

FACULTAD DE INGENIERÍA ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

Influencia de los residuos de acero y fibra de caucho en la estabilización del suelo

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autor (es)

Bach. Mestanza Diaz Jose Andres https://orcid.org/0000-0001-8234-2060 Bach. Perez Villanueva Jose Alejandro https://orcid.org/0000-0003-1006-1475

Asesor

Dr. Suclupe Sandoval Robert Edinson https://orcid.org/0000-0001-5730-0782

Línea de Investigación Infraestructura, Tecnología y Medio Ambiente

Pimentel – Perú 2023

INFLUENCIA DE LOS RESIDUOS DE ACERO Y FIBRA DE CAUCHO EN LA ESTABILIZACIÓN DEL SUELO

Aprobación del jurac	
Api obacioni aci jarac	•

MG. SALINAS VASQUEZ NESTOR RAUL

Presidente del Jurado de Tesis

MG. CHAVEZ COTRINA CARLOS OVIDIO

Secretario del Jurado de Tesis

MG. ANACLETO SILVA HARRY ARNOLD

Vocal del Jurado de Tesis

Quienes suscriben la DECLARACIÓN JURADA, somos estudiante (s) del Programa de Estudios de **Ingeniería Civil** de la Universidad Señor de Sipán S.A.C, declaramos bajo juramento que somos autores del trabajo titulado:

INFLUENCIA DE LOS RESIDUOS DE ACERO Y FIBRA DE CAUCHO EN LA ESTABILIZACIÓN DEL SUELO

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firman:

Mestanza Díaz José Andrés	DNI: 77228654	
Pérez Villanueva José Alejandro	DNI: 47358651	A state of the sta

Pimentel, 26 de noviembre de 2023.

Dedicatoria

La presente tesis, está dedicada en primer lugar a Dios, ya que gracias a él estamos culminando este proceso, en segundo lugar, a nuestros padres, que siempre están con nosotros apoyándonos, la cual nos motivó a llegar a este momento, y nos enseñaron a no rendirnos nunca, gracias, por tanto, siempre viviremos agradecidos con ustedes.

Agradecimientos

En primer lugar, agradecemos al ser que nos dio la vida, nuestra madre, por ser siempre incondicional, y a la cual le debemos mucho, debido a que siempre está con nosotros, aun estando lejos, gracias por guiarnos en el camino de la vida.

En segundo lugar, agradecemos a nuestras esposas y a nuestras hijas, por ser esas ganas de no quedarnos donde empezamos, y de siempre inspirarnos a ser mejores.

Índice

De	dicatoria	3	iv
Ag	radecim	ientos	V
Índ	ice de ta	ablas	viii
ĺnd	ice de fi	guras	ix
Re	sumen.		xi
Ab	stract		. xii
l.	INTRO	DDUCCIÓN	13
	1.1.	Realidad problemática.	13
	1.2.	Formulación del problema	20
	1.3.	Hipótesis	20
	1.4.	Objetivos	20
	1.5.	Teorías relacionadas al tema	20
II.	MATE	RIALES Y MÉTODO	33
	2.1.	Tipo y Diseño de Investigación	33
	2.2.	Variables, Operacionalización	34
	2.3.	Población de estudio, muestra, muestreo y criterios de selección	37
	2.4.	Técnicas e instrumentos de recolección de datos, validez y confiabilidad	42
	2.5.	Procedimiento de análisis de datos	43
	2.6.	Criterios éticos	51
III.	RESU	LTADOS Y DISCUSIÓN	52

	3.1.	Resultados	52
	3.2.	Discusión	59
IV.	CONC	LUSIONES Y RECOMENDACIONES	63
	4.1.	Conclusiones	63
	4.2.	Recomendaciones	64
RE	FEREN	CIAS	65
AN	EXOS		72

Índice de tablas

Tabla I. CARACTERÍSTICAS DEL ENSAYO DEL PROCTOR	24
Tabla II. Categorías de la Subrasante	26
Tabla III Síntesis de la situación de los residuos o subproductos en la acería	29
Tabla IV Características físicas y mecánicas del caucho	31
Tabla V Composición química de las fibras de caucho (%)	32
TABLA VI. OPERACIONALIZACIÓN DE LAS VARIABLES INDEPENDIENTES	35
TABLA VII. OPERACIONALIZACIÓN DE LA VARIABLE DEPENDIENTE	36
TABLA VIII. ENSAYOS QUE SE REALIZARÁN EN LOS PUNTOS DE MUESTREO	39
TABLA IX. CRITERIOS DE INCLUSIÓN Y EXCLUSIÓN	40
TABLA X. NÚMERO DE PUNTOS DE MUESTREO	41
TABLA XI. TÉCNICA E INSTRUMENTO DE LA INVESTIGACIÓN	42
TABLA XII. FICHAS DE OBSERVACIÓN SEGÚN CADA INDICADOR	42
Tabla XIII. Caracterización del suelo	53
Tabla XIV. Resultados del OCH de las muestras de suelo con RA y FC	54
Tabla XV. Resultados de la DMS de las muestras de suelo con RA y FC	55
Tabla XVI. Resultados del CBR de las muestras de suelo con RA y FC	56

Índice de figuras

Fig. 1. Equipos para el ensayo de Proctor, (a) Equipo del ensayo Proctor modificad	y ok
estándar, (b) Equipo de Proctor automático, (c) Molde de compactación con permeám	etro
[42]	25
Fig. 2. Residuos de Viruta	28
Fig. 3. Virutas de Acero.	28
Fig. 4. (a) Agregado de caucho de fibra fina. (b) Granulado fino de caucho. (c) Agregado	o de
caucho granular grueso [18]	31
Fig. 5. Diseño de la investigación [54]	34
Fig. 6. Ubicación de la muestra, población y puntos de muestreo	38
Fig. 7. Tipo de vías urbanas [58].	41
Fig. 8. Diagrama de flujo de proceso.	44
Fig. 9. Materiales reutilizados en la investigación, (a) Residuos de acero (RA), (b) Fibra	s de
caucho (FC).	45
Fig. 10. Muestras de residuos de acero, (a) Viruta de acero, (b) Residuos de acero fund	lido.
	46
Fig. 11. Tratamiento de las fibras de caucho, (a) Zona de acopio, (b) Trituración primaria	ı, (c)
Caucho triturado, Trituración en diferentes granulometrías	46
Fig. 12. Extracción de muestras de suelo.	47
Fig. 13. Muestras de suelo, (a) Suelo natural, (b) Suelo con RA, (c) Suelo con FC	47
Fig. 14. Ensayo de contenido de humedad, (a) Codificación de las muestras, (b) Pesado	o de
las muestras, (c) Secado en horno	48
Fig. 15. Tamices usados para el análisis granulométrico.	49
Fig. 16. Ensayo de límites de Atteberg, (a) Límite líquido, (b) Límite plástico	49
Fig. 17. Compactación del suelo	50
Fig. 18. Ensayo de CBR, (a) Muestras de suelo en molde, (b) Saturación de muestras	, (c)

Lectura de la penetración51
Fig. 19. Distribución granulométrica del suelo
Fig. 20. Gráfico del contenido óptimo de humedad promedio de las 12 muestras, (a) Suelo
natural y suelo con RA, (b) Suelo natural y suelo con FC54
Fig. 21. Gráfico de la densidad máxima seca promedio de las 12 muestras, (a) Suelo natura
y suelo con RA, (b) Suelo natural y suelo con FC56
Fig. 22. Gráfico del CBR promedio de las 12 muestras, (a) Suelo natural y suelo con RA, (b)
Suelo natural y suelo con FC57
Fig. 23. Gráfica de porcentaje óptimo, (a) Residuos de acero, (b) Fibras de caucho 58

Resumen

La investigación se realizó con la finalidad de determinar la influencia de los Residuos de Acero y fibra de Caucho en la estabilización del suelo arcilloso mediante el CBR del suelo, para ello se desarrolló un estudio de enfoque cuantitativo cuasiexperimental, para ello se obtuvieron muestras de suelo de 12 puntos de extracción. Para el desarrollo se realizaron ensayos de laboratorio y así poder obtener el contenido óptimo de humedad (COH), densidad máxima seca (DMS) y el CBR del suelo natural y así mismo con residuos de acero (RA) y fibras de caucho (FC), donde los resultados determinaron que los RA en un porcentaje de 5% disminuye el OCH en 15.77%, mientras las FC con 5% disminuyeron en 12.39%, en cuanto a la DMS la mejor muestra de los RA fue la del 15%, que mejoró en 10.3% y en las FC pasó disminuyó en 17.7%, en el CBR del suelo presentó una gran mejora con los RA en la dosificación de 15% debido a que aumentó el CBR en 222.50%, sin embargo las FC solo en la muestra con 5% presentó una mejora de 61.02%, por ello los porcentajes óptimos de RA y FC fueron las muestras con 15% y 5%, pudiendo concluir que, los RA y las FC influyen en la estabilización del suelo, debido a que lograron mejorar el CBR del suelo natural con 13.11% y 6.55% respectivamente, y así mismo la reutilización de dichos materiales mitigan la contaminación ambiental.

Palabras Clave: Residuos de acero, fibras de caucho, CBR del suelo, estabilización del suelo, densidad máxima seca, contenido óptimo de humedad.

Abstract

The research was carried out with the purpose of determining the influence of steel waste and rubber fiber in the stabilization of clay soil through the CBR of the soil, for this purpose a quantitative quasi-experimental approach study was developed, for which soil samples were obtained from 12 extraction points. For the development, laboratory tests were carried out in order to obtain the optimum moisture content (OCH), maximum dry density (MDD) and the CBR of the natural soil and likewise with steel residues (RA) and rubber fibers (CF), where the results determined that the RA in a percentage of 5% decreases the OCH by 15.77%, while the CF with 5% decreased by 12.39%, as for the MDD the best sample of the RA was the 15%, which improved by 10.3% and in the CF it passed decreased by 17.7%, in the CBR of the soil presented a great improvement with the ARs in the dosage of 15% because it increased the CBR in 222.50%, however the CFs only in the sample with 5% presented an improvement of 61.02%, therefore the optimal percentages of ARs and CFs were the samples with 15% and 5%, being able to conclude that, the ARs and CFs influence the stabilization of the soil, because they managed to improve the CBR of the natural soil with 13.11% and 6.55% respectively, and likewise the reuse of these materials mitigate environmental contamination.

Keywords: Steel residue, rubber fibers, soil CBR, soil stabilization, maximum dry density, optimum moisture content.

I. INTRODUCCIÓN

1.1. Realidad problemática.

La estabilización de suelos es uno de los métodos más destacados para mejorar las cualidades de la subrasante [1], debido a que, el desarrollo de India está determinado en gran medida por su sistema de transporte, implicando que las carreteras sean uno de los modos de transporte más importantes, sin embargo, los suelos de algodón negro y los suelos arcillosos de grano fino cubren más del 20% del área [2] y se sabe que, dichos suelos suelen ser un problema y no se pueden utilizar como capa de pavimentación [3], así mismo, los suelos arcillosos orgánicos viéndolo desde un punto de vista geotécnico son blandos, débiles, variables, heterogéneas y floculadas [4].

En la mayor parte de la India, los suelos son expansivos, lo que significa que el contenido de humedad cambia, lo que supone un problema, es así que, para mejorar el comportamiento del suelo, se están considerando varios materiales como estabilizadores [5], en cuanto a Turquía, las carreteras tienen irregularidades, por ello, se busca estabilizar el suelo con materiales menos costosos [6], en la ciudad de Quiruvilca La Libertad, en Perú, el suelo que forma la estructura de la subrasante es arcilloso y tiene un nivel de CBR por debajo del 3%, por lo que se desea mejorar su capacidad de soporte [7].

Sin embargo, el uso de aditivos químicos como la cal, el cemento en la estabilización de suelos es increíblemente caro [8], por otro lado, su seguridad medioambiental y su uso sostenible durante la estabilización han recibido una atención creciente en los últimos años [9], del mismo modo, el uso extensivo de agregados en la construcción de carreteras ha llevado al agotamiento de los recursos naturales, lo que ha dado impulso al uso de materiales no convencionales [10], por ello, en la actualidad los métodos de mejoramiento de suelos que implican a los aditivos ecológicos han ganado popularidad por tener una mayor conciencia ambiental [11].

Se sabe que para fabricar acero consumen mucha energía y contribuyen a la

contaminación local [12], debido a que, en China por año producen 100 millones de toneladas métricas estimadas de residuos [13], así mismo, en Brasil una empresa que genera una importante cantidad de residuos, por cada tonelada de acero, genera aproximadamente 0,6 toneladas de residuos [14], es así como se busca aplicar en la ingeniería civil para mejorar las propiedades geotécnicas del suelo de subrasante con alto contenido de plástico [15]. Por otro lado, la cantidad de residuos de caucho está aumentando a nivel mundial debido a su uso en diversas industrias [16], teniendo una producción de 1,5 millones de toneladas por año y ha creado una situación agravante en todo el mundo [17], debido a que, los neumáticos de caucho son casi inmunes a la degradación biológica [18], lo que genera varios problemas ambientales y ecológicos [19], por lo tanto, es necesario encontrar aplicaciones razonables para las llantas de desecho [10].

En Indonesia, distrito de Mekarjaya y Pandeglang, utilizan como método de estabilización de suelos a los residuos de acero que tiene la propiedad de fortalecer una carretera muy dañada con hundimientos y zanjas debido a la reducida suficiencia de soporte de la misma [20], en la región de Teherán (capital, Irán) han optado incorporar fibras de caucho para la estabilización de suelos debido a que presentan suelos arcillosos y el 50% es alta plasticidad [21], el mismo método utilizaron en la India, donde mediante la fibra de caucho combatieron la hinchazón de las vías existentes que estaban conformadas por subrasantes de suelos arcillosos [22].

Es por ello por lo que se procedió a buscar antecedentes de fuentes confiables y que presenten los indicadores según los objetivos que se han planteado.

A nivel internacional, Rabab'Ah et al. [23], en su artículo científico "Respuesta resiliente y deformación permanente del suelo de subrasante estabilizado con subproductos de acero reciclado y materiales cementosos", mejoraron las propiedades de resistencia del suelo de subrasante mediante un método combinado de estabilización física y química para indagar el uso de residuos de acero (RA) y materiales cementosos, por lo que los resultados mostraron que los residuos de acero genera aumento en la densidad máxima seca (DMS) de

aproximadamente 8.77% con la incorporación de 25% de RA y una disminución en el óptimo contenido de humedad (OCH) de 11.80% con la incorporación de 5% de RA, mientras que en el CBR aumenta en 89.29% con la incorporación de 25% de RA, llegando a concluir que los RA logran mejorar el CBR del suelo.

Así mismo, Rabab'Ah et al. [24], en su investigación científica "Comportamiento del suelo de subrasante estabilizado con subproductos de cascarilla de laminación reciclada y materiales cementosos", evaluaron los RA para mejorar las propiedades geotécnicas del suelo de subrasanten con alto contenido de plástico, por lo que, pusieron en evaluación el OCH, la DMS y el CBR del suelo patrón y mejorado con RA, es así como en los resultados determinaron que la incorporación de 15% de RA disminuye en 14.74% el óptimo contenido de humedad, en cuanto a la densidad máxima seca aumenta en 7.10% y finalmente el CBR mejora en 66.67%, llegando a deducir que los RA muestran un efecto positivo en las propiedades geotécnicas del suelo y puede usarse como aditivo para mejorar dichas propiedades y así eliminar el problema de contaminación por dichos residuos.

En cuanto, Cabalar et al. [25], realizaron una investigación científica denominada "Uso de residuos de fresado CNC de acero recubierto de zinc para subrasantes de pavimentos de carreteras", con la finalidad de mejorar las propiedades de una subrasante de pavimento de carreteras, por lo cual como método, reutilizaron espirales de desecho de fresado (CNC) que fueron incorporados a suelos arcillosos de baja plasticidad (CL), donde los porcentajes de incorporación fueron de 5%, 10%, 15%, 20% y 25% en peso seco del suelo y los ensayos realizados fueron de COH, DMS y CBR, por lo cual, en los resultados pudieron demostrar que el COH del suelo natural fue de 19.9% y que la incorporación de CNC en los porcentajes antes mencionado disminuyeron en 2.26%, 4.52%, 7.09%, 9.10% y 11.06% respectivamente, mientras tanto en la DMS ocurrió todo lo contrario debido a que aumento en 2.72%, 6.52%, 8.70%, 11.41% y 11.96% y finalmente en el CBR del suelo presentó una gran mejora debido a que aumentó en 20%, 41.54%, 53.85%, 76.92% y 50.77%, llegando a concluir que la reutilización de CNC podría ser considerada como una técnica alternativa de refuerzo del

suelo para la construcción de pavimentos de carreteras subrasante.

Finalmente, Cabalar et al. [26], en su artículo científico "Residuos de aluminio en la subrasante del pavimento de la carretera", determinaron la influencia de los residuos de aluminio en el subsuelo de las carreteras, los residuos de alumunio fue mezclado con el suelo natural en porcentajes de 5%, 10%, 15% y 20% e investigaron la influencia que tuvo en el COH, DMS y CBR del suelo, donde los resultados determinaron que el COH fue disminuyendo cada vez que se le adicionaba mayor cantidad de residuos de aluminio debido a que se evidencio un decrecimiento de 6.32%, 7.37%, 13.16% y 14.74%, para la DMS presentó una leve mejora de 0.56%, 1.13%, 1.69% y 3.95%, finalmente el CBR aumentó en todas las muestras a excepción de la que presentó 20% de residuos de aluminio que disminuyó en 4.92% mientras que las demás incrementaron en 27.87%, 31.15% y 45.90%, concluyendo que los residuos de aluminio presentan una influencia positiva en las propiedades del suelo.

Por otro lado, Saparudin et al. [27], en su artículo ceintífico "Mejora de suelos problemáticos con neumáticos de caucho triturados", plantearon determinar la eficacia de las fibras de caucho (FC) mezclado con suelo como técnica de estabilización del suelo y así mismo establecieron el porcentaje óptimo de fibras de caucho como estabilizador, para ello adicionaron FC en porcentajes de 5, 10 y 15% para evaluar el COH, la DMS y el CBR del suelo estabilizado, teniendo como resultado que el 5% de FC aumentó el OCH en 7.05%, mientras la DMS tuvo una tendencia decreciente debido a que disminuyó en un 0.62% con el mismo contenido de FC, para el CBR pasó lo contrario cuando se le añadio el 10% de FC logrando aumentar en un 182.54%, es así como llegaron a la conclusión que el óptimo contenido de caucho es el 10% de FC y que esta fibra en adecuada proporcione es un buen estabilizante del suelo.

Teniendo en cuenta a Akbarimehr et al. [28], en su artículo científico "Investigación del efecto de los residuos de caucho en forma granular sobre el comportamiento resistente de la arcilla de Teherán", analizaron las propiedades geotécnicas de las muestras de arcillas de

Teherán y FC originarios de los neumáticos, para poder analizar las características de las FC en las mezclas de arcilla se realizaron experimentos que incluyen el OCH, la DMS y el CBR, donde en los resultados se evidenció una tendencia creciente en el OCH debido que con la incorporación del 50% de FC logró aumentar en 19.17%, mientras que en la densidad disminuyó en 9.32% con la incorporación de 10% de FC, es así como se concluye que la fibra de caucho puede ser útil en la estabilización con una dosificación del 50%.

Mientras, Mukherjee y Kumar [29], en su artículo científico "Fibra de neumático de desecho reciclada como refuerzo sostenible en mezcla compactada de arena y bentonita para su aplicación en vertederos" enfatizaron en sobre la incorporación de FC para evaluar la resistencia de una capa mezcla de arena y bentonita compactada, dicha evaluación le hizo a través la DMS, donde evidenció que cuándo incorpora 5% de FC la DMS disminuyó en 1.78% debido al bajo peso específico de la FC, cocnluyendo que las FC genera que la DMS del suelo disminuya.

Abbaspour et al. [30] sostienen en su artículo "Reuse of waste tire textile fibers as soil reinforcement" que la incorporación de FC son experimentos innovadores por lo que utilizaron dichas fibras para reforzar suelos evaluado mediante prubeas de laboratorio, por lo que determinaron el OCH, la DMS y el CBR de dos tipos de suelo (arcilla y arena), en los resultados se evidenció que el 5% de FC aumentó en 4.23 y 18.83% el OCH del suelo arenoso y del suelo arcilloso respectivamente, mientras tanto en la DMS ucurrio un declive debido que cuando se incorporó 0.5% de FC disminuyó en 2.42 y 1.10% para cada tipo de suelo, en el CBR la incorporación de 2% de FC mejoró en 283.4% en el suelo arenoso y mientras en las arcillas disminuyó en 66.57% cuando se le añadió 4% de FC, llegando a la conclusión que la FC puede mejorar de manera óptima el CBR de las arenas.

Chowdhury y Kundu [31], en su artículo científico "Mejora del suelo de la subrasante con residuos de neumáticos de caucho triturados", mejoraron el suelo defectoso de la subrasante mediante la aplicación de FC, para ello mezclaron aleatoriamente según el peso del suelo tomado en 1%, 3%, 5% y 7% y fueron sometidos a pruebas de CBR, donde

evdenciaron que el 5% de FC aumentó el CBR del suelo en 32.18%, concluyendo que dicho material usado en el experimento es adecuado para la estabilización de suelos para subrasante.

Prasad et al. [32], en su artículo "Evaluación de las características de resistencia en mezclas de suelo de algodón negro y polvo de piedra reforzadas con caucho triturado para neumáticos", evaluaron las características de un suelo de algodón negro con FC de neumáticos, por lo que mezclaron caucho de neumáticos triturado en variaciones de 1, 2, 3 y 4% agregado a tierra de algodón negro estabilizada con condiciones óptimas, donde los resultados muestran que los valores CBR varían de 4,75%, 5,91%, 7,68%, 7,11% y 6,25% con la adición de 0%, 1%, 2%, 3% y 4% de caucho de neumático triturado, concluyendo que la mezcla del 2% de caucho de neumático triturado logra es el porcentaje óptimo.

A nivel nacional, Gálvez [33], en su artículo científico "Estabilización de suelos arcillosos mediante emulsión asfáltica y virutas de acero para subrasantes", evalúo los cambios que produce la adición de limaduras de acero en los suelos arcillosos con fines de pavimentación, para ello mediante un estudio experimental incorporó limaduras de acero en porcentajes de 1%, 2%, 4%, 8% y 15%, por lo cual presentó un aumento lineal cuyo valor máximo se alcanzó con la dosificación del 15% aumentando considerablemente el CBR en un 189.47% por encima del CBR del suelo natural, concluyendo que las limaduras de acero presentan una mejora notable en el CBR de los suelos arcillosos.

Abreu [34], en su tesis para optar el título profesional de ingeniero civil "Influencia de la fibra de caucho en las propiedades mecánicas de la base granular de los pavimentos", determinó la influencia de la FC en las propiedades mecánicas de un material granular para una base de pavimento, donde aplicó una metodología experimental, por lo cual como resultados obtuvo que el 0.5% de FC aumentó el OCH en 0.10%, mientras que la DMS disminuyó en 0.03%, en cuanto al CBR incrementó en 24.60%, por lo que se concluye que el 0.5% de FC es el porcentaje óptimo.

Díaz y Torres [35], en su tesis "Incorporación de Partículas de Caucho de Neumáticos

para Mejorar las Propiedades Mecánicas en Suelos Arcillosos", determinó la mejora de las propiedades mecánicas de los suelos arcillosos mediante la aplicación de FC de neumático, por lo cual mediante una investigación experimental obtuvo muestras de suelo natural que luego fueron sometidos a ensayos de CBR donde como resultado obtuvo que con 0%, 1%, 3%, 5%, 7% y 9% de FC logró un CBR de 2.94%, 3.85%, 5.15%, 4.97%, 4.98% y 2.92% respectivamente, concluyendo así que el porcentaje óptimo de FC fue de 3% de FC.

En cuanto a nivel local, Ramírez [36], en su tesis "Análisis de las propiedades mecánicas del suelo arcilloso utilizando fibra de caucho y polímeros de nailon, Villa Hermosa - Chiclayo, 2021" analizó las propiedades mecánicas del suelo arcilloso adicionando FC, mediante una investigación experimental determinó el CBR del suelo, donde los resultados mostraron que con 5% de FC el CBR aumenta en 49% respecto al suelo natural, por lo que se concluye que la incorporación de FC es ventajoso para la estabilización del suelo.

Talledo y Sánchez [37], en su tesis "Mejoramiento de los suelos arcillosos en subrasante mediante el uso de fibras de caucho reciclado en las vías de la Habilitación Urbana Cholo Lindo, Chiclayo", evaluó el comportamiento de los suelos arcillosos de una subrasante aplicando como material estabilizador FC, por lo cual aplicó una investigación experimental donde la evaluación del comportamiento de los suelos arcilloso fueron evaluados según el Proctor Modificado y CBR, por lo que los resultados mostraron que la DMS aumenta, mientras que el OCH disminuye, en cuanto al CBR no presenció ninguna mejora debido que se mantuvo constante en 9.2%.

La investigación se abordó, en el contexto de la realidad problemática que afecta la a los suelos de baja calidad, con la finalidad de presentar una alternativa de solución eficiente que garantice la durabilidad de futuras obras de pavimentación mediante la aplicación de un estabilizante innovador como lo son los RA, debido a que no se han realizado investigaciones a nivel nacional con dicho material. La investigación se aborda, en el contexto de la realidad problemática que afecta la Av. Grau, La Victoria - Chiclayo, con el propósito de presentar una opción de solución eficiente que garantice la durabilidad de futuras obras de pavimentación,

de manera que las personas que circulan por dicha avenida gocen de una vía de circulación de calidad, que les proporcione confort y conexión en pro de la actividad comercial.

1.2. Formulación del problema

¿De qué manera influye los residuos de acero y fibra de caucho en la estabilización del suelo?

1.3. Hipótesis

Los Residuos de Acero y fibra de Caucho influyen sustancialmente en la estabilización del suelo.

1.4. Objetivos

Objetivo general

Determinar la influencia de la incorporación de residuos de acero y fibra de Caucho en la estabilización del suelo.

Objetivos específicos

- Identificar las características del suelo del distrito de La Victoria, provincia de Chiclayo –
 Lambayeque.
- Determinar la influencia de manera independiente de los residuos de acero y fibra de caucho en porcentajes de 5%, 10%, 12% y 15% en el óptimo contenido de humedad del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque.
- Determinar la influencia de manera independiente de los residuos de acero y fibra de caucho en porcentajes de 5%, 10%, 12% y 15% en la densidad máxima seca del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque.
- Determinar el CBR del suelo influenciado por la incorporación de 5%, 10%, 12% y 15%
 de residuos de acero y fibras de caucho de manera independiente.
- Determinar los porcentajes óptimo de residuos de acero y fibras de caucho en el CBR del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque.

1.5. Teorías relacionadas al tema

La **estabilización de suelos** es una técnica que permite el aprovechamiento de este material o de su área situada, disminuyendo así la necesidad de tecnologías complejas o incluso su sustitución, es así como, el proceso de estabilización del suelo altera una o más propiedades fisicoquímicas para garantizar mejoras en sus propiedades de resistencia, durabilidad y deformación [3].

Como ya se ha establecido, el suelo se compone de sólidos, líquidos (agua) y gases (aire). Su capacidad para estimular el crecimiento de las plantas y proporcionarles nutrientes suficientes depende de la interacción de estos factores. La textura, la estructura, el color, la permeabilidad, la porosidad, el drenaje, la consistencia y la profundidad efectiva son sólo algunas de las características del suelo que vienen determinadas por sus componentes [38].

Las propiedades físicas de los suelos son las características y cualidades que surgen a través de la interacción mecánica de las fases minerales y orgánicas del suelo con el agua, el aire y los fluidos que llenan los huecos del suelo. El análisis de las propiedades físicas del suelo permite comprender procesos como el movimiento del agua y el aire, la transferencia de calor y el comportamiento mecánico; estos parámetros constituyen la base para la planificación de actividades de gestión del suelo como el riego, el drenaje, la estabilización mecánica y la conservación, que en conjunto aumentan la utilidad del suelo como recurso natural sin degradarlo. Aunque las características químicas del suelo están estrechamente relacionadas con la fertilidad, las características físicas son las que determinan en última instancia esta cualidad [39].

Algunas de las propiedades más básicas del suelo (como el color, la textura, la estructura, la consistencia, la densidad y la temperatura) dan lugar a una serie de propiedades derivadas (como la porosidad, la capacidad de transporte de aire, la retención de humedad, la compacidad y la profundidad de la zona radicular) que desempeñan un papel crucial en la gestión, el diseño y la planificación globales del suelo [40].

Para determinar el estado físico de un suelo, deben conocerse sus propiedades físicas más fundamentales. Las tres fases (sólida, líquida y gaseosa) deben cuantificarse, y sus

relaciones deben expresarse numéricamente, con fines de análisis y diseño de ingeniería. Por ejemplo, el contenido de humedad de un suelo puede calcularse como la relación entre su masa de agua y su masa sólida. Las densidades, o las relaciones entre masa y volumen, son otro indicador crucial del estado físico de un suelo. No es fácil visualizar las proporciones relativas de sólido, líquido (agua) y gas (aire) que se entremezclan de forma natural en un suelo típico. Por lo tanto, es útil pensar en un modelo de suelo en el que las diferentes fases de lastres estén separadas en cantidades distintas que estén en las proporciones adecuadas. Dado que los constituyentes sólidos del suelo (a excepción de la turba) son materiales incompresibles, el modelo de volumen unitario es el más práctico para la mayoría de los propósitos de la mecánica de suelos [41].

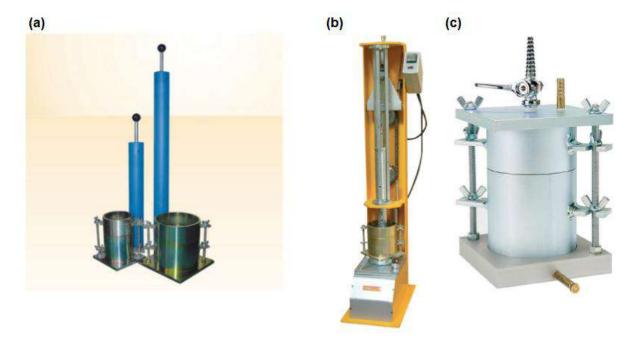
La estabilización del suelo se estudia, mediante ensayos de compactación, los efectos de la variación del contenido de humedad (ω) sobre los valores de densidad seca (γd) y el coeficiente de carga de California (CBR) del suelo tratado y no tratado [42].

La **compactación de suelos** es una técnica común de mejora de suelos utilizada en una amplia variedad de proyectos de construcción. Cabe señalar que este tipo de compactación encaja dentro de una amplia gama de otras opciones para la mejora masiva de suelos, entre las que se incluyen: compactación dinámica, sobrecarga, compactación vibratoria, inyecciones explosivas, geo-refuerzo, mezclas químicas suelo-cemento, etc [43].

La compactación del suelo es el proceso por el que se fuerza a las partículas del suelo a acercarse unas a otras, disminuyendo así la proporción de huecos del suelo. Esto puede lograrse mediante el uso de métodos mecánicos de emboscada o de impacto, ambos de los cuales han avanzado con el tiempo. La compactación, en otras palabras, es el proceso de aplicar energía de forma que aumente la aglomeración de las partículas minerales del suelo y, por extensión, la fuerza de las conexiones entre ellas. Con el fin de mejorar la geomecánica y la hidrología de los suelos sueltos o blandos, la compactación se realiza para aumentar la densidad y, por extensión, la capacidad portante, la estabilidad y el dinamismo del suelo, así como su capacidad para retener agua. Una compactación eficaz y

cuidadosamente controlada puede reducir o eliminar el fenómeno de licuefacción en suelos granulares friables saturados. Si la resistencia del suelo al corte por no drenaje se incrementa significativamente mediante la compactación, los fallos por no drenaje en suelos cohesivos pueden reducirse o eliminarse. Cuando se somete el suelo a técnicas prácticas que aumentan el peso seco unitario, disminuyendo así la cantidad de huecos, se aumenta la resistencia del suelo al corte y a la deformación [44]. Entre las ventajas de la compactación del suelo se incluyen la mejora de cualidades como las que se enumeran a continuación: La fricción, la cohesión y la rigidez del suelo mejoran; El peso unitario y la densidad relativa aumentan, pero el índice de volumen vacío disminuye; Aumenta la capacidad portante del suelo de cimentación y sus propiedades dinámicas; Disminuye el emplazamiento de los edificios; Reduce la permeabilidad del suelo y, por extensión, las filtraciones y filtraciones de aguas subterráneas y reduce la pesadez del suelo cohesivo en invierno y la desecación del suelo en verano.

El ensayo **Proctor** es útil para estimar la compactación máxima que puede alcanzar un suelo en relación con su humedad en un entorno controlado. Las pruebas Proctor normalizadas existen en dos variedades: la prueba Proctor estándar y la prueba Proctor modificada. La versión modificada utiliza más energía, por lo que es la principal diferencia entre ambas. Esto se traduce en que se utiliza un pistón de ensayo más pesado para comprimir una muestra de suelo más profunda. Aunque las normas ASTM no especifican un valor, estos ensayos determinan la densidad máxima de partículas secas (pd) que puede alcanzarse para cubiertas en condiciones de humedad particulares, siempre que los materiales no incluyan un porcentaje excesivo de finos. Si se especifica que el ensayo de tracción Proctor modificado sólo es aplicable a probetas que atraviesen completamente una malla de alambre de acero del Nº 4 (4,75 mm), o que tengan un porcentaje máximo retenido del 10% en dicha malla, pero que la parte retenida atraviese completamente una malla de alambre de acero del Nº 3/8" (9,5 mm). Cuando hay material retenido en un tubo de 3/8" de diámetro, la humedad relativa óptima y el peso unitario seco máximo deben determinarse


utilizando la prueba estándar Proctor. El grado de compactación de un suelo se expresa a menudo como un porcentaje relativo al ensayo Proctor; por ejemplo, una compactación Proctor Estándar del 95% corresponde a una densidad del 95% de la que puede alcanzarse en un laboratorio. Cuando las mediciones in situ no coinciden con las del proyecto, pueden surgir graves problemas contractuales. Es posible que las condiciones sobre el terreno difieran de las de laboratorio, como la granulometría, la humedad, las reacciones químicas (especialmente con arcilla) y los problemas de medición de la densidad y el contenido de humedad [45].

