% en comparación con la arena no tratada en los casos de uso de caucho granulado de 9 y 4-9 mm, respectivamente. Aunque el efecto de las arenas y el caucho granular de 4 mm en la capacidad del rodamiento es no considerables, mezclas de arena y el caucho granulado de

4 a 9 mm puede aumentar la capacidad del rodamiento hasta un 30 y 50%, respectivamente".

Inmediatamente en el Perú, Cusquibán [16], tuvo como objetivo principal "Realizar una mejora en su CBR implementando el uso de caucho granular de neumáticos para retribuir al cuidado de la ecología para que pueda aplicarse en la construcción de obras de pavimentación, teniendo en cuenta las especificaciones técnicas establecidas en el manual de carreteras, suelos, geología, geotecnia y pavimentos del MTC". Llegando a concluir que "Dichos suelos arcillosos tienen un CBR máximo de 7.10%, por lo tanto, se recomienda aplicar a nivel subrasante o base, con la adición del 20% de caucho, su CBR logra aumentar hasta un 10%, esta muestra de suelo está clasificada como es regular, añadiendo 40% de caucho tiene un CBR=30.40%, y finalmente añadiendo 60% de caucho, se obtuvo un CBR=41%, dicho suelo tratado puede ser apto como material para una subrasante, acorde a lo estipulado por el MTC.

Por su lado, Torres y Diaz [5], tuvieron como objetivo "Obtener el porcentaje de incremento en densidad y el CBR del suelo cohesivo adicionanado caucho triturado" llegando a concluir que "El (C.B.R) a 0.1 pulgadas se dan a continuación: con el muestreo patrón obtuvo un CBR=2.94% además con el 1 % de caucho el C.B.R=3.85%; adicionando 3% de caucho el CBR=5.15%, adicionando 5 % de caucho un C.B.R=4.97 %, adicionando 7% de caucho se logró un C.B.R=4.88 % y adicionando el 9% de caucho el C.B.R=2.92 %".

Al mismo tiempo, Huamán y Muguerza [17], tuvieron objetivo "Evaluar el grado de influencia del caucho granular sobre los suelos arcillosos verificado mediante la prueba del CBR, 2019.", llegando a concluir que "Los ensayos de C.B.R brindaron datos que coinciden con la hipótesis principal estimada, debido a que combinar el suelo con materia de caucho granular retribuye a brindar mejoras en sus propiedades de resistencia corte. Teniendo en cuenta que dichas características son producto de sus composición mecánica y física. Se concluyó que la proporción de caucho más adecuada para adicionar es 10 %, ya que este permite optimizar sus propiedades relacionadas a la resistencia al corte.

Además, Benavente y Navarro [18], plantearon el objetivo principal de "Reconocer el grado de influencia del caucho rallado de neumáticos reciclados para verificar sus propiedades geomecánicas de un material tipo granular", llegando a concluir que "Se da de manera más eficaz para tensiones de confinamiento entre 100 y 200 kPa y el contenido óptimo de adición de caucho oscila entre valores del 0% al 15% para el ensayo de corte directo. Los ensayos de compactación muestran que las densidades secas máximas de la combinación suelo - caucho reciclado está por debajo de la densidad seca del suelo puro".

Por otra parte, Rodriguez [19], planteó el objetivo principal el "Estudiar cómo influye el caucho granular a fin de realizar mejoras en las propiedades físico-mecánicas en la subrasante de suelos arcillosos de la Av. América de la ciudad de Juliaca — Puno 2021", llegando a concluir que "El material de estudio proveniente de las tres calicatas realizadas fue clasificado como arcilla de baja plasticidad, por tanto se adicionaron porcentajes de caucho granular del 3%, 5%, 7% y 9%, con respecto a las propiedades físicas la granulometría del mismo obtuvo un plus, aunque manifiesta un descenso en su densidad por consecuencia del bajo peso del caucho granular, por otro lado, en cuanto a las propiedades mecánicas presento un CBR patrón del 3.6% clasificado como insuficiente, al adicionar el 3% de caucho se logró un CBR mín en 5.4% - su máx en 6.6%, con el 5% de caucho su CBR mín es 4.7% - máx es 6.4%, con el 7% de caucho su CBR mín es 3.8% - máx 4.9% y con el 9% de caucho su CBR mín es 3.3% - máx 4.7%. Concluyendo que con el porcentaje del 3% de adición de caucho el suelo puede clasificarse como un suelo promedio para ser aplicable a nivel subrasante".

Tambien, Moreno [20], planteó el objetivo principal de "estudiar la influencia del aditivo TerraZyme y el Caucho granular en el mejoramiento de la subrasante en Ampliación Las Lomas – Ventanilla 2021", llegando a concluir que "El aditivo TerraZyme y el caucho granulado lograron mejorías en la subrasante de la Ampliación Las Lomas – Ventanilla, siendo estas en sus propiedades mecánicas y físicas: 1) incrementando su MDS con el uso del TerraZyme 2) incrementando su MDS con el uso del caucho granulado 3) incrementando su resistencia al esfuerzo de la subrasante con el uso del TerraZyme y 4) incrementando su resistencia al

esfuerzo de la subrasante con el uso del caucho granulado".

Al mismo tiempo, Junes [21], tuvo como objetivo general "Analizar la influencia de la adición del caucho granular en el mejoramiento de la subrasante en la Avenida El sol, San Joaquín, Ica 2021", llegando a concluir que "El uso del caucho granular en la subrasante tuvo efectos contrarios a una mejora; puesto que, al adicionar un porcentaje mayor de caucho en material para fines de subrasante, este genera deficiencias en sus propiedades mecánicas. Por lo tanto la aplicación del caucho granular no genera influencia relevante en el mejoramiento de la subrasante en la Avenida El sol, localidad de San Joaquín".

Entre tanto, en el Departamento de Lambayeque, estabilizar suelos con presencia de arcilla adicionando de caucho granulado sigue siendo un tema que no ha sido planteado como alternativa de solución y está abierto debido a investigaciones planteadas a nivel nacional las cuales se contradicen y generan controversias, por medio de esta investigación se busca generar una base teórica de referencia para tenerse en cuenta en futuras investigaciones.

Cabe recalcar, que la presente investigación expondrá las justificaciones necesarias abarcando los diferentes ámbitos de análisis. Tal es el caso que, desde el ámbito técnico, la estabilización de suelos arcillosos con adición de caucho en pequeños porcentajes brinda mejoras en las características mecánicas en base ensayos de Proctor Modificado y CBR. También se justifica ambientalmente ya que plantea una alternativa de solución para la contaminación ambiental en el que se propone la reutilización de la materia prima de los neumáticos en desuso para ser procesada a nivel granular y que está sirva de complemento para tratar los suelos arcillosos. Luego se justifica socialmente ya que plantea una idea ecológica que puede ser utilizada en beneficio de la sociedad en futuros proyectos de ingeniería. Finalmente, se justifica en el ámbito económico, debido a que puede resultar como una alternativa de bajo costo a comparación de los materiales actuales que sirven de entes estabilizadores, los cuales presentan costos más elevados que resultan en un aumento significativo del presupuesto en obras civiles. Ahora, en relación a la importancia del desarrollo de la presente investigación, podemos mencionar que esta puede resultar como

una contribución para mejorar la industria de la construcción y permitir la evolución de nuevos métodos de estabilización de suelos combinados con materiales reciclables.

1.2. Formulación del problema

¿De qué manera influye el caucho granulado de neumático para estabilizar el suelo arcilloso en carreteras no pavimentadas?

1.3. Hipótesis

La adición de caucho granulado de neumático logra estabilizar el suelo arcilloso de carreteras no pavimentadas incrementando su valor de soporte y mejorando sus propiedades físicas.

1.4. Objetivos

Objetivo general

Estabilizar el suelo arcilloso usando caucho granular de neumático para fines de carreteras no pavimentadas.

Objetivos específicos

- Identificar las características físicas y mecánicas de los suelos arcillosos.
- Determinar el valor de soporte del suelo arcilloso sin estabilizar.
- Determinar el valor de soporte del suelo arcilloso con adición de caucho granulado del (5,10,15, y 20%) del peso de la muestra.
- Comparar las características físicas y mecánicas de la muestra patrón y de la muestra patrón combinada con caucho granular.
- Proponer la dosificación adecuada de caucho granular que muestra las mejores condiciones para estabilizar el suelo arcilloso de carreteras no pavimentadas.

1.5. Teorías relacionadas al tema

Las teorías plasmadas en esta investigación dan énfasis en el tema principal a investigar considerando los conceptos y planteamiento teóricos necesarios, como también dichas teorías planteadas dan un sustento a las variables de estudio.

Suelos

El suelo es un agregado no cementado de granos minerales y materia orgánica descompuesta (partículas sólidas) con líquido y gas en los espacios vacíos entre las partículas sólidas [22]. El suelo es estrato presente en la corteza terrestre proveniente de la desintegración, alteración física y/o química de las rocas [23]. Además, es sabido que el suelo es el material de construcción más cuantioso dentro de la industria de la construcción, y es fundamental ya que sobre él se constituye el soporte de todo tipo de estructuras tanto de edificaciones, obras viales y de hidráulica [24].

Clasificación de suelos

Podemos diferir que las clasificaciones de los suelos son obtenidas a través de ensayos realizados in situ y ensayos de laboratorio, para garantizar un adecuado análisis de la composición del material acorde a lo establecido en, [25].

La clasificación de suelos se hace en base a grupos y subgrupos los cuales son parte de las propiedades características del suelo y el comportamiento que este en los diferentes campos de la ingeniería, ya que cada tipo de suelo tiene diferentes propiedades. Para efectuar la clasificación de los suelos, existen dos métodos los cuales son los más empleados para la distribución granulométrica y contextura del suelo, siendo estos el American Association of State Highway Officials (AASHTO) originario de Estados Unidos que en su mayoría es empleado para obras viales, y como segundo sistema tenemos al Sistema Unificado de Clasificación de Suelos (SUCS), en su mayoría es aplicado en obras de edificaciones [22]. El fin próximo de la presente investigación es mejorar el material de la subrasante el cual comúnmente se conoce como suelo de fundación cohesivo.

Subrasante - Suelo de fundación cohesivo

La subrasante viene determinada por la diferencia de cotas establecidas entre la rasante y la altura del pavimento, esta hace referencia a nivel de terreno que ha sido debidamente preparado para soportar la carpeta asfáltica [26]. La sub rasante con tipología de suelo cohesivo tiende a presentar baja capacidad de soportar cargas, y están compuestas por partículas muy finas, el cual en su composición granulométrica presenta partículas de tamaño menores a 2 micras (0.002 mm)" [27].

Tabla I
Categorías de sub rasante

Categorías de Sub Rasante	C.B.R
S0: Sub rasante Inadecuada	C.B.R < 3%
S1: Sub rasante Pobre	3% ≤ C.B.R< 6%
S2: Sub rasante Regular	6% ≤ C.B.R< 10%
S3: Sub rasante Buena	10% ≤ C.B.R< 20%
S4: Sub rasante Muy Buena	20% ≤ C.B.R< 30%
S5: Sub rasante Excelente	C.B.R>30%

Nota: La Tabla I detalla la clasificación categórica de la sub rasante en función a su C.B.R, según [25].

Los suelos arcillosos presentan diferentes cualidades en su composición, de modo que han sido clasificadas de la siguiente manera:

 Caolinitas: Estas arcillas se originaron por acción de la meteorización del feldespato, y presentan un comportamiento estable frente a los cambios

- volumétricos, ya que sus partículas están muy unidas, evitando el ingreso de moléculas de agua y por ende que se saturen.
- Illitas: Estas arcillas se originaron por acción de la meteorización de las micras,
 cuenta con hidratación en sus partículas internas, reduciendo el riesgo de
 saturación y por ende expansión, las Illitas son de menor calidad comparadas
 con las de tipo Caolinitas.
- Montomorillonitas: Estas arcillas se originaron por acción de la meteorización del feldespato, teniendo como primaria cualidad un grado de estabilidad bueno y su composición molecular se debilita al estar en contacto con el agua, ya que al saturarse estas tienden a incrementar su volumen y a expandirse. Siendo este tipo de arcilla la de menores cualidades ya mencionadas anteriormente [16].

Las arcillas presentan algunas características importantes en sus propiedades fisicoquímicas debido a que sus partículas tienen formas laminadas y un peculiar tamaño de sus partículas, siendo algunas de sus propiedades principales:

- Plasticidad: Es la propiedad que permite a una o más partículas presentar resistencia a la deformación, siendo esta la cualidad más resaltante de los suelos cohesivos (arcillas y limos), debido a que al combinarse con el agua el suelo presenta consistencia plástica, Es sabido que se pueden originar deslizamientos por acción de cargas externas. Los indicadores de esta propiedad se obtienen en laboratorio (Límites de Atterberg).
- Hidratación: Proceso de la absorción de agua a un nivel requerido, la cual se da en cationes y actúa sobre la capa superficial mineral en conjunto algunas moléculas de agua presentes.
- Hinchamiento: Proceso originado por la absorción de agua generando separaciones internas entre sus partículas laminadas, provocando fisuración,

debido a los cambios volumétricos a medida que las particuladas lamidas se separan entre sí.

- Superficie específica: Es definida en base al tamaño y porosidad de su estructura superficial, cuya expresión unitaria se da en base a la masa m^2/g .
- Tixotropía: Propiedad presente en los suelos, la cual manifiesta reducciones en su resistencia producto de un proceso de amasado, pero particularmente, si están en estado de reposo y no sufre pérdidas de humedad, este puede recuperar su cohesión.

Análisis granulométrico

Es un proceso cuyo objetivo es distribuir de manera continua los múltiples tamaños de partículas existentes en un suelo a través de los tamices estandarizados. Cada tipo de estructura presenta tipologías de suelos diferentes las cuales deberán ser estudiadas, en el caso de un suelo grueso; gravoso, arenoso y limoso no plástico las características que más relevancia tenga será su resistencia a la dureza, de cierto modo el tamizado indicara el tamaño de sus partículas más gruesas" [28].

La gradación adecuada y con un adecuado grado de distribución granulométrico se obtendrá el tamaño de las partículas de las que se compone el suelo, debido a que se clasificarán en un tanto por ciento de material de grava, arenas y finos plásticos (ver Tabla II). cuyas características que primen serán el efecto de cargas, llenar el espacio de vacío entre gravas y comprender un suelo cohesivo.

Tabla II

Tamaño de partículas

Tipo de materia	al	Tamaño de partículas
Grava		75 mm – 4.75 mm
		Arena gruesa: 4.75mm – 2.00mm
		Arena media: 2.00mm – 0.425mm
Arena		Arena fina: 0.425mm – 0.075mm
	Limo	0.075mm — 0.005mm
Material Fino	Arcilla	Menor a 0.005mm

Nota: La Tabla II detalla el tipo de material en relación al tamaño de partículas, según [28].

Índice de plasticidad (IP)

Es la diferencia porcentual del límite líquido y límite plástico del material de suelo.

Límite líquido

El límite líquido se obtiene a través del ensayo de Copa Casagrande, que mezclar la muestra de suelo fino antes pasada por el tamiz N°200 y combinándolo con agua destilada en pequeñas cantidades, por medio de golpes permanentes hacia la base del equipo, haciéndolo girar hasta que el surco se cierre. Con un proceso de 25 golpes como mínimo, cuyo valor será el correspondiente al límite líquido [25].

Límite plástico

Es el contenido mínimo de agua expresado en porcentaje presente en una muestra de suelo. Se efectúa formando pequeños bastoncillos con diámetro 3 mm, rodando la masa de suelo con ayuda de las manos, hasta lograr que pierda la cohesión de sus partículas o llegue a agrietarse [25].

El presente estudio plantea el análisis de un suelo arcilloso, teniendo en cuenta el elevado índice de plasticidad correspondiente propiamente a una arcilla y que un índice de plasticidad menor hace referencia a un tipo de suelo con mínimas cantidades de arcilla según, [28]

Tabla III

Características en base al Índice de plasticidad

Índice Plasticidad	Plasticidad	Característica
I.P > 20	Alta	Suelos muy arcillosos
7 < I.P < 20 Media		Suelos arcillosos
I.P < 7	Baja	Suelos poco arcillosos
I.P = 0	No plástico (N.P)	Suelos exentos de arcillas

Nota: Los datos expuestos en la Tabla III, muestran las características de los suelos arcillosos en relación a su índice de plasticidad, en base a lo establecido en [25].

Clasificación AASHTO

Los suelos son divididos en 2 grupos: El primer grupo lo conforman los suelos de tipo granular y el otro conformado por los de tipo fino. Los cuales han sido clasificados con simbología que abarca del A - 1 al A - 8; los grupos incluidos del A - 1 al A - 7, son suelos de tipo orgánico por ende se dividen en 12 sub-grupos. Por último, el grupo A - 8 se clasificó como un suelo con altos índices de material orgánico.

Suelos granulares:

Son aquellos que retienen el 35% o menos material retenido en el molde pasado a través de la malla N° 200.

- Grupo A 1: Son suelos que presentan una graduación adecuada, conformado por suelos gravosos y suelos de tipo finos (plásticos y no plásticos).
- Subgrupo A 1 a: Están compuestos por grava, graduados adecuadamente por tener materiales finos y no finos.
- Subgrupo A 1 b: Principalmente esta compuesto por arenas gruesas bien graduadas, debido a los materiales finos y no finos.
- Grupo A 2: Se componen de material retenido en menor porcentaje que el 35% en la malla N° 200.
- Subgrupo A 2 Y A -2 5: Son aquellos retenidos por el tamiz N°40 y presentan similares características de los grupos A 4 Y A 5.

Suelos finos:

Suelos que pasan más del 35% por el la malla N°200, está conformado por los grupos A-4, A-5, A-6, A-7.

- Grupo A 4: Compuestos por limos no plásticos o con reducida plasticidad, constituido por más del 75% de material que pasa el tamiz N°200, adicionalmente son constituidos por suelos con limos y gravas hasta un 64%.
- Grupo A 5: Este grupo presenta características parecidas al grupo A 4,
 teniendo en cuenta que estos presentan un elevado limite líquido.
- Grupo A 6: Se componen en gran parte de arcillas plásticas, constituidas por más de 75% de este material que pasa el tamiz N°200. Parcialmente presentan materia de gravas y arenas en un bajo porcentaje, presentando cambios volumétricos en estado seco y húmedo.

- Grupo A 7: Este grupo presenta características similares al grupo A 6, sin embargo, en este grupo A - 7 son suelos elásticos y pueden presentar elevados cambios volumétricos.
- Subgrupo A 7 5: El índice de plasticidad característico presente en este subgrupo es reducido en relación al límite líquido que estos presentan, y de la misma forma está sujeto a elevados cambios volumétricos.
- Subgrupo A 7 6: El índice de plasticidad característico presente en este subgrupo es muy alto en relación con su límite líquido, y de la misma forma pueden presentar elevados cambios volumétricos [22].

La clasificación de suelos en determinación a un grupo es dada en función a sus límites de consistencia, obteniendo como fin los índices de grupo.

Tabla IVTipología de suelo en base a Índice Grupo

Índice Grupo	Suelo de sub rasante		
I.G > 9	Muy pobre		
I.G está entre 4 a 9	Pobre		
I.G está entre 2 a 4	Regular		
I.G está entre 1 a 2	Bueno		
I.G está entre 0 a 1	Muy bueno		

Nota: Se tiene en la Tabla IV la tipología del suelo en relación al índice de grupo adaptado de [25].

Clasificación SUCS

Esta clasificación separa los suelos con materiales gruesos, finos y orgánicos. Los suelos con materiales gruesos y finos deberán pasar por el tamiz N°200, para facilitar su clasificación, de manera resulta más didáctico definir que el material retenido en el tamiz N°200 será correspondiente a un suelo grueso; mientras que el material que pase a través de él será un suelo fino. En este modo de clasificar los suelos se agrupan mediante simbología, con las iniciales de nombres en ingles en 6 fundamentales clases de suelo, dichas clases son: Gravas, arenas, limos, arcillas, suelos orgánicos de partículas finas. Aquellos clasificados como suelo de material grueso han sido separados; en gravas y arenas, en función a que el porcentaje de material retenido por el tamiz N°4 es mayor al 50% y si más del 50% del material fino pasa el tamiz N°4 se clasificará como una arena [16].

Aquellos clasificados como suelos de material fino han sido debidamente separados en grupos, los cuales son; limos inorgánicos (M), arcillas inorgánicas (CL), y limos arcillosos (O). Del mismo modo obtenemos las clasificaciones de suelo ML; limos inorgánicos de baja compresibilidad; OL; limos y arcillas orgánicas. CL; arcillas inorgánicas de baja compresibilidad; CH, arcillas inorgánicas de alta compresibilidad; MH, limos inorgánicos de alta compresibilidad; OH, arcillas y limos orgánicos de alta compresibilidad. Es necesario realizar un ensayo granulométrico para efectuar una adecuada clasificación de los suelos [22]. En la siguiente tabla se detalla la simbología establecida en cada sistema acorde a los distintos tipos de suelos; los sistemas SUCS y AASHTO.

Tabla VNomenclatura de Clasificación Suelos AASHTO y SUCS

Clasificación AASHTO	Clasificación SUCS
A – 1 - a	G.W, G.P, G.M, S.W, S.P, S.M,
A – 1 - b	G.M, G.P, S.M, S.P
A - 2	G.M, G.C, S.M, S.C
A - 3	S.P
A - 4	C.L, M.L
A - 5	M.L, M.H, C.H
A - 6	C.L, C.H
A - 7	O.H, M.H, C.H

Nota: En la Tabla V, se tiene la nomenclatura utilizada por AASHTO y SUCS, adaptado de [29].

Proctor modificado

Este ensayo brinda los parámetros necesarios a fin de establecer el grado de compactación máximo del material en estudio, en relación al contenido de humedad, el procedimiento consiste en ir compactando fracciones de suelo en un cilindro con un volumen parametrizado, realizando variaciones solo en la humedad, hasta obtener el nivel de compactación máxima. Para realizar el presente ensayo se utiliza un molde de 943.3 cm^3 y se compactará en cinco partes por medio de un martillo de peso 44.5 N con una altura de caída de 457.2 mm, según lo estipulado en [25].

CBR (Californian Bearing Ratio)

Realizada la clasificación por AASHTO y/o SUCS, se realizará un perfil estratigráfico del suelo que permita verificar su textura y las propiedades del suelo, ya que se determinará los ensayos necesarios que permitan determinar un CBR que garantice un valor de soporte o resistencia del material, el cual consiste en obtener el 95% de su MDS y a una penetración

de carga de 2.54 mm.

Mediante el ensayo CBR se evalúa el suelo en términos de calidad del suelo basados en la resistencia, el cual se obtiene del esfuerzo de introducción, dicho procedimiento técnico debe realizarse en un suelo completamente cubierto por agua para verificar el comportamiento en la situación menos favorable, es recomendable ejecutar por lo menos cinco ensayos CBR [17].

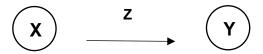
Caucho granulado

El caucho granular es consecuencia del triturado de los restos de neumáticos en desuso, que presentan como características principales ser duraderos, tener cualidades de amortiguamiento, ser permeables y manifestar la capacidad de rebote al ser impactados. Charles Good-year realizó un descubrimiento por los años 1839 a 1940, que al efectuar una adecuada dosificación de azufre y el caucho y calentarlos a 100°C, estos se mezclan en fase química y se logra obtener resultados óptimos, debido a que estos no tienden a agrietarse con el frio, no se deforman por acción del calor y no se vuelven pegajosos. El caucho granular es utilizado en diferentes rubros, como los son: Industria, construcción, y obras viales. Particularmente los usos más influyentes se dan en el sector minero, como gradas diamantadas, también en la construcción, las geomembranas de caucho para protección en pistas, así como el uso de estos materiales en mezclas asfálticas y en la carpeta del pavimento [17].

II. MATERIALES Y MÉTODO

2.1. Tipo y Diseño de Investigación

Tipo de investigación


La investigación de tipo aplicada hace referencia a que por medio de aportes teóricos y descubrimientos se puede dar múltiples soluciones a un problema, por ende, conlleva a un bienestar para la sociedad, debido a que da énfasis a la solución de problemas prácticos y por permitir obtener respuestas a preguntas específicas [30].

El tipo de investigación es **Aplicada** porque se pretende determinar la influencia del caucho granulado en los suelos arcillosos tanto en sus propiedades físicas y mecánicas.

Diseño de investigación:

La investigación experimental se rige en analizar los efectos producidos por las variables independientes sobre las variables dependientes. Dicha variable es comúnmente llamada variable experimental; la variable dependiente es conocida como de resultados y está referida a los efectos que se observan en el estudio [31].

El diseño de la investigación considerado es **Experimental** ya que estudiaremos los efectos producidos por la variable independiente (caucho granular) en la variable dependiente (estabilización de suelos arcillosos)

X: Suelo arcilloso sin estabilizar

Y: Suelo arcilloso estabilizado

Z: Caucho Granulado

2.2. Variables, Operacionalización

Variables

Variable independiente (VI): Caucho granular.

Variable dependiente (VD): Estabilización de suelos arcillosos.

Tabla VIOperacionalización de variables

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Instrumento	Valores finales	Tipo de variable	Escala de medición
Estabilizac ión De Suelos	Procedimiento mediante el cual se busca mejorar las propiedades físico-mecánicas de un suelo por medio de	Las muestras de estudio deberán pasar la malla #200 debido a que el	Características Físicas	Granulometría Contenido de humedad Límites de Atterberg Peso especifico Clasificación SUCS y AASHTO	Revisión documentari a y fichas de recolección de datos de laboratorio	- % % gr/cm3 -	Variable dependi ente	Razón
Arcillosos	adiciones porcentuales de algún material.	objeto de estudio son suelos arcillosos	Características Mecánicas	Proctor Modificado CBR	iasoratorio	% gr/cc %		
	Insumo obtenido a partir p la trituración de d	El tamaño ideal de partículas del caucho granular	Características físicas	Granulometría		-	Variable indepen	
Caucho Granular			Características mecánicas	Proctor Modificado CBR	Revisión documentari a y fichas de recolección	% diente gr/cc %	Razón	
	reciclados	deberá ser de 2 mm	Dosificación	% peso	de datos de laboratorio	Adición del 5%,10%,15 % y 20%		

Nota: En la Tabla VI se muestran las características a tener en cuenta en análisis de las variables de estudio.

2.3. Población de estudio, muestra, muestreo y criterios de selección

Población

Se denomina Población al ente cuyas propiedades y cualidades serán objeto de estudio en un determinado proyecto, además se entiende por población al conjunto de personas, objetos o lugares de los que se desea conocer algo en una investigación [30].

La población para el presente proyecto de investigación es la Carretera no pavimentada sector Túcume – Cachinche, Distrito Túcume, Provincia Lambayeque, Departamento Lambayeque.

Muestra

La muestra es una parte es de la población de la que se va a recolectar la data, la cual debe ser delimitado con exactitud, esta deberá representar un tanto de la población; además esta resulta una herramienta para el investigador con la que selecciona elementos de similar naturaleza en la investigación, de donde se obtendrán los resultados a fin de generar deducciones de la población a trabajar [30].

La muestra determinada para el presente proyecto de investigación fueron 6 calicatas alternadas a una altura de 1.50 m que se realizaran a nivel subrasante a lo largo de la Carretera no pavimentada sector Túcume – Cachinche, Distrito Túcume, Provincia Lambayeque, Departamento Lambayeque. Es necesario resaltar que la presente vía en estudio está clasificada como una Carretera de Tercera Clase por lo tanto se realizaran 2 calicatas por cada kilómetro.

Muestreo

El muestreo elegido en esta investigación es de tipo **no probabilistico**, menciona que no todos los elementos de la población de investigación serán seleccionados en la misma cantidad, por lo tanto, el muestreo es basado a las normas existentes y que el investigador determinará en base a sus criterios [30]. Por lo tanto, se procedió a realizar el muestreo

acorde los establecido en el manual. Una vez obtenidas las muestras se procederá con el análisis en laboratorio tanto de las propiedades físicas y mecánicas de la muestra patrón y las muestras adicionadas con caucho en porcentajes del 5%, 10%, 15 % y 20%.

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

Los instrumentos de recolección de datos resultan ser un medio del cual puede valerse el investigador para tener un acercamiento a los fenómenos y poder obtener información valiosa al estudiarlos. De modo que el instrumento permite compendiar todo el trabajo previo necesario en la investigación [32]. En esta investigación el instrumento de recolección de datos utilizado se da por medio de los ensayos de laboratorio para los cuales se utilizarán fichas, formatos y la normativa en vigencia, que son impartidas según, [29].

Para objeto de validez y confiabilidad se tuvo en cuenta el criterio de evaluación con fichas de validación de los instrumentos a cargo de 5 jurados expertos, ver Anexo 05.

2.5. Procedimiento de análisis de datos

En base al procedimiento metodológico para llevar a cabo este estudio se determinó el número de calicatas a realizar en función al tipo de carretera objeto de estudio, la cual fue clasificada como Carretera de tercera acorde a lo establecido en la Fig. 42, (Ver Anexo 01).

La Población estudiada se ubica en el Departamento de Lambayeque, Provincia de Lambayeque, Distrito de Túcume con una longitud total de 6.5 Km y un ancho de 16 m, la Ciudad de Túcume se encuentra a 20 msnm; para fines del estudio acorde a lo establecido en la Fig. 37. (Ver Anexos) en la que se clasificó la presente vía en estudio como una Carretera de Tercera Clase se realizaron 6 calicatas debidamente georeferenciadas las cuales se ubicaran a lo largo de 3 Km de la vía.

<u>Ubicación</u>: Carretera Túcume – Cachinche, Distrito Túcume, Provincia Lambayeque, Departamento Lambayeque – Perú.

Fig. 1. Carretera Túcume - Cachinche

Se realizó la compra de 120 kg de caucho granular en la Ciudad de Chiclayo en el local Caucho Gol ubicado en la calle Pariñas cda. 3 por el precio de S/. 150.00 nuevos soles.

Habiendo identificado el área apta para el estudio se realizaron las 6 calicatas a una profundidad de 1.50 m, de donde se extrajeron muestras las cuales fueron debidamente etiquetadas para evitar que se confuciones a la hora de ser analizadas en laboratorio.

Tabla VII

Georreferencia Calicatas

Ítam	Progresive	Calicata	Coordenadas					
Item	Progresiva	Calicata	Norte	Este				
1	0+000 m	C-1	9278841.56 S	631708.55 E				
2	0+500 m	C-2	9279514.32 S	631663.33 E				
3	1+000 m	C-3	9279623.37 S	631055.94 E				
4	1+500 m	C-4	9280281.24 S	630366.82 E				
5	2+000 m	C-5	9279690.74 S	629758.97 E				
6	2+500 m	C-6	9280225.34 S	628528.91 E				

Nota: En la Tabla VIII se detalla la progresiva y la georreferenciación de las calicatas en estudio.

Fig. 2. Excavación calicata 01 y extracción de muestras

Una vez obtenidas las muestras de las 6 calicatas, las trasladamos al laboratorio de suelos GLC INGENIERÍA S.R.L, y asi se procedio con los ensayos requeridos para esta investigación los cuales abarcaran el estudio de las muestras patrón y de las muestras con incorporación de caucho en porcentajes de 5%, 10%, 15% y 20% respectivamente.

Se realizaran ensayos para obtener las propiedades fisicas y mecanicas de las muestras patrón estudiadas asi tambien de las muestras patrón con adiciones porcentuales de caucho granular, dichos ensayos se detallan en la Tabla VIII.

Tabla VIII

Ensayos de laboratorio y su normativa

Ítem	Muestras	Ensayos	Norma
		Granulometría	ASTM D6913/D6913M-17
1		Contenido de humedad	ASTM D2216-19
2		Límites De Atterberg	ASTM D4318
3		Peso Especifico	ASTM D854-14
4	Muestra Patrón	Clasificación SUCS Y AASHTO	ASTM D2487-17
5		Proctor Modificado	ASTM D1557-12e1/ASTM D1883-16
6		CBR	ASTM D1883-16
7	Caucho Granulado	Granulometría	ASTM D6913/D6913M-17
8		Granulometría	ASTM D6913/D6913M-17
9		Límites De Atterberg	ASTM D4318
10		Peso Especifico	ASTM D854-14
11	Muestra + X% Caucho granulado	Clasificación SUCS Y AASHTO	ASTM D2487-17
12		Proctor Modificado	ASTM D1557-12e1/ASTM D1883-16
13		CBR	ASTM D1883-16

Nota: De la Tabla VIII tenemos el resumen de ensayos y su normativa americana correspondiente.

El primer ensayo efectuado fue **Contenido de Humedad** acorde a la normativa americana ASTM D2216-19, para el cual se extrajo una muestra de material de cada calicata, siendo reservado en bolsas impermeables debidamente catalogada con sus respectivos datos. Ya en laboratorio se procedió a pesar la muestra natural para luego colocarla en el horno a una temperatura de 115° C por 24 horas, cumplido el lapso de 24 horas fue retirado del horno y se hizo al pesado de muestra seca, para finalmente por medio de cálculos obtener el Contenido de Humedad porcentual.

Fig. 3. Pesado de muestras patrón

Fig. 4. Contenido humedad muestra patrón (6 calicatas)

Fig. 5. Muestras patrón colocadas al horno

El segundo ensayo efectuado fue **Granulometría** acorde a la normativa ASTM D6913 para el cual se procedió a cuartear las muestras de las 6 calicatas para luego pesarla; para la presente investigación se lavará el material por la Malla N°200 debido a que es un suelo de partículas finas tomando las medidas necesarias para no generar desperdicio del material, posteriormente ser colocada al horno a una temperatura de 115° C por 24 horas, cumplido este lapso se extrajo la muestra del horno que fue pesada para luego ser colocada en los tamices zarandeando el material y dando giros hasta que este quede retenido en las mallas estandarizadas. Se realizó también la granulometría para el material de las 6 calicatas en combinación con el caucho granular en porcentajes de 5%, 10%, 15% y 20% del peso de la muestra selecta.

Fig. 6. Granulometría muestra patrón + caucho granular

Fig. 7. Pesado caucho granular

Fig. 8. Tamizado y pesado de muestras retenidas

El tercer ensayo efectuado fue **Limites de Atterberg** acorde a la normativa ASTM D4318, abarcando el cálculo del Límite Liquido y Límite Plástico. Para determinar el **Límite Líquido** tamizamos la porción de suelo pasante a través de la malla N°40 para después adicionar agua en pequeños porcentajes hasta conseguir una mezcla plástica la cual se colocara en la Copa de Casagrande esparciendo la muestra a ambos lados realizando una ranura al centro con ayuda del acanalador para luego dar golpes hasta que desaparezca la junta, se realizó en 3 etapas de 15-25 golpes, de 20-30 golpes y de 25-30 golpes, posteriormente se pesa cada muestra y se lleva al horno por 24 horas a una temperatura de 120°C, cumplido el lapso se extrajo para su posterior pesado y cálculo.

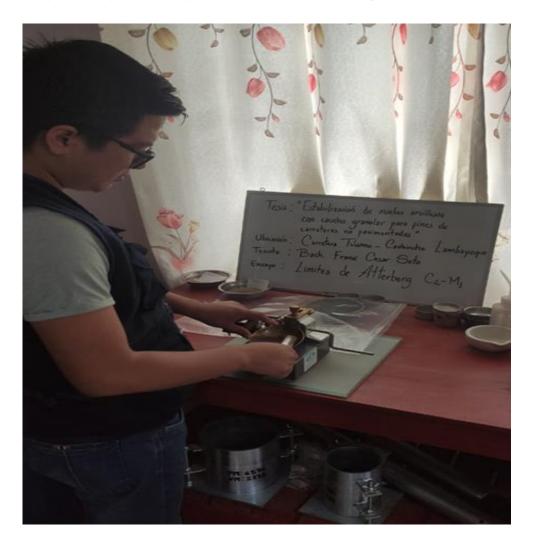


Fig. 9. Copa Casagrande, limite liquido

Para determinar el **Límite Plástico** se tomó una muestra del material con el que se hizo el Límite Líquido el cual será homogenizado hasta adquirir contextura esférica, luego se hacen bastoncillos sobre la base de vidrio de 3 mm de espesor y 6 mm de largo hasta que presente pequeñas fisuraciones, se procede a pesar los bastoncillos para luego llevarlos al horno por un día, llegado el tiempo, se realiza el pesado y el cálculo de grado de humedad.

Fig. 10. Limite plástico

Fig. 11. Muestras de lime plástico para ser conectadas al horno

Habiendo obtenido los valores de **Límite Líquido (LL)** y **Límite Plástico** (LP)se hizo efectivo el cálculo del **Índice de Plasticidad (IP)** que resulta de la diferencia entre el Límite Líquido y el Límite Plástico.

El cuarto ensayo efectuado fue el **Peso Específico** acorde a la normativa americana ASTM D854-14, para el cual se procedió a seleccionar una parte de la muestra que pasa la malla N°4, seguido se realiza una limpieza y secado de los picnómetros, para seguido llenar con agua destilada hasta la mitad del picnómetro, con ayuda de un embudo se coloca la muestra de material fino en análisis aproximadamente 100 gr, con ayuda del frasco lavador quitamos los restos de material fino en el cuello del picnómetro, luego llevamos a la estufa para homogenizar el material por 15 a 20 min hasta que el agua entre en punto de ebullición, se retira el picnómetro de la estufa y dejamos enfriar para finalmente llenar hasta la línea de aforo calibrada en el picnómetro para finalmente pesar la muestra final, posteriormente se

toman los datos obtenidos y se calcula el Peso Específico.

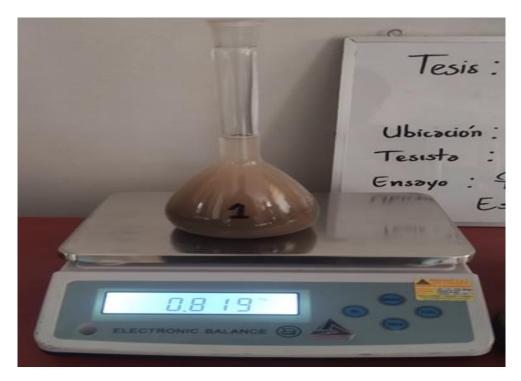


Fig. 12. Peso Específico

Fig. 13. Peso Específico, peso de muestra final

Fig. 14. Peso Específico de muestras patrón + caucho granular del 5%, 10%, 15% y 20%

El quinto ensayo efectuado fue **Proctor Modificado** y se realizó acorde a la normativa americana ASTM D1557, en la presente investigación se hará el método A ya que tenemos muestras con características de suelos finos acorde a la granulometría obtenida, separamos muestras de 3kg aproximadamente, se utilizó un molde 4", en un ensayo de Proctor se realizan 4 puntos, para el cual se compactará en 5 capas con 25 golpes por capa hasta llegar al ras del molde, de la data obtenida por tabulación grafica se obtendrá el OCH y MDS.

Fig. 15. Muestras listas para ensayos de Proctor Modificado

Fig. 16. Proceso de mezclado, muestra patrón + caucho granular

Fig. 17. Proctor modificado, compactado de la muestra

Fig. 18. Peso muestra compactada + molde

Homogenizamos las muestras patrón de material con agua en porcentajes de 1%, 2%, y 3% para las muestras con caucho granular primera deberán uniformizarse y luego se le añadirá el agua en porcentajes de 1%, 2%, y 3%. Culminado el número de golpes de la última capa retiramos el collarín del molde para proceder a enrasar el excedente de muestra, para finalmente pesarlo para proceder con los cálculos, además se tomó una muestra para llevarla al horno y obtener el contenido de humedad con el que se compactó y luego obtener mediante tabulaciones en graficas el OCH.

El sexto ensayo efectuado fue **CBR** a fin de determinar la capacidad de soporte del suelo en estudio acorde a la normativa americana ASTM D1883-16, tomar nota de los pesos, volúmenes de los moldes y disco espaciador que servirán para el ensayo, comenzamos homogenizando la muestra con agua del OCH el cual se obtuvo del ensayo de Proctor Modificado, el proceso se repetirá para las muestras patrón con adición de caucho granular. Se coloco el filtro en la parte inferior y superior del molde para evitar que este se pegue para proceder a compactar con el pistón, el ensayo de CBR requiere 3 puntos a obtener por cada muestra de estudio. Para el primer punto se compactará en 5 capas con 12 golpes por capa, el segundo punto 25 golpes y el tercer punto con 56 golpes, se realizará tanto como para las muestras patrón y para muestras combinadas con caucho granular.

Fig. 19. CBR, compactación de la muestra

Finalizado el proceso de compactación se retira el collarín y se enrasa la muestra, se procede a pesar el molde más la muestra y se tomó medidas iniciales con el dial, para luego saturar las muestras en agua durante 4 días, cumplido el lapso se retiran los moldes del agua, se deja escurrir el excedente de agua por 20 min, seguido se pesa la muestra más molde para finalmente generar las lecturas con el equipo de penetración, este procedimiento se hará efectivo tanto para las muestras patrón así como para las muestras patrón con adición de caucho granular.

Fig. 20. CBR, muestra patrón +5% caucho granular

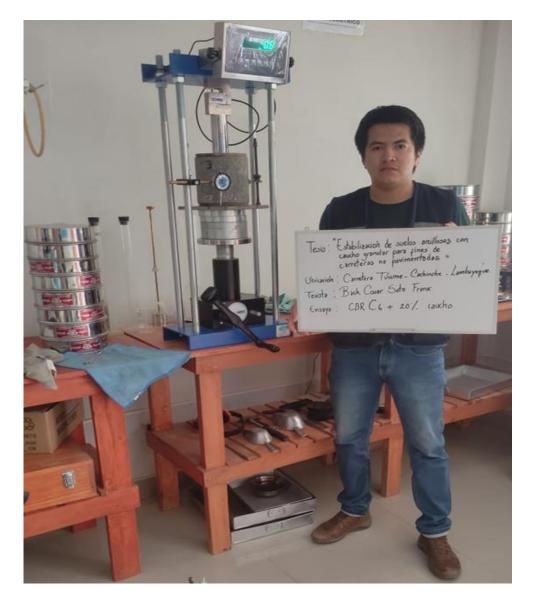


Fig. 21. CBR (equipo de penetración, muestra patrón +20% caucho granular

Finalmente concluidos los ensayos de laboratorio, se procesaron los datos para obtener los resultados debidamente certificados los cuales validaran y daran veracidad a esta investigación.

2.6. Método de análisis de datos

La observación es fundamental para determinar y realizar la investigación planteada; se realizó muestreos en suelos de tipo arcillosos los cuales se pretenden estabilizar con la adición de caucho granular, obtenidos los resultados se analizan mediante el uso del programa Excel para ser interpretados de acorde a las hipótesis planteadas, seguido llegaremos a concluir si el material es apto o no para finalmente plantear recomendaciones.

2.7. Criterios éticos

Es de garantizar cada aspecto ético en esta investigación debido a que las fuentes consideradas son investigaciones realizadas a nivel internacional, nacional y local, las cuales han sido citadas en formato IEEE correspondiente para ingenierías respectivamente a fin de respetar los derechos de autor. La confiabilidad de la investigación se basa en la aplicación del software Turnitin el cual garantiza que no exista plagio de otros proyectos existentes. Los ensayos de laboratorio se hicieron de la mano de personal técnico e ingenieros, el cual cuenta con equipos calibrados debidamente y certificados respectivamente. También se tuvo como referente al código de ética de la Universidad Señor de Sipán [33].

- Artículo 6: Hace referencia a la protección de la dignidad de la persona, cuidado del medioambiente, transparencia en la elección de temas de investigación y rigor científico en las investigaciones.
- Artículo 8: El cual hace hincapié respecto a la honestidad, veracidad, responsabilidad en la ejecución y difusión de los resultados intelectual en los diferentes aspectos de la investigación científica.

III. RESULTADOS Y DISCUSIÓN

3.1. Resultados

Los resultados obtenidos son respecto a los objetivos específicos planteados en esta investigación:

- En base al primer objetivo específico de la presente investigación, se realizará ensayos para determinar las propiedades físicas y mecánicas del suelo en estudio.
- En referencia al segundo objetivo específico se determinará el valor de soporte del suelo sin estabilizar por medio del ensayo de CBR.
- Acorde al tercer objetivo específico se determinará el valor de soporte del suelo con adición de caucho granular para los porcentajes del 5%, 10%, 15% y 20% por medio del ensayo CBR.
- Se realizará una comparativa de las propiedades físicas y mecánicas del suelo en estado natural y del suelo combinado con caucho granular, tal y como se establece en el cuarto objetivo específico de esta investigación.
- Finalmente se propondrá la dosificación adecuada de caucho granular que muestre la mejor alternativa para combinarse con el suelo arcilloso a estabilizar.

Muestra Patrón

a) Contenido de humedad

El ensayo se realizó en las 6 calicatas para determinar el porcentaje de agua que estas contienen acorde a su tipo de suelo de donde se obtuvieron los siguientes resultados plasmados a continuación en la Fig.22. (ver Anexos Tabla XXXII).



Fig. 22. Valores Contenido Humedad, Resumen

Nota: De la Fig. 22. podemos interpretar que las calicatas C-1, C-3, C-4 y C-6 son las que presentan un mediano porcentaje de contenido de agua siendo la calicata C-2 la que contiene mayor porcentaje con un 19%.

b) Análisis Granulométrico

Se realizó el ensayo para las 6 calicatas el cual permitió conocer la gradación de los suelos en estudio.

Tabla IXGranulometría, Resumen Muestras Patrón

				% Que Pasa										
Ítem	Calicata	Altura	1"	3/4"	3/8"	N°04	N°10	N°20	N°40	N°60	N°140	N°200		
1	C-1	1.50 m	-	-	100	99.9	99.3	98.7	97.8	96.4	86.9	80.10		
2	C-2	1.50 m	-	-	100	99.8	99.2	98.6	97.7	96	87.2	80.3		
3	C-3	1.50 m	-	-	100	99.7	99.2	98.8	92.3	69.2	36.7	16.1		
4	C-4	1.50 m	-	-	100	99.7	98.9	98.2	97	95	86	78.7		
5	C-5	1.50 m	-	-	100	99.9	99.8	99.5	93.4	69.8	36.7	17.1		
6	C-6	1.50 m	-	-	100	99.4	98.3	97.3	96.7	95.4	88.5	81.9		

Nota: De la Tabla IX podemos interpretar que en las muestras referentes a las calicatas C-1, C-2, C-4, y C-6 pasa un mayor porcentaje en el tamiz N°200 lo cual es característico en suelos finos sea arcillas o limos, especialmente en arcillas de alta, mediana o baja plasticidad; además que las calicatas C-3 y C-5 muestran características granulométricas similares a una arena con pequeños porcentajes de suelo fino.

c) Límite Líquido

Se realizó el ensayo de Límite Líquido para las 6 calicatas en base a los establecido en la normativa, este ensayo es de carácter vital para determinar el Índice De Plasticidad.

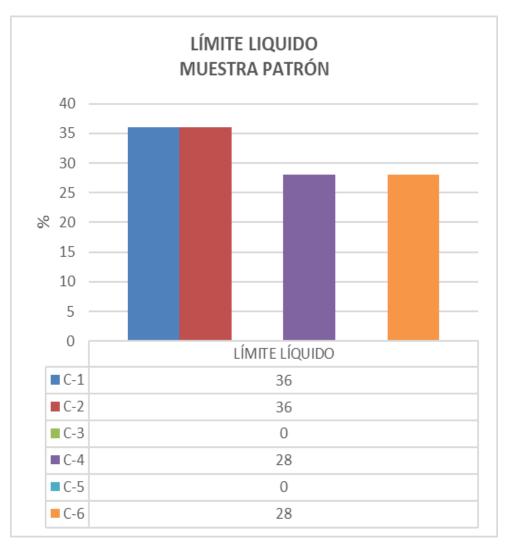


Fig. 23. Limite Liquido, Muestras Patrón Resumen

Nota: De la Fig.23. podemos interpretar que las muestras referentes a las calicatas C-1, C-2 presentan limites líquidos de 36%, las calicatas C-4 y C-6 presentan límites líquidos de 28%, mientras que las calicatas C-3 y C-5 carecen de Límite Líquido, debido a que no presentan cohesión entre sus partículas.

d) Límite Plástico

Se realizó el ensayo de Límite Plástico en las 6 calicatas de estudio en base a lo establecido en la normativa, con los resultados adquiridos se podra calcular el Indice de Plasticidad.