Las principales normas que especifican estas pruebas son la ASTM D 698 (2012) para la prueba Proctor estándar, y la ASTM D 1557 (2012) para la prueba Proctor modificada. ¡Además, las normas alemana DIN 18127 (2012) y británica BS 1377-4! (1990) detallan los ensayos Proctor estándar y modificado, respectivamente. En la Tabla I figuran los principales parámetros de ensayo y sus valores correspondientes. También debe tenerse en cuenta que la masa mínima total de material necesaria para realizar al menos cinco experimentos Proctor es de 15 kg para moldes de 101,6 mm y de 30 kg para moldes de 152,4 mm. La Fig. 1 (a) muestra los moldes y pistones utilizados en el Proctor manual estándar y en los ensayos modificados. Los equipos automáticos, como el que se ve en la Fig. 1 (b), proporcionan una compactación más regular y consistente tanto espacialmente como en términos de la energía aplicada, garantizando así resultados repetibles y eliminando las variaciones debidas al operador durante los experimentos [46].

Tabla I.Características del ensayo del Proctor.

Proctor	Alto (h) molde (cm)	Diámetro (d) molde (cm)	Volumen molde (cm³)	Pisón (Kg)	N° Capas	Altura caída (cm)	N° golpes/ capa
Estándar	11.64	10.16	944	2.5	3	30.48	25
Estándar	11.64	15.24	2124	2.5	3	30.48	56
Modificado	11.64	10.16	944	4.5	5	45.72	25
Modificado	11.64	15.24	2124	4.5	5	45.72	56

Nota: La tabla presenta las características de los equipos utilizados para el ensayo de

Fig. 1. Equipos para el ensayo de Proctor, (a) Equipo del ensayo Proctor modificado y estándar, (b) Equipo de Proctor automático, (c) Molde de compactación con permeámetro [42].

La Fig. 1 (c) presenta un molde de prueba Proctor con válvulas añadidas en la parte superior e inferior para utilizarlo como cinta métrica. La ASTM D 5856 presenta más detalles de la prueba [46].

En experimentos de laboratorio, muestras de suelo con distintos contenidos de humedad se compactan utilizando un impactador para determinar la densidad óptima para un contenido de humedad dado en condiciones estándar de aplicación de energía. La densidad máxima alcanzada en estas condiciones se conoce como densidad Proctor 100% y se utiliza como referencia para determinar el grado de compactación del suelo sobre el terreno.

Con el fin de diseñar pavimentos flexibles, Stanton y Porter 1929 desarrollaron este ensayo teniendo en cuenta el CBR como parámetro mecánico de diseño. Sólo es posible determinar el CBR en muestras que no hayan sufrido ningún tipo de alteración; es decir, no es posible cuantificar directamente este parámetro mecánico en superficies que hayan sido friccionadas o desbastadas. Se recomendó que su determinación se realizara directamente sobre el terreno; sin embargo, este ensayo es uno de los que muy pocos laboratorios realizan

in situ. Debido a lo anterior, una de las cosas más comunes que se hace, aunque de manera imprecisa, es correlacionar el CBR con el índice de penetración (PDC) que se obtiene del ensayo de penetración de cono dinámico mediante el uso de ecuaciones. Esto se hace para obtener una lectura más precisa [34].

También pueden utilizarse otros dispositivos de medición para las pruebas de compactibilidad. Por ejemplo, algunos organismos vivos utilizan penetrómetros en forma de pinza para medir la profundidad de penetración con cada golpe, una cantidad conocida como "grado de compactación" y que suele correlacionarse con el CBR (California Bearing Ratio), una medida de la profundidad de penetración en milímetros de un alfiler estándar bajo la misma carga a la que se somete. Debido a la costumbre y a la familiaridad con sus resultados, el CBR suele solicitarse incluso en proyectos que no incluyen carreteras. Dado que este experimento se realiza a menudo junto con los experimentos Proctor, puede ser instructivo darle un poco más de personalidad a este estudio [46].

Dado que la estructura del pavimento descansa sobre esta capa, debe ser capaz de soportar las cargas causadas por el tráfico, resistir los efectos del medio ambiente y proporcionar un soporte consistente a la estructura del pavimento, el espesor del pavimento también viene determinado por la calidad de esta capa, por lo que el **Subrasante** debe cumplir las mismas normas [34].

Tabla II.Categorías de la Subrasante.

Categorías de la subrasante	CBR
S ₀ : Subrasante Inadecuada	De CBR < 3%
S ₁ : Subrasante Pobre	De CBR ≥ 3% a CBR < 6%
S ₂ : Subrasante Regular	De CBR ≥ 6% a CBR < 10%
S ₃ : Subrasante Buena	De CBR ≥ 10% a CBR < 20%
S ₄ : Subrasante Muy Buena	De CBR ≥ 20% a CBR < 30%
S ₅ : Subrasante Excelente	De CBR ≥ 30%

Nota: La tabla presenta los parámetros que debe cumplir el CBR según la MTC.

Cuando la subrasante presenta baja rigidez y resistencia al ser sometido a cargas

cíclicas, o cuando se prevé que la subrasante puede desarrollar cambios volumétricos significativos en respuesta a la presencia o ausencia de agua, esta capa, que se lamina sobre la capa sub-base, está destinada a servir como reemplazo de una porción de la subrasante. En general, este cabo puede ser construido con materiales de la forma de relleno (terraplen) o del tipo de rajón utilizado para pedraplenes o con escombros. Para los materiales que se utilizan para terraplenado o conformación, se utilizan para nivelar y conformar la plataforma de la estructura del pavimento en áreas donde el Subrasante no tiene un alineamiento definido a lo largo de los ejes longitudinal y transversal. Además, se utilizan para elevar el suelo bajo la estructura del vial con el fin de prevenir y evitar que el agua penetre fácilmente en la estructura.

El **acero** son materiales de gran importancia utilizados en una amplia gama de productos con importante contribución al desarrollo económico [12]. Para [14], el acero es la materia prima más importante para diversas industrias y el material más reciclado del mundo, lo que conecta la industria siderúrgica con las prácticas de la economía circular.

La industria siderúrgica utiliza cuatro rutas tecnológicas principales: alto horno, fusión de chatarra, reducción directa y reducción por fundición, la primera produce acero a partir de mineral de hierro y coque en altos hornos (BF) y hornos básicos de oxígeno (BOF), la segunda produce acero a partir de chatarra metálica fundida en hornos de arco eléctrico (EAF), la tercera utiliza carbón y gas natural para reducir el mineral de hierro e introducirlo en los hornos de arco eléctrico y la cuarta ruta produce acero a partir de mineral de hierro sin coque [14].

Los residuos férricos consisten principalmente en chatarra metálica como hierro y acero, así como lodos de fundición. Como ahorran tanta energía (alrededor de un 62% en comparación con la producción con mineral de hierro) y agua (también alrededor de un 62% menos), estos desechos son muy apreciados para el reciclaje [47].

Así mismo es el material obtenido durante el proceso de mecanizado de la pieza (torneado, cepillado, fresado, taladro) procedente de los talleres mecánicos, como se muestra en la Figura 4, En caso de despachar viruta de fierro fundido, enviarlo por separado debido a

que posee alto contenido de fósforo y azufre, la viruta de fierro fundido se reconoce por su forma de astillas y tamaño similar a granos de arena [48].

Fig. 2. Residuos de Viruta.

El acero es el material más reciclado del planeta, superando incluso las tasas combinadas de reciclaje de aluminio, plástico y vidrio. La Chatarra de acero procede sobre todo de artículos no funcionales, como bienes de consumo (principalmente envases), luego automóviles y aparatos electrónicos, después edificios y maquinaria antiguos y, por último, chatarra, como se muestra en la Figura 5. La mayor parte de la chatarra procede del reciclado de latas y botellas de aluminio, pero también hay otras fuentes, como la recogida selectiva, las empresas de gestión de residuos, las plantas incineradoras, etc. Se puede reciclar una vez finalizada su vida útil, y se puede reciclar infinidad de veces sin sufrir pérdidas significativas de calidad debido a que se degrada muy poco durante los procesos de reciclaje. La única limitación es la eficiencia del reciclado. Por cada tonelada de acero reciclado se ahorra una tonelada y media de mineral de hierro [47].

Fig. 3. Virutas de Acero.

El uso de chatarra metálica como materia prima reduce el consumo de materiales vírgenes no renovables, como el carbón, la piedra caliza, el gas natural y el mineral de hierro, así mismo, reduce la necesidad de estructuras de eliminación, aumentando la vida útil de los vertederos controlados existentes y por último, el uso de chatarra reciclada ahorra cantidades significativas de energía y reduce la emisión de gases de efecto invernadero porque hace innecesario el procesamiento de mineral virgen, que es inherentemente contaminante y consume mucha energía [14]. En la Tabla II se tiene a los subproductos producidos por acerías según su cantidad y su uso.

Tabla III

Síntesis de la situación de los residuos o subproductos en la acería.

Subproducto	Clase (ABNT)	Composición	Producción mensual	Destino actual
Escoria de la siderurgia	2A	Óxidos y fluoruros	12000 Ton	Mantenimiento de carreteras locales sin pavimentar
Polvo EAF	1	Óxidos	200 Ton	Fabricación de aleaciones de zamak, actividades de movimiento de tierras
Cascarilla de laminación	2A	Óxido de hierro	200 Ton	Industria del cemento, como corrector químico; Industria de maquinaria, como contrapeso de ascensores
Lodos de zinc	2A	Aproximadamente el 80% del zinc	30 Ton	Fabricación de lingotes de zinc

Nota: Usos de los subproductos de la acería [14]

La savia de varias plantas contiene una sustancia cerosa llamada **caucho**, que es un polímero formado por varias unidades enlazadas del hidrocarburo elástico isopreno C5H8. Esta sustancia también puede sintetizarse. En la actualidad, se fabrican muchos artículos de caucho con fines muy diversos. Debido a su gran elasticidad y resistencia a los ácidos y sustancias alcalinas, el caucho 37 se utiliza ampliamente en la fabricación de productos como neumáticos, tubos y aislantes. Es impermeable a la humedad, el calor y la electricidad. Se

disuelve en gasolina, benceno y ciertos hidrocarburos [49].

El caucho natural es una sustancia vegetal procesada derivada de la savia de varios árboles originarios de distintas regiones del mundo, entre las que destacan Sudamérica y África ecuatorial. Más del 99% del consumo mundial de caucho natural se satisface con el látex extraído de la planta "HEVEA". El ficus elástico y otras plantas africanas también pueden recolectarse para obtener esta sustancia similar al caucho [50].

La invención del caucho vulcanizado y su posterior desarrollo en neumáticos por Charles Goodyear fue un acontecimiento revolucionario que mejoró considerablemente nuestro nivel de vida en los últimos 150 años. Sin neumáticos vulcanizados, no habría sido posible desarrollar automóviles. Sin embargo, no todos los países son capaces de producir automóviles, por lo que los neumáticos y las cubiertas, al igual que los automóviles, son un elemento importante de la sociedad contemporánea. A pesar de la disminución del suministro de petróleo, el futuro de la industria del neumático parece prometedor. Sin embargo, entre las fuentes de energía que propulsan nuestros automóviles, camiones, bicicletas, motocicletas y aviones, los neumáticos seguirán cumpliendo la misma función que sus predecesores [51].

El caucho reciclado puede obtenerse por medios mecánicos, químicos o puramente físicos, por lo que es crucial que mejoremos nuestros métodos de gestión de la producción en lugar de dejarlo almacenado y la mayor parte del caucho se fabrica a partir de un polímero llamado caucho estireno-butadieno (SBR), en el que el estireno representa alrededor del 25% del peso total y los distintos tipos de cauchos tienen propiedades diferentes, pero todos ellos tienen el hecho de que pueden ser bastante duraderos una vez vulcanizables, lo que hace que su degradación tarde mucho tiempo, a mezcla se prepara de forma que los cauchos naturales aporten elasticidad y los sintéticos estabilidad térmica [17].

Según la ASTM D6270-08 [52] los neumáticos de caucho desechados se pueden clasificar como caucho granulado (por debajo de 425 $\,\mu$ m a 12 $\,$ mm), caucho molido (por debajo de 425 $\,\mu$ m a 2 $\,$ mm), caucho en polvo (por debajo de 425 $\,\mu$ m), trozos rugosos (De tamaño superior a 50 $\,$ mm $\,\times$ 50 $\,$ mm $\,\times$ 50 $\,$ mm, pero inferior a 762 $\,$ mm $\,\times$ 50 $\,$ mm $\,\times$ 100

mm), astillas de neumáticos (entre 12 y 50 mm), áridos derivados de neumáticos (entre 12 y 305 mm), fragmentos de neumáticos (entre 50 y 305 mm) y neumático entero.

Así mismo Mhaya et al. [18] menciona que las virutas de neumático presentan diferencias en cuanto a forma y tamaño de las partículas, por lo que se por lo que lo clasifica en tres tipos de agregados de caucho, fibra fina de caucho de neumático con una longitud máxima de 16 mm, agregado granular fino de caucho de neumático con una longitud de 1 a 4 mm y agregado granular grueso de caucho de neumático con una longitud de 5 a 8 mm (Ver Figura 6).

Fig. 4. (a) Agregado de caucho de fibra fina. (b) Granulado fino de caucho. (c) Agregado de caucho granular grueso [18].

Las propiedades físicas del caucho crudo cambian en función de la temperatura, se vuelve rígido a bajas temperaturas y adquiere una estructura fibrosa cuando se congela en estado prolongado y cuando se calienta por encima de los 100 grados centígrados, el material se funde y sufre cambios irreversibles, dado que el ELT puede provenir de diversas fuentes, como neumáticos para camiones, neumáticos todoterreno, neumáticos para automóviles, neumáticos para tractores, etc., los WTTF obtenidos después del rectificado tienen diferentes longitudes, diámetros y propiedades mecánicas con valores y características típicos como se presenta en Tabla III [19].

Tabla IVCaracterísticas físicas y mecánicas del caucho.

Draniadad	المأمام ما	Mátede de proche	Valores		
Propiedad	Unidad	Método de prueba	General	Más frecuente	
Tipo de fibra	_	_	Hilado	_	

Diámetro equivalente	milímetros	ASTM D885M-10A e1 (2014)	0,030– 1,50	0,80
Longitud	milímetros	ASTM D885M-10A e1 (2014)	0–70	20–40
Resistencia a la tracción	MPa	ASTM D885M-10A e1 (2014)	300-2000	600
Giro S (plegado)	T/10cm	ASTM D885M-10A e1 (2014)	30–50	39
Elongación de rotura	%	ASTM D885M-10A e1 (2014)	18–25	22
Módulos elásticos	GPa	ASTM D885M-10A e1 (2014)	2–7,5	2.7
Contracción por aire caliente (a 177 °C × 2 min × 143 g)	%	ASTM D5591-04 (2016)	3–5	4.5
Densidad lineal	Negador	ASTM D885M-10A e1 (2014)	840–1890	1260
Punto de fusión	°C	ASTM D885M-10A e1 (2014)	250–260	256
Absorción de agua	%	ASTM D885M-10A e1 (2014)	41395	9.5

Nota: La tabla presenta las características físicas y mecánicas del caucho según pruebas realizadas [19].

Como se reporta en la Tabla IV , la espectroscopia de rayos X de energía dispersiva (EDAX) confirma el predominio de carbono y oxígeno en la composición química de estas fibras, mientras que también se detectan pequeñas cantidades de Zn, S, Mg, Al y Si debido a los diferentes aditivos utilizados en formulaciones de caucho vulcanizado [17].

Tabla VComposición química de las fibras de caucho (%).

Composición del elemento	Símbolos	Porcentaje (%)		
Carbón	С	87,51		
Oxígeno	oh	9.23		
Zinc	zinc	1,76		
Azufre	S	1.08		
Silicio	Si	0,20		
Magnesio	magnesio	0,14		
Aluminio	Alabama	0,08		

Nota: La tabla presenta el porcentaje de componentes químicos que contiene las fibras de caucho [17].

II. MATERIALES Y MÉTODO

2.1. Tipo y Diseño de Investigación

La investigación es **cuantitativa** según su enfoque debido que, para procesar la recogida de datos se usaron métodos estadísticos dónde incluirá la medición de variables, donde se comprobó la aceptación o el rechazo de la hipótesis para generalizar las conclusiones [53]. Es por ello por lo que la investigación es cuantitativa debido que los resultados han sido obtenidos de manera numérica según los indicadores que fueron el óptimo contenido de humedad, la densidad máxima seca y el CBR del suelo.

Por el propósito la investigación es **aplicada**, debido que, busca la aplicación del conocimiento adquirido con la idea de consolidar el saber para resolver una situación [54]. Es así como la investigación determinó los efectos de la incorporación de los residuos de acero y la fibra de caucho en la estabilización del suelo.

Según el nivel, la investigación es **explicativa** debido a que busca identificar los motivos que originan sucesos de un determinado fenómeno y por la calidad de los resultados que se han obtenido se puede tomar como base para futuras investigaciones en dónde el fenómeno contenga algún tipo de variación [54]. Por ello esta idea nos permite inferir que la investigación es de naturaleza explicativa, debido que la variable independiente (Influencia de los Residuos de Acero y Fibra de Caucho) se varió para determinar el valor de la variable dependiente (estabilización del suelo).

El diseño de la investigación es **experimental de tipo cuasiexperimental** debido a que se manipula la variable dependiente mediante la aplicación de la variable independiente, sin embargo también presenta un grupo control donde hay ausencia del estímulo [54].

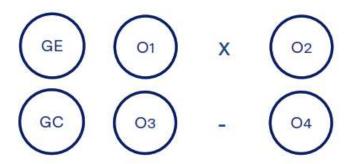


Fig. 5. Diseño de la investigación [54].

Donde:

GE: Grupo experimental

GC: Grupo control

X: Estímulo

-: Ausencia de estímulo

01 y 03: Observaciones de la variable dependiente pre estímulo

02 y 04: Observaciones de la variable dependiente post estímulo

2.2. Variables, Operacionalización

TABLA VI.

Operacionalización de las variables independientes.

	ariable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Ítems	Instrumento	Valores finales	Tipo de variable	Escala de medición
VI1	Influencia de los Residuos de Acero	Los residuos de acero son un desecho sólido y generalmente ocurren en las industrias de fabricación de acero durante los procesos de corte, fresado y torneado [55]	Para determinar la influencia de los residuos de acero y fibra de caucho se procede a identificar la dosificación y sus características físicas	D1: Dosificación de Residuos de Acero	Adición de 5 %, 10 %, 12 %, 15 % de	1	Guía de observación	%	Numérica	Razón
VI2	Influencia de la Fibra de Caucho	Son fibras componentes de los neumáticos al final de su vida		D3: Dosificación de Fibra de Caucho	Adición de 5 %, 10 %, 12 %, 15 % de	2	Guía de observación	%	Numérica	Razón

TABLA VII.

Operacionalización de la variable dependiente.

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Ítems	Instrumento	Valores finales	Tipo de variable	Escala de medición
	buena respuesta ante las acciones de, cargas estáticas y cargas	estabilización del suelo se determina	D1: Características del suelo	Características físicas del suelo	I1	Guía de observación	%, mm, g/cm ³	Numérica	Razón
				Características químicas del suelo	l2		%	Numérica	Razón
VD Estabilización del suelo			D2: Compactación del suelo	Óptimo contenido de humedad	17	Guía de observación	%	Numérica	Razón
				Densidad máxima seca	18		g/cm³	ramenda	Nazon
			D3: Capacidad de soporte del suelo	CBR	19	Guía de observación	%	Numérica	Razón

2.3. Población de estudio, muestra, muestreo y criterios de selección

La **población** viene a ser una agrupación de eventos que tiene todas las características que desea el investigador para realizar el su proyecto [57]. Es así como en esta investigación se estableció que la población fue la Avenida Grau que se encuentra en el Distrito de la Victoria entre la Panamericana Norte y Chacupe Alto como se puede apreciar en la Figura 2.

Una **muestra** es un subconjunto cuidadosamente elegido de una población más amplia de la que los investigadores pueden aprender acerca de los factores de interés. La muestra es representativa de la población en general en términos de características demográficas [54]. Es así como en la investigación se limitó la muestra a 400 m de la Avenida Grau que se encuentra en el Distrito de la Victoria entre la Panamericana Norte y Chacupe Alto, pudiéndose apreciar en la Fig. 7.

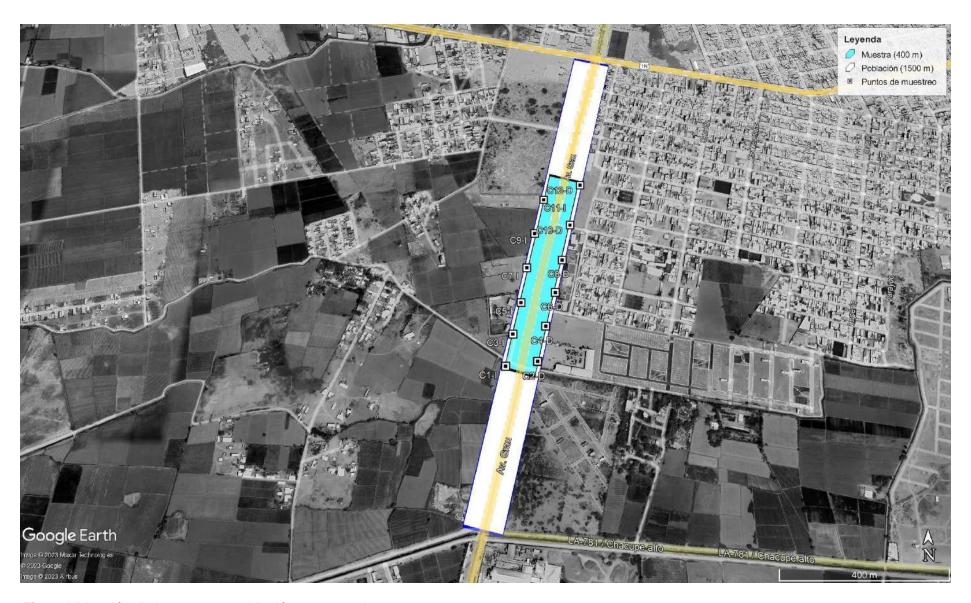


Fig. 6. Ubicación de la muestra, población y puntos de muestreo.

La finalidad del **muestreo** es obtener valores de parámetros mediante muestreo de una población finita o infinita, la selección de una muestra a partir de una población determinada se conoce como muestreo. La finalidad de una muestra es permitir a los investigadores decidir qué porcentaje de una población estudiar para extraer conclusiones [54].

Por ello la estrategia de muestreo que se aplicó fue un muestreo no probabilístico debido a que, no proporciona a cada parte del universo una posibilidad conocida de ser incluida en la muestra, el investigador determinará qué partes deben ser entrevistadas u observadas para que sus respuestas se ajusten a las variables del estudio y se cumplan los atributos y dimensiones de la unidad [54]. Por otro lado, el muestreo será por conveniencia, denominada así porque la muestra se compone de cualquier persona o de lo que el investigador considere más conveniente utilizar como sujetos de estudio. Debido a ello el autor propuso que se estudiará 400 m de la Avenida mencionada anteriormente, llegando así a determinar según los criterios de inclusión que se tendrá 12 puntos de muestreo donde se aplicará los siguientes ensayos:

TABLA VIII.

Ensayos que se realizarán en los puntos de muestreo.

Ensayos	Puntos de Muestreo												- Total
Elisayos	C1	C2	C 3	C4	C5	C6	C7	C8	C9	C10	C11	C12	IOlai
Contenido Óptimo de Humedad Densidad Máxima Seca CBR		1	1	1	1	1	1	1	1	1	1	1	12
		1	1	1	1	1	1	1	1	1	1	1	12
		1	1	1	1	1	1	1	1	1	1	1	12
			TOT	ΓAL									36

Nota: la tabla presenta los 12 puntos de extracción de muestra por lo cual se le va a aplicar un ensayo a cada punto.

Para determinar la muestra se aplicó criterios de selección, según inclusión y exclusión respecto a la aplicación, tipos de vía urbana y uso, como se muestra en la Tabla 4.

TABLA IX.

Criterios de inclusión y exclusión.

Criterios	Inclusión	Exclusión					
Aplicación	Pavimentos Urbanos	Pavimentos de carreteras					
		Expresas					
Tipos de vía urbana	Arteriales	Colectoras					
		Locales					
llaa	Cultura a a rata	Base					
Uso	Subrasante	Sub-base					

Nota: En la tabla se encuentra los criterios que se han tomado en cuenta para la muestra de la investigación.

Aplicación: debido a que para la población se ha seleccionado una avenida del distrito de La Victoria, la aplicación se realizará a pavimentos urbanos.

Tipos de vía urbana: según Norma Técnica CE.10 "Pavimentos urbanos" las vías urbanas son de 4 tipos (Expresas, arteriales, colectoras y locales), por lo que la Av. Grau es de tipo arterial, como se muestra en la Figura 3 que fue obtenido del anexo 3 del reglamento del sistema vial primario.

Vias Expresas	Vias Arteriales
Nacional: AUTOPISTA DEL SOL CALLE LIMA CALLE TORRES PAZ CARRETERA CHICLAYO - PIMENTEL EMP PE-1N CHICLAYO - CHONGOYAPE JIRON LEONCIO PRADO MOCCE-OLMOS PANAMERICANA NORTE PE-06° Regional AVENIDA AGRICULTURA AVENIDA CARLOS O. CONROY AVENIDA CHICLAYO AVENIDA DIEGO FERRE AVENIDA DIEGO FERRE AVENIDA GRAU AVENIDA GRAU AVENIDA GRAU AVENIDA MARISCAL CASTILLA AVENIDA VICTOR RAUL HAYA DE LA TORRE CALLE JOSE QUIÑONES CARRETERA A LAGUNAS	AVENIDA BOLOGNESI VIA LA 770 AVENIDA SALAVERRY VIA SIN 11 AVENIDA MESONES MURO AVENIDA ELFEMIO LORA Y LORA AVENIDA GRAUI VIA PERIMETRICA 2 VIA LA 662 VIA PERIMETRICA 4 AVENIDA SUR AVENIDA SUR AVENIDA SUR AVENIDA MEXICO VIA LA 671 MALECON MARISCAL URETA VIA PICSI - TUMAN CARRETERA A MONSEFU CALLE EMILIANO NINO VIA ALTERNA CHICLAYO LAMBAYEQUE CALLE SAN MARTIN CARRETERA LA VICTORIA- SANTA ROSA AVENIDA CHICLAYO VIA LA 781 AVENIDA JOSE BALTA PE-06A VIA SIN 17
AVENIDA MARISCAL CASTILLA AVENIDA VENEZUELA AVENIDA VICTOR RAUL HAYA DE LA TORRE CALLE JOSE QUIÑONES	VIA LA 781 AVENIDA JOSE BALTA PE-06A VIA SIN 17 VIA CAPOTE - PICSI VIA PERIMETRO DEL AEROPUERTO PROLONGACION MALECON MARISCAL URETA AVENIDA ESCRIBA VIA SIN 29
SANTA ROSA DE LIMA VIA CIRCUNVALACION ESTE VIA DE EVITAMIENTO SUR VIA LA 116	CARRETERA A CAPOTE CARRETERA A POMALCA VIA LA 691 VIA PERIMETRICA 3

Fig. 7. Tipo de vías urbanas [58].

Uso: según el uso se medirá la estabilización del suelo para la subrasante del pavimento urbano de la Av. Grau del Distrito la Victoria, Chiclayo. Con ello se pudo determinar según la Tabla 5 de la Norma Técnica CE.10, que se realizará 4 puntos de muestreo por cada 100 m, haciendo un total de 12 puntos de muestreo.

TABLA X.

Número de puntos de muestreo.

TIPO DE VÍA	NÚMERO DE CONTROLES EN LA SUBRASANTE POR CADA 100 m DE VÍA PARA GRADO DE COMPACTACIÓN Y CBR IN-SITU
Expresas	4
Arteriales	3
Colectoras	2
Locales	1

Nota: La tabla presenta el número de puntos de muestreo por cada 100 m de vía [59].

Así mismo se tendrá en cuenta para el ensayo de CBR que el grado de compactación

requerida será al 95% con una penetración de 0.1" como lo indica la Norma Técnica CE.10.

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

Como **técnicas e instrumentos** se utilizan para recoger datos que se muestran en diversos formatos. Aquí se utiliza la observación basada en pruebas, es decir, que las herramientas utilizadas son etapas documentadas del proceso de recogida de información (por ejemplo, documentos, datos, fotografías y listas de comprobación) [54].

TABLA XI.

Técnica e instrumento de la investigación.

Técnica	Instrumento
Observación directa	Ficha de observación para ensayos

Nota: La tabla presenta la técnica que se usó en la investigación que en este caso fue la observación directa con su instrumento ficha de observación.

Se realizó una observación directa debido a que se presenció la obtención de muestras y también la realización de los ensayos de mecánica de suelos.

Las fichas de observación fueron elaboradas según los indicadores de la investigación y cada ficha se encuentra en los anexos descritos en la Tabla 7.

TABLA XII. Fichas de observación según cada indicador.

Indicador	Ficha de observación	Anexo N°
Características físicas del suelo	Ficha técnica de laboratorio	Anexo 1
Características químicas del suelo	Ficha técnica de laboratorio	Anexo 1
Contenido óptimo de humedad	Ficha técnica de laboratorio	
Densidad máxima seca	Ficha técnica de laboratorio	Anexo 2,3
CBR	Ficha técnica de laboratorio	Anexo 2,3

Nota: La tabla presenta las fichas de observación que se han utilizado para cada indicador de la investigación

La **validez** se refiere a la cuantificación de los instrumentos, el tiempo de prueba tiene una aplicabilidad universal. Para verificar las asignaciones se recurrirá a la opinión de

expertos en la materia [54].

La **confiabilidad** se utiliza para describir la capacidad de un aparato para medir o recibir datos relacionados con la realidad que se está investigando. La fiabilidad de las asignaciones se documentará mediante la verificación de que los aparatos de ensayo de mecánica de suelos que estén muy bien calibrados, validando así los resultados de laboratorio.

2.5. Procedimiento de análisis de datos

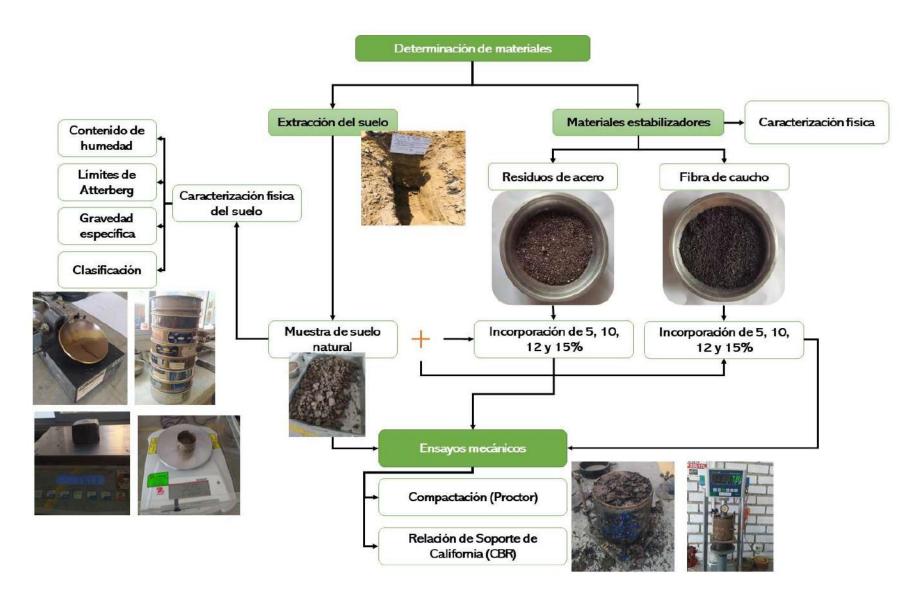


Fig. 8. Diagrama de flujo de proceso.

Siguiendo lo que indica el diagrama de flujo que se encuentra en la Fig. 9, se procedió a **recolectar los materiales** (Residuos de acero y Fibras de caucho), para ello se acudió a una fundición de acero en la ciudad de Chiclayo donde nos proporcionaron los RA, por otro lado, las FC se solicitaron a rencauchadoras donde hay grandes cantidades de desperdicios de caucho.

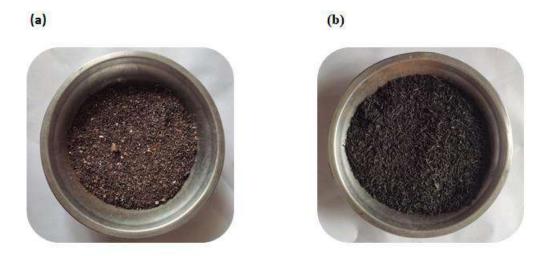
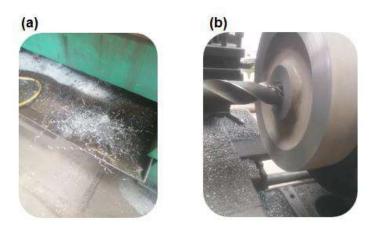



Fig. 9. Materiales reutilizados en la investigación, (a) Residuos de acero (RA), (b) Fibras de caucho (FC).

Para los **residuos de acero** se obtuvo de acero fundido, para ello material en bruto fue reciclado de pesas de tractor, máquinas de coser, etc., ese material fue fundido a una temperatura de 1550 °C en aproximado de 15 a 20 minutos en horno cubilote y cuando es en crisol la duración estimada es de 4 horas, luego del fundido el acero líquido va a los moldes que se encuentra en tierra arcillosa, luego se vierte y se deja enfriar por 24 horas, después se obtiene las piezas y que es traslado al torno para el acabado o maquinado para piezas como poleas, botellas para molinos de arroz y es ahí donde se obtiene el residuo de acero. En cuanto a la viruta de acero se obtiene de ejes sólidos de acero que luego so maquinados en torno y se obtiene en tiras espiraladas.