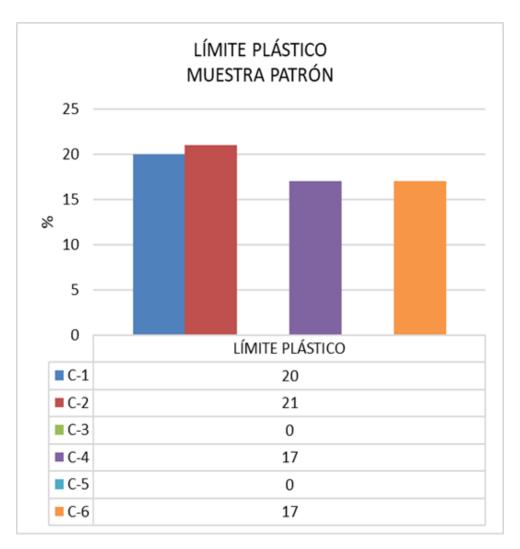


Fig. 24. Limite Liquido, Muestras Patrón Resumen

Nota: De la Fig. 24. podemos interpretar que las muestras referentes a las calicatas C-1, C-2, C-4 y C-6 presentan valores de Límite Plástico de 20%, 21%, 17% y 17% respectivamente; mientras que las calicatas C-3 y C-5 no presentan Límite Plástico debido a que sus partículas carecen de cohesión.

e) Índice de Plasticidad

Se realizó el cálculo para las 6 calicatas de estudio mediante la expresión IP = LL – LP.

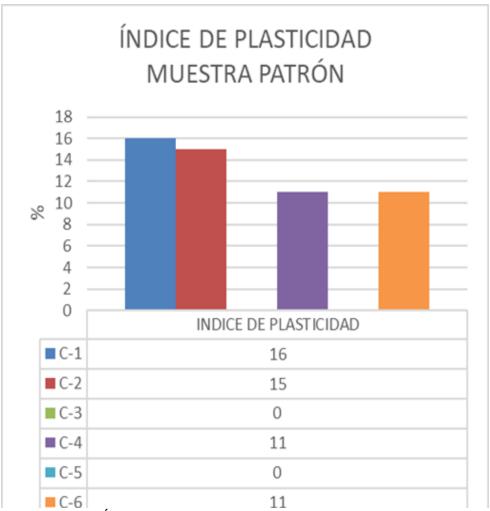


Fig. 25. Índice Plasticidad, Muestras Patrón Resumen

Nota: De la Fig. 25. podemos interpretar que las calicatas C-3 y C-5 carecen de plasticidad debido a que el material es una arena y no presenta cohesión entre sus partículas, mientras que C-1 presenta un IP=16%, C-2 presenta un IP=15%, C-4 presenta un IP=11% y C-6 presenta un IP=11%.

f) Clasificación SUCS - AASHTO

Se procedió a clasificar las muestras extraídas de las 6 calicatas por los métodos SUCS y AAHSTO.

Tabla XSUCS – AASHTO, Clasificación Muestras Patrón

Ítem	Calicata	Progresiva	Profundidad	Clasificación			
	Cancata	Tiogresiva	Tiolalialaa	SUCS	AASHTO		
1	C-1	0+000	1.50 m	CL	A-6 (16)		
2	C-2	0+500	1.50 m	CL	A-6 (15)		
3	C-3	1+000	1.50 m	SM	A-2-4 (0)		
4	C-4	1+500	1.50 m	CL	A-6 (11)		
5	C-5	2+000	1.50 m	SM	A-2-4 (0)		
6	C-6	2+500	1.50 m	CL	A-6 (11)		

Nota: De la Tabla X, podemos interpretar que las muestras obtenidas de las calicatas C-1, C-2, C-4. y C-6 se clasificaron como una arcilla de baja plasticidad, mientras que las calicatas C-3 y C-5 se clasificaron como una arena limosa. Por lo tanto, para la presente investigación solo se tomarán en cuenta las muestras correspondientes a las calicatas C-1. C-2, C-4 y C-6 debido a que el fin del estudio es estabilizar arcillas mediante la adición de caucho granular en los porcentajes ya establecidos.

g) Peso Específico

Se realizó el ensayo de peso específico para las 4 calicatas clasificadas como arcilla de baja plasticidad ya seleccionadas a fin de cuantificar la densidad del suelo. Se obtuvo un Peso Específico Promedio = 1.734 gr/cm3

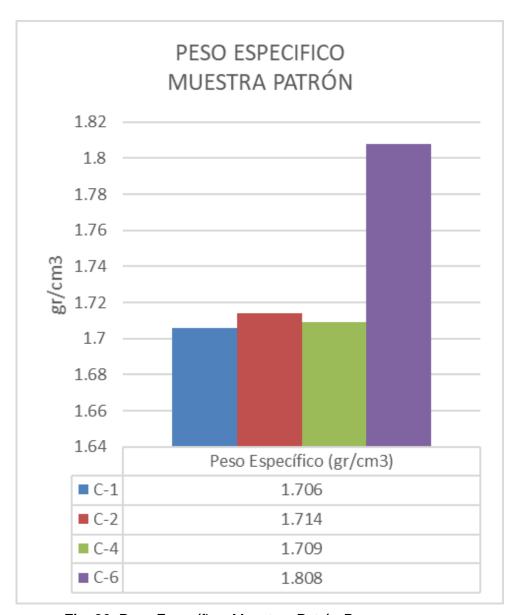


Fig. 26. Peso Específico, Muestras Patrón Resumen

Nota: De la Fig. 26. podemos interpretar que el valor máximo de Peso Específico es el correspondiente a la calicata C-6 con 1.808 gr/cc, mientras que el menor valor encontrado en las muestras patrón estudiadas es el correspondiente a la calicata C-1 con un valor de 1.706gr/cc.

h) Proctor Modificado

Se realizó el ensayo de Proctor Modificado en las 4 calicatas escogidas y clasificadas a fin de la investigación para determinar el valor de máxima densidad seca y su óptimo contenido de humedad.

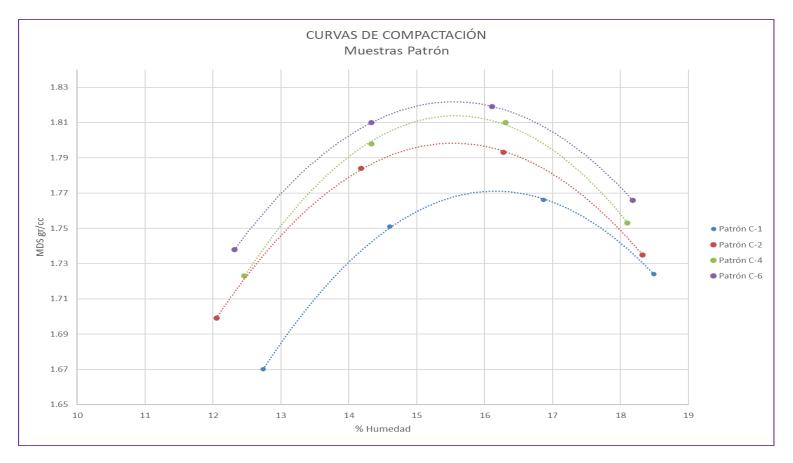


Fig. 27 Curvas de Compactación, Muestra Patrón C-1, C-2, C-4, y C-6

Nota: De la Fig. 27. podemos obtener mediante tabulación gráfica los valores correspondientes a MDS y OCH para cada muestra patrón de las calicatas seleccionadas, dando como resultado para la C-1 un OCH=16.16% y una MDS=1.771 gr/cc, para la C-2 un OCH=15.5% y una MDS=1.798 gr/cc, para C-4 OCH=15.62% y una MDS=1.814 gr/cc, y para C-6 un OCH=15.54% y una MDS=1.821 gr/cc.

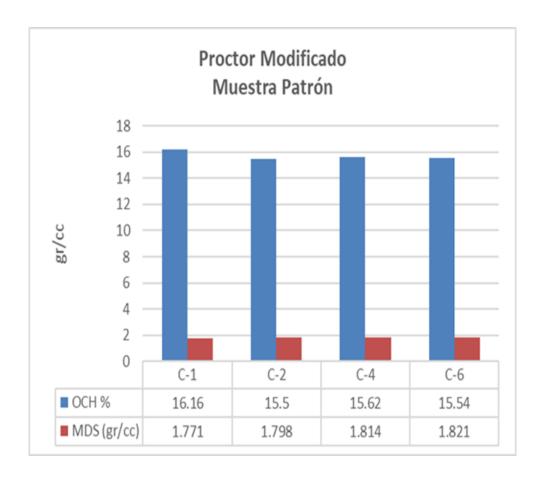


Fig. 28. Comparativo Resumen Proctor Modificado, Muestras Patrón

Nota: En la Fig. 28. se muestra el resumen de los valores de Proctor Modificado, como resultado a un valor promedio se obtuvo que la MDS = 1.801 gr/cc y OCH = 15.71%.

i) CBR (Capacidad Soporte Suelo)

Se realizó el ensayo de CBR para las 4 calicatas escogidas para la investigación debido a que cumplen la clasificación de suelo necesaria. Se obtuvo un valor promedio de CBR=4.9% dejando evidencia de que su capacidad de soporte es deficiente y es necesario estabilizar el material.

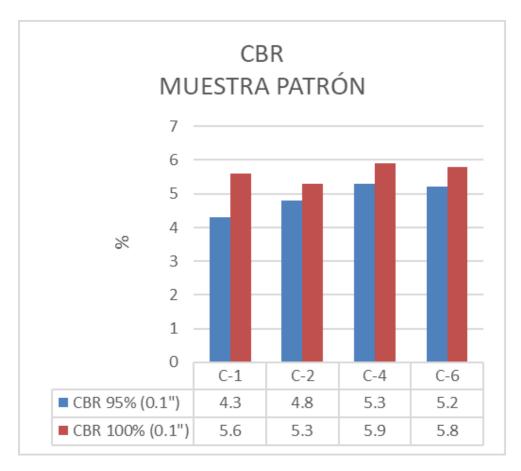


Fig. 29. CBR Resumen, Muestras Patrón

Nota: De la Fig. 32. podemos ver que las Calicatas muestras valores de CBR en promedio clasificados como "Malo" conforme a lo establecido en la Tabla N°1 la cual indica que serán considerados como CBR "malo" para aplicarse a nivel subrasante aquellas que estén en el rango menor al CBR=6%. Se obtuvo como resultados para C-1 un CBR(0.1") = 5.6%, para C-2 un CBR(0.1") = 5.8%, para C-4 un CBR(0.1") = 5.9% y para C-6 un CBR(0.1") = 5.8%.

Muestra Patrón + Caucho Granular

Acorde a lo planteado en los objetivos de la investigación se procedió a analizar la granulometría, límites de Atterberg y peso específico de la muestra patrón (clasificada como una arcilla de baja plasticidad) en combinación con el caucho granulado en porcentajes del 5%, 10%, 15%, y 20% a fin de determinar las variaciones que presenta tanto en sus propiedades físicas como mecánicas.

a) Análisis Granulométrico Muestra Patrón + Caucho Granular

En primera instancia se procedió a analizar la granulometría del caucho granular para después ser analizados en conjunto y en combinación con los porcentajes establecidos.

- Granulometría Caucho Granular

Tabla XIGranulometría, Caucho Granular

Ítem	Muestra	% Que Pasa									
		1"	3/4"	3/8"	N°04	N°10	N°20	N°40	N°60	N°140	N°200
1	Caucho Granular	-	-	100	99.95	3.5	0.14	0.7	-	-	-

Nota: De la Tabla XI, sabemos que el Caucho Granular es retenido casi a totalidad por la malla N°10 con poca presencia de material fino.

Tabla XIIGranulometría, Muestra Patrón C-1 + % Caucho Granular

						%	Que Pa	sa			
Ítem	Muestra	1"	3/4"	3/8"	N°04	N°10	N°20	N°40	N°60	N°140	N°200
1	C-1 + 5% Caucho Granular	-	-	100	99.61	93.41	92.58	91.56	90.06	79.85	72.80
2	C-1 + 10% Caucho Granular	-	-	100	98.33	85.01	84.24	83.33	81.96	72.65	66.46
3	C-1 + 15% Caucho Granular	-	-	100	99.84	84.83	83.89	82.93	81.49	71.90	65.79
4	C-1 + 20% Caucho Granular	-	-	100	96.67	74.94	73.97	73.18	71.97	63.23	58.02

Tabla XIIIGranulometría, Muestra Patrón C-2 + % Caucho granular

-						%	Que Pa	sa			
Ítem	Muestra	1"	3/4"	3/8"	N°04	N°10	N°20	N°40	N°60	N°140	N°200
1	C-2 + 5% Caucho Granular	-	-	100	99.34	93.18	92.13	90.74	89.13	78.52	71.94
2	C-2 + 10% Caucho Granular	-	-	100	96.33	82.93	81.91	81.21	79.87	69.81	63.14
3	C-2 + 15% Caucho Granular	-	-	100	99.67	86.24	85.16	83.83	82.95	74.57	67.70
4	C-2 + 20% Caucho Granular	-	-	100	99.33	85.90	83.23	82.23	81.53	74.78	68.57

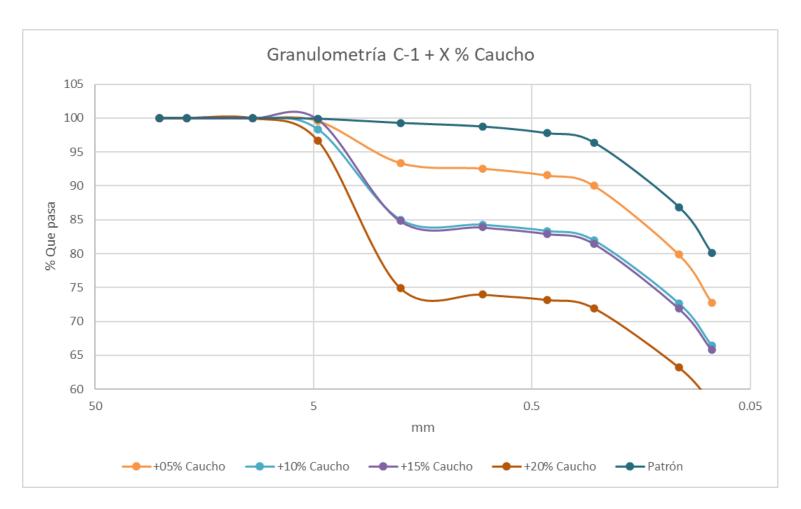


Fig. 30. Granulometría Patrón C-1, Patrón + X% Caucho

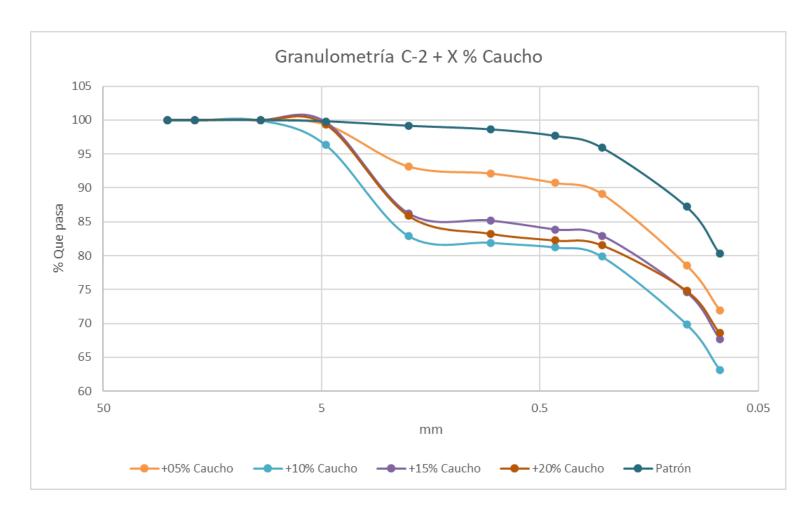


Fig. 31. Granulometría Patrón C-2, Patrón + X% Caucho

Tabla XIVGranulometría, Muestra Patrón C-4 + % Caucho granular

		% Que Pasa											
Ítem	Muestra	1"	3/4"	3/8"	N°04	N°10	N°20	N°40	N°60	N°140	N°200		
1	C-4 + 5% Caucho Granular	-	-	100	99.34	94.42	92.74	91.98	89.98	80.80	75.77		
2	C-4 + 10% Caucho Granular	-	-	100	99.00	82.21	80.34	77.94	75.27	67.74	62.54		
3	C-4 + 15% Caucho Granular	-	-	100	99.33	86.46	84.69	82.62	81.60	74.17	69.07		
4	C-4 + 20% Caucho Granular	-	-	100	99.47	82.74	78.64	76.11	75.10	70.10	63.33		

Tabla XVGranulometría, Muestra patrón C-6 + % Caucho granular

_						%	Que Pas	sa			
Ítem	Muestra	1"	3/4"	3/8"	N°04	N°10	N°20	N°40	N°60	N°140	N°200
1	C-6 + 5% Caucho Granular	-	-	100	96.77	91.51	89.89	88.86	86.54	79.31	76.41
2	C-6 + 10% Caucho Granular	-	-	100	97.10	78.66	76.49	73.86	71.14	63.44	58.57
3	C-6 + 15% Caucho Granular	-	-	100	99.59	86.72	84.95	82.88	81.86	74.43	69.33
4	C-6 + 20% Caucho Granular	-	-	100	99.13	82.40	78.30	75.77	74.76	69.76	62.99

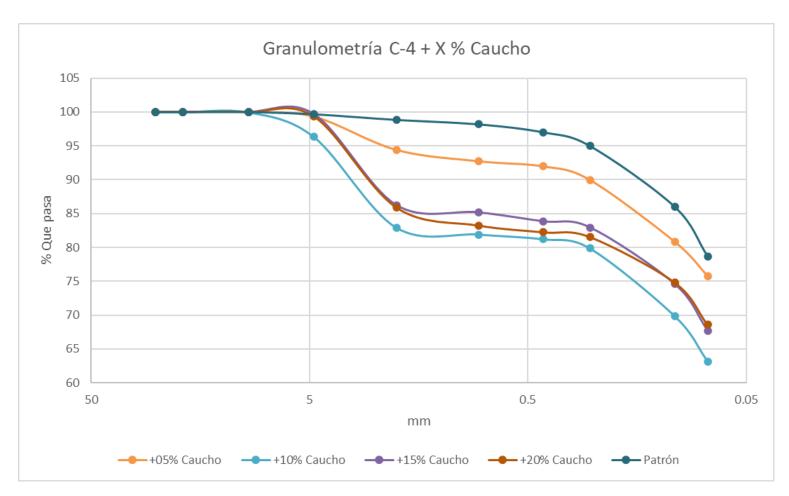


Fig. 32. Granulometría Patrón C-4, Patrón + X% Caucho

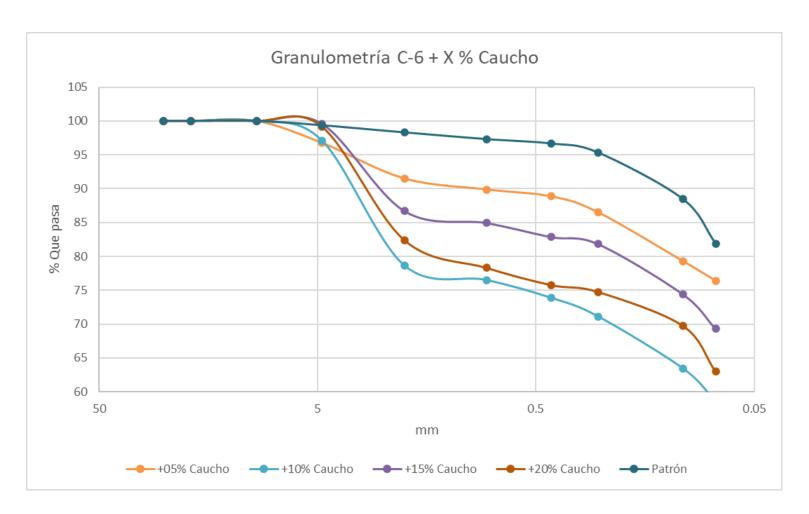


Fig. 33. Granulometría Patrón C-6, Patrón + X% Caucho

Nota: De las Tablas XII, XIII, XIV, y XV, efectuando el análisis granulométrico de las 4 calicatas con adición de caucho granular podemos notar que presenta variaciones en su gradación. En las muestras C-1, C-2, C-4, y C-6 combinada con el 5%, 10%, 15% aún mantiene las características de una arcilla de baja plasticidad mientras que con la adición del 20% la clasificación es ya de una arcilla de baja plasticidad con presencia de arena.

b) Límites de Atterberg Muestra Patrón + Caucho Granular Se consideraron los mismos valores obtenidos que en las muestras patrón debido a que el caucho no presenta las cualidades necesarias para realizar este ensayo.

c) Peso Específico Muestra Patrón + Caucho Granular

Tabla XVI

Peso Específico, Muestra patrón C-1 + % Caucho granular

Ítem	Calicata	Progresiva	Profundidad	Peso Específico (gr/cm3)
1	C-1 + 5% Caucho granular	0+000 m	1.50 m	1.807
2	C-1 + 10% Caucho granular	0+500 m	1.50 m	1.570
3	C-1 + 15% Caucho granular	1+500 m	1.50 m	1.677
4	C-1 + 20% Caucho granular	2+500 m	1.50 m	1.592

Tabla XVII

Peso Específico, Muestra patrón C-2 + % Caucho granular

Ítem	Calicata	Progresiva	Profundidad	Peso Específico (gr/cm3)
1	C-2 + 5% Caucho granular	0+000 m	1.50 m	1.757
2	C-2 + 10% Caucho granular	0+500 m	1.50 m	1.775
3	C-2 + 15% Caucho granular C-2 + 20%	1+500 m	1.50 m	1.561
4	Caucho granular	2+500 m	1.50 m	1.739

Tabla XVIIIPeso Específico, Muestra patrón C-4 + % Caucho granular

Ítem	Calicata	Progresiva	Profundidad	Peso Específico (gr/cm3)
1	C-4 + 5% Caucho granular	0+000 m	1.50 m	1.780
2	C-4 + 10% Caucho granular	0+500 m	1.50 m	1.701
3	C-4 + 15% Caucho granular	1+500 m	1.50 m	1.630
4	C-4 + 20% Caucho granular	2+500 m	1.50 m	1.950

Tabla XIX

Peso Específico, Muestra patrón C-6 + % Caucho granular

Ítem	Calicata	Progresiva	Profundidad	Peso Específico (gr/cm3)
1	C-6 + 5% Caucho granular	0+000 m	1.50 m	1.859
2	C-6 + 10% Caucho granular	0+500 m	1.50 m	1.666
3	C-6 + 15% Caucho granular	1+500 m	1.50 m	1.562
4	C-6 + 20% Caucho granular	2+500 m	1.50 m	1.553

Nota: De las Tablas XVI, XVII, XVIII, y IX, notamos que para el ensayo de Peso Específico de la muestra patrón correspondientes a las Calicatas C-1, C-2, C-4 y C-6 en combinación con el caucho granular estos presentan una disminución en su densidad debido a que el caucho es de consistencia liviana.

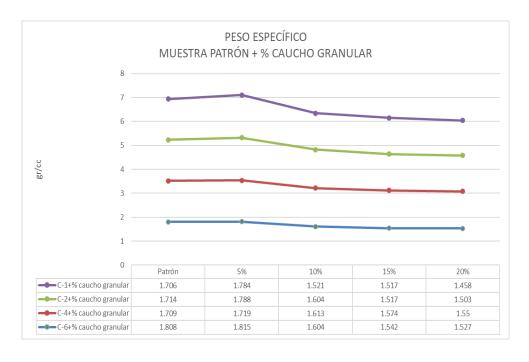


Fig. 34. Peso Específico, Resumen Muestras Patrón + % Caucho granular

Nota: De la Fig. 34. podemos interpretar que a medida que el porcentaje de caucho adicionado aumenta desde el 5% hasta el 20%, las muestras tienden a una disminución en su Peso Específico.

d) Proctor Modificado Muestra Patrón + Caucho Granular

Tabla XXProctor Modificado, Muestra patrón C-1 + % Caucho granular

				Proctor Modificado	
Ítem	Calicata	Progresiva	Profundidad	OCH %	MDS (gr/cc)
1	C-1 + 05% de caucho granular	0+000	1.50 m	15.10	1.754
2	C-1 + 10% de caucho granular	0+500	1.50 m	14.69	1.612
3	C-1 + 15% de caucho granular	1+500	1.50 m	14.77	1.579
4	C-1 + 20% de caucho granular	2+500	1.50 m	14.91	1.540

Tabla XXIProctor Modificado, Muestra patrón C-2 + % Caucho granular

			_	Proctor Modificado	
Ítem	Calicata	Progresiva	Profundidad	OCH %	MDS (gr/cc)
1	C-2 + 05% de caucho granular	0+000	1.50 m	15.37	1.744
2	C-2 + 10% de caucho granular	0+500	1.50 m	14.15	1.692
3	C-2 + 15% de caucho granular	1+500	1.50 m	14.89	1.578
4	C-2 + 20% de caucho granular	2+500	1.50 m	14.97	1.546

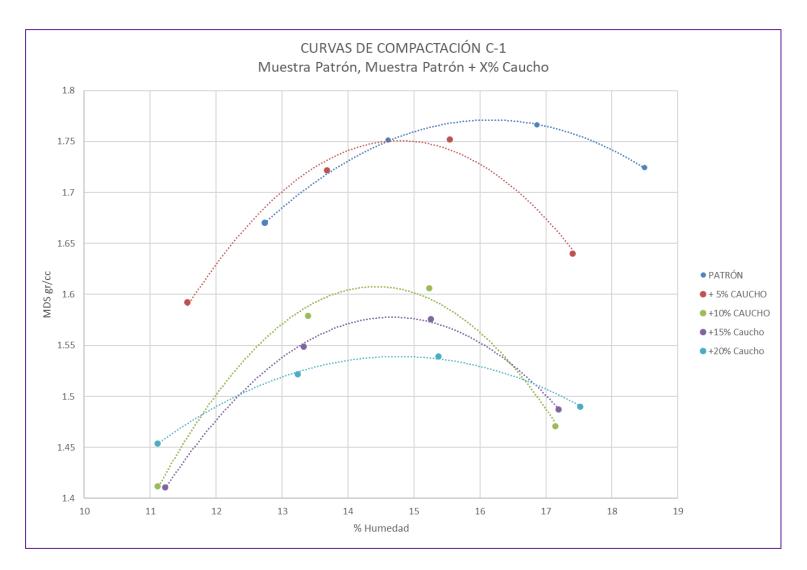


Fig. 35. Curvas De Compactación C-1, Muestra Patrón, Muestra Patrón + X% Caucho

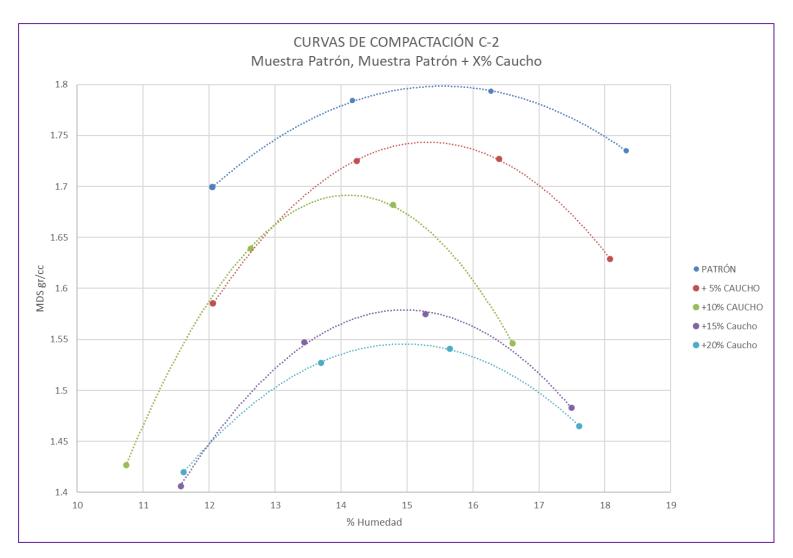


Fig. 36. Curvas De Compactación C-2, Muestra Patrón, Muestra Patrón + X% Caucho

Tabla XXII

Proctor Modificado, Muestra patrón C-4 + % Caucho granular

			_	Proctor Modificado	
Ítem	Calicata	Progresiva	Profundidad	OCH %	MDS (gr/cc)
1	C-4 + 05% de caucho granular	0+000	1.50 m	15.23	1.820
2	C-4 + 10% de caucho granular	0+500	1.50 m	14.31	1.681
3	C-4 + 15% de caucho granular	1+500	1.50 m	14.87	1.576
4	C-4 + 20% de caucho granular	2+500	1.50 m	14.97	1.406

Tabla XXIII

Proctor Modificado, Muestra patrón C-6 + % Caucho granular

			_	Proctor N	ctor Modificado	
Ítem	Calicata	Progresiva	Profundidad	OCH %	MDS (gr/cc)	
1	C-6 + 05% de caucho granular	0+000	1.50 m	15.46	1.834	
2	C-6 + 10% de caucho granular	0+500	1.50 m	15.54	1.687	
3	C-6 + 15% de caucho granular	1+500	1.50 m	14.87	1.576	
4	C-6 + 20% de caucho granular	2+500	1.50 m	14.97	1.406	

Nota: En las Tablas XX, XXI, XXII, y XXIII, al comparar las muestras patrón y las muestras adicionadas con caucho granular podemos notar que con el porcentaje de adición del 5% de caucho manifiesta un pequeño incremento en la MDS, mientras que con los demás porcentajes disminuye a medida que el porcentaje de combinación aumenta.

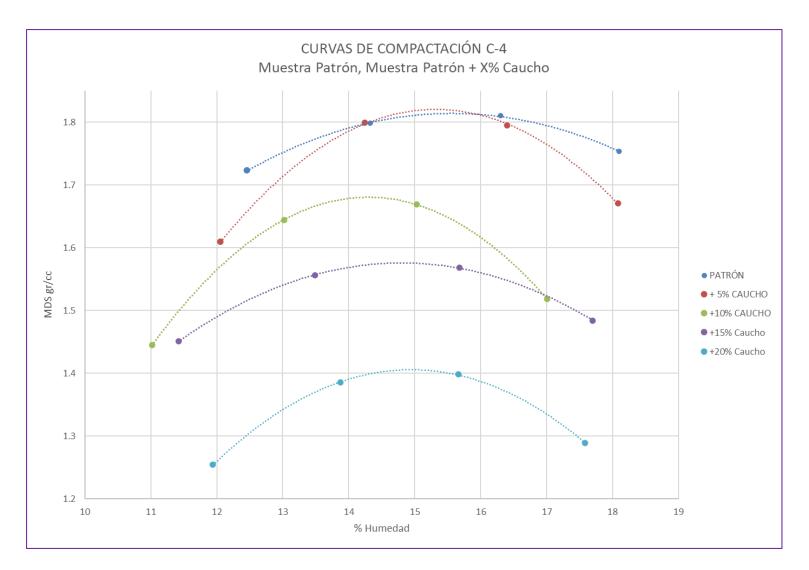


Fig. 37. Curvas De Compactación C-4, Muestra Patrón, Muestra Patrón + X% Caucho

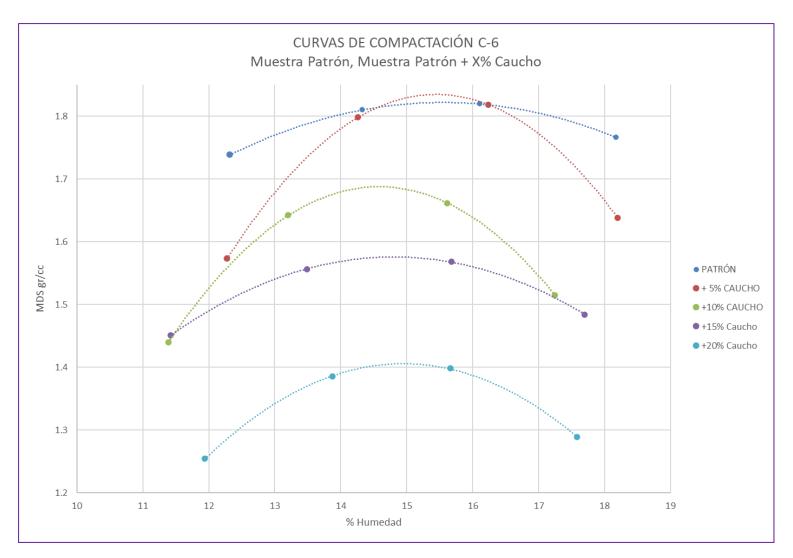


Fig. 38. Curvas De Compactación C-6, Muestra Patrón, Muestra Patrón + X% Caucho



Fig. 39. Proctor Modificado, Resumen Muestra patrón + Caucho granular

Nota: Acorde al tercer objetivo específico de la investigación sobre determinar el valor de soporte del suelo adicionando caucho granular en los porcentajes establecidos. De la Fig. 39. podemos interpretar que con el porcentaje de adición de caucho granular del 5% genera un pequeño incremento en su MDS, mientras que con los porcentajes de adición del 10%, 15%, y 20% estos tienden a perder sus propiedades mecánicas debido que a medida que es adicionada una mayor cantidad de caucho se vuelve más complicado el proceso de compactación ya que el caucho tiene propiedades elásticas.

e) CBR Muestra Patrón + Caucho Granular

Tabla XXIV

CBR, Muestra patrón C-1 + % Caucho granular

				С	CBR	
Ítem	Calicata	Progresiva	Profundidad	95% (0.1")	100% (0.1")	
1	C-1 + 05% caucho granular	0+000	1.50 m	5.3	6.1	
2	C-1 + 10% caucho granular	0+500	1.50 m	2.1	2.7	
3	C-1 + 15% caucho granular	1+500	1.50 m	1.6	2.2	
4	C-1+ 20% caucho granular	2+500	1.50 m	0.9	1.0	

Tabla XXVCBR, Muestra patrón C-2 + % Caucho granular

				CBR	
Ítem	Calicata	Progresiva	Profundidad	95% (0.1")	100% (0.1")
1	C-2 + 05% caucho granular	0+000	1.50 m	5.3	6.6
2	C-2 + 10% caucho granular	0+500	1.50 m	3.0	3.3
3	C-2 + 15% caucho granular	1+500	1.50 m	2.3	2.9
4	C-2 + 20% caucho granular	2+500	1.50 m	1.3	1.8

Tabla XXVICBR, Muestra patrón C-4 + % Caucho granular

				CBR	
Ítem	Calicata	Progresiva	Profundidad	95% (0.1")	100% (0.1")
1	C-4 + 05% caucho granular	0+000	1.50 m	5.5	6.4
2	C-4 + 10% caucho granular C-4 + 15%	0+500	1.50 m	1.5	2.2
3	caucho granular	1+500	1.50 m	1.5	1.9
4	C-4 + 20% caucho granular	2+500	1.50 m	1.4	1.7

Tabla XXVII

CBR, Muestra patrón C-4 + % Caucho granular

				CBR	
Ítem	Calicata	Progresiva	Profundidad	95% (0.1")	100% (0.1")
1	C-6 + 05% caucho granular	0+000	1.50 m	5.5	6.1
2	C-6 + 10% caucho granular C-6 + 15%	0+500	1.50 m	2.6	3.2
3	caucho granular C-6 + 20%	1+500	1.50 m	2.2	2.5
4	caucho granular	2+500	1.50 m	1.0	1.20

Nota: De los resultados obtenidos en las Tablas XXIV, XXV, XXVI, y XXVII, podemos interpretar que la adición de caucho no resulta favorable en porcentajes mayores al 5% ya que disminuye considerablemente su CBR, el porcentaje más óptimo de esta investigación fue el 5% ya que da una leve mejora al CBR, concluyendo que combinar el suelo con caucho granular en porcentajes mayores al 5% no es apto para estabilizar suelos arcillosos ya que no cumple los parámetros mínimos necesarios para tener funcionalidad de las propiedades físico-mecánicas del suelo para fines de subrasante.

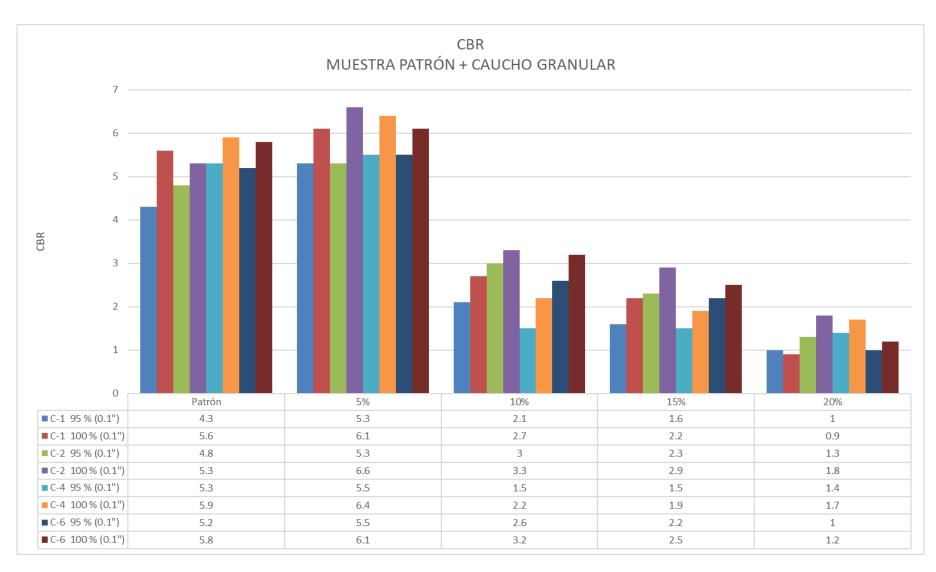


Fig. 40. CBR, Resumen Muestras patrón + % Caucho granular

Nota: De la Fig. 40. podemos interpretar que para las calicatas C-1, C-2, C-4 y C-6 el porcentaje que mejor comportamiento mecánico tuvo es el porcentaje del 5% de adición de caucho granular ya que le permitió al suelo arcilloso incrementar ligeramente su valor de soporte hasta un valor máximo alcanzado en la calicata C-2 con un CBR (0.1") = 6.6% el cual cambia su clasificación acorde a la Tabla I de ser considerado "Malo" a "Regular" ya que presentan CBR mayores al 6%.

Validación de la Hipótesis

Para validar la Hipótesis "La adición de caucho granulado de neumático logra estabilizar el suelo arcilloso de carreteras no pavimentadas incrementando su valor de soporte y mejorado sus propiedades físicas" planteada en esta investigación procedemos a realizar el análisis en base a los resultados obtenidos en el ensayo de CBR. Se tomó como muestra el valor más desfavorable el cual fue correspondiente a la Calicata 1 con adición de caucho del 5%, 10%, 15% y 20% (Ver Tabla XXIV), para la cual se obtuvo el Coeficiente de Correlación de Pearson (R) por medio del software Excel.

Para determinar la validez o no validez de una Hipótesis, el Coeficiente de Correlación de Pearson (R) estará comprendido en los valores establecidos en la Tabla XXVIII.

Tabla XXVIII

Valores Coeficiente de Correlación

Rai	ngo	Relación Lineal
0.96	1	Perfecta
0.85	0.95	Fuerte
0.7	0.84	Significativa
0.5	0.69	Moderada
0.2	0.49	Débil
0.1	0.19	Muy débil
0	0.09	Nula

Nota: En la Tabla XXVIII, podemos ver los valores establecidos para determinar el grado de validez de una hipótesis en función al Coeficiente de Correlación (R) [34].

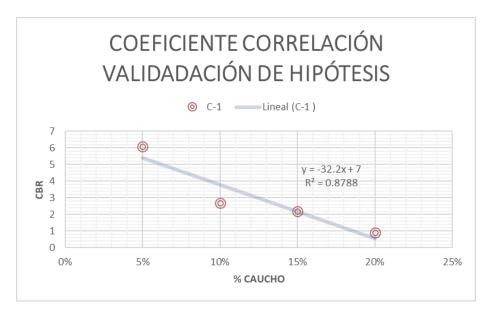


Fig. 41. Coeficiente de correlación, CBR - % Caucho

Nota: De la Fig. 36. podemos despejar la ecuación $R^2 = 0.8788$ para obtener el Coeficiente de Correlación de Pearson R= 0.94 y en función a la Tabla XXVIII, podemos definir que se trata de una Hipótesis Alternativa clasificada como "Fuerte".

Análisis de Costos Unitarios

- Costo Fabricación del Caucho Granular

Se realizó el análisis de costos unitarios acorde al equipo necesario para la fabricación del Caucho Granular.

Tabla XXIX

Costo Fabricación Caucho granular

Costo	Caucho Granular
S/ 1,200.00	1 Tonelada
S/ 40.00	1 Saco (30 Kg)
\$/35,000.00	Maquina Separadora Fibras y Acero
S/ 25,000.00	Maquina Corte y Tamizado

Nota: De la Tabla XXIX, podemos detallar el costo del caucho granular, así como también el costo de la maquinaria necesaria para su elaboración.

- Costo Suelo Arcilloso + Caucho Granular

Basándonos en el porcentaje óptimo de incorporación de caucho granular en la muestra de suelo arcilloso el cual fue el 5%, podemos hacer una estimación del costo de estabilización del suelo por cada m^3 de muestra arcillosa teniendo en cuenta los tipos de neumáticos existentes y sus características, como se indican en la Tabla XXX.

Tabla XXX

Características Neumáticos en función al tipo de vehículo

Tipo De Neumático Sin Llanta	Peso Aprox. (Kg)	Peso Útil Reutilizable
Neumáticos para cortacésped	2.5	1.5
Neumáticos para carros de golf	4.5	2.7
Neumáticos de remolque	7	4.2
Neumáticos de motocicleta	10.4	6.24
Neumáticos de automóviles de pasajeros	12	7.2
Neumáticos para vehículos 4x4 y SUV	14	8.4
Neumáticos para granjas y tractores	15	9
Neumáticos para camiones ligeros	22	13.2
Neumáticos para vehículos recreativos/caravanas	32	19.2
Neumáticos para furgonetas/camiones comerciales	52	31.2

Nota: De la Tabla XXX, podemos inferir que en promedio los neumáticos pierden más del 40% de su superficie antes de entrar en desuso adaptado de [7]. Por lo tanto, para cumplir la demanda de 1 m^3 de muestra de arcilla es necesario aproximadamente 80 kg de caucho granular correspondientes al 5% de porcentaje de adición, para el cual en promedio se reciclan entre 10 a 30 neumáticos de variada clasificación, ver Tabla XXXI.

Tabla XXXI

Costo Unitario por m3, Suelo + 5% Caucho Granular

Volumen	Caucho Granular	Neumáticos	Costo (S/)
(m3)	(Kg)	Reciclados (Und)	
1	80	10 a 30	110

Nota: En la Tabla XXXI, tenemos el costo unitario por m3 de muestra + 5% caucho granular.

3.2. Discusión de resultados

Referente al objetivo general planteado en esta investigación de estabilizar el suelo arcilloso usando caucho granular de neumáticos para fines de carreteras no pavimentadas se tiene la Fig. 40. de donde podemos interpretar que para las calicatas C-1, C-2, C-4 y C-6 el porcentaje que mejor comportamiento mecánico tuvo es el porcentaje del 5% de adición de caucho granular ya que le permitió al suelo arcilloso incrementar ligeramente su valor de soporte hasta un valor máximo alcanzado en la calicata C-2 con un CBR (0.1") = 6.6% el cual cambia su clasificación acorde a la Tabla I, de ser considerado "Malo" a "Regular" ya gue presentan CBR mayores al 6%. Para la investigadora [19] quien indica que la adición de caucho granulado en porcentajes menores al 5% incrementa la capacidad de soporte del suelo en un rango mínimo en cuanto a valor CBR, mientras que al superar el 9% este disminuye considerablemente. Lo manifestado guarda relación con los resultados obtenidos en esta investigación, debido a que con el 5% de adición de caucho se genera un incremento mínimo en la capacidad de soporte del suelo arcilloso CBR promedio = 6.60%, al contrario de los porcentajes del 10%, 15% y 20% los cuales disminuyeron considerablemente el valor de CBR de las muestras en estudio, dicho esto los resultados alcanzados no logran estabilizar los suelos arcillosos ya que es requerido por normativa un CBR mayor entre 10%-20% para ser considerado como bueno para utilizarse a nivel subrasante. Se difiere con el investigador [16] quien concluyó que agregar el 60% de caucho reciclado, genera buenos resultados logrando alcanzar un CBR=41%, siendo esto poco probable debido a que por el tamaño de sus partículas, el volumen que este ocupa, el peso liviano y las propiedades del caucho no permitirían una adecuada compactación ya que es este material tiende a contrarrestar los esfuerzos a los que está sometido, a medida que se aumenta la adición de caucho la densidad del suelo en estudio disminuirá considerablemente y el material ya no tendrá una granulometría con buena gradación y por ende el valor de soporte disminuirá a medida que este pierde densidad y cohesión.

Respecto al primer objetivo específico de esta investigación de identificar las características físicas y mecánicas de los suelos arcillosos. Se tiene la Tabla X de donde podemos interpretar que las muestras obtenidas de las calicatas C-1, C-2, C-4. y C-6 se clasificaron como una arcilla de baja plasticidad, mientras que las calicatas C-3 y C-5 se clasificaron como una arena limosa. Para la investigadora [20] que afirma que obtuvo como muestra patrón más desfavorable un tipo de suelo clasificado según SUCS como CL, lo que es una arcilla de baja plasticidad, y que según AASHTO fue un suelo A – 6 (8) el cual se clasifica como un suelo que contiene partículas arcillosas, la muestra patrón tuvo una densidad seca de 2.008gr/cc con un OCH=10.3%. Ello concuerda con lo obtenido en la presente investigación ya que las muestras patrones fueron clasificadas por SUCS como CL y según AASHTO como A – 6 (16) lo cual resulta en una arcilla de baja plasticidad, con una MDS prom=1.771 gr/cc y OCH prom=16.16%, con un peso específico promedio=1.706 gr/cc y un CBR (100%) promedio=5.6%.

Acorde al segundo objetivo específico planteado en esta investigación de determinar el valor de soporte del suelo arcilloso. Se tiene la Fig. 40. de cual podemos ver que las muestras presentan valores de CBR en promedio clasificados como "Malo" conforme a lo establecido en la Tabla I, la cual indica que serán considerados como CBR "malo" para aplicarse a nivel subrasante aquellas que estén en el rango menor al CBR=6%, se obtuvo como resultados para C-1 un CBR(0.1") = 5.6%, para C-2 un CBR (0.1") = 5.8%, para C-4 un CBR(0.1") = 5.9% y para C-6 un CBR(0.1") = 5.8%. Se difiere con la investigación de [21], quien afirma que los resultados de valor de soporte del suelo arcilloso en estudio, fueron en promedio CBR=16.23%, y dicho material está calificado como "bueno" para una subrasante. Es sabido que el valor del CBR natural de un suelo arcilloso es clasificado como "malo a regular" con valores menores al 10%. También el investigador [16] dio alcances de los resultados obtenidos en su investigación manifestando que el valor de soporte del suelo arcilloso en estudio, fue en promedio CBR=7.1%, el cual está calificado como "regular" para una subrasante. Esto guarda relación en cuanto a los resultados obtenidos en la presente

investigación debido a que tenemos un valor de soporte promedio del suelo arcilloso CBR=5.6% calificado como malo para una subrasante. Además, se tienen 3 casos de tipologías de suelos arcillosos clasificados entre malo, regular y bueno para ser aplicable a nivel subrasante; los cuales permiten dar un alcance sobre las propiedades mecánicas del material estudiado en su estado natural, el cual se pretende estabilizar para posteriormente analizar si estas tendrán mejoras al ser combinadas con el caucho granular.

Acorde al tercer objetivo específico planteado en esta investigación de determinar el valor de soporte del suelo arcilloso con adición de caucho granular del 5%,10%, 15%, y 20% del peso de la muestra. Se tiene la Fig. 40. de podemos interpretar que para las calicatas C-1, C-2, C-4 y C-6 el porcentaje que mejor comportamiento mecánico tuvo es el porcentaje del 5% de adición de caucho granular ya que le permitió al suelo arcilloso incrementar ligeramente su valor de soporte hasta un valor máximo alcanzado en la calicata C-2 con un CBR (0.1") = 6.6% el cual cambia su clasificación acorde a la Tabla I de ser considerado "Malo" a "Regular" ya que presentan CBR mayores al 6%. En tanto, para la investigadora [21] quien obtuvo como resultados al combinar el material de suelo arcilloso con caucho granulado en porcentajes del 8%, 12% y 16%; para los cuales obtuvo valores promedio del valor de soporte. Para el 8% de adición de caucho granular se obtuvo un CBR=14.63%, para el 12% de adición de caucho granular un CBR=6.45%, y para el 16% de adición de caucho granular un CBR=5.33%. Lo manifestado guarda relación con los resultados obtenidos en esta investigación debido a que al combinar el suelo arcilloso con caucho granular en porcentajes del 5%, 10%,15%, y 20% se obtuvieron valores que indican el mismo efecto de pérdida de capacidad de soporte a medida que el porcentaje de caucho adicionado es mayor; para el 5% de adición de caucho granular se obtuvo un CBR=6.10%, para el 10% de adición de caucho granular un CBR=3.1%, para el 15% de adición de caucho granular un CBR=2.5% y finalmente para el 20% de adición de caucho granular se obtuvo un CBR=1.5%, en primera instancia parecía que el material podía ser estabilizado con el porcentaje del 5% de adición de caucho granular debido a un pequeño incremento a comparación del CBR de la muestra

natural que fue de CBR=5.6% pero el incremento de capacidad de soporte es mínimo y no cumple con lo necesario para estabilizarse debido a que el suelo arcilloso pierde capacidad de soporte a medida que el porcentaje de caucho aumenta.

Acorde al cuarto objetivo específico planteado en esta investigación de comparar las propiedades físicas y mecánicas de la muestra patrón y de la muestra patrón combinado con caucho granular. Se tiene la Fig. 34. de podemos interpretar que a medida que el porcentaje de caucho adicionado aumenta desde el 5% hasta el 20%, las muestras tienden a una disminución en su Peso Específico y por ende su densidad. Para la investigadora [19] la cual manifiesta que, realizado los ensayos de granulometría y Gravedad Específica, la gradación del suelo manifestó un cambio respecto a cómo fue clasificada debido a que cambio de ser una arcilla de baja plasticidad a una arcilla de baja plasticidad con arena, esto se debe a que el caucho tiene granulometría similar a una arena y fue retenido en gran parte por la malla N°10; respecto a la gravedad especifica obtuvo un valor promedio para la muestra patrón de 2.386 gr/cc y que al adicionarse los porcentajes de caucho granular del 3%, 5%, 7% y 9% esta disminuye en promedio hasta 2.225 gr/cc, concluyendo que las propiedades físicas no mejoraron debido a que presenta una baja densidad por consecuencia del caucho. La cual guarda relación con la investigación realizada, ya que en primera instancia el peso específico tiende a comportarse de forma similar a medida que los porcentajes de 5%,10%, 15% y 20% de caucho son aumentados ya que este por ser de consistencia liviana hace que pierda densidad la muestra, se obtuvo un valor para muestra patrón de peso específico promedio=1.802 gr/cc el cual se redujo al ser combinada con los porcentajes de 5%,10%, 15% y 20% de caucho hasta un valor promedio de 1.552gr/cc; por consecuente no mejoraron las propiedades físicas del suelo arcilloso.

En cuanto a las propiedades mecánicas del suelo con adición de caucho granular en la presente investigación tenemos la Fig. 35. de la cual podemos interpretar que para las calicatas C-1, C-2, C-4 y C-6 el porcentaje que mejor comportamiento mecánico tuvo es el porcentaje del 5% de adición de caucho granular ya que le permitió al suelo arcilloso incrementar ligeramente su valor de soporte hasta un valor máximo alcanzado en la calicata C-2 con un CBR (0.1") = 6.6% el cual cambia su clasificación acorde a la Tabla I de ser considerado "Malo" a "Regular" ya que presentan CBR mayores al 6%. Mientras que para el investigador [16] quien manifiesta que se mejorara el valor del CBR utilizando el caucho granular producto de neumáticos, dado que el investigador hizo efectivo su estudio en suelos tipo OH y OL de donde obtuvo un CBR patrón de suelo arcilloso=7.10%, por tratarse de un suelo tipo orgánico con alta plasticidad y moderada plasticidad no se recomienda para aplicarse a nivel subrasante ni para base, por lo tanto manifiesta que adicionando caucho granular en porcentaje del 20% obtuvo un CBR=10%, con la adición del 40% de caucho un CBR=30.40% y con la adición del 60% de caucho un CBR=41.00%. Concluyendo que el 60% de caucho resultó optimo y consiguió estabilizar el suelo arcilloso transformando el material en apto a calidad de bueno y que puede ser aplicable a nivel subrasante. Con lo cual no concuerdo acorde a los resultados obtenidos en esta investigación el suelo de estudio fue clasificado como CL teniendo como CBR patrón de suelo arcilloso=5.6%, por presentar un CBR menor a 6% es considerado como malo para utilizarse a nivel subrasante; combinando la muestra patrón con el 5% de caucho granular se logra un ligero incremento en el CBR=6.60%, mientras que adicionando el 10% de caucho el valor de su CBR=3.1%, adicionando el 15% de caucho se tiene un CBR=2.2% y finalmente con el 20% de caucho se reduce considerablemente el CBR=1%.

En referencia al último objetivo específico de proponer la dosificación adecuada de caucho granular que muestra las mejores condiciones para estabilizar el suelo arcilloso de carreteras no pavimentadas. Se tiene los resultados obtenidos en las Tablas XXIV, XXV, XXVI y XXVII, podemos interpretar que la adición de caucho no resulta favorable en porcentajes

mayores al 5% ya que disminuye considerablemente su CBR, el porcentaje más óptimo de esta investigación fue el 5% ya que da una leve mejora al CBR, concluyendo que combinar el suelo con caucho granular en porcentajes mayores al 5% no es apto para estabilizar suelos arcillosos ya que no cumple los parámetros mínimos necesarios para tener funcionalidad de las propiedades físicas y mecánicas del suelo a nivel subrasante. Por otro lado, para el investigador [16] quien manifiesta que para un suelo de tipo OH y OL donde tuvo un CBR=7.10% en estado natural, afirma adicionando 60% de caucho se obtuvo resultados óptimos y consiguió estabilizar el suelo arcilloso con un CBR=41% transformando el material en apto a calidad "excelente" según la Tabla I y que puede ser aplicable a nivel subrasante. Con lo cual estoy en desacuerdo con lo manifestado debido a que los suelos arcillosos y orgánicos tienden a tener una capacidad de soporte muy baja, y al considerar un porcentaje tan alto de caucho a utilizar podemos deducir que este reemplazaría casi a totalidad a la muestra patrón, independientemente de que es muy complicado el proceso de compactación del suelo con adición de caucho. La dosificación que brindo un incremento leve en esta investigación fue la de adicionar el 5% de caucho granular, consiguiendo un leve incremento en su capacidad de soporte (CBR).

IV. CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

Habiendo realizado una investigación exhaustiva y analizado los resultados obtenidos se concluye que:

- No se logró estabilizar los suelos arcillosos adicionando caucho granular para fines de carreteras no pavimentadas para ser aplicable a nivel subrasante debido a que con los porcentajes de diseño del 5%, 10%, 15%, y 20% establecidos en esta investigación no se lograron mejoras significativas en las propiedades físicas y mecánicas de los suelos en estudio.
- En base a ensayos de Granulometría, la gradación del suelo arcilloso al combinarse con caucho granular presenta cambios respecto a su clasificación inicial debido a que cambió sus cualidades de una arcilla de baja plasticidad a una arcilla de baja plasticidad con arena, esto se debe a que el caucho tiene granulometría similar a una arena y fue retenido en gran parte por la malla N°10.
- Respecto al Peso Específico obtuvo un valor promedio para la muestra patrón de 1.706 gr/cc y que al adicionarse los porcentajes de caucho granular del 5%,10%, 15% y 20% esta disminuye en promedio hasta 1.458 gr/cc, concluyendo que las propiedades físicas no mejoraron debido a que el caucho granular es de peso liviano, tiene propiedades elásticas, y es de difícil compactación, por el ende la muestra patrón adicionada con caucho presentara menor densidad a medida que el % de caucho adicionado sea mayor.
- Las propiedades mecánicas presentan un pequeño incremento al combinar con 5% de caucho granular el suelo arcilloso de baja plasticidad, del ensayo de Proctor Modificado se obtuvo la M.D.S = 1.834 gr/cc y un O.C.H = 15.46% en muestra patrón, por el contrario, con la incorporación de caucho granulado en porcentajes del 10%, 15% y 20%, la M.D.S disminuye hasta un valor de 1.406 gr/cc y su O.C.H hasta un

valor de 14.97%.

Existen investigaciones las cuales afirman que adicionando grandes porcentajes de caucho granular (>10% adición de caucho) se logra estabilizar un suelo arcilloso lo cual resulta falso, tal y como se ha comprobado en la presente investigación. (Ver Anexo 01 - Tabla XXXIII)

4.2. Recomendaciones

En base a la investigación realizada se recomienda:

- Evaluar el efecto del caucho granulado en diferentes sitios del Departamento de Lambayeque, ya que existen distintos tipos de suelos.
- Replantear el tamaño de partículas (que pasen malla N°40) para que sean más fáciles de compactar.
- Cambiar el porcentaje de dosificación, considerando que debe ser menor al 5% y que debe combinarse con otro material de granulometría similar a una arena el cual permita reducir la plasticidad del suelo arcilloso y compactarse adecuadamente.

REFERENCIAS

- [1] H. VIDAL, «The Principle of Reinforced Earth,» París, 1969.
- [2] M. R. Hausmann, Engineering Principles of Ground Modification, New York: McGraw-Hill, 1990, p. 330.
- [3] C. Higuera, J. Gómez y Ó. Pardo, «Caracterización de un suelo arcilloso tratado con hidróxido de cálcio,» *Revista Facultad de Ingeniería*, *UPTC*, vol. 21, nº 32, p. 40, Junio 2012.
- [4] T. L. Lara, J. B. H. Zaragoza, J. H. Rangel y A. C. Márquez., «POLÍMEROS PARA LA ESTABILIZACIÓN VOLUMÉTRICA DE ARCILLAS,» Estabilización volumétrica de arcillas con polímeros, p. 1, 2010.
- [5] R. M. Torres Frias y K. J. Díaz Suárez, Incorporación de Partículas de Caucho de Neumáticos para Mejorar las Propiedades Mecánicas en Suelos Arcillosose, Jaén, 2019.
- [6] INDECI, «Mapa de peligros de la ciudad de Ferreñafe,» Ferreñafe, 2003.
- [7] J. S. Yadav y S. K. Tiwari, «Effect of waste rubber fibres on the geotechnical properties of clay stabilized,» *Applied Clay Science*, 2017.
- [8] B. Shivamurthy, D. Doreswamy, J. Nishanth y S. P. H. C, «Physical and tribomechanical properties of waste rubber tyre/epoxy composites,» *Materials Research Express*, 23 Febrero 2019.
- [9] M. Abbaspou, E. Aflaki y F. M. Nejad, «Reuse of waste tire textile fibers as soil reinforcement,» *Journal of Cleaner Production*, 2018.
- [10] S. M. Anvar y &. I. Shooshpasha, «Influence of size of granulated rubber on bearing capacity of fine-grained sand,» *Saudi Society for Geosciences*, 2016.
- [11] J. Yadav y S. Tiwari, «Efecto de las fibras de caucho residuales en las propiedades geotécnicas de la arcilla estabilizada con cemento,» Ciencia de la

- arcilla aplicada, 2017.
- [12] H. Dr. Hanan Adnan, M. Hadeel Ammar y M. Ghadah Ghassan, «Effect of rubber tire on behaviour of subgrade,» *Materials Science and Engineering*, 2020.
- [13] Bo Li, Maosong Huang y Xiangwu Zeng, «Dynamic Behavior and Liquefaction Analysis,» *Journal of Materials in Civil (ASCE)*, p. 1; 13, 2016.
- [14] S.S Narani, H. Mir Mohammad, E. Aflaki y F.Moghadas, «Sustainable Reuse of Waste Tire Textile Fibers (WTTFs) as Reinforcement Materials for Expansive Soils: With a Special Focus on Landfill Liners/Covers,» *Journal of Cleaner Production*, 2019.
- [15] Suat Akbulu, Seracettin Arasan y Ekrem Kalkan, «Modification of clayey soils using scrap tire rubber and synthetic fibers,» *Applied Clay Science*, 2017.
- [16] W. D. Cusquisibán Ocas, Mejoramiento de suelos arcillosos utilizando caucho granular de neumáticos para fines constructivos de pavimento., Cajamarca, Cajamarca, 2014.
- [17] R. D. Huamán Casas y K. W. Muguerza Zevallos, Influencia del caucho granulado en suelos cohesivos relacionado a la propiedad de la resistencia a la penetración (CBR), 2019, Lima, Lima, 2019.
- [18] E. J. Benavente Huamán y M. E. Navarro Cárdenas, Estudio experimental del comportamiento mecánico-geotécnico de un suelo granular con adición de caucho reciclado proveniente de neumáticos inservibles, Lima, 2020.
- [19] D. K. Rodriguez Ticona, Incorporación de caucho granulado para mejorar el comportamiento físico y mecánico en la subrasante de suelos arcillosos, Puno 2021, Lima, 2021.
- [20] C. V. Moreno Marroquin, *Influencia del aditivo terrazyme y del caucho granulado* en la subrasante de ampliación Las Iomas Ventanilla, Lima 2021, Lima, 2021.

- [21] L. L. Junes Del Pozo, Aplicación del caucho granulado reciclado para el mejoramiento de la subrasante en la Avenida el Sol, San Joaquín, Ica 2021, Lima, 2021.
- [22] B. M. Das, Fundamentos de la ingeniería geotecnica, 4 ed., 2013.
- [23] C. Crespo Villalaz, Mecánica de Suelos y Cimentaciones, Monterrey, 1980.
- [24] C. Escobar Potes, Geomecánica para Ingenieros, Universidad Nacional de Colombia, 2016.
- [25] MTC, MANUAL DE CARRETERAS, SUELOS, GEOLOGÍA, Y PAVIMENTOS, Lima, 2014.
- [26] C. Gonzales Vergara, M. Rincón Villalba y W. Vargas Vargas, *Diseño, trazado* y localización de carreteras, Bogotá: Alpha, 2019.
- [27] A. Patel, Soil Stabilization, 2019, pp. 19-27.
- [28] J. Vadillo, Mecánica de Suelos, vol. 1, 2005.
- [29] MTC, Manual de Ensayo de Materiales, Ministerio de Transportes y Comunicaciones, Lima, 2016.
- [30] L. Buendía y P. Hernandez, Método de investigación en Psicopedagogía, McGraw-Hill., 2013.
- [31] R. Sampieri, Metodologia de la Investigación, Mc Graw Hill, 2014, 2014.
- [32] A. Fariñas, G. Margelis, Y. Ramos y Y. Rivero, *Técnicas en instrumentos de Recolección de datos,* Universidad de Oriente., 2010.
- [33] D. N°053-2023/PD-USS, CÓDIGO DE ÉTICA EN INVESTIGACIÓN DE LA UNIVERSIDAD SEÑOR DE SIPÁN S.A.C., Pimentel, 2023, p. 21.
- [34] B. K. Saleh y S. A. E. Mogy, «Use of Waste Rubber and Bionanofiller in Preparation of Rubber Nanocomposites for Friendly Environmental Flooring Applications,» *Egyptian Journal of Chemistry*, 2020.

- [35] M. M. Genescà, J. García-Amorós, R. Mujal-Rosas y L. Massagués, «Study and Characterization of the Dielectric Behavior of Low Linear Density Polyethylene Composites Mixed with Ground Tire Rubber Particles,» *Polymers*, 08 Mayo 2020.
- [36] H. Li, W. Li, A. A. Temitope, D. Zhao y G. Zhao, «Análisis de la influencia del método de producción, contenido de caucho desmenuzado y estabilizador en el rendimiento del caucho asfáltico.,» *Ciencias Aplicadas*, p. 1, 2020.
- [37] M. Marín-Genescà, J. García-Amorós, Bordes-Arroyo, Mujal-Rosas y M. Vidal, «Study and comparison on mechanical properties of various polymers reinforced with ground tires rubber (GTR),» *Materials Science and Engineering*, 2019.
- [38] P. Ministerio de Vivienda, Reglamento Nacional de Edificaciones, Lima, 2019.
- [39] . J. F. Huamani Quispe y C. A. Rodrigo Reginaldo, "AGREGADO CON NEUMÁTICO TRITURADO COMO COLUMNA DE GRAVA PARA EL CONTROL DEL ASENTAMIENTO DE SUELO BLANDO EN EL SECTOR DE QUINTANILLA PAMPA", Huancavelica, 2019.
- [40] M. L. Gali y P. R. Rao, «Problematic Soils and Geoenvironmental Concerns,» Lecture Notes in Civil Engineering, 2018.
- [41] A. Isan, «Los neumáticos, grandes contaminantes,» 21 Noviembre 2017. [En línea]. Available: https://www.ecologiaverde.com/los-neumaticos-grandes-contaminantes-419.html.
- [42] J. S. Yadav y S. K. Tiwari, «Influence of crumb rubber on the geotechnical properties,» *Environ Dev Sustain,* pp. 1,3, 2017.
- [43] J. S. Yadav y S. K. Tiwari, «Evaluation of the strength characteristics of cementstabilized,» *Environ Dev Sustain*, 18 Mayo 2017.
- [44] U. Chaduvula, B. Viswanadham y J. Kodikara, «A study on desiccation cracking behavior of polyester fiber-reinforced expansive clay,» *Applied Clay Science*, p.

- 10, 2017.
- [45] R. R. L. GONZALES, *UTILIZACIÓN DE BOLSAS DE POLIETILENO PARA,* Huancayo, 2016.
- [46] B. Li1, M. Huang2 y X. Zeng, «Dynamic Behavior and Liquefaction Analysis,»

 Journal of Materials in Civil Engineering, p. 14, 2016.
- [47] F. H. Kha, «Analysis of the influence of waste polymer on soil subgrade,»

 International Research Journal of Engineering and Technology (IRJET), 2016.
- [48] A. F. Cabalar, Z. Karabash y W. S. Mustafa, «Stabilising a clay using tyre buffings and lime,» *Road Materials and Pavement Design*, p. 22, 30 Julio 2014.
- [49] G. Ramos Hinojosa, MEJORAMIENTO DE SUBRASANTES DE BAJA

 CAPACIDAD PORTANTE MEDIANTE EL USO DE POLÍMEROS

 RECICLADOS EN CARRETERAS, PAUCARÁ HUANCAVELICA 2014,

 Huancayo, 2014.
- [50] R. JARA ANYAYPOMA, EFECTO DE LA CAL COMO ESTABILIZANTE DE UNA SUBRASANTE DE SUELO ARCILLOSO, Cajamarca, Cajamarca, 2014.
- [51] L. P. López, Población Muestra y Muestreo, Bolivia: Scielo, 2004.

ANEXOS

ÍNDICE ANEXOS

Anexo 01: Matriz de Consistencia y Comparativa de Investigaciones	106
Anexo 02: Tablas Y Figuras	108
Anexo 03: Estudio Mecánica De Suelos	111
Anexo 04: Certificado De Calibración De Equipos De Laboratorio	245
Anexo 05: Fichas De Validación	257
Anexo 06: Instrumentos De Validación Estadística	267
Anexo 07: Reporte de Similitud Turnitin	270

Anexo 01: Matriz de Consistencia y Comparativa de Investigaciones

Tabla XXXII: Matriz de Consistencia

Τĺ	TÍTULO: "Estabilización de Suelos Arcillosos con Caucho Granular de Neumáticos para fines de Carreteras no Pavimentadas"															
PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS	VARIABLES	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN	METODOLOGÍA									
	Estabilizar el suelo arcilloso usando caucho granular de neumático para fines de carreteras no pavimentadas OBJETIVOS ESPECÍFICOS		VD: Estabilización De Suelos	Características Físicas	Granulometría Contenido Humedad Límites Atterberg		NIVEL DE INVESTIGACIÓN: Explicativa DISEÑO DE INVESTIGACIÓN:									
¿De qué	Identificar las características físicas y mecánicas de los suelos arcillosos.	La adición de caucho granulado de	Arcillosos	Fisicas	Peso Específico Clasificación SUCS y AASHTO	Razón	Experimental TIPO DE INVESTIGACIÓN: Aplicada									
manera influye el caucho granulado de neumático para	Determinar el valor de soporte del suelo arcilloso sin estabilizar. Determinar el valor de soporte del suelo arcilloso con adición de	neumático logra estabilizar el suelo arcilloso de carreteras no pavimentadas		Características Mecánicas	Proctor Modificado CBR		POBLACIÓN: Carretera no pavimentada sector Túcume-Cachinche, Distrito Túcume -									
estabilizar el suelo arcilloso en carreteras no pavimentadas	caucho granulado del (5,10,15, y 20%) del peso de la muestra. Comparar las características físicas y mecánicas de la muestra patrón y	incrementando su valor de soporte y mejorando sus propiedades		Características Físicas	Granulometría		Lambayeque. MUESTRA: 6 calicatas a lo largo de la Carretera no pavimentada									
?	de la muestra patrón combinada con caucho granular.	físicas.										físicas. VI: Caucho	Características Mecánicas	Proctor Modificado	Razón	sector Túcume – Cachinche.
	Proponer la dosificación adecuada		Granular	Wiodaliidad	CBR		MUESTREO: Muestra Patrón, Muestra									
	de caucho granular que muestra las mejores condiciones para estabilizar el suelo arcilloso de carreteras no pavimentadas.			Dosificación	% Peso		Patrón + 5%,10%,15%, 20% de caucho									

Tabla XXXIII: Comparativa de Investigaciones Observadas

Artículo/		Thule	Año	Dosificación %	Resultados (SUELO TIPO - CL)		
Tesis	Autor (es)	Título	Ano	caucho granular	Proctor Modificado	CBR	
Tesis	Cusquisibán Ocas Wilder	Mejoramiento de suelos arcillosos utilizando caucho granular de neumáticos para fines constructivos de pavimento	2014	20%, 40%, y 60%	Caucho al 0% OCH de 15.7% MDS de 1.779 gr/cc, caucho al 20% OCH de 14.3% MDS de 1.783 gr/cc, caucho al 40% OCH de 13.8% MDS de 1.826 gr/cc, y caucho al 60% OCH de 9.6% MDS de 2.150 gr/cc	Caucho al 0% CBR es de 7,10%, caucho al 20% CBR de 10%, caucho al 40% CBR de 30,40%, caucho al 60% CBR de 41%	
Tesis	Rodríguez Ticona Diana	Incorporación de caucho granulado para mejorar el comportamiento físico y mecánico en la subrasante de suelos arcillosos, Puno 2021	2021	3%, 5%, 7%, γ 9%	Caucho al 0% OCH de 18.9% MDS de 1.626 gr/cc, caucho al 3% OCH de 17.38% MDS de 1.613 gr/cc, caucho al 5% OCH de 18.24% MDS de 1.566 gr/cc, caucho al 7% OCH de 18.43% MDS de 1.552 gr/cc, y caucho al 9% OCH de 18.5% MDS de 1.537 gr/cc	Caucho al 0% CBR es de 3.4%, caucho al 3% CBR de 5.6%, caucho con 5% CBR 4.9%, caucho al 7% CBR 4 %, y caucho al 9% CBR de 3.5%	
Tesis	Huamán Casas Ronaldo David, Muguerza Zevallos Kevin Warner	Influencia del caucho granulado en suelos cohesivos relacionado a la propiedad de la resistencia a la penetración (CBR), 2019.	2019	5%, 10%, γ 15%	Caucho al 0% OCH de 16.9% MDS de 1.810 gr/cc, caucho al 5% OCH de 18.6% MDS de 1.740 gr/cc, caucho al 10% OCH de 19.28% MDS de 1.680 gr/cc, y caucho al 15% OCH de 15.23% MDS de 1.610 gr/cc	Caucho al 0% CBR es de 3%, caucho al 5% CBR de 6.4%, caucho con 10% CBR 10.4%, y caucho al 15% CBR de 8%	
Tesis	Amaro Delgado Franko Klinsman, Jara Idme Yuliana	Subrasante Mejorada Aplicando Caucho Granular en Suelos Cohesivos de la Avenida Punchauca – Carabayllo, 2021	2021	3%, 6%, 9%, 12%	Caucho al 0% OCH de 9.6% MDS de 1.852 gr/cc, caucho al 3% OCH de 9.3% MDS de 2.071 gr/cc, caucho al 6% OCH de 10.1% MDS de 1.864 gr/cc, caucho al 9% OCH de 9.6% MDS de 2.005 gr/cc, y caucho al 12% OCH de 9.1% MDS de 1.781 gr/cc	Caucho al 0% CBR es de 4.3%, caucho al 3% CBR de 13%, caucho con 6% CBR 14.9%, caucho al 9% CBR 9.6%, y caucho al 12% CBR de 2.3%	
Tesis	Junes Del Pozo Luz Lorena	Aplicación del caucho granulado reciclado para el mejoramiento de la subrasante en la Avenida el Sol, San Joaquín, Ica 2021	2021	8%, 12% y 16%	Caucho al 0% OCH de 10.6% MDS de 2.010 gr/cc, caucho al 8% OCH de 9.1% MDS de 2.030 gr/cc, caucho al 12% OCH de 9.3% MDS de 1.890 gr/cc, y caucho al 16% OCH de 10% MDS de 1.770 gr/cc.	Caucho al 0% CBR es de 14.90%, caucho al 8% CBR de 12.40%, caucho con 12% CBR 5.00%, y caucho al 16% CBR 4.75%	
Tesis	Moreno Marroquín Vanesa, Portocarrero Escalante Rodrigo	Influencia del aditivo terrazyme y del caucho granulado en la subrasante de ampliación Las lomas – Ventanilla, Lima 2021	2021	4.5%, 6.5% y 8.5%	Caucho al 0% OCH de 10.3% MDS de 2.008 gr/cc, caucho al 4.5% OCH de 9.5% MDS de 2.088 gr/cc, caucho al 6.5% OCH de 10.6% MDS de 1.861 gr/cc, y caucho al 8.5% OCH de 10.4% MDS de 1.811 gr/cc.	Caucho al 0% CBR es de 3.10%, caucho al 4.5% CBR de 8.6%, caucho con 6.5% CBR 9.6%, y caucho al 8.5% CBR 3.4%	

Anexo 02: Tablas Y Figuras

Tabla XXXIV

Contenido Humedad, cuadro resumen

Ítem	Progresiva	Calicata	Profundidad	Contenido De Humedad
1	0+000 m	C-1	1.50 m	17
2	0+500 m	C-2	1.50 m	19
3	1+000 m	C-3	1.50 m	16
4	1+500 m	C-4	1.50 m	16
5	2+000 m	C-5	1.50 m	16
6	2+500 m	C-6	1.50 m	17

Tabla XXXVLímite Líquido, Muestras patrón

Ítem	Progresiva	Calicata	Profundidad	Límite Líquido
1	0+000	C-1	1.50 m	36
2	0+500	C-2	1.50 m	36
3	1+000	C-3	1.50 m	NP
4	1+500	C-4	1.50 m	28
5	2+000	C-5	1.50 m	NP
6	2+500	C-6	1.50 m	28

Tabla XXXVILímite Plástico, Muestras patrón

Ítem	Progresiva	Calicata	Profundidad	Límite Plástico
1	0+000	C-1	1.50 m	20
2	0+500	C-2	1.50 m	21
3	1+000	C-3	1.50 m	NP
4	1+500	C-4	1.50 m	17
5	2+000	C-5	1.50 m	NP
6	2+500	C-6	1.50 m	17

Tabla XXXVIIÍndice de Plasticidad, Muestras patrón

Ítem	Progresiva	Calicata	Profundidad	Índice De Plasticidad
1	0+000	C-1	1.50 m	16
2	0+500	C-2	1.50 m	15
3	1+000	C-3	1.50 m	NP
4	1+500	C-4	1.50 m	11
5	2+000	C-5	1.50 m	NP
6	2+500	C-6	1.50 m	11

Tabla XXXVIII

Peso Específico, Muestras patrón

Ítem	Calicata	Progresiva	Profundidad	Peso Específico (gr/cm3)
1	C-1	0+000 m	1.50 m	1.861
2	C-2	0+500 m	1.50 m	1.814
3	C-4	1+500 m	1.50 m	1.755
4	C-6	2+500 m	1.50 m	1.856

Tabla XXXIX

Proctor Modificado, Muestras patrón

				Proctor Mo	Proctor Modificado		
Ítem	Calicata	Progresiva	Profundidad	OCH %	MDS (gr/cc)		
1	C-1	0+000	1.50 m	16.16	1.771		
2	C-2	0+500	1.50 m	15.50	1.798		
3	C-4	1+500	1.50 m	15.62	1.814		
4	C-6	2+500	1.50 m	15.54	1.821		

Tabla XLCBR, Muestras patrón

Ítam	Calicata	Calicata Progresiva Prof		CBR		
Item	Calicata	Progresiva	Profundidad	95% (0.1")	100% (0.1")	
1	C-1	0+000	1.50 m	4.3	5.6	
2	C-2	0+500	1.50 m	4.8	5.3	
3	C-4	1+500	1.50 m	5.3	5.9	
4	C-6	2+500	1.50 m	5.2	5.8	

Tipo de Carretera	Profundidad (m)	Número mínimo de Calicatas	Observación
Autopistas: carreteras de IMDA mayor de 6000 veh/día, de calzadas separadas, cada una con dos o más carriles	1.50 m respecto al nivel de sub rasante del proyecto	 Calzada 2 carriles por sentido: 4 calicatas x km x sentido Calzada 3 carriles por sentido: 4 calicatas x km x sentido Calzada 4 carriles por sentido: 6 calicatas x km x sentido 	Las calicatas se ubicarán longitudinalmente
Carreteras Duales o Multicarril: carreteras de IMDA entre 6000 y 4001 veh/dia, de calzadas separadas, cada una con dos o más carriles	1.50 m respecto al nivel de sub rasante del proyecto	 Calzada 2 carriles por sentido: 4 calicatas x km x sentido Calzada 3 carriles por sentido: 4 calicatas x km x sentido Calzada 4 carriles por sentido: 6 calicatas x km x sentido 	y en forma alternada
Carreteras de Primera Clase: carreteras con un IMDA entre 4000-2001 veh/día, de una calzada de dos carriles.	1.50 m respecto al nivel de sub rasante del proyecto	4 calicatas x km	
Carreteras de Segunda Clase: carreteras con un IMDA entre 2000-401 veh/día, de una calzada de dos carriles.	1.50 m respecto al nivel de sub rasante del proyecto	3 calicatas x km	Las calicatas se ubicarán longitudinalmente
Carreteras de Tercera Clase: carreteras con un IMDA entre 400-201 veh/día, de una calzada de dos carriles.	1.50 m respecto al nivel de sub rasante del proyecto	2 calicatas x km	y en forma alternada
Carreteras de Bajo Volumen de Tránsito: carreteras con un IMDA ≤ 200 veh/día, de una calzada.	1.50 m respecto al nivel de sub rasante del proyecto	1 calicata x km	

Fig. 42. Número de calicatas para exploración de suelos acorde al tipo de carretera

Nota: La Fig. 37. Fue adaptada de [25].

Anexo 03: Estudio Mecánica De Suelos

CALICATA 01

CALICATA 01 MUESTRA PATRÓN

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Descripción e identificación de suelos. Procedimiento visual - manual. NTP 339.150 2001 (revisada el 2015)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m 1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

Profundi dad, m	Muestras	Nivel freático	Simbologías	Sistema unificado de clasificación de suelos, SUCS	Clasificación de suelos para uso en vías de transporte, AASHTO	Características geotécnicas
0.10	_	-		_	_	Material de relleno no controlado.
0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 1.10 1.20 1.30 1.40	M-01	No presenta		СL	A-6 (12)	Arcilla de baja plasticidad de color marrón, con una humedad natural de 17%, presenta un índice de plasticidad de 16 y es de consistencia semi compacta.

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- B. P. L. C. L. C. L. C. L. C. L. C. L. C. L. L. C. L.

Código interno

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. 1ª Edición. NTP 339.127:1998 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

JL-R-C-23-0160

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631708.55 N 9278841.56
 Fecha ensayo: 30/08/2023

No. 4

Numero del recipiente Masa del recipiente, g, Mc 0.0 Recipiente + masa de muestra húmeda, g, M cms 1027.0 Masa del espécimen seco del recipiente inicial, g 960.7 Masa del recipiente seco del recipiente secundario, g 881.0 Masa del espécimen seco del recipiente final, g, Mode 881.0 146.0 Masa de agua, g, $M_w = M_{cms} - M_{cds}$ Masa de sólidos, g, $M_{s=}M_{cds}$ - M_c 881.0 17 Contenido de humedad, %, W=(M_w/M_s)*100 Símbolo de grupo de clasificación de suelo unificado (visual) CL

Cumple masa minima: Si Exclusión de material: No Mas de un tipo de material: No

Temperatura del horno: 110 +-5 ° C

Fecha muestreo: 29/08/2023

Fecha entrega: 06/09/2023

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

Consideraciones:

A. (*) Los datos indicados han sido proporcionados por el cliente.

Tamaño máximo aproximado de partícula (visual)

- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631708.55 N 9278841.56
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0160
 Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	303.0
4 in.	100.000					Fracción para lavar, g:	303.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	-
1 in.	25.000					75 mm - 300mm:	-
3/4 in.	19.000					Grava, %:	0.1
3/8 in.	9.500				100.00	Arena, %:	19.8
No. 4	4.750	0.34	0.11	0.11	99.89	Finos, %:	80.1
No. 10	2.000	1.86	0.61	0.72	99.28	Diam. efectivo D ₆₀ (mm):	0.03
No. 20	0.850	1.63	0.54	1.26	98.74	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	2.93	0.97	2.23	97.77	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	4.11	1.36	3.59	96.41	Coef.uniformidad (Cu):	
No. 140	0.106	28.91	9.54	13.13	86.87	Coef. curvatura (Cc):	0.60
No. 200	0.075	20.46	6.75	19.88	80.12		
Cazoleta		3.45					

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el limite liquido, limite plástico, e indice de plasticidad de suelos. 1ª Edición. NTP 339.129:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

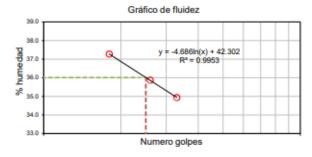
Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

 Cód. muestra (*)
 Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631708.55 N 9278841.56
 Fecha ensayo: 30/08/2023


 Código interno
 JL-R-C-23-0160
 Fecha entrega: 06/09/2023

							Equipo de prueba utili:	zado
	Preparación de espécimen						Enrollado a mano	Х
Г	Húmeda:	X		Lavado en el tamiz No. 40		Limite plástico	Laminación mecánica	
	Seca (aire):		Seco	tamizado en tamiz No. 40		Limite liquido	Manual	Х
	Seca (homo):		Mecánica	mente por el tamiz No. 40		Limite liquido	Mecánico	
	Mezclado en capsula de vidrio y partículas de arena eliminadas				X	Herramienta de	Metal	
Αg	gua de mezcla: Destila	da	X	Otros:		ranurado	Plástico	X

LÍMITE LÍQUIDO (MÉTODO MULTIPUNTO)				LÍMITE PLÁSTICO		
Recipiente, No.	14	15	16	Recipiente, No.	17	18
Masa húmeda de suelo + recipiente, M	36.67	38.50	36.12	Masa húmeda de suelo + recipiente, M1 (g)	30.99	30.44
Masa seca de suelo + recipiente, M2 (g	33.18	34.49	32.43	Masa seca de suelo + recipiente, M2 (g)	29.63	29.24
Masa del recipiente, M3 (g)	23.19	23.31	22.53	Masa del recipiente, M3 (g)	22.97	23.30
Contenido de agua, W, (%)	34.93	35.87	37.27	Contenido de agua, W, (%)	20.42	20.20
Numero de golpes	33	26	18			

Limite liquido, LL:	36
Limite plástico, LP:	20
Índice de plasticidad, IP:	16

Clasificación según carta de plasticidad:	CL
Masa retenida tamiz N°40 (%)	2.23
Humedad de recepción	17
Tamaño máximo de partículas	3/8 in.

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método para la clasificación de suelos con propósitos de ingeniería (sistema unificado de clasificación de suelos, SUCS). 1ª Edición. NTP 339.134:1999 (revisada el 2019)

SUELOS. Método para la clasificación de suelos para uso en vías de transporte. 1º Edición. NTP 339.135:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631708.55 N 9278841.56
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0160
 Fecha entrega: 06/09/2023

SUELOS.	Método de e	ensayo para el	N N	Masa total, g:	1	303	>300 mm:	-	Diam. efectivo D60 (mm):	0.03	
análisis	s granulomé	trico. NTP	Fracción p	para lavar, g:	2	303	75 mm - 300mm:	-	Diam. efectivo D30 (mm):	0.01	
339.128	:1999 (revisa	ada el 2019)		T. máximo:	3/	8 in.	Grava, %:	0.1	Diam. efectivo D10 (mm):	0.00	
	Abertura	Porcentaje	T. máx	imo nominal:	N	lo. 4	Arena, %:	19.8	Coef.uniformidad (Cu):		
Tamices	(mm)	que pasa, %					Finos, %:	80.1	Coef. curvatura (Cc):	0.60	
4 in.	100.000	100.0				CHEN	A DE DISTRIBUCI	ÓN CDN	NUL ON A ÉTRICA		
3 in.	75.000	100.0]			CURV	A DE DIZIKIBUCI	ON GRAI	NULOMETRICA		
2 in.	50.000	100.0		\sim	—	•—		$\overline{}$	~~		
1/2 in.	37.500	100.0	90.0						0		
1 in.	25.000	100.0	70.0						Ů		
3/4 in.	19.000	100.0	≨ 60.0								
3/8 in.	9.500	100.0									
No. 4	4.750	99.9	9 50.0 % 40.0							_	
No. 10	2.000	99.3	30.0							_	
No. 20	0.850	98.7	20.0								
No. 40	0.425	97.8	10.0								
No. 60	0.250	96.4	0.0	0.000		10	000	1.000	0.100	0.010	
No. 140	0.106	86.9]		DIÂMETRO DE PARTÍCULAS, MM						
No. 200	0.075	80.1									
UELOS.	Método de e	nsayo para del	terminar el lí	mite líquido.		38.0 —		Gráfico de	fluidez		
ímite plá:		e de plasticidad				37.5				+	
	NTP 339.1	29:1999 (revisa	ada el 2019)		28	37.0	Q.		1241111	+	
	Lie	Limite liquido, LL: 36		36	humedad	36.5			y = -4.686in(x) + 42.302 R* = 0.9953	\neg	
	LIII	ine iiquido, EE.	,	30	2	35.5		10			
Limite plástico, LP: 20		35.5 35.0				S	\perp				
			34.5				+				
	Índice de	plasticidad, IP:	1	16		34.0		Nume	ro golpes		
						Cla	sificación				
	Cint		lo desificaci	In de audio	(01100		I		~		

Cla	sificación
Sistema unificado de clasificación de suelos (SUCS)	α
Clasificación de suelos para uso en vías (AASHTO)	A-6 (12)
Nombre de grupo	ARCILLA DE BAJA PLASTICIDAD CON ARENA

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL CIP 257808

Consideraciones

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Fecha muestreo: 29/08/2023

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631708.55 N 9278841.56
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0160
 Fecha entrega: 06/09/2023

Peso específico bulk Base seca.	1.7	706
Peso específico bulk Base saturada.	1.7	789
Peso específico aparente Base Seca.	1.8	361
Peso específico aparente Base Seca; g.	1.862	1.859
Peso específico bulk Base Saturada; g.	1.789	1.789
Peso específico bulk Base Seca; g.	1.704	1.708
Volumen de masa; cm³.	486.0	462.0
Peso de material seco ; g.	905.0	859.0
Volumen de masa + volumen de vacíos; cm³.	531.0	503.0
Peso material saturado superficie seca en agua; g.	419.0	397.0
Peso material saturado superficie seca en aire; g.	950.0	900.0

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

Fecha muestreo: 29/08/2023

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

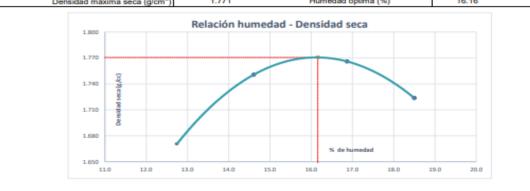
Fecha entrega: 06/09/2023

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta

 Coordenadas (*)
 E 631708.55 N 9278841.56

 Código interno
 JL-R-C-23-0160

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B C		Masa molde	3980	No. de gol	pes	25 Golpes
Numero de moldeo	·	1	2	3	4	
Peso Suelo + Molde	g	5,750	5,866	5,920	5,900	
Peso Suelo Húmedo Compactado	g	1,770	1,886	1,940	1,920	
Peso Volumétrico Húmedo	g	1.883	2.006	2.064	2.043	
Recipiente Numero				-		
Peso Suelo Húmedo + Tara	g	200.0	204.0	194.0	205.0	
Peso Suelo Seco + Tara	g	177.4	178.0	166.0	173.0	
Peso de la Tara	g	0	0	0	0	
Peso del agua	g	22.6	26.0	28.0	32.0	
Peso del suelo seco	g	177	178	166	173	
Contenido de agua	%	12.74	14.61	16.87	18.50	
Densidad Seca	g/cc	1.670	1.751	1.766	1.724	
Densidad máxima seca (d/cm³)	1.7	771	Humedad ópt	ima (%)	16.16	

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Encha opeavo:	30/08/2023

Fecha entrega: 06/09/2023

Molde N°	1		2		22		
Capas Nº	į.		5		5		
Golpes por capa Nº	5	6	2	5	12		
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso de molde + Suelo húmedo (g)	12011	12056	11742	11872	11705	11907	
Peso de molde (g)	7660	7660	7560	7560	7645	7645	
Peso del suelo húmedo (g)	4351	4396	4182	4312	4060	4262	
Volumen del molde (cm²)	2114	2114	2118	2118	2144	2144	
Densidad húmeda (g/cm³)	2.058	2.079	1.975	2.036	1.894	1.988	
Tara (N°)							
Peso suelo húmedo + tara (g)	444.0	444.0	377.9	377.9	394.0	394.0	
Peso suelo seco + tara (g)	382.1	375.9	325.5	313.8	339.3	321.3	
Peso de tara (g)							
Peso de agua (g)	62	68	52	64	55	73	
Peso de suelo seco (g)	382	376	326	314	339	321	
Contenido de humedad (%)	16.20	18.12	16.10	20.43	16.12	22.63	
Densidad seca (g/cm²)	1.771	1.761	1.701	1.691	1.631	1.621	

Expansión

Fecha	Hora	Tiempo	Dial	Expa	ınsión	Dial	Expa	Dial	Expa	pansión	
1 001111	110011	Hempe		mm	%		mm	%		mm	%
30/08/2023	16:30	0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
31/08/2023	16:30	24	61	1.549	1.3	68	1.727	1.5	88	2.235	1.9
01/09/2023	16:30	48	78	1.981	1.7	76	1.930	1.7	100	2.540	2.2
02/09/2023	16:30	72	85	2.159	1.9	99	2.515	2.2	112	2.845	2.4
03/09/2023	16:30	96	99	2.515	2.2	110	2.794	2.4	130	3.302	2.8

Penetra	nión	Carga		Molde No.			Molde No.				Molde No.			
reneual	LIUII	Stand.	Ca	rga	Corre	ección	Ca	rga	Corre	cción	Ca	rga	Corre	ección
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	0.000		0	0			0	0			0	0		
0.635	0.025		8.5	9			7.8	8			5.2	5		
1.270	0.050		20.1	20			12.1	12			8.2	8		
1.905	0.075		40.5	41			22.6	23			16.5	17		
2.540	1.000	70.445	52.4	52	77.1	5.7	33.9	34	62.2	4.6	24.1	24	53.2	3.9
3.810	1.500		70.9	71			49.5	50			35.6	36		
5.080	2.000	105.68	90.6	91	167.8	8.2	76.8	77	135.6	6.6	52.5	53	112.5	5.5
6.350	2.500		130.3	130			105.4	105			94.5	95		
7.620	3.000		196.5	197			141.1	141			115.1	115		
10.160	4.000		222.0	222.0			181.9	181.9			140.2	140.2		
12.700	5.000													

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA/S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

Comisinaziones:
A. (*) Los desindicados han sido proporcionados por el cliente.
B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
C. Es necesario contar con una sutorización escrita del gerente para flevar a cabo cualquier tipo de reproducción.