Fig. 10. Muestras de residuos de acero, (a) Viruta de acero, (b) Residuos de acero fundido. En cuando a las *fibras de caucho* se obtuvieron del proceso de tratamiento de llantas de neumáticos reciclados, que fueron trasladados a un lugar de acopio de donde se movilizaron a una máquina para una trituración primaria que arrojó caucho triturado, luego se trasladó a un molino principal donde se trituró en diferentes granulometrías para así obtener las fibras de caucho.

Fig. 11. Tratamiento de las fibras de caucho, (a) Zona de acopio, (b) Trituración primaria, (c) Caucho triturado, Trituración en diferentes granulometrías.

También se procedió a **extraer las muestras de suelo** en la Av. Grau que se encuentra en el Distrito de la Victoria entre la la Panamericana Norte y Chacupe Alto, como indica la Fig. 7. Para ello se programó la ejecución de 12 calicatas a una profundidad de 1.5 m, el registro de excavaciones se realizó de acuerdo a la NTP 339.150.

Fig. 12. Extracción de muestras de suelo.

Una vez obtenida las muestras de suelo se realizaron los **trabajos de laboratorio** que permitieron evaluar las propiedades de los suelos mediante ensayos físicos, mecánicos y químicos, para ello se procedió a dividir las muestras de suelo natural y las muestras con adición de RA y FC.

Fig. 13. Muestras de suelo, (a) Suelo natural, (b) Suelo con RA, (c) Suelo con FC.Una ves que se han separado los tres tipos de muestras de suelo (suelo natural, suelo

con RA y suelo con FC), se procedió a realizar el ensayo de **contenido de humedad (CH)** según lo especificado en la NTP 339.127, donde se utilizó una balanza electrónica, taras de aluminio y un horno, para así determinara la cantidad de agua que presenta la masa de suelo.

Fig. 14. Ensayo de contenido de humedad, (a) Codificación de las muestras, (b) Pesado de las muestras, (c) Secado en horno.

Luego se realizó el ensayo de **análisis granulométrico** como lo indica la NTP 339.128, para así identificar las cualidades del suelo según su estructura y agrupación, lo que genero el porcentaje de grava, arena y finos, y así mismo, la curva de distribución granulométrica.

Fig. 15. Tamices usados para el análisis granulométrico.

También se realizó el ensayo para determinar el **límite líquido (LL), límites plástico** (LP) e índice de plasticidad (IP) bajo la normativa NTP 339.129, para ello se le remueve cualquier material que ha quedado retenido en el tamiz N°40, y luego se procede a determinar le LL mediante una porción de suelo en una copa de bronce que se divide en dos con un ranurador para luego fluir mediante los golpes aplicados por un dispositivo mecánico estándar, en cuanto al LP se determinar enrollando alternadamente el suelo hasta obtener un diámetro de 3.2 mm hasta que su contenido de humedad se reduzca y haga que el hilo se rompa.

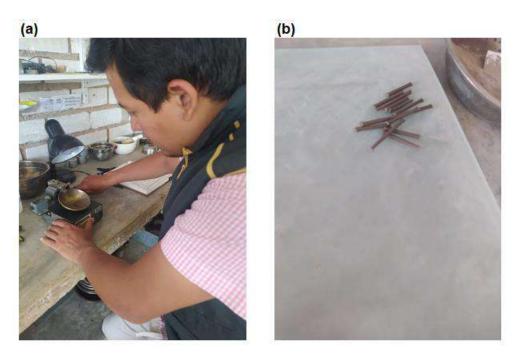


Fig. 16. Ensayo de límites de Atteberg, (a) Límite líquido, (b) Límite plástico.

También se realizaron ensayos de contenido de sales solubles totales, como indica la normativa NTP 339.152, contenido de sulfatos según la normativa NTP 339.178 y el contenido de cloruros según la NTP 339.177.

Finalmente se procedió a **clasificar los suelos** por el método SUCS (NTP 339.134) y el método AASHTO (NTP 339.135). En cuanto a la clasificación SUCS se encuentra combinaciones de suelos como arenas, gravas, limo arcillas, limo arcilloso, etc., clasificándolo al suelo en 15 grupos, mientras que por el método AASHTO lo clasifica en grandes grupos como porosos, de grano grueso, grano fino, granular, no granular, cohesivo, semi cohesivo, y no cohesivo.

Para finalizar con el desarrollo de los objetivos se aplicó el ensayo de **Proctor estándar** (NTP 339.141) donde se compacto el suelo en un molde con un diámetro de 101.6 mm con una energía de compactación de 600 kN-m/m³, para así obtener la curva de compactación.

Fig. 17. Compactación del suelo.

En cuanto al ensayo de **CBR** se realizó según la MTC E 132/NTP 339.141, donde se evaluó la resistencia potencial de la subrasante que incluyó los materiales reciclados para usar en pavimentos de vías.

Fig. 18. Ensayo de CBR, (a) Muestras de suelo en molde, (b) Saturación de muestras, (c) Lectura de la penetración.

2.6. Criterios éticos

Los criterios éticos estuvieron bajo los parámetros del Código de Ética en investigación de la USS [60], por lo cual la investigación ha sido desarrollada con honestidad intelectual como indica el Art. 5, presentando transparencia, cumplimiento de los criterios éticos aceptados y bajo el rigor científico mencionado en el Art. 6.

III. RESULTADOS Y DISCUSIÓN

3.1. Resultados

Del **Objetivo 1** se identificó las características del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque, por lo cual sus resultados han sido plasmados en la Tabla XIII.

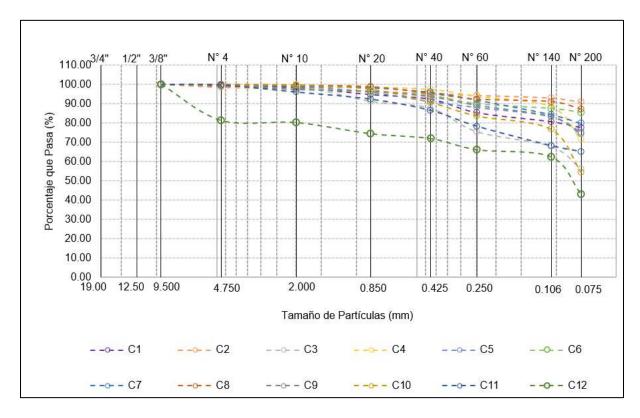


Fig. 19. Distribución granulométrica del suelo.

La Fig. 19 muestra la distribución de partículas del suelo en las 12 muestras, evidenciando que más de la mitad del material pasa por el tamiz N° 200, por lo cual evidencia la presencia de suelos finos.

Tabla XIII.

Caracterización del suelo.

Callest	Humeda	Allalis		sis Granulométrico		Límites de Atterberg			Clasificación				Pesos l	Initarios
Calicat a	d natural (%)	Grava (%)	Arena (%)	Finos (%)	LL (%)	LP (%)	IP (%)	sucs	AASHTO	Sales (%)	Cloruros (%)	Sulfatos (%)	PUS (g/cm³)	PUC (g/cm³)
C-01	17	0.8	21.6	77.6	49	27	22	CL	A-7-6(14)	0.13	0.0173	0.0115	1.622	1.651
C-02	24	1.5	7.7	90.8	46	26	20	CL	A-7-6(13)	0.16	0.0195	0.0130	1.639	1.671
C-03	13	0.1	43.8	56.1	27	21	6	CL	A-6(11)	0.16	0.0198	0.0132	1.629	1.649
C-04	17	0.0	28.4	71.6	27	14	12	CL	A-6(14)	0.13	0.0176	0.0117	1.622	1.655
C-05	29	0.0	25.7	74.3	42	26	16	CL	A-7-6(12)	0.18	0.0210	0.0140	1.613	1.638
C-06	34	0.3	14.3	85.4	38	21	17	CL	A-6(12)	0.12	0.0165	0.0110	1.647	1.671
C-07	24	0.0	20.2	79.9	44	26	18	CL	A-7-6(13)	0.18	0.0213	0.0142	1.628	1.651
C-08	25	0.0	12.9	87.1	43	27	16	CL	A-7-6(13)	0.15	0.0188	0.0125	1.640	1.669
C-09	31	0.5	24.5	75.1	36	20	16	CL	A-6(12)	0.16	0.0194	0.0129	1.612	1.647
C-10	29	0.3	45.3	54.4	53	29	24	CH	A-7-6(9)	0.18	0.0207	0.0138	1.615	1.647
C-11	3	0.4	34.5	65.1	52	30	22	MH	A-7-6(12)	0.18	0.0207	0.0138	1.621	1.655
C-12	9	11.7	23.8	64.5	24	19	4	CL	A-6(11)	0.15	0.0189	0.0126	1.630	1.667

Nota: La tabla presenta la humedad natural del suelo que varía de 3% hasta 34%, mientras que el análisis granulométrico evidencia el material de finos se encuentra hasta en 90.8%, así mismo el IP presentó valores de 4% hasta 24%, mediante el cual la clasificación de suelos SUCS determinó que son de tipo CL, CH y MH, mientras que la clasificación AASHTO mostro un tipo de suelo de A-7 y A-6, en cuanto a la sales, cloruros y sulfatos se presentaron hasta en 0.18%, 0.0213% y 0.0142% respectivamente, el PUS tuvo valores de 1.612 g/cm³ hasta 1.647 g/cm³, mientras que el PUC mostró valores de 1.638 g/cm³ hasta 1.671 g/cm³.

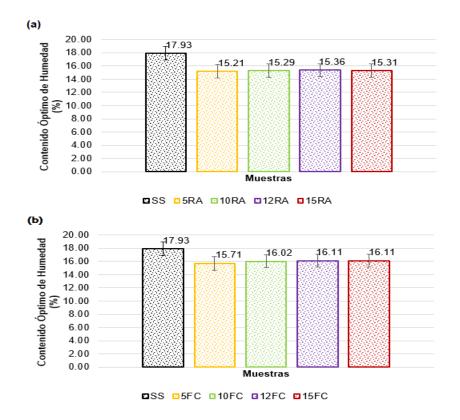

En cuanto al **Objetivo 2** se determinó la influencia de manera independiente de los residuos de acero y fibra de caucho en porcentajes de 5%, 10%, 12% y 15% en el óptimo contenido de humedad (OCH).

Tabla XIV.

Resultados del OCH de las muestras de suelo con RA y FC.

	Contenido Óptimo de Humedad (%)														
Muestras	Código	Aditivo					ıntos de	ntos de muestreo							
IVIUESTIAS	Codigo	(%)	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	
Suelo Natural	SS	0	17.67	18.17	18.24	17.47	18.26	17.32	18.35	17.40	18.40	18.26	18.32	17.26	
	5RA	5	15.29	15.39	15.46	15.04	15.49	15.13	15.04	14.92	15.45	15.04	15.31	14.91	
Residuos de	10RA	10	15.41	15.33	15.44	15.07	15.47	15.05	15.38	14.99	15.51	15.39	15.48	14.97	
Acero	12RA	12	15.63	15.30	15.46	15.11	15.50	15.05	15.51	15.07	15.57	15.54	15.59	15.03	
	15RA	15	15.36	15.34	15.44	15.06	15.44	14.98	15.48	15.04	15.53	15.52	15.57	14.99	
	5FC	5	16.53	16.23	16.33	15.04	16.12	15.94	15.04	15.33	16.01	15.04	15.59	15.27	
Fibra de	10FC	10	17.04	16.31	16.05	15.54	16.13	15.80	15.93	15.59	16.20	15.94	16.08	15.60	
caucho	12FC	12	16.37	16.51	16.22	15.75	16.19	15.77	16.20	15.75	16.30	16.23	16.29	15.73	
	15FC	15	16.84	15.96	16.21	15.78	16.18	15.72	16.23	15.77	16.30	16.27	16.32	15.73	

Nota: La tabla presenta los datos que se han obtenido del ensayo de compactación estándar, para este caso se ha plasmado los datos del OCH del suelo natural, del suelo con RA y del suelo con FC.

Fig. 20. Gráfico del contenido óptimo de humedad promedio de las 12 muestras, (a) Suelo natural y suelo con RA, (b) Suelo natural y suelo con FC.

En la Fig. 20 (a) se encuentra el gráfico de COH del suelo natural y del suelo con RA, en dicho gráfico se puede observar que el COH de la muestra SS fue de 17.93% y así mismo evidenció que las muestras con RA disminuyeron en 15.77%, 14.70%, 14.30% y 14.58% respecto a la muestra patrón, mientras que en la Fig. 20 (b) la FC hizo que el OCH disminuyera en 12.39% cuando se le agregó 5% de FC, así mismo disminuyó en 10.65% con la incorporación de 10% de FC, las muestras de 12% y 15% de FC también disminuyeron referente a la muestra patrón en 10.14% para cada muestra.

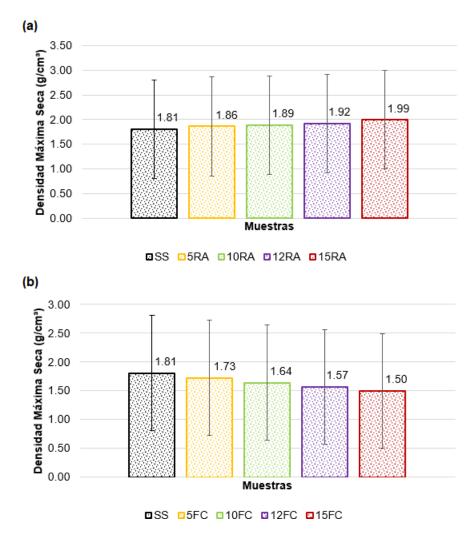

Del **Objetivo 3** se logró determinar la influencia de manera independiente de los residuos de acero y fibra de caucho en porcentajes de 5%, 10%, 12% y 15% en la densidad máxima seca del suelo.

Tabla XV.

Resultados de la DMS de las muestras de suelo con RA y FC.

Densidad Máxima Seca (g/cm³)														
Muestras	Código	Aditivo					Pι	ıntos d	e mues	streo				
iviuestras	Codigo	(%)	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
Suelo Natural	SS	0	1.81	1.82	1.80	1.83	1.78	1.81	1.80	1.81	1.82	1.77	1.81	1.831
Residuos de Acero	5RA	5	1.86	1.88	1.87	1.88	1.85	1.86	1.85	1.86	1.87	1.84	1.86	1.88
	10RA	10	1.89	1.89	1.90	1.91	1.88	1.89	1.88	1.89	1.90	1.87	1.89	1.91
Residuos de Aceio	12RA	12	1.92	1.93	1.92	1.94	1.91	1.92	1.91	1.92	1.92	1.90	1.92	1.93
	15RA	15	1.98	1.99	2.01	2.02	1.98	2.00	1.99	2.00	2.00	1.97	2.00	2.01
	5FC	5	1.72	1.73	1.74	1.75	1.71	1.72	1.72	1.73	1.73	1.70	1.73	1.74
Fibra de caucho	10FC	10	1.63	1.65	1.65	1.66	1.63	1.64	1.63	1.64	1.65	1.62	1.64	1.65
Fibra de caucilo	12FC	12	1.56	1.56	1.57	1.58	1.56	1.57	1.56	1.57	1.57	1.55	1.57	1.58
	15FC	15	1.49	1.51	1.49	1.51	1.49	1.50	1.49	1.50	1.50	1.48	1.50	1.51

Nota: La tabla presenta los datos que se han obtenido del ensayo de compactación estándar, para este caso se ha plasmado los datos de la DMS del suelo natural, del suelo con RA y del suelo con FC.

Fig. 21. Gráfico de la densidad máxima seca promedio de las 12 muestras, (a) Suelo natural y suelo con RA, (b) Suelo natural y suelo con FC.

La densidad máxima seca fue graficada en la Fig. 21 (a) dónde evidencia que las muestras SS, 5RA, 10RA, 12RA y 15RA tuvieron resultados de 1.81 kg/cm2, 1.86 kg/cm2, 1.89 kg/cm2, 1.92 kg/cm2 y 1.99 kg/cm2, significando que las muestras con RA fueron aumentando en 3.06%, 4.60%, 6.20% y 10.3% respecto a la muestra SS, mientras que La grafica de la Fig. 21 (b) evidencia que la muestra 5FC disminuyó en 4.53% respecto a la muestra patrón, lo mismo ocurrió con la muestra 10FC que disminuyó en 9.24%, las muestras 12FC y 15FC presentaron una disminución más amplia debido que se alejaron en 13.28% y 17.27% respectivamente en base a la muestra patrón.

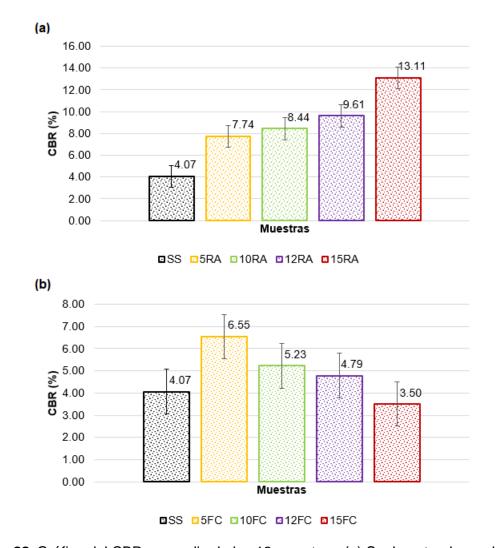

Del **objetivo 4** se determinó el CBR del suelo influenciado por la incorporación de 5%, 10%, 12% y 15% de residuos de acero y fibras de caucho de manera independiente.

Tabla XVI.

Resultados del CBR de las muestras de suelo con RA y FC.

	CBR (%)																
Muestras	Código	Aditivo		Puntos de muestreo													
เทนยรแสร	Codigo	(%)	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12			
Suelo Natural	SS	0	4.30	4.40	4.80	3.90	4.30	4.00	3.70	3.60	4.00	4.30	3.40	4.1			
	5RA	5	8.20	8.50	8.60	7.61	8.05	7.80	7.30	7.05	7.42	8.08	6.89	7.44			
Residuos de	10RA	10	9.00	8.90	9.40	8.36	8.72	8.39	7.95	7.69	8.13	8.76	7.64	8.32			
Acero	12RA	12	10.60	10.60	10.20	9.38	9.89	9.51	9.01	8.72	9.24	9.92	8.70	9.54			
	15RA	15	14.20	13.90	14.50	12.92	13.49	12.94	12.30	11.92	12.64	13.56	11.91	13.09			
	5FC	5	7.00	7.10	7.30	6.44	6.80	6.59	6.17	5.96	6.27	6.83	5.83	6.29			
Fibra de	10FC	10	5.50	5.60	5.80	5.17	5.40	5.20	4.92	4.76	5.04	5.43	4.73	5.16			
caucho	12FC	12	5.10	5.20	5.20	4.71	4.94	4.74	4.50	4.36	4.62	4.96	4.35	4.76			
	15FC	15	3.80	3.60	3.90	3.47	3.61	3.46	3.29	3.18	3.38	3.62	3.18	3.50			

Nota: La tabla presenta los datos que se han obtenido del ensayo de CBR del suelo natural, del suelo con RA y del suelo con FC, en la Tabla está plasmada los resultados de las 12 calicatas.

Fig. 22. Gráfico del CBR promedio de las 12 muestras, (a) Suelo natural y suelo con RA, (b) Suelo natural y suelo con FC.

La Fig. 22 (a) muestra el valor de CBR de la muestra patrón que fue de 4.07%, así

mismo está los valores de las muestras de 5RA, 10RA, 12RA y 15RA que fueron de 7.74%, 8.44%, 9.61% y 13.11% representando una mejora de 90.43%, 107.48%, 136.30% y 222.50% respecto a la muestra patrón, la Fibra de caucho fue sometidos a los ensayos de CBR donde tuvo influencia en el suelo debido a que se puede observar en la Fig. 22 (b) que la muestra 5FC superó en 61.02 a la muestra natura SS y los mismo ocurre con las muestras 10FC y 12FC que superaron a dicha muestra en 28.49% y 17.68% respectivamente, caso contrario pasó con la muestra 15FC que no pudo superar a la muestra patrón y disminuyó en 13.96%.

Finalmente, del **Objetivo 5** determinó los porcentajes óptimos de residuos de acero y fibras de caucho en el CBR, como se muestra en la Fig

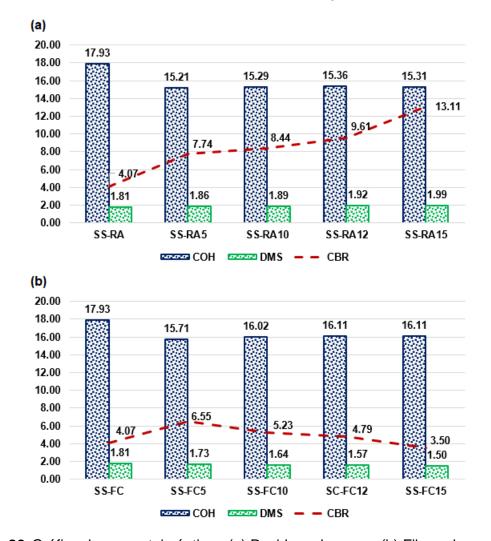


Fig. 23. Gráfica de porcentaje óptimo, (a) Residuos de acero, (b) Fibras de caucho.

La Fig. 23 (a) presenta la gráfica del porcentaje óptimo de RA, evidenciando que el 15% de RA obtiene el mayor valor de CBR que fue de 13.11%, con un COH de 15.31% y una

DMS de 1.99 gr/cm³. La gráfica que se encuentra en la Fig. 23 (b) contiene el porcentaje óptimo de FC, donde la muestra con 5% de FC presentó el mayor CBR con un valor de 6.55%, con la influencia de un COH de 15.71% y una DMS de 1.73 gr/cm³.

3.2. Discusión

Del primero objetivo, la investigación presentó que la humedad natural del suelo varía de 3% hasta 34%, mientras que Chowdhury y Kundu [31] determinó que la humedad del suelo que estudió era de 8.54%, se encuentra dentro del rango de la humedad obtenida en la investigación, sin embargo la investigación mostró una humedad muy superior debido a que la napa freática se encuentra muy superficial, en cuanto a Abreu [34], tuvo un CH de 7%, eso debido a que su material era granular, mientras que el análisis granulométrico evidencia el material de finos se encuentra hasta en 90.8% y el IP presentó valores de 4% hasta 24%, mediante el cual la clasificación de suelos SUCS determinó que son de tipo CL, CH y MH, Talledo y Sánchez [37] presentó el mismo tipo de suelo en su investigación, CL según SUCS y A-6 según AASHTO, casi el mismo contenido de finos presentó Chowdhury y Kundu [31], debido a que el 68.25% representó al suelo fino con un IP de 19.72%, logrando determinar que el suelo era de tipo MH, lo cual ese tipo de suelo también los presentó la investigación, en cuanto a Prasad et al. [32] presentó un IP de 46%, un valor muy elevado a comparación de la investigación realizada, lo cual representa a una arcilla con alta plasticidad, mientras que la clasificación AASHTO mostro un tipo de suelo de A-7 y A-6, similar al suelo identificado por Gálvez [33], teniendo a suelos de tipo A-6 y A-7-6, debido a que también presentó un IP muy cercano a la de la investigación que fue de 15.97% a 30.96%, Ramírez [36] presentó un suelo CL debido que la granulometría le determinó que el 83.99% era material fino con un IP de 12%, sin embargo Díaz y Torres [35] presentó arcillas inorgánicas con plasticidad elevada según SUCS (CH) y de tipo A-7-5 según AASHTO debido a que el IP fue de 32%, en cuanto a la sales, cloruros y sulfatos se presentaron hasta en 0.18%, 0.0213% y 0.0142% respectivamente, el PUS tuvo valores de 1.612 g/cm³ hasta 1.647 g/cm³, mientras que el PUC mostró valores de 1.638 g/cm³ hasta 1.671 g/cm³.

Del segundo objetivo, la investigación abordada dio como resultados en el contenido

óptimo de humedad de la muestra natural de 17.93% y la incorporación de 5%, 10%, 12% y 15% de RA disminuyeron el COH en 15.77%, 14.70%, 14.30% y 14.58%, mientras la incorporación de 5%, 10%, 12% y 15% de FC hizo que disminuyera en 12.39%, 10.65%, 10.14% y 10.14% todo ello referente a la muestra patrón. Rabab'Ah et al. [23] experimentó con RA y materiales cementosos para mejorar las propiedades del suelo, obteniendo como resultados que la incorporación de 5% de RA genera que el COH disminuya en 11.80%, acercándose a la variación que presentó el COH en la investigación con el mismo porcentaje de RA. En cuanto a la investigación de Rabab'Ah et al. [24], pudo demostrar que incoprorar RA en 15% disminuye el COH del suelo en 14.74%, presentando un resultado muy proximo al de la investigación aborda con el mismo porcentaje de RA. Mientras tanto Cabalar et al. [25] experimentó con la reutilización de CNC en porcentajes de 5%, 10% y 15% teniendo un decrecimiento en el COH del suelo de 2.26, 4.52 y 7.09%, mientras que en la investigación abordada también generó un decrecimiento sin embargo la variación fue mayor. Así mismo Cabalar et al. [26] coincidió en los porcentajes de incorporación pero con residuos de aluminio (5%, 10% y 15%) donde pudo tener una variación decreciente en el COH de 6.32%, 7.37% y 13.16%, presentando la misma tendencia decreciente que la investigación desarrollada. Saparudin et al. [27] en su investigación pudo evidenciar como el COH aumentaba cuando incorporó 5% de FC, caso contrario pasó en la investigación realizada donde el COH dismimnuyó en 12.39% con la misma dosificación de FC. Akbarimehr et al. [28] pudo determinar que las FC aumentan el COH en 19.17% con la incorporación de 50%, caso contrario paso en la investigacion realizada dónde el COH tuvo una tendencia decreciente. Abbaspour et al. [30] evidenció que el 4% de FC aumentó el COH en 18.83%, mientras que en la investigación abordada el COH presentó un declive en todas las dosificaciones.

Del tercer objetivo, en la densidad máxima seca, la investigación realizada proporcionó como resultado para la muestra de 1.81 g/cm³, y que fue mejorando debido a la incorporación de RA en 3.06%, 4.60%, 6.20% y 10.35% (5RA, 10RA, 12RA y 15RA), caso contrario sucedió con las FC que disminuyeron en 4.53%, 9.24%, 13.28% y 17.27% (5FC, 10FC, 12FC y 15FC). Rabab'Ah et al. [23] en su investigación determinó que la incorporación

de 25% de RA influye en la DMS del suelo debido a que generó un aumento de 8.77%, coicidiendo con la investigación debido a que genero un aumento en la DMS. En cuanto a Rabab'Ah et al. [24] pudo determinar el incremento que originó el 15% de RA en la DMS del suelo que fue de 7.10%, llegando a coincidir con la investigación debido a que el mismo porcentaje de RA generó un incremento en la DMS. Cabalar et al. [25] en su investigación determino que el 5%, 10% y 15% de CNC aumentan la DMS en 2.72%, 6.52% y 8.70% respectivamente teniendo la misma tendencia que la investigación abordada. Cabalar et al. [26] realizón una investigación donde mejoró las propiedades del suelo con residuos de aluminio, pudiendo determinar que los residuos antes mencionados presentaron un leve incremento en la DMS de 0.56%, 1.13% y 1.69%, auqellos incrementos se presentaron debido a la incorporación de 5%, 10% y 15%, al igual que en la investigación realizada, aunque está vez la diferencia no fue muy notable. Saparudin et al. [27] en su artículo identificó la variación que generó las FC en la DMS, esta vez la variación fue decreciente en un porcentaje de 0.62% con 5% de FC, con el mismo porcentaje de FC en la investigación realizada la MDS también disminuyó en 4.53%. Akbarimehr et al. [28] pudo observar la influencia de las FC en la DMS del suelo, debido a que disminuyó en 9.32% con la dosificación de 10%, en la investigación abordada también presentó una disminución similar con la misma dosificación que fue de 9.24%. Mukherjee y Kumar Mishra [29] incorporó 5% de FC y evidenció que la DMS del suelo disminuyó en 1.78%, mientras tanto en la investigación realizada también disminuyó la DMS con la misma dosficación pero en 4.53%. Abbaspour et al. [30] evidenció un declive con la incorporación de 0.5% de FC debido a que disminuyó en 1.10% la DMS, esa misma tendencia presento la investigación debido a que presentó un declive en todas sus dosificaciones.

Del cuarto objetivo, en el CBR la investigación abordada dio como resultados que la muestra patrón presentó 4.07% y que fue aumentando con la incorporación de 5%, 10%, 12% y 15% de RA en 90.43%, 107.48%, 136.30%, 222.50%; lo mismo ocurrió con las FC que mejoraron con 5%, 10%, 12% en 61.02%, 28.49% y 17.68%, sin embargo, la muestra con 15% de FC disminuyó referente a la muestra patrón en 13.96%. Rabab'Ah et al. [23] incorporó

al suelo 25% de RA pudiendo evidenciar una mejora de 89.29%, teniendo la misma tendencia que en la investigación abordada. Rabab'Ah et al. [24] experimentó con RA en porcentaje de 15% donde puedo conocer la mejora que generó dicha adición en el CBR del suelo que fue de 66.67%. Cabalar et al. [25] determinó el CBR de un suelo mezclado con 5%, 10% y 15% de CNC donde se evidencia una gran mejora de 20%, 41.54% y 53.85% respectivamente, mosntrando que tiene la misma mejora que en esta investigación. Cabalar et al. Cabalar et al. [26] determinó el CBR del suelo con residuos de aluminio, generando una mejora de 27.87%, 31.15% y 45.90%, esta mejora no se compara con la que presentó el CBR de esta investigación, pero presenta la misma tendencia de incremento. Saparudin et al. [27] demostró que la incorporación de FC logró un incremento en el CBR del suelo en 182.54% con la dosificación de 10%, mientras en la investigación abordad también presentó una mejora pero no tan amplia debido a que solo mejoró en 28.49%. Abbaspour et al. [30] mejoró el CBR en 283.4% con la incorporación de 2% de FC, mientras que en esta investigación la mejora mas representativa lo tuvo el 5% de FC que incrementó solo en 61.02%.

Del quinto objetivo, la investigación presentó el porcentaje óptimo de RA, donde se evidenció que la muestra con 15% de RA fue la que mejor resultados presentó debido a que mejoró el CBR del suelo obteniendo un valor de 13.11%. En las FC el porcentaje óptimo fue la muestra con 5% debido a que obtuvo un CBR de 6.55%, siendo superior a las demás muestras. Rabab'Ah et al. [23] tuvo como porcentaje óptimo de RA a la muestra con 25% debido a que mejoró en 89.29% el CBR del suelo, así mismo, Cabalar et al. [25] tuvo como porcentaje óptimo a la muestra con 20% de RA debido a que mejoro en 76.92% el CBR del suelo, mientas que con las FC se tiene a Saparudin et al. [27] que mejoró el CBR del suelo en 182.54% con la muestra de 10% de FC, al igual Abbaspour et al. [30] determinó que su porcentaje óptimo de FC fue la muestra con 10% debido a que mejoró el CBR del suelo en 283.4%.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

La investigación mostró el comportamiento del suelo natural y así mismo mostró los resultados del suelo estabilizado con los residuos de acero y fibra de caucho. Es así como los RA y las FC influyeron en la estabilización del suelo natural y por ello se tiene las siguientes conclusiones.

- Según los resultados obtenidos de las 12 calicatas que se han realizado para el desarrollo de la investigación, se concluye que el suelo de la Av. Grau es de tipo CL, CH y MH según SUCS con in IP de hasta 24% donde los suelos finos predominan con 90.8%.
- Los RA y las FC influyeron en el COH del suelo, debido a que ambos aditivos variaron de manera decreciente el COH, en los RA la dosificación que generó la mayo disminución en el COH fue la 12% debido a que varió en 15.36% respecto a la muestra patrón, en cuanto a las FC dos porcentajes fueron los que presentaron la mayor variación respecto a la muestra patrón, siendo los porcentajes de 12% y 15% de FC que generaron una variación de 16.11% para ambas.
- En la DMS se evidenció que los RA y las FC influyeron de distintas maneras, mientras los RA presentaron una tendencia creciente cada vez que se añadía mas porcentajes, las FC tuvieron una tendencia decreciente. En los RA la muestra con 15% mejoraron respecto a la muestra patrón en 10.35%, siendo así el porcentaje que mayo variación generó, en cambio los FC no pudieron presentar una mejora respecto a la muestra patrón, donde la muestra con 5% de FC vario en 4.53%, siendo la mejor a comparación de las demás muestras.
- Los RA y las FC influyeron en el CBR del suelo, ambas muestras lograron mejorar el CBR.
 Los RA lograron mejorar hasta en 222.50% respecto al CBR del suelo patrón, dicha mejora fue debido a la incorporación de 15% de RA, mientras en las FC la mejora se evidenció con el 5%, dónde presentó un incremento de 61.02% en base al CBR de la muestra patrón.

 Según los porcentajes óptimos de RA y FC se concluye que el CBR del suelo mejora con la incorporación de 15% de RA y para la FC presentará un leve incremento en el CBR con la incorporación de 5%.

4.2. Recomendaciones

Al ver los resultados de la investigación y concluir que los RA y las FC generan influencia en la estabilización del suelo, por ello se recomienda el uso de dichos materiales, sin embargo, el acero ha sido más representativo en el OCH, la DMS y el CBR del suelo.

- El CBR del suelo de la Av. Grau no presenta buenas condiciones por lo que se recomienda mejorar dichos suelos, para cumplir las características de un suelo adecuado para una obra de ingeniería vial. También se recomienda a futuras investigaciones evaluar las características físicas del suelo influenciado por los RA y FC.
- Se recomienda el uso de 5% de RA y de FC en el contenido óptimo de humedad, debido a que logró disminuir el porcentaje de agua del suelo.
- Para la densidad máxima seca es recomendable el uso de RA en un porcentaje de incorporación de 15%, mientras las FC no mejoran la DMS del suelo, sin embargo, se podría usar en un porcentaje de incorporación de 5%.
- Para mejorar el CBR del suelo se recomienda incorporar 15% de RA debido a que logra mejorar en 222.50% respecto a la muestra patrón, y las FC se recomienda incorporar en un porcentaje de 5% debido a que logra un aumento del 61.02%.
- Se recomienda estabilizar el suelo con RA en un porcentaje de adición de 15% y podría ser complementada con 5% de FC.

REFERENCIAS

- [1] N. Yadav, B. Jethy e R. Kumar, "The effect of reclaimed sand and lime on the properties of black cotton soil in context of subgrade improvement," *Innovative Infrastructure Solutions*, vol. 8, no 5, p. 156, 2023.
- [2] V. Arundhathi, K. Hemantha Raja, K. Shyam Chamberlin e S. Hamim Jeelani, "Strengthening of BC soil by using fly ash and coir fiber ash as an additive in subgrade layers of pavement," *Advances in Sustainable Construction Materials*, vol. 2759, no 1, 2023.
- [3] J. Arrieta-Baldovino, R. Izzo e C. Millan-Paramo, "Applying the Porosity-to-Cement Index for Estimating the Mechanical Strength, Durability, and Microstructure of Artificially Cemented Soil," *Civil Engineering Journal (Iran)*, vol. 9, no 5, pp. 1023 1038, 2023.
- [4] S. Ghadr, A. Assadi-Langroudi e H. Bahadori, "Replacing C3S cement with PP fibre and nanobiosilica in stabilisation of organic clays," *Geomechanics and Engineering*, vol. 33, no 4, pp. 401 414, 2023.
- [5] B. Vinod, R. Shobha, A. Raghavendra, M. Rakesh e S. Pallavi, "Stabilization on Expansive soil using sea shell powder and Rubber powder," em *IOP Conference Series:* Materials Science and Engineering, Pandharpur, 2020.
- [6] K. H. Shubber e A. A. Saad, "Subgrade stabilization strategies effect on pavement thickness according to AASHTO pavement design method. (Review)," em IOP Conference Series: Materials Science and Engineering, Istanbul, 2020.
- [7] L. A. Cohen Peña e P. A. Paz Castillo, "Mejoramiento del CBR adicionando escoria de acero blanca al suelo de la Ruta N° LI-810 con trayectoria: Emp. pe-3n (Quiruvilca) – Bandurria," Repositorio Institucional UPC, Lima, 2021.
- [8] U. Zada, K. Haleem, M. Saqlain, A. Abbas e A. U. Khan, "Reutilization of Eggshell Powder for Improvement of Expansive Clayey Soil," *Iranian Journal of Science and*

- Technology Transactions of Civil Engineering, vol. 47, nº 2, pp. 1059 1066, 2023.
- [9] B. Varsha, A. A. B. Moghal, A. U. Rehman e B. C. S. Chittoori, "Shear, Consolidation Characteristics and Carbon Footprint Analysis of Clayey Soil Blended with Calcium Lignosulphonate and Granite Sand for Earthen Dam Application," Sustainable Construction Materials and Technology, vol. 17, no 7, p. 6117, 2023.
- [10] S. Barmade, A. Dhamaniya e S. Patel, "Evaluating the Structural Performance of Stabilized Expansive Soil as Subbase Layer for Sustainable Pavements," *International Journal of Geosynthetics and Ground Engineering*, vol. 9, no 2, p. 23, 2023.
- [11] I. Bozyigit, H. O. Zingil e S. Altun, "Performance of eco-friendly polymers for soil stabilization and their resistance to freeze-thaw action," *Construction and Building Materials*, vol. 379, p. 131133, 2023.
- [12] V. Strezov e C. Chaudhary, "Impacts of iron and steelmaking facilities on soil quality," *Journal of Environmental Management*, vol. 203, pp. 1158 - 1162, 2023.
- [13] I. Sharaky, S. S. Ghoneim, B. H. Abdel Aziz e M. Emara, "Experimental and theoretical study on the compressive strength of the high strength concrete incorporating steel fiber and metakaolin," *Structures*, vol. 31, pp. 57-67, 2021.
- [14] M. A. Sellitto e F. K. Murakami, "Destination of the waste generated by a steelmaking plant: a case study in Latin America," *Aestimum*, vol. 77, pp. 127 144, 2020.
- [15] S. Pourrahim, A. Salem, S. Salem e R. Tavangar, "Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxid," *Environmental Pollution*, vol. 256, p. 113454, 2020.
- [16] N. Ahmad, N. Ahmad, U. Ahmed, A. G. Abdul Jameel, U.-e.-S. Amjad, M. Hussain e M. M. Arif, "Production of fuel oil from elastomer rubber waste via methanothermal liquefaction," Fuel, vol. 338, p. 127330, 2023.
- [17] J. Yadav e S. Tiwari, "Effect of waste rubber fibres on the geotechnical properties of clay

- stabilized with cement," Applied Clay Science, vol. 149, pp. 97 110, 2017.
- [18] A. M. Mhaya, S. Shahidan, S. S. M. Zuki, G. F. Huseien, M. A. M. Azmi, M. Ismail e J. Mirza, "Durability and Acoustic Performance of Rubberized Concrete Containing POFA as Cement Replacement," *Sustainability (Switzerland)*, vol. 14, nº 23, p. 15510, 2022.
- [19] A. Fazli e D. Rodrigue, "Sustainable Reuse of Waste Tire Textile Fibers (WTTF) as Reinforcements," *Polymers*, vol. 14, no 19, p. 3933, 2022.
- [20] E. Mina, R. Kusuma e N. Ulfah, "Utilization of steel slag and fly ash in soil stabilization and their effect to california bearing ratio (CBR) value. (Case study: Kp. Kadusentar road Medong village Mekarjaya Subdistrict Pandeglang District)," em *IOP Conference Series:* Materials Science and Engineering, Bali, 2019.
- [21] D. Akbarimehr, A. Eslami e E. Aflaki, "Geotechnical behaviour of clay soil mixed with rubber waste," *Journal of Cleaner Production*, vol. 271, p. 122632, 2020.
- [22] N. Tiwari e N. Satyam, "Experimental study on the influence of polypropylene fiber on the swelling pressure expansion attributes of silica fume stabilized clayey soil," *Geosciences (Switzerland)*, vol. 9, no 9, p. 377, 2019.
- [23] S. Rabab'Ah, O. Al Hattamleh, H. Aldeeky, M. M. Aljarrah and H. A. Al Qablan, "Resilient Response and Permanent Strain of Subgrade Soil Stabilized with Byproduct Recycled Steel and Cementitious Materials," *Journal of Materials in Civil Engineering*, vol. 32, no. 6, p. 04020139, 2020.
- [24] S. Rababah, H. Aldeeky, H. Qasrawi and O. Al Hattamleh, "Performance of subgrade soil stabilised with by-product recycled mill scale and cementitous materials," *International Journal of Pavement Engineering*, vol. 23, no. 3, pp. 708 - 718, 2022.
- [25] A. F. Cabalar, I. A. Ismael and A. Yavuz, "Use of zinc coated steel CNC milling waste for road pavement subgrade," *Transportation Geotechnics*, vol. 23, p. 100342, 2020.
- [26] A. F. Cabalar, G. Hayder, M. D. Abdulnafaa e H. Isik, "Aluminum waste in road pavement subgrade," *Ingenieria e Investigacion*, vol. 40, no 1, pp. 7 16, 2020.

- [27] N. A. Saparudin, N. Kasim, K. A. Taib, W. N. A. W. Azahar, N. A. Kasim and M. Ali, "IMPROVEMENT OF PROBLEMATIC SOIL USING CRUMB RUBBER TYRE," *IIUM Engineering Journal*, vol. 23, no. 2, pp. 72 84, 2022.
- [28] D. Akbarimehr, A. Eslami, E. Aflaki and M. M. Hajitaheriha, "Investigating the effect of waste rubber in granular form on strength behavior of Tehran clay," *Arabian Journal of Geosciences*, vol. 14, no. 18, p. 1831, 2021.
- [29] . K. Mukherjee e A. Kumar Mishra, "Recycled waste tire fiber as a sustainable reinforcement in compacted sand-bentonite mixture for landfill application," *Journal of Cleaner Production*, vol. 329, p. 129691, 2021.
- [30] M. Abbaspour, E. Aflaki e F. Moghadas Nejad, "Reuse of waste tire textile fibers as soil reinforcement," *Journal of Cleaner Production*, vol. 207, pp. 1059 1071, 2019.
- [31] S. Chowdhury e S. Kundu, "Improvement of Soil Subgrade with Shredded Rubber Tire Waste," em *Indian Geotechnical Conference*, Trichy, 2023.
- [32] D. Prasad, K. B. Kumar, K. Sridevi, K. Vishalakshi, G. V. R. P. Raju and K. J. Raju, "Evaluation of Strength Characteristics on Black Cotton Soil-Stone Dust Mixtures Reinforced with Shredded Tyre Rubber," in *Indian Geotechnical Conference*, Surat, 2021.
- [33] A. G. Gálvez-Cooper, "Stabilization of clayey soils using asphalt emulsion and steel filings for subgrades," *DYNA (Colombia)*, vol. 90, no. 226, pp. 66 72, 2023.
- [34] J. L. Abregu Chavez, "Influencia de la fibra de caucho en las propiedades mecánicas de la base granular de los pavimentos," Repositorio Institucional UPLA, Huancayo, 2019.
- [35] K. J. Díaz Suárez e R. M. Torres Frias, "Incorporación de Partículas de Caucho de Neumáticos para Mejorar las Propiedades Mecánicas en Suelos Arcillosos," Repositorio Institucional UNJ, Jaén, 2019.
- [36] F. A. Ramirez, "Análisis de las propiedades mecánicas del suelo arcilloso utilizando fibra de caucho y polímeros de nailon, Villa Hermosa Chiclayo, 2021," Repositorio

- institucional UCV, Chiclayo, 2021.
- [37] J. K. Talledo e J. A. Sánchez, "Mejoramiento de los suelos arcillosos en subrasante mediante el uso de fibras de caucho reciclado en las vías de la Habilitación Urbana Cholo Lindo, ubicada en la UC 10508- 10489, Predio rústico Chacupe, del distrito de Reque, provincia de Chiclayo, depar," Repositorio institucional UNPRG, Chiclayo, 2023.
- [38] M. J. Smith, Soil Mechanics, Routledge, 2013.
- [39] V. N. Kaliakin, Stresses, Strains, and Elastic Response of Soils, Elsevier, 2017.
- [40] J. Wiley e Sons, From Soil Mechanics to Geotechnical Engineering, NJ, USA: Hoboken, 2013.
- [41] R. F. Craig, Soil Mechanics, Boston, MA: Springer, 1983.
- [42] W. Liu, X. Huang, X. Feng and Z. Xie, "Compaction and bearing characteristics of untreated and treated lateritic soils with varying moisture content," *Construction and Building Materials*, vol. 392, p. 131893, 2023.
- [43] V. Schaefer, R. Berg e S. Douglas, "Geotechnical solutions for transportation infrastructure: a web-based toolkit," *Proceedings of the International Symposium on Ground Improvement*, vol. 4, pp. 367-376, 2012.
- [44] V. Raju and J. Daramalinggam, "Ground improvement: principles and applications in Asia," *Ground Improvement*, vol. 165, no. 2, pp. 65-76, 2012.
- [45] DeJong, "Biogeochemical processes and geotechnical applications: progress, opportunities and challenges.," *Géotechnique*, vol. 63, no. 4, pp. 287-301, 2013.
- [46] F. Villalobos, Mecánica de suelos (2a. ed.), Editorial ebooks Patagonia Ediciones UCSC, 2016.
- [47] Agència de Residus de Catalunya, "Guía de buenas prácticas para el reciclaje de vehículos fuera de uso en Cataluña," Gremio de recuperación de Cataluña, Cataluña, 2001.
- [48] Aceros Arequipa, "Manual para proveedores de chatarra," Corporación Aceros

- Arequipa, Arequipa, 2023.
- [49] S. Chowdhury and S. Kundu, "Improvement of Soil Subgrade with Shredded Rubber Tire Waste," Lecture Notes in Civil Engineering, vol. 297, pp. 335 - 345, 2023.
- [50] L. Al-Subari and A. Ekinci, "Strength and durability assessment of shredded tire rubber stabilized artificially cemented alluvial clay," *Construction and Building Materials*, vol. 345, p. 128312, 2022.
- [51] V. R. Karnati, A. Koukuntla and S. Karnati, "Influence of Crumb Rubber and Polypropylene Fibre on the Behaviour of Cemented Black Cotton Soil," *Lecture Notes in Civil Engineering*, vol. 152, pp. 379 - 390, 2022.
- [52] ASTM D6270-08, Standard Practice for Use of Scrap Tires in Civil Engineering Applications, ASTM License Agreement, 2012.
- [53] D. B. Glick e M. MD, "Research Methodology: The Aims, Practices and Ethics of Science," *Anesthesia & Analgesia*, vol. 124, no 5, p. 1727, 2017.
- [54] C. B. Ruiz Huaraz e M. R. Valenzuela Ramos, Metodología de la investigación, Fondo Editorial UNAT, 2022.
- [55] A. İ. Çelik, Y. O. Özkılıç, Ö. Zeybek, N. Özdöner and B. A. Tayeh, "Performance Assessment of Fiber-Reinforced Concrete Produced with Waste Lathe Fibers," Sustainability (Switzerland), vol. 14, no. 19, p. 11817, 2022.
- [56] J. E. Jiménez, C. M. Fontes Vieira and H. A. Colorado, "Composite Soil Made of Rubber Fibers from Waste Tires, Blended Sugar Cane Molasses, and Kaolin Clay," *Sustainability* (Switzerland), vol. 14, no. 4, p. 2239, 2022.
- [57] H. E. Romero Delgado, H. Ñaupas Paitán, J. J. Pañacios Vilela e M. R. Valdivia Dueñas, Metodología de la investigación. Cuantitativa – Cualitativa y redacción de la tesis. 5ª Edición, Bogotá: Ediciones de la U, 2018.
- [58] Ministerio de Vivienda, Construcción y Saneamiento, *Anexo 3: Reglamento del sistema vial primario,* Chiclayo: Ministerio de Vivienda, Construcción y Saneamiento, 2022.

- [59] CE. 10, Pavimentos Urbanos, Instituto de la Construcción y Gerencia..
- [60] USS S.A.C., Código de Ética en Investigación, Pimentel: USS, 2023.
- [61] M. Ghazavi e M. Kavandi, "Shear modulus and damping characteristics of uniform and layered sand-rubber grain mixtures," Soil Dynamics and Earthquake Engineering, vol. 162, p. 107412, 2022.

ANEXOS

ANEXO N° 1. Matriz de consistencia.	.73
ANEXO N° 2. Análisis económico	.74
ANEXO N° 3: Fichas técnicas de laboratorio del suelo natural	.75
ANEXO N° 4: Fichas técnicas de laboratorio del suelo adicionado residuos de acero 1	134
ANEXO N° 5: Fichas técnicas de laboratorio del suelo adicionado las fibras de caucho 1	170
ANEXO N° 6: Fichas de validación según AIKEN	206
ANEXO N° 7: Validez y confiabilidad por 5 jueces expertos	211
ANEXO N° 8: Certificados de calibración de equipos2	214
ANEXO N° 9. Certificación de laboratorio	217
ANEXO N° 10: Mapa de ubicación de calicatas2	218
ANEXO N° 11. Panel fotográfico2	219

ANEXO N° 1. Matriz de consistencia.

Título: Influencia de	e los residuos de acero y fibra de cauch	o en la estabilización del suelo.			
Problema de Estudio	Problemas	Objetivos	Hipótesis	Variables y dimensiones	Metodología
	Problema general	Objetivo general	Hipótesis general	Variable independiente	<u>Tipo de investigación:</u> Aplicada
Los suelos que mayormente son		Determinar la influencia de la incorporación de residuos de acero y fibra de Caucho en la estabilización del suelo.	Los Residuos de Acero y fibra de Caucho influyen sustancialmente en la estabilización del suelo arcilloso.	-Influencia de los Residuos de Acero -Influencia de la Fibra de Caucho DIMENSIONES: Dosificación de Residuos de Acero	Enfoque de investigación: Cuantitativa Diseño de investigación: experimental
finos o expansivos suelen ser un	Problemas específicos	Objetivos específicos	Hipótesis especificas	Variable dependiente	Población y muestra:
problema y no se pueden utilizar como rellenos o capa de pavimentación generando así varios inconvenientes para que estos suelos sean un material técnicamente utilizable en la construcción civil debido que carecen de buenas	del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque? - PE2: ¿ Cómo influye de manera independiente los residuos de acero y fibra de caucho en porcentajes de 5%, 10%, 12% y 15% en el óptimo contenido de humedad del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque? - PE3: ¿ Cómo influye de manera independiente los residuos de acero y fibra de caucho en porcentajes de 5%, 10%, 12% y 15% en la densidad máxima seca del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque? - PE4: ¿Cómo se comporta el CBR del suelo influenciado por la incorporación de 5%, 10%, 12% y 15% de residuos de	- OE1: Identificar las características del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque OE2: Determinar la influencia de manera independiente de los residuos de acero y fibra de caucho en porcentajes de 5%, 10%, 12% y 15% en el óptimo contenido de humedad del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque OE3: Determinar la influencia de manera independiente de los residuos de acero y fibra de caucho en porcentajes de 5%, 10%, 12% y 15% en la densidad máxima seca del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque OE4: Determinar el CBR del suelo influenciado por la incorporación de 5%, 10%, 12% y 15% de residuos de acero y fibras de caucho de manera independiente OE5: Determinar los porcentajes óptimo de residuos de acero y fibras de caucho en el CBR del suelo del distrito de La Victoria, provincia de Chiclayo – Lambayeque.	- HE1: El suelo del distrito de La Victoria, provincia de Chiclayo — Lambayeque presentaron características arcillosas HE2: De manera independiente los residuos de acero y fibra de caucho en porcentajes de 5%, 10%, 12% y 15% influyen sustancialmente en el óptimo contenido de humedad del suelo del distrito de La Victoria, provincia de Chiclayo — Lambayeque HE3: De manera independiente los residuos de acero y fibra de caucho en porcentajes de 5%, 10%, 12% y 15% influyen sustancialmente en la densidad máxima seca del suelo del distrito de La Victoria, provincia de Chiclayo — Lambayeque HE4: El CBR del suelo se comporta de manera óptima influenciado por la incorporación de 5%, 10%, 12% y 15% de residuos de acero y fibras de caucho de manera independiente HE5: Los porcentajes óptimo de residuos de acero y fibras de caucho fueron en porcentajes de 15% y 5% respectivamente	Estabilización del suelo DIMENSIONES: -Características del suelo -Compactación del suelo -Capacidad de soporte del suelo	P: Avenida Grau que se encuentra en el Distrito de la Victoria entre la Panamericana Norte y Chacupe Alto. M: 400 m de la Avenida Grau que se encuentra en el Distrito de la Victoria entre la Panamericana Norte y Chacupe Alto. Técnicas e instrumentos de recolección de datos: T: Observación directa. I: Ficha de observación para ensayos

ANEXO N° 2. Análisis económico.

ANÁLISIS ECONÓMICO COMPARATIVO

Material	Precio (S/)	Cantidad (kg)
Cal Hidráulica	0.90	1
Cemento	0.71	1
Residuos de Acero	70.00	1
Fibra de Caucho	1.90	1

Molde de CBR 5.50 kg de suelo

Aditivo	Código	Dosificación (%)	Cantidad (kg)	Precio (S/)
	5CAL	5	0.28	0.25
Callidatuliaa	10CAL	10	0.55	0.49
Cal Hidráulica	12CAL	12	0.66	0.59
	15CAL	15	0.83	0.74

Aditivo	Código	Dosificación (%)	Cantidad (kg)	Precio (S/)
	5CEMENTO	5	0.28	0.19
Compate	10CEMENTO	10	0.55	0.39
Cemento	12CEMENTO	12	0.66	0.47
	15CEMENTO	15	0.83	0.58

Aditivo	Código	Dosificación (%)	Cantidad (kg)	Precio (S/)
	5RA	5	0.28	19.25
Desidence de Asses	10RA	10	0.55	38.50
Residuos de Acero	12RA	12	0.66	46.20
	15RA	15	0.83	57.75

Aditivo	Código	Dosificación (%)	Cantidad (kg)	Precio (S/)
	5FC	5	0.28	0.52
Fibra da Casaba	10FC	10	0.55	1.05
Fibra de Caucho	12FC	12	0.66	1.25
	15FC	15	0.83	1.57

ANEXO N° 3: Fichas técnicas de laboratorio del suelo natural.

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C.

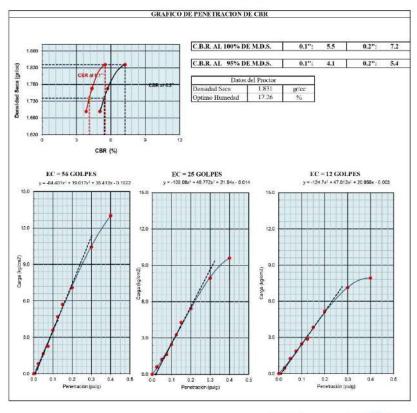
Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del "Suelo" PROYECTO (**)

UBICACIÓN (***) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla inorgânica CODIGO DE MUESTRA (**) : Calicata: C-12, Muestra: M-01


COORDENADAS (**) ; E 0625881- N 9243321 CÓDIGO INTERNO (**) : CI-447

TECNICO ENCARGADO : Segundo A. Carranza Mejia

FECHA DE MUESTREO (**) : ######### HORA DE MUESTREO (**): -MUESTREADO POR (**):

FECHA DE RECEPCION: ########## FECHA DE ENSAYO: ######### FECHA DE EMISION: #########

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado.

El informe corresponde única y exclusivamente a la muestra recibida.

^{**} Else copies de este informe o son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (*º) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez : Arcilla inorgânica MATERIAL (**) HORA DE MUESTREO (**): : Calicata: C-12, Muestra: M-01 CODIGO DE MUESTRA (**) MUESTREADO POR (**): -: E 0625881- N 9243321 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022

CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
ndidad volumétrica			S 00		.45. 5- e	
N° de moide	1	2	25	S	31)
№ capa		Į.	5		5	
Golpes por capa Nº		6	25	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	12380	12440	12450	12570	12105	12286
Peso de mokle	7808	7808	8076	8076	7910	7910
Peso de suelo húmedo	4572	4632	4374	4494	4195	4376
Volumen del molde	2121	2121	2111	2111	2109	2109
Densidad humeda	2.156	2.184	2.072	2.129	1.989	2.075
% de humedad	17.25	19.73	17.20	21.26	17.08	23.07
Densidad seca	1.839	1.824	1.768	1.756	1.699	1.686
ntenido de húmedad						
Nº de tarro	189	51	-	18	8	€.
Tarro + suelo luimedo	446.0	446.0	489.3	489.3	516.9	516.9
Tamo + suelo seco	380.4	372.5	417.5	403.5	441.5	420.0
Peso de agua	65.6	73.5	71.8	85.8	75.4	96.9
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	380.4	372.5	417.5	403.5	441.5	420.0
% de humedad	17.25	19.73	17.20	21.26	17.08	23.07

Expasión											
Fecha	Hora	Tiempo		Expasion			Expasión			Expasión	
recus	Hora	Hr.	Dial	mm	36	Dial	mm	9%	Dial	mm	%
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	0.0	0.00	0.0	10.0	0.25	0.2	30.0	0.76	0.7
17/11/22	14:30	42	0.0	0.00	0.0	15.0	0.38	0.3	40.0	1.02	0.5
18/11/22	14:30	65	0.0	0.00	0.0	20.0	0.51	0.4	45.0	1.14	1.6
19/11/22	14:30	95	5.0	0.13	0.1	25.0	0.64	0.5	50.0	1.27	1.1

				P	enetrac	ión							
Penetración	Carga		Molde Nº		12		Molde Nº	7	28		Mokle Nº	(6)	30
Penetración	Stand	Car	199	Cone	eción	Ca	гди	Corre	eción	Ca	nga.	Corre	сежн
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	. %
0.000	7,510,000	0	.0			0	0			0	0		
0.025		18.2	1			12.3	1			9.2	0		
0.050		32.5	2			24.4	1.			24.5	- 1		
0.075		44,4	2			32.5	2			36.6	2		
0.160	70.3	70.5	4	3.9	5.5	48.5	2	3.1	4.4	48.8	2	2.7	3.8
0.125		92.5	9			64.4	3			56.5	- 3		
0.150		112.5	6			84.5	4			75.5	4		
0.200	105.5	139.6	19	7.6	7.2	108.9	5	6.0	5.7	101.5	5	5.3	5.1
0.300		205.6	10			158.5	8			140.5	7		
0.400		256.5	13			189.4	10			156.2	8		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

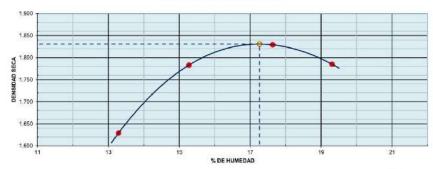
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) HORA DE MUESTREO (**): -: Arcilla inorgánica CODIGO DE MUESTRA (**) : Calicata: C-12, Muestra: M-01 MUESTREADO POR (**): -: E 0625881- N 9243321 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad vo	lumétrica	17		
Volumen del molde (cm3) 2105	PESO DEL MOLD	DE (g) :	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10345	10787	10989	10945	
Peso suelo húmedo compactado (g)	3884	4326	4528	4484	
Peso volumétrico húmedo	1.845	2.055	2.151	2.130	
	Contenido d	e humedad			
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	332.5	412.1	368.9	484.4	
Peso suelo seco + tara (g)	293.5	357.5	313.6	406.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	39.0	54.6	55.3	78.4	
Peso de suelo seco (g)	293.5	357.5	313.6	406.0	
Contenido de agua	13.29	15.27	17.63	19.31	
Peso volumétrico seco	1.629	1.783	1.829	1.785	
Densidad maxima seca: 1.831	g/cm ³		Húmedad optima:	17.26	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-12, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (**) : E 0625881- N 9243321 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo normalizado para la determinación cuantitativa de sulfatos solubles en suelos y agua subterránea. NTP 339.178 2002 (revisada el 2015)

DATOS DEL ENSAYO						
Descripción	Partes por millon (ppm)	Resultados (%)	Conclusión			
Contenido de sulfatos (SO4-2) (ppm)	126	0.0126	Insignificante			

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida,

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-12, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (**) : E 0625881- N 9243321 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo para la determinación cuantitativa de cloruros solubles en suelos y agua subterránea. NTP 339.177 2002 (revisada el 2015)

DATOS DEL ENSAYO					
Descripción	Partes por millon (ppm)	Resultados (%)	Conclusión		
Contenido de cloruros (CL) (ppm)	189	0.0189	Insignificante		

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida,

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -: Calicata: C-12, Muestra: M-01 CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) ; E 0625881- N 9243321 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo normalizado para la determinación del contenido de sales solubles en suelos y agua subterránea.

NTP 339.152 2002 (revisada el 2015)

·			
		Promedio	
Mucstra (N°)	1	2	
Peso Tarro (Biker 100 ml.) Pyres (g)	45.36	54.63	
Peso Tarro + agua + sal (g)	87.87	104.63	
Peso Tarro Seco + sal (g)	45.42	54.71	
Peso de Sal (g)	0.06	0.08	
Peso de Agua (g)	42.51	50.00	
Porcentaje de Sal (%)	0.15	0.16	0.15

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} El morme corresponde unta y excussivamente.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): : Calicata: C-12, Muestra: M-01 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 E 0625881- N 9243321 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 : CI-447 TECNICO ENCARGADO FECHA DE EMISION: 20/11/2022 : Segundo A. Carranza Mejia

SUELOS. Método de ensavo para determinar el límite liquido, limite plástico, e indice de plasticidad de suelos. 1º Edición NTP 339.129:1999 (revisada el 2019)

Espécimen de ensayo	Preparación húmeda			
	Mezclado en capsula y partículas de aren- removidas			
	Agua destilada			

Contenedor, No.	15	15	9
Masa húmeda de suelo + Container, M1 (g)	37.75	29.04	29.16
Masa seca de suelo + Container, M2 (g)	36.38	27.32	27.34
Masa del container, M3 (g)	30.36	20.39	20.53
Contenido de agua, W, (%)	22.76	24.82	26.73
Numero de Golpes	29	22	15

w=((MI-M2)/(M2-M3))*100

LÍMITE PLÁSTICO					
Contenedor, No.	17	22			
Masa húmeda de suelo + Container, M1 (g)	23.67	24.73			
Masa seca de suelo + Container, M2 (g)	22.53	23.57			
Masa del container, M3 (g)	16.65	17.63			
Contenido de agua, W, (%)	19.39	19.53			

w=((MI-M2)/(M2-M3))*100

Equipo empleado	Limite liquido	Equipo manual
	Limite Plástico	Rolado manual
	Ranurador casa grande	Plástico

Equipamiento	Balanza	BAL-16	
	Horno	HOR-04	
	Copa casa grande	CC-06	
	Ranurador	RA-01	

LÍMITES DE CONS	ISTENCIA
Limite liquido	24
Limite plástico	19
Índice plástico	4

Observaciones del ensayo

* Masa retenida tamiz N°40 (%): 17.5 * Humedad de recepcion : * Tamaño maximo de particulas : 3/8 in * Clasificación según carta de plasticidad :

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son vàlidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial, estando destinado unica y exclusivamente al cliente.

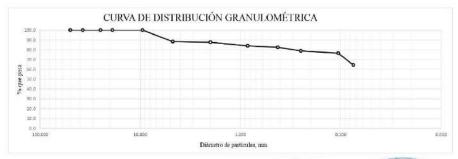
(***) Datos proporcionados por el cliente.

Ax. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lamb Servicios de Laboratorios Chiclayo - E MP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mails servicios, julighotmail.com. Lambayeque RUC: 20487357465

INFORME DE ENSAYO

PROYECTO (**) "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (**)


FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) Calicata: C-12, Muestra: M-01 MUESTREADO POR (**): FECHA DE RECEPCION: 15/11/2022 E 0625881-N 9243321 COORDENADAS (**) CÓDIGO INTERNO (**) CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Taniandata	Balanza	BAL-27
Equipamiento	Danner	BAL-16

Condiciones ambientales de ensayo	Temperatura 18.5	
	Humedad	64.6%

Código de Tamices	Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Descripción	
M-6-01	6 in.	150.000					1. Masa de material	
M-4-01	4 in.	100,000					Masa seca inicial, g	674.0
M-3-03	3 in.	75,000					Masa seen lavada, g	674.0
M-2-09	2 in.	50.000					2. Descripción	
M-1 1/2-09	1 1/2 in.	37,500					Tamaño máximo	3/8 in.
M-1-09	1 in.	25.000					Tamaño máximo nominal	No. 4
M-3/4-12	3/4 in.	19,000					Bloques (>300 mm), %	1841
M-3/8 -08	3/8 in.	9.500				100.0	Bolones (75 mm - 300mm), % Grava, %	11.7
M-4-15	No. 4	4.750	78,7	11.7	11.7	88.3	Arena, % Finos (%)	23.8 64.5
M-10-09	No. 10	2.000	4.5	9.7	12.4	87.7	3. Características	
M-20-11	No. 20	0.850	24.30	3.6	16.0	84.0	Diametro efectivo D ₆₀ (mm) Diametro efectivo D ₅₀ (mm)	0.066
M-40-10	No. 40	0.425	10.60	1.6	17.5	82.5	Diametro efectivo D ₁₀ (mm) Coeficiente de uniformidad (Cu)	0.016
M-60-05	No. 60	0.250	24.30	3.6	21.1	78.9	Coeficiente de curvatura (Cc) 4. Observaciones del ensayo:	0.75
M-140-01	No. 140	0.106	15.50	2.3	23.4	76.6	Muestra alterada Cumple con la masa minima requerida:	si
M-200-15	No. 200	0.075	81.10	12.0	35.5	64.5		

El informe corresponde inica y exclusivamente a la muestra recibida.
 Las copias de caté informe no son vialdas sin la autorización del laboratorio.
 Este informe de cusayo es imparcial, confidencial; estando destinado unica y exclusivamente al chente.
 (**) Datos proporcionados por el cliente.

so Lote 1 5/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambs Servicios de Laboratoros Chiclayo - EMP Asfaltos 948 652 622 - 954 131 476 - 998 928 250 E-mail: servicios _labelhot mail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Canelio en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) ; José Andres Mestanza Diaz y José Alejandro Perez

MATERIAL (**) : Arcilla inorgánica CODIGO DE MUESTRA (**) : Calicata: C-12, Muestra: M-01

COORDENADAS (**) : E 0625881- N 9243321

CÓDIGO INTERNO (**) TECNICO ENCARGADO : CI-447 : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 14/11/2022 HORA DE MUESTREO (**): -MUESTREADO POR (**z): -

FECHA DE RECEPCION: 15/11/2022 FECHA DE ENSAYO : 15/11/2022 FECHA DE EMISION : 20/11/2022

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. NTP 339,127:1998 (revisada el 2019)

Espécimen de	Contenido de humedad reportado +-
ensayo	196

Numero del contenedor	1	
Masa del contenedor, g, M_z	218.0	
Masa del contenedor + masa de muestra húmeda, g. M_{exc}	1 200.0	
Fecha (inicio de eusayo)	15/11/2022	
Hora (inicio de ensayo)	17:00:00	
Masa del contenedor inicial + masa de muestra seca al horno, g	1120.0	
Fecha (fuera del horno)	16/11/2022	
Hora (fuera del homo)	11:00:00	
Masa del contenedor secundario + masa de muestra seca al horno, g	1120.1	
Horn (fuem del homo)	12:00:00	
Masa del contenedor final + masa de muestra seca al horno, g, M_{cr}	1120.0	
Hora (fuera del homo)	14:00:00	
Masa de agua, g, $M_w = M_{cor} \cdot M_{cr}$	80.0	
Masa de las particulas sólidas, g. M_s , M_{cs} - M_c	902.0	
Contenido de humedad, %, $W=(M_v/M_z)^2100$	9	
Simbolo de grupo de clasificación de suelo unificado (visual)	CL	
Tamaño máximo aproximado de particula (visual)	No. 4	

Condiciones ambientales de	Temperatura	18.5 ℃
ensavo	Humedad	64.6%

H	Balanza	BAL-27
Equipamiento	Homo	HOR-04

Observaciones del ensavo:

* Mnestra alterada

* Homo controlado a 110 +-5°C

* Exclusión de algún material No * Mās de un tipo de material * Cumple con la masa minima requerida Si

> DE BUELOS OF ned or Fernandes

> > Revisado y aprobado.