D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mancionado. E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

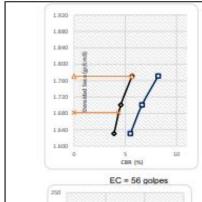
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

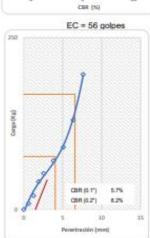
Cliente (*) Bach, Frank Cosar Soto

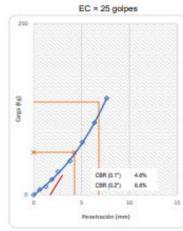

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

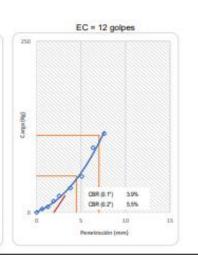
Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160


Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023




Máxima densidad seca (g/cm³): Optimo contenido de humedad (%):

C.B.R. al 100% de M.D.S. (%): 0.1°: C.B.R. al 95% de M.D.S. (%): 0.1°:

Resultados: Valor de C.B.R. al 100% de la M.D.S.: 5.6 % Valor de C.B.R. al 95% de la M.D.S.: 4.3 %

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
 B. El cliente brindo las referencia y ubicación de los puntos donde se han tornado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado. E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 01 MUESTRA PATRÓN + 5% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

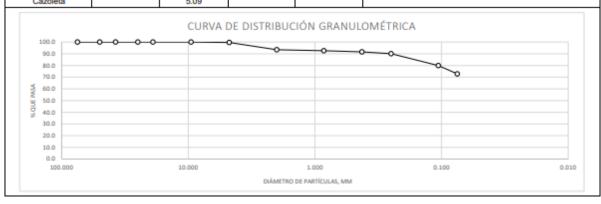
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


 Cód. muestra (*)
 Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631708.55 N 9278841.56
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0160 - Caucho Granular 5%
 Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	302.0
4 in.	100.000					Fracción para lavar, g:	302.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	-
3/4 in.	19.000					Grava, %:	0.4
3/8 in.	9.500				100.00	Arena, %:	26.8
No. 4	4.750	1.17	0.39	0.39	99.61	Finos, %:	72.8
No. 10	2.000	18.71	6.20	6.59	93.41	Diam. efectivo D _{so} (mm):	0.04
No. 20	0.850	2.51	0.83	7.42	92.58	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	3.08	1.02	8.44	91.56	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	4.53	1.50	9.94	90.06	Coef.uniformidad (Cu):	
No. 140	0.106	30.82	10.21	20.15	79.85	Coef. curvatura (Cc):	0.61
No. 200	0.075	21.29	7.05	27.20	72.80		
Cazoleta		5.00					

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160 - Caucho Granular 5%

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023

Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Peso material saturado superficie seca en aire; g.	700.0	750.0			
Peso material saturado superficie seca en agua; g.	310.0	333.0			
Volumen de masa + volumen de vacíos; cm³.	390.0	417.0			
Peso de material seco ; g.	695.0	745.0			
Volumen de masa; cm³.	385.0	412.0			
Peso específico bulk Base Seca; g.	1.782	1.787			
Peso específico bulk Base Saturada; g.	1.795	1.799			
Peso específico aparente Base Seca; g.	1.805	1.808			
Peso específico aparente Base Seca.	1.8	307			
Peso específico bulk Base saturada.	1.7	1.797			
Peso específico bulk Base seca.	1.7	784			

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie³)). 1º Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160 - Caucho Granular 5%

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B C		Masa molde	3980	No. de gol	pes	25 Golpes
Numero de moldeo		1	2	3	4	
Peso Suelo + Molde	g	5,650	5,820	5,881	5,790	
Peso Suelo Húmedo Compactado	g	1,670	1,840	1,901	1,810	
Peso Volumétrico Húmedo	g	1.777	1.957	2.022	1.926	
Recipiente Numero						
Peso Suelo Húmedo + Tara	g	190.0	216.0	157.0	118.0	
Peso Suelo Seco + Tara	g	170.3	190.0	136.0	100.5	
Peso de la Tara	g	0	0	0	0	
Peso del agua	g	19.7	26.0	21.0	17.5	
Peso del suelo seco	g	170	190	136	101	
Contenido de agua	%	11.57	13.68	15.44	17.41	
Densidad Seca	g/cc	1.592	1.722	1.752	1.640	
Densidad máxima seca (g/cm³)	1.3	754	Humedad ópti	ma (%)	15.10	

SEGUNDO CARRANZA MEJIA

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingenieria geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56 JL-R-C-23-0160 - Caucho Granular 5% Código interno

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

	folde N°				3				5			2	94	
	apas Nº				5				5				5	
	s por capa				56		25			12				
	n de la mu		No sa	turado	Saturado		No sa	turado		rado	No sa	turado	Satu	rado
eso de moide				016	12069			956		069		11859		075
	de molde (7750		7750 7893				93		7884		84
	suelo húme			4266		4319		63		176		3975		91
	del molde			2118		118		98	20	98		42		42
Densidad	húmeda (o	/cm²)		114		039	1.5	37	1.5	990	1.8	356	1.9	957
	ara (Nº)													
Peso suelo				0.0		0.0		5.5		5.5		2.0		2.0
	o seco + ta		39	1.0	38	4.0	36	9.3	35	7.0	34	9.0	33	8.0
	de tara (g									_	_	_		
	de agua (g			9		36		6		9		3		1
	suelo seco			91		84		59		57		49		31
	de humed			.09		.19		22		.19		.19		.52
Densida	d seca (g/o	:m")	1.7	750	1.	740	1.0	81	1.0	570	1.6	311	1.6	310
						E	xpansión							
Fecha	Hora	Tiempo		ial	Expa	ansión		ial	Expa	nsión		ial	Expa	nsión
Fecha	Hora	Hempo	l .	INI	mm	%	, ,	lai	mm	%	1 "		mm	%
06/09/2023	16:30	0	()	0.000	0.0		Ò	0.000	0.0		Ď	0.000	0.0
07/09/2023	16:30	24	7	6	1.930	1.7	9	9	2.515	2.2	1	16	2.946	2.
08/09/2023	16:30	48		8	2.489	2.1		20	3.048	2.6		43	3.632	3.1
09/09/2023	16:30	72		18	2.997	2.6		44	3.658	3.1		55	3.937	3.4
10/09/2023	16:30	96	13	38	3.505	3.0	1	57	3.988	3.4	10	53	4.140	3.0
	 						+	•						\vdash
							enetración		<u> </u>					
						P	enetracion							
Penetrac	ide	Carga		Mold	le No.				le No.				e No.	
renetrac	auni	Stand.		rga	Com	ección		rga	Come	ección		rga	Corre	ección
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)		kg	%
0.000	0.000		0	0			0	0			0	0		
0.635	0.025		15.6	16			13.1	13			9.1	9		
1.270	0.050		30.5	31			18.8	19			16.1	16		
1.905	0.075		48.9	49			45.7	46			24.5	25		
2.540	1.000	70.445	70.5	71	83.3	6.1	66.6	67	75.7	5.6	44.3	44	58.7	4.3
3.810	1.500		120.6	121			110.1	110			72.5	73		
5.080	2.000	105.68	150.7	151	167.6	8.2	138.4	138	153.0	7.5	90.5	91	123.7	6.0
6.350	2.500		199.5	200			178.9	179			121.1	121		

GCL INGENERIA S.R.L TEL SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

3.000 4.000

- A. (°) Los datos indicados han sido proporcionados por el cliente. B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es recesario contar con una autorización escrita del genente para llevar a cabo cualquier tipo de reproducción.

 D. Este informe ha sido preparado y está destinado exclasivamente para el cliente mencionado.

 E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

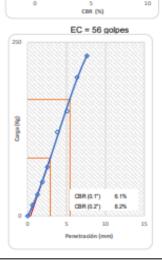
Cliente (*) Bach. Frank Cosar Soto

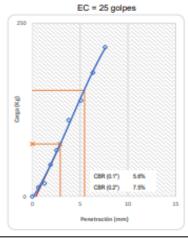
1,790

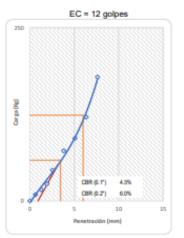
3.710

E 630

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m


Nivel freático (*) No presenta Coordenadas (*) E 631708.55 N 9278841.56


JL-R-C-23-0160 - Caucho Granular 5% Código interno


Máxima densidad seca (g/cm³): 1.754 Optimo contenido de humedad (%): 15.1

C.B.R. al 100% de M.D.S. (%): 0.1*: C.B.R. al 95% de M.D.S. (%): 0.1*:

Resultados: Valor de C.B.R. al 100% de la M.D.S.: 6.1 % Valor de C.B.R. al 95% de la M.D.S.: 5.3 %

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

GCL INGENERIA S.R.L TEL

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
 E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 01 MUESTRA PATRÓN + 10% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160 - Caucho Granular 10%

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023

Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	-
1 in.	25.000					75 mm - 300mm:	-
3/4 in.	19.000					Grava, %:	1.7
3/8 in.	9.500				100.00	Arena, %:	31.9
No. 4	4.750	5.00	1.67	1.67	98.33	Finos, %:	66.5
No. 10	2.000	39.96	13.32	14.99	85.01	Diam. efectivo D _{so} (mm):	0.05
No. 20	0.850	2.32	0.77	15.76	84.24	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	2.73	0.91	16.67	83.33	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	4.12	1.37	18.04	81.96	Coef.uniformidad (Cu):	
No. 140	0.106	27.94	9.31	27.35	72.65	Coef. curvatura (Cc):	0.57
No. 200	0.075	18.57	6.19	33.54	66.46		
Cazoleta		2.63					

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160 - Caucho Granular 10%

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023
720.0	
261.0	

Peso material saturado superficie seca en aire; g.	700.0	720.0		
Peso material saturado superficie seca en agua; g.	244.0	261.0		
Volumen de masa + volumen de vacíos; cm³.	456.0	459.0		
Peso de material seco ; g.	692.0	700.0		
Volumen de masa; cm³.	448.0	439.0		
Peso específico bulk Base Seca; g.	1.518	1.525		
Peso específico bulk Base Saturada; g.	1.535	1.569		
Peso específico aparente Base Seca; g.	1.545	1.595		
Peso específico aparente Base Seca.	1.5	570		
Peso específico bulk Base saturada.	1.552			
Peso específico bulk Base seca.	1.5	521		

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160 - Caucho Granular 10%

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B C		Masa molde	3980	No. de gol	pes	25 Golpes
Numero de moldeo		1	2	3	4	
Peso Suelo + Molde	g	5,455	5,663	5,720	5,600	
Peso Suelo Húmedo Compactado	g	1,475	1,683	1,740	1,620	
Peso Volumétrico Húmedo	g	1.569	1.790	1.851	1.723	
Recipiente Numero						
Peso Suelo Húmedo + Tara	g	200.0	216.0	168.0	123.0	
Peso Suelo Seco + Tara	g	180.0	190.5	145.8	105.0	
Peso de la Tara	g					
Peso del agua	g	20.0	25.5	22.2	18.0	
Peso del suelo seco	g	180	191	146	105	
Contenido de agua	%	11.11	13.39	15.23	17.14	
Densidad Seca	g/cc	1.412	1.579	1.606	1.471	
Densidad máxima seca (g/cm ³)	1.6	312	Humedad ópti	ima (%)	14.69	

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingenieria geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta Coordenadas (*) E 631708.55 N 9278841.56

Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0160 - Caucho Granular 10% Fecha entrega: 06/09/2023

ie Nº as Nº or capa N			(5				7			4	1	
or capa N								r					
				5			5					5	
				6			25			12			
e la mue			turado	Saturado		No saturado		Saturado		No saturado			rado
	imedo (g)	117		11753			136		532	112			143
molde (g			7843		143		56		56	78			45
			3860		3910						3452		
	cm")									_			
	nen (n)									_			
		369	9.0	36	3.0	31	8.0	30	7.0	39.	2.0	37.	3.0
			9		in.	 				-	ė	-	
						_				_			
cos (gro	" /	1.0	110	1.0	303	1.0	71	1.5	121	1.0	10	1.00	00
					E	xpansión							
Here	Y			Expa	insión		L-I	Expa	nsión	Dial		Expa	nsión
Hora	Hempo	U	ai	mm	%	1 "	ial	mm	%			mm	%
16:30	0)	0.000	0.0	()	0.000	0.0	()	0.000	0.0
16:30	24	14	40	3.556	3.1	21)7	5.258	4.5	19	98	5.029	4.3
16:30	48	16	55	4.191	3.6	2	25	5.715	4.9	25	54	6.452	5.5
16:30	72	18	32	4.623	4.0	24	11	6.121	5.3	24	15	6.223	5.3
16:30	96	24	10	6.096	5.2	24	18	6.299	5.4	25	54	6.452	5.5
					Р	enetración				_			
, 1			-										
			-				_				-		_
	kg/cm2			kg	%			kg	%			kg	%
		_											
	20.445			27.5				20.0	0.0			00.6	
	/0.445			37.5	2.7			30.2	2.2			20.5	1.5
	105.66			77.0	2.0		-	88.0	2.2			42.0	2.1
	105.08			11.8	3.8			8.00	3.3			43.8	2.1
		100.9	188.9			100.9	100.9			100.2	100.2		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	moide (r) reda (r) re	Carga Stand pulg. Reform Refo	Carga Carg	Dial Dial Dial	Carga Carg	Decide (cm²) 2090	Decide (cm²) 2090	Discrimination Disc	Dial	Dial Expansión Expansión	Moide (cm²) 2090 2090 2080	Mode Cert	Moide (cm ²)

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

OCL INGENERIA S.R.L

GABY ROSITA CHUNQUE OCAÑA

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado. E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

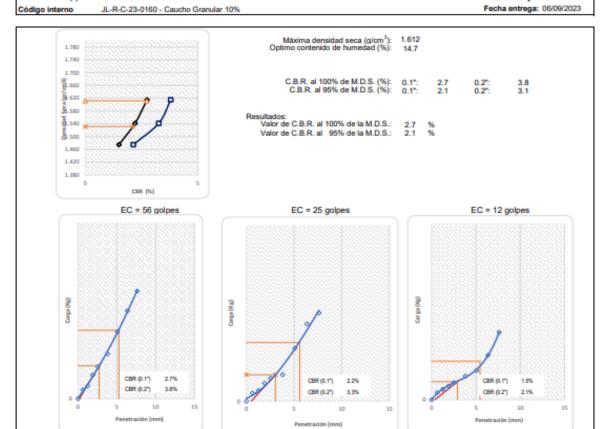
Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque


Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56 Código interno

JL-R-C-23-0160 - Caucho Granular 10%

- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 01 MUESTRA PATRÓN + 15% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)


Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) E 631708.55 N 9278841.56 Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0160 - Caucho Granular 15% Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	-
3/4 in.	19.000					Grava, %:	0.2
3/8 in.	9.500				100.00	Arena, %:	34.1
No. 4	4.750	0.49	0.16	0.16	99.84	Finos, %:	65.8
No. 10	2.000	45.03	15.01	15.17	84.83	Diam. efectivo D ₅₀ (mm):	0.05
No. 20	0.850	2.82	0.94	16.11	83.89	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	2.88	0.96	17.07	82.93	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	4.32	1.44	18.51	81.49	Coef.uniformidad (Cu):	
No. 140	0.106	28.76	9.59	28.10	71.90	Coef. curvatura (Cc):	0.57
No. 200	0.075	18.32	6.11	34.21	65.79		
Cazolata		E 33					

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIAS.R.L CEL GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

700.0

268.0

432.0

655.0

AGREGADOS. Densidad relativa (peso especifico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Peso material saturado superficie seca en aire: q.

Peso material saturado superficie seca en agua; g.

Volumen de masa + volumen de vacíos; cm3.

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160 - Caucho Granular 15%

Peso de material seco ; g.

Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023
 	16
650.0	
245.0	
405.0	
615.0	
370.0	Š
1.519	Ĺ

Fecha muestreo: 29/08/2023

Volumen de masa; cm³.	387.0	370.0		
Peso específico bulk Base Seca; g.	1.516	1.519		
Peso específico bulk Base Saturada; g.	1.620	1.605		
Peso específico aparente Base Seca; g.	1.693	1.662		
Peso específico aparente Base Seca.	1.6	577		
Peso específico bulk Base saturada.	1.613			
Peso específico bulk Base seca.	1.517			

SEGUNDO CARRANZA MEJIA

GABY ROSITA CHUNQUE OCAÑA

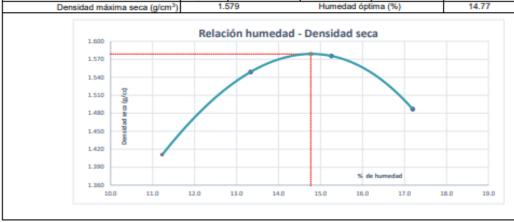
- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m3 (56 000 pie-lbf/pie³)). 1^a Edición. NTP 339.141:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)


Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) E 631708.55 N 9278841.56 Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0160 - Caucho Granular 15% Fecha entrega: 06/09/2023

Diámetro molde 4" 6"		Volumen molde		940 cm3	No. de ca	pas	5
Método A B	Método A B C		Masa molde		No. de gol	pes	25 Golpes
Numero de moldeo			1	2	3	4	
Peso Suelo + Molde		g	5,455	5,630	5,687	5,618	
Peso Suelo Húmedo Compactado		g	1,475	1,650	1,707	1,638	
Peso Volumétrico Húmedo		g	1.569	1.755	1.816	1.743	
Recipiente Numero							
Peso Suelo Húmedo + Tara		g	208.0	212.5	133.7	182.0	
Peso Suelo Seco + Tara		g	187.0	187.5	116.0	155.3	
Peso de la Tara		g	0	0	0	0	
Peso del agua		9	21.0	25.0	17.7	26.7	
Peso del suelo seco		9	187	188	116	155	
Contenido de agua		%	11.23	13.33	15.26	17.19	
Densidad Seca		g/cc	1.411	1.549	1.576	1.487	

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TÉCNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m No presenta E 631708.55 N 9278841.56 Nivel freático (*)

Coordenadas (*)

Código interno JL-R-C-23-0160 - Caucho Granular 15%

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023

Fecha entrega: 06/09/2023

and a second														
											_			
M	lolde Nº				9				11				10	
	apas Nº						5 5							
	por capa			6	6				25			12		
	n de la mu		No saturado		Saturado		No sa	No saturado		Saturado		turado	Satu	rado
eso de molde			11570		11	613	11	302	114	112	11	352	115	15
	de molde (77	88	77	788	77	45	77	45	78	95	78	95
Peso del s	uelo húme	do (g)		82		325		557		67		57	36	
Volumen	del molde	(cm³)	20	86	20	186	20	065	20	65	20	98	20	98
	húmeda (g		1.8	313	1.0	834	1.3	723	1.3	76	1.6	348	1.7	25
	ara (Nº)													
Peso suelo	húmedo +	tara (g)	48	6.6	48	6.6	34	8.0	34	8.0	38	0.0	380	0.0
	o seco + ta		42	4.0	41	6.6	30	5.0	29	4.0	33	2.0	315	0.0
	de tara (g		7.2				-				- 55		511	
	de agua (c		6	3	7	70	1	13	6	4	4	18	6	5
	suelo seco			24		17		05		94		32	31	
Contenido				.76		.80		.10		.37		.46	20.	
	d seca (g/c			80		570		510		100		140	1.4	
Delisida	u suce (gr	an j	1.6		1.0	uru	1.3	210	1.5	nov.	12	140	1.4	are.
							Expansión							
							Expansion							
	_			Dial Expansión Dial Expansión Dial					E	-14-				
Fecha	Hora	Tiempo	D	ial			_ D	ial		nsion %	- D	ial	Expar	msion %
30/08/2023	16:30	0)	0.000	0.0	+	0	0.000	0.0	_	0	mm	0.0
		24		14		4.7		40		5.2			0.000	
31/08/2023	16:30				5.436				6.096			80	7.112	6.1
01/09/2023	16:30	48		36	5.994	5.1		76	7.010	6.0		19	8.103	7.0
02/09/2023	16:30	72		82	6.655	5.7		16	8.026	6.9		44	8.738	7.5
03/09/2023	16:30	96	3	13	7.950	6.8	3	40	8.636	7.4	3	80	9.652	8.3
							+							
							enetración							
													- N-	
Penetrac	ión	Carga			e No.	- 12	_		le No.				e No.	
		Stand.	Ca			ección		irga		oción		rga	Corre	
0.000	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
	0.000		0	0			0	0			0	0		
0.635	0.025		9.8	10			6.2	6			4.2	4		
1.270	0.050		15.6	16			10.0	10			7.3	7		
1.905	0.075		22.1	22			17.2	17			11.2	11		
2.540	1.000	70.445	34.2	34	30.3	2.2	22.9	23	23.2	1.7	15.2	15	15.5	1.1
3.810	1.500		40.4	40			33.1	33			20.3	20		
5.080	2.000	105.68	60.4	60	60.2	2.9	40.2	40	46.1	2.3	25.1	25	31.6	1.5
6.350	2.500		72.3	72			58.0	58			38.0	38		
7.620	3.000		88.0	88			65.0	65			48.0	48		
10.160	4.000		100.0	100.0			75.0	75.0			56.0	56.0		
12.700	5,000													

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA'S.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado. E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

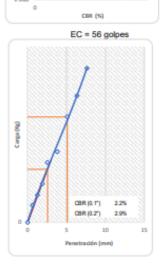
Cliente (*) Bach. Frank Cosar Soto

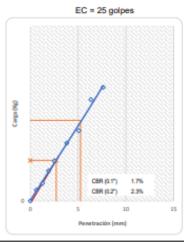
Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

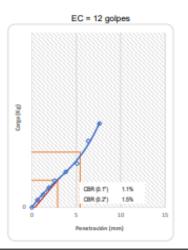
Nivel freático (*) No presenta Coordenadas (*)

> 1.680 1.640

8 AL520


E 631708.55 N 9278841.56


Código interno JL-R-C-23-0160 - Caucho Granular 15%


Máxima densidad seca (g/cm³): 1.579 Optimo contenido de humedad (%): 14,8

C.B.R. al 100% de M.D.S. (%): 0.1*: C.B.R. al 95% de M.D.S. (%): 0.1*:

Resultados: Valor de C.B.R. al 100% de la M.D.S.: 2.2 Valor de C.B.R. al 95% de la M.D.S.: 1.6

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

SEGUNDO CARRANZA MEJIA

GCL INGENERIA'S.R.L CEL GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencio
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 01 MUESTRA PATRÓN + 20% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160 - Caucho Granular 20%

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	-
1 in.	25.000					75 mm - 300mm:	-
3/4 in.	19.000					Grava, %:	3.3
3/8 in.	9.500				100.00	Arena, %:	38.7
No. 4	4.750	10.00	3.33	3.33	96.67	Finos, %:	58.0
No. 10	2.000	65.19	21.73	25.06	74.94	Diam. efectivo D _{so} (mm):	0.09
No. 20	0.850	2.90	0.97	26.03	73.97	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	2.36	0.79	26.82	73.18	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	3.62	1.21	28.03	71.97	Coef.uniformidad (Cu):	
No. 140	0.106	26.22	8.74	36.77	63.23	Coef. curvatura (Cc):	0.51
No. 200	0.075	15.62	5.21	41.98	58.02	_	
Cazoleta		3.31					

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

600.0

200.0

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Peso material saturado superficie seca en aire; g.

Peso material saturado superficie seca en agua; g.

Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160 - Caucho Granular 20%

Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023
680.0	
250.0	
430.0	
628.0	
378.0	
1.460	
1.581	
1.661	
	I

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Volumen de masa + volumen de vacíos; cm³.	400.0	430.0				
Peso de material seco ; g.	582.0	628.0				
Volumen de masa; cm³.	382.0	378.0				
Peso específico bulk Base Seca; g.	1.455	1.460				
Peso específico bulk Base Saturada; g.	1.500	1.581				
Peso específico aparente Base Seca; g.	1.524	1.661				
Peso específico aparente Base Seca.	1.	592				
Peso específico bulk Base saturada.	1.	541				
Peso específico bulk Base seca.	12	1.458				

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

Fecha entrega: 06/09/2023

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) E 631708.55 N 9278841.56 Fecha ensayo: 30/08/2023

Código interno JL-R-C-23-0160 - Caucho Granular 20%

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5	
Método A B C		Masa molde	3980	No. de golpes		25 Golpes	
Numero de moldeo		1	2	3	4		
Peso Suelo + Molde	g	5,499	5,600	5,649	5,626		
Peso Suelo Húmedo Compactado	g	1,519	1,620	1,669	1,646		
Peso Volumétrico Húmedo	g	1.616	1.723	1.776	1.751		
Recipiente Numero			-				
Peso Suelo Húmedo + Tara	g	204.0	178.5	150.9	161.0		
Peso Suelo Seco + Tara	g	183.6	157.6	130.8	137.0		
Peso de la Tara	g	0	0	0	0		
Peso del agua	g	20.4	20.9	20.1	24.0		
Peso del suelo seco	g	184	158	131	137		
Contenido de agua	%	11.11	13.24	15.37	17.52		
Densidad Seca	g/cc	1.454	1.522	1.539	1.490		
Densidad máxima seca (g/cm ³	1.5	540	Humedad ópt	ima (%)	14.91		

GCL INGENERIA S.R.L

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingenieria geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*)

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Nivel freático (*) No presenta

Coordenadas (*) E 631708.55 N 9278841.56

Código interno JL-R-C-23-0160 - Caucho Granular 20%

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Molde N°	13			14	20		
Capas Nº		5		5	5		
Golpes por capa N ^o	5	6	2	25	12		
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso de molde + Suelo húmedo (g)	11645	11667	11422	11503	11260	11402	
Peso de molde (g)	7936	7936	7908	7908	7895	7895	
Peso del suelo húmedo (g)	3709	3731	3514	3595	3365	3507	
Volumen del molde (cm ³)	2097	2097	2081	2081	2098	2098	
Densidad húmeda (g/cm²)	1.769	1.779	1.689	1.728	1.604	1.672	
Tara (N°)		-		-			
Peso suelo húmedo + tara (g)	430.0	430.0	356.4	356.4	366.0	366.0	
Peso suelo seco + tara (g)	374.9	369.0	312.0	301.0	320.0	304.0	
Peso de tara (g)							
Peso de agua (g)	55	61	44	55	46	62	
Peso de suelo seco (g)	375	369	312	301	320	304	
Contenido de humedad (%)	14.70	16.53	14.23	18.41	14.38	20.39	
Densidad seca (g/cm²)	1.542	1.527	1.478	1.459	1.402	1.388	
	·						

Expansión

Fecha	Hora	Tiempo	empo Dial		ınsión	Dial	Expansión		Dial	Expansión	
1 001111	11014	manipo		mm	%		mm	%		mm	%
30/08/2023	16:30	0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
31/08/2023	16:30	24	180	4.572	3.9	208	5.283	4.5	249	6.325	5.4
01/09/2023	16:30	48	210	5.334	4.6	244	6.198	5.3	288	7.315	6.3
02/09/2023	16:30	72	237	6.020	5.2	282	7.163	6.2	318	8.077	6.9
03/09/2023	16:30	96	279	7.087	6.1	312	7.925	6.8	330	8.382	7.2
			, and the second								

Penetración		Carga		Mold	e No.		Molde No.				Molde No.			
Percuac	auni .	Stand.	Ca	rga	Corre	ección	Ca	rga	Corre	ección	Ca	rga	Corrección	
mm	pulg.	kg/am2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	0.000		0	0			0	0			0	0		
0.635	0.025		7.0	7			3.6	4			1.0	1		
1.270	0.050		10.2	10			8.2	8			5.8	6		
1.905	0.075		14.2	14			8.5	9			7.2	7		
2.540	1.000	70.445	16.3	16	13.9	1.0	14.5	15	12.3	0.9	12.6	13	11.6	0.9
3.810	1.500		23.4	23			19.6	20			16.8	17		
5.080	2.000	105.68	30.1	30	27.8	1.4	26.1	26	24.3	1.2	22.3	22	23.0	1.1
6.350	2.500		37.8	38			31.0	31			26.3	26		
7.620	3.000		40.3	40			35.3	35			33.8	34		
10.160	4.000		48.6	48.6			45.0	45.0			39.6	39.6		
12.700	5.000													

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

Consideraciones: A. (*) Los datos indicados han sido proporcionados por el cliente.

A. (*) Lott dation encuence man exceptionate per a control of the control of the

D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

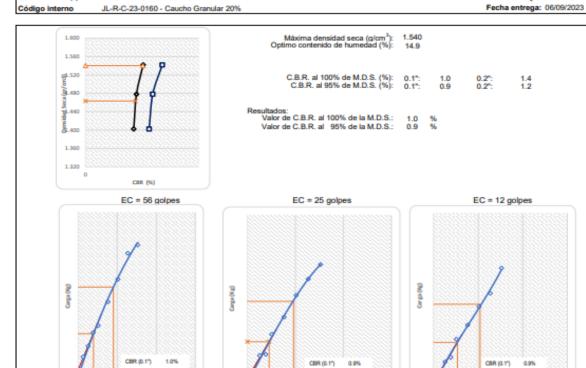
Fecha recepción: 29/08/2023

CBR (0.2")

Fecha ensayo: 30/08/2023

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"


Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 01; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Coordenadas (*) E 631708.55 N 9278841.56

JL-R-C-23-0160 - Caucho Granular 20% Código interno

CBR (0.2')

CBR (0.2")

- B. El clime brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
 E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 02

CALICATA 02 MUESTRA PATRÓN

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Descripción e identificación de suelos. Procedimiento visual – manual. NTP 339.150 2001 (revisada el 2015)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

 Cód. muestra (*)
 Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631663.33 N 9279514.32
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0161
 Fecha entrega: 06/09/2023

Profund idad, m	Muestra s	Nivel freático	Simbologías	Sistema unificado de clasificación de suelos, SUCS	Clasificación de suelos para uso en vías de transporte, AASHTO	Características geotécnicas
0.10	_	•		_	_	Material de relleno no controlado.
0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 1.10 1.20 1.30 1.40 1.50	M-01	No presenta		CL	A-6 (12)	Arcilla de baja plasticidad de color marrón, con una humedad natural de 19%, presenta un índice de plasticidad de 15 y es de consistencia semi compacta.

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. 1º Edición. NTP 339.127:1998 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*)

Nivel freático (*) No presenta

Fecha recepción: 29/08/2023 Coordenadas (*) E 631663.33 N 9279514.32 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023 Código interno JL-R-C-23-0161

Numero del recipiente	
Masa del recipiente, g, M _c	0.0
Recipiente + masa de muestra húmeda, g, M cms	1000.0
Masa del espécimen seco del recipiente inicial, g	960.4
Masa del recipiente seco del recipiente secundario, g	840.0
Masa del espécimen seco del recipiente final, g, M _{cda}	840.0
Masa de agua, g, M _w = M _{cms} - M _{cds}	160.0
Masa de sólidos, g, M _{a=} M _{ceta} - M _c	840.0
Contenido de humedad, %, W=(M _w /M _a)*100	19
Símbolo de grupo de clasificación de suelo unificado (visual)	CL
Tamaño máximo aproximado de partícula (visual)	No. 4

Cumple masa minima: Si Exclusión de material: No Mas de un tipo de material: No

Temperatura del horno: 110 +-5 ° C

Fecha muestreo: 29/08/2023

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631663.33 N 9279514.32
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0161
 Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	sa retenida, g Retenido parcial, %		Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	310.0
4 in.	100.000					Fracción para lavar, g:	310.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	0.2
3/8 in.	9.500				100.00	Arena, %:	19.5
No. 4	4.750	0.56	0.18	0.18	99.82	Finos, %:	80.3
No. 10	2.000	2.02	0.65	0.83	99.17	Diam. efectivo D _{so} (mm):	0.03
No. 20	0.850	1.65	0.53	1.36	98.64	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	3.02	0.97	2.33	97.67	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	5.33	1.72	4.05	95.95	Coef.uniformidad (Cu):	
No. 140	0.106	27.11	8.75	12.80	87.20	Coef. curvatura (Cc):	0.61
No. 200	0.075	21.36	6.89	19.69	80.31		
Cazoleta		4.00					

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E I se conise o dissinación del informe sin el consentimiento presio del cliente, están prohibidos

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el límite liquido, límite plástico, e índice de plasticidad de suelos. 1º Edición. NTP 339.129:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

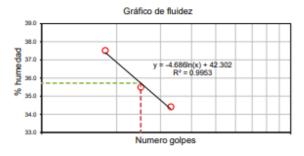
Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

 Cód. muestra (*)
 Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631663.33 N 9279514.32
 Fecha ensayo: 30/08/2023


 Código interno
 JL-R-C-23-0161
 Fecha entrega: 06/09/2023

			Equipo de prueba utili:	zado				
	Preparación de espécimen						Enrollado a mano	X
Γ	Hûmeda:	Х		Lavado en el tamiz No. 40		Limite plástico	Laminación mecánica	
1	Seca (aire):		Seco	tamizado en tamiz No. 40		Limite liquido	Manual	X
1	Seca (horno):		Mecánica	mente por el tamiz No. 40		Limite ilquido	Mecánico	
1	Mezclado en capsula de vidrio y particulas de arena eliminadas				Х	Herramienta de	Metal	
1	Agua de mezcla: Destila	da	X	Otros:		ranurado	Plástico	X

LÍMITE LÍQUIDO (MÉ	TODO MULT	IPUNTO)	LÍMITE PLÁSTICO			
Recipiente, No. 11 12 14 R		Recipiente, No.	20	21		
Masa húmeda de suelo + recipiente, M1	35.25	36.11	35.47	Masa húmeda de suelo + recipiente, M1 (g)	25.60	26.18
Masa seca de suelo + recipiente, M2 (g	31.95	32.72	31.94	Masa seca de suelo + recipiente, M2 (g)	23.85	24.51
Masa del recipiente, M3 (g)	22.36	23.17	22.53	Masa del recipiente, M3 (g)	15.36	16.47
Contenido de agua, W, (%)	34.41	35.50	37.51	Contenido de agua, W, (%)	20.61	20.77
Numero de golpes	33	25	18			

Limite liquido, LL:	36
Limite plástico, LP:	21
Índice de plasticidad, IP:	15

Clasificación según carta de plasticidad:	CL
Masa retenida tamiz N°40 (%)	2.33
Humedad de recepción	19
Tamaño máximo de partículas	3/8 in.

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método para la clasificación de suelos con propósitos de ingeniería (sistema unificado de clasificación de suelos, SUCS). 1ª Edición. NTP 339.134:1999 (revisada el 2019)

SUELOS. Método para la clasificación de suelos para uso en vías de transporte. 1º Edición. NTP 339.135:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Coordenadas (*) E 631663.33 N 9279514.32

Coordenadas (*) E 631663.33 N 9279514.32

Código interno JL-R-C-23-0161

 SUELOS. Método de ensayo para el análisis granulométrico. NTP
 Masa total, g:
 310
 >300 mm:
 -

 339.128:1999 (revisada el 2019)
 Fracción para lavar, g:
 310
 75 mm - 300mm:
 -

 T. máximo:
 3/8 in.
 Grava, %:
 0.2

Tamices Abertura Porcentaje (mm) que pasa, % T. máximo nominal: No. 4 Arena, %: 19.5 Finos, %: 80.3

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

lamices	(mm)	que pasa, %				Finos, %:	80.3	Coef. curvatura (Cc):	0.61
4 in.	100.000	100.0		CHI	N/A DE D	ISTRIBILICIO	SNI CDAN	IULOMÉTRICA	
3 in.	75.000	100.0							
2 in.	50.000	100.0		-	$\overline{}$	\rightarrow	$\overline{}$	o o o	
1 1/2 in.	37.500	100.0	90.0					0	
1 in.	25.000	100.0	80.0 70.0					0	
3/4 in.	19.000	100.0							
3/8 in.	9.500	100.0	97 60.0 97 50.0 40.0						
No. 4	4.750	99.8	g 40.0				_		_
No. 10	2.000	99.2	30.0						
No. 20	0.850	98.6	20.0						
No. 40	0.425	97.7	10.0						
No. 60	0.250	96.0	0.0	.000	10.000		1.000	0.100	0.010
No. 140	0.106	87.2	100.	400	40.000	DIÁMETRO	DE PARTÍCULAS		0.010
No. 200	0.075	80.3							
						<u> </u>	0.15	Maria de la compansión de	

SUELOS. Método de ensayo para determinar el límite líquido,
límite plástico, e índice de plasticidad de suelos. 1ª Edición.
NTP 339.129:1999 (revisada el 2019)

36	Limite liquido, LL:
21	Limite plástico, LP:
15	Índice de plasticidad, IP:

Clasificación					
Sistema unificado de clasificación de suelos (SUCS)	CL				
Clasificación de suelos para uso en vías (AASHTO)	A-6 (12)				
Nombre de grupo	ARCILLA DE BAJA PLASTICIDAD CON ARENA				

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL : CIP 257806

Consideraciones:

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631663.33 N 9279514.32

Código interno JL-R-C-23-0161

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

Peso material saturado superficie seca en aire; g.	700.0	720.0		
Peso material saturado superficie seca en agua; g.	299.0	318.0		
Volumen de masa + volumen de vacíos; cm³.	401.0	402.0		
Peso de material seco ; g.	688.0	688.0		
Volumen de masa; cm³.	389.0	370.0		
Peso específico bulk Base Seca; g.	1.716	1.711		
Peso específico bulk Base Saturada; g.	1.746	1.791		
Peso específico aparente Base Seca; g.	1.769	1.859		
Peso específico aparente Base Seca.	1.814			
Peso específico bulk Base saturada.	1.7	768		
Peso específico bulk Base seca.	1.714			

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

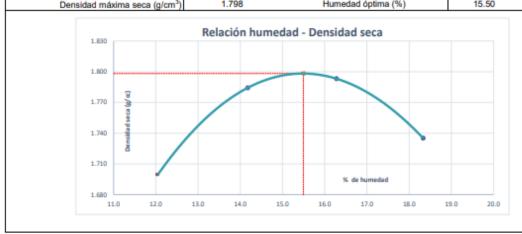
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


 Cód. muestra (*)
 Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631663.33 N 9279514.32
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0161
 Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B C		Masa molde	3980	No. de go	lpes	25 Golpes
Numero de moldeo		1	2	3	4	
Peso Suelo + Molde	g	5,770	5,895	5,940	5,910	
Peso Suelo Húmedo Compactado	g	1,790	1,915	1,960	1,930	
Peso Volumétrico Húmedo	g	1.904	2.037	2.085	2.053	
Recipiente Numero		-	-	-	-	
Peso Suelo Húmedo + Tara	g	186.0	149.0	155.0	173.0	
Peso Suelo Seco + Tara	g	166.0	130.5	133.3	146.2	
Peso de la Tara	g	0	0	0	0	
Peso del agua	g	20.0	18.5	21.7	26.8	
Peso del suelo seco	g	166	131	133	146	
Contenido de agua	%	12.05	14.18	16.28	18.33	
Densidad Seca	g/cc	1.699	1.784	1.793	1.735	
Donalded mávima cosa (alam³)	1.7	98	Humadad Ant	ima (%)	15.50	

SEGUNDO CARRANZA MEJIA
TÉCNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

Consideraciones

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Fecha recepción: 29/08/2023 E 631663.33 N 9279514.32 Coordenadas (*) Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0161 Fecha entrega: 06/09/2023

	Nolde N°			3					5		12 5				
	apas Nº		5					5							
	s por capa			56			25			12					
	n de la mu		No sat			irado	No sat		Saturado		No sat			rado	
eso de molde	de molde (123			386	120		12		120		121		
	ue moide (suelo húme		78			96	77			91	79			45	
	del molde		44 21			91 32	42		43	96 45	40		42 21		
	húmeda (c		2.0			106	1.9			45)49	1.9		1.9		
	ara (Nº)	/cm)	2.0				1.5			149	1.5				
Peso suelo		tara (n)	390			0.0	32			2.0	400			0.0	
	o seco + ta		337			1.0	279			0.0	340		33		
	de tara (g		331	.0	33	1.0	211	2.00	21	V.W	346	2.0	33	2.0	
	de agua (g		5	2		i9	4	3	5	2	5	4	7	0	
	suelo seco		33			31	27			70	34	-	_	30	
Contenido			15.			.82	15.			.26	15.		21.		
Densida	d seca (g/o	cm³)	1.7			788	1.7			18	1.6			48	
						E	xpansión								
Fecha	Hora	Tiempo	Di	al	Expansión		Di	Dial	_	Expansión		Dial		Expansión	
	·			mm	%			mm %		_		mm	-		
0/08/2023	16:30	0			0.000	0.0	(0.000	0.0	(0.000	0	
31/08/2023	16:30	24	5		1.397	1.2	7		1.930	1.7	9		2.286 2.616	2	
	16:30	48	7.		1.854	1.6	9		2.337	2.0	10				
02/09/2023	16:30 16:30	72 96	8		2,261	1.9 2.2	10		2.667	2.3	11		2.946 3.226	2	
13/09/2023	16:30	90	- 10	2	2.591	2.2	11	D	2.921	2.5	14	4	3.220	_	
			l				and a state of the				l			_	
						Pt	enetración								
Penetrac	ión	Carga	C		e No.	ección	Car		e No.	cción	A-1		ie No. Corre	eeid-	
	mula	Stand.	Car Dial (dia)	~	_	%	Dial (div)			sccion %	Car Diel (die)	~		ccion	
0.000	pulg. 0.000	kg/cm2	Dial (div)	kg 0	kg	70	Dial (div)	kg 0	kg	70	Dial (div)	kg 0	kg	_	
0.635	0.025		9.1	9			7.0	7			5.0	5		$\overline{}$	
1.270	0.025		16.1	16			14.2	14			12.1	12	\vdash	-	
1.905	0.030		24.5	25			20.1	20			18.7	19		$\overline{}$	
2.540	1.000	70.445	44.3	44	72.5	5.3	41.0	41	67.1	4.9	36.2	36	63.7	4	
3.810	1.500	10.440	72.5	73	12.0	0.0	66.4	66	Wr. I	4.0	52.6	53		$\vec{}$	
5.080	2.000	105.68	90.5	91	155.8	7.6	83.5	84	144.4	7.1	78.9	79	133.8	6	
6.350	2.500	100.00	121.1	121	100.0	1.0	111.2	111	144.4		105.2	105	100.0		
7.620	3.000		178.9	179			158.3	158			140.5	141	$\overline{}$	$\overline{}$	
10.160	4.000		200.1	200.1			190.6	190.6			172.0	172.0			
12,700	5.000														

GCL INGENERIA S.R.L. AN SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- Conscientaciones.

 A. (*) Los datos indicados han sido proporcionados por el cliente.

 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

1.920

1.800

1.680 1.640

250

Coordenadas (*) E 631663.33 N 9279514.32

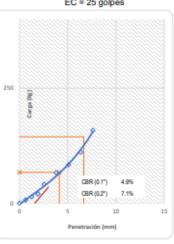
Código interno JL-R-C-23-0161

Máxima densidad seca (g/cm³): 1.798 Optimo contenido de humedad (%): 15.5

C.B.R. al 100% de M.D.S. (%): 0.1*: C.B.R. al 95% de M.D.S. (%): 0.1*: 0.2": 0.2": 4.8 6.9

Resultados: Valor de C.B.R. al 100% de la M.D.S.: 5.3 Valor de C.B.R. al 95% de la M.D.S.: 4.8

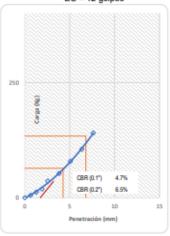
EC = 56 golpes


CBR (0.2°)

7.6%

10

EC = 25 golpes



EC = 12 golpes

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIAS.R.L TEL

GABY ROSITA CHUNQUE OCAÑA

CALICATA 02 MUESTRA PATRÓN + 5% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Nivel freático (*) No presenta

Coordenadas (*) E 631663.33 N 9279514.32 JL-R-C-23-0161 - Caucho Granular 5%

Código interno

Fecha muestreo:	29/08/2023
Fecha recepción:	
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	310.0
4 in.	100.000					Fracción para lavar, g:	310.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	-
1 in.	25.000					75 mm - 300mm:	-
3/4 in.	19.000					Grava, %:	0.7
3/8 in.	9.500				100.00	Arena, %:	27.4
No. 4	4.750	2.05	0.66	0.66	99.34	Finos, %:	71.9
No. 10	2.000	19.10	6.16	6.82	93.18	Diam. efectivo D ₅₀ (mm):	0.04
No. 20	0.850	3.26	1.05	7.87	92.13	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	4.32	1.39	9.26	90.74	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	5.00	1.61	10.87	89.13	Coef.uniformidad (Cu):	
No. 140	0.106	32.90	10.61	21.48	78.52	Coef. curvatura (Cc):	0.59
No. 200	0.075	20.40	6.58	28.06	71.94		
Cazoleta		4.00				-	

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Peso material saturado superficie seca en aire; g.

Peso material saturado superficie seca en agua; g. Volumen de masa + volumen de vacíos; cm3.

Nivel freático (*) No presenta

Coordenadas (*) E 631663.33 N 9279514.32

Código interno JL-R-C-23-0161 - Caucho Granular 5%

Peso de material seco ; g.

Peso específico bulk Base Seca; g.

Peso específico bulk Base Saturada; g.

Peso específico aparente Base Seca; g.

Peso específico aparente Base Seca. Peso específico bulk Base saturada. Peso específico bulk Base seca.

Volumen de masa; cm3.

	recita recepción.	20,00,2020
	Fecha ensayo:	30/08/2023
	Fecha entrega:	06/09/2023
700.0	670.0	
311.0	285.0	
389.0	385.0	
696.0	688.0	
385.0	403.0	
1.789	1.787	
1.799	1.740	
1.808	1.707	
1.7	757	
1.7	770	

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

1.788

- A. (*) Los datos indicados han sido proporcionados por el cliente
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-ibf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Coordenadas (*) E 631663.33 N 9279514.32

Código interno JL-R-C-23-0161 - Caucho Granular 5%

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B C		Masa molde	3980	No. de gol	lpes	25 Golpes
Numero de moldeo		1	2	3	4	
Peso Suelo + Molde	g	5,650	5,832	5,870	5,788	
Peso Suelo Húmedo Compactado	g	1,670	1,852	1,890	1,808	
Peso Volumétrico Húmedo	g	1.777	1.970	2.011	1.923	
Recipiente Numero					-	
Peso Suelo Húmedo + Tara	g	391.1	615.2	365.5	419.2	
Peso Suelo Seco + Tara	g	349.0	538.5	314.0	355.0	
Peso de la Tara	g	0	0	0	0	
Peso del agua	g	42.1	76.7	51.5	64.2	
Peso del suelo seco	g	349	539	314	355	
Contenido de agua	%	12.06	14.24	16.40	18.08	
Densidad Seca	g/cc	1.585	1.725	1.727	1.629	
Densidad máxima seca (g/cm ³	1.7	744	Humedad ópt	ima (%)	15.37	

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta E 631663.33 N 9279514.32

Coordenadas (*) Código interno JL-R-C-23-0161 - Caucho Granular 5%

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Molde N°	8		2		5		
Capas Nº	5		5		5		
Golpes por capa Nº	56	5	25	5	12		
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado Saturado		
Peso de molde + Suelo húmedo (g)	12206	12249	12187	12302	11778	11958	
Peso de molde (g)	7884	7884	8123	8123	7893	7893	
Peso del suelo húmedo (g)	4322	4365	4064	4179	3885	4065	
Volumen del molde (cm²)	2148	2148	2106	2106	2098	2098	
Densidad húmeda (g/cm²)	2.012	2.032	1.930	1.984	1.852	1.938	
Tara (N°)							
Peso suelo húmedo + tara (g)	450.0	450.0	415.0	415.0	389.0	389.0	
Peso suelo seco + tara (g)	390.0	384.0	360.0	348.0	337.0	320.0	
Peso de tara (g)							
Peso de agua (g)	60	66	55	67	52	69	
Peso de suelo seco (g)	390	384	360	348	337	320	
Contenido de humedad (%)	15.38	17.19	15.28	19.25	15.43	21.56	
Densidad seca (q/cm²)	1.744	1.734	1.674	1.664	1.604	1.594	

Expansión

Fecha	Fecha Hora Tiempo Dial		Expa	nsión	Dial	Expansión		Dial	Expansión		
I COIN	· rona	Hempo	2	mm	%	Dia.	mm	%	1	mm	%
06/09/2023	16:30	0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
07/09/2023	16:30	24	80	2.032	1.7	96	2.438	2.1	122	3.099	2.7
08/09/2023	16:30	48	95	2.413	2.1	122	3.099	2.7	148	3.759	3.2
09/09/2023	16:30	72	116	2.946	2.5	142	3.607	3.1	166	4.216	3.6
10/09/2023	16:30	96	140	3.556	3.1	160	4.064	3.5	170	4.318	3.7

Penetración

Penetrac	ión	Carga		Molde No.				Molde No.				Molde No.			
renetiae	NOTE:	Stand.	Ca	rga	Corre	ección	Ca	rga	Corre	ección	Ca	rga	Corrección		
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	
0.000	0.000		0	0			0	0			0	0			
0.635	0.025		17.4	17			13.1	13			9.1	9			
1.270	0.050		34.6	35			18.8	19			16.1	16			
1.905	0.075		48.9	49			45.7	46			24.5	25			
2.540	1.000	70.445	87.5	88	89.5	6.6	66.6	67	75.7	5.6	44.3	44	58.7	4.3	
3.810	1.500		125.2	125			110.1	110			72.5	73			
5.080	2.000	105.68	167.6	168	178.8	8.7	138.4	138	153.0	7.5	90.5	91	123.7	6.0	
6.350	2.500		202.3	202			178.9	179			121.1	121			
7.620	3.000		251.6	252			215.4	215			178.9	179			
10.160	4.000		290.0	290			279.3	279.3			200.1	200.1			
12.700	5.000														

GCL INGENERIA'S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado esclusivamente para el cliente mencionado.
 E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

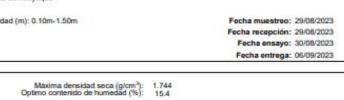
Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

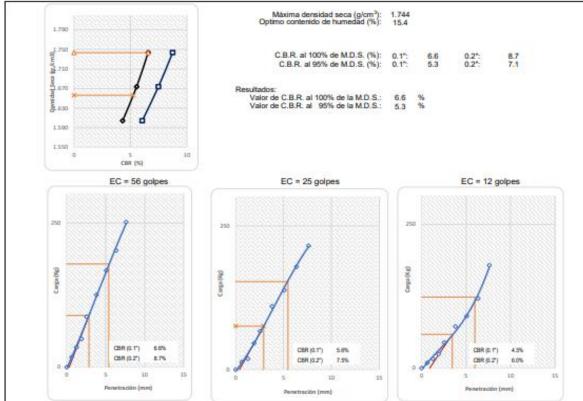
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque


Cliente (*) Bach. Frank Cosar Soto


Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freatico (*) No presenta

Coordenadas (*) E 631663.33 N 9279614.32

Código Interno JL-R-C-23-0161 - Caucho Granular 5%

SEGUNDO CARRANZA MEJIA

GABY ROSITA CHUNQUE OCAÑA

Consideraciones

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario conter con una autorización escrita del gerente para flevar a cabo cualquier tipo de reproducción.

D. Este informe ha sido preparado y está destinado exclusivamente para el ciente mencionado.

E. Las copies a divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 02 MUESTRA PATRÓN + 10% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
Nivel freático (*) No presenta
Coordenadas (*) E 631663.33 N 9279514.32

Coordenadas (*) E 631663.33 N 9279514.32 Código interno JL-R-C-23-0161 - Caucho Granular 10%

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

		1	B-11414	B-111-			
Tamices	Abertura	Masa retenida, g	Retenido parcial,	Retenido	Porcentaje que	Características	
	(mm)		%	acumulado, %	pasa, %		
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	-
1 in.	25.000					75 mm - 300mm:	-
3/4 in.	19.000					Grava, %:	3.7
3/8 in.	9.500				100.00	Arena, %:	33.2
No. 4	4.750	11.00	3.67	3.67	96.33	Finos, %:	63.1
No. 10	2.000	40.20	13.40	17.07	82.93	Diam. efectivo D ₅₀ (mm):	0.06
No. 20	0.850	3.05	1.02	18.09	81.91	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	2.11	0.70	18.79	81.21	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	4.03	1.34	20.13	79.87	Coef.uniformidad (Cu):	
No. 140	0.106	30.17	10.06	30.19	69.81	Coef. curvatura (Cc):	0.60
No. 200	0.075	20.00	6.67	36.86	63.14		
Cazoleta		1.69					

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631663.33 N 9279514.32

Código interno JL-R-C-23-0161 - Caucho Granular 10%

Fecha muestreo:	29/08/2023
Fecha recepción:	
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

Peso material saturado superficie seca en aire; g.	800.0	790.0			
Peso material saturado superficie seca en agua; g.	330.0	325.0			
Volumen de masa + volumen de vacíos; cm³.	470.0	465.0			
Peso de material seco ; g.	755.0	745.0			
Volumen de masa; cm³.	425.0	420.0			
Peso específico bulk Base Seca; g.	1.606	1.602			
Peso específico bulk Base Saturada; g.	1.702	1.699			
Peso específico aparente Base Seca; g.	1.776	1.774			
Peso específico aparente Base Seca.	1.7	775			
Peso específico bulk Base saturada.	1.701				
Peso específico bulk Base seca.	1.604				

Realizado por:

Revisado y Autoriza

GCL INGENERIA S.R.L.

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha entrega: 06/09/2023

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie³)). 1^a Edición. NTP 339.141:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta Coordenadas (*) E 631663.33 N 9279514.32 Fecha ensayo: 30/08/2023

Código interno JL-R-C-23-0161 - Caucho Granular 10%

Diámetro mo	olde	4"	6"	Volumen molde		940 cm3	No. de capas		5
Método	Método A B C			Masa molde		3980	No. de gol	pes	25 Golpes
lumero de moldeo					1	2	3	4	
Peso Suelo + Molde				g	5,465	5,715	5,795	5,675	
Peso Suelo Húmedo Compactado				g	1,485	1,735	1,815	1,695	
Peso Volumétrico Húmedo				g	1.580	1.846	1.931	1.803	
Recipiente Numero					-	-			
Peso Suelo Húmedo + Tara			g	394.8	525.1	494.5	349.8		
Peso Suelo Seco + Tara				g	356.5	466.2	430.8	300.0	
Peso de la Tara				g	0	0	0	0	
Peso del agua				g	38.3	58.9	63.7	49.8	
Peso del suelo seco				g	357	466	431	300	
Contenido de agua			%	10.74	12.63	14.79	16.60		
Densidad Seca			g/cc	1.427	1.639	1.682	1.546		
Densidad máxima seca (g/cm³)			1.0	692	Humedad ópt	ima (%)	14.15		

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIAS.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Coordenadas (*) E 631663.33 N 9279514.32

JL-R-C-23-0161 - Caucho Granular 10% Código interno

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

69.0

50.1 80.2

101

	olde N°				5				4			2			
	apas Nº				5				5				5		
	por capa				6				25			1	2		
	n de la mu			turado		ırado		turado	do Saturado No saturado			Saturado			
Peso de molde				933		988		895		005		11861 1203			
	de molde (7791		91		12		12		23		23	
Peso del si				42		197		83		93		3738		3908	
	del molde (45		45		45		45		06		06	
Densidad I		/cm²)	1.9	31	1.5	957	1.8	357	1.5	908	1.7	775	1.8	56	
	ıra (Nº)														
Peso suelo l				.56		1.56		0.50		0.50		1.40		.40	
Peso suelo			336	.90	330	0.50	390	3.50	380).49	421	1.00	400	0.00	
	de tara (g														
	de agua (g			8		4		7		0		i0		1	
	suelo seco			37		31		94		80		21		00	
Contenido				.15		.36		.49		.40		.35		.35	
Densidad	d seca (q/c	am*)	1.6	92	1.8	382	1.6	322	1.6	12	1.5	552	1.5	42	
							- 14								
							xpansión								
Fecha	Hora	Tiempo	D	al	Expa	nsión		ial	Expa	nsión	D	ial	Expa	nsión	
		manipo	_	***	mm	%	_		mm	%	_		mm	%	
04/09/2023	16:30	0)	0.000	0.0		0	0.000	0.0		Ď	0.000	0.0	
05/09/2023	16:30	24		55	3.937	3.4		56	4.216	3.6		05	5.207	4.5	
06/09/2023	16:30	48		70	4.318	3.7		98	5.029	4.3		57	6.528	5.6	
07/09/2023	16:30	72		93	4.902	4.2		53	6.426	5.5		50	6.604	5.7	
08/09/2023	16:30	96	2	50	6.350	5.5	2	51	6.629	5.7	28	81	7.137	6.1	
	-				_	_	_				_				
						Pe	enetración								
					e No.				e No.				le No.		
Penetrac	ión	Carga Stand.	Ca	rga		ección	Ca	rga		ección	Ca	rga		ección	
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	ka	%	
0.000	0.000	rog/UIII2	0	0	nH.	79	0	0	NH.	70	O O	0	764	79	
0.635	0.025	 	12.9	13			9.8	10			5.0	5			
1.270	0.050		25.6	26			15.6	16			9.5	10			
1.905	0.075		40.5	41			27.4	27			15.6	16			
2.540	1.000	70.445	55.3	55	44.9	3.3	43.2	43	42.5	3.1	25.6	26	31.2	2.3	
3.810	1.500		70.3	70			52.6	63			24.2	24			

78.9 105.2

144.6

GCL INGENERIA S.R.L	DET.
an	
SEGUNDO CARRANZA	MEJIA

90 129 150

90.2 128.6

150.1

90.5

145

90.3

105.68

2.000

Consideraciones:
A. (*) Los datos indicados han sido proporcionados por el cliente.
B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
C. Es necesario confar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

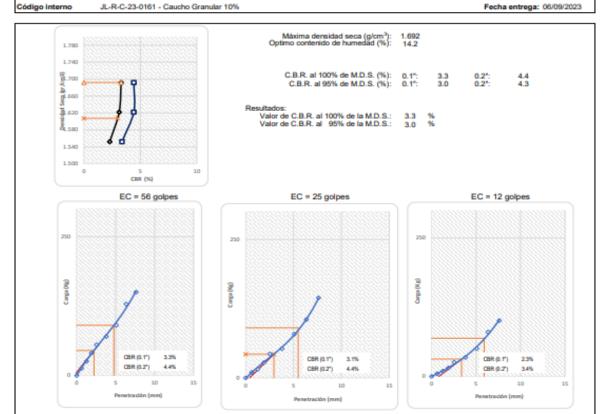
Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque


Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631663.33 N 9279514.32

Código interno JL-R-C-23-0161 - Caucho Granular 10%

SEGUNDO CARRANZA MEJIA

GCL INGENERIAS.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- B. El diente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para flevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado. E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 02 MUESTRA PATRÓN + 15% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

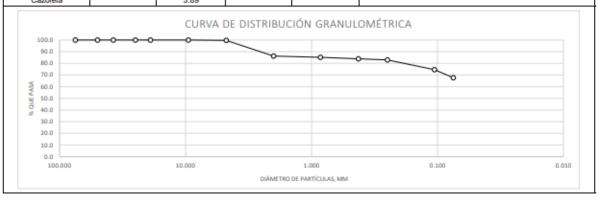
Fecha muestreo: 29/08/2023

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631663.33 N 9279514.32
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0160 - Caucho Granular 15%
 Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	0.3
3/8 in.	9.500				100.00	Arena, %:	32.0
No. 4	4.750	1.00	0.33	0.33	99.67	Finos, %:	67.7
No. 10	2.000	40.30	13.43	13.76	86.24	Diam. efectivo D _{so} (mm):	0.05
No. 20	0.850	3.25	1.08	14.84	85.16	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	4.00	1.33	16.17	83.83	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	2.65	0.88	17.05	82.95	Coef.uniformidad (Cu):	
No. 140	0.106	25.14	8.38	25.43	74.57	Coef. curvatura (Cc):	0.60
No. 200	0.075	20.60	6.87	32.30	67.70		
Cazoleta		3.89					

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Carretera Tucume- Cachiche, Departamento Lambayeque Ubicación (*)

Cliente (*) Bach. Frank Cosar Soto

Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*)

Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta Coordenadas (*) E 631663.33 N 9279514.32 Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0160 - Caucho Granular 15% Fecha entrega: 06/09/2023

Peso material saturado superficie seca en aire; g.	800.0	830.0		
Peso material saturado superficie seca en agua; g.	285.0	290.0		
Volumen de masa + volumen de vacíos; cm³.	515.0	540.0		
Peso de material seco ; g.	795.0	805.0		
Volumen de masa; cm³.	510.0	515.0		
Peso especifico bulk Base Seca; g.	1.544	1.491		
Peso especifico bulk Base Saturada; g.	1.553	1.537		
Peso específico aparente Base Seca; g.	1.559	1.563		
Peso específico aparente Base Seca.	1.5	661		
Peso específico bulk Base saturada.	1.5	545		
Peso específico bulk Base seca.	1.517			

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631663.33 N 9279514.32
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0160 - Caucho Granular 15%
 Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B C	Masa molde		3980	No. de go	lpes	25 Golpes
Numero de moldeo	•	1	2	3	4	
Peso Suelo + Molde	g	5,455	5,630	5,687	5,618	
Peso Suelo Húmedo Compactado	g	1,475	1,650	1,707	1,638	
Peso Volumétrico Húmedo	g	1.569	1.755	1.816	1.743	
Recipiente Numero		-	-		-	
Peso Suelo Húmedo + Tara	g	465.9	400.0	591.5	389.5	
Peso Suelo Seco + Tara	g	417.6	352.6	513.1	331.5	
Peso de la Tara	g					
Peso del agua	g	48.3	47.4	78.4	58.0	
Peso del suelo seco	g	418	353	513	332	
Contenido de agua	%	11.57	13.44	15.28	17.50	
Densidad Seca	g/cc	1.406	1.547	1.575	1.483	
Densidad máxima seca (n/cm³)	1.5	78	Humedad ópt	ima (%)	14.89	_

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL. CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingenieria geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Fecha muestreo: 29/08/2023 No presenta Nivel freático (*) Fecha recepción: 29/08/2023 Coordenadas (*) E 631663.33 N 9279514.32 Fecha ensayo: 30/08/2023 JL-R-C-23-0160 - Caucho Granular 15% Fecha entrega: 06/09/2023

ódigo interno		JL-R-U-23	-0160 - Cau	cho Granu	ar 10%						Fech	a entrega:	06/09/2023)
M	olde N°		г		6		т —		8		Т	2	3	
Ca	spas No				5				5			5		
Golpes	por capa	N°		5	6		25			12				
Condición	de la mue	estra	No sa	urado	Satu	rado	No saturado		Saturado		No sa	No saturado		rado
Peso de molde			118		11	866		807	117			139		305
	le molde (g		79	7961		61	78	84	78	84	79	15	79	15
Peso del si	uelo húme	do (g)	38	66	39	905	37	23	38	23	35	24	36	90
Volumen o	iel molde ((cm³)	21	33	21	33	21	48	21	48	21	36	21	36
Densidad I		/cm³)	1.8	12	1.8	331	1.7	733	1.7	'80	1.6	50	1.7	28
	ra (Nº)													
Peso suelo h			353			3.40		0.60		.60		.00		.00
Peso suelo			307	.60	302	2.60	540	0.00	522	2.50	416	.50	395	21
	de tara (g													
	de agua (g		4	_	_	51	_	1		8	_	2		3
	suelo seco		30			03		40		23	41			95
	Contenido de humedad (%)		14.			.79		.93		.78	14			95
Densidad	seca (g/c	m1)	1.5	78	1.6	568	1.5	508	1.4	198	1.4	38	1.4	28
							xpansión							
Fecha	Hora	Tiempo	Di	Dial		nsión		Dial		nsión		ial	Expa	nsión
recha	Hora	Hempo		ai	mm	mm %		iai	mm	%	1	iai	mm	%
30/08/2023	16:30	0	()	0.000	0.0		0	0.000	0.0	()	0.000	0.
31/08/2023	16:30	24	22				233	5.918	5.1	27		7.036	6.	
01/09/2023	16:30	48	23	31	5.867	5.0	276		7.010	6.0	32	24	8.230	7.
02/09/2023	16:30	72	27		6.858	5.9		324		7.1		70	9.398	8.
03/09/2023	16:30	96	32	20	8.128	7.0	3	85	9.271	8.0	39	98	10.109	8.
						P	enetración							
		Carga	1	Mold	e No.			Mold	e No.			Mold	e No.	
Penetraci	ión	Stand.	Ca			ección	Ca	rga		cción	Ca	rga		cción
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	0.000		0	0			0	0			0	0		-
0.635	0.025		7.0	7			4.6	5			2.3	2		
1.270	0.050		12.2	12			9.3	9			5.6	6		
1.905	0.075		22.9	23			15.6	16			9.0	9		
2.540	1.000	70.445	40.7	41	39.1	2.9	33.3	33	32.1	2.4	18.6	19	24.9	1.
3.810	1.500		60.5	61			49.1	49			29.3	29		
5.080	2.000	105.68	74.9	75	77.6	3.8	60.9	61	63.9	3.1	40.2	40	53.5	2
6.350	2.500		90.2	90			75.3	75			59.7	60		
7.620	3.000		111.3	111			90.2	90			72.2	72		
10.160	4.000		140.6	140.6			120.3	120.3			101.6	101.6		
12,700	5.000													

GCL INGENERIA S.R.L. TEL SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.

 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
 E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

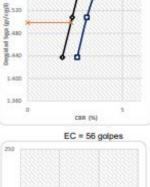
SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

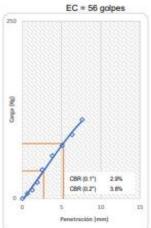
Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

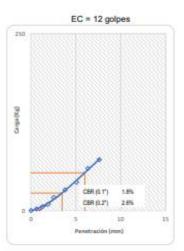
Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m


Nivel freático (*) No presenta


Coordenadas (*) E 631663.33 N 9279514.32

JL-R-C-23-0160 - Caucho Granular 15% Código interno


C.B.R. al 100% de M.D.S. (%): 0.1": C.B.R. al 95% de M.D.S. (%): 0.1": 0.2*: 3.8 23

Resultados: Valor de C.B.R. al 100% de la M.D.S.: 2.9 % Valor de C.B.R. al 95% de la M.D.S.: 2.3 %

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mancionado. E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 02 MUESTRA PATRÓN + 20% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

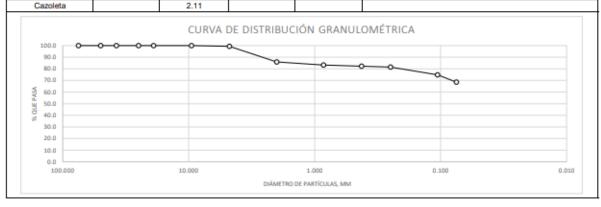
SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

 Cód. muestra (*)
 Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023


 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631663.33 N 9279514.32
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0161 - Caucho Granular 20%
 Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	0.7
3/8 in.	9.500				100.00	Arena, %:	30.8
No. 4	4.750	2.00	0.67	0.67	99.33	Finos, %:	68.6
No. 10	2.000	40.30	13.43	14.10	85.90	Diam. efectivo D _{so} (mm):	0.05
No. 20	0.850	8.00	2.67	16.77	83.23	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	3.00	1.00	17.77	82.23	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	2.11	0.70	18.47	81.53	Coef.uniformidad (Cu):	
No. 140	0.106	20.25	6.75	25.22	74.78	Coef. curvatura (Cc):	0.57
No. 200	0.075	18.63	6.21	31.43	68.57		
Constate		0.44					

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- El las conias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631663.33 N 9279514.32

Código interno JL-R-C-23-0161 - Caucho Granular 20%

Fecha	muestreo:	29/08/2023

Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Peso material saturado superficie seca en aire; g.	810.0	800.0		
Peso material saturado superficie seca en agua; g.	310.0	317.0		
Volumen de masa + volumen de vacíos; cm³.	500.0	483.0		
Peso de material seco ; g.	752.0	725.0		
Volumen de masa; cm³.	442.0	408.0		
Peso específico bulk Base Seca; g.	1.504	1.501		
Peso específico bulk Base Saturada; g.	1.620	1.656		
Peso específico aparente Base Seca; g.	1.701	1.777		
Peso específico aparente Base Seca.	1.739			
Peso específico bulk Base saturada.	1.638			
Peso específico bulk Base seca.	1.503			

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

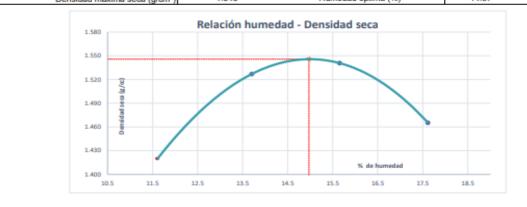
Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque


Cliente (*) Bach. Frank Cosar Soto

Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*)

Nivel freático (*) Fecha recepción: 29/08/2023 No presenta E 631663.33 N 9279514.32 Coordenadas (*)

Código interno JL-R-C-23-0161 - Caucho Granular 20%

Diámetro molde 4" 6'	Volu	umen molde	940 cm3	No. de capas		5	
Método A B C		Masa molde	3980	No. de go	lpes	25 Golpes	
Numero de moldeo		1	2	3	4		
Peso Suelo + Molde	g	5,470	5,612	5,655	5,600		
Peso Suelo Húmedo Compactado	g	1,490	1,632	1,675	1,620		
Peso Volumétrico Húmedo	g	1.585	1.736	1.782	1.723		
Recipiente Numero		-	-	-			
Peso Suelo Húmedo + Tara	g	370.0	420.7	399.0	389.3		
Peso Suelo Seco + Tara	g	331.5	370.0	345.0	331.0		
Peso de la Tara	g	0	0	0	0		
Peso del agua	g	38.5	50.7	54.0	58.3		
Peso del suelo seco	g	332	370	345	331		
Contenido de agua	%	11.61	13.70	15.65	17.61		
Densidad Seca	g/cc	1.420	1.527	1.541	1.465		
Densidad máxima seca (g/cm	³) 1.	546	Humedad óptima (%)		14.97		

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIAS.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- El las conias o divulgación del informe sin el consentimiento previo del cliente, están norbibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) Fecha ensayo: 30/08/2023 E 631663.33 N 9279514.32 Código interno JL-R-C-23-0161 - Caucho Granular 20% Fecha entrega: 06/09/2023

Molde No	1	13	1	4	20			
Capas No		5		5	5			
Golpes por capa Nº	5	6	2	5	1	12		
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado		
Peso de molde + Suelo húmedo (g)	11645	11667	11422	11522	11266	11421		
Peso de molde (g)	7936	7936	7908	7908	7895	7895		
Peso del suelo húmedo (g)	3709	3731	3514	3614	3371	3526		
Volumen del molde (cm³)	2097	2097	2081	2081	2098	2098		
Densidad húmeda (g/cm²)	1.769	1.779	1.689	1.737	1.607	1.681		
Tara (N°)								
Peso suelo húmedo + tara (g)	365.90	365.90	428.50	428.50	462.50	462.50		
Peso suelo seco + tara (g)	320.00	314.60	374.50	362.10	405.00	384.50		
Peso de tara (g)								
Peso de agua (g)	46	51	54	66	58	78		
Peso de suelo seco (g)	320	315	375	362	405	385		
Contenido de humedad (%)	14.34	16.31	14.42	18.34	14.20	20.29		
Densidad seca (g/cm²)	1.547	1.530	1.476	1.468	1.407	1.397		
Densidad seca (g/cm²)	1.547	1.530	1.476	1.468	1.407			

Expansión

Fecha	Hora	Tiempo	Dial	Expansión		Dial	Expansión		Dial	Expansión	
recita	Hota	Hempo	Diai	mm	%	Diai	mm	%	Diai	mm	%
30/08/2023	16:30	0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
31/08/2023	16:30	24	180	4.572	3.9	210	5.334	4.6	250	6.350	5.5
01/09/2023	16:30	48	205	5.207	4.5	244	6.198	5.3	278	7.061	6.1
02/09/2023	16:30	72	240	6.096	5.2	276	7.010	6.0	308	7.823	6.7
03/09/2023	16:30	96	270	6.858	5.9	306	7.772	6.7	345	8.763	7.5

Penetración

Penetraci	i.i.	Carga	ga Molde No.				Molde No.				Molde No.			
Penetrac	ion	Stand.	Ca	rga	Corre	ección	Ca	rga	Corre	cción	Ca	rga	Corre	ección
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	0.000		0	0			0	0			0	0		
0.635	0.025		12.9	13			9.0	9			8.6	9		
1.270	0.050		16.3	16			14.2	14			12.6	13		
1.905	0.075		22.4	22			18.2	18			16.1	16		
2.540	1.000	70.445	29.3	29	25.2	1.8	23.2	23	18.9	1.4	18.6	19	14.7	1.1
3.810	1.500		36.0	36			30.4	30			25.3	25		
5.080	2.000	105.68	50.2	50	50.3	2.5	42.1	42	37.8	1.8	36.0	36	30.1	1.5
6.350	2.500		62.3	62			48.0	48			40.1	40		
7.620	3.000		80.5	81			60.2	60			46.8	47		
10.160	4.000		90.5	90.5			72.9	72.9			56.9	56.9		
12.700	5.000													

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L TEL GABY ROSITA CHUNQUE OCAÑA ING. CIVIL CIP 287806

Conseteracionas.

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

D. Ente informe los sidos concernido y actificidades exclusivos para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

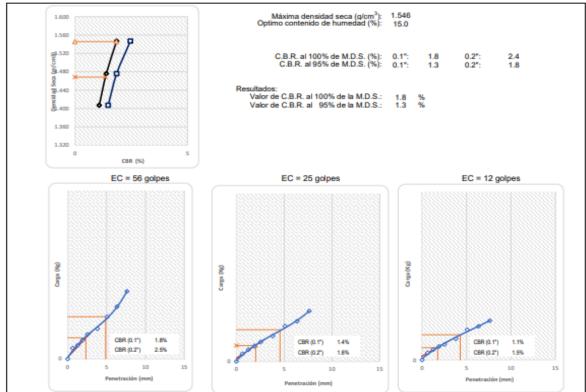
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


Cód. muestra (*) Calicata No.: 02; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Nivel freático (*)

No presenta E 631663.33 N 9279514.32 Coordenadas (*)

JL-R-C-23-0161 - Caucho Granular 20% Código interno

Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Fecha muestreo: 29/08/2023

GCL INGENERIA S.R.L

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

 D. Este informe ha sido preparado y esté destinado exclusivamente para el cliente mencionado.

 F. Los conias o ributinación del informe sin el consentimiento necio del cliente están conhibitidos.

CALICATA 03

CALICATA 03 MUESTRA PATRÓN

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

SUELOS. Descripción e identificación de suelos. Procedimiento visual - manual. NTP 339.150 2001 (revisada el 2015)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 03; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631055.94 - N 9279623.37
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0162
 Fecha entrega: 06/09/2023

Profund idad, m	Muestra s	Nivel freátic o	Simbologías	Sistema unificado de clasificación de suelos, SUCS	Clasificación de suelos para uso en vías de transporte, AASHTO	Características geotécnicas
0.10	_			_	-	Material de relleno no controlado.
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40	M-01	No prese nta		SM	A-2-4 (0)	Arena limosa de color marrón claro, con una humedad natural de 16%, no presenta índice de plasticidad (NP) y es de consistencia semi compacta.

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. 1º Edición. NTP 339.127:1998 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 03; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631055.94 - N 9279623.37
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0162
 Fecha entrega: 06/09/2023

Numero del recipiente	
Masa del recipiente, g, M _c	0.0
Recipiente + masa de muestra húmeda, g, M oma	967.5
Masa del espécimen seco del recipiente inicial, g	841.7
Masa del recipiente seco del recipiente secundario, g	832.6
Masa del espécimen seco del recipiente final, g, M _{cds}	832.6
Masa de agua, g, M _w = M _{ons} - M _{ods}	134.9
Masa de sólidos, g, M _{a=} M _{ceta} - M _c	832.6
Contenido de humedad, %, W=(M _w /M _x)*100	16
Símbolo de grupo de clasificación de suelo unificado (visual)	SM
Tamaño máximo aproximado de partícula (visual)	No. 4

Cumple masa minima: Si

Exclusión de material: No

Mas de un tipo de material: No

Temperatura del horno: 110 +-5 ° C

Fecha muestreo: 29/08/2023

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO GABY ROSITA CHUNQUE OCAÑA ING. CIVIL. CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

 Cód. muestra (*)
 Calicata No.: 03; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 631055.94 - N 9279623.37
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0162
 Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	395.5
4 in	100 000					Fracción para lavar, g	395.5
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	0.3
3/8 in.	9.500				100.00	Arena, %:	83.6
No. 4	4.750	1.32	0.33	0.33	99.67	Finos, %:	16.0
No. 10	2.000	2.00	0.51	0.84	99.16	Diam. efectivo D _{sp} (mm):	0.20
No. 20	0.850	1.45	0.37	1.21	98.79	Diam. efectivo D ₃₀ (mm):	0.09
No. 40	0.425	25.62	6.48	7.69	92.31	Diam. efectivo D ₁₀ (mm):	0.07
No. 60	0.250	91.56	23.15	30.84	69.16	Coef.uniformidad (Cu):	2.90
No. 140	0.106	128.45	32.48	63.32	36.68	Coef. curvatura (Cc):	0.68
No. 200	0.075	81.62	20.64	83.96	16.04		
Cazoleta		3.84					

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el limite líquido, limite plástico, e índice de plasticidad de suelos. 1ª Edición. NTP 339.129:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 03; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta E 631055.94 - N 9279623.37 Coordenadas (*)

Código interno JL-R-C-23-0162

Fecha muestreo:	29/08/2023						
Fecha recepción:	29/08/2023						
Fecha ensayo:	30/08/2023						
Fecha entrega:	06/09/2023						
Equipo de prueba utilizado							
Enrollado a mano	X						

Г

	Prep	paración de es	Limite plástico	Enrollado a mano	Х		
Húmeda:	X		Lavado en el tamiz No. 40			Laminación mecánica	
Seca (aire):		Seco	tamizado en tamiz No. 40		Limite liquido	Manual	X
Seca (homo):		Mecánica	mente por el tamiz No. 40		Limite liquido	Mecánico	
Mezclad	Mezclado en capsula de vidrio y partículas de arena eliminadas					Metal	
Agua de mezcla: Destila	da	X Otros:			ranurado	Plástico	Х
						-	-

LÍMITE LÍQUIDO (MÉ	TODO MULT	IPUNTO)	LÍMITE PLÁSTICO		
Recipiente, No.			Recipiente, No.	0	
Masa húmeda de suelo + recipiente, M1		C.C.	Masa húmeda de suelo + recipiente, M1 (g)	- ETING	
Masa seca de suelo + recipiente, M2 (g		25	Masa seca de suelo + recipiente, M2 (g)	200	
Masa del recipiente, M3 (g)		Or	Masa del recipiente, M3 (g)	.080	
Contenido de agua, W, (%)	7	Ď,	Contenido de agua, W, (%)	4	
Numero de golpes	100			•	

Limite liquido, LL:	NP
Limite plástico, LP:	NP
Índice de plasticidad, IP:	NP

Clasificación según carta de plasticidad:	SM
Masa retenida tamiz N°40 (%)	7.69
Humedad de recepción	16
Tamaño máximo de partículas	3/8 in.

GCL INGENERIA S.R.L.

GCL INGENERIAS.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método para la clasificación de suelos con propósitos de ingeniería (sistema unificado de clasificación de suelos, SUCS). 1º Edición. NTP 339.134:1999 (revisada el 2019)

SUELOS. Método para la clasificación de suelos para uso en vías de transporte. 1º Edición. NTP 339.135:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 03; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) Coordenadas (*) E 631055.94 - N 9279623.37

JL-R-C-23-0162

Código interno

	SUELOS. Método de ensayo para el		Masa total, g:	395.5	>300 mm:	-	Diam. efectivo D60 (mm):	0.20	_	
análisis granulométrico. NTP		Fracción para lavar, g:	395.5	75 mm - 300mm:	-	Diam. efectivo D30 (mm):	0.09			
	339.128:1999 (revisada el 2019)		T. máximo:	3/8 in.	Grava, %:	0.3	Diam. efectivo D10 (mm):	0.07		
	T	Abertura Porcentaie		T. máximo nominal:	No. 4	Arena, %:	83.6	Coef.uniformidad (Cu):	2.90	
	Tamices (mm) que pasa, %				Finos, %:	16.0	Coef. curvatura (Cc):	0.68		
	A in	100.000	100.0							Т

SUELOS. Método de ensayo para determinar el límite líquido,
límite plástico, e índice de plasticidad de suelos. 1ª Edición.
NTP 339.129:1999 (revisada el 2019)

,	
Limite liquido, LL:	NP
Limite plástico, LP:	NP
Índice de plasticidad, IP:	NP

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

Cla	sificación
Sistema unificado de clasificación de suelos (SUCS)	SM
Clasificación de suelos para uso en vías (AASHTO)	A-2-4 (0)
Nombre de grupo	ARENA LIMOSA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las mo
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 03; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta

 Coordenadas (*)
 E 631055.94 - N 9279623.37

 Código interno
 JL-R-C-23-0162

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

16.0

Diámetro molde 4	6"	Volu	umen molde	2110 cm3	No. de ca	pas	5	
Método A	Método A B C			6440	No. de go	No. de golpes 56 go		
Numero de moldeo	<u> </u>	1	2	3	4			
Peso Suelo + Molde		g	10,526	10,775	10,945	10,884		
Peso Suelo Húmedo Compactado		g	4,086	4,335	4,505	4,444		
Peso Volumétrico Húmedo		g	1.936	2.055	2.135	2.106		
Recipiente Numero			-	-	-	-		
Peso Suelo Húmedo + Tara		g	634.8	461.5	548.4	361.5		
Peso Suelo Seco + Tara		g	592.0	421.9	491.5	318.4		
Peso de la Tara		g	0	0	0	0		
Peso del agua		g	42.8	39.6	56.9	43.1		
Peso del suelo seco		g	592	422	492	318		
Contenido de agua		%	7.23	9.39	11.58 13.54			
Densidad Seca		g/cc	1.806	1.878	1.914 1.85			
Densidad máxima sec	a (g/cm²) 1.	914	Humedad ópti	ma (%)	11.43	•	
2.000 1.970 1.940 1.910 8 1.880 9 1.850		Relac	ión humedad	- Densidad sec	a			
38 1.820 6 1.790 1.760								

9.0 % de humedad 11.0

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*)

Cód. muestra (*) Calicata No.: 03; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Coordenadas (*) E 631055.94 - N 9279623.37

Código interno JL-R-C-23-0162

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

Mo	olde Nº		1	13	2	2	3	8	
	pas Nº			5		5	5		
Golpes	por capa l	No.		56	2	5	1	2	
Condición			No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso de molde -			12698	12762	12048	12184	12010	12208	
	e molde (g		8023	8023	7645	7645	7926	7926	
Peso del su	ielo húme	do (g)	4675	4739	4403	4539	4084	4282	
Volumen d	lel molde ((cm³)	2198	2198	2144	2144	2063	2063	
Densidad h	rúmeda (g	/cm³)	2.127	2.156	2.054	2.117	1.980	2.076	
	ra (Nº)								
Peso suelo h	Peso suelo húmedo + tara (g)			355.6	484.4	484.4	524.4	524.4	
Peso suelo	seco + ta	ra (g)	320.0 314.0		435.0 419.7		470.0	445.6	
	de tara (g								
	ie agua (g		36	42	49	65	54	79	
Peso de s			320	314	435	420	470	446	
Contenido d	le humeda	ad (%)	11.13	13.25	11.36	15.42	11.57	17.68	
Densidad	seca (g/o	:m³)	1.914	1.904	1.844	1.834	1.774	1.764	
				E	xpansión				
Eacha	Hom	Tiemne	Dial	Expansión	Diel Expansión		Dial	Expansión	
Fecha Hora Tiempo		Dial	mm %	Dial Expansion		Dai	mm %		

Fecha	Hora	Tiempo	Dial	Expa	nsión	Dial	Expansión		Dial	Expansión	
rouna	riona	Hellipo	Dia	mm	%	Dia	mm	%	Dai	mm	%
					EXP	ANSIVO—					
				9	-53.61-5						

Penetración

Penetrac	ión	Carga Molde No.			e No.	No. Molde No.					Molde No.			
Penetrac	ion	Stand.	Car	ga	Corre	oción	Car	rga	Corre	ección	Ca	rga	Corrección	
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	0.000		0	0			0	0			0	0		
0.635	0.025		25.8	26			21.5	22			16.9	17		
1.270	0.050		70.5	71			54.8	55			44.5	45		
1.905	0.075		102.1	102			81.4	81			60.1	60		
2.540	1.000	70.445	142.1	142	123.4	9.1	116.2	116	100.2	7.4	75.8	76	79.6	5.8
3.810	1.500		192.2	192			151.1	151			116.2	116		
5.080	2.000	105.68	245.4	245	243.5	11.9	181.4	181	200.0	9.8	143.6	144	161.5	7.9
6.350	2.500		288.9	289			235.9	236			182.4	182		
7.620	3.000		368.8	369			324.5	325			264.5	265		
10.160	4.000		424.5	424.5			378.7	378.7			321.5	321.5		
12.700	5.000													

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIAS.R.L. GABY ROSITA CHUNQUE OCAÑA

A. (*) Los datos indicados han sido proporcionados por el cliente

R. El cliente infinite la referencia y uticación de los puntos donde se han tomado las muestras.
 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambavegue

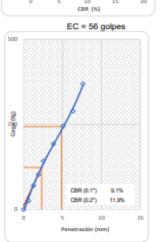
Cliente (*) Bach, Frank Cosar Soto

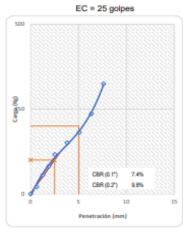
Cód, muestra (*) Calicata No.: 03; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

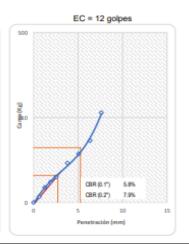
Nivel freático (*) No presenta

Coordenadas (*) E 631055.94 - N 9279623.37

JL-R-C-23-0162 Código interno


> 2.000 1.920


ğ.140 g. 100


PL.760 1.680 1.600 Máxima densidad seca (g/cm³): 1.914 Optimo contenido de humedad (%): 11.4

C.B.R. al 100% de M.D.S. (%): 0.1*: C.B.R. al 95% de M.D.S. (%): 0.1*: 11.9 0.2":

Resultados: Valor de C.B.R. al 100% de la M.D.S.: 9.1 Valor de C.B.R. al 95% de la M.D.S.: 6.8

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

GCL INGENERIA S.R.L TEL SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el diente mencionado.

CALICATA 04

CALICATA 04 MUESTRA PATRÓN

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Descripción e identificación de suelos. Procedimiento visual - manual. NTP 339.150 2001 (revisada el 2015)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023

Nivel freático (*) No presenta E 630366.82 N 9280281.24 Coordenadas (*)

Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0163 Fecha entrega: 06/09/2023

Profund idad, m	Muestras	Nivel freático	Simbologías	Sistema unificado de clasificación de suelos, SUCS	Clasificación de suelos para uso en vías de transporte, AASHTO	Características geotécnicas
0.10	_	•		_	_	Material de relleno no controlado.
0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 1.10 1.20 1.30 1.40 1.50	M-01	No presenta		CL	A-6 (11)	Arcilla de baja plasticidad de color marrón, con una humedad natural de 16%, presenta un índice de plasticidad de 11 y es de consistencia semi compacta.

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIAS.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. 1º Edición. NTP 339.127:1998 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 630366.82 N 9280281.24
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0163
 Fecha entrega: 06/09/2023

Numero del recipiente	
Masa del recipiente, g, M _e	0.0
Recipiente + masa de muestra húmeda, g, M ons	1100.0
Masa del espécimen seco del recipiente inicial, g	1062.0
Masa del recipiente seco del recipiente secundario, g	946.0
Masa del espécimen seco del recipiente final, g, M _{cds}	946.0
Masa de agua, g. M _w = M _{oma} - M _{oda}	154.0
Masa de sólidos, g, M _{a=} M _{ceta} - M _c	946.0
Contenido de humedad, %, W=(M _w /M _s)*100	16
Símbolo de grupo de clasificación de suelo unificado (visual)	CL
Tamaño máximo aproximado de partícula (visual)	No. 4

Cumple masa minima: Si Exclusión de material: No

Mas de un tipo de material: No

Temperatura del horno: 110 +-5 ° C

Fecha muestreo: 29/08/2023

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) E 630366.82 N 9280281.24 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023 Código interno JL-R-C-23-0163

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	310.0
4 in.	100.000					Fracción para lavar, g:	310.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	-
1 in.	25.000					75 mm - 300mm:	-
3/4 in.	19.000					Grava, %:	0.3
3/8 in.	9.500				100.00	Arena, %:	21.0
No. 4	4.750	1.00	0.32	0.32	99.68	Finos, %:	78.7
No. 10	2.000	2.56	0.83	1.15	98.85	Diam. efectivo D _{so} (mm):	0.03
No. 20	0.850	2.06	0.66	1.81	98.19	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	3.65	1.18	2.99	97.01	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	6.21	2.00	4.99	95.01	Coef.uniformidad (Cu):	
No. 140	0.106	28.00	9.03	14.02	85.98	Coef. curvatura (Cc):	0.62
No. 200	0.075	22.60	7.29	21.31	78.69		
Cazoleta		2.90					

GCL INGENERIAS.R.L TEL GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

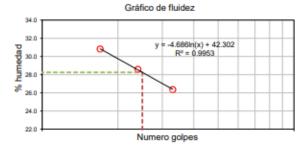
SUELOS. Método de ensayo para determinar el limite liquido, limite plástico, e indice de plasticidad de suelos. 1º Edición. NTP 339.129:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*)


Fecha muestreo: 29/08/2023 No presenta Nivel freático (*) Fecha recepción: 29/08/2023 Coordenadas (*) E 630366.82 N 9280281.24 Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0163 Fecha entrega: 06/09/2023

	Equipo de prueba utilizado						
Preparación de espécimen					Limite plástico	Enrollado a mano	X
Húmeda:	Х		Lavado en el tamiz No. 40		Limite piastico	Laminación mecánica	
Seca (aire):		Seco	tamizado en tamiz No. 40		Limite liquido	Manual	X
Seca (homo):		Mecánica	mente por el tamiz No. 40		Limite ilquido	Mecánico	
Mezclado en capsula de vidrio y partículas de arena eliminadas				X	Herramienta de	Metal	
Agua de mezcla: Destila	da	X	Otros:		ranurado	Plástico	X

LÍMITE LÍQUIDO (MÉTODO MULTIPUNTO)				LÍMITE PLÁSTICO			
Recipiente, No.	28	10	15	Recipiente, No.	5	6	
Masa húmeda de suelo + recipiente, M1	33.62	37.81	24.62	Masa húmeda de suelo + recipiente, M1 (g)	20.23	21.12	
Masa seca de suelo + recipiente, M2 (g	31.72	35.73	22.50	Masa seca de suelo + recipiente, M2 (g)	19.10	19.89	
Masa del recipiente, M3 (g)	24.51	28.45	15.62	Masa del recipiente, M3 (g)	12.62	12.81	
Contenido de agua, W, (%)	26.35	28.57	30.81	Contenido de agua, W, (%)	17.44	17.37	
Numero de golpes	33	24	17				

Limite liquido, LL:	28		
Limite plástico, LP:	17		
Índice de plasticidad, IP:	11		

Clasificación según carta de plasticidad:	CL
Masa retenida tamiz N°40 (%)	2.99
Humedad de recepción	16
Tamaño máximo de partículas	3/8 in.