<sup>El informe corresponde única y exclusivamente à la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imporcial, confidencial; estundo destinado unica y exclusivamente al eliente.

(**) Datos proporcionados por el eliente.</sup>

SERVICIOS DE LABORATORIOS DE SUELOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios lab@hotmail.com

INFORME DE ENSAYO

CLIENTE (**) ; José Andres Mestanza Díaz y José Alejandro Perez

: "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo" TESIS (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

TIPO DE MUESTRA ; Alterada en saco

CANTIDAD DE MUESTRA (**) : 15 kg aproximadamente

TIPO DE PRODUCTO : Suelos FECHA DE MUESTREO (**) : 14/11/2022 FECHA DE RECEPCION : 15/11/2022 FECHA DE EMISION : 19/11/2022

SUPERVISOR DE LABORATORIO : Secundino Burga Fernandez TECNICO DE LABORATORIO : Segundo A. Carranza Mejía

Los ensayos de las muestras se realizaron en las instalaciones de Servicios de Laboratorios de Suelos y Pavimentos ; SAC, ubicado en Av. Vicente Ruso Lote 1 S/N - Fundo el Cerrito (paralela a la Av. Arequipa intersección con LUGAR DE ENSAYO

Prolongación Bolognesi) - Distrito de Chiclayo - Provincia de Chiclayo - Departamento de Lambayeque.

MUESTRA Y CONTRAMUESTRA : * Nuestro laboratorio no ha sido responsable de la etapa de muestreo (el solicitante brindo toda la información).

* Tipo de muestra, alterada en saco.

* La contramuestra se almacenará, por un periodo de 15 días.

OTROS (**)

NOTA:

* El informe corresponde única y exclusivamente a la muestra recibida.

(**) Datos proporcionados por el cliente.

Revisado y aprobado

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Limo inorgânico de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-11, Muestra: M-01 MUESTREADO POR (**): -; E 0626032 - N 9243433 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022

TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

	107 01	Peso unitario su	elto		- 53
			Identificaci	5n	Promedio
		1	2	3	Promedio
Peso del recipiente + muestra	(g)	19633	19780	19688	
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9144	9291	9199	
Volumen	(em ³)	5681	5681	5681	
Peso unitario suelto seco	(g/cm ³)	1.610	1.635	1.619	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario suelto seco	(kg/m3)	1610	1635	1619	1621

		Peso unitario comp	actado		
			Identificaci	ón	Promedio
		1	2	3	Floincuk
Peso del recipiente + muestra	(g)	19899	19850	19930	
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9410	9361	9441	
Volumen	(cm ³)	5681	5681	5681	
Peso unitario compactado seco	(g/cm ²)	1.656	1.648	1.662	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario compactado seco	(kg/m3)	1656	1648	1662	1655

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

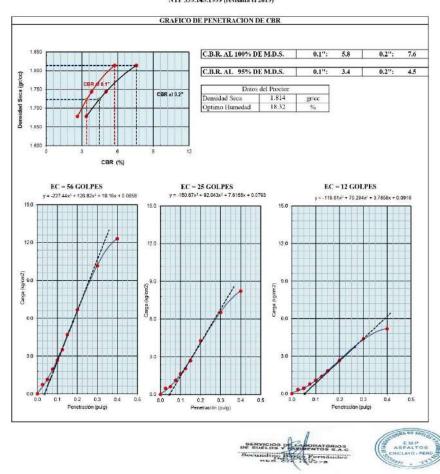
* Este informe de ensayo es impurcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

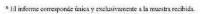
Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250


INFORME DE ENSAYO

"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)


; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (**)

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Limo inorgânico de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-11, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (2*) : E 0626032 - N 9243433 FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO FECHA DE EMISION: ######## : Segundo A. Carranza Mejia

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (*º) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Limo inorgânico de alta plasticidad HORA DE MUESTREO (**): CODIGO DE MUESTRA (**) : Calicata: C-11, Muestra: M-01 MUESTREADO POR (**): -: E 0626032 - N 9243433 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022

CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			
Dendidad volumétrica					.e	
N° de molde		2	20	5	3	8
№ capa		5	5			
Golpes por capa Nº	5	6	2:	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	12576	12640	11616	11736	11720	11899
Peso de molde	8053	8053	7239	7239	7532	7532
Peso de suelo húmedo	4523	4587	4377	4497	4188	4367
Volumen del molde	2108	2108	2123	2123	2113	2113
Densidad humeda	2.146	2.176	2.062	2.118	1.982	2.067
% de humedad	18.32	20.73	18.23	22.44	18.11	24.50
Densidad seca	1.814	1.802	1.744	1.730	1.678	1.660
Contenido de húmedad	12	1,-	-	V.	**	
Nº de tarro	146	- 51	8:	18	8	€.
Tarro + suelo húmedo	509.6	509.6	536.9	536.9	575.8	575.8
Tamo + suelo seco	430.7	422.1	454.1	438.5	487.5	462.5
Peso de agua	78.9	87.5	82.8	98.4	88.3	113.3
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	430.7	422.1	454.1	438.5	487.5	462.5
% de humedad	18.32	20.73	18.23	22.44	18.11	24.50

					Expasión	1					
Fecha	Hora	Tiempo		Expasion			Expasión			Expasión	
Pecha	Hora	Hr.	Dial	mm	36	Dial	nm	96	Dial	mm	%
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	190.0	4.83	4.2	222.0	5.64	4.9	265.0	6.73	5.5
17/11/22	14:30	42	195.0	4.95	4.3	237.0	6.02	5.2	273.0	6.93	6.0
18/11/22	14:30	65	205.0	5.21	4.5	244,0	6.20	5.4	288.0	7.32	6.4
19/11/22	14:30	95	216.0	5.49	4.8	254.0	6.45	5.6	295.0	7.49	6.5

			P	enetrac	ión							
Carga	1 3	Molde Nº		2		Molde Nº	7	26		Mokle Nº	70	38
Stand	Car	29	Cone	eción	Ca	гди	Corre	eción	Ca	nga.	Corre	сежн
kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
	0	.0			0	0			ū	0		
	14.5	1			9.5	.0			8.6	0		
	22.6	- 1			12.1	1.			8.5	0		
	38.5	2			22.2	t			15.4			
70.3	52.4	3	4.0	5.8	32.6	2	2.7	3.8	21.2	(1	1.9	2.6
	68.8	. 9			40.5	2			26.9	13		
	92.5	3			52.9	3			35.8	2		
105.5	131.5	7	8.0	7.6	84.2	- 4	5.3	5.0	52.4	3	3.6	3.4
	200.1	10			128.4				86.5	- 4		
	242.4	12			162.1	*			102.1	- 5		
	Stand kg/em2	Stand. Car	Stand Cargs Kg/cm2 Dail (div) Kg/cm2 0 0 0 14.5 1 22.8 1 38.5 2 70.3 \$52.4 3 68.8 3 92.5 5 105.5 131.5 7 200.1 10	Corgn Molde N°	Cargan Molde № 2 Stand. Cargan Corrección kg/cm2 Lg/cm2 kg/cm2 % 0 1 kg/cm2 % % 22.6 1 <td> Stand Carps Correccion Cin kg/cn/2 Dial (drv) kg/cn/2 kg/cn/2 % Dial (drv) 6 0 0 0 0 0 0 0 0 0</td> <td> Cargas Molde N° 2 Molde N° </td> <td> Cargan Molde N° 2 Molde N° </td> <td>Curgn Molde № 2 Molde № 26 Stand. Cargn Corrección Cargn Corrección kg/cn/2 Daid (drx) kg/cm/2 lsg/cm/2 % Daid (drx) kg/cm/2 kg/cm/2 % 0</td> <td>Cargn Molde № 2 Molde № 26 Stand. Cargn Corrección Cargn % Dud (div) kg/cm2 % Dud (div) la corrección 0</td> <td> Carga</td> <td>Carga Molde № 2 Molde № 26 Molde № Corps Egen2 Corps Corps Egen2 <th< td=""></th<></td>	Stand Carps Correccion Cin kg/cn/2 Dial (drv) kg/cn/2 kg/cn/2 % Dial (drv) 6 0 0 0 0 0 0 0 0 0	Cargas Molde N° 2 Molde N°	Cargan Molde N° 2 Molde N°	Curgn Molde № 2 Molde № 26 Stand. Cargn Corrección Cargn Corrección kg/cn/2 Daid (drx) kg/cm/2 lsg/cm/2 % Daid (drx) kg/cm/2 kg/cm/2 % 0	Cargn Molde № 2 Molde № 26 Stand. Cargn Corrección Cargn % Dud (div) kg/cm2 % Dud (div) la corrección 0	Carga	Carga Molde № 2 Molde № 26 Molde № Corps Egen2 Corps Corps Egen2 <th< td=""></th<>

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

: José Andres Mestanza Diaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) MATERIAL (**) HORA DE MUESTREO (**): -: Limo inorgánico de alta plasticidad CODIGO DE MUESTRA (**) : Calicata: C-11, Muestra: M-01 MUESTREADO POR (**): -: E 0626032 - N 9243433 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad vo	lumétrica	17		
Volumen del molde (cm3) 2105	PESO DEL MOLD	DE (g) :	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10456	10745	10984	10884	
Peso suelo húmedo compactado (g)	3995	4284	4523	4423	
Peso volumétrico húmedo	1.898	2.035	2 149	2.101	
S. S. Salar	Contenido d	e humedad	101		
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	362.5	491.4	332.5	384.5	
Peso suelo seco + tara (g)	314.4	422.0	280.5	320.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	48.1	69.4	52.0	64.5	
Peso de suelo seco (g)	314.4	422.0	280.5	320.0	
Contenido de agua	15.30	16.45	18.54	20.16	
Peso volumétrico seco	1.646	1.748	1.813	1.749	
Densidad maxima seca: 1.814	g/cm ³		Húmedad optima	18.32	6

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Limo inorgánico de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-11, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (**) : E 0626032 - N 9243433 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo normalizado para la determinación cuantitativa de sulfatos solubles en suelos y agua subterránea. NTP 339.178 2002 (revisada el 2015)

DATOS DEL ENSAYO				
Descripción	Partes por millon (ppm)	Resultados (%)	Conclusión	
Contenido de sulfatos (SO4-2) (ppm)	138	0.0138	Insignificante	

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida,

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Limo inorgánico de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-11, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (**) : E 0626032 - N 9243433 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la determinación cuantitativa de cloruros solubles en suelos y agua subterránea. NTP 339.177 2002 (revisada el 2015)

DATOS DEL ENSAYO				
Descripción	Partes por millon (ppm)	Resultados (%)	Conclusión	
Contenido de cloruros (CL) (ppm)	207	0.0207	Insignificante	

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida,

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

: José Andres Mestanza Díaz y José Alejandro Perez CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Limo inorgánico de alta plasticidad HORA DE MUESTREO (**): -: Calicata: C-11, Muestra: M-01 CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) ; E 0626032 - N 9243433 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo normalizado para la determinación del contenido de sales solubles en suelos y agua subterránea. NTP 339.152 2002 (revisada el 2015)

		DATOS DEL ENSAYO	
		Promedio	
Muestra (N°)	1	2	
Peso Tarro (Biker 100 ml.) Pyres (g)	110.06	117.71	
Peso Tarro + agua + sal (g)	152.30	160.57	
Peso Tarro Seco + sal (g)	110.13	117.79	
Peso de Sal (g)	0.07	0.08	
Peso de Agua (g)	42.24	42.86	
Porcentaje de Sal (%)	0.17	0.19	0.18

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} El morme corresponde unta y excussivamente.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Limo inorgánico de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): : Calicata: C-11, Muestra: M-01 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : E 0626032 - N 9243433 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 : CI-447 TECNICO ENCARGADO FECHA DE EMISION: 20/11/2022 : Segundo A. Carranza Mejia

SUELOS. Método de ensavo para determinar el límite liquido, limite plástico, e indice de plasticidad de suelos. 1º Edición NTP 339.129:1999 (revisada el 2019)

	Preparación húmeda
Espécimen de ensayo	Mezclado en capsula y partículas de arena removidas
	Agua destilada

Contenedor, No.	5	20	33
Masa húmeda de suelo + Container, M1 (g)	27.81	21.23	24.96
Masa seca de suelo + Container, M2 (g)	25.69	18.96	22.11
Masa del container, M3 (g)	21.52	14.63	16.84
Contenido de agua, W, (%)	.50.84	52.42	54.08
Numero de Golpes	34	22	16

w=((MI-M2)/(M2-M3))*100

LÍMITE PLÁSTICO		
Contenedor, No.	15	20
Masa húmeda de suelo + Container, M1 (g)	17.73	18.63
Masa seca de suelo + Container, M2 (g)	16.30	17.22
Masa del container, M3 (g)	11.52	12.43
Contenido de agua, W, (%)	29.92	29.44

w=((MI-M2)/(M2-M3))*100

Equipo empleado	Limite liquido	Equipo manual
	Limite Plástico	Rolado manual
	Ranurador casa grande	Plástico

Equipartiento	Balanza	BAL-16
	Horno	HOR-04
	Copa casa grande	CC-06
	Ranurador	RA-01

LÍMITES DE CONS	ISTENCIA
Limite liquido	52
Limite plástico	30
Índice plástico	22

Observaciones del ensayo

* Masa retenida tamiz N°40 (%): 13.5 * Humedad de recepcion : * Tamaño maximo de particulas : 3/8 in * Clasificación según carta de plasticidad :

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son vàlidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial, estando destinado unica y exclusivamente al cliente.

(***) Datos proporcionados por el cliente.

Ax. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lamb Servicios de Laboratorios Chiclayo - E MP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mails servicios, julighotmail.com. que RUC: 20487357465

INFORME DE ENSAYO

PROYECTO (**) "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) Av. Gran - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque


FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) Limo morgánico de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) Calicata: C-11, Muestra: M-01 MUESTREADO POR (**): FECHA DE RECEPCION: 15/11/2022 COORDENADAS (**) CÓDIGO INTERNO (**) E 0626032 - N 9243433 CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Taniannianta	Delever	BAL-27
Equipamiento	Delining	BAL-16

C F	Temperatura	18.5 °C	
Condiciones ambientales de ensayo	Humedad	64.6%	

Código de Tamices	Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Descripción	
M-6-01	6 in.	150.000					1. Masa de material	
M-4-01	4 in.	100,000					Masa seca inicial, g	421.20
M-3-03	3 in.	75,000					Masa seen lavada, g	421.20
M-2-09	2 in.	50.000					2. Descripción	
M-1 1/2-09	1 1/2 in.	37.500					Tamaño máximo	3/8 in.
M-1-09	1 in.	25.000					Tamaño máximo nominal	No. 4
M-3/4-12	3/4 in.	19.000					Bloques (>300 mm), %	1924
M-3/8 -08	3/8 in.	9.500				100.0	Bolones (75 mm - 300mm), % Grava, %	0.4
M-4-15	No. 4	4.750	1.5	0.4	0.4	99.6	Arena, % Finos (%)	34.5 65.1
M-10-09	No. 10	2.000	15.5	3.7	4.0	96.0	3. Características	01404400
M-20-11	No. 20	0.850	15.40	3.7	7.7	92.3	Diametro efectivo D ₆₀ (mm) Diametro efectivo D ₅₂ (mm)	0.042
M-40-10	No. 40	0.425	24.50	5.8	13.5	86.5	Diametro efectivo D ₁₀ (mm) Coeficiente de uniformidad (Cu)	0.000 270
M-60-05	No. 60	0.250	34.50	8.2	21.7	78.3	Coeficiente de curvatura (Cc) 4. Observaciones del ensayo:	0.33
M-140-01	No. 140	0.106	42.50	10.1	31.8	68.2	Muestra alterada Cumple con la masa minima requerida:	si
M-200-15	No. 200 Fondo	0.075	13.00	3.1	34.9	65.1		

PIECE OF THE PERSON OF THE PER

El informe corresponde inica y exclusivamente a la muestra recibida.
 Las copias de caté informe no son vialdas sin la autorización del laboratorio.
 Este informe de cusayo es imparcial, confidencial; estando destinado unica y exclusivamente al chente.
 (**) Datos proporcionados por el cliente.

so Lote 1 s/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambs Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios | Jabighot mail.com.

INFORME DE ENSAYO

: "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo" PROYECTO (**)

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) ; José Andres Mestanza Diaz y José Alejandro Perez

MATERIAL (**) : Limo morgânico de alta plasticidad CODIGO DE MUESTRA (**) : Calicata: C-11, Muestra: M-01 COORDENADAS (**) : E 0626032 - N 9243433 CÓDIGO INTERNO (**) TECNICO ENCARGADO : CI-447 : Segundo A. Carranza Mejia

FECHA DE MUESTREO (**): 14/11/2022 HORA DE MUESTREO (**): -MUESTREADO POR (**z): -FECHA DE RECEPCION: 15/11/2022 FECHA DE ENSAYO : 15/11/2022 FECHA DE EMISION : 20/11/2022

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. NTP 339,127:1998 (revisada el 2019)

Espécimen de	Contenido de himedad reportado +
ensavo	196

Numero del contenedor	3	
Masa del contenedor, g, M_z	215.0	
Masa del contenedor + masa de muestra húmeda, g. M_{cor}	1 200,0	
Fecha (inicio de ensayo)	15/11/2022	
Hora (inicio de ensayo)	17:00:00	
Masa del contenedor inicial + masa de muestra seca al horno, g	1169.0	
Fecha (fuera del horno)	16/11/2022	
Hora (fuera del homo)	11:00:00	
Masa del contenedor secundario + masa de muestra seca al horno, g	1169.1	
Horn (fuera del homo)	12:00:00	
Masa del contenedor final + masa de muestra seca al horno, g, M_{cr}	1169.0	
Hora (fuera del homo)	14:00:00	
Masa de agua, g, $M_w = M_{cor} - M_{cr}$	31.0	
Masa de las partículas sólidas, g. M_z . M_{co} - M_z	954.0	
Contenido de humedad, %, $W=(M_v/M_z)^2100$	3	
Simbolo de grupo de clasificación de suelo unificado (visual)	мп	
Tamaño máximo aproximado de particula (visual)	No. 4	

Condiciones ambientales de	Temperatura	18.5 ℃
ensayo	Humedad	64.6%

Equipamiento	Balanza	BAL-27
	Homo	HOR-04

Observaciones del ensayo:

* Mnestra alterada

* Homo controlado a 110 +-5°C

* Exclusión de algán material No * Mās de un tipo de material * Cumple con la masa minima requerida Si

Revisado y aprobado.

El informe corresponde única y exclusivamente a la nuestra recibida.
 Las copias de este informe no sou válidas sin la autorización del laboratorio.
 Este informe de ensayo es impueda, confidencial; estando destinado unica y exclusivamente al cliente.
 (**) Datos proporcionados por el cliente.

SERVICIOS DE LABORATORIOS DE SUELOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios lab@hotmail.com

INFORME DE ENSAYO

CLIENTE (**) ; José Andres Mestanza Díaz y José Alejandro Perez

: "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo" TESIS (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

TIPO DE MUESTRA ; Alterada en saco CANTIDAD DE MUESTRA (**) : 15 kg aproximadamente

TIPO DE PRODUCTO : Suelos FECHA DE MUESTREO (**) : 14/11/2022 FECHA DE RECEPCION : 15/11/2022

FECHA DE EMISION : 19/11/2022 SUPERVISOR DE LABORATORIO : Secundino Burga Fernandez

Los ensayos de las muestras se realizaron en las instalaciones de Servicios de Laboratorios de Suelos y Pavimentos ; SAC, ubicado en Av. Vicente Ruso Lote 1 S/N - Fundo el Cerrito (paralela a la Av. Arequipa intersección con LUGAR DE ENSAYO

Prolongación Bolognesi) - Distrito de Chiclayo - Provincia de Chiclayo - Departamento de Lambayeque.

MUESTRA Y CONTRAMUESTRA : * Nuestro laboratorio no ha sido responsable de la etapa de muestreo (el solicitante brindo toda la información).

* Tipo de muestra, alterada en saco.

: Segundo A. Carranza Mejía

* La contramuestra se almacenará, por un periodo de 15 días.

OTROS (**)

TECNICO DE LABORATORIO

NOTA:

* El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

DRATORIOS

Revisado y aprobado

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suclo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

 CLIENTE (***)
 : José Andres Mestanza Díaz y José Alejandro Perez
 FECHA DE MUESTREO (***): 14/11/2022

 MATERIAL (***)
 : Arcilla inorgánica de alta plasticidad
 HORA DE MUESTREO (***):

 CODIGO DE MUESTRA (***)
 : Calicata: C-10, Muestra: M-01
 MUESTREADO POR (***):

 COORDENADAS (***)
 : E 0626151 - N 9244452
 FECHA DE RECEPCION: 15/11/2022

 CÓDIGO INTERNO (***)
 : CL447
 FECHA DE MUESTREO (**): 14/11/2022

TECNICO ENCARGADO : Segundo A. Carranza Mejía FECHA DE EMISION : 20/11/2022

		Peso unitario su	elto		
			Identificaci	ón	Promedic
		1	2	3	Promodic
Peso del recipiente + muestra	(g)	19633	19710	19655	
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9144	9221	9166	
Volumen	(em ³)	5681	5681	5681	
Peso unitario suelto seco	(g/cm ³)	1.610	1.623	1.613	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario suelto seco	(kg/m3)	1610	1623	1613	1615

		Peso unitario comp	actado		
			Identificaci	ón	Promedio
		1	2	3	Flomedio
Peso del recipiente + muestra	(g)	19899	19780	19866	
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9410	9291	9377	
Volumen	(cm ³)	5681	5681	5681	
Peso unitario compactado seco	(g/cm ¹)	1.656	1.635	1.651	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario compactado seco	(kg/m3)	1656	1635	1651	1647

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impurcial, confidencial; estando destinado unica y exclusivamente al cliente.

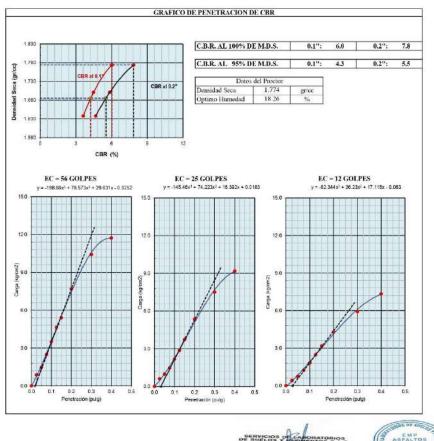
^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (**)

: Segundo A. Carranza Mejia

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgânica de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-10. Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (22) : E 0626151 - N 9244452 FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (*º) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgânica de alta plasticidad HORA DE MUESTREO (**): -: Calicata: C-10, Muestra: M-01 CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) : E 0626151 - N 9244452 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022

TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	61.		S 52		.00	
N° de molde	2	0	36)	:4	2.
№ capa		5	5		5	
Golpes por capa Nº	5	6	2:	,	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	11490	11570	12150	12290	11850	12050
Peso de molde	7071	7071	7910	7910	7769	7769
Peso de suelo húmedo	4419	4499	4240	4380	4081	4281
Volumen del molde	2106	2106	2109	2109	2110	2110
Densidad humeda	2,098	2.136	2.010	2.077	1.934	2.029
% de humedad	38.28	20.90	18.14	22.27	18.07	24.65
Densidad seca	1,774	1.767	1.701	1.699	1.638	1.628
Contenido de húmedad	12	1,-	-		**	
Nº de tarro	140	81	8:	18	8	€.
Tarro + suelo húmedo	3.50.0	350.0	420.0	420.0	539.0	539.0
Tamo + suelo seco	295.9	289.5	355.5	343.5	456.5	432.4
Peso de agua	54.1	60.5	64.5	76.5	82.5	106.6
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	295.9	289.5	355.5	343.5	456.5	432.4
% de humedad	18.28	20.90	18.14	22.27	18.07	24.65

					Expasión	1					
Fecha	Hora	Tiempo		Expasion			Expasión			Expasión	
recus	Tiora	Hr.	Dial	mm	36	Dial	nam	96	Dial	mm	%
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	228.0	5.79	5.0	258.0	6.55	5.7	290.0	7.37	6.4
17/11/22	14:30	42	235.0	5.97	5.2	265.0	6.73	5.8	299.0	7.59	6.4
18/11/22	14:30	65	243.0	6.17	5.3	273,0	6.93	6.0	310.0	7.87	6.8
19/11/22	14:30	95	250.0	6.35	5.5	280.0	7.11	6.2	315.0	8.00	7.6

				P	enetrac	ión							
Penetración	Carga		Molde Nº		20		Molde Nº		30		Mokle Nº	0	42
Penetracion	Stand	Car	199	Cone	eción	Ca	гди	Corre	eción	Car	nga.	Corre	cesón
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	96
0.000	7,510,000	0	.0	-		0	0			0	0		
0.025		17.4	1			12.1	1			8.2	0		
0.050		28.9	1			19.5	1.			14.5	- 1		
0.075		48.9	2			28.9	t			24.5	1		
0.100	70.3	68.8	3	4.2	6.0	42.8	2	3.2	4.5	35.8	2	2.5	3.6
0.125		91.5	9			56.5	3			48.8	2		
0.150		106.5	3			73.5	4			62.9	3		
0.200	105.5	151.5	8	8.3	7.8	105.6	5	6.2	5.8	84.4	14	4.9	4.7
0.300		205.4	10			148.0	8			116.5	-6		
0.000		231.1	12			181.1	9			144.7	7		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

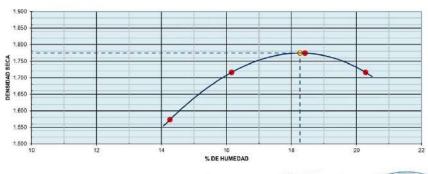
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-10, Muestra: M-01 MUESTREADO POR (**): -: E 0626151 - N 9244452 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022


SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)).

1º Edición

NTP 339.141:1999 (revisada el 2019)

	ENSAYO			
Dendidad v	lumétrica			
05 PESO DEL MOLI	DE (g)	6461	METODO	"C"
1	2	3	4	
10245	10656	10884	10805	
3784	4195	4423	4344	
1.798	1.993	2.101	2.064	
Contenido d	e humedad			
1	2	-3	4	
324.5	343.6	388.4	510.6	
284.0	295.8	328.0	424.5	
0.0	0.0	0.0	0.0	
40.5	47.8	60.4	86.1	
284.0	295.8	328.0	424.5	
14.26	16.16	18.41	20.28	
1.573	1.716	1.774	1.716	
	05 PESO DEL MOLI 1 10245 3784 1.798 Contenido d 1 324.5 284.0 0.0 40.5 2884.0 14.26	1 2 10245 10656 3784 4195 1.798 1.993 Contenido de humedad 1 2 324.5 343.6 2284.0 295.8 0.0 0.0 40.5 47.8 284.0 295.8 14.26 16.16	05 PESO DEL MOLDE (g): 6461 1 2 3 10245 10656 10884 3784 4195 4423 1.798 1.993 2.101 Contenido de humedad 1 2 3 324.5 343.6 388.4 284.0 295.8 328.0 0.0 0.0 0.0 0.0 40.5 47.8 60.4 284.0 295.8 328.0 14.26 16.16 18.41	05 PESO DEL MOLDE (g) 6461 METODO 1

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-10, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (**) : E 0626151 - N 9244452 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo normalizado para la determinación cuantitativa de sulfatos solubles en suelos y agua subterránea. NTP 339.178 2002 (revisada el 2015)

DATOS DEL ENSAYO						
Descripción	Partes por millon (ppm)	Resultados (%)	Conclusión			
Contenido de sulfatos (SO4-2) (ppm)	138	0.0138	Insignificante			

^{*} El informe corresponde única y exclusivamente a la muestra recibida,

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

: Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (**)

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-10, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (**) : E 0626151 - N 9244452 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la determinación cuantitativa de cloruros solubles en suelos y agua subterránea.

NTP 339.177 2002 (revisada el 2015)

DATOS DEL ENSAYO							
Descripción	Partes por millon (ppm)	Resultados (%)	Conclusión				
Contenido de cloruros (CL) (ppm)	207	0.0207	Insignificante				

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida,

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

: José Andres Mestanza Díaz y José Alejandro Perez CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica de alta plasticidad HORA DE MUESTREO (**): -: Calicata: C-10. Muestra: M-01 CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) ; E 0626151 - N 9244452 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo normalizado para la determinación del contenido de sales solubles en suelos y agua subterránea. NTP 339.152 2002 (revisada el 2015)

DATOS DEL ENSAYO							
		Promedio					
Muestra (N°)	1	2					
Peso Tarro (Biker 100 ml.) Pyres (g)	110.06	117.71					
Peso Tarro + agua + sal (g)	152.30	160.57					
Peso Tarro Seco + sal (g)	110.13	117.79					
Peso de Sal (g)	0.07	0.08					
Peso de Agua (g)	42.24	42.86					
Porcentaje de Sal (%)	0.17	0.19	0.18				

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} El morme corresponde unta y excussivamente.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla înorgánica de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): : Calicata: C-10, Muestra: M-01 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : E 0626151 - N 9244452 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 : CI-447 TECNICO ENCARGADO FECHA DE EMISION: 20/11/2022 : Segundo A. Carranza Mejia

SUELOS. Método de ensavo para determinar el límite liquido, limite plástico, e indice de plasticidad de suelos. 1º Edición NTP 339.129:1999 (revisada el 2019)

	Preparación húmeda	
Espécimen de ensayo	Mezclado en capsula y partículas de aren- removidas	
	Agua destilada	

LÍMITE LÍQUIDO (MÉTODO MULTIPUNTO)									
Contenedor, No.	11	78	3						
Masa húmeda de suelo + Container, M1 (g)	26.80	20.12	23.87						
Masa seca de suelo + Container, M2 (g)	24.71	17.99	21.02						
Masa del container, M3 (g)	20.45	13.95	15.90						
Contenido de agua, W, (%)	49.06	52.72	55.66						
Numero de Golpes	34	27	20						

w=((MI-M2)/(M2-M3))*100

LÍMITE PLÁSTICO								
Contenedor, No.	5	9						
Masa húmeda de suelo + Container, M1 (g)	16.64	17.58						
Masa seca de suelo + Container, M2 (g)	15,22	16.18						
Masa del container, M3 (g)	10.40	11.36						
Contenido de agua, W, (%)	29.46	29.05						

w=((MI-M2)/(M2-M3))*100

Equipo empleado	Limite liquido	Equipo manual
	Limite Plástico	Rolado manual
	Ranurador casa grande	Plástico

Equipamiento	Balanza	BAL-16	
	Horno	HOR-04	
	Copa casa grande	CC-06	
	Ranurador	RA-01	

LÍMITES DE CONSISTENCIA			
Limite liquido	53		
Limite plástico	29		
Índice plástico	24		

Observaciones del ensayo

* Masa retenida tamiz N°40 (%): * Humedad de recepcion : 29 * Tamaño maximo de particulas : 3/8 in * Clasificación según carta de plasticidad :

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son vàlidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial, estando destinado unica y exclusivamente al cliente.

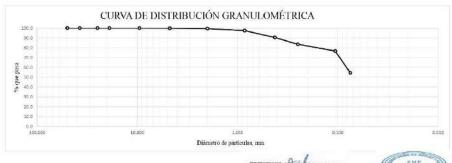
(***) Datos proporcionados por el cliente.

Ax. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lamb Servicios de Laboratorios Chiclayo - E MP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mails servicios, julighotmail.com. Lambayeque RUC: 20487357465

INFORME DE ENSAYO

PROYECTO (**) "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) Av. Gran - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque


FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) Arcilla inorgánica de alta plasticidad HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) Calicata: C-10, Muestra: M-01 MUESTREADO POR (**): FECHA DE RECEPCION: 15/11/2022 COORDENADAS (**) CÓDIGO INTERNO (**) E 0626151 - N 9244452 CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Toulandate	Delemen	BAL-27
Equipamiento	Damaza	BAL-16

e e: 0 0 1	Temperatura	18.5 °C
Condiciones ambientales de ensayo	Humedad	64.6%

Codigo de Tamices	Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Descripción	
M-6-01	6 in.	150.000					1. Masa de material	
M-4-01	4 in.	100,000					Masa seca inicial, g	353.10
M-3-03	3 in.	75,000					Masa seen lavada, g	353.10
M-2-09	2 in.	50.000					2. Descripción	
M-1 1/2-09	1 1/2 in.	37.500					Tamaño máximo	3/8 in.
M-1-09	1 in.	25.000					Tamaño máximo nominal	No. 4
M-3/4-12	3/4 in.	19.000					Bloques (>300 mm), %	1941
M-3/8 -08	3/8 in.	9.500				100.0	Bolones (75 mm - 300mm), % Grava, %	0.3
M-4-15	No. 4	4.750	0.9	0.3	0.3	99.8	Arena, % Finos (%)	45.3 54.4
M-10-09	No. 10	2.000	1.2	0.3	0.6	99.4	3. Características	
M-20-11	No. 20	0.850	6.90	2.0	2.5	97.5	Diametro efectivo D ₆₀ (mm) Diametro efectivo D ₅₀ (mm)	0.082
M-40-10	No. 40	0.425	24.50	6.9	9.5	90.5	Diametro efectivo D ₁₀ (mm) Coeficiente de uniformidad (Cu)	0.038
M-60-05	No. 60	0.250	24.50	6.9	16.4	83.6	Coeficiente de curvatura (Cc) 4. Observaciones del ensayo:	0.86
M-140-01	No. 140	9.106	24.40	6.9	23.3	76.7	Muestra alterada Cumple con la masa minima requerida:	si
	No. 200	0.075	78.50	22.2	45,6	54.4		

El informe corresponde inica y exclusivamente a la muestra recibida.
 Las copias de caté informe no son vialdas sin la autorización del laboratorio.
 Este informe de cusayo es imparcial, confidencial; estando destinado unica y exclusivamente al chente.
 (**) Datos proporcionados por el cliente.

so Lote 1 s/N - Distrito de Chiclayo - Provincia de Chiclayo - Lamb Servicios de Laboratoros Chiclayo - EMP Asfaitos 948 652 622 - 954 131 476 - 998 928 250 E-mail: servicios jabelhotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Canelio en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) ; José Andres Mestanza Diaz y José Alejandro Perez

MATERIAL (**) : Arcilla inorgánica de alta plasticidad CODIGO DE MUESTRA (**) : Calicata: C-10, Muestra: M-01 COORDENADAS (**) : E 0626151 - N 9244452 CÓDIGO INTERNO (**) TECNICO ENCARGADO : CI-447 : Segundo A. Carranza Mejia

FECHA DE MUESTREO (**): 14/11/2022 HORA DE MUESTREO (**): -MUESTREADO POR (**z): -FECHA DE RECEPCION: 15/11/2022 FECHA DE ENSAYO : 15/11/2022 FECHA DE EMISION : 20/11/2022

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. NTP 339,127:1998 (revisada el 2019)

Espécimen de	Contenido de humedad reportado +-
ensayo	196

Numero del contenedor	10	
Masa del contenedor, g, M_z	184.0	
Masa del contenedor + masa de muestra húmeda, g. M_{cor}	1 200.0	
Fecha (inicio de eusayo)	15/11/2022	
Hora (inicio de ensayo)	17:00:00	
Masa del contenedor inicial + masa de muestra seca al horno, g	970.0	
Fecha (fuera del horno)	16/11/2022	
Hora (fuera del homo)	11:00:00	
Masa del contenedor secundario + masa de muestra seca al horno, g	970.1	
Horn (fuera del homo)	12:00:00	
Masa del contenedor final + masa de muestra seca al horno, g, M_{cr}	970.0	
Hora (fuera del homo)	14:00:00	
Masa de agua, g, $M_w = M_{cor} \cdot M_{cr}$	230.0	
Masa de las particulas sólidas, g. M_z , M_{co} - M_c	786.0	
Contenido de humedad, %, $W=(M_v/M_z)^*100$	29	
Simbolo de grupo de clasificación de suelo unificado (visual)	сн	
Tamaño máximo aproximado de particula (visual)	No. 4	

Condiciones ambientales de	Temperatura	18.5 ℃
ensavo	Hurnedad	64.6%

Equipamiento	Balanza	BAL-27
	Homo	HOR-04

Observaciones del ensayo:

* Mnestra alterada

* Homo controlado a 110 +-5°C

* Exclusión de algán material No * Mās de un tipo de material * Cumple con la masa minima requerida Si

Revisado y aprobado.