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA

GCL INGENERIAS.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método para la clasificación de suelos con propósitos de ingenieria (sistema unificado de clasificación de suelos, SUCS). 1º Edición. NTP 339.134:1999 (revisada el 2019)

SUELOS. Método para la clasificación de suelos para uso en vías de transporte. 1º Edición. NTP 339.135:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*)

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) E 630366.82 N 9280281.24 Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0163 Fecha entrega: 06/09/2023

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)		Masa total, Fracción para lavar, T. máxim	g: 310	>300 mm: 75 mm - 300mm: Grava, %:	- 0.3	Diam. efectivo D60 (mm): Diam. efectivo D30 (mm): Diam. efectivo D10 (mm):	0.03 0.01 0.00	
Tamices	Abertura (mm)	Porcentaje que pasa, %	T. máximo nomin	al: No. 4	Arena, %: Finos, %:	21.0 78.7	Coef. uniformidad (Cu): Coef. curvatura (Cc):	0.62
4 in.	100.000	100.0		CURV	A DE DISTRIBUCI	ÓN GRAN	ULOMÉTRICA	
3 in.	75.000	100.0	100.0 0 0 0		• • •			
2 in.	50.000	100.0	90.0		-	-	o a	
1 1/2 in.	37.500	100.0	80.0				9	
1 in.	25.000	100.0	70.0					
3/4 in.	19.000	100.0	25 60.0					
3/8 in.	9.500	100.0	W 20.0					
No. 4	4.750	99.7	8 40.0 ≥ 40.0					
No. 10	2.000	98.9	30.0					
No. 20	0.850	98.2	20.0					
No. 40	0.425	97.0	10.0					
No. 60	0.250	95.0	100,000	10.	000	1.000	0.100	0.010
No. 140	0.106	86.0			DIÁMETRO	DE PARTÍCULAS	MM	
No. 200	0.075	78.7						
SUELOS. I	Método de e	nsavo para det	erminar el límite líquid	38.0 -		Gráfico de	fluidez	
	stico, e índio	e de plasticidad	d de suelos. 1ª Edición					
	NTP 339.1	29:1999 (revisa	ada el 2019)	37.0				+
	Lin	ite liquido, LL:	28	98.5 98.0 98.0			y = .4.686ln(x) + 42.302 R4 = 0.9953	
Limite plástico, LP: 17			17	35.0 34.5				
	Îndice de	plasticidad, IP:	11	34.0		Numero	golpes	

Cla	sificación
Sistema unificado de clasificación de suelos (SUCS)	CL
Clasificación de suelos para uso en vías (AASHTO)	A-6 (11)
Nombre de grupo	ARCILLA DE BAJA PLASTICIDAD CON ARENA

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 630366.82 N 9280281.24

Código interno JL-R-C-23-0163

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023

Fecha entrega: 06/09/2023

Peso material saturado superficie seca en aire; g.	900.0	910.0
Peso material saturado superficie seca en agua; g.	382.0	385.0
Volumen de masa + volumen de vacíos; cm³.	518.0	525.0
Peso de material seco ; g.	885.0	898.0
Volumen de masa; cm³.	503.0	513.0
Peso específico bulk Base Seca; g.	1.708	1.710
Peso específico bulk Base Saturada; g.	1.737	1.733
Peso específico aparente Base Seca; g.	1.759	1.750
Peso específico aparente Base Seca.	1.3	755
Peso específico bulk Base saturada.	1.7	735
Peso específico bulk Base seca.	1.7	709

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

Consideraciones:

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

 Cód. muestra (*)
 Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 630366.82 N 9280281.24
 Fecha ensayo: 30/08/2023

 Coordenadas (*)
 E 630368.82 N 9280281.24
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0163
 Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	ımen molde	940 cm3	No. de ca	ipas	5
Método A B C		Masa molde	3980	No. de go	lpes	25 Golpes
Numero de moldeo		1	2	3	4	
Peso Suelo + Molde	g	5,801	5,912	5,959	5,926	
Peso Suelo Húmedo Compactado	g	1,821	1,932	1,979	1,946	
Peso Volumétrico Húmedo	g	1.937	2.055	2.105	2.070	
Recipiente Numero		-	-	-	-	
Peso Suelo Húmedo + Tara	g	370.0	399.0	385.0	411.0	
Peso Suelo Seco + Tara	g	329.0	349.0	331.0	348.0	
Peso de la Tara	g					
Peso del agua	g	41.0	50.0	54.0	63.0	
Peso del suelo seco	g	329	349	331	348	
Contenido de agua	%	12.46	14.33	16.31	18.10	
Densidad Seca	g/cc	1.723	1.798	1.810	1.753	
Densidad máxima seca (g/cm) 1.	814	Humedad ópt	ima (%)	15.62	

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA
ING. CIVIL CIP 287806

Consideraciones:

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ªEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta Coordenadas (*) Fecha ensayo: 30/08/2023 E 630366.82 N 9280281.24 JL-R-C-23-0163 Fecha entrega: 06/09/2023 Código interno

Molde N°	3	3	12	2	4		
Capas Nº	5	5	5		5		
Golpes por capa No	50	6	25	5	12		
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso de molde + Suelo húmedo (g)	12412	12475	12279	12400	12112	12310	
Peso de molde (g)	7895	7895	7945	7945	7912	7912	
Peso del suelo húmedo (g)	4517	4580	4334	4455	4200	4398	
Volumen del molde (cm³)	2132	2132	2123	2123	2145	2145	
Densidad húmeda (g/cm³)	2.119	2.148	2.041	2.098	1.958	2.050	
Tara (N°)							
Peso suelo húmedo + tara (g)	452.10	452.10	347.70	347.70	490.50	490.50	
Peso suelo seco + tara (g)	391.90	384.60	301.00	291.10	425.00	403.60	
Peso de tara (g)							
Peso de agua (g)	60	68	47	57	66	87	
Peso de suelo seco (g)	392	385	301	291	425	404	
Contenido de humedad (%)	15.36	17.55	15.51	19.44	15.41	21.53	
Densidad seca (g/cm³)	1.837	1.827	1.767	1.757	1.697	1.687	

Expansión

Fecha	Hora	Tiempo	Dial	Dial Expansión		Dial	Expa	nsión	Dial	Expansión	
rooma	Hola	Hellipo	50	mm	%		mm	%	Dia	mm	%
30/08/2023	16:30	0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
31/08/2023	16:30	20	48	1.219	1.0	74	1.880	1.6	92	2.337	2.0
01/09/2023	16:30	42	70	1.778	1.5	88	2.235	1.9	103	2.616	2.2
02/09/2023	16:30	68	85	2.159	1.9	96	2.438	2.1	127	3.226	2.8
03/09/2023	16:30	92	98	2.489	2.1	125	3.175	2.7	140	3.556	3.1
			· ·								

Penetración

Penetrac	ión	Carga		Mold	e No.			Mold	e No.		Molde No.			
reneuac	Stand.		Ca	rga	Corre	ección	Ca	rga	Corre	oción	Carga		Corrección	
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	0.000		0	0			0	0			0	0		
0.635	0.025		15.2	15			12.1	12			7.0	7		
1.270	0.050		30.3	30			24.2	24			14.3	14		
1.905	0.075		45.6	46			30.1	30			22.1	22		
2.540	1.000	70.445	62.2	62	82.5	6.1	52.1	52	76.2	5.6	43.0	43	71.1	5.2
3.810	1.500		101.2	101			89.0	89			65.3	65		
5.080	2.000	105.68	115.2	115	176.2	8.6	101.6	102	163.7	8.0	85.2	85	150.3	7.4
6.350	2.500		142.3	142			126.8	127			110.0	110		
7.620	3.000		208.6	209			189.2	189			160.2	160		
10.160	4.000		240.6	240.6			220.0	220.0			200.0	200.0		
12.700	5.000													

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L TEL GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

A. (*) Los datos indicados han sido proporcionados por el cliente.
 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario confar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

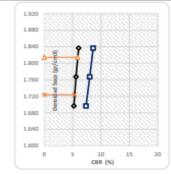
D. Este informe ha sirio menarario y está riestinario exclusivamente nara el nilente mennionario.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

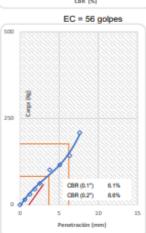
Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

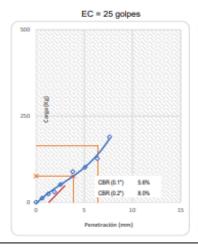

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

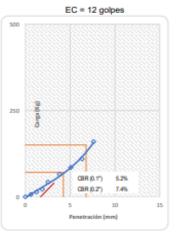
Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Coordenadas (*) E 630366.82 N 9280281.24 JL-R-C-23-0163 Código interno


Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023




Máxima densidad seca (g/cm³): 1.814 Optimo contenido de humedad (%): 15.6

C.B.R. al 100% de M.D.S. (%): 0.1*: C.B.R. al 95% de M.D.S. (%): 0.1*: 0.2":

| Resultados: | Valor de C.B.R. al 100% de la M.D.S.: | 5.9 % | Valor de C.B.R. al 95% de la M.D.S.: | 5.3 %

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

CALICATA 04 MUESTRA PATRÓN + 5% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 630366.82 N 9280281.24
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0163 - Caucho Granular 5%
 Fecha entrega: 06/09/2023

Abertura Retenido parcial, Retenido Porcentaje que Tamices Masa retenida, g Características (mm) acumulado, % pasa, % 6 in. 150.000 Masa total, g: 310.0 4 in. 100.000 Fracción para lavar, g: 310.0 75.000 3 in. T. máximo: 3/8 in 50.000 T. máximo nominal: No. 4 2 in. 1 1/2 in 37.500 >300 mm: 25.000 75 mm - 300mm: 19.000 3/4 in. Grava, %: 3/8 in. 9.500 100.00 23.6 Arena, %: 0.68 No. 4 4.750 2.10 0.68 99.32 Finos %: 75.8 No. 10 2.000 15.20 4.90 5.58 94.42 Diam. efectivo D₆₀ (mm): 0.03 0.850 Diam. efectivo D₃₀ (mm): 0.00 0.425 2.36 0.76 8.02 91.98 No. 40 0.00 Diam. efectivo D₁₀ (mm): No. 60 0.250 6.20 2.00 10.02 89.98 Coef.uniformidad (Cu): No. 140 0.106 28.45 9.18 19.20 80.80 0.50 75.77 No. 200 0.075 15.60 5.03 24.23

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL CIP 287906

Consideraciones

- A. (*) Los datos indicados han sido proporcionados por el cliente
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 630366.82 N 9280281.24

Código interno JL-R-C-23-0163 - Caucho Granular 5%

Fecha muestreo:	29/08/2023
Fecha recepción:	
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

Peso material saturado superficie seca en aire; g.	650.0	630.0
Peso material saturado superficie seca en agua; g.	278.0	272.0
Volumen de masa + volumen de vacíos; cm³.	372.0	358.0
Peso de material seco ; g.	640.0	615.0
Volumen de masa; cm³.	362.0	343.0
Peso específico bulk Base Seca; g.	1.720	1.718
Peso específico bulk Base Saturada; g.	1.747	1.760
Peso específico aparente Base Seca; g.	1.768	1.793
Peso específico aparente Base Seca.	1.3	780
Peso específico bulk Base saturada.	1.5	754
Peso específico bulk Base seca.	1.3	719

SEGUNDO, CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

Consideraciones:

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 630366.82 N 9280281.24

Código interno JL-R-C-23-0163 - Caucho Granular 5%

Diámetro n	nolde	4"	6"	Volu	men molde	940 cm3	No. de ca	pas	5	
Método	Método A B C				Masa molde	3980	No. de gol	pes	25 Golpes	
lumero de moldeo				1	2	3	4			
Peso Suelo + Molde				g	5,675	5,912	5,944	5,835		
Peso Suelo Húmedo Compactado				g	1,695	1,932	1,964	1,855		
Peso Volumétrico Húmedo				g	1.803	2.055	2.089	1.973		
Recipiente Numero					-	-		-		
Peso Suelo Húmedo + Tara	1			g	391.1	615.2	365.5	419.2		
Peso Suelo Seco + Tara				g	349.0	538.5	314.0	355.0		
Peso de la Tara				g						
Peso del agua				g	42.1	76.7	51.5	64.2		
Peso del suelo seco			g	349	539	314	355			
Contenido de agua				%	12.06	14.24	16.40	18.08		
Densidad Seca			g/cc	1.609	1.799	1.795	1.671			

SEGUNDO CARRANZA MEJIA

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL CIP 287806

Consideraciones

- A. (*) Los datos indicados han sido proporcionados por el cliente
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Bach, Frank Cosar Soto Cliente (*)

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Nivel freático (*) No presenta Coordenadas (*) E 630366.82 N 9280281.24 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023 Código interno JL-R-C-23-0163 - Caucho Granular 5%

9														
	folde N°				4				90				21	
	apas Nº				5				5		5			
	s por capa			5	6			- 2	25				2	
	n de la mu		No sa	iturado	Satu	rado	No sa	turado	Sati	ırado	No sa	iturado		ırado
Peso de molde				375		424		329		440		11804 11		
	de molde (384		184		184		384		7723 7723		
Peso del s				191		40		45		556		081		264
	del molde			142		42		98		198		106		106
	húmeda (g	/cm²)	2.0	097	2.1	120	2.0)22	2.0	073	1.5	938	2.0	025
	ara (Nº)													
Peso suelo				1.36		1.36		5.30		5.30		1.00		1.00
Peso suek			313	3.60	308	3.60	480	0.50	46	5.10	425	5.60	405	5.00
	de tara (g													
	de agua (g			8		3		5		9		55		16
	suelo seci			14		09		81		66		26		05
Contenido				.23		.10		.57		.14		15.37 21.23		
Densida	d seca (o/	(°m	1.8	820	1.8	310	1.7	750	1.3	740	1.680 1.67			570
Fecha		W		ial	Expa	nsión	xpansión		Expa	nsión		si_#	Expa	ınsión
Fecha	Hora	Tiempo		IBI	mm	%	Dial		mm %		Dial		mm	96
06/09/2023	16:30	0		0	0.000	0.0	-	Ď	0.000	0.0	(0	0.000	0.0
07/09/2023	16:30	24	8	34	2.134	1.8	9	8	2.489	2.1	13	20	3.048	2.6
08/09/2023	16:30	48	9	97	2.464	2.1	1	15	2.921	2.5	10	38	3.505	3.0
09/09/2023	16:30	72	1	12	2.845	2.4	1	34	3.404	2.9	15	58	4.013	3.4
10/09/2023	16:30	96	1	33	3.378	2.9	1	57	3.988	3.4	10	68	4.267	3.7
	-													-
						Pe	netración							
		Carga		Mold	- N-				e No.			Mala	le No.	
Penetrac	ión	Stand.	Ca	irga		ección	Ca	rga		ección	Ca	irga		ección
mm	pulg.	kg/cm2	Dial (div)	kg	ka	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	0.000	AGG-CATTLE.	O O	0	nH	79	O O	0	roq.	750	O O	0	704	- 70
0.635	0.025		15.5	16			13.8	14			11.8	12		\vdash
1.270	0.050		33.5	34			24.5	25			17.6	18		
1.270	0.000		- wa.u				a-1.0				17.30	- 10		-

GCL INGENERIA S.R.L
AM
TECNICO DE LABORATORIO

87.4

172.5

6.4

8.4

146.7 187.9

147 188

78.7

157.1

7.7

110.1 145.4 178.9 234.8

3.810

1.000 70.445 1.500

105.68

2.000 2.500 3.000

- Consideraciones:
 A. (*) Los distos indicados han sido proporcionados por el cliente.
 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado esclusivamente para el cliente mencionado.

160.2 216.3 250.2 307.3

- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

62.1

128.4

4.6

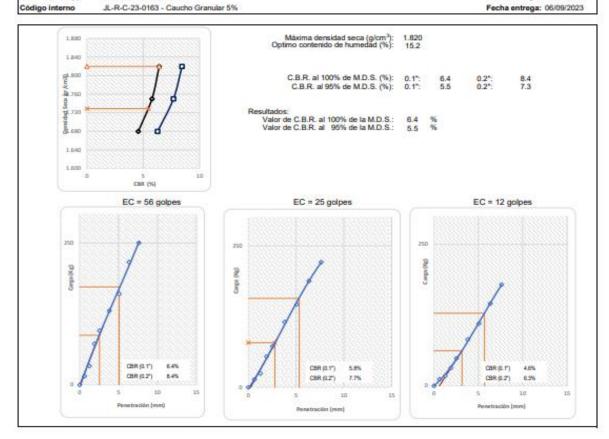
6.3

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)


Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Coordenadas (*) E 630366.82 N 9280281.24

Código interno JL-R-C-23-0163 - Caucho Granular 5% Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L CEL GABY ROSITA CHUNQUE OCAÑA

- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para al cliente mencionado
- E. Les copies o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 04 MUESTRA PATRÓN + 10% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 E 631663.33 N 9279514.32 Fecha ensayo: 30/08/2023 Coordenadas (*) Código interno JL-R-C-23-0163 - Caucho Granular 10% Fecha entrega: 06/09/2023

Tamices	Abertura	Masa retenida, g	Retenido parcial,	Retenido	Porcentaje que	Características	
ramices	(mm)	masa retenida, g	%	acumulado, %	pasa, %	Caracteristicas	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	-
1 in.	25.000					75 mm - 300mm:	-
3/4 in.	19.000					Grava, %:	1.0
3/8 in.	9.500				100.00	Arena, %:	36.5
No. 4	4.750	3.00	1.00	1.00	99.00	Finos, %:	62.5
No. 10	2.000	50.36	16.79	17.79	82.21	Diam. efectivo D ₅₀ (mm):	0.06
No. 20	0.850	5.60	1.87	19.66	80.34	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	7.20	2.40	22.06	77.94	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	8.02	2.67	24.73	75.27	Coef.uniformidad (Cu):	
No. 140	0.106	22.60	7.53	32.26	67.74	Coef. curvatura (Cc):	0.51
No. 200	0.075	15.60	5.20	37.46	62.54		
Cazoleta		5.36					

GCL INGENERIA S.R.L

- A. (") Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 631663.33 N 9279514.32

Código interno JL-R-C-23-0163 - Caucho Granular 10%

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

.0
.0
.0
.0
.0
14
92
51

SEGUNDO CARRANZA MEJIA

GABY ROSITA CHUNQUE OCAÑA

Consideraciones

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

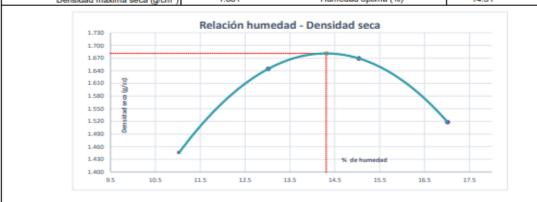
SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1º Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m


Nivel freático (*) No presenta

Coordenadas (*) E 631663.33 N 9279514.32

Código interno JL-R-C-23-0163 - Caucho Granular 10%

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B C		Masa molde	3980	No. de gol	_	25 Golpes
Numero de moldeo		1	2	3	4	
Peso Suelo + Molde	g	5,488	5,727	5,785	5,650	
Peso Suelo Húmedo Compactado	g	1,508	1,747	1,805	1,670	
Peso Volumétrico Húmedo	g	1.604	1.859	1.920	1.777	
Recipiente Numero					-	
Peso Suelo Húmedo + Tara	g	349.5	498.4	340.5	418.9	
Peso Suelo Seco + Tara	g	314.8	441.0	296.0	358.0	
Peso de la Tara	g					
Peso del agua	g	34.7	57.4	44.5	60.9	
Peso del suelo seco	g	315	441	296	358	
Contenido de agua	%	11.02	13.02	15.03	17.01	
Densidad Seca	g/cc	1.445	1.644	1.669	1.518	
Densidad máxima seca (g/cm³)	1.6	81	Humedad ópti	ma (%)	14.31	

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

Consideraciones

- A. (*) Los datos indicados han sido proporcionados por el cliente
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingenieria geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*) Nivel freático (*) No presenta E 631663.33 N 9279514.32

Coordenadas (*) Código interno JL-R-C-23-0163 - Caucho Granular 10%

Molde Nº		5	4	4	2		
Capas Nº		5		5		5	
Golpes por capa Nº	5	6	2	5	12		
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso de molde + Suelo húmedo (g)	11910	11962	11860	11970	11827	12005	
Peso de molde (g)	7791	7791	7912	7912	8123	8123	
Peso del suelo húmedo (g)	4119	4171	3948	4058	3704	3882	
Volumen del molde (cm²)	2145	2145	2145	2145	2106	2106	
Densidad húmeda (g/cm²)	1.920	1.945	1.841	1.892	1.759	1.843	
Tara (N°)				-			
Peso suelo húmedo + tara (g)	541.25	541.25	384.80	384.80	662.50	662.50	
Peso suelo seco + tara (g)	473.50	464.90	336.50	325.50	580.00	550.00	
Peso de tara (g)							
Peso de agua (g)	68	76	48	59	83	113	
Peso de suelo seco (g)	474	465	337	326	580	550	
Contenido de humedad (%)	14.31	16.42	14.35	18.22	14.22	20.45	
6 11 1 1 1	4.000	4.000	4.040	4.000	4 5 40	4 504	

Е	w	2	-	-	-	À	ē

Fecha	Hora	Tiempo	Dial	Expa	nsión	Dial	Dial Expansión		Dial	Expansión	
	11011	manipo		mm	%		mm	%	i	mm	%
04/09/2023	16:30	0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
05/09/2023	16:30	24	166	4.216	3.6	210	5.334	4.6	240	6.096	5.2
06/09/2023	16:30	48	190	4.826	4.1	233	5.918	5.1	277	7.036	6.0
07/09/2023	16:30	72	230	5.842	5.0	273	6.934	6.0	282	7.163	6.2
08/09/2023	16:30	96	272	6.909	5.9	280	7.112	6.1	300	7.620	6.5

Penetrac	ión	Carga		Mold	e No.			Mold	le No.		Molde No.			
reneuac	run .	Stand.	Ca	rga	Corre	ección	Ca	rga	Corre	ección	Car	rga	Corre	ección
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	0.000		0	0			0	0			0	0		
0.635	0.025		11.6	12			8.5	9			7.9	8		
1.270	0.050		17.2	17			12.5	13			10.6	11		
1.905	0.075		22.6	23			17.6	18			15.5	16		
2.540	1.000	70.445	35.7	36	29.6	2.2	20.2	20	22.0	1.6	17.3	17	14.7	1.1
3.810	1.500		45.5	46			30.2	30			24.2	24		
5.080	2.000	105.68	60.5	61	59.1	2.9	42.3	42	45.0	2.2	32.6	33	29.5	1.4
6.350	2.500		72.9	73			55.7	56			38.7	39		
7.620	3.000		95.3	95			70.9	71			44.2	44		
10.160	4.000		120.6	120.6			90.5	90.5			50.1	50.1		
12.700	5.000													

- A. (°) Los datos indicados han sido proporcionados por el cliente.

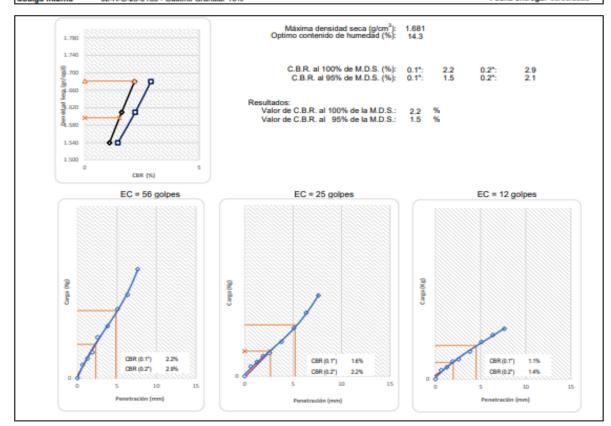
 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado. E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)


Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*)

Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) E 631663.33 N 9279514.32 Fecha ensayo: 30/08/2023 JL-R-C-23-0163 - Caucho Granular 10% Fecha entrega: 06/09/2023 Código interno

GCL INGENERIA S.R.L

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 04 MUESTRA PATRÓN + 15% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"


Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) E 630366.82 N 9280281.24 Fecha ensayo: 30/08/2023 Código interno Fecha entrega: 06/09/2023 JL-R-C-23-0163 - Caucho Granular 15%

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	-
1 in.	25.000					75 mm - 300mm:	-
3/4 in.	19.000					Grava, %:	0.7
3/8 in.	9.500				100.00	Arena, %:	30.3
No. 4	4.750	2.00	0.67	0.67	99.33	Finos, %:	69.1
No. 10	2.000	38.60	12.87	13.54	86.46	Diam. efectivo D _{so} (mm):	0.04
No. 20	0.850	5.30	1.77	15.31	84.69	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	6.20	2.07	17.38	82.62	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	3.05	1.02	18.40	81.60	Coef.uniformidad (Cu):	
No. 140	0.106	22.30	7.43	25.83	74.17	Coef. curvatura (Cc):	0.51
No. 200	0.075	15.30	5.10	30.93	69.07		
Cazoleta		0.60					

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 630366.82 N 9280281.24

Código interno JL-R-C-23-0163 - Caucho Granular 15%

Peso material saturado superficie seca en aire; g.	750.0	760.0			
Peso material saturado superficie seca en agua; g.	289.0	282.0			
Volumen de masa + volumen de vacíos; cm³.	461.0	478.0			
Peso de material seco ; g.	736.0	742.0			
Volumen de masa; cm³.	447.0	460.0			
Peso específico bulk Base Seca; g.	1.597	1.552			
Peso específico bulk Base Saturada; g.	1.627	1.590			
Peso específico aparente Base Seca; g.	1.647	1.613			
Peso específico aparente Base Seca.	1.6	30			
Peso específico bulk Base saturada.	1.6	1.608			
Peso específico bulk Base seca.	1.574				

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

Consideraciones:

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*)


Nivel freático (*) No presenta Coordenadas (*) E 630366.82 N 9280281.24

Código interno JL-R-C-23-0163 - Caucho Granular 15%

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de capas		5
Método A B C		Masa molde	3980	No. de gol	pes	25 Golpes
Numero de moldeo		1	2	3	4	
Peso Suelo + Molde	g	5,500	5,640	5,685	5,622	
Peso Suelo Húmedo Compactado	g	1,520	1,660	1,705	1,642	
Peso Volumétrico Húmedo	g	1.617	1.766	1.814	1.747	
Recipiente Numero						
Peso Suelo Húmedo + Tara	g	399.0	547.0	439.0	532.0	
Peso Suelo Seco + Tara	g	358.1	482.0	379.5	452.0	
Peso de la Tara	g					
Peso del agua	g	40.9	65.0	59.5	80.0	
Peso del suelo seco	9	358	482	380	452	
Contenido de agua	%	11.42	13.49	15.68	17.70	
Densidad Seca	g/cc	1.451	1.556	1.568	1.484	
Densidad máxima seca (g/cm³)	1.6	576	Humedad ópt	ima (%)	14.87	

GCL INGENERIA S.R.L

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha entrega: 06/09/2023

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) E 630366.82 N 9280281.24 Fecha ensayo: 30/08/2023

Código interno JL-R-C-23-0163 - Caucho Granular 15%

Molde Nº		2	1		(5	
Capas N°		5	5		5		
Golpes por capa Nº	5	6	2	5	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso de molde + Suelo húmedo (g)	11935	11954	11475	11576	11467	11622	
Peso de molde (g)	8123	8123	7848	7848	7961	7961	
Peso del suelo húmedo (g)	3812	3831	3627	3728	3506	3661	
Volumen del molde (cm²)	2106	2106	2105	2105	2133	2133	
Densidad húmeda (g/cm²)	1.810	1.819	1.723	1.771	1.644	1.716	
Tara (N°)			-				
Peso suelo húmedo + tara (g)	500.00	500.00	384.90	384.90	621.10	621.10	
Peso suelo seco + tara (g)	435.30	430.50	336.50	325.10	542.50	516.20	
Peso de tara (g)							
Peso de agua (g)	65	70	48	60	79	105	
Peso de suelo seco (g)	435	431	337	325	543	516	
Contenido de humedad (%)	14.86	16.14	14.38	18.39	14.49	20.32	
Densidad seca (g/cm²)	1.576	1.566	1.506	1.496	1.436	1.426	

Fecha	Hora	Tiempo	npo Dial		Expansión Dial		Expansión		Dial	Expansión	
	E C	Пепіро	Dia	mm		Dia	mm	%	Dia	mm	%
30/08/2023	16:30	0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
31/08/2023	16:30	24	222	5.639	4.8	241	6.121	5.3	284	7.214	6.2
01/09/2023	16:30	48	240	6.096	5.2	280	7.112	6.1	332	8.433	7.2
02/09/2023	16:30	72	275	6.985	6.0	329	8.357	7.2	372	9.449	8.1
03/09/2023	16:30	96	326	8.280	7.1	370	9.398	8.1	388	9.855	8.5

Penetración

Penetrac	ión	Carga		Mold	e No.		Molde No. Molde No.							
		Stand.	Car	Carga		Corrección		Carga		ección	Carga		Corrección	
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	0.000		0	0			0	0			0	0		
0.635	0.025		11.5	12			10.5	11			8.2	8		
1.270	0.050		15.0	15			13.2	13			11.9	12		
1.905	0.075		20.6	21			17.2	17			15.4	15		
2.540	1.000	70.445	33.2	33	26.0	1.9	25.7	26	21.7	1.6	19.5	20	13.7	1.0
3.810	1.500		45.3	45			35.9	36			26.9	27		
5.080	2.000	105.68	53.1	53	51.5	2.5	42.3	42	42.9	2.1	33.3	33	29.0	1.4
6.350	2.500		68.2	68			57.8	58			39.5	40		
7.620	3.000		72.3	72			62.4	62			45.3	45		
10.160	4.000		87.0	87.0			75.8	75.8			55.4	55.4		
12.700	5.000													

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIAS.R.L TEL GABY ROSITA CHUNQUE OCAÑA

A (°) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para tievar a cabo cualquier tipo de reproducción.

D. Este informe ha sido preparado y está destinado exclusivamente para el cliente menciona

E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

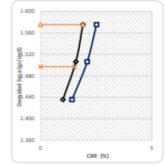
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

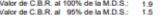
Cliente (*) Bach, Frank Cosar Soto

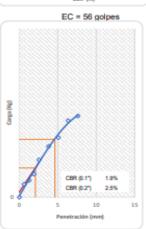

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

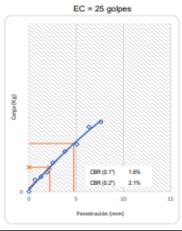
Nivel freático (*) No presenta

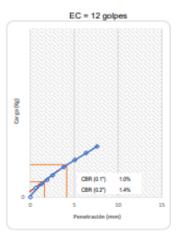
Coordenadas (*) E 630366.82 N 9280281.24

JL-R-C-23-0163 - Caucho Granular 15% Código interno


Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023




Máxima densidad seca (g/cm³): 1.576 Optimo contenido de humedad (%): 14.9


C.B.R. al 100% de M.D.S. (%): 0.1*: C.B.R. al 95% de M.D.S. (%): 0.1*:

sulfados: Valor de C.B.R. al 100% de la M.D.S.: 1.9 % Valor de C.B.R. al 95% de la M.D.S.: 1.5 %

Fecha muestreo: 29/08/2023

GCL INGENERIA S.R.L TEL

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han toma
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CALICATA 04 MUESTRA PATRÓN + 20% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

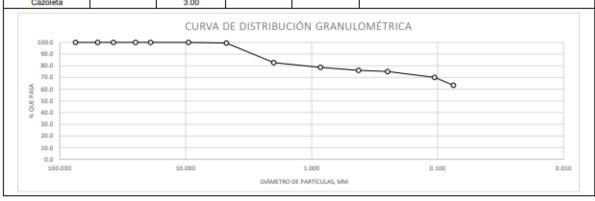
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


 Cód. muestra (*)
 Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 630366.82 N 9280281.24
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0163 - Caucho Granular 20%
 Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	0.5
3/8 in.	9.500				100.00	Arena, %:	36.1
No. 4	4.750	1.60	0.53	0.53	99.47	Finos, %:	63.3
No. 10	2.000	50.20	16.73	17.26	82.74	Diam. efectivo D ₆₀ (mm):	0.06
No. 20	0.850	12.30	4.10	21.36	78.64	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	7.60	2.53	23.89	76.11	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	3.02	1.01	24.90	75.10	Coef.uniformidad (Cu):	
No. 140	0.106	15.00	5.00	29.90	70.10	Coef. curvatura (Cc):	0.60
No. 200	0.075	20.30	6.77	36.67	63.33		
Correlate		3.00					

Consideraciones

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

 Cód. muestra (*)
 Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 630366.82 N 9280281.24
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0163 - Caucho Granular 20%
 Fecha entrega: 06/09/2023

Peso específico bulk Base seca.	1.	550
Peso específico bulk Base saturada.	1.	737
Peso específico aparente Base Seca.	1.	950
Absorción; %.		
Peso específico aparente Base Seca; g.	1.659	2.241
Peso específico bulk Base Saturada; g.	1.616	1.857
Peso específico bulk Base Seca; g.	1.552	1.548
Volumen de masa; cm³.	463.0	290.0
Peso de material seco ; g.	768.0	650.0
Volumen de masa + volumen de vacíos; cm³.	495.0	420.0
Peso material saturado superficie seca en agua; g.	305.0	360.0
Peso material saturado superficie seca en aire; g.	800.0	780.0

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

Consideraciones:

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 630366.82 N 9280281.24

Código interno JL-R-C-23-0163 - Caucho Granular 20%

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B C		Masa molde	3980	No. de go	lpes	25 Golpes
Numero de moldeo		1	2	3	4	
Peso Suelo + Molde	g	5,300	5,463	5,500	5,405	
Peso Suelo Húmedo Compactado	g	1,320	1,483	1,520	1,425	
Peso Volumétrico Húmedo	g	1.404	1.578	1.617	1.516	
Recipiente Numero		-		-	-	
Peso Suelo Húmedo + Tara	g	450.0	453.2	439.5	408.0	
Peso Suelo Seco + Tara	g	402.0	398.0	380.0	347.0	
Peso de la Tara	g					
Peso del agua	g	48.0	55.2	59.5	61.0	
Peso del suelo seco	g	402	398	380	347	
Contenido de agua	%	11.94	13.87	15.66	17.58	
Densidad Seca	g/cc	1.254	1.385	1.398	1.289	
Densidad máxima seca (g/cm3)	1.4	106	Humedad ópt	ima (%)	14.97	•

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO GABY ROSITA CHUNQUE OCAÑA

Consideraciones

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 Coordenadas (*) E 630366.82 N 9280281.24 Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0163 - Caucho Granular 20% Fecha entrega: 06/09/2023

Jouigo interno		JL-R-U-Z3	-0103 - Cau	cno Granu	lar 20%						recii	a entrega.	00/09/2023		
м	olde N°				7		1		10		1	- 1	7		
C	apas Nº				5				5		 		5		
Golpes	por capa	N°			6			25			12				
Condición	n de la mu	estra	No sal	urado	Satu	rado	No sa	No saturado		Saturado		turado	Saturado		
Peso de molde	+ Suelo h	úmedo (g)	114		11469			11152		226		11055		11197	
	de molde (80	23	80	23	79	32	79	32	79	87	79	87	
Peso del si	uelo húme	do (g)	34	25	34	146	32	20	32	94	30	68	32	10	
Volumen o	del molde	(cm³)	21	19	21	19	20	98	20	98	21	19	21	19	
Densidad			1.6			326		535		70		148		515	
	Tara (N°)														
	eso suelo húmedo + tara (g) 410.00			.00	410	0.00	386	3.00	386	.00	398	3.00	398	.00	
	Peso suelo seco + tara (g) 356.60				352	2.00	336	3.00	326	.00	348	3.00	330	.00	
	de tara (g														
	de agua (g		5	3		i8		i0	6	0	5	0	6	8	
	suelo seco		35	7	3	52	3	36	30	26	34	48	33	30	
Contenido (14.	97	16	.48	14	.88	18.	.40		.37	20.	.61	
Densidad	d seca (g/o	cm³)	1.4	06	1.3	396	1.3	336	1.3	26	1.2	266	1.2	256	
							Expansión								
F. d.				-1	Expa	insión			Expa	nsión			Expa	nsión	
Fecha	Hora	Tiempo	Di	al	mm	%	٦	ial	mm	%	1 0	ial	mm	%	
30/08/2023	16:30	0	()	0.000	0.0		0	0.000	0.0	-	0	0.000	0.0	
31/08/2023	16:30	24	16	10	4.064	3.5	2	02	5.131	4.4	2:	33	5.918	5.1	
01/09/2023	16:30	48	20	0	5.080	4.4	2	34	5.944	5.1	2	70	6.858	5.9	
02/09/2023	16:30	72	23	3	5.918	5.1	2	65	6.731	5.8	3	12	7.925	6.8	
03/09/2023	16:30	96	26	4	6.706	5.8	3	10	7.874	6.8	38	50	8.890	7.6	
						P	enetración								
D to		Carga		Mold	e No.		Т	Mold	e No.			Mold	e No.		
Penetrac	ion	Stand.	Ca	ga	Corre	ección	Ca	irga	Corre	cción	Ca	rga	Corre	cción	
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	
0.000	0.000		0	0			0	0			0	0			
0.635	0.025		5.6	6			2.5	3			1.8	2			
1.270	0.050		8.2	8			5.4	5			3.8	4			
1.905	0.075		13.2	13			9.2	9			5.6	6			
2.540	1.000	70.445	17.0	17	23.6	1.7	12.3	12	19.2	1.4	7.0	7	9.7	0.	
3.810	1.500		32.2	32			20.3	20			9.2	9			
5.080	2.000	105.68	42.0	42	49.9	2.4	34.0	34	42.6	2.1	15.2	15	24.1	1.3	
6.350	2.500		56.3	56			44.0	44			22.3	22			
7.620	3.000		72.9	73			60.5	61			40.5	41			
10.160	4.000		95.5	95.5			80.7	80.7			60.5	60.5			

GCL INGENERIA S.R.L.

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

12.700 5.000

- Consideraciones:

 A. (*) Los datos indicados han sido proporcionados por el cliente.

 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras. C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

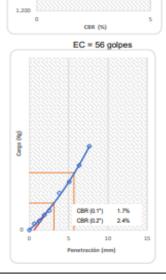
Cliente (*) Bach. Frank Cosar Soto

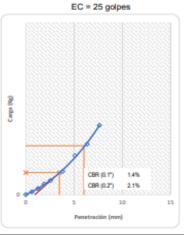
Cód. muestra (*) Calicata No.: 04; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

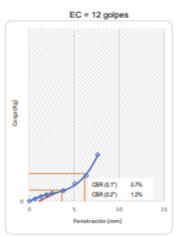
Nivel freático (*)

g.360 §1.320

1.240


Coordenadas (*) E 630366.82 N 9280281.24


Código interno JL-R-C-23-0163 - Caucho Granular 20%


Máxima densidad seca (g/cm³): Optimo contenido de humedad (%):

C.B.R. al 100% de M.D.S. (%): 0.1*: C.B.R. al 95% de M.D.S. (%): 0.1*:

Resultados: Valor de C.B.R. al 100% de la M.D.S.: 1.7 % Valor de C.B.R. al 95% de la M.D.S.: 1.4 %

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA

GCL INGENERIA S.R.L CEL GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

CALICATA 05

CALICATA 05 MUESTRA PATRÓN

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Descripción e identificación de suelos. Procedimiento visual - manual. NTP 339.150 2001 (revisada el 2015)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 05; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) E 629758.97 N 9279690.74 Fecha ensayo: 30/08/2023 JL-R-C-23-0164 Código interno Fecha entrega: 06/09/2023

Profund idad, m	Muestra s	Nivel freátic o	Simbologías	Sistema unificado de clasificación de suelos, SUCS	Clasificación de suelos para uso en vías de transporte, AASHTO	Características geotécnicas
0.10	_			_	_	Material de relleno no controlado.
0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40	M-01	No prese nta		SM	A-2-4 (0)	Arena limosa de color marrón claro, con una humedad natural de 16%, no presenta índice de plasticidad (NP) y es de consistencia semi compacta.

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO GCL INGENERIA S.R.L

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

Consideraciones:

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. 1º Edición. NTP 339.127:1998 (revisada el 2019)

Proyecto (*)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*)

Carretera Tucume- Cachiche, Departamento Lambayeque

Gliente (*)

Bach. Frank Cosar Soto

Cód. muestra (*)

Calicata No.: 05; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023

Nivel freático (*)

No presenta

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Numero del recipiente	
Masa del recipiente, g, M _c	0.0
Recipiente + masa de muestra húmeda, g, M oma	945.9
Masa del espécimen seco del recipiente inicial, g	841.1
Masa del recipiente seco del recipiente secundario, g	814.2
Masa del espécimen seco del recipiente final, g, M _{cds}	814.2
Masa de agua, g, M _w = M _{onts} - M _{ods}	131.7
Masa de sólidos, g, M _{a=} M _{cds} - M _c	814.2
Contenido de humedad, %, W=(M _w /M _s)*100	16
Símbolo de grupo de clasificación de suelo unificado (visual)	SM
Tamaño máximo aproximado de partícula (visual)	No. 4

JL-R-C-23-0164

Cumple masa minima: Si Exclusión de material: No Mas de un tipo de material: No

Temperatura del horno: 110 +-5 ° C

Fecha entrega: 06/09/2023

AM

GCL INGENERIAS.R.L

GABY ROSITA CHUNQUE OCAÑA

Consideraciones:

Código interno

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 05; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta E 629758.97 N 9279690.74 Fecha ensayo: 30/08/2023 Coordenadas (*) Código interno JL-R-C-23-0164 Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	400.0
4 in.	100.000					Fracción para lavar, g:	400.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	-
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	0.1
3/8 in.	9.500				100.00	Arena, %:	82.9
No. 4	4.750	0.24	0.06	0.06	99.94	Finos, %:	17.0
No. 10	2.000	0.45	0.11	0.17	99.83	Diam. efectivo D _{so} (mm):	0.19
No. 20	0.850	1.26	0.32	0.49	99.51	Diam. efectivo D ₃₀ (mm):	0.09
No. 40	0.425	24.62	6.16	6.65	93.35	Diam. efectivo D ₁₀ (mm):	0.07
No. 60	0.250	94.26	23.57	30.22	69.78	Coef.uniformidad (Cu):	2.92
No. 140	0.106	132.15	33.04	63.26	36.74	Coef. curvatura (Cc):	0.69
No. 200	0.075	78.91	19.73	82.99	17.01		
Cazoleta		4.06					

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el límite líquido, límite plástico, e indice de plasticidad de suelos. 1º Edición. NTP 339.129:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

 Cód. muestra (*)
 Calicata No.: 05; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 629758.97 N 9279690.74
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0164
 Fecha entrega: 06/09/2023

						Equipo de prueba utili:	zado
	Prep	paración de es		Limite plástico	Enrollado a mano	Х	
Húmeda:	X		Lavado en el tamiz No. 40		Limite plastico	Laminación mecánica	
Seca (aire):		Seco	tamizado en tamiz No. 40		Limite liquido	Manual	X
Seca (homo):		Mecánica	mente por el tamiz No. 40		Ellille liquido	Mecánico	
Mezclad	e vidrio y part	ículas de arena eliminadas	X	Herramienta de	Metal		
Agua de mezcla: Destila	da	X	Otros:		ranurado	Plástico	X

LÍMITE LÍQUIDO (MÉ	TODO MULT	IPUNTO)		LÍMITE PLÁSTICO					
Recipiente, No.				Recipiente, No.	.0				
Masa húmeda de suelo + recipiente, M1		10	7	Masa húmeda de suelo + recipiente, M1 (g)	- 2710				
Masa seca de suelo + recipiente, M2 (g		15		Masa seca de suelo + recipiente, M2 (g)	018				
Masa del recipiente, M3 (g)		Orke		Masa del recipiente, M3 (g)	06,,				
Contenido de agua, W, (%)	-1	Ò		Contenido de agua, W, (%)	670				
Numero de colose	100								

Limite liquido, LL:	NP
Limite plástico, LP:	NP
Índice de plasticidad, IP:	NP

Clasificación según carta de plasticidad:	SM
Masa retenida tamiz N°40 (%)	6.65
Humedad de recepción	16
Tamaño máximo de partículas	3/8 in.

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

Consideraciones:

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método para la clasificación de suelos con propósitos de ingeniería (sistema unificado de clasificación de suelos, SUCS). 1ª Edición. NTP 339.134:1999 (revisada el 2019)

SUELOS. Método para la clasificación de suelos para uso en vías de transporte. 1º Edición. NTP 339.135:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 05; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta Coordenadas (*) E 629758.97 N 9279690.74 Fecha ensayo: 30/08/2023 JL-R-C-23-0164 Código interno Fecha entrega: 06/09/2023

SUELOS	Método de e	nsayo para el	M	asa total, g:	400	>300 mm:	-	Diam. efectivo D60 (mm):	0.19
análisis granulométrico. NTP 339.128:1999 (revisada el 2019)		Fracción para lavar, g:		400	75 mm - 300mm:	-	Diam. efectivo D30 (mm):	0.09	
			T. máximo:	3/8 in.	Grava, %:	0.1	Diam. efectivo D10 (mm):	0.07	
Tamices	Abertura (mm)	Porcentaje que pasa, %	T. máxir	no nominal:	No. 4	Arena, %: Finos. %:	82.9 17.0	Coef.uniformidad (Cu): Coef. curvatura (Cc):	2.92 0.69
4 in.	100.000	100.0							0.05
3 in.	75.000	100.0			CURV	A DE DISTRIBUCI	ÓN GRAN	ULOMÉTRICA	
2 in.	50.000	100.0	100.0 C		-0-0		~	-	
1 1/2 in.	37.500	100.0	90.0					٩	
1 in.	25.000	100.0	80.0						
3/4 in.	19.000	100.0	70.0 5 60.0					٩	
3/8 in.	9.500	100.0	50.0						
No. 4	4.750	99.9	8 40.0						
No. 10	2.000	99.8	30.0					٩	_
No. 20	0.850	99.5	20.0					8	-
No. 40	0.425	93.4	10.0						
No. 60	0.250	69.8	0.0	000	10.	000	1.000	0.100	0.010
No. 140	0.106	36.7	-				DE PARTÍCULAS	5.250	0.010
No. 200	0.075	17.0							
	stico, e índio	nsayo para det e de plasticidad 29:1999 (revisa	de suelos. 1				NO PLÉ	(NO)	
	Lim	nite liquido, LL:	N	Р			OLE	Shir	
	Limit	te plástico, LP:	N	Р			40,		
	Índice de	plasticidad, IP:	N	Р					

Cla	sificación
Sistema unificado de clasificación de suelos (SUCS)	SM
Clasificación de suelos para uso en vías (AASHTO)	A-2-4 (0)
Nombre de grupo	ARENA LIMOSA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

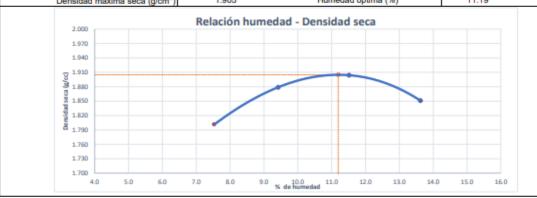
Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 05; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta


Coordenadas (*) E 629758.97 N 9279690.74

Código interno JL-R-C-23-0164

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volumen molde		2110 cm3	No. de ca	pas	5	
Método A B C		Masa molde	6440	No. de go	pes	56 golpes.	
Numero de moldeo	<u> </u>	1	2	3	4		
Peso Suelo + Molde	g	10,526	10,778	10,920	10,878		
Peso Suelo Húmedo Compactado	g	4,086	4,338	4,480	4,438		
Peso Volumétrico Húmedo	g	1.936	2.056	2.123	2.103		
Recipiente Numero		-	-	-	-		
Peso Suelo Húmedo + Tara	g	351.4	477.4	478.4	542.2		
Peso Suelo Seco + Tara	g	326.8	436.3	429.0	477.2		
Peso de la Tara	g	0	0	0	0		
Peso del agua	g	24.6	41.1	49.4	65.0		
Peso del suelo seco	g	327	436	429	477		
Contenido de agua	%	7.53	9.42	11.52	13.62		
Densidad Seca	g/cc	1.801	1.879	1.904	1.851		
Densidad máxima seca (g/cm³)	1.9	905	Humedad ópt	tima (%)	11.19		

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

Consideraciones:

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 05; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 E 629758.97 N 9279690.74 Coordenadas (*) Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0164 Fecha entrega: 06/09/2023

ouigo initerio											-		00.00.202	
	Molde No				1			5	6			2	24	
	Capas Nº			5					5		5			
	s por capa				6			2	25			1	2	
	Condición de la muestra No saturado eso de molde + Suelo húmedo (g) 12318					ırado	No sa			ırado	No sa			rado
			123			372	122			352		109		294
Peso	de molde (g)	78			348	78			91	78			84
	suelo húme		44			24	43			61	42			10
Volumen	del molde	(cm²)	21			105		16		16	21	42	21	42
Densidad	húmeda (c ara (N°)	/cm")		24		149		44		108		72		069
Peso suelo		tara (n)	42			6.3		2.5		2.5	37	0.1		9.1
	lo seco + ta		38			5.9		5.5		3.8	33			3.2
	o de tara (g		30.	2.0	31	5.9	32	0.0	31	3.0	- 33	3.3	32	3.2
	de agua (g		4	4		50	3	7	4	19	4	0		6
	suelo seco		36			76	32			14		39		23
Contenido	de humed	ad (%)	11.			.41		37		.52	11.			.30
Densida	ad seca (g/o	cm³)	1.9			895	1.8			325	1.7			755
						E	xpansión							
	T	T			Evne	nsión			Evne	nsión			Evna	nsión
Fecha	Hora	Tiempo	Di	al	mm	%	Di	al	mm	%	Di	al	mm	9
	_													
					N.I.O	ES APA	W-0/20-00-0	0						
					INO	EXPA	NSIV	0						
						Pe	netración							
Penetra	ción	Carga			e No.				e No.				e No.	
		Stand.	Car			Corrección		Carga		ección	Ca	-		oción
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	9
0.000	0.000		26.7	0 27			22.5	23			17.6	18		-
1.270	0.025	_	68.9	69			52.8	53			42.5	43		\vdash
	0.000		98.5	99			79.5	80			58.7	59		-
	0.075			138	120.2	8.8	113.1	113	99.3	7.3	74.8	75	79.3	5
1.905	0.075	70.445			120.2	0.0			99.3	1.0	114.1	114	19.0	0
1.905 2.540	1.000	70.445	138.2			I	1484							
1.905	1.000		189.5	190	237.2	11.6	148.4 178.5	148 179	198.1	9.7			161.3	7
1.905 2.540 3.810	1.000	70.445 105.68			237.2	11.6	148.4 178.5 231.1	148 179 231	198.1	9.7	142.9	143	161.3	7
1.905 2.540 3.810 5.080	1.000 1.500 2.000		189.5 232.4	190 232	237.2	11.6	178.5	179	198.1	9.7	142.9	143	161.3	7
1.905 2.540 3.810 5.080 6.350	1.000 1.500 2.000 2.500		189.5 232.4 284.7	190 232 285	237.2	11.6	178.5 231.1	179 231	198.1	9.7	142.9 181.1	143 181	161.3	7.

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L TEL GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- Consideraciones:

 A. (*) Los datos indicados han sido proporcionados por el cliente.

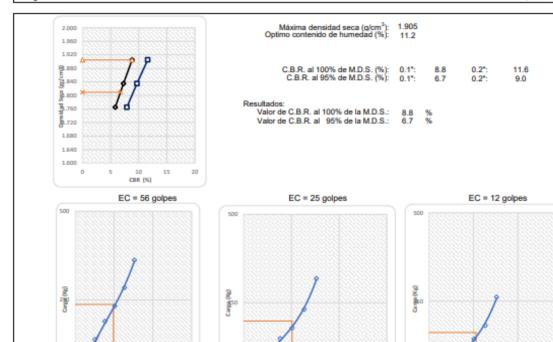
 B. El cliente brindo las referencia y ubicación de los puntos donde se han tornado las muestras. C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)


Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Calicata No.: 05; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*) Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta E 629758.97 N 9279690.74 Coordenadas (*)

Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023 Código interno JL-R-C-23-0164

CBR (0.1")

CBR (0.2°)

7.3%

9.7%

GCL INGENERIA S.R.L TEL SEGUNDO CARRANZA MEJIA

GCL INGENERIAS.R.L GABY ROSITA CHUNQUE OCAÑA CBR (0.17)

CBR (0.2")

5.8%

7.9%

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

CBR (0.2")

11.6%

10

- C. Es necesario confar con una autorización escrita del gerente para llever a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el diente mencionado.