El informe corresponde única y exclusivamente a la nuestra recibida.
 Las copias de este informe no sou válidas sin la autorización del laboratorio.
 Este informe de cusavo es importal, confidencial; estundo destinado unica y exclusivamente al cliente.
 (**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios lab@hotmail.com

INFORME DE ENSAYO

CLIENTE (**) ; José Andres Mestanza Díaz y José Alejandro Perez

: "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo" TESIS (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

TIPO DE MUESTRA ; Alterada en saco CANTIDAD DE MUESTRA (**) : 15 kg aproximadamente

TIPO DE PRODUCTO : Suelos FECHA DE MUESTREO (**) : 14/11/2022 FECHA DE RECEPCION : 15/11/2022 FECHA DE EMISION : 19/11/2022

SUPERVISOR DE LABORATORIO : Secundino Burga Fernandez TECNICO DE LABORATORIO : Segundo A. Carranza Mejía

Los ensayos de las muestras se realizaron en las instalaciones de Servicios de Laboratorios de Suelos y Pavimentos ; SAC, ubicado en Av. Vicente Ruso Lote 1 S/N - Fundo el Cerrito (paralela a la Av. Arequipa intersección con LUGAR DE ENSAYO

Prolongación Bolognesi) - Distrito de Chiclayo - Provincia de Chiclayo - Departamento de Lambayeque.

MUESTRA Y CONTRAMUESTRA : * Nuestro laboratorio no ha sido responsable de la etapa de muestreo (el solicitante brindo toda la información).

* Tipo de muestra, alterada en saco.

* La contramuestra se almacenará, por un periodo de 15 días.

OTROS (**)

NOTA:

* El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Revisado y aprobado

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgànica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-09, Muestra: M-01 MUESTREADO POR (**): -; E 0626303 - N 9245042 FECHA DE RECEPCION: 15/11/2022 COORDENADAS (**) CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022

TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

		Peso unitario su	elto		
			Identificaci	ón	Promedic
		1	2	3	Promodic
Peso del recipiente + muestra	(g)	19580	19660	19699	
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9091	9171	9210	
Volumen	(em ³)	5681	5681	5681	
Peso unitario suelto seco	(g/cm ³)	1.600	1.614	1.621	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario suelto seco	(kg/m3)	1600	1614	1621	1612

		Peso unitario comp	actado		
		Identificación			Promedio
		1	2	3	Fioniculo
Peso del recipiente + muestra	(g)	19960	19899	19673	
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9471	9410	9184	
Volumen	(cm ³)	5681	5681	5681	
Peso unitario compactado seco	(g/cm ¹)	1.667	1.656	1.617	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario compactado seco	(kg/m3)	1667	1656	1617	1647

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impurcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

FECHA DE RECEPCION: #########

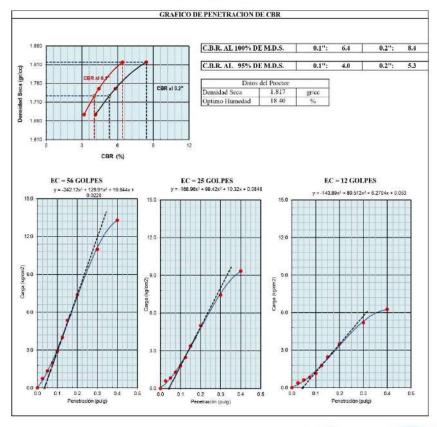
Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)


; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (**)

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez : Arcilla inorgánica MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-09, Muestra: M-01 MUESTREADO POR (**): -

: E 0626303 - N 9245042 COORDENADAS (2*) CÓDIGO INTERNO (**) : CI-447

FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (*º) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez : Arcilla inorgânica MATERIAL (**) HORA DE MUESTREO (**): -: Calicata: C-09, Muestra: M-01 CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) : E 0626303 - N 9245042 FECHA DE RECEPCION: 15/11/2022

CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica			V 00		JE 500	
N° de molde	9)	2	3	3	ŧ
Nº capa		5	5			
Golpes por capa Nº	5	6	2:	25		2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	11711	11770	12380	12500	11720	11920
Peso de molde	7145	7145	7910	7910	7532	7532
Peso de suelo húmedo	4566	4625	4470	4590	4188	4388
Volumen del molde	2123	2123	2165	2165	2113	2113
Densidad humeda	2.151	2.179	2.065	2.120	1.982	2.077
% de humedad	18.40	20.86	18.29	22.11	18.19	24.73
Densidad seca	1.817	1.803	1.746	1.736	1.677	1.665
Contenido de húmedad	12	1,-	,		**	
Nº de tarro	146	81	8	18	8	€.
Tarro + suelo húmedo	478.0	478.0	533.0	533.0	601.8	601.8
Tamo + suelo seco	403.7	395.5	450.6	436.5	509.2	482.5
Peso de agua	74.3	82.5	82.4	96.5	92.6	119.3
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	403.7	395.5	450.6	436.5	509.2	482.5
% de humedad	18.40	20.86	18.29	22.11	18.19	24.73

		111			Expasión	1					
Fecha	Hora	Tiempo		Expasion			Expasión			Expasión	
Pecha	Hora	Hr	Dial	mm	36	Dial	nam	96	Dial	mm	9%
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	90.0	2.29	2.0	130.0	3.30	2.9	170.0	4.32	3.8
17/11/22	14:30	42	100.0	2.54	2.2	140.0	3.56	3.1	180.0	4.57	4.5
18/11/22	14:30	65	110.0	2.79	2.4	150.0	3.81	3,3	190.0	4.83	4.2
19/11/22	14:30	95	120.0	3.05	2.6	160.0	4.06	3.5	200.0	5.08	47

				P	enetrac	ión							
Penetración	Carga		Molde Nº		9		Molde Nº		23		Mokle Nº	0	37
Репенасион	Stand	Ca	199	Cone	eción	Ca	гди	Corre	eción	Car	nga.	Corre	cesón
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	96
0.000	7,510,000	0	.0	-		0	0			0	0		
0.025		14.5	1			11.8	1			7.5	0		
0.050		28.5	- 1			16.5	1.			12.1	- 1		
0.075		38.9	2			25.5	t			16.5	1		
0.100	70.3	56.6	3	4.5	6.4	35.5	2	3.1	4.4	22.6	(1	2.2	3.2
0.125		78.9	- 3			48.9	2			34.9	. 2		
0.150		105.6	3			86.5	3			48.5	2		
0.200	105.5	145.4	7	8.9	8.4	98.5	5	6.1	5.8	689	3	4.4	4.3
0.300		218.5	11			146.5	7			102.4	.5		
0.000		262.0	13			184.1	9			123.4	- 6		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

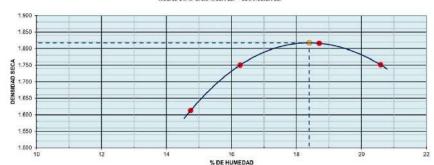
Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque


FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) HORA DE MUESTREO (**): -: Arcilla inorgánica CODIGO DE MUESTRA (**) : Calicata: C-09, Muestra: M-01 MUESTREADO POR (**): -: E 0626303 - N 9245042 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad ve	lumétrica	17		
Volumen del molde (cm3) 2105	PESO DEL MOLI	E (g) :	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10356	10745	10998	10905	
Peso suelo húmedo compactado (g)	3895	4284	4537	4444	
Peso volumétrico húmedo	1.850	2.035	2.155	2.111	
3501 30000000000 90001000	Contenido d	e humedad			
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	384.4	417.4	554.1	471.5	
Peso suelo seco + tara (g)	335.0	359.0	466.8	391.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	49.4	58.4	87.3	80.5	
Peso de suelo seco (g)	335.0	359.0	466.8	391.0	
Contenido de agua	14.75	16.27	18.70	20.59	
Peso volumétrico seco	1.613	1.750	1.816	1.751	
Densidad maxima seca: 1.817	g/cm ³		Húmedad optima:	18.40	%

GRAFICO DENSIDAD - HUMEDAD

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-09, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (**) : E 0626303 - N 9245042 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo normalizado para la determinación cuantitativa de sulfatos solubles en suelos y agua subterránea. NTP 339.178 2002 (revisada el 2015)

DATOS DEL ENSAYO				
Descripción	Partes por millon (ppm)	Resultados (%)	Conclusión	
Contenido de sulfatos (SO4-2) (ppm)	129	0.0129	Insignificante	

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida,

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO


PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ¿ Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-09, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (**) : E 0626303 - N 9245042 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

$\underline{SUELOS.\ M\'etodo\ de\ ensavo\ para\ la\ determinaci\'on\ cuantitativa\ de\ cloruros\ solubles\ en\ suelos\ y\ agua\ subterr\'anea.}$ NTP 339.177 2002 (revisada el 2015)

DATOS DEL ENSAYO				
Descripción	Partes por millon (ppm)	Resultados (%)	Conclusión	
Contenido de cloruros (CL) (ppm)	194	0.0194	Insignificante	

^{*} El informe corresponde única y exclusivamente a la muestra recibida,

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -; Calicata: C-09, Muestra: M-01 CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) ; E 0626303 - N 9245042 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo normalizado para la determinación del contenido de sales solubles en suelos y agua subterránea. NTP 339.152 2002 (revisada el 2015)

·		DATOS DEL ENSAYO	
		Identificación	Promedio
Mucstra (N°)	1	2	
Peso Tarro (Biker 100 ml.) Pyres (g)	45.55	100,18	
Peso Tarro + agua + sal (g)	87.79	143.04	
Peso Tarro Seco + sal (g)	45.62	100.25	
Peso de Sal (g)	0.07	0.07	
Peso de Agua (g)	42.24	42.86	
Porcentaje de Sal (%)	0.17	0.16	0.16

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} El morme corresponde unta y excussivamente.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -: Calicata: C-09, Muestra: M-01 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : E 0626303 - N 9245042 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 : CI-447 TECNICO ENCARGADO FECHA DE EMISION: 20/11/2022 : Segundo A. Carranza Mejia

SUELOS. Método de ensavo para determinar el límite liquido, limite plástico, e indice de plasticidad de suelos. 1º Edición NTP 339.129:1999 (revisada el 2019)

	Preparación húmeda
Espécimen de ensayo	Mezclado en capsula y partículas de arena removidas
	Agua destilada

Contenedor, No.	75	30	74
Masa húmeda de suelo + Container, M1 (g)	20.68	42.34	21.01
Masa seca de suelo + Container, M2 (g)	19.04	40.69	19.09
Masa del container, M3 (g)	14.09	36.08	13.99
Contenido de agua, W, (%)	33.13	35.79	37,65
Numero de Golpes	33	26	19

w=((MI-M2)/(M2-M3))*100

LÍMITE PLÁSTICO				
Contenedor, No.	15	6		
Masa húmeda de suelo + Container, M1 (g)	22.93	23.14		
Masa seca de suelo + Container, M2 (g)	21.72	21.81		
Masa del container, M3 (g)	15.42	15.11		
Contenido de agua, W, (%)	19.21	19.85		

w=((MI-M2)/(M2-M3))*100

Equipo empleado	Limite liquido	Equipo manual
	Limite Plástico	Rolado manual
	Ranurador casa grande	Plástico

Equipamiento	Balanza	BAL-16	
	Horno	HOR-04	
	Copa casa grande	CC-06	
	Ranurador	RA-01	

LÍMITES DE CONS	ISTENCIA
Limite liquido	36
Limite plástico	20
Índice plástico	16

Observaciones del ensayo

* Masa retenida tamiz N°40 (%): * Humedad de recepcion : 31 * Tamaño maximo de particulas : 3/8 in * Clasificación según carta de plasticidad :

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son vàlidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial, estando destinado unica y exclusivamente al cliente.

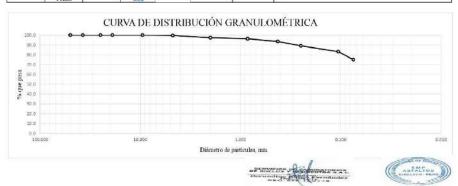
(***) Datos proporcionados por el cliente.

Ax. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lamb Servicios de Laboratorios Chiclayo - E MP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mails servicios, julighotmail.com. eque RUC: 20487357465

INFORME DE ENSAYO

"Influencia de la Escora de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo" PROYECTO (**)

Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (**)


FECHA DE MUESTREO (**): 14/11/2022 José Andres Mestanza Díaz y José Alejandro Perez CLIENTE (**) MATERIAL (**) Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) Calicata: C-09, Muestra: M-01 MUESTREADO POR (**): FECHA DE RECEPCION: 15/11/2022 COORDENADAS (**) CÓDIGO INTERNO (**) E 0626303 - N 9245042 CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Parisoniante	Delever	BAL-27
Equipamiento	Damaza	BAL-16

e e: 0 d	Temperatura	18.5 ℃
Condiciones ambientales de ensayo	Humedad	64,6%

Código de Tamices	Tamices	Abertura (mm)	Masa retemda, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Descripción	
M-6-01	6 in.	150.000					1. Masa de material	
M-4-01	4 in.	100,000					Masa seca inicial, g	555.0
M-3-03	3 in.	75,000					Masa seen lavada, g	555.0
M-2-09	2 in.	50.000					2. Descripción	
M-1 1/2-09	1 1/2 in.	37.500					Tamaño máximo	3/8 in.
M-1-09	1 in.	25.000					Tamaño máximo nominal	No. 4
M-3/4-12	3/4 in.	19.000					Bloques (>300 mm), %	1025
M-3/8-08	3/8 in.	9.500				100.0	Bolones (75 mm - 300mm), % Grava, %	0.5
M-4-15	No. 4	4.750	2.5	0.5	0.5	99.6	Arem, % Finos (%)	24.5 75.1
M-10-09	No. 10	2.000	12.4	2.2	2.7	97.3	3. Características	Tatalan
M-20-11	No. 20	0.850	5.60	1.0	3.7	96.3	Diametro efectivo D ₆₀ (mm) Diametro efectivo D ₅₂ (mm)	0.040
M-40-10	No. 40	0.425	15.50	2.8	6.5	93.5	Diametro efectivo D ₁₀ (mm) Coeficiente de uniformidad (Cu)	0.005 8
M-60-05	No. 60	0.250	24.50	4.4	10.9	89.1	Coeficiente de curvatura (Cc) 4. Observaciones del ensayo:	9.66
M-140-01	No. 140	0.106	32.50	5.9	16.8	83.3	Muestra alterada Cumple con la masa minima requerida:	si
M-200-15	No. 200 Fondo	0.075	45.50 0.80	8.2	25.0	75.1		

Revisado y aprobado

El informe corresponde inica y exclusivamente a la muestra recibida.
 Las copias de caté informe no son vialdas sin la autorización del laboratorio.
 Este informe de cusayo es imparcial, confidencial; estando destinado unica y exclusivamente al chente.
 (**) Datos proporcionados por el cliente.

so Lote 1 s/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque
Servicia de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250
E-mail: servicios [ab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Canelio en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) ; José Andres Mestanza Diaz y José Alejandro Perez

MATERIAL (**) : Arcilla inorgánica CODIGO DE MUESTRA (**) : Calicata: C-09, Muestra: M-01 COORDENADAS (**) : E 0626303 - N 9245042

CÓDIGO INTERNO (**) TECNICO ENCARGADO

: CI-447 : Segundo A. Carranza Mejia

FECHA DE MUESTREO (**): 14/11/2022 HORA DE MUESTREO (**): -MUESTREADO POR (**z): -

FECHA DE RECEPCION: 15/11/2022 FECHA DE ENSAYO: 15/11/2022 FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. NTP 339,127:1998 (revisada el 2019)

Espécimen de	Contenido de humedad reportado +-
ensayo	196

Numero del contenedor	6	
Masa del contenedor, g, M_z	176.0	
Masa del contenedor + masa de muestra húmeda, g. M_{cor}	1 200,0	
Fecha (inicio de eusayo)	15/11/2022	
Hora (inicio de ensayo)	17:00:00	
Masa del contenedor inicial + masa de muestra seca al horno, g	960.2	
Fecha (fuera del horno)	16/11/2022	
Hora (fuera del homo)	11:00:00	
Masa del contenedor secundario + masa de muestra seca al horno, g	960.0	
Horn (fuera del homo)	12:00:00	
Masa del contenedor final + masa de muestra seca al horno, g, M_{cr}	960.0	
Hora (fuera del homo)	14:00:00	
Masa de agua, g, $M_w = M_{cor} \cdot M_{cr}$	240.0	
Masa de las particulas sólidas, g. M_z , M_{co} - M_c	784.0	
Contenido de humedad, %, $W=(M_v/M_z)^*100$	31	
Simbolo de grupo de clasificación de suelo unificado (visual)	CL	
Tamaño máximo aproximado de particula (visual)	No. 4	

Condiciones ambientales de	Temperatura	18.5 ℃
ensavo	Humedad	64.6%

E	Balanza	BAL-27
Equipamiento	Homo	HOR-04

Observaciones del ensavo:

* Mnestra alterada

* Homo controlado a 110 +-5°C

* Exclusión de algún material No * Mās de un tipo de material * Cumple con la masa minima requerida Si

<sup>El informe corresponde única y exclusivamente à la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imporcial, confidencial; estundo destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

SERVICIOS DE LABORATORIOS DE SUELOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios lab@hotmail.com

INFORME DE ENSAYO

CLIENTE (**) ; José Andres Mestanza Díaz y José Alejandro Perez

: "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo" TESIS (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

TIPO DE MUESTRA ; Alterada en saco CANTIDAD DE MUESTRA (**) : 15 kg aproximadamente

TIPO DE PRODUCTO : Suelos FECHA DE MUESTREO (**) : 14/11/2022 FECHA DE RECEPCION : 15/11/2022 FECHA DE EMISION : 19/11/2022

SUPERVISOR DE LABORATORIO : Secundino Burga Fernandez TECNICO DE LABORATORIO : Segundo A. Carranza Mejía

Los ensayos de las muestras se realizaron en las instalaciones de Servicios de Laboratorios de Suelos y Pavimentos ; SAC, ubicado en Av. Vicente Ruso Lote 1 S/N - Fundo el Cerrito (paralela a la Av. Arequipa intersección con LUGAR DE ENSAYO

Prolongación Bolognesi) - Distrito de Chiclayo - Provincia de Chiclayo - Departamento de Lambayeque.

MUESTRA Y CONTRAMUESTRA : * Nuestro laboratorio no ha sido responsable de la etapa de muestreo (el solicitante brindo toda la información).

* Tipo de muestra, alterada en saco.

* La contramuestra se almacenará, por un periodo de 15 días.

OTROS (**)

NOTA:

* El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Revisado y aprobado

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suclo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

 CLIENTE (***)
 : José Andres Mestanza Díaz y José Alejandro Perez
 FECHA DE MUESTREO (***): 14/11/2022

 MATERIAL (***)
 : Arcilla inorgánica
 HORA DE MUESTREO (***):

 CODIGO DE MUESTRA (***)
 : Calicata: C-08, Muestra: M-01
 MUESTREADO POR (***):

 COORDENADAS (***)
 : E 0626410 - N 9245473
 FECHA DE RECEPCION: 15/11/2022

 CÓDIGO INTERNO (***)
 : CL447
 FECHA DE MUESTREO (**): 14/11/2022

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECIIA DE EMISION : 20/11/2022

	22 00	Peso unitario su	elto		- 62
			Identificaci	ón	Promedio
		1	2	3	Promedio
Peso del recipiente + muestra	(g)	19733	19820	19860	-
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9244	9331	9371	
Volumen	(em³)	5681	5681	5681	
Peso unitario suelto seco	(g/cm ³)	1.627	1.642	1.650	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario suelto seco	(kg/m3)	1627	1642	1650	1640

		Peso unitario comp	actado		
			Promedio		
		1	2	3	Fioniculo
Peso del recipiente + muestra	(g)	19950	19989	19973	
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9461	9500	9484	
Volumen	(cm ³)	5681	5681	5681	
Peso unitario compactado seco	(g/cm ¹)	1.665	1.672	1.669	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario compactado seco	(kg/m3)	1665	1672	1669	1669

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impurcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

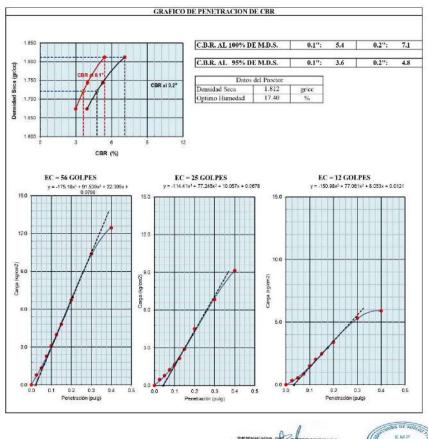
Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)


; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (**)

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez : Arcilla inorgánica MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-08. Muestra: M-01 MUESTREADO POR (**): -FECHA DE RECEPCION: #########

COORDENADAS (2*) : E 0626410 - N 9245473 CÓDIGO INTERNO (**) : CI-447

FECHA DE ENSAYO : ######## TECNICO ENCARGADO FECHA DE EMISION: ######## : Segundo A. Carranza Mejia

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (*º) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 : Arcilla inorgânica MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-08, Muestra: M-01 MUESTREADO POR (**): -: E 0626410 - N 9245473 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022

CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad volumétrica	61 65			3	.g	9	
N° de molde	10		20	9	30		
№ capa		5	5				
Golpes por capa Nº	5	6	2:	5	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	12196	12250	11380	11518	12050	12246	
Peso de molde	7657	7657	7071	7071	7910	7910	
Peso de suelo húmedo	4539	4593	4309	4447	4140	4336	
Volumen del molde	2134	2134	2106	2106	2109	2109	
Densidad humeda	2.127	2.152	2.046	2.112	1.963	2.056	
% de humedad	17.40	19.04	17.34	21.71	17.24	23.85	
Densidad seca	1.812	1.808	1.744	1.735	1.674	1.660	
Contenido de húmedad		1					
Nº de tarro	146	- 51	8:	18	8	€.	
Tarro + suelo húmedo	445.8	445.8	489.9	489.9	520.8	520.8	
Tamo + suelo seco	379.7	374.5	417.5	402.5	444.2	420.5	
Peso de agua	66.1	71.3	72.4	87.4	76.6	100.3	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	379.7	374.5	417.5	402.5	444.2	420.5	
% de humedad	17.40	19.04	17.34	21.71	17.24	23.85	

Expasión											
Fecha Hora	Tiempo	Expasion			Expasión			Expasión			
	Hota	Hr	Dial	mm	36	Dial	nam	96	Dial	mm	%
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	105.0	2.67	2.3	140.0	3.56	3.1	170.0	4.32	3.8
17/11/22	14:30	42	110.0	2.79	2.4	145.0	3.68	3.2	175.0	4.45	3.5
18/11/22	14:30	65	120.0	3.05	2.6	150.0	3.81	3,3	180.0	4.57	4,0
19/11/22	14:30	95	130.0	3.30	2.9	160,0	4.06	3.5	190.0	4.83	4.3

				F	enetrac	ión							
Penetración	Carga		Molde Nº		10		Molde Nº		20		Mokle Nº	0	30
Penetración	Stand	Car	199	Cone	eción	Ca	гди	Corre	eción	Car	nga.	Corre	сежн
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0.6	Dial (div)	kg/cm2	kg/cm2	%
0.000	7,510,000	0	.0	-		0	0			0	0		
D 025		15.5	1			9.3	.0			8.6	0		
0.050		28.5	- 1			15.5	1.			10.5	- 1		
0.075		44.8	2			24.6	t			16.9	1		
0.160	70.3	61.4	3	3.8	5.4	32.5	2	2.8	4.0	29.8	2	2.1	3.0
0.125		78.5	4			42.5	2			39.8	2		
0.150		94.8	5			56.9	3			48.8	2		
0.200	105.5	132.9	7	7.5	7.3	88.8	.5	5.5	5.2	66.9	3	4.1	3.5
0.300		204.9	10			134.8				104.9	. 5		
0.000		245.4	12			180.4	9			116.2	- 6		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

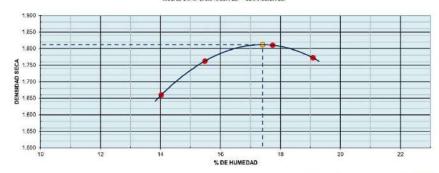
Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque


FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) HORA DE MUESTREO (**): -: Arcilla inorgánica CODIGO DE MUESTRA (**) : Calicata: C-08, Muestra: M-01 MUESTREADO POR (**): -: E 0626410 - N 9245473 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad ve	lumétrica			
Volumen del molde (cm3) 2105	PESO DEL MOLI	E (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10445	10745	10948	10902	
Peso suelo húmedo compactado (g)	3984	4284	4487	4441	
Peso volumétrico húmedo	1.893	2.035	2.132	2.110	
	Contenido d	e humedad		2000000	
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	349.5	424.5	354.4	442.4	
Peso suelo seco + tara (g)	306.5	367.6	301.0	371.5	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	43.0	56.9	53,4	70.9	
Peso de suelo seco (g)	306.5	367.6	301.0	371.5	
Contenido de agua	14.03	15.48	17.74	19.08	
Peso volumétrico seco	1.660	1.762	1.810	1.772	
Densidad maxima seca: 1.812	g/cm ³		Húmedad optima:	17.40	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-08, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (**) : E 0626410 - N 9245473 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo normalizado para la determinación cuantitativa de sulfatos solubles en suelos y agua subterránea. NTP 339.178 2002 (revisada el 2015)

DATOS DEL ENSAYO					
Descripción	Partes por millon (ppm)	Resultados (%)	Conclusión		
Contenido de sulfatos (SO4-2) (ppm)	125	0.0125	Insignificante		

^{*} El informe corresponde única y exclusivamente a la muestra recibida,

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-08, Muestra: M-01 MUESTREADO POR (**): -COORDENADAS (**) : E 0626410 - N 9245473 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo para la determinación cuantitativa de cloruros solubles en suelos y agua subterránea. NTP 339.177 2002 (revisada el 2015)

DATOS DEL ENSAYO					
Descripción	Partes por millon (ppm)	Resultados (%)	Conclusión		
Contenido de cloruros (CL) (ppm)	188	0.0188	Insignificante		

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida,

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -: Calicata: C-08, Muestra: M-01 CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) ; E 0626410 - N 9245473 FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo normalizado para la determinación del contenido de sales solubles en suelos y agua subterránea, NTP 339.152 2002 (revisada el 2015)

		DATOS DEL ENSAYO	
		Promedio	
Mucstra (N°)	1	2	
Peso Tarro (Biker 100 ml.) Pyres (g)	54.06	65.41	
Peso Tarro + agua + sal (g)	96.62	108.27	
Peso Tarro Seco + sal (g)	54.13	65.47	
Peso de Sal (g)	0.07	0.06	
Peso de Agua (g)	42.56	42.86	
Porcentaje de Sal (%)	0.16	0.14	0.15

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} El morme corresponde unta y excussivamente.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): : Calicata: C-08, Muestra: M-01 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : E 0626410 - N 9245473 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 : CI-447 TECNICO ENCARGADO FECHA DE EMISION: 20/11/2022 : Segundo A. Carranza Mejia

SUELOS. Método de ensavo para determinar el límite liquido, limite plástico, e indice de plasticidad de suelos. 1º Edición NTP 339.129:1999 (revisada el 2019)

	Preparación húmeda	
Espécimen de ensayo	Mezclado en capsula y particulas de aren removidas	
	Agua destilada	

LÍMITE LÍQUIDO (MÉTODO MULTIPUNTO)					
Contenedor, No.	3	17	4		
Masa húmeda de suelo + Container, M1 (g)	28.96	25.64	22.94		
Masa seca de suelo + Container, M2 (g)	26.61	23.52	20.99		
Masa del container, M3 (g)	20.95	18.75	16.91		
Contenido de agua, W, (%)	41.52	44.44	47.79		
Numero de Golpes	30	23	16		

w=((MI-M2)/(M2-M3))*100

LÍMITE PLÁSTICO					
Contenedor, No.	44	21			
Masa húmeda de suelo + Container, M1 (g)	14.48	14.85			
Masa seca de suelo + Container, M2 (g)	13.06	13.42			
Masa del container, M3 (g)	7.86	8.11			
Contenido de agua, W, (%)	27.31	26.93			

w=((MI-M2)/(M2-M3))*100

	Limite liquido	Equipo manual
Equipo empleado	Limite Plástico	Rolado manual
	Ranurador casa grande	Plástico

	Balanza	BAL-16
	Horno	HOR-04
Equipamiento	Copa casa grande	CC-06
	Ranurador	RA-01

LÍMITES DE CONSISTENCIA			
Limite liquido	43		
Limite plástico	27		
Índice plástico	16		

Observaciones del ensayo

* Masa retenida tamiz N°40 (%): * Humedad de recepcion : 25 * Tamaño maximo de particulas : No. 4 * Clasificación según carta de plasticidad :

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son vàlidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial, estando destinado unica y exclusivamente al cliente.

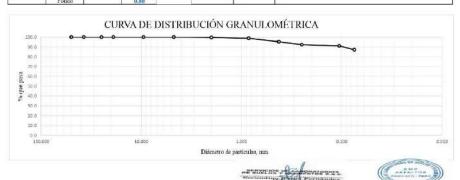
(***) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lamb Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 857 622 - 954 131 476 - 998 928 250 E-mails ervicios, jaloĝintmal.com. que RUC: 20487357465

INFORME DE ENSAYO

"Influencia de la Escora de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo" PROYECTO (**)

Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (**)


FECHA DE MUESTREO (**): 14/11/2022 José Andres Mestanza Díaz y José Alejandro Perez CLIENTE (**) MATERIAL (**) Arcilla inorgánica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) Calicata: C-08, Muestra: M-01 MUESTREADO POR (**): FECHA DE RECEPCION: 15/11/2022 COORDENADAS (**) CÓDIGO INTERNO (**) E 0626410 - N 9245473 CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo para el análisis granulométrico. NTP 339.128:1999 (revisada el 2019)

Panisanianta	Balanza	BAL-27
Equipamiento	Damine	BAL-16

C F	Temperatura	18.5 °C
Condiciones ambientales de ensayo	Humedad	64.6%

Tamices	Abertura (mm)	Masa retenida, g	Retenido parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Descripción	
6 in.	150.000					1. Masa de material	
4 in.	100,000					Masa seca inicial, g	454.10
3 in.	75,000					Masa seen lavada, g	454.10
2 in.	50.000					2. Descripción	
1 1/2 in.	37,500					Tamaño máximo	No. 4
1 in.	25.000					Tamaño máximo nominal	N_0 , 10
3/4 in.	19.000					Bloques (>300 mm), %	1946
3/8 in.	9,500					Grava, %	0.0
No. 4	4.750				100.0	Finos (%)	12.9 87.1
No. 10	2.000	1.8	9.4	0.4	99.6	3. Características	70000
No. 20	0.850	3.60	0.8	1.2	98.8	Diametro efectivo D _{sc} (mm)	0.007
No. 40	0.425	16.00	3.5	4.7	95.3	Coeficiente de uniformidad (Cu)	0.000 82
No. 60	0.250	13.60	3.0	7.7	92.3	4. Observaciones del ensayo:	0.41
No. 140	0.106	5.70	1.3	9.0	91.0	Muestra alterada Cumple con la masa minima requerida:	si
No. 200	0.075	17.80	3.9	12.9	87.1		
	6 in. 4 in. 3 in. 2 in. 1 1/2 in. 1 in. 3/4 in. 3/8 in. No. 4 No. 10 No. 20 No. 40 No. 60 No. 140	Tamices (mm) 6 in. 158,000 4 in. 198,000 3 in. 75,000 2 in. 50,000 1 1/2 in. 37,500 1 in. 25,000 3/4 in. 19,000 3/8 in. 9,500 No. 4 4,750 No. 10 2,000 No. 20 0,850 No. 40 0,425 No. 60 0,250 No. 140 0,106	Annuces	Amires (mm) retenida, g parcial, %	Amines (mm) relenida, g parcial, % acumalido, %	1 1 1 1 1 1 1 1 1 1	Amines

El informe corresponde inica y exclusivamente a la muestra recibida.
 Las copias de caté informe no son vialdas sin la autorización del laboratorio.
 Este informe de cusayo es imparcial, confidencial; estando destinado unica y exclusivamente al chente.
 (**) Datos proporcionados por el cliente.

so Lote 1 5/N - Distrito de Chiclayo - Provincia de Chiclayo - Lamb Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios jabaphotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Canelio en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) : Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) ; José Andres Mestanza Diaz y José Alejandro Perez

MATERIAL (**) : Arcilla inorgánica CODIGO DE MUESTRA (**) : Calicata: C-08, Muestra: M-01

COORDENADAS (**) : E 0626410 - N 9245473

CÓDIGO INTERNO (**) TECNICO ENCARGADO : CI-447 : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 14/11/2022 HORA DE MUESTREO (**): -MUESTREADO POR (**z): -

FECHA DE RECEPCION: 15/11/2022 FECHA DE ENSAYO : 15/11/2022 FECHA DE EMISION : 20/11/2022

SUELOS. Método de ensayo para determinar el contenido de humedad de un suelo. NTP 339,127:1998 (revisada el 2019)

Espécimen de	Contenido de humedad reportado +-
ensayo	196

Numero del contenedor	4	
Masa del contenedor, g, M,	211.0	
Masa del contenedor + masa de muestra húmeda, g. M_{exc}	1 200,0	
Fecha (inicio de cusayo)	15/11/2022	
Hora (inicio de ensayo)	17:00:00	
Masa del contenedor inicial + masa de muestra seca al horno, g	1000,1	
Fecha (fuera del horno)	16/11/2022	
Hora (fuera del homo)	11:00:00	
Masa del contenedor secundario + masa de muestra seca al horno, g	1000.0	
Horn (fuera del homo)	12:00:00	
Masa del contenedor final + masa de muestra seca al horno, g , M_{cr}	1000.0	
Hora (fuera del homo)	14:00:00	
Masa de agua, g, $M_w = M_{cos} - M_{cs}$	200.0	
Masa de las particulas sólidas, g. M_x . M_{co} - M_z	789.0	
Contenido de humedad, %, $W=(M_v/M_z)^*100$	25	
Simbolo de grupo de clasificación de suelo unificado (visual)	CL	
Tamaño máximo aproximado de particula (visual)	No. 4	

Condiciones ambientales de	Temperatura	18.5 ℃
ensavo	Hurnedad	64.6%

Equipamiento	Balanza	BAL-27
Equipamiento	Homo	HOR-04

Observaciones del ensavo:

* Mnestra alterada

* Homo controlado a 110 +-5°C

* Exclusión de algán material No * Mās de un tipo de material * Cumple con la masa minima requerida Si

<sup>El informe corresponde única y exclusivamente à la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imporcial, confidencial; estundo destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

SERVICIOS DE LABORATORIOS DE SUELOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios lab@hotmail.com

INFORME DE ENSAYO

CLIENTE (**) ; José Andres Mestanza Díaz y José Alejandro Perez

: "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo" TESIS (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

TIPO DE MUESTRA ; Alterada en saco CANTIDAD DE MUESTRA (**) : 15 kg aproximadamente

TIPO DE PRODUCTO : Suelos FECHA DE MUESTREO (**) : 14/11/2022 FECHA DE RECEPCION : 15/11/2022 FECHA DE EMISION : 19/11/2022

SUPERVISOR DE LABORATORIO : Secundino Burga Fernandez TECNICO DE LABORATORIO : Segundo A. Carranza Mejía

Los ensayos de las muestras se realizaron en las instalaciones de Servicios de Laboratorios de Suelos y Pavimentos ; SAC, ubicado en Av. Vicente Ruso Lote 1 S/N - Fundo el Cerrito (paralela a la Av. Arequipa intersección con LUGAR DE ENSAYO

Prolongación Bolognesi) - Distrito de Chiclayo - Provincia de Chiclayo - Departamento de Lambayeque.

MUESTRA Y CONTRAMUESTRA : * Nuestro laboratorio no ha sido responsable de la etapa de muestreo (el solicitante brindo toda la información).

* Tipo de muestra, alterada en saco.

* La contramuestra se almacenará, por un periodo de 15 días.

OTROS (**)

NOTA:

* El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Revisado y aprobado

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suclo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

 CLIENTE (**)
 : José Andres Mestanza Diaz y José Alejandro Perez
 FECHA DE MUESTREO (**): 14/11/2022

 MATERIAL (**)
 : Arcilla inorgánica
 HORA DE MUESTREO (**):

 CODIGO DE MUESTRA (**)
 : Calicata; C-07, Muestra; M-01
 MUESTREADO POR (**):

 COORDENADAS (**)
 : E 0626480 - N 9245749
 FECHA DE RECEPCION: 15/11/2022

 CÓDIGO INTERNO (**)
 : CL447
 FECHA DE ENSAYO: 15/11/2022

TECNICO ENCARGADO : Segundo A. Carranza Mejía FECHA DE EMISION : 20/11/2022

	705	Peso unitario su	elto		192
			Promedio		
		1	2	3	Promedio
Peso del recipiente + muestra	(g)	19799	19688	19720	-
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9310	9199	9231	
Volumen	(em³)	5681	5681	5681	
Peso unitario suelto seco	(g/cm ³)	1.639	1.619	1.625	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario suelto seco	(kg/m3)	1639	1619	1625	1628

		Peso unitario comp	actado		
			Promedio		
		1	2	3	Fioniculo
Peso del recipiente + muestra	(g)	19920	19888	19790	
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9431	9399	9301	
Volumen	(cm ³)	5681	5681	5681	
Peso unitario compactado seco	(g/cm ¹)	1.660	1.654	1.637	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario compactado seco	(kg/m3)	1660	1654	1637	1651

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el eliente.

FECHA DE ENSAYO : ########

FECHA DE EMISION: ########

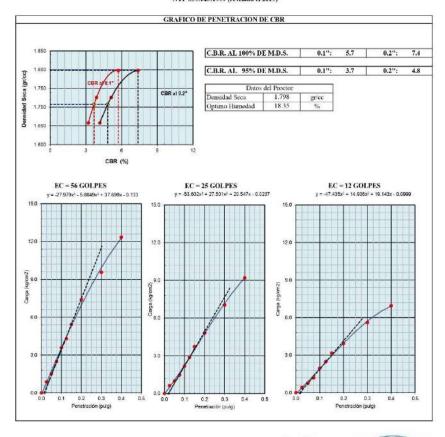
Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)


; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (**)

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez : Arcilla inorgánica MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-07, Muestra: M-01 MUESTREADO POR (**): -FECHA DE RECEPCION: #########

COORDENADAS (2*) : E 0626480 - N 9245749 CÓDIGO INTERNO (**) : CI-447

TECNICO ENCARGADO ; Segundo A. Carranza Mejia

> SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (*º) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 : Arcilla inorgânica MATERIAL (**) HORA DE MUESTREO (**): : Calicata: C-07, Muestra: M-01 CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) : E 0626480 - N 9245749 FECHA DE RECEPCION: 15/11/2022

CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	151		Si .		.00 50 S	
N° de molde	1		7		2	1.
№ capa		5	5			
Golpes por capa Nº		6	2:	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	11950	12000	11750	11880	11823	12000
Peso de molde	7441	7441	7426	7426	7711	7711
Peso de suelo húmedo	4509	4559	4324	4454	4112	4289
Volumen del molde	2119	2119	2119	2119	2099	2099
Densidad humeda	2.128	2.151	2.041	2.102	1.959	2.043
% de humedad	18.34	20.47	18.22	22.63	18.16	24.52
Densidad seca	1.798	1.786	1.726	1.714	1.658	1.641
Contenido de húmedad		10				
Nº de tarro	- 1	81	8:	18	8	€.
Tarro + suelo húmedo	442.0	442.0	509.9	509.9	534.8	534.8
Tamo ± suelo seco	373.5	366.9	431.3	415.8	452.6	429.5
Peso de agua	68.5	75.1	78.6	94.1	82.2	105.3
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	373.5	366.9	431.3	415.8	452.6	429.5
% de humedad	18.34	20.47	18.22	22.63	18.16	24.52

					Expasión	1					
Fecha	Hora	Tiempo		Expasion			Expasión			Expasión	
recus	Tiora	Hr.	Dial	mm	36	Dial	nam	96	Dial	mm	9%
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	160.0	4.06	3.5	185.0	4.70	4.1	210.0	5.33	4.6
17/11/22	14:30	42	165.0	4.19	3.6	193.0	4.90	4.2	228.0	5.79	5.0
18/11/22	14:30	65	170.0	4.32	3.7	199.0	5.05	4.4	239.0	6.07	5.3
19/11/22	14:30	95	176.0	4,47	3.9	206.0	5.23	1.5	245.0	6.22	5.

				P	enetrac	ión								
Penetración	Carga	Carga Molde Nº				I Molde Nº			7		Mokle Nº			
Репенасион	Stand	Car	199	Cone	eción	ción Carga		Corrección		Ca	arga Corr		ección	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0.6	Dial (div)	kg/cm2	kg/cm2	%	
0.000	7,510,000	0	.0	-		0	0			0	0			
0.025		17.4	1			12.4	1			8.2	0			
0.050		29.9	2			19.5	1.			14.8	- 1			
0.075		48.9	2			28.8	t			23.5	1			
0.100	70.3	70.5	4	4.0	5.7	42.8	2	2.7	3.9	38.5	2	2.3	33	
0.125		84.5	- 4			56.5	3			48.8	2			
0.150		106.9	3			73.6	4			62.6	3			
0.200	105.5	145.8	7	7.8	7.4	94.9	5	5.4	5.1	77.4	- 4	4.4	4.3	
0.300		188.5	10			138.8				110.5	-6			
0.000		243.3	12			181.4	9			136.9	7			
0.500														

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

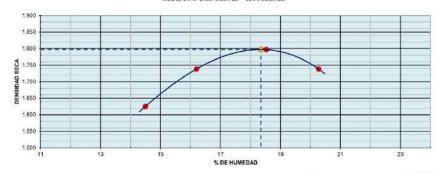
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) HORA DE MUESTREO (**): -: Arcilla inorgánica CODIGO DE MUESTRA (**) : Calicata: C-07, Muestra: M-01 MUESTREADO POR (**): -: E 0626480 - N 9245749 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022


SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)).

1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad ve	lumétrica			
Volumen del molde (cm3) 210	95 PESO DEL MOLI	DE (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10378	10712	10945	10862	
Peso suelo húmedo compactado (g)	3917	4251	4484	4401	
Peso volumétrico húmedo	1.861	2.019	2.130	2.091	
35512 355115555540300 3934011591	Contenido d	e humedad		2 29000	
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	374.4	491.4	531.6	484.7	
Peso suelo seco + tara (g)	327.0	422.9	448.5	403.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	47,4	68.5	83.1	81.7	
Peso de suelo seco (g)	327.0	422.9	448.5	403.0	
Contenido de agua	14.50	16.20	18.53	20.27	
Peso volumétrico seco	1.625	1.738	1.797	1.738	
Densidad maxima seca: 1.79	98 g/cm ³		Húmedad optima:	18.35	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgànica HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) : Calicata: C-12, Muestra: M-01 MUESTREADO POR (**): -; E 0625881- N 9243321 COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022

TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

		Peso unitario su	elto		
			Identificaci	ón	Promedio
		1	2	3	Promodic
Peso del recipiente + muestra	(g)	19655	19830	19760	
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9166	9341	9271	
Volumen	(em ³)	5681	5681	5681	
Peso unitario suelto seco	(g/cm ³)	1.613	1.644	1.632	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario suelto seco	(kg/m3)	1613	1644	1632	1630

		Peso unitario comp	actado		
			Identificaci	ón	Promedio
		1	2	3	Floincuk
Peso del recipiente + muestra	(g)	19950	20030	19899	
Peso del recipiente	(g)	10489	10489	10489	
Peso de la muestra	(g)	9461	9541	9410	
Volumen	(cm ³)	5681	5681	5681	
Peso unitario compactado seco	(g/cm ¹)	1.665	1.679	1.656	
Contenido de humedad	(%)	0.000	0.000	0.000	
Peso unitario compactado seco	(kg/m3)	1665	1679	1656	1667

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impurcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

ANEXO N° 4: Fichas técnicas de laboratorio del suelo adicionado residuos de acero.

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C.

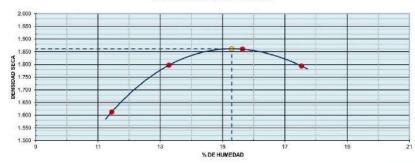
FECHA DE MUESTREO (**): 21/11/2022

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (**)


; José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica | 5% Escoria de Acero; Muestra: M-01 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 :-CÓDIGO INTERNO (**) FECHA DE ENSAYO: 22/11/2022 : CI-447 ; Segundo A, Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)).

1º Edición NTP 339.141:1999 (revisada el 2019)

	DATOS DE				
	Dendidad ve	dumétrica			
Volumen del molde (cm3) 2105	PESO DEL MOLI	E (g) :	6461	METODO	'C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10245	10745	10989	10900	
Peso suelo húmedo compactado (g)	3784	4284	4528	4439	
Peso volumétrico húmedo	1.798	2.035	2.151	2.109	
	Contenido d	e humedad			77.
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	524.9	348.9	400.0	257.4	
Peso suelo seco + tara (g)	471.0	308.0	345.9	219.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	53.9	40.9	54.1	38.4	
Peso de suelo seco (g)	471.0	308.0	345.9	219.0	
Contenido de agua	11.44	13,28	15.64	17.53	
Peso volumétrico seco	1.613	1.797	1.860	1.794	
Densidad máxima seca: 1.862	g/cm ³		Húmedad optima:	15.29	96

GRAFICO DENSIDAD - HUMEDAD

- * El informe corresponde única y exclusivamente a la muestra recibida.
- Las copias de este informe no son válidas sin la autorización del laboratorio.
 Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

CLIENTE (**)

TECNICO ENCARGADO

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla înorgânica + 5% Escoria de Acero; Muestra: M-01 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad volumétrica					.8.		
N° de molde		<u> </u>	30	5	:4	2.	
№ capa		5	5		5		
Golpes por capa Nº	5	6	2:	5	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	12678	12732	12198	12326	12092	12295	
Peso de molde	8125	8125	7807	7807	7894	7894	
Peso de suelo húmedo	4553	4607	4391	4519	4198	4401	
Volumen del molde	2114	2114	2121	2121	2110	2110	
Densidad humeda	2.154	2.179	2.070	2.131	1.990	2.086	
% de humedad	15.67	17,68	15.51	19:73	15.46	21.60	
Densidad seca	1.862	1.852	1.792	1.780	1.724	1.715	
Contenido de húmedad	12	1,-	-	V.	**		
Nº de tarro	140	- 51	8:	18	8	€.	
Tarro + suelo húmedo	487.3	487.3	324.0	324.0	249.4	249.4	
Tamo + suelo seco	421.3	414.1	280.5	270.6	216.0	205.1	
Peso de agua	66.0	73.2	43.5	53,4	33.4	44.3	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	421.3	414.1	280.5	270.6	216.0	205.1	
% de humedad	15.67	17.68	15.51	19.73	15:46	21.60	

					Expasión	1					
Fecha	Hora	Tiempo	Expasion				Expasión			Expasión	
recta	Tiora	Hr.	Dial	mm	36	Dial	nam	96	Dial	mm	.%
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
23/11/22	14:30	22	94.5	2.40	2.1	123.6	3.14	2.7	145.4	3.69	3.
24/11/22	14:30	42	112.1	2.85	2.5	145.5	3.70	3.2	166.4	4.23	3.
25/11/22	14:30	65	123.2	3.13	2.7	158.8	4.03	3,5	182.4	4.63	4)
26/11/22	14:30	95	145.4	3.69	3.2	175.4	4.46	3.9	201.1	5.11	4.

				P	enetraci	ón							
Penetración	Carga		Molde Nº		5		Molde Nº		16		Mokle Nº	70	42
Penetracion	Stand	Car	298	Cone	cción	Ca	гди	Corre	ción	Ca	nga.	Corre	сезіна
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	96
0.000		0	.0			0	0			ď	0		
0.025		24.5	1			15.4	1			12.3	-1		
0.050		42.5	2			32.6	- 2			19.5	1		
0.075		68.5	3			56.5	3			38.5	2		
0.100	70.3	105.4	. 5	7.9	11.3	84.5	4	6.2	8.8	51.5	- 3	5.2	7.4
0.125		142.1	2			110.0	- 6			68.9	- 3		
0.150		192.5	16			149.0				99.5	5		
0.200	105.5	255.9	13	15.5	14.5	200.8	10	11.8	11.2	156.5	8	0.01	9.5
0.300		358.8	18			269.0	14			226.5	11		
0.000		416.4	21			326.5	17			256.5	13		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

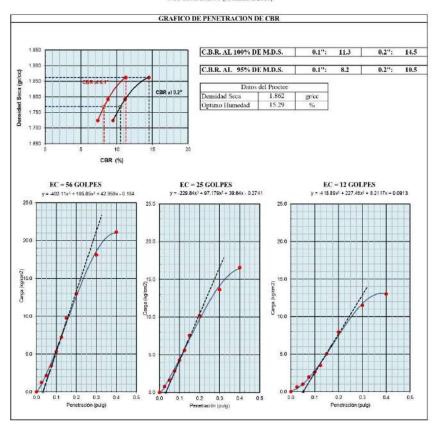
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla înorgânica + 5% Escoria de Acero; Muestra: M-01 MATERIAL (**) HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (2*) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

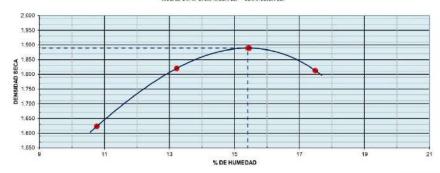
INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 10% Escoria de Acero; Muestra: M-01 HORA DE MUESTREO (**): -MUESTREADO POR (**): -

CODIGO DE MUESTRA (**) FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**) : CI-447 CÓDIGO INTERNO (**)


FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad ve	olumétrica	17		
Volumen del molde (cm3) 2105	PESO DEL MOLI	DE (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10245	10798	11051	10945	
Peso suelo húmedo compactado (g)	3784	4337	4590	4484	
Peso volumétrico húmedo	1.798	2.060	2.181	2.130	
	Contenido d	le humedad	.0.	200	
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	347.8	516.4	390.0	351.4	
Peso suelo seco + tara (g)	314.0	456.1	337.8	299.1	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	33.8	60.3	52.2	52.3	
Peso de suelo seco (g)	314.0	456.1	3.37.8	299.1	
Contenido de agua	10.76	13.22	15.45	17.49	
Peso volumétrico seco	1.623	1.820	1.889	1.813	
Densidad máxima seca: 1.889	g/cm ³		Húmedad optima	15.41	Va.

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 10% Escoria de Acero; Muestra: M-01 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO				
Dendidad volumétrica	61 65			1	ar.		
N° de molde	3	8	.53		3	1	
№ capa		5	5		5		
Golpes por capa Nº	5	6	2:	,	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	12145	12200	12433	12562	11982	12174	
Peso de molde	7532	7532	7912	7912	7721	7721	
Peso de suelo húmedo	4613	4668	4521	4650	4261	4453	
Volumen del molde	2113	2113	2150	2150	2112	2112	
Densidad humeda	2.183	2.209	2.103	2.163	2.018	2.108	
% de humedad	15.59	17.47	15.61	19.65	15.41	21.46	
Densidad seca	1.889	1.880	1.819	1.808	1.749	1,736	
Contenido de húmedad		1					
Nº de tarro	146	81	8:	18	8	€.	
Tarro + suelo húmedo	303.3	303.3	400.0	400.0	326.6	326.6	
Tamo ± suelo seco	262.4	258.2	346.0	334.3	283.0	268.9	
Peso de agua	40.9	45.1	54.0	65.7	43.6	57.7	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	262.4	258.2	346.0	334.3	283.0	268.9	
% de humedad	15.59	17.47	15.61	19.65	15.41	21.46	

					Expasión	1					
Fecha	Hora	Tiempo	Expasion				Expasión			Expasión	
1 colle	Hora	Hr	Dial	mm	36	Dial	mm	9%	Dial	mm	%
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23/11/22	14:30	22	65.3	1.66	1.4	84.5	2.15	1.9	112.1	2.85	2.5
24/11/22	14:30	42	81.4	2.07	1.8	105.5	2.68	2.3	123.4	3.13	2.7
25/11/22	14:30	65	94.5	2,40	2.1	121.1	3.68	2.7	145.4	3.69	3.2
26/11/22	14:30	95	115.4	2.93	2.5	134.4	3.41	3.0	165.8	4.21	3.

				P	enetrac	ión							
Penetración	Carga		Molde Nº		38		Molde Nº	7	52		Mokle Nº	0	31
Репенасион	Stand	Ca	rga	Cone	eción	Ca	гди	Corre	eción	Car	nga.	Corre	сежн
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	96
0.000	7,510,000	0	.0	-		0	0			0	0		
0.025		28.9	-1			21,5	1			12,5	-1		
0.050		55.9	3			46.5	- 2			36.9	2		
0.075		92.5	5			79.5	4			60.5	3		
0.100	70.3	134.5	7	8.9	12.7	115.4	6	6.9	9.8	77.8	4	5.5	7.8
0.125		182.4	.9			152.0	8			106.5	- 5		
0.150		224.5	11			182.4	9			142.5	7		
0.200	105.5	305.5	15	17.4	16.5	241.4	12	13.3	12.6	185.8	9	10.6	16.1
0.300		426.9	22			325.1	16			256,5	13		
0.000		491.7	25			394.2	20			316.5	16		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

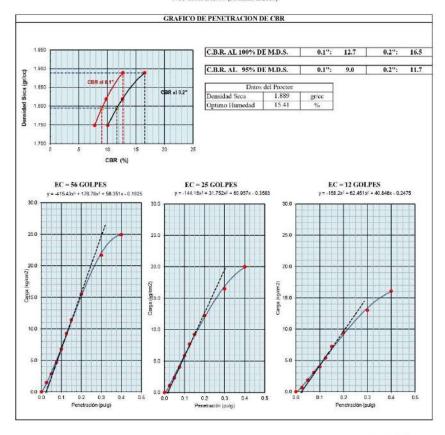
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 10% Escoria de Acero; Muestra: M-01 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32

COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

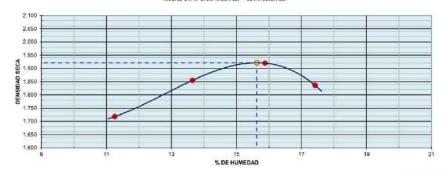
INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 12% Escoria de Acero; Muestra: M-01 HORA DE MUESTREO (**) : -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**)


: CI-447 FECHA DE ENSAYO: 22/11/2022 CÓDIGO INTERNO (**) TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	2000			
	Dendidad ve	lumétrica	17		
Volumen del molde (cm3) 2105	PESO DEL MOLE	E (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10484	10898	11145	10998	
Peso suelo húmedo compactado (g)	4023	4437	4684	4537	
Peso volumétrico húmedo	1.911	2.108	2,225	2.155	
	Contenido d	e humedad			
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	417.2	398.9	341.5	295.9	
Peso suelo seco + tara (g)	375.0	351.0	294.7	252.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	42.2	47.9	46.8	43.9	
Peso de suelo seco (g)	375.0	351.0	294.7	252.0	
Contenido de agua	11.25	13.65	15.88	17.42	
Peso volumétrico seco	1.718	1.855	1.920	1.836	
Densidad maxima seca: 1.921	g/cm ³		Húmedad optima:	15.63	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla inorgânica + 12% Escoria de Acero; Muestra: M-01 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO				
Dendidad volumétrica	61 61		S 2.0	0	.00		
N° de molde	1	2	3	0	:4	2	
Nº capa		5	5		5		
Golpes por capa Nº		6	2:	5	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	12518	12584	12220	12349	12298	12481	
Peso de molde	7808	7808	7657	7657	7945	7945	
Peso de suelo húmedo	4710	4776	4563	4692	4353	4536	
Volumen del molde	2121	2121	2134	2134	2110	2110	
Densidad humeda	2.221	2.252	2.138	2.199	2.063	2.150	
% de lumedad	15.57	17.73	15.41	19.41	15.79	21.54	
Densidad seca	1.922	1.913	1.853	1.842	1.782	1.769	
Contenido de húmedad		1					
Nº de tarro	140	81	8:	18	8	€.	
Tarro + suelo húmedo	364.5	364.5	567.8	567.8	504.4	504.4	
Tamo + suelo seco	315.4	309.6	492.0	475,5	435.6	415.0	
Peso de agua	49.1	54.9	75.8	92.3	68.8	89.4	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	315.4	309.6	492.0	475.5	435.6	415.0	
% de humedad	15.57	17.73	15.41	19.41	15.79	21.54	

Expasión												
Fecha	www.comes	Tiempo	Expasion			Expasión			Expasión			
recua	Hora	Hr.	Dial	mm	36	Dial	nm	9%	Dial	mm	%	
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
23/11/22	14:30	22	41.6	1.06	0.9	78.9	2.00	1.7	110.0	2.79	2.4	
24/11/22	14:30	42	62.9	1.60	1.4	94.5	2.40	2.1	124.9	3.17	2.8	
25/11/22	14:30	65	78.4	1.99	1.7	112.1	2.85	2,5	135.5	3.44	3.6	
26/11/22	14:30	95	99.8	2.53	2.2	128.4	3.26	2.8	152.5	3.87	3./	

				P	enetraci	ón								
Penetración	Carga	Molde Nº			12		Molde Nº		10		Mokle Nº	0	42	
Penetración	Stand	Car	199	Cone	cción	Ca	гди	Corre	eción	Car	Carga	Corre	гессібн	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	96	
0.000	7,510,000	0	.0	-		0	0			0	0			
0.025		32.8	.2			19.5	1			14.5	-1			
6.050		68.9	3			38.5	2			26.9	1			
0.075		92.5	5			68.5	3			38.5	2			
0.100	70.3	162.5	8	10.4	14.8	91.5	3	8.2	11.6	56.5	- 3	6.3	9.0	
0.125		210.1	11			134.9	9			78.4	4			
0.150		268.9	14			181.5	9			125.5	6			
0.200	105.5	345.8	18	20.7	19.6	256.1	13	15.8	15.6	184.9	9	12.1	11.5	
0.300		542.4	28			365.9	19			266.5	14			
0.400		631.8	32			451.1	23			312.1	16			
0.500														

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

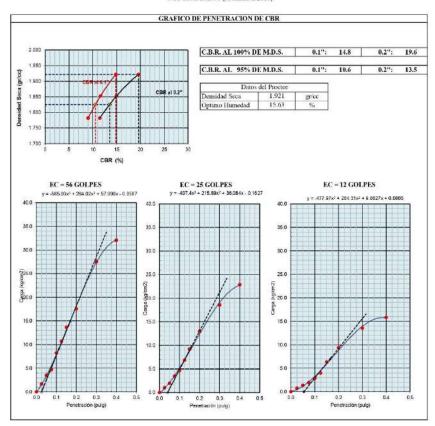
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 12% Escoria de Acero; Muestra: M-01 MATERIAL (**) HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

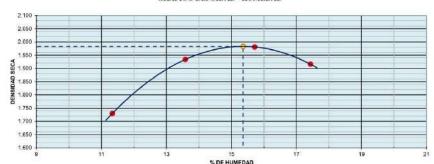
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 15% Escoria de Acero; Muestra: M-01 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**)


: CI-447 FECHA DE ENSAYO: 22/11/2022 CÓDIGO INTERNO (**) TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad ve	lumétrica			
Volumen del molde (cm3) 2105	PESO DEL MOLI	DE (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10516	11084	11287	11198	
Peso suelo húmedo compactado (g)	4055	4623	4826	4737	
Peso volumétrico húmedo	1.926	2.196	2.293	2.250	
3311	Contenido d	e humedad		M. 0400-1 14	
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	418.4	362.9	425.6	427.8	
Peso suelo seco + tara (g)	375.8	319.5	367.8	364.3	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	42.6	43.4	57.8	63.5	
Peso de suelo seco (g)	375.8	319.5	367.8	364.3	
Contenido de agua	11.34	13.58	15.72	17.43	
Peso volumétrico seco	1.730	1.934	1.981	1.916	
Densidad máxima seca: 1.983	g/cm ⁵		Húmedad optima	15.36	ú :

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 15% Escoria de Acero; Muestra: M-01 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO				
Dendidad volumétrica	421			s.	.85		
N° de molde				9	43		
Nº capa		5	5		5		
Golpes por capa Nº	5	6	2:	5	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	12870	12930	12086	12224	12118	12326	
Peso de molde	8031	8031	7371	7371	7623	7623	
Peso de suelo húmedo	4839	4899	4715	4853	4495	4703	
Volumen del molde	2110	2110	2134	2134	2110	2110	
Densidad humeda	2.293	2.322	2.209	2.274	2.130	2.229	
% de humedad	15.59	17.58	13.56	19.48	15.45	21.63	
Densidad seca	1.984	1.975	1.912	1.903	1.845	1.833	
Contenido de húmedad		1					
Nº de tarro	140	81	8:	-	8	€.	
Tarro + suelo húmedo	374.5	374.5	288,9	288.9	413.3	413.3	
Tamo + suelo seco	324.0	318.5	250.0	241.8	358.0	339.8	
Peso de agua	50.5	56.0	38.9	47.1	55.3	73.5	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	324.0	318.5	250.0	241.8	358.0	339.8	
% de humedad	15.59	17.58	15.56	19.48	15:45	21.63	

					Expasión	1						
Fecha	Hora	Tiempo	Expasion				Expasión			Expasión		
recua	Hora	Hr.	Dial	mm	36	Dial	nam	96	Dial	mm	9%	
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
23/11/22	14:30	22	21.9	0.56	0.5	45.4	1.15	1.0	81.4	2.07	1.5	
24/11/22	14:30	42	43.3	1.10	1.0	66.9	1.70	1.5	97.8	2.48	2.3	
25/11/22	14:30	65	52.1	1.32	1.1	84.5	2.15	1.9	115.4	2.93	2.5	
26/11/22	14:30	95	78.4	1.99	1.7	110.2	2.80	2.4	126.5	3.21	2.0	

				P	enetrac	ión							
Penetración	Carga	Molde Nº			3		Molde Nº	7	19		Mokle Nº	0	43
Penetracion	Stand	Carga		Corrección		Carga		Corrección		Carga.		Соггесск	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
0.000	7,510,000	0	.0	-		0	0			0	0		
0.025		34.5	.2			24.6	1			15.5	-1		
0.050		78.5	- 4			56.6	3			42.5	2		
0.075		121.1	6			81.5	4			56.9	3		
0.100	70.3	188,8	10	16.1	22.9	131.1	7	11.3	16.0	84.5	4	8.4	12.0
0.125		278.5	14			194.5	10			124.5	- 6		
0.150		358.5	18			256.2	13			184.9	9		
0.200	105.5	498.5	25	314	29.7	345.5	18	22.0	20.9	245.8	12	16.6	15.8
0.300		741.5	38			524.2	27			395.8	20		
0.000		984.5	58			684.9	35			484.5	25		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

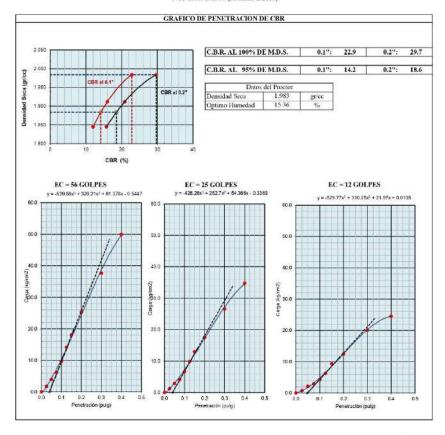
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 15% Escoria de Acero; Muestra: M-01 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32

COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

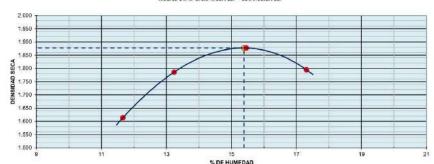
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 5% Escoria de Acero; Muestra: M-02 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**)


: CI-447 FECHA DE ENSAYO: 22/11/2022 CÓDIGO INTERNO (**) TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad w	olumétrica			
Volumen del molde (cm3) 2105	PESO DEL MOLI	DE (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10254	10718	11023	10894	
Peso suelo húmedo compactado (g)	3793	4257	4562	4433	
Peso volumétrico húmedo	1.802	2.022	2.167	2.106	
355. 334.00.00.00.00.00.00.00.00.00.00.00.00.00	Contenido d	le humedad			
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	487.4	518.4	351.1	427.0	
Peso suelo seco + tara (g)	436.5	457.8	304.1	364.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	50.9	60.6	47.0	63.0	
Peso de suelo seco (g)	436.5	457.8	304.1	364.0	
Contenido de agua	11.66	13.24	15.46	17.31	
Peso volumétrico seco	1.614	1.786	1.877	1.795	
Densidad maxima seca: 1.877	g/cm ³		Húmedad optima:	15.39	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla înorgânica + 5% Escoria de Acero; Muestra: M-02 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO				
Dendidad volumétrica			S 02		.05		
N° de molde			20	0	1		
Nº capa		į.	5		5		
Golpes por capa Nº		6	2:	5	12		
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	12025	12089	11455	11584	12026	12228	
Peso de molde	7441	7441	7071	7071	7844	7844	
Peso de suelo húmedo	4584	4648	4384	4513	4182	4384	
Volumen del molde	2119	2119	2106	2106	2086	2086	
Densidad himeda	2.163	2.193	2.082	2.143	2.005	2.102	
% de lumedad	15.24	17.62	15.24	19.27	15.47	21.56	
Densidad seca	1.877	1.864	1.807	1.797	1.736	1.729	
Contenido de húmedad							
Nº de tarro	18	81	8:	18	8	€.	
Tarro + suelo húmedo	410.5	410.5	524.8	524.8	384.5	384.5	
Tamo + suelo seco	356.2	349.0	455.4	440.0	333.0	316.3	
Peso de agua	54.3	61.5	69.4	84.8	51.5	68.2	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	356.2	349.0	455.4	440.0	333.0	316.3	
% de humedad	15.24	17.62	15.24	19.27	15.47	21.56	