CALICATA 06

CALICATA 06 MUESTRA PATRÓN

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Descripción e identificación de suelos. Procedimiento visual - manual. NTP 339.150 2001 (revisada el 2015)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

E 928528.91 N9280225.34 Coordenadas (*)

Fecha ensayo: 30/08/2023 JL-R-C-23-0166 Fecha entrega: 06/09/2023 Código interno

Profund idad, m	Muestra s	Nivel freático	Simbologías	Sistema unificado de clasificación de suelos, SUCS	Clasificación de suelos para uso en vías de transporte, AASHTO	Características geotécnicas
0.10	_	-		_	_	Material de relleno no controlado.
0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.00 1.10 1.20 1.30 1.40 1.50	M-01	No presenta		CL	A-6 (11)	Arcilla de baja plasticidad de color marrón, con una humedad natural de 17%, presenta un índice de plasticidad de 11 y es de consistencia semi compacta.

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TÉCNICO DE LABORATORIO

GCL INGENERIAS.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. 1º Edición. NTP 339.127:1998 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 928528.91 N9280225.34

Código interno JL-R-C-23-0166

Cumple masa minima: Si Exclusión de material: No Mas de un tipo de material: No

Temperatura del horno: 110 +-5 ° C

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

Numero del recipiente	
Masa del recipiente, g, M _c	0.0
Recipiente + masa de muestra húmeda, g, M _{cms}	900.0
Masa del espécimen seco del recipiente inicial, g	846.0
Masa del recipiente seco del recipiente secundario, g	766.0
Masa del espécimen seco del recipiente final, g, M _{cda}	766.0
Masa de agua, g, M w = M cms - M cds	134.0
Masa de sólidos, g, M _{s=} M _{cds} - M _c	766.0
Contenido de humedad, %, W=(M _w /M _s)*100	17
Símbolo de grupo de clasificación de suelo unificado (visual)	CL
Tamaño máximo aproximado de partícula (visual)	No. 4

SEGUNDO CARRANZA MEJIA

GABY ROSITA CHUNQUE OCAÑA

Consideraciones

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 E 928528.91 N9280225.34 Coordenadas (*) Fecha ensayo: 30/08/2023 JL-R-C-23-0166 Código interno Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	310.0
4 in.	100.000					Fracción para lavar, g:	310.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	0.7
3/8 in.	9.500				100.00	Arena, %:	17.4
No. 4	4.750	2.00	0.65	0.65	99.35	Finos, %:	81.9
No. 10	2.000	3.26	1.05	1.70	98.30	Diam. efectivo D ₆₀ (mm):	0.02
No. 20	0.850	3.08	0.99	2.69	97.31	Diam. efectivo D ₃₀ (mm):	0.00
No. 40	0.425	2.02	0.65	3.34	96.66	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	4.06	1.31	4.65	95.35	Coef.uniformidad (Cu):	
No. 140	0.106	21.30	6.87	11.52	88.48	Coef. curvatura (Cc):	0.59
No. 200	0.075	20.36	6.57	18.09	81.91		
Cazoleta		2.00					

GCL INGENERIA S.R.L.

GCL INGENERIAS.R.L CEL GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para determinar el límite liquido, límite plástico, e indice de plasticidad de suelos. 1º Edición. NTP 339.129:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

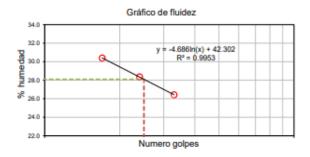
Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 928528.91 N9280225.34

Código interno JL-R-C-23-0166


Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

			Equipo de prueba utiliz	zado			
	Prep	aración de es	Limite plástico	Enrollado a mano	X		
Húmeda:	X		Lavado en el tamiz No. 40		Limite plastico	Laminación mecánica	
Seca (aire):		Seco	tamizado en tamiz No. 40		Limite liquido	Manual	X
Seca (homo):		Mecánica	mente por el tamiz No. 40		Limite liquido	Mecánico	
Mezclado	en capsula de	vidrio y partí	culas de arena eliminadas	X	Herramienta de	Metal	
Agua de mezcla: Destila	da	X	Otros:	·	ranurado	Plástico	X

LÍMITE LÍQUIDO (MÉ	TODO MULT	IPUNTO)		LÍMITE PLÁSTICO					
Recipiente, No.	28	10	15	Recipiente, No.	5	6			
Masa húmeda de suelo + recipiente, M	38.56	27.91	31.62	Masa húmeda de suelo + recipiente, M1 (g)	18.15	19.26			
Masa seca de suelo + recipiente, M2 (g	36.61	25.82	29.03	Masa seca de suelo + recipiente, M2 (g)	17.01	18.14			
Masa del recipiente, M3 (g)	29.23	18.45	20.51	Masa del recipiente, M3 (g)	10.29	11.44			
Contenido de agua, W, (%)	26.42	28.36	30.40	Contenido de agua, W, (%)	16.96	16.72			
Numero de golpes	33	24	17						

Limite liquido, LL:	28
Limite plástico, LP:	17
Índice de plasticidad, IP:	11

Clasificación según carta de plasticidad:	CL
Masa retenida tamiz N°40 (%)	3.34
Humedad de recepción	17
Tamaño máximo de partículas	3/8 in.

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCANA ING. CIVIL CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

SUELOS. Método para la clasificación de suelos con propósitos de ingeniería (sistema unificado de clasificación de suelos, SUCS). 1° Edición. NTP 339.134:1999 (revisada el 2019)

SUELOS. Método para la clasificación de suelos para uso en vías de transporte. 1º Edición. NTP 339.135:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 928528.91 N9280225.34
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0166
 Fecha entrega: 06/09/2023

			M	lasa total, g:	310	>30	0 mm:		Diam. efectivo D60 (mm): 0.02
	Método de e granulomé	ensayo para el	l		310	75 mm = 30			Diam. efectivo D30 (mm): 0.00
		ada el 2019)	Fraccion p					-	
				T. máximo:	3/8 in		wa, %:	0.7	Diam. efectivo D10 (mm): 0.00
Tamices	Abertura	Porcentaje	T. máxir	mo nominal:	No. 4	Are	na, %:	17.4	Coef.uniformidad (Cu):
	(mm)	que pasa, %				Fin	ios, %:	81.9	Coef. curvatura (Cc): 0.59
4 in.	100.000	100.0			CI	DVA DE DISTE	DIBLICIÓ	NI GDAN	IULOMÉTRICA
3 in.	75.000	100.0				RVA DE DISTI	VIBUCIO	IN GRAI	TOLOWETRICA
2 in.	50.000	100.0	100.0 €			-	$\overline{}$	<u> </u>	•
1 1/2 in.	37.500	100.0	80.0						9
1 in.	25.000	100.0	70.0						
3/4 in.	19.000	100.0							
3/8 in.	9.500	100.0	5 60.0 2 50.0						
No. 4	4.750	99.4	8 40.0					_	
No. 10	2.000	98.3	30.0			_		-	
No. 20	0.850	97.3	20.0					_	
No. 40	0.425	96.7	10.0					_	
No. 60	0.250	95.4	0.0	000		10.000		1.000	0.100 0.010
No. 140	0.106	88.5	100.			10.000		DE PARTÍCULAS	
No. 200	0.075	81.9							,
SUELOS 1	Vétodo de e	ensayo para det	erminar el lín	nite líquido.	34.0			Gráfico de	fluidez
	tico, e índic	e de plasticidad	d de suelos. 1		32.0	1			y = -4.686ln(x) + 42.302
	NTP 339.1	29:1999 (revisa	ada el 2019)			1	G_		R ⁴ = 0.9953
			2		28.0 28.0 28.0 26.0			-0	
	Lin	nite liquido, LL:	2	8		-	-		•
	Limi	te plástico, LP:	1	7	³ ₹ 24.0	+			
					22.0	+	_		
					20.0			i	
	Índice de	plasticidad, IP:	1	1	200			Numer	o golpes
	Índice de	plasticidad, IP:	1	1	20.0	Clasificación		Numer	o golpes
		plasticidad, IP: ema unificado d							o golpes

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

ARCILLA DE BAJA PLASTICIDAD CON ARENA

Consideraciones

- A. (*) Los datos indicados han sido proporcionados por el cliente
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

Nombre de grupo

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 928528.91 N9280225.34

Código interno JL-R-C-23-0166

Fecha muestreo:	29/08/2023
Fecha recepción:	
Fecha ensayo:	
Fecha entrega:	

Peso material saturado superficie seca en aire; g.	1000.0	900.0		
Peso material saturado superficie seca en agua; g.	456.0	408.0		
Volumen de masa + volumen de vacíos; cm³.	544.0	492.0		
Peso de material seco ; g.	985.0	888.0		
Volumen de masa; cm³.	529.0	480.0		
Peso específico bulk Base Seca; g.	1.811	1.805		
Peso específico bulk Base Saturada; g.	1.838	1.829		
Peso específico aparente Base Seca; g.	1.862	1.850		
Peso específico aparente Base Seca.	1.8	356		
Peso específico bulk Base saturada.	1.8	334		
Peso específico bulk Base seca.	1.8	808		

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO GABY ROSITA CHUNQUE OCANA ING. CIVIL CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

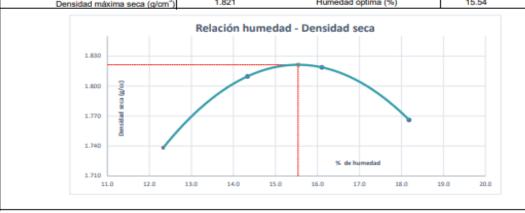
Fecha muestreo: 29/08/2023

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 928528.91 N9280225.34
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0166
 Fecha entrega: 06/09/2023

Diámetro molde 4"	6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B	С		Masa molde	3980	No. de go	lpes	25 Golpes
Numero de moldeo			1	2	3	4	
Peso Suelo + Molde		g	5,815	5,925	5,965	5,942	
Peso Suelo Húmedo Compactado		g	1,835	1,945	1,985	1,962	
Peso Volumétrico Húmedo		g	1.952	2.069	2.112	2.087	
Recipiente Numero				-	-	-	
Peso Suelo Húmedo + Tara		g	541.4	433.9	524.8	533.0	
Peso Suelo Seco + Tara		g	482.0	379.5	452.0	451.0	
Peso de la Tara		g					
Peso del agua		g	59.4	54.4	72.8	82.0	
Peso del suelo seco		g	482	380	452	451	
Contenido de agua		%	12.32	14.33	16.11	18.18	
Densidad Seca		g/cc	1.738	1.810	1.819	1.766	
Daneidad mávima caca /a	lom ³ l	1.8	21	Humedad ópti	ima (%)	15.54	

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta Coordenadas (*) E 928528.91 N9280225.34 Fecha ensayo: 30/08/2023 JL-R-C-23-0166 Código interno Fecha entrega: 06/09/2023

10 5 58		12 5		19			
		5			19		
				5			
		25		12			
saturado	Saturado	No saturado	Saturado	No saturado	Saturado		
12345	12392	12255	12350	11995	12188		
7932	7932	7945	7945	7957	7957		
4413	4460	4310	4405	4038	4231		
2098	2098	2123	2123	2087	2087		
2.103	2.126	2.030	2.075	1.935	2.027		
500.00	500.00	384.90	384.90	621.10	621.10		
132.76	426.00	332.00	323.00	539.60	512.00		
67	74	53	62	82	109		
433	426	332	323	540	512		
15.54	17.37	15.93	19.16	15.10	21.31		
1.821	1.811	1.751	1.741	1.681	1.671		
	Evnan	veión					
	67 433 15.54	32.76 426.00 67 74 433 426 15.64 17.37 1.821 1.811	32.76 426.00 332.00 67 74 53 433 426 332 15.84 17.37 15.93 1.821 1.811 1.751	32.76 426.00 332.00 323.00 67 74 53 62 433 426 332 323 15.84 17.37 15.93 19.16 1.821 1.811 1.751 1.741	32.76		

Fecha	Hora	Tiempo	Dial	Expa	nsión	Dial	Expa	nsión	Dial	Expa	nsión
1 001111	Trons	петро	2	mm	%		mm	%	514	mm	%
30/08/2023	16:30	0	0	0.000	0.0	0	0.000	0.0	0	0.000	0.0
31/08/2023	16:30	20	55	1.397	1.2	75	1.905	1.6	94	2.388	2.1
01/09/2023	16:30	42	72	1.829	1.6	92	2.337	2.0	107	2.718	2.3
02/09/2023	16:30	68	89	2.261	1.9	105	2.667	2.3	13	0.330	0.3
03/09/2023	16:30	92	102	2.591	2.2	129	3.277	2.8	144	3.658	3.1
						, and the second					

Penetración

Penetració	ĥm.	Carga	Molde No.				Molde No.				Molde No.			
reneulacio	JIII	Stand.	Ca	rga Corrección		Carga		Corrección		Carga		Corrección		
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%
0.000	0.000		0	0			0	0			0	0		
0.635	0.025		12.2	12			9.1	9			8.5	9		
1.270	0.050		18.8	19			16.1	16			13.1	13		
1.905	0.075		35.6	36			24.5	25			22.2	22		
2.540	1.000	70.445	55.2	55	79.6	5.8	44.3	44	72.5	5.3	38.2	38	69.0	5.1
3.810	1.500		90.6	91			72.5	73			58.4	58		
5.080	2.000	105.68	112.3	112	169.9	8.3	90.5	91	155.8	7.6	85.5	86	144.9	7.1
6.350	2.500		133.8	134			121.1	121			115.2	115		
7.620	3.000		190.6	191			178.9	179			160.3	160		
10.160	4.000		230.0	230.0			200.1	200.1			180.0	180.0		
12.700	5.000													

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier lipo de reproducción.

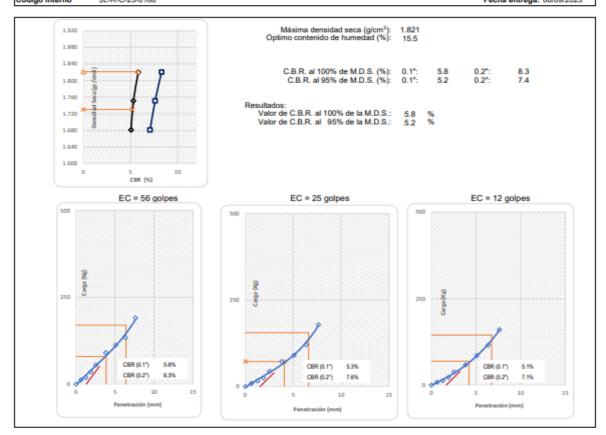
D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)


Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) Fecha recepción: 29/08/2023 Coordenadas (*) E 928528.91 N9280225.34 Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0166 Fecha entrega: 06/09/2023

SEGUNDO CARRANZA MEJIA

GCL INGENERIA'S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

CALICATA 06 MUESTRA PATRÓN + 5% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

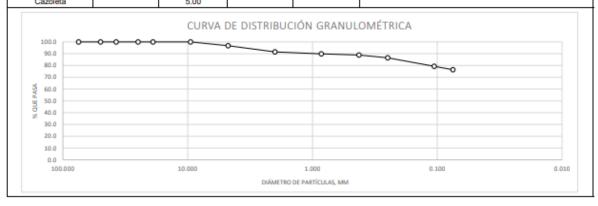
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


 Cód. muestra (*)
 Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 928528.91 N9280225.34
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0165 - Caucho Granular 5%
 Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	310.0
4 in.	100.000					Fracción para lavar, g:	310.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	3.2
3/8 in.	9.500				100.00	Arena, %:	20.4
No. 4	4.750	10.00	3.23	3.23	96.77	Finos, %:	76.4
No. 10	2.000	16.30	5.26	8.49	91.51	Diam. efectivo D ₆₀ (mm):	0.01
No. 20	0.850	5.02	1.62	10.11	89.89	Diam. efectivo D ₃₀ (mm):	0.00
No. 40	0.425	3.20	1.03	11.14	88.86	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	7.20	2.32	13.46	86.54	Coef.uniformidad (Cu):	
No. 140	0.106	22.40	7.23	20.69	79.31	Coef. curvatura (Cc):	0.30
No. 200	0.075	9.00	2.90	23.59	76.41		
Caroleta		5.00					

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 928528.91 N9280225.34

Código interno JL-R-C-23-0165 - Caucho Granular 5%

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

Peso material saturado superficie seca en aire; g.	500.0	520.0		
Peso material saturado superficie seca en agua; g.	230.0	235.0		
Volumen de masa + volumen de vacíos; cm³.	270.0	285.0		
Peso de material seco ; g.	491.0	516.0		
Volumen de masa; cm³.	261.0	281.0		
Peso específico bulk Base Seca; g.	1.819	1.811		
Peso específico bulk Base Saturada; g.	1.852	1.825		
Peso específico aparente Base Seca; g.	1.881	1.836		
Peso específico aparente Base Seca.	359			
Peso específico bulk Base saturada. 1.838				
Peso específico bulk Base seca.	1.815			

GCL INGENERIA S.R.L

AN

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO GCL INGENERIA S.R.L

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

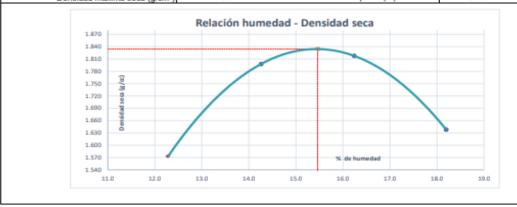
Fecha muestreo: 29/08/2023

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-ibf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 928528.91 N9280225.34
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0165 - Caucho Granular 5%
 Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B C		Masa molde	3980	No. de go	lpes	25 Golpes
Numero de moldeo		1	2	3	4	
Peso Suelo + Molde	g	5,640	5,911	5,966	5,800	
Peso Suelo Húmedo Compactado	g	1,660	1,931	1,986	1,820	
Peso Volumétrico Húmedo	g	1.766	2.054	2.113	1.936	
Recipiente Numero		-	-	-		
Peso Suelo Húmedo + Tara	g	416.0	398.2	432.3	484.6	
Peso Suelo Seco + Tara	g	370.5	348.5	371.9	410.0	
Peso de la Tara	g					
Peso del agua	g	45.5	49.7	60.4	74.6	
Peso del suelo seco	g	371	349	372	410	
Contenido de agua	%	12.28	14.26	16.24	18.20	
Densidad Seca	g/cc	1.573	1.798	1.818	1.638	
Densidad máxima seca (g/cm ³)	1.8	334	Humedad ópt	ima (%)	15.46	

SEGUNDO CARRANZA MEJIA

GABY ROSITA CHUNQUE OCAÑA
ING. CIVIL: CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1*Edición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Fecha muestreo: 29/08/2023 Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Nivel freático (*) Fecha recepción: 29/08/2023 No presenta Fecha ensayo: 30/08/2023 E 928528.91 N9280225.34 Coordenadas (*) Fecha entrega: 06/09/2023 JL-R-C-23-0165 - Caucho Granular 5% Código interno

B.	Nolde N°			9	21				7				8	
	apas Nº				5		_		5		_		5	
	s por capa	Nº			6			25			12			
	n de la mu		No sa	turado		ırado	No sa	turado	Saturado		No sa			rado
Peso de molde			12180 12220			275		395		11810		995		
	de molde (23		723		943		43	77			84
Peso del s			44			197		332		52	40			11
	del molde			06		106		123		23	20			65
	húmeda (c			116		135		041		97	1.9			39
	ara (Nº)	arcini i												
Peso suelo		tara (g)		3.53		8.53		3.00		3.00	482			2.00
	o seco + ta		319			4.60		4.10		.90	418			.80
	de tara (g										1		201	
Peso	de agua (9)	4	9		54	6	9	7	1	6	4	8	4
Peso de	suelo seo	o (g)		19		15		74		82		19		98
Contenido	de humed	ad (%)	15	.45	17	.14	15	.74	19	.65	15	.17	21	.17
Densida	d seca (g/	cm³)	1.8	333	1.7	823	1.7	763	1.7	753	1.6	93	1.6	83
						E	xpansión							
Fecha	Hora	Tiempo	Dial Expansión Dial Expansión Dia				ial	Expa	nsión					
			_		mm	%	_		mm	%	_		mm	%
06/09/2023	16:30	0		0	0.000	0.0		0	0.000	0.0)	0.000	0.0
07/09/2023	16:30	24	9		2.337	2.0		09	2.769	2.4	12		3.175	2.7
08/09/2023	16:30	48		05	2.667	2.3		22	3.099	2.7		14	3.658	3.1
09/09/2023	16:30	72	12		3.073	2.6		42	3.607	3.1	10		4.191	3.6
10/09/2023	16:30	96	14	40	3.556	3.1	1	60	4.064	3.5	17	72	4.369	3.8
	-						-				-			
						D.	enetración							
						Pt	enetracion							
		Carga		Mold	e No.			Mold	e No.			Mold	e No.	
Penetrac	ión	Stand.	C-	rga		ección		rga		cción	Ca	rga		cción
mm	pulg.	kg/cm2	Dial (div)	ka ka	kg	%	Dial (div)	kg	kg	%	Dial (div)	ka	kg	%
0.000	0.000	Kg/Cm2	O O	0	KG	76	O O	0 0	NB	75	O O	0	NG	76
0.635	0.000		14.9	15			13.5	14			12.1	12		
1.270	0.050		35.2	35			28.1	28			22.6	23		
1.905	0.075		60.4	60			50.2	50			40.2	40		
2.540	1.000	70.445	90.2	90	82.6	6.1	77.1	77	76.5	5.6	62.1	62	70.7	5.2
3.810	1.500	10.440	122.4	122	02.0	0.1	110.7	111	70.0	0.0	93.4	93	10.1	0.2
5.080	2.000	105.68	150.6	151	163.0	8.0	138.2	138	152.7	7.5	125.0	125	143.3	7.0
6.350	2.500		190.2	190	.55.0	3.0	180.2	180			166.7	167		7.0
7.620	2.000		240.7	244			220.6	221			200.7	200		

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL CIP 287806

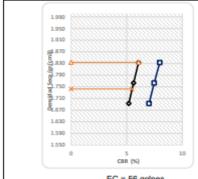
- A. (*) Los datos indicados han sido proporcionados por el cliente.
 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

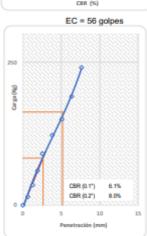
Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

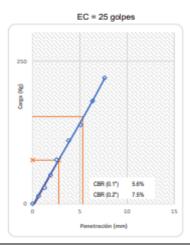

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta E 928528.91 N9280225.34 Fecha ensayo: 30/08/2023 Coordenadas (*) Fecha entrega: 06/09/2023


JL-R-C-23-0165 - Caucho Granular 5% Código interno



Máxima densidad seca (g/cm³): 1.834 Optimo contenido de humedad (%): 15.5

C.B.R. al 100% de M.D.S. (%): 0.1*: C.B.R. al 95% de M.D.S. (%): 0.1*:

Resultados: Valor de C.B.R. al 100% de la M.D.S.: 6.1 % Valor de C.B.R. al 95% de la M.D.S.: 5.5 %

GCL INGENERIAS.R.L GABY ROSITA CHUNQUE OCARA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

CALICATA 06 MUESTRA PATRÓN + 10% CAUCHO GRANULAR

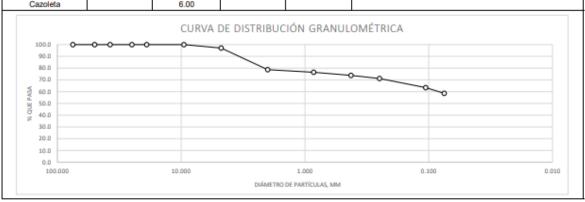
GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)


Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*)

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) E 628528.91 N 9280225.34 Fecha ensayo: 30/08/2023 Código interno Fecha entrega: 06/09/2023 JL-R-C-23-0166 - Caucho Granular 10%

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	2.9
3/8 in.	9.500				100.00	Arena, %:	38.5
No. 4	4.750	8.70	2.90	2.90	97.10	Finos, %:	58.6
No. 10	2.000	55.31	18.44	21.34	78.66	Diam. efectivo D ₆₀ (mm):	0.08
No. 20	0.850	6.50	2.17	23.51	76.49	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	7.90	2.63	26.14	73.86	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	8.15	2.72	28.86	71.14	Coef.uniformidad (Cu):	•••
No. 140	0.106	23.10	7.70	36.56	63.44	Coef. curvatura (Cc):	0.49
No. 200	0.075	14.60	4.87	41.43	58.57		
Correlate		6.00					

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Coordenadas (*) E 628528.91 N 9280225.34

Código interno JL-R-C-23-0166 - Caucho Granular 10%

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023
600.0	

Peso material saturado superficie seca en aire; g.	650.0	600.0		
Peso material saturado superficie seca en agua; g.	245.0	242.0		
Volumen de masa + volumen de vacíos; cm³.	405.0	358.0		
Peso de material seco ; g.	648.0	576.0		
Volumen de masa; cm³.	403.0	334.0		
Peso específico bulk Base Seca; g.	1.600	1.609		
Peso específico bulk Base Saturada; g.	1.605	1.676		
Peso específico aparente Base Seca; g.	1.608	1.725		
Peso específico aparente Base Seca.	1.6	666		
Peso específico bulk Base saturada.	1.6	640		
Peso específico bulk Base seca.	1.604			

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TÉCNICO DE LABORATORIO

GCL INGENERIAS.R.L GABY ROSITA CHUNQUE OCAÑA ING. CIVIL CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

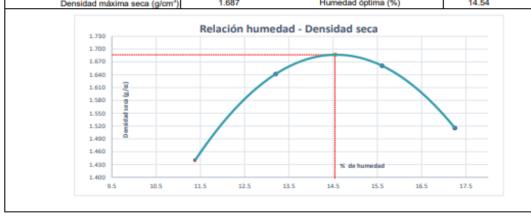
Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta


Coordenadas (*) E 628528.91 N 9280225.34

Código interno JL-R-C-23-0166 - Caucho Granular 10%

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de capas		5	
Método A B C		Masa molde	3980	No. de go	pes	25 Golpes	
Numero de moldeo		1	2	3	4		
Peso Suelo + Molde	g	5,488	5,727	5,785	5,650		
Peso Suelo Húmedo Compactado	g	1,508	1,747	1,805	1,670		
Peso Volumétrico Húmedo	g	1.604	1.859	1.920	1.777		
Recipiente Numero							
Peso Suelo Húmedo + Tara	g	365.9	484.4	352.6	413.9		
Peso Suelo Seco + Tara	g	328.5	427.9	305.0	353.0		
Peso de la Tara	g						
Peso del agua	g	37.4	56.5	47.6	60.9		
Peso del suelo seco	g	329	428	305	353		
Contenido de agua	%	11.39	13.20	15.61	17.25		
Densidad Seca	g/cc	1.440	1.642	1.661	1.515		
Denoided mávima caca (alom³)	16	87	Humedad Ant	ima (%)	14.54		

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado v está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Bach, Frank Cosar Soto

Cliente (*) Cód. muestra (*) Fecha muestreo: 29/08/2023 Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Nivel freático (*) Fecha recepción: 29/08/2023 No presenta No presenta E 628528.91 N 9280225.34 Fecha ensayo: 30/08/2023 Coordenadas (*) Fecha entrega: 06/09/2023 Código interno JL-R-C-23-0166 - Caucho Granular 10%

zouigo interno		02 11 0 20	-0100 - 000	CITO GIANO	1070									O GIO SI E O E I	
	loide N°				8				11					2	
	apas Nº				5			5				5			
	por capa				6			25				12			
	n de la mu		No sat			urado		turado	Saturado		N	No saturado		Saturado	
Peso de molde			120			076		628		758	-	1170			802
	de molde (78			384		45		45	_	7945			45
Peso del s			41			192		83		13	-	3755			357
	del molde		21			148		48		48	-	2123			23
	húmeda (o	1/cm*)	1.9	32	1.	952	1.8	347	1.9	911	-	1.76	9	1.8	317
Peso suelo	ara (Nº)	toro (a)	0.00	00	0.0	0.00	540		544		-	400.7	10	400	. 70
Peso suelo Peso suelo			359 313			9.20		0.50		3.80	+	486.7			3.70
	de tara (g		313	.60	30	8.60	480).50	461	1.60	-	425.0	90	411	1.80
	de agua (g			0	_	E4	_	0		7	-	0.4		-	re.
	de agua (g suelo seco		31			51 09		81 81		7 32	+	61 426			75 12
Contenido			14.			.40		.21		.89	+	14.3			.19
	d seca (g/o		1.6			677		317		307	-	1.54			537
Densida	d seca (d/o	am I	1.0	6/	1.	0//	1.5	21/	1.5	107	+-	1.04	_	1.5	337
							xpansión								
							- April 1 a Cil								
					Ever	ansión	_		Evna	nsión	Т			Evna	nsión
Fecha	Hora	Tiempo	Di	al	mm	%	- I	ial	mm	%	Dial			mm	%
04/09/2023	16:30	0)	0.000	0.0		0	0.000	0.0	 	0		0.000	0.0
05/09/2023	16:30	24	15		3.886	3.3		80	4.572	3.9	_	230		5.842	5.0
06/09/2023	16:30	48	17		4,445	3.8		25	5.715	4.9	-	269		6.833	5.9
07/09/2023	16:30	72	22		5.588	4.8		66	6.756	5.8		280		7.112	6.1
08/09/2023	16:30	96	26		6.731	5.8		78	7.061	6.1		305		7.747	6.7
	•	•	•		•	•	•		•	•	•				
						P	enetración								
Penetrac	ión	Carga			e No.				le No.				Mold		
		Stand.	Car	rga	Corn	ección		rga	Corre	cción		Carg	a	Corre	ección
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (c	div)	kg	kg	%
0.000	0.000		0	0			0	0			0		0		
0.635	0.025		10.3	10			6.1	6			3.5		4		
1.270	0.050		19.2	19			15.2	15			12.2		12		
1.905	0.075		27.5	28			24.3	24			18.0		19		
2.540	1.000	70.445	45.2	45	44.0	3.2	31.2	31	37.1	2.7	25.		25	28.7	2.1
3.810	1.500		60.2	60			55.2	55			33.4		33		
5.080	2.000	105.68	88.6	89	90.0	4.4	72.3	72	77.3	3.8	55.2		55	62.0	3.0
6.350	2.500		105.3	105			86.3	86			60.7		61		
7.620	3.000		140.5	141			125.2	125			105.		105		
10.160	4.000		190.6	190.6			175.6	175.6			142.	.6	142.6		
12.700	5.000														

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L TEL GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

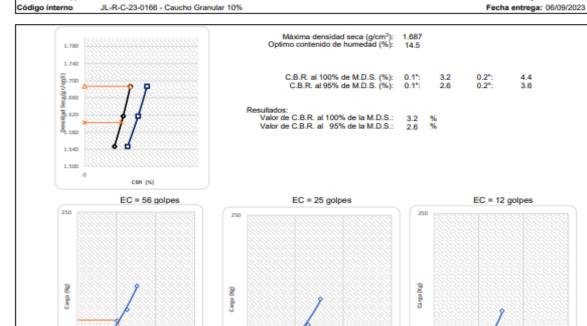
SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m


 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 628528.91 N 9280225.34
 Fecha ensayo: 30/08/2023

CBR (0.1°)

CBR (0.2°)

10

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCARA ING. CIVIL. CIP 287806 CBR (0.2°)

Consideraciones

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El diente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

CBR (0.15)

CBR (0.2")

3.2%

4.4%

- C. Es necesario contar con una autorización escrita del gerente para llever a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

CALICATA 06 MUESTRA PATRÓN + 15% CAUCHO GRANULAR

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

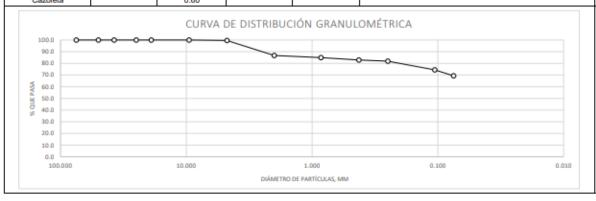
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto


 Cód. muestra (*)
 Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 628528.91 N 9280225.34
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0166 - Caucho Granular 15%
 Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	0.4
3/8 in.	9.500				100.00	Arena, %:	30.3
No. 4	4.750	1.22	0.41	0.41	99.59	Finos, %:	69.3
No. 10	2.000	38.60	12.87	13.28	86.72	Diam. efectivo D _{so} (mm):	0.04
No. 20	0.850	5.30	1.77	15.05	84.95	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	6.20	2.07	17.12	82.88	Diam. efectivo D ₁₀ (mm):	0.00
No. 60	0.250	3.05	1.02	18.14	81.86	Coef.uniformidad (Cu):	***
No. 140	0.106	22.30	7.43	25.57	74.43	Coef. curvatura (Cc):	0.51
No. 200	0.075	15.30	5.10	30.67	69.33		
Cazoleta		0.60					

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

 Cód. muestra (*)
 Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m
 Fecha muestreo: 29/08/2023

 Nivel freático (*)
 No presenta
 Fecha recepción: 29/08/2023

 Coordenadas (*)
 E 628528.91 N 9280225.34
 Fecha ensayo: 30/08/2023

 Código interno
 JL-R-C-23-0166 - Caucho Granular 15%
 Fecha entrega: 06/09/2023

Peso material saturado superficie seca en aire; g.	800.0	820.0			
Peso material saturado superficie seca en agua; g.	286.0	292.0			
Volumen de masa + volumen de vacíos; cm³.	514.0	528.0			
Peso de material seco ; g.	792.0	815.0			
Volumen de masa; cm³.	506.0	523.0			
Peso específico bulk Base Seca; g.	1.541	1.544			
Peso específico bulk Base Saturada; g.	1.556	1.553			
Peso específico aparente Base Seca; g.	1.565	1.558			
Peso específico aparente Base Seca.	1.5	62			
Peso específico bulk Base saturada.	eso específico bulk Base saturada. 1.555				
Peso específico bulk Base seca.	1.542				

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 628528.91 N 9280225.34

Código interno JL-R-C-23-0166 - Caucho Granular 15%

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Diámetro molde 4" 6"	Volu	men molde	940 cm3	No. de ca	pas	5
Método A B C		Masa molde	3980	No. de go	lpes	25 Golpes
Numero de moldeo		1	2	3	4	
Peso Suelo + Molde	g	5,500	5,640	5,685	5,622	
Peso Suelo Húmedo Compactado	g	1,520	1,660	1,705	1,642	
Peso Volumétrico Húmedo	g	1.617	1.766	1.814	1.747	
Recipiente Numero			-			
Peso Suelo Húmedo + Tara	g	399.0	547.0	439.0	532.0	
Peso Suelo Seco + Tara	g	358.1	482.0	379.5	452.0	
Peso de la Tara	g					
Peso del agua	g	40.9	65.0	59.5	80.0	
Peso del suelo seco	g	358	482	380	452	
Contenido de agua	%	11.42	13.49	15.68	17.70	
Densidad Seca	g/cc	1.451	1.556	1.568	1.484	
Densidad máxima seca (g/cm3)	1.5	76	Humedad ópti	ma (%)	14.87	•

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA ING. CIVIL: CIP 25780A

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta Coordenadas (*) E 628528.91 N 9280225.34 Fecha ensayo: 30/08/2023 Código interno JL-R-C-23-0166 - Caucho Granular 15% Fecha entrega: 06/09/2023

odigo interno		JL-R-C-23	-0166 - Cau	cho Granu	ar 15%						Fech	a entrega:	06/09/2023	,
M	olde N°				2				1		1		6	
	apas Nº				5		_		5				5	
	por capa l	N°			6				25				12	
	de la mue		No sat	urado	Satu	rado	No sa	turado		rado	No sa	turado	Satu	rado
eso de molde			119			954		475		576		11467		622
	le molde (g		812			23		48	7848		79			961
Peso del su				812 3831			27		28	35			361	
Volumen d	del molde (cm³)	210	06 2106						2105 2133		33		33
Densidad h	húmeda (g	/cm³)	1.8	10	1.819		1.7	723		771	1.6			716
Ta	ıra (Nº)													
Peso suelo h			500	.00	50	0.00	384	1.90	384	1.90	621	.10	621	1.10
Peso suelo			435	.30	43	0.50	336	3.50	325	5.10	542	.50	516	8.20
	de tara (g)													
	de agua (g		68	5	7	0	4	8	6	0	7	9	10	05
	suelo seco		43		4	31		37		25	54	13		16
Contenido o	de humeda	ad (%)	14.	86	16	.14	14.	.38	18	.39	14	.49	20.	.32
Densidad	i seca (g/c	m³)	1.5	76	1.5	566	1.5	506	1.4	196	1.4	36	1.4	426
						E	xpansión							
Fecha	Hora	Tiempo	Dia	al	Expa	nsión	J D	ial	Expa	nsión	D	ial	Expa	nsión
					mm	%	_		mm	%			mm	9
30/08/2023	16:30	0	0		0.000	0.0		0	0.000	0.0)	0.000	0
31/08/2023	16:30	24	22		5.639	4.8		41	6.121	5.3	28		7.214	6
01/09/2023	16:30	48	24		6.096	5.2		80	7.112	6.1	33		8.433	7
02/09/2023	16:30	72	27		6.985	6.0		29	8.357	7.2	37		9.449	8
03/09/2023	16:30	96	32	6	8.280	7.1	3	70	9.398	8.1	38	38	9.855	8
													oxdot	
						Р	enetración							
		0		Mold	e No.			Mole	le No.			Mold	le No.	
Penetraci	ión	Carga Stand.	Car			ección	C-	rga		ección	Ca			ección
mm	pulg.	kg/cm2	Dial (div)	kg kg	kg	%	Dial (div)	kg kg	kg	%	Dial (div)		ka	9
0.000	0.000	kg/cm2	O O	- Kg 0	rig	76	Dial (div)	- кg О	Kg	76	Dial (div)	kg 0	NG NG	-
0.635	0.005		5.3	5			4.8	5			2.3	2	\vdash	\vdash
1.270	0.025		10.9	11			9.0	9	_		6.8	7	-	\vdash
1.905	0.030		16.7	17			14.3	14			11.1	11		\vdash
2.540	1.000	70.445	22.3	22	33.7	2.5	20.2	20	31.1	2.3	15.2	15	22.5	1
3.810	1.500	70.440	38.2	38	00.1	2.0	33.5	34	91.1	2.0	20.3	20	22.0	-
	2.000	105.68	60.2	60	70.8	3.5	50.2	50	66.6	3.3	30.6	31	50.3	2
5.080					10.0	3.0		00	00.0	0.0			00.0	
5.080 6.350	2.500	100.00	80.8	81			72.3	72			52.2	52		

GCL INGENERIA S.R.L.

GCL INGENERIA S.R.L GABY ROSITA CHUNQUE OCAÑA

- Consideraciones:

 A. (*) Los datos indicados han sido proporcionados por el cliente.

 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras. C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

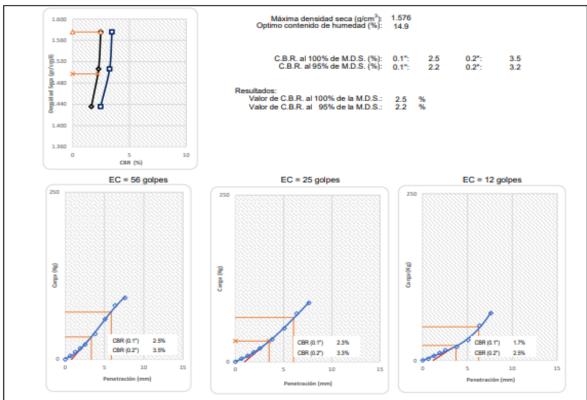
Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023

Fecha entrega: 06/09/2023

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"


Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto

Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Cód. muestra (*)

Nivel freático (*) No presenta Coordenadas (*) E 628528.91 N 9280225.34

JL-R-C-23-0166 - Caucho Granular 15% Código interno

SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

CALICATA 06 MUESTRA PATRÓN + 20% CAUCHO GRANULAR

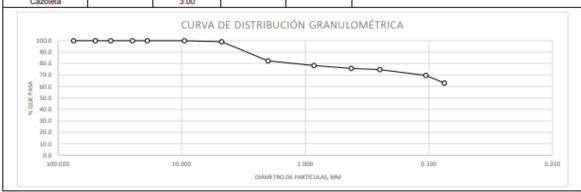
GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)


Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) Fecha recepción: 29/08/2023 No presenta Coordenadas (*) E 628528.91 N 9280225.34 Fecha ensayo: 30/08/2023 JL-R-C-23-0166 - Caucho Granular 20% Código interno Fecha entrega: 06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	300.0
4 in.	100.000					Fracción para lavar, g:	300.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500					>300 mm:	
1 in.	25.000					75 mm - 300mm:	
3/4 in.	19.000					Grava, %:	0.9
3/8 in.	9.500				100.00	Arena, %:	36.1
No. 4	4.750	2.60	0.87	0.87	99.13	Finos, %:	63.0
No. 10	2.000	50.20	16.73	17.60	82.40	Diam. efectivo D ₆₀ (mm):	0.06
No. 20	0.850	12.30	4.10	21.70	78.30	Diam. efectivo D ₃₀ (mm):	0.01
No. 40	0.425	7.60	2.53	24.23	75.77	Diam. efectivo D ₁₀ (mm):	0.01
No. 60	0.250	3.02	1.01	25.24	74.76	Coef.uniformidad (Cu):	
No. 140	0.106	15.00	5.00	30.24	69.76	Coef. curvatura (Cc):	0.60
No. 200	0.075	20.30	6.77	37.01	62.99		
Cazolata		3.00					

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. NTP 400.021:2020

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta

Coordenadas (*) E 628528.91 N 9280225.34

Código interno JL-R-C-23-0166 - Caucho Granular 20%

Fecha muestreo: 29/08/2023 Fecha recepción: 29/08/2023

Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Peso material saturado superficie seca en aire; g.	600.0	550.0
Peso material saturado superficie seca en agua; g.	210.0	195.0
Volumen de masa + volumen de vacíos; cm³.	390.0	355.0
Peso de material seco ; g.	596.0	542.0
Volumen de masa; cm³.	386.0	347.0
Peso especifico bulk Base Seca; g.	1.528	1.527
Peso específico bulk Base Saturada; g.	1.538	1.549
Peso específico aparente Base Seca; g.	1.544	1.562
Peso específico aparente Base Seca.	1.5	553
Peso específico bulk Base saturada.	1.5	544
Peso específico bulk Base seca.	1.5	527

Realizado por:

SEGUNDO CARRANZA MEJIA

Revisado y Autoriza

GCL INGENERIA S.R.L

Consideraciones:

A. (*) Los datos indicados han sido proporcionados por el cliente.

B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.

C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.

D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

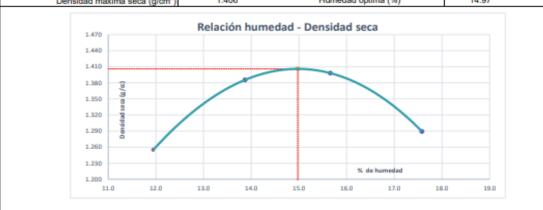
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha entrega: 06/09/2023

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 ple-lbf/ple3)). 1ª Edición. NTP 339.141:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque


Cliente (*) Bach, Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Fecha muestreo: 29/08/2023 Nivel freático (*) No presenta Fecha recepción: 29/08/2023 Coordenadas (*) Fecha ensayo: 30/08/2023 E 628528.91 N 9280225.34

Código interno JL-R-C-23-0166 - Caucho Granular 20%

Diámetro molde 4" 6"	Volu	imen molde	940 cm3	No. de ca	pas	5
Método A B C		Masa molde	3980	No. de go	pes	25 Golpes
Numero de moldeo	<u> </u>	1	2	3	4	
Peso Suelo + Molde	g	5,300	5,463	5,500	5,405	
Peso Suelo Húmedo Compactado	g	1,320	1,483	1,520	1,425	
Peso Volumétrico Húmedo	g	1.404	1.578	1.617	1.516	
Recipiente Numero		-				
Peso Suelo Húmedo + Tara	g	450.0	453.2	439.5	408.0	
Peso Suelo Seco + Tara	g	402.0	398.0	380.0	347.0	
Peso de la Tara	g					
Peso del agua	g	48.0	55.2	59.5	61.0	
Peso del suelo seco	g	402	398	380	347	
Contenido de agua	%	11.94	13.87	15.66	17.58	
Densidad Seca	g/cc	1.254	1.385	1.398	1.289	
Densidad máxima seca (g/cm3)	1.4	406	Humedad ópti	ma (%)	14.97	•

GCL INGENERIA S.R.L SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIAS.R.L [5] GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

Fecha muestreo: 29/08/2023

Fecha recepción: 29/08/2023

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas" Proyecto (*)

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto

Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m Nivel freático (*) No presenta Coordenadas (*)

E 628528.91 N 9280225.34	Fecha ensayo: 30/08/2023
JL-R-C-23-0166 - Caucho Granular 20%	Fecha entrega: 06/09/2023

ódigo interno		JL-R-C-23	-0166 - Cau	cho Granu	ar 20%						Fech	a entrega:	06/09/2023	i		
	olde N°				7				10			1	7			
	apas Nº				5				5				5			
Golpes	por capa	N°		5	6			- 2	25			1	2			
	de la mu		No sat		Satu	rado		No saturado		Saturado		No saturado		rado		
Peso de molde				148		469		152		226	11055			197		
	de molde (80		8023		79	32	79	32		87		87		
Peso del si				3425				46		20		94		68		10
Volumen o				19		19		98		98		19		19		
Densidad I		/cm²)	1.6	1.616		1.626		535	1.5	70	1.4	148	1.5	515		
	ıra (Nº)															
Peso suelo l			410			0.00		3.00		.00		3.00		3.00		
Peso suelo			356	.60	352	2.00	336	3.00	326	.00	348	3.00	330	0.00		
Peso	de tara (g)														
	de agua (g			3		8		i0		0		0		8		
	suelo seco			57		52		36		26		48		30		
Contenido			14			.48		.88		.40		.37		.61		
Densidad	d seca (g/o	cm")	1.4	106	1.3	396	1.3	336	1.3	126	1.2	266	1.2	256		
						E	xpansión									
Fecha	Hora	Tiempo	D	ial	Expa	nsión	D	ial	Expa	nsión	D	ial	Expa	nsión		
					mm	%	_		mm	%	_		mm	%		
30/08/2023	16:30	0)	0.000	0.0		0	0.000	0.0		0	0.000	0.0		
31/08/2023	16:30	24	16		4.064	3.5		02	5.131	4.4		33	5.918	5.1		
01/09/2023	16:30	48	20		5.080	4.4		34	5.944	5.1		70	6.858	5.9		
02/09/2023	16:30	72	23		5.918	5.1		65	6.731	5.8		12	7.925	6.8		
03/09/2023	16:30	96	26	34	6.706	5.8	3	10	7.874	6.8	38	50	8.890	7.6		
						P	enetración									
		Carga		Mold	e No.		T	Mold	le No.		T	Mold	e No.			
Penetrac	ion	Stand.	Ca	rga		ección	Ca	rga		cción	Ca	rga		ección		
mm	pulg.	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%	Dial (div)	kg	kg	%		
0.000	0.000		0	0			0	0			0	0				
0.635	0.025		7.0	7			5.0	5			3.6	4		$\overline{}$		
1.270	0.050		10.2	10			9.1	9			8.2	8		$\overline{}$		
1.905	0.075		14.2	14			11.2	11			8.5	9		$\overline{}$		
2.540	1.000	70.445	16.3	16	15.8	1.2	15.2	15	13.6	1.0	14.5	15	12.1	0.9		
3.810	1.500		23.4	23			21.8	22			19.6	20				
5.080	2.000	105.68	30.1	30	31.7	1.5	28.6	29	27.0	1.3	26.1	26	24.1	1.2		
6.350	2.500		42.3	42			34.4	34			31.0	31				
7.620	3.000		48.2	48			40.6	41			35.3	35		$\overline{}$		
10.160	4.000		59.2	59.2			50.5	50.5			45.0	45.0		$\overline{}$		

GCL INGENERIA S.R.L. SEGUNDO CARRANZA MEJIA TECNICO DE LABORATORIO

GCL INGENERIA S.R.L TEL GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
 B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
 C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

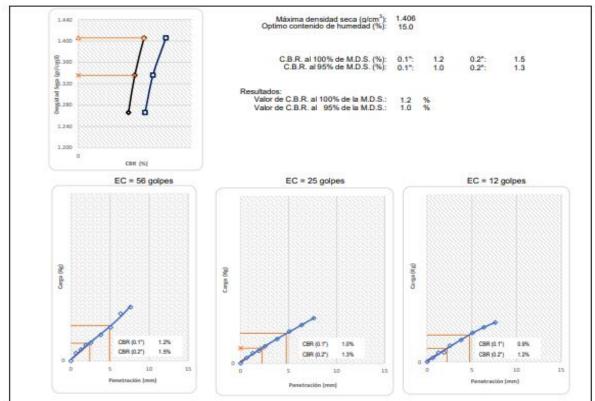
Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición. NTP 339.145:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach, Frank Cosar Soto


Cód. muestra (*) Calicata No.: 06; Muestra No.: 01; Profundidad (m): 0.10m-1.50m

Nivel freático (*) No presenta Coordenadas (*) E 628528.91 N 9280225.34

Código interno JL-R-C-23-0166 - Caucho Granular 20%

Fecha recepción: 29/08/2023 Fecha ensayo: 30/08/2023 Fecha entrega: 06/09/2023

Fecha muestreo: 29/08/2023

GCL INGENERIAS.R.L CEL GABY ROSITA CHUNQUE OCAÑA ING. CIVIL - CIP 287806

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para flever a cabo cualquier tipo de reproducción.
 D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

GRANULOMETRÍA CAUCHO

GCL INGENIERÍA S.R.L.

Ingeniería geotécnica, pavimentos, concreto e inspección de calidad.

Urb. Derrama Magisterial, Manzana P1, Lote 27 - Chiclayo - Chiclayo - Lambayeque

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Proyecto (*) "Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

Ubicación (*) Carretera Tucume- Cachiche, Departamento Lambayeque

Cliente (*) Bach. Frank Cosar Soto
Cód. muestra (*) Muestra de Caucho

Nivel freático (*) -Coordenadas (*) -Código interno -

Fecha muestreo:	29/08/2023
Fecha recepción:	29/08/2023
Fecha ensayo:	30/08/2023
Fecha entrega:	06/09/2023

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Características	
6 in.	150.000					Masa total, g:	500.0
4 in.	100.000					Fracción para lavar, g:	500.0
3 in.	75.000					T. máximo:	3/8 in.
2 in.	50.000					T. máximo nominal:	No. 4
1 1/2 in.	37.500						
1 in.	25.000						
3/4 in.	19.000						
3/8 in.	9.500				100.00		
No. 4	4.750	0.25	0.05	0.05	99.95		
No. 10	2.000	482.26	96.45	96.50	3.50		
No. 20	0.850	16.80	3.36	99.86	0.14		
No. 40	0.425	0.33	0.07	99.93	0.07		
No. 60	0.250	0.05	0.01	99.94			
No. 140	0.106						
No. 200	0.075						
Cazoleta		0.10					

SEGUNDO CARRANZA MEJIA
TECNICO DE LABORATORIO

GABY ROSITA CHUNQUE OCAÑA

- A. (*) Los datos indicados han sido proporcionados por el cliente.
- B. El cliente brindo las referencia y ubicación de los puntos donde se han tomado las muestras.
- C. Es necesario contar con una autorización escrita del gerente para llevar a cabo cualquier tipo de reproducción.
- D. Este informe ha sido preparado y está destinado exclusivamente para el cliente mencionado.
- E. Las copias o divulgación del informe sin el consentimiento previo del cliente, están prohibidas

CUADRO RESUMEN ESTUDIOS MECÁNICA DE SUELOS

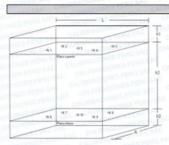
"Estabilización de Suelos Arcillosos con Caucho Granular para Fines de Carreteras No Pavimentadas"

				Contenido			Análisis	granulomét	rico			Límite	Límite				Densidad				Peso
No. Calicata	No. Muestra	Porcentaje caucho (%)	Profundidad, m	humedad, %	T. máximo	T. máximo nominal	>300 mm	75 mm - 300mm	Grava, %	Arena, %	Finos, %	líquido %	plástico %	Índice de plasticidad	sucs	AASHTO	máxima seca, g/cm³	Humedad óptima, %	CBR 95% de la M.D.S.	CBR 100% de la M.D.S.	especifico g/cm3
C-01	M-01	0	0.00 - 1.50	17	3/8 in.	No. 4			0.1	19.8	80.1	36.0	20	16	CL	A-6 (12)	1.771	16.16	4.35	5.6	1.706
C-01	M-01	5	0.00 - 1.50		3/8 in.	No. 4		-	0.4	26.8	72.8						1.754	15.10	5.35	6.1	1.784
C-01	M-01	10	0.00 - 1.50		3/8 in.	No. 4			1.7	31.9	66.5						1.612	14.69	2.12	2.7	1.521
C-01	M-01	15	0.00 - 1.50		3/8 in.	No. 4			0.2	34.1	65.8						1.579	14.77	1.62	2.2	1.517
C-01	M-01	20	0.00 - 1.50		3/8 in.	No. 4			3.3	38.7	58.0						1.540	14.91	0.88	1.0	1.458
C-02	M-01	0	0.00 - 1.50	19	3/8 in.	No. 4			0.2	19.5	80.3	35.7	21	15	CL	A-6 (12)	1.798	15.50	4.83	5.3	1.714
C-02	M-01	5	0.00 - 1.50		3/8 in.	No. 4		-	0.7	27.4	71.9						1.744	15.37	5.26	6.6	1.788
C-02	M-01	10	0.00 - 1.50		3/8 in.	No. 4		-	3.7	33.2	63.1						1.692	14.15	3.00	3.3	1.604
C-02	M-01	15	0.00 - 1.50		3/8 in.	No. 4		-	0.3	32.0	67.7						1.578	14.89	2.28	2.9	1.517
C-02	M-01	20	0.00 - 1.50		3/8 in.	No. 4		-	0.7	30.8	68.6						1.546	14.97	1.35	1.8	1.503
C-03	M-01	0	0.00 - 1.50	16	3/8 in.	No. 4			0.3	83.6	16.0	NP	NP	NP	SM	A-2-4 (0)	1.914	11.43	6.77	9.1	-
C-04	M-01	0	0.00 - 1.50	16	3/8 in.	No. 4			0.3	21.0	78.7	28.2	17	11	CL	A-6 (11)	1.814	15.62	5.35	5.9	1.709
C-04	M-01	5	0.00 - 1.50		3/8 in.	No. 4		-	0.7	23.6	75.8						1.820	15.23	5.47	6.4	1.719
C-04	M-01	10	0.00 - 1.50		3/8 in.	No. 4		-	1.0	36.5	62.5						1.681	14.31	1.51	2.2	1.613
C-04	M-01	15	0.00 - 1.50		3/8 in.	No. 4		-	0.7	30.3	69.1						1.576	14.87	1.53	1.9	1.574
C-04	M-01	20	0.00 - 1.50		3/8 in.	No. 4		-	0.5	36.1	63.3						1.406	14.97	1.41	1.7	1.550
C-05	M-01	0	0.00 - 1.50	16	3/8 in.	No. 4			0.1	82.9	17.0	NP	NP	NP	SM	A-2-4 (0)	1.905	11.19	6.74	8.8	-
C-06	M-01	0	0.00 - 1.50	17	3/8 in.	No. 4			0.7	17.4	81.9	28.1	17	11	CL	A-6 (11)	1.821	15.54	5.21	5.8	1.808
C-06	M-01	5	0.00 - 1.50		3/8 in.	No. 4		-	3.2	20.4	76.4						1.834	15.46	5.49	6.1	1.815
C-06	M-01	10	0.00 - 1.50		3/8 in.	No. 4		-	2.9	38.5	58.6						1.687	14.54	2.60	3.2	1.604
C-06	M-01	15	0.00 - 1.50		3/8 in.	No. 4		-	0.4	30.3	69.3						1.576	14.87	2.23	2.5	1.542
C-06	M-01	20	0.00 - 1.50		3/8 in.	No. 4		-	0.9	36.1	63.0						1.406	14.97	1.00	1.2	1.527

Anexo 04: Certificado De Calibración De Equipos De Laboratorio

CALIBRACION DEL HORNO

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio


CERTIFICADO DE CALIBRACIÓN N°LMT - 003 -2023

ágina 2 de 4

9.- RESULTADOS

Las incertidumbre expandidas de medición reportadas en este documento son los valores de la incertidumbres estándares de medición multiplicadas por un factor de cobertura k=2 que corresponde a un nivel de confianza de aproximadamente 95 %.

Distribución de termopares

20.00

Figura 2: Fotografia interior del medio isotermo.

Donde: L = 57,0 cm , A = 54,0 cm ,h1 = 10,0 cm , h2 = 33,0 cm ,h3 = 14,0 cm

Los termopares ubicados en los planos superior e inferior se colocaron a 10,0 cm de las paredes laterales y a 10,0 cm del fondo y frente del medio isotermo. Los termopares N° 5 y N° 10 estan ubicados en la parte central de sus respectivos planos, tal como se muestra en la figura 1.

Figura 3: Posición de los termopares en los

Condiciones usuales de trabajo del equipo

Posición de los planos Plano inferior: 5,0 cm por debajo del 1 escalón Plano superior: 8,0 cm por encima del 2 escalón Posición de las parrillas Parrilla inferior: 1 escalón Parrilla superior: 2 escalón

Temperatura	Pos. Selector	Pos. Ventilación	% Carga	Descripción de la carga
110 °C	110,0	Cerrado	20	Recipientes metalicos

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN NºLMT - 003 -2023

Página 3 de 4

9.- RESULTADOS (continuación)

Para la temperatura de 110 °C ±5 °C

Tiempo	Tind. (°C)	Distance	TEMPS	TENT SO	T.prom.	TmaX - Tmir							
(min)	(Termómetro de	WES PE	N	wel infer	ior	SUR VE	U-BAY	. Ni	vel super	ior	0 825 m		COCHEST
(mari)	Horno)	N*1	N° 2	N° 3	N° 4	N° 5	N°6	N°7	N*8	N*9	N° 10	(°C)	(°C)
00	110,0	105,2	106,5	109,2	105,5	105,8	102,7	101,9	102,0	102,6	101,2	104,3	8.0
02	110,1	105,0	106,5	109,1	105,3	105,7	102,5	101,8	101,8	102,4	101,0	104,1	8,1
04	110,2	105,2	106,9	109,5	105,5	105,9	102,6	102,0	102,0	102,5	101,3	104,3	8.2
06	110,1	105,5	107,0	109,6	105,7	106,1	102,8	102,1	102,2	102,8	101,4	104.5	8.2
08	110,2	105,1	106,5	109,1	105,4	105,8	102,6	101,9	102,0	102,5	101,1	104,2	8.0
10	110,2	105,2	106,7	109,3	105,4	105,8	102,6	101,9	102,0	102,5	101,2	104,3	8,1
12	110,1	105,4	106,9	109,5	105,6	106,0	102,8	102,0	102,1	102,7	101,4	104,4	8.1
14	110,1	105,6	107,1	109,4	105,8	106,3	103,0	102,1	102,3	102,6	101,5	104.6	7.9
16	110,1	105,7	107,2	109,6	106,0	106,3	103,1	102,2	102,5	102.8	101,7	104.7	7.9
18	110,1	105,3	106,7	109,3	105,6	105,9	102,7	102,0	102,1	102,7	101,3	104,4	8.0
20	110,0	105,2	106,5	109,1	105,4	105,7	102,7	101,9	101,9	102,7	101,3	104.2	7,8
22	110,0	105,6	106,8	109,5	105,6	106,0	102,8	102,0	102,1	102,8	101.5	104.5	8.0
24	110,1	105,6	106,9	109,4	105,7	106,1	103,0	102,0	102,1	102,9	101,5	104,5	7,9
26	110,1	105,4	106,8	109,1	105,5	105,9	102,8	101,9	102,0	102,7	101,4	104,4	7,7
28	110,0	105,5	107,1	109,1	105,6	106,0	102,8	102,0	102,0	102,7	101,4	104,4	7,7
30	109,9	105,6	106,8	109,5	105,7	106,1	102,8	102,0	102,0	102,7	101,6	104,5	7.9
32	110,1	105,4	106,4	109,1	105,4	105,8	102,7	102,0	101,9	102,5	101,3	104,3	7,8
34	110,1	105,8	107,4	109,9	106,0	106,3	103,1	102,2	102,2	102,8	101,8	104,8	8,1
36	110,0	105,5	106,8	109,1	105,6	106,1	102,9	102,0	102,2	103,0	101,5	104,5	7,6
38	110,0	105,0	106,0	108,6	105,2	105,5	102,5	101,6	101,8	102,5	101,1	104.0	7.5
40	109,9	105,5	106,7	109,4	105,5	105,9	102,8	101,9	102,0	102,7	101,4	104,4	8.0
42	110,0	105,4	106,6	108,9	105,5	105,8	102,7	101,9	101,9	102,6	101,4	104,3	7.5
44	110,1	105,2	106,3	108,8	105,3	105,6	102,5	101,6	101,8	102,4	101,2	104,1	7,6
46	110,1	105,1	106,1	108,5	105,2	105,5	102,4	101,6	101,7	102,3	101,1	104.0	7.4
48	110,0	105,5	106,7	109,2	105,5	105,9	102,7	101,8	101,9	102,5	101,4	104,3	7,8
50	110,0	105,8	107,2	109,6	105,9	106,3	103,0	102,1	102,2	102,9	101,8	104,7	7,8
52	110,0	105,4	106,8	109,1	105,6	106,0	102,8	102,0	102,2	102,8	101,7	104,4	7.4
54	110,0	105,3	106,3	108,7	105.4	105,8	102,6	101,8	102,0	102,6	101,4	104,2	7,3
56	109,9	105,2	106,2	108,6	105,2	105,6	102,4	101,5	101,7	102,3	101,2	104,0	7,4
58	110,0	105,9	107,2	109,9	105,9	106,2	103,0	102,0	102,1	102,7	101,6	104,7	8,3
60	110,0	105,7	106,7	109,2	105,7	106,0	103,0	102,1	102,2	102,8	101,8	104,5	7,4
T.PROM	110,0	105,4	106,7	109,2	105,6	105,9	102,8	101,9	102,0	102,6	101,4	104,4	
T.MAX	110,2	105,9	107,4	109,9	106,0	106,3	103,1	102,2	102,5	103,0	101,8		ES PERU
T.MIN	109,9	105,0	106,0	108,5	105,2	105,5	102,4	101,5	101,7	102,3	101,0	1	HESTANOS
DTT	0,3	0,9	1,4	1,4	0,8	8,0	0,7	0,7	0,8	0,7	0,8	AC.	110

Temperatura ambiental promedio 20.2 °C Tiempo de calibración del equipo

Calibración para la temperatura de 110 °C							
Parámetro	Valor (°C)	Incertidumbre Expandida (°C)					
Máxima Temperatura Medida	109,9	1,3					
Minima Temperatura Medida	101,0	1,5					
Desviación de Temperatura en el Tiempo	1,4	0,1					
Desviación de Temperatura en el Espacio	7,8	0,1					
Establidad Medida (±)	0,70	0,04					
Uniformidad medida	8.3	0.1					

T.PROM: Promedio de las temperaturas en una posición de medición durante el tiempo de calibración.

T.PROM: Promedio de las temperaturas en una posicion de medición quarante el tempo de calibración.
T.prom: Promedio de las temperaturas en las diez posiciones de medición para un instante dado.
T.MAX: Temperatura máxima
T.MIM: Temperatura mínima
DTT: Desviación de temperatura en el tempo
Las incertidumbres de medición expandidas reportadas son las incertidumbres de medición estándares multiplicadas por el factor de cobertura k=2 de modo que la probabilidad de cobertura corresponde aproximadamente a un nivel de confianza del 95 %.

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959

Jr. Pasco N° 3312 San Martin De Porres, Lima - Perú

Telf.: (01) 397 8754 Cel.: 949 985 016

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe www.calibracionesperu.pe

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

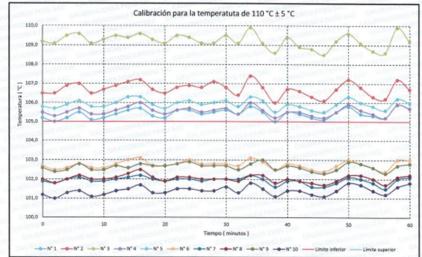
CERTIFICADO DE CALIBRACIÓN N°LMT - 003 -2023

Página 4 de 4

9.- RESULTADOS (continuación)

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT esta dada por la diferencia entre la máxima y la mínima temperatura registradas en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dado por la diferencia entre los promedios de


temperaturas registradas en ambas posiciones.

Incertidumbre expandida de las indicaciones del termómetro propio del Medio Isotermo: 0.06 °C.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

La estabilidad es considerada igual a ± 1/2 máx, DTT.

Durante la calibración y bajo las condiciones que esta ha sido hecha, el medio isotermo CUMPLE con los limites especificados de temperatura: 110 °C ± 5 °C.

10.- OBSERVACIONES

- a.- El instrumento de medición y el selector forman parte de un controlador e indicador de temperatura.
 b.- El instrumento de medición y el selector forman parte de un controlador e indicador de temperatura, este controlador e indicador accesorio que pertenece al medio isotermo.

- accesorio que pertenece al medio isotermo.

 El tipo de ventiliación del medio isotermo es Forzada .

 Se colocó una etiqueta autodhesiva con la indicación "CALIBRADO".

 La marca, modelo, N" de serie y código del indicador son: NO INDICA, XMTA7000-JY, NO INDICA, NO INDICA, respectivamente.

 El N" de serie esta indicado en el equipo.

 Se comenzó a tomar datos del termómetro patrón despues de un tiempo de precalentamiento de 2 horas de haber cerrado la puerta del equipo a calibrar. Los datos se tomarón cada 2 minutos por un tiempo de 60 minutos.

 Los resultados del certificado son válidos sólo para el objeto calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.

 Se recomienda al usuario recalibrar el instrumento a intervalos adecuados, los cuales deben ser elegidos con base en las características del trabajo realizado, el mantenimiento, conservación y el tiempo de uso del instrumento.

 CALIBRACIONES PERU S.A.C no se responsabiliza de los perjuicios que pueda coasionar el uso inadecuado de este instrumento este

- j.- CALIBRACIONES PERU S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento este instrumento después de su calibración, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.
 k.- El certificado de calibración no es válido sin la firma del responsable técnico de CALIBRACIONES PERU S.A.C.

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

MAQUINAS DE ENSAYOS UNIAXIALES ESTATICOS TENSIÓN / COMPRESIÓN

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMF-003-2023

Laboratorio de Fuerza

Pág. 2 de 2

Método de Calibración

La calibración se realizó tomando como referencia el método descrito en la norma ISO 7500-1 / ISO 376, Verificación de Máquinas para Ensayos Uniaxiales Estáticos, Máquinas de Ensayo de Tensión / Compresión Verificación y Calibración del Sistema de Medición de Fuerza.

Trazabilidad

Se utilizó patrón calibrado con trazabilidad al SI, calibrado por la Pontificia Universidad Católica del Perú Con Certificado N° INF-LE 111-22 B

Resultados de medición

Lect	tura de la	Lectura del patrón			Promedio	Cálculo de errores		Incertidumbre	
máquina (Fi)		Primera Segunda		Tercera	Promedio	Exactitud	Repetibilidad	incertidumbr	
%	kgf	kgf	kgf	kgf	kgf	q(%)	b(%)	U(%)	
10	500	496,5	496,5	496,2	496,4	0,7	0,1	0,38	
20	1000	994,5	996,9	997,1	996,2	0,4	0,3	0,33	
30	1500	1495,9	1497,7	1498,3	1497,3	0,2	0,2	0,28	
40	2000	1997,7	2002,2	2000,3	2000,1	0,0	0,2	0,28	
50	2500	2500,6	2501,6	2500,3	2500,8	0,0	0,1	0,25	
60	3000	3003,0	3002,9	3002,1	3002,7	-0,1	0,0	0,25	
70	3500	3504,8	3505,1	3503,2	3504,4	-0,1	0,1	0,25	
80	4000	4006,5	4005,4	4004,1	4005,3	-0,1	0,1	0,25	
90	4500	4510,1	4517,2	4505,6	4511,0	-0,2	0,3	0,28	
100	5000	5012,1	5007,6	5006,6	5008,8	-0,2	0,1	0,25	
Lectura	máquina en cero	0	0	0	SCHOOLS TO THE	0	0	Error máx. de cero(0)=0,00	

Temperatura promedio durante los ensayos 20,1 °C; Variación de temperatura en cada ensayo < 2 °C.

Los errores encontrados entre el 20% y el 100% del rango nominal considerado no superan los valores máximos permitidos establecidos en la norma ISO 7500-1.

Observaciones

- · Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"
- · La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

Fin del documento

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN Nº LMM - 011-2023

Pág. 1 de 3 Fecha de Emisión : 2023-03-23

Expediente: 14

1.- Solicitante

: GCL INGENIERIA S.R.L.

Dirección

: PJ. LOTE 27 MANZANA P1 MZA. P1 LOTE. 27 URB. DERRAMA MAGISTERIAL

LAMBAYEQUE - CHICLAYO - CHICLAYO

2.- Instrumento de Medición

OHAUS Modelo R21PE30 Serie 8340110535 Código NO INDICA Procedencia U.S.A. Capacidad máxima 30000 g Div de Escala (d) : 19 : 10 g(*) : III(**) Div de verificación (e) Clase de exactitud Capacidad mínima : 200 g (***)

3.- Fecha de Calibración

: 2023-03-22

: BALANZA

4.- Lugar de Calibración

: En las instalaciones de CALIBRACIONES PERÚ S.A.C

5.- Método de Calibración

La comparación de las indicaciones de la balanza contra las cargas aplicadas de

valor conocido (pesas patrón).

6.- Procedimiento de Calibración : PC-001 "Procedimiento para la calibración de instrumentos de pesaje de

funcionamiento no automático clase III y IIII".

INACAL - Primera edición - Mayo 2019

7.- Trazabilidad

Trazabilidad Metrológica	Pesas utilizada	Código del patrón	Certificado de calibración		
INACAL - DM	1 mg a 200 g	LM040	1760A-MPES-C-2022		
INACAL - DM	1 kg	LM042	1762A-MPES-C-2022		
INACAL - DM	2 kg	LM043	1763A-MPES-C-2022		
INACAL - DM	5 kg	LM004	1657-MPES-C-2022		
INACAL - DM	10 kg	LM005	1658-MPES-C-2022		
INACAL - DM	20 kg	LM006	1659-MPES-C-2022		

Leonel Palomino Nuñez Jefe de Laboratorio de Metrología

Ing Karen Vanessa Izarra Tupia. Gerente General C.I.P.: 221730

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martin De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN Nº LMM - 011-2023

Pág. 2 de 3

8.- Condiciones Ambientales

ES PEICU STALIBRATION	Minima	Máxima
Temperatura (°C)	20,0	20,2
Humedad Relativa (%)	53	60

15000

9.- Resultados de Medición

Car			Carga	a(g) = 300	0,00
(g)	ΔL (g)	E (g)	(g)	ΔL (g)	E (g)
15000	0,1	-0,4	30000	0,2	-1,2
15000	0,2	-0,5	30000	0,2	-1,2
15000	0,2	-0,5	30000	0,2	-1,2
15000	0,1	-0,4	30000	0,3	-1,3
5000	0,2	-0,5	30000	0,3	-1,3
5000	0,2	-0,5	30000	0,3	-1,3
5000	0,3	-0,6	30000	0,2	-1,2
15000	0,3	-0,6	30000	0.2	-1.2

30000

30000

0.1

0.2

Ensayo de repetibilidad

Carga (g)	Emax - Emin	E.M.P		
15000,0	0,2	20		
30000,0	0.2	30		

-0.5

Ensayo de excentricidad

2 3

Posic. de la carga	Carga minima (g)	(g)	ΔL (g)	E ₀ (g)	Carga (g)	(g)	ΔL (g)	E (g)	Ec (g)	E.M.P (g)
1	10,0	10	0,3	0,2		10000	0,3	-0.4	-0,6	20
2		10	0,2	0,3	-	10001	0,3	0,6	0,3	20
3		10	0,2	0,3	10000,0	10000	0,3	-0,4	-0.7	20
4		10	0,2	0,3		10001	0,1	0,8	0,5	20
5		10	0,2	0,3	- CF	10001	0,3	0,6	0,3	20

I: Indicación de la balanza L: Carga aplicada sobre la balanza

ΔL: Incremento de pesas patron

E: Error del valor de indicación. E_o: Error en cero.

Ec : Error corregido.

e.m.p: Error máximo permisible

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martin De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN Nº LMM - 011-2023

Pág. 3 de 3

9.- Resultados de Medición (continuación)

1980	LA-IDUES!	Carga c	reciente	LINE PERLY	- CX	NAME OF TAXABLE PARTY.			
Carga (g)	(g)	ΔL (g)	E (g)	Ec (g)	(g)	ΔL (g)	E (g)	Ec (g)	E.M.P (g)
10,0	10	0,3	0,2	ACIONIES O	100	, , ,	13/	187	(9)
200,0	200	0,2	0,3	0,1	200	0.2	0.3	0.1	10
3 000,0	3000	0,3	0,2	0,0	3000	0,3	0,2	0,0	10
5 000,0	5000	0,2	0,1	-0,1	5000	0.2	0.1	-0.1	10
10 000,0	10000	0,3	-0,4	-0,6	10000	0,1	-0.2	-0.4	20
12 000,0	12000	0,1	-0,2	-0.4	12000	0,3	-0.4	-0.6	20
15 000,0	15000	0,1	-0,4	-0.6	15000	0,2	-0.5	-0.7	20
17 000,0	17000	0,3	-0,6	-0,8	17000	0,2	-0,5	-0.7	20
20 000,0	20000	0,1	-0,5	-0.7	20000	0,1	-0.5	-0.7	20
25 000,0	24999	0,3	-1,9	-2,1	24999	0,3	-1.9	-2.1	30
27 000,0	26999	0,3	-2,1	-2,3	26999	0,3	-2.1	-2,3	30
30 000,0	30000	0,3	-1,3	-1,5	30000	0,1	-1,1	-1,3	30

Lectura corregida: R corregido = (R + 5,40E-05 R) g

Incertidumbre expandida de medición: UR = $2x\sqrt{(-1,7E-01)} + 1,40E-09$ xR²) g

La incertidumbre de la medición expandida reportada es la incertidumbre de medición estándar multiplicada por el factor de cobertura k = 2 de modo que la probabilidad de cobertura corresponde aproximadamente a un nivel de confianza del 95%.

10.- Observaciones

- a.- Se colocó una etiqueta autodhesiva con la indicación "CALIBRADO".
- b.- Se coloco una carga a la balanza de 15000 g y su indicación fue 14977 g. Luego se realizó el ajuste del
- c.- (*) El valor de división de verificación (e) se ha tomado como referencia del Manual Serie Ranger™ 3000.
- d.- (**) La clase a la que pertenece esta balanza se ha tomado como referencia del Manual Serie Ranger™ 3000.
- e.- (***) La capacidad mínima para esta balanza se encuentro marcado en el instrumento calibrado.
- f.- Los resultados del certificado son válidos sólo para el objeto calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.
- g.- Se recomienda al usuario recalibrar el instrumento a intervalos adecuados, los cuales deben ser elegidos con base en las características del trabajo realizado, el mantenimiento, conservación y el tiempo de uso del instrumento.
- h.- CALIBRACIONES PERU S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento este instrumento después de su calibración, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.
- i.- El certificado de calibración no es válido sin la firma del responsable técnico de CALIBRACIONES PERU S.A.C.
 Fin del Certificado de Calibración

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martin De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016 E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe www.calibracionesperu.pe

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN Nº LMM - 010-2023

Pág. 1 de 3 Fecha de Emisión : 2023-03-23

Expediente: 014

1.- Solicitante

: GCL INGENIERIA S.R.L.

PJ. LOTE 27 MANZANA P1 MZA. P1 LOTE. 27 URB. DERRAMA MAGISTERIAL

LAMBAYEQUE - CHICLAYO - CHICLAYO

2.- Instrumento de Medición

: BALANZA

Marca Modelo Serie Código OHAUS SPX622 C039175133 NO INDICA

Procedencia Capacidad máxima Div de Escala (d) Div de verificación (e)

NO INDICA 620 g 0,01 g

Clase de exactitud Capacidad mínima

: 0,1 g(*) : III(**) : 0,2g(***)

3.- Fecha de Calibración

: 2023-03-22

4.- Lugar de Calibración

: En las instalaciones de CALIBRACIONES PERÚ S.A.C

5.- Método de Calibración

: La comparación de las indicaciones de la balanza contra las cargas aplicadas de

valor conocido (pesas patrón).

6.- Procedimiento de Calibración :

PC-001 "Procedimiento para la calibración de instrumentos de pesaje de

funcionamiento no automático clase III y IIII".

INACAL - Primera edición - Mayo 2019

7.- Trazabilidad

Trazabilidad Metrológica	Pesas utilizada	Código del patrón	Certificado de calibración
INACAL - DM	1 mg a 200 g	LM040	1760A-MPES-C-2022
INACAL - DM	500 g	LM041	1761A-MPES-C-2022

Jefe de Laboratorio de Metrología

ren Vanessa Izarra Tupia. Gerente General

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe

C.I.P.: 221730

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN Nº LMM - 010-2023

Pág. 2 de 3

8.- Condiciones Ambientales

CALIBILACIO	Minima	Máxima
Temperatura (°C)	20,0	20,2
Humedad Relativa (%)	56	62

9.- Resultados de Medición

Ensay	o de	repet	ibil	idad

Car	rga (g) = 310,	000	Carga	Carga (g) = 620,000				
(g)	ΔL (g)	E (g)	(g)	ΔL (g)	E (g)			
310,00	0,003	-0,005	620,02	0,002	0,015			
309,99	0,004	-0,016	620,01	0,002	0,005			
310,00	0,002	-0,004	620,00	0.001	-0.004			
310,00	0,002	-0,004	620,00	0,001	-0.004			
310,00	0,003	-0,005	620,00	0,002	-0.005			
310,00	0,003	-0,005	620,00	0,002	-0.005			
310,00	0,003	-0,005	620,00	0,003	-0.006			
310,00	0,003	-0,005	619,99	0,001	-0.014			
310,00	0,003	-0,005	619,99	0,001	-0.014			
310,00	0,003	-0,005	619,99	0,002	-0.015			

Carga	Emax - Emin	E.M.P
(g)	(g)	(g)
310,000	0,012	0,30
620,000	0,030	0,30

Ensayo de excentricidad

Posic. de la carga	Carga minima (g)	(g)	ΔL (g)	E ₀ (g)	Carga (g)	(g)	ΔL (g)	E (g)	Ec (g)	E.M.P (g)
1	I INDUCTION	0,10	0,005	0,000	1	200,00	0,003	-0,002	-0.002	0.20
2		0,10	0,004	0,001		200,00	0,003	-0,002	-0.003	0,20
3	0,100	0,10	0,003	0,002	200,000	200,00	0,002	-0,001	-0.003	0,20
4		0,10	0,004	0,001		200,00	0,003	-0,002	-0.003	0,20
5		0,10	0,001	0,004	-40 04	200,00	0,003	-0,002	-0,006	0,20

- I: Indicación de la balanza L: Carga aplicada sobre la balanza
- ΔL Incremento de pesas patron
- E: Error del valor de indicación.
- E₀: Error en cero. Ec: Error corregido.
- e.m.p: Error máximo permisible

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martin De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe www.calibracionesperu.pe

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN Nº LMM - 010-2023

Pág. 3 de 3

9.- Resultados de Medición (continuación)

	1000015	Carga d	reciente	ANGE FER !	T	AUTO-			
Carga (g)	(g)	ΔL (g)	E (g)	Ec (g)	(g)	ΔL (g)	E (g)	Ec (g)	E.M.P
0,100	0,10	0,003	0,002	- Hall D	100		10/	(9)	(8)
0,200	0,20	0,004	0,001	-0,001	0,20	0.004	0.001	-0.001	0,10
50,000	50,00	0,004	0,000	-0,002	50,00	0.003	0,001	-0,001	0,10
120,000	120,00	0,003	0,000	-0,002	120,00	0.004	-0.001	-0,003	0.20
200,000	200,00	0,003	-0,002	-0,004	200,00	0,003	-0,002	-0.004	0,20
250,000	250,00	0,003	-0,003	-0,005	250,00	0,003	-0,003	-0,005	0,30
310,000	310,00	0,003	-0,005	-0,007	309,99	0,003	-0,015	-0.017	0,30
370,000	370,00	0,004	-0,006	-0,008	369,99	0.003	-0.015	-0.017	0,30
430,000	430,00	0,003	-0,007	-0,009	429.99	0.003	-0.017	-0.019	0.30
500,000	500,00	0,003	-0,003	-0,005	499.99	0,003	-0.013	-0.015	0.30
550,000	550,00	0,004	-0,005	-0,007	549,99	0.003	-0,014	-0.016	0,30
620,000	620,00	0,002	-0,005	-0,007	620.00	0.003	-0.006	-0,008	0.30

Lectura corregida: R corregido = (R + 1,58E-05 R) g

Incertidumbre expandida de medición: UR = $2x\sqrt{(1,1E-04 + 2,07E-10 xR^2)}$ g

La incertidumbre de la medición expandida reportada es la incertidumbre de medición estándar multiplicada por el factor de cobertura k = 2 de modo que la probabilidad de cobertura corresponde aproximadamente a un nivel de confianza del 95%.

10.- Observaciones

- a.- Se colocó una etiqueta autodhesiva con la indicación "CALIBRADO".
- b.- Se coloco una carga a la balanza de 300 g y su indicación fue 286,7 g. Luego se realizó el ajuste del instrumento
- c.- (*) El valor de división de verificación (e) se ha tomado como referencia del Manual CITIZEN CZ SERIES.
- d.- (**) La clase a la que pertenece esta balanza a sido asignado según NMP-003-2009.
- e.- (***) La capacidad mínima para esta balanza se encuentro marcado en el instrumento calibrado.
- f.-Los resultados del certificado son válidos sólo para el objeto calibrado y se refieren al momento y condiciones en que se realizaron las mediciones y no deben utilizarse como certificado de conformidad con normas de producto.
- g.- Se recomienda al usuario recalibrar el instrumento a intervalos adecuados, los cuales deben ser elegidos con base en las características del trabajo realizado, el mantenimiento, conservación y el tiempo de uso del instrumento.
- h.- CALIBRACIONES PERU S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento este instrumento después de su calibración, ni de una incorrecta interpretación de los resultados de la calibración acuj declarados.
- i.- El certificado de calibración no es válido sin la firma del responsable técnico de CALIBRACIONES PERU S.A.C.
 Fin del Certificado de Calibración

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martin De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe www.calibracionesperu.pe

Ficha de validación según AIKEN

Datos generales

Apellidos y	Cargo o	Nombre del	Autor del
nombres del	Institución	instrumento de	Instrument
informante	donde labora	evaluación	o
CHUNDUC CCADA GABY POSITA	GCRENTE GENERAL	Propiedades Mecánicas: Proctor Modificado y CBR.	Bach. Cosar Soto Frank Eder

Título de la Investigación:

"Estabilización de Suelos Arcillosos con Caucho Granular de Neumáticos para fines de Carreteras no Pavimentadas".

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	VALIDO
2	A	VALIOO
3	А	VALIDO
4	A	VALION

GABY ROSITAZ HUNQUE OCAÑA

	Dimensiones/Ítems	Clar	ridad	Con	texto	Congr	uencia		nio del tructo
	Muestra Patrón	Si	No	Si	No	Si	No	Si	No
1	Óptimo Contenido Humedad	X		У		у		Х	
2	Máxima Densidad Seca	V		¥		X		X	
3	CBR 0.1"(95% y 100%)	У		x		У		X	
	Muestra Patrón + %Caucho								
1	Óptimo Contenido Humedad	χ		X		X		У	
2	Máxima Densidad Seca	X		x		У		X	
3	CBR 0.1" al (95% y 100%)	χ		X		χ		X	

Observaciones (precisar si hay suficiencia):		
Opinión de aplicabilidad: Aplicable (x) Aplicable después de corregir () Apellidos y nombres del juez validador: Cliungue Ocaña Gara Rosita)	No aplicable (
Especialidad: HECKNICA DESUELOS - ING. CIVIL ATTOLOGIAL		

GABY ROSITA CHONQUE OCANA ING. CIVIL - CIP 287806

Ficha de validación según AIKEN

Datos generales

Apellidos y	Cargo o	Nombre del	Autor del
nombres del	Institución	instrumento de	Instrument
informante	donde labora	evaluación	o
Marin Bardales Noe Humberto	Dounte	Propiedades Mecánicas: Proctor Modificado y CBR.	Bach. Cosar Soto Frank Eder

Título de la Investigación:

"Estabilización de Suelos Arcillosos con Caucho Granular de Neumáticos para fines de Carreteras no Pavimentadas".

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	Α	Válido
2	A	Valido
3	A	Váldo
4	Α	Valido

Dr. Nue Humberto Marin Bardales Ingeriero Civil

Reg. CIP. 149326

	Dimensiones/Ítems	Clar	ridad	Con	texto	Congr	uencia		nio del tructo
	Muestra Patrón	Si	No	Si	No	Si	No	Si	No
1	Óptimo Contenido Humedad	X		Х		χ		χ	
2	Máxima Densidad Seca	Х		X		X		χ	
3	CBR 0.1"(95% y 100%)	X		X		χ		X	
	Muestra Patrón + %Caucho	X		Χ		X		X	
1	Óptimo Contenido Humedad	X		X		X		X	
2	Máxima Densidad Seca	X		X		X		X	
3	CBR 0.1" al (95% y 100%)	X		X		X		X	

Observaciones (precisar si hay suficiend	cia):		
Opinión de aplicabilidad: Aplicable (x) Apellidos y nombres del juez validador: Especialidad: Ing. Cuer)	No aplicable (

Dr. Noe Humberto Marin Bardales Ingeniero Civit Reg. CIP 149326

Ficha de validación según AIKEN

Datos generales

Apellidos y	Cargo o	Nombre del	Autor del
nombres del	Institución	instrumento de	Instrument
informante	donde labora	evaluación	o
(ruervaro Santistaban Kevin Jordan	Coordinaster BITI - Obras Vialos	Propiedades Mecánicas: Proctor Modificado y CBR.	Bach. Cosar Soto Frank Eder

Título de la Investigación:

"Estabilización de Suelos Arcillosos con Caucho Granular de Neumáticos para fines de Carreteras no Pavimentadas".

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Valido
2	A	Valido
3	Α .	Valido
4	A	Valido

EVIN JORDAN GUERRERO SANTISTEBAN INGENIERO CIVIL REG. CIP N° 302266

	Dimensiones/İtems	Clar	ridad	Con	texto	Congr	uencia		nio del tructo
	Muestra Patrón	Si	No	Si	No	Si	No	Si	No
1	Óptimo Contenido Humedad	×		X		X		X	
2	Máxima Densidad Seca	×		×		X		×	
3	CBR 0.1"(95% y 100%)	x		х		X		X	
	Muestra Patrón + %Caucho								
1	Óptimo Contenido Humedad	×		X		×		×	
2	Máxima Densidad Seca	X		x		×		X	
3	CBR 0.1" al (95% y 100%)	X		X		х		×	

Observaciones (precisar si hay suficie	ncia):
Opinión de aplicabilidad: Aplicable (X)) Apellidos y nombres del juez validado Especialidad: Trageniero Ciril	Aplicable después de corregir () No aplicable (Tr. Guerrare Santistebar Kenn Jordan

KEVIN JORDAN GUERRERO SANTISTEBAN INGENIERO CIVIL REG. CIP N° 302266

Ficha de validación según AIKEN

Datos generales

Apellidos y	Cargo o	Nombre del	Autor del
nombres del	Institución	instrumento de	Instrument
informante	donde labora	evaluación	o
SALAZAR PRETEL TOTIAUA	COOPDINDOPA BITI-OBFAS UIDLES-GUP PE	Propiedades Mecánicas: Proctor Modificado y CBR.	Bach. Cosar Soto Frank Eder

Título de la Investigación:

"Estabilización de Suelos Arcillosos con Caucho Granular de Neumáticos para fines de Carreteras no Pavimentadas".

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	VIDLEDO
2	A	OGZJĄU
3	4	VACIDO
4	A	VALEDO

INGENIERA CIVIL REG. CIP N° 302293

	Dimensiones/İtems	Clar	ridad	Con	texto	Congr	uencia	20000	nio del tructo
	Muestra Patrón	Si	No	Si	No	Si	No	Si	No
1	Óptimo Contenido Humedad	×		×		×		X	
2	Máxima Densidad Seca	×		Y		X		χ	
3	CBR 0.1"(95% y 100%)	x		×		×		x	
8	Muestra Patrón + %Caucho								
1	Óptimo Contenido Humedad	×		×		×		×	
2	Máxima Densidad Seca	X		×		×		X	
3	CBR 0.1" al (95% y 100%)	×		X		Y		X	

Observaciones (precisar si hay suficiencia):		
Opinión de aplicabilidad: Aplicable (x) Aplicable después de corregir () Apellidos y nombres del juez validador: Especialidad: エンロールシェチャェル していて)	No aplicable (

YATIANA MARILU SALAZAR PRETEL INGENIERA CIVIL REG. CIP N° 302293

Ficha de validación según AIKEN

Datos generales

Apellidos y Cargo o Institución donde labora		Nombre del instrumento de evaluación	Autor del Instrument o	
Chavene Medelader Bytomente one en one Tosef Nevender (greater		Propiedades Mecánicas: Proctor Modificado y CBR.	Bach. Cosar Soto Frank Eder	

Título de la Investigación:

"Estabilización de Suelos Arcillosos con Caucho Granular de Neumáticos para fines de Carreteras no Pavimentadas".

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Volicle
2	A	Valido
3	A	Valido
4	7	Valich

OSEFALEXINGER CHANAME BUSTAMANTE INGENIERO CIVIL REG. CIP. Nº 312681

	Dimensiones/Ítems	Clar	idad	Cont	exto	Congr	uencia	Domin	
	Muestra Patrón	Si	No	Si	No	Si	No	Si	No
1	Óptimo Contenido Humedad	×		X		×		X	
2	Máxima Densidad Seca	×		Y		×		X	
3	CBR 0.1"(95% y 100%)	×		×		×		X	
	Muestra Patrón + %Caucho								
1	Óptimo Contenido Humedad	×		×		×		x	
2	Máxima Densidad Seca	X		X		Y		f	
3	CBR 0.1" al (95% y 100%)	×		X		×		X	

Observaciones (precisar si hay suficiencia):		
Opinión de aplicabilidad: Aplicable (x) Aplicable después de corregir () Apellidos y nombres del juez validador: Especialidad: Jujewna Qui.)	No aplicable (

INGENIERO CIVIL REG. CIP. Nº 312681

Anexo 06: Instrumentos De Validación Estadística

VALIDEZ Y CONFIABILIDAD POR 5 JUECES EXPERTOS

INSTRUMENTO SOBRE ESTABILIZACIÓN DE SUELOS ARCILLOSOS CON CAUCHO GRANULAR DE NEUMÁTICOS PARA FINES DE CARRETERAS NO PAVIMENTADAS

		Claridad		ı	Contexto	
	Óptimo Contenido Humedad	Máxima Densidad Seca	CBR 0.1" (95% y 100%)	Óptimo Contenido Humedad	Máxima Densidad Seca	CBR 0.1" (95% y 100%)
JUEZ 1	1	1	1	1	1	1
JUEZ 2	1	1	1	1	1	1
JUEZ 3	1	1	1	1	1	1
JUEZ 4	1	1	1	1	0	1
JUEZ 5	1	1	0	1	1	1
s	5	5	4	5	4	5
n	5					
С	2					
V de Alken por preg=	1	1	0.8	1	0.8	1
V de Aiken por criterio		0.933333333			0.933333333	

		Congruencia		Do	minio del constru	cto
	Óptimo Contenido Humedad	Máxima Densidad Seca	CBR 0.1" (95% y 100%)	Óptimo Contenido Humedad	Máxima Densidad Seca	CBR 0.1" (95% y 100%)
JUEZ 1	1	1	1	1	1	1
JUEZ 2	1	1	1	1	1	1
JUEZ 3	1	1	1	1	1	1
JUEZ 4	1	1	1	1	1	1
JUEZ 5	0	1	1	1	1	1
s	4	5	5	5	5	5
n						
С						
V de Alken por preg=	0.8	1	1	1	1	1
V de Aiken por criterio		0.933333333			1	

V de Aiken del instrumento por jueces expertos

0.950

Lais Arturo Montenegro Cannocho
LIC. ESTADISTICA
MG. INVESTIGACION
DR. EDUCACION
COESPE 282

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ESTABILIZACIÓN DE SUELOS ARCILLOSOS CON CAUCHO GRANULAR DE NEUMÁTICOS PARA FINES DE CARRETERAS NO PAVIMENTADAS

Estadísticas de fiabilidad

Alfa de Cronbach	N de elementos
,875	3

	Correlación total de elementos	Alfa de Cronbach si el
	corregida	elemento se ha suprimido
Óptimo Contenido Humedad	,671	,900
Máxima Densidad Seca	,986	,893
CBR 0.1" (95% y 100%)	,663	,914

ANOVA

		Suma de		Media		
		cuadrados	gl	cuadrática	F	Sig
Inter sujetos		6,000	3	2,000		
Intra sujetos	Entre elementos	3,167	2	1,583	6,333	,033
	Residuo	1,500	6	,250		
	Total	4,667	8	,583		
Total		10,667	11	,970		

Media global = 15,6667

En las tablas se observa que, el instrumento es sobre Estabilización de Suelos Arcillosos con Caucho Granular de Neumáticos para fines de Carreteras no Pavimentadas es válido (correlaciones de Pearson superan al valor de 0.30 y el valor de la prueba del análisis de varianza es significativo p < 0.05) y confiable (el valor de consistencia alfa de cronbach es mayor a 0.80).

Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho
Luis Arturo Montenegro Camacho

Anexo 07: Reporte de Similitud Turnitin

Reporte de similitud

NOMBRE DEL TRABAJO

AUTOR

Estabilización de Suelos Arcillosos Usan do Caucho Granular de Neumático para f ines De Carretera no P Frank Eder Cosar Soto

RECUENTO DE PALABRAS

RECUENTO DE CARACTERES

15423 Words

75301 Characters

RECUENTO DE PÁGINAS

TAMAÑO DEL ARCHIVO

79 Pages

2.0MB

FECHA DE ENTREGA

FECHA DEL INFORME

Dec 6, 2023 10:51 PM GMT-5

Dec 6, 2023 10:52 PM GMT-5

22% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base

- 20% Base de datos de Internet
- 1% Base de datos de publicaciones
- · Base de datos de Crossref
- · Base de datos de contenido publicado de Cross
- 13% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

· Material bibliográfico

- · Material citado
- Coincidencia baja (menos de 8 palabras)