					Expasión	1					
Fecha	Hora	Tiempo	Tiempo Expasion				Expasión	Expasión			
Pecha	Tiora	Hr.	Dial	mm	36	Dial	nm	96	Dial	mm	%
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23/11/22	14:30	22	91.5	2.32	2.0	115.1	2.92	2.5	140.9	3.58	3.1
24/11/22	14:30	42	102.5	2.60	2.3	135.0	3.43	3.0	171.4	4.35	3.8
25/11/22	14:30	65	118.5	3.01	2.6	151.4	3.85	3,3	184.5	4.69	4.1
26/11/22	14:30	95	142.4	3.62	3.1	172.4	4.38	3.8	206.5	5.25	4.6

				P	enetraci	ón							
Penetración	Carga		Molde Nº	9	1		Molde Nº		20		Mokle Nº	0	4
Penetración	Stand	Car	199	Cone	cción	Ca	гди	Corre	eción	Car	nga.	Correc	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
0.000	7,510,000	0	.0	-		0	0			0	0		
0.025		23.5	1			14.8	1			13.6	-1		
0.050		43.5	2			33.6	2			21.1	1		
0.075		69.5	4			59.5	3			39,6	2		
0.100	70.3	106.9	- 5	7.7	11.0	81.4	4	6.4	9.1	52.4	- 3	5.2	7.8
0.125		145.5	2			112.4	- 6			70.4	4		
0.150		194.5	10			151.2	- 1			100.2	5		
0.200	105.5	251.5	13	149	14.7	208.5	10	12.1	11.5	159.6	8	10.1	9.6
0.300		349.5	18			271.4	14			229.6	12		
0.000		421.1	21			331.5	17			264.8	13		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

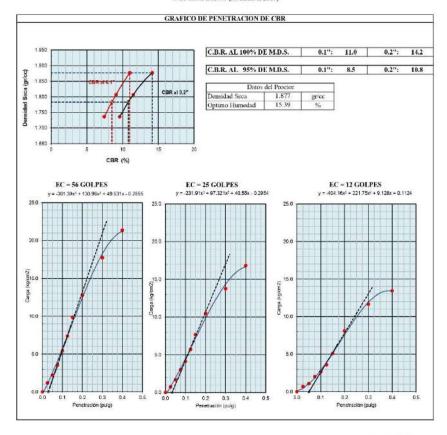
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 5% Escoria de Acero; Muestra: M-02 MATERIAL (**) HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (2*) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

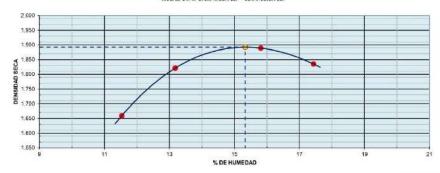
PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez

MATERIAL (**) : Arcilla inorgánica + 10% Escoria de Acero; Muestra: M-02 HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -


FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 CÓDIGO INTERNO (**) TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad w	olumétrica			
Volumen del molde (cm3) 2105	PESO DEL MOLI	DE (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10356	10800	11065	10998	
Peso suelo húmedo compactado (g)	3895	4339	4604	4537	
Peso volumétrico húmedo	1.850	2.061	2.187	2.155	
355. 334.00.00.00.00.00.00.00.00.00.00.00.00.00	Contenido d	le humedad		2 200.00	
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	458.4	441.4	294.5	405.5	
Peso suelo seco + tara (g)	411.0	390.0	254.3	345.3	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	47,4	51.4	40.2	60.2	
Peso de suelo seco (g)	411.0	390.0	254.3	345.3	
Contenido de agua	11.53	13.18	15.81	17.43	
Peso volumétrico seco	1.659	1.821	1.889	1.835	
Densidad maxima seca: 1.892	g/cm ³		Húmedad optima:	15.33	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 10% Escoria de Acero; Muestra: M-02 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	451				.80	
N° de molde		5	34	6	:4	0
№ capa		5	5			
Golpes por capa Nº		6	2:	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	12556	12602	11978	12178	11806	12048
Peso de molde	7912	7912	7532	7532	7532	7532
Peso de suelo húmedo	4644	4690	4446	4646	4274	4516
Volumen del molde	2124	2124	2113	2113	2113	2113
Densidad humeda	2.186	2.208	2.104	2.199	2.023	2.137
% de humedad	15.54	17.25	15.47	21.44	15.47	23,40
Densidad seca	1.892	1.883	1.822	1.811	1.752	1.732
Contenido de húmedad	12	1,	-	V.	**	
Nº de tarro	146	81	8:	-	8	€.
Tarro + suelo húmedo	350.1	350.1	251.5	251.5	395.5	395.5
Tamo + suelo seco	303.0	298.6	217.8	207.1	342.5	320.5
Peso de agua	47.1	51.5	33.7	44.4	53.0	75.0
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	303.0	298.6	217.8	207.1	342.5	320.5
% de humedad	15.54	17.25	15.47	21.44	15.47	23.40

					Expasión	n					
Fecha	Hora	Tiempo	opo Expasión		Expasión			Expasión			
recua	Tiora	Hr.	Dial	mm	36	Dial	nm	9%	Dial	mm	9%
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23/11/22	14:30	22	62.8	1.60	1.4	81.5	2.07	1.8	116.2	2.95	2,0
24/11/22	14:30	42	78.4	1.99	1.7	108.8	2.76	2.4	124.5	3.16	2.
25/11/22	14:30	65	94.4	2.40	2.1	124.4	3.16	2.7	148.9	3.78	3.
26/11/22	14:30	95	119.5	3.04	2.6	1366.0	34.70	30.0	171.4	4.35	3.

				P	enetrac	ión							
Penetración	Carga		Molde Nº		.6		Molde Nº		36		Mokle Nº	70	40
Penetracion	Stand	Car	199	Cone	eción	Ca	гди	Corre	eción	Ca	nga.	Correce	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	96
0.000		0	.0			0	0			a	0		
0.025		27.5	1			21.2	1			13.6	-1		
0.050		54.8	3			47.5	2			38.8	2		
0.075		93.6	5			81.5	4			62.8	3		
0.100	70.3	135.9	.7	9.0	12.8	118.6	6	6.8	9.7	78.9	4	5.4	7.7
0.125		184.5	.9			153.5	8			108.5	- 6		
0.150		226.6	12			184.5	9			140.1	7		
0.200	105.5	306.5	16	17.6	16.7	242.4	12	13.4	12:7	187.7	10	10.6	16.0
0.300		434.5	22			345.4	18			265.5	13		
0.000		501.1	25			398.5	20			321.6	16		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 10% Escoria de Acero; Muestra: M-02 MATERIAL (**) HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

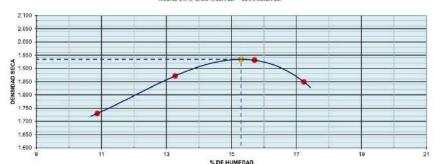
INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 12% Escoria de Acero; Muestra: M-02 HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 CÓDIGO INTERNO (**)


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	2000			
	Dendidad ve	lumétrica	17		
Volumen del molde (cm3) 2105	PESO DEL MOLE	E (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10498	10924	11165	11023	
Peso suelo húmedo compactado (g)	4037	4463	4704	4562	
Peso volumétrico húmedo	1.918	2.120	2.235	2.167	
AND	Contenido d	e humedad			
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	381.4	481.4	350.6	651.1	
Peso suelo seco + tara (g)	344.0	425.0	303.0	555.4	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	37.4	56.4	47.6	95.7	
Peso de suelo seco (g)	344.0	425.0	303.0	555.4	
Contenido de agua	10.87	13.27	15.71	17.23	
Peso volumétrico seco	1.730	1.872	1.931	1.849	
Densidad maxima seca 1.934	g/cm ³		Húmedad optima:	15.30	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 12% Escoria de Acero; Muestra: M-02 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	61 61	(4)	S	12	.e	
N° de molde	1	1	2	1	3	8
Nº capa		5	5			
Golpes por capa Nº	5	6	2:	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	13062	13188	12395	12602	11904	12174
Peso de molde	8299	8299	7834	7834	7532	7532
Peso de suelo húmedo	4763	4889	4561	4768	4372	4642
Volumen del molde	2134	2134	2115	2115	2113	2113
Densidad humeda	2.232	2.291	2.157	2.254	2.069	2.197
% de humedad	15.42	19.31	15.60	21.80	15.32	23.22
Densidad seca	1.934	1.920	1.866	1.851	1.794	1.783
Contenido de húmedad	12	1,-	,		**	
Nº de tarro	146	81	8	18	8	€.
Tarro + suelo húmedo	471.5	471.5	399.5	399.5	359.8	359.8
Tamo + suelo seco	408.5	395.2	345.6	328.0	312.0	292.0
Peso de agua	63.0	76.3	53.9	71.5	47.8	67.8
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	408.5	395.2	345.6	328.0	312.0	292.0
% de humedad	15.42	19.31	15.60	21.80	15.32	23.22

					Expasión	1					
Fecha		Tiempo		Expasion	J. C.	Expasión			Expasión		
recta	Hora	Hr.	Dial	mm	56	Dial	nm	96	Dial	mm	9%
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23/11/22	14:30	22	42.8	1.09	0.9	81.4	2.07	1.8	100.9	2.56	2.
24/11/22	14:30	42	64.8	1.65	1.4	96.4	2.45	2.1	115.8	2.94	2.6
25/11/22	14:30	65	80.5	2.04	1.8	114.5	2.91	2.5	142.4	3.62	3.
26/11/22	14:30	95	101.1	2.57	2.2	131.5	3.34	2.9	153.5	3.90	3.

				P	enetraci	ón							
Penetración	Carga		Molde Nº		11		Molde Nº		24		Mokle Nº	0	38
Penetracion	Stand	Car	199	Cone	cción	Ca	гди	Corre	eción	Car	nga.	Correce	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0.6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0	-		0	0			0	0		
0.025		31.5	.2			21.1	1			15.5	-1		
0.050		69.6	- 1			42.5	2			28.6	- 1		
0.075		112.6	6			70.5	4			49.5	3		
0.160	70.3	164,5	8	10.3	14.6	92.9	3	8.3	11.8	66.9	- 3	6.3	8.9
0.125		214.4	11			136.9	9			84.9	4		
0.150		271.5	14			184.2	9			134.8	7		
0.200	105.5	351.5	18	20.4	19.3	281.5	13	16.0	15.2	191.5	10	12.2	11.0
0.300		551.5	28			370.4	19			281,4	14		
0.400		642.8	33			461.5	23			324.6	16		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

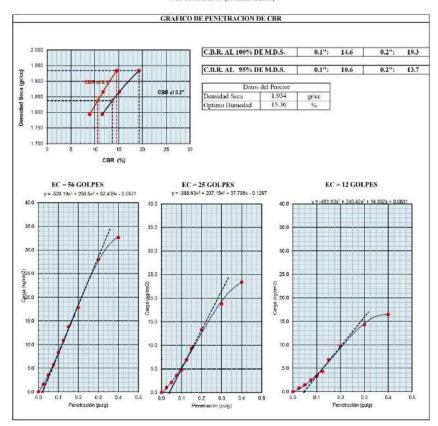
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 12% Escoria de Acero; Muestra: M-02 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32

COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

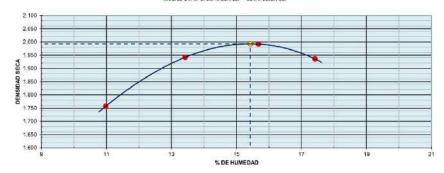
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 15% Escoria de Acero; Muestra: M-02 HORA DE MUESTREO (**): -


CODIGO DE MUESTRA (**) MUESTREADO POR (**): -FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**) : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad w	olumétrica			
Volumen del molde (cm3) 2105	PESO DEL MOLI	DE (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10565	11098	11312	11245	
Peso suelo húmedo compactado (g)	4104	4637	4851	4784	
Peso volumétrico húmedo	1.950	2.203	2.305	2.273	
3011 3011000000000000000000000000000000	Contenido d	le humedad		200000	
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	295.2	362.5	542.4	600.0	
Peso suelo seco + tara (g)	266.0	319.6	468.9	511.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	29.2	42.9	73.5	89.0	
Peso de suelo seco (g)	266.0	319.6	468.9	511.0	
Contenido de agua	10.98	13.42	15.67	17.42	
Peso volumétrico seco	1.757	1.942	1.992	1.936	
Densidad maxima seca: 1.993	g/cm ³		Húmedad optima:	15.43	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 15% Escoria de Acero; Muestra: M-02 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			
Dendidad volumétrica	44.	2			.g.	9
N° de molde	2	6	8		1	7.
Nº capa		5	5			
Golpes por capa Nº	5	6	2:	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	12130	12190	12651	12784	12560	12856
Peso de molde	7239	7239	7931	7931	8053	8053
Peso de suelo húmedo	4891	4951	4720	4853	4507	4803
Volumen del molde	2123	2123	2123	2123	2108	2108
Densidad humeda	2.304	2.332	2.223	2.286	2.138	2.278
% de humedad	15.58	17.59	15.60	19.50	15.32	23.63
Densidad seca	1.993	1.983	1.923	1.913	1.854	1.843
Contenido de húmedad	12	1,-	-		**	
Nº de tarro	146	- 51	8:	18	8	€.
Tarro + suelo húmedo	332.3	332.3	481.6	481.6	331.2	331.2
Tamo + suelo seco	287.5	282.6	416.6	403.0	287.2	267.9
Peso de agua	44.8	49.7	65.0	78.6	44.0	63.3
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	287.5	282.6	416.6	463.0	287.2	267.9
% de humedad	15.58	17.59	15.60	19.50	15.32	23.63

					Expasión	1					
Fecha	Hora	Tiempo		Expasion		Expasión			Expasión		
recua	Hora	Hr.	Dial	mm	36	Dial	nm	96	Dial	mm	%
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23/11/22	14:30	22	23.6	0.60	0.5	38.6	0.98	0.8	78.1	1.98	1.7
24/11/22	14:30	42	46.4	1.18	1.0	68.7	1.74	1.5	94.4	2.40	2.1
25/11/22	14:30	65	54.5	1.38	1.2	84.7	2.15	1.9	112.1	2.85	2.5
26/11/22	14:30	95	81.4	2.07	1.8	113.5	2.88	2.5	124.5	3.16	2.7

				P	enetraci	ón							
Penetración	Carga		Molde Nº		26		Molde Nº	8	8		Mokle Nº	0	17
Penetracion	Stand	Carga		Cone	cción	Ca	гди	Corre	eción	Ca	nga.	Corre	сежн
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0			0	0			ū	0		
0.025		33.6	.2			25.5	1			16.5	-1		
6.050		81.5	4			57.5	3			43.6	2		
0.075		123.5	6			84.5	4			57.8	3		
0.160	70,3	190.2	10	16.2	23.0	132.6	7	10.9	15.5	85.9	4	8.6	12.2
0.125		281.5	14			196.5	10			126.3	- 6		
0.150		361.5	18			255.8	13			185.6	9		
0.200	105.5	502.1	25	31.6	30.0	335.5	17	21.5	20.4	261.1	13	16.5	16.0
0.300		754.8	38			531.5	27			402.1	20		
0.400	1	991.1	58			691.1	35			491.5	25		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

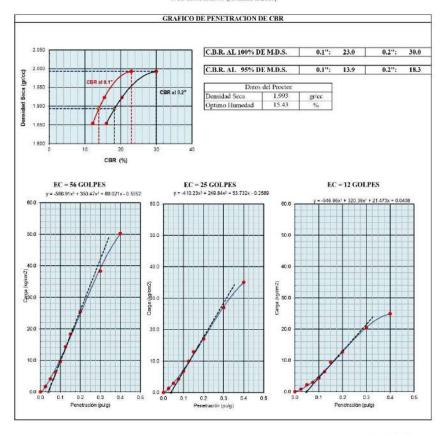
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 15% Escoria de Acero; Muestra: M-02 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32

COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

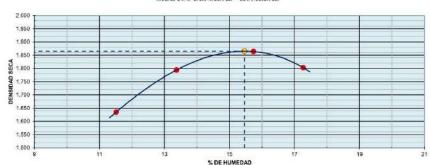
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 5% Escoria de Acero; Muestra: M-03 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**)


: CI-447 FECHA DE ENSAYO: 22/11/2022 CÓDIGO INTERNO (**) TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	200000000000000000000000000000000000000			
	Dendidad vo	lumétrica	17 (4)		
Volumen del molde (cm3) 2105	PESO DEL MOLE	E (g) :	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10298	10742	11002	10912	
Peso suelo húmedo compactado (g)	3837	4281	4541	4451	
Peso volumétrico húmedo	1.823	2.034	2.157	2.114	
	Contenido d	e humedad			
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	542.4	401.9	290.5	324.6	
Peso suelo seco + tara (g)	486.4	354.5	251.0	276.8	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	56.0	47.4	39.5	47.8	
Peso de suelo seco (g)	486.4	354.5	251.0	276.8	
Contenido de agua	11.51	13.37	15.74	17.27	
Peso volumétrico seco	1.635	1.794	1.864	1.803	
Densidad maxima seca: 1.865	g/cm ³		Húmedad optima:	15.46	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla inorgânica + 5% Escoria de Acero; Muestra: M-03 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica			Si		W 5/8	
N° de molde	. 6	0	4	1	3	1
№ capa		5	5			
Golpes por capa Nº	5	6	2:	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	12090	12130	11916	12050	11924	12129
Peso de molde	7532	7532	7532	7532	7721	7721
Peso de suelo húmedo	4558	4598	4384	4518	4203	4408
Volumen del molde	2113	2113	2113	2113	2112	2112
Densidad humeda	2.157	2.176	2.075	2.138	1.990	2.087
% de humedad	15.57	17.31	15.54	19.58	15.28	21.67
Densidad seca	1.866	1.855	1.796	1.788	1.726	1.715
Contenido de húmedad	12	1,-	-	V.	**	
Nº de tarro	146	81	8:	18	8	€.
Tarro + suelo húmedo	326.6	326.6	400.0	400.0	368.9	368.9
Tamo + suelo seco	282.6	278.4	346.2	334.5	320.0	303.2
Peso de agua	44.0	48.2	53.8	65.5	48.9	65.7
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	282.6	278.4	346.2	334.5	320.0	303.2
% de humedad	15,57	17.31	15.54	19.58	15.28	21.67

					Expasión	1					
Fecha	Hora	Tiempo		Expasion	J. C.		Expasión			Expasión	
recta	Hora	Hr.	Dial	mm	56	Dial	nam	96	Dial	mm	%
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23/11/22	14:30	22	88.7	2.25	2.0	124.4	3.16	2.7	151.1	3.84	3
24/11/22	14:30	42	116.5	2.96	2.6	148.5	3.77	3.3	168.8	4.29	3.
25/11/22	14:30	65	124.1	3.15	2.7	161.5	4.10	3.6	178.4	4.53	3.
26/11/22	14:30	95	151.1	3.84	3.3	176.8	4.49	3.9	215.1	5.46	4.

				P	enetrac	ión							
Penetración	Carga	1 3	Molde Nº		60		Molde Nº	7	44		Mokle Nº	70	31
Penetracion	Stand	Car	29	Cone	Corrección		гди	Corre	eción	Ca	nga.	Correcció	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0.6	Dial (div)	kg/cm2	kg/cm2	96
0.000		0	.0	-		0	0			0	0		
0.025		24.5	1			15.4	1			12.8	-1		
0.050		44.5	2			35.5	2			18.8	1		
0.075		71.5	4			61,5	3			37.5	2		
0.100	70.3	108.9	6	7.8	11.1	84.5	4	6.4	9.1	49.5	- 3	5.5	7.9
0.125		148.5	. 8			115.2	- 6			68.9	- 3		
0.150		191.5	10			154.5				105.4	5		
0.200	105.5	258.5	13	15.0	14.3	208.5	11	12.1	11.5	162.5	8	10.5	16.
0.300		352.4	18			275.4	14			231,4	12		
0.000		425.5	22			345.1	18			265.9	13		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

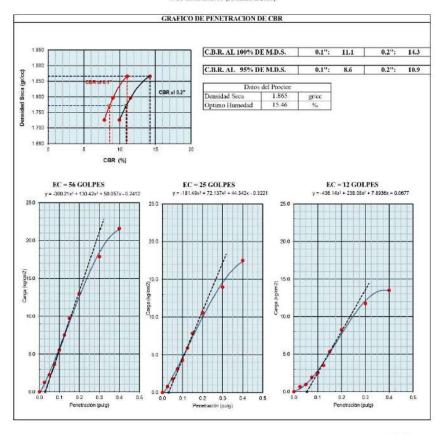
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla înorgânica + 5% Escoria de Acero; Muestra: M-03 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

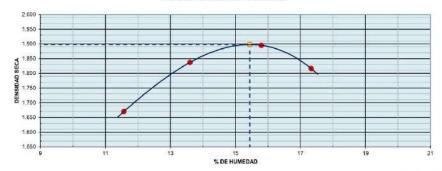
INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 10% Escoria de Acero; Muestra: M-03 HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 CÓDIGO INTERNO (**)


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	25 7 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7			
	Dendidad ve	lumétrica	17		
Volumen del molde (cm3) 2105	PESO DEL MOLE	E (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10384	10854	11081	10945	
Peso suelo húmedo compactado (g)	3923	4393	4620	4484	
Peso volumétrico húmedo	1.864	2.087	2.195	2.130	
	Contenido d	e humedad			
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	300.0	624.8	531.5	470.5	
Peso suelo seco + tara (g)	268.9	550.0	459.0	401.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	31.1	74.8	72.5	69.5	
Peso de suelo seco (g)	268.9	550.0	459.0	401.0	
Contenido de agua	11.57	13.60	15.80	17.33	
Peso volumétrico seco	1.670	1.837	1.895	1.816	
Densidad maxima seca: 1.898	g/cm ³		Húmedad optima:	15.44	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 10% Escoria de Acero; Muestra: M-03 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	61 61		S 53	0	.00 5.5	-
N° de molde	1	0	3	7	2	9
№ capa		5	5			
Golpes por capa Nº	5	6	2:	,	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	12334	12387	12440	12564	12362	12566
Peso de molde	7657	7657	7894	7894	8076	8076
Peso de suelo húmedo	4677	4730	4546	4670	4286	4490
Volumen del molde	2134	2134	2150	2150	2110	2110
Densidad humeda	2.192	2.216	2.114	2.172	2.031	2.128
% de humedad	15.47	17.57	15.64	19.48	15.51	21.68
Densidad seca	1.898	1.885	1.828	1.818	1.758	1.749
Contenido de húmedad		1,	-			
Nº de tarro	146	81	8	18	8	€.
Tarro + suelo húmedo	606.2	606.2	594.4	594.4	457.4	457.4
Tamo ± suelo seco	525.0	515.6	514.0	497.5	396.0	375.9
Peso de agua	81.2	90.6	80.4	96.9	61.4	81.5
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	525.0	515.6	514.0	497,5	396.0	375.9
% de humedad	15.47	17.57	15.64	19.48	15.51	21.68

					Expasión	1					
Fecha	Hora	Tiempo		Expasion	J. C.		Expasión			Expasión	
recta	Hora	Hr.	Dial	mm	56	Dial	nm	96	Dial	mm	9%
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23/11/22	14:30	22	61.5	1.56	1.4	84.8	2.15	1.9	102.1	2.59	2.
24/11/22	14:30	42	84.1	2.14	1.8	106.9	2.72	2.4	115.4	2.93	2.5
25/11/22	14:30	65	97.7	2.48	2.1	115.4	2.93	2.5	148.5	3.77	3.
26/11/22	14:30	95	121.1	3.08	2.7	128.5	3.26	2.8	161.1	4.09	3.

				P	enetraci	ón							
Penetración	Carga	Molde Nº			10		Molde Nº		37		Mokle Nº	0	29
Penetracion	Stand	Car	199	Cone	Corrección		гди	Corre	eción	Carga		Correcció	
pulg	kg/cm2	Dial (div)	kg/em2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0			0	0			ū	0		
0.025		26.9	1			22.5	1			14.8	-1		
0.050		51.5	3			48.9	- 2			39.6	2		
0.075		94.5	5			82.5	4			63.5	3		
0.160	70.3	138.5	.7	9.4	13.4	118.5	6	73	10.3	79.5	4	5.5	7.9
0.125		187.5	.10			154.8	8			110.1	- 6		
0.150		231.4	12			188.8	9			142.5	7		
0.200	105.5	316.5	16	38.4	17.4	285.5	13	14.2	13.4	191.5	10	10.9	16.3
0.300		445.4	23			351.1	18			275.8	14		
0.400		516.9	26			402.1	20			332.9	117		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

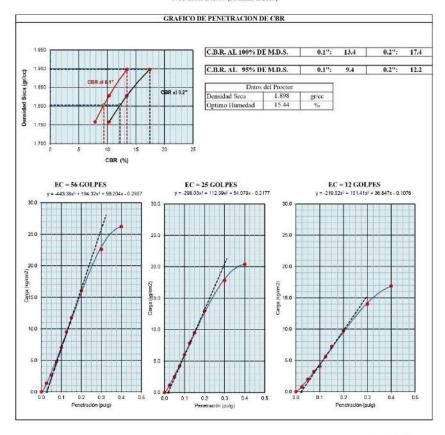
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 10% Escoria de Acero; Muestra: M-03 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32

COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

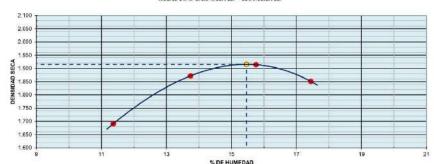
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 12% Escoria de Acero; Muestra: M-03 HORA DE MUESTREO (**): -


CODIGO DE MUESTRA (**) MUESTREADO POR (**): -FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**) : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	ENSAYO			
Dendidad v	olumétrica			
105 PESO DEL MOLI	DE (g)	6461	METODO	"C"
1	2	3	4	
10424	10942	11124	11036	
3963	4481	4663	4575	
1.883	2.129	2,215	2.173	
Contenido o	le humedad			
1	2	3	4	
416.5	384.9	264.5	311.1	
374.0	338.4	228.5	264.9	
0.0	0.0	0.0	0.0	
42.5	46.5	36.0	46.2	
374.0	338.4	228.5	264.9	
11.36	13.74	15.75	17.44	
1.691	1.872	1.914	1.851	
	105 PESO DEL MOLI 1 10424 3963 1.883 Contenido d 1 416.5 374.0 0.0 42.5 374.0 11.36	1 2 10424 10942 3963 4481 1.883 2.129 Contenido de humedad 1 2 416.5 384.9 374.0 338.4 0.0 0.0 42.5 46.5 374.0 338.4 11.36 13.74	DESCRIPTION DESCRIPTION	DESCRIPTION PESODEL MOLDE (g)

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 12% Escoria de Acero; Muestra: M-03 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO				
Dendidad volumétrica	44.	92	Si tad	Y	.8.		
N° de molde	3	4	.50	0	3		
№ capa		5	5				
Golpes por capa Nº	5	6	2:	5	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	12198	12262	12402	12533	12340	12566	
Peso de molde	7532	7532	7911	7911	8031	8031	
Peso de suelo húmedo	4666	4730	4491	4622	4309	4535	
Volumen del molde	2113	2113	2110	2110	2110	2110	
Densidad humeda	2.208	2.239	2.128	2.191	2.042	2.149	
% de humedad	15.38	17.69	15.45	19.50	15.13	21.79	
Densidad seca	1.914	1.902	1.843	1.833	1.774	1.765	
Contenido de húmedad		1,	-				
Nº de tarro	146	81	8	-	8	€.	
Tarro + suelo húmedo	300.0	300.0	418.5	418.5	347.7	347.7	
Tamo ± suelo seco	260.0	254.9	362,5	350.2	302.0	285.5	
Peso de agua	40,0	45.1	56.0	68.3	45.7	62.2	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	260.0	251.9	362.5	350.2	302.0	285.5	
% de humedad	15.38	17.69	15.45	19.50	15.13	21.79	

					Expasión	1					
Fecha	Hora T	Tiempo	po Expasión			Expasión			Expasión		
recta	Hora	Hr.	Dial	mm	36	Dial	nam	96	Dial	mm	%
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23/11/22	14:30	22	40.2	1.02	0.9	77.1	1.96	1.7	105.4	2.68	2.
24/11/22	14:30	42	64.5	1.64	1.4	84.8	2.15	1.9	118.4	3.01	2.6
25/11/22	14:30	65	81.4	2.07	1.8	102.1	2.59	2,2	128.8	3.27	2,
26/11/22	14:30	95	91.4	2.32	2.0	124.5	3.16	2.7	149.5	3.80	3.

				P	enetrac	ión							
Penetración	Carga		Molde Nº		3.4		Molde Nº	7	50		Mokle Nº	0	3
Penetracion	Stand	Ca	rga	Cone	eción	Carga		Corre	eción	Car	nga.	Corre	ескін
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	96
0.000	7,510,000	0	.0	-		0	0			0	0		
0.025		32.6	- 2			21.6	1			16.9	-1		
0.050		71.5	- 1			42.5	- 2			32.4	2		
0.075		114.5	6			70.9	4			51.5	3		
0.100	70.3	166,5	- 8	10.2	14.5	94.6	. 5	7.8	11.1	72.5	4	6.0	8.5
0.125		215.9	-11			142.5	9			95.5	- 5		
0.150		275.8	14			184.5	9			142.5	7		
0.200	105.5	356.5	18	20.2	19:1	249.4	13	15.4	14.6	188.5	10	11.8	. 11.
0.300		524.5	27			381.5	19			284.5	14		
0.000		685.9	34			491.4	25			356.2	18		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

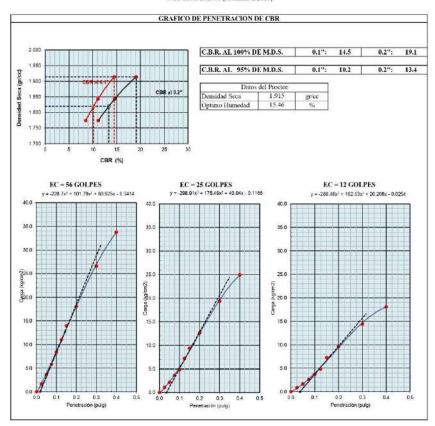
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 12% Escoria de Acero; Muestra: M-03 HORA DE MUESTREO (**): -MATERIAL (**) CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32

COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

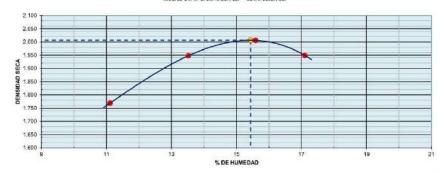
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 21/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 15% Escoria de Acero; Muestra: M-03 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -


FECHA DE RECEPCION: 22/11/2022 COORDENADAS (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 CÓDIGO INTERNO (**) TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad v	olumétrica	17		
Volumen del molde (cm3) 210	5 PESO DEL MOLI	DE (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10598	11115	11342	11265	
Peso suelo húmedo compactado (g)	4137	4654	4881	4804	
Peso volumétrico húmedo	1.965	2.211	2.319	2.282	
	Contenido d	le humedad	101		
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	310.0	377.8	322.5	408.7	
Peso suelo seco + tara (g)	279.0	332.8	279.0	349.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	31.0	45.0	43.5	59.7	
Peso de suelo seco (g)	279.0	332.8	279.0	349.0	
Contenido de agua	11.11	13.52	15.59	17.11	
Peso volumétrico seco	1.769	1.948	2.006	1.949	
Densidad maxima seca: 2.00	6 g/cm ³		Húmedad optima	15.44	la :

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 21/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 15% Escoria de Acero; Muestra: M-03 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 22/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 22/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 27/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO				
Dendidad volumétrica	61 61				.00 St.		
N° de molde	1	5	12	2	28		
№ capa		5	5		5		
Golpes por capa Nº	5	6	2:	,	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	12498	12545	12558	12690	12618	12823	
Peso de molde	7576	7576	7808	7808	8076	8076	
Peso de suelo húmedo	4922	4969	4750	4882	4542	4747	
Volumen del molde	2123	2123	2121	2121	2111	2111	
Densidad humeda	2.318	2.341	2.240	2.302	2.152	2.249	
% de humedad	15.59	17.34	15.77	19.60	15.60	21.41	
Densidad seca	2.005	1.995	1.935	1.925	1.862	1.852	
Contenido de húmedad	12	1,-	,		**		
Nº de tarro	146	81	8	18	8	€.	
Tarro + suelo húmedo	427.7	427.7	361.2	361.2	490.5	490.5	
Tamo + suelo seco	370.0	364.5	312.0	302.0	424.3	404.0	
Peso de agua	57.7	63.2	49.2	59.2	66.2	86.5	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	370.0	361.5	312.0	302.0	424.3	404.0	
% de humedad	15.59	17.34	15.77	19:60	15:60	21.41	

					Expasión	1					
Fecha		Tiempo		Expasion			Expasión			Expasión	
recta	Hora	Hr.	Dial	mm	36	Dial	nm	96	Dial	mm	9%
22/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23/11/22	14:30	22	29.6	0.75	0.7	62.5	1.59	1.4	84.4	2.14	1.5
24/11/22	14:30	42	45.4	1.15	1.0	78.4	1.99	1.7	100.1	2.54	2.2
25/11/22	14:30	65	56.5	1.44	1.2	86.8	2:20	1.9	119.5	3.04	2.0
26/11/22	14:30	95	84.5	2.15	1.9	112.1	2.85	2.5	131.5	3.34	2.5

				P	enetraci	ón							
Penetración	Carga	Carga Molde Nº					Molde Nº		12		Mokle Nº	90	28
Penetracion	Stand	Car	199	Cone	cción	Ca	гди	Corre	eción	Car	nga.	Correce	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
0.000	7,510,000	0	.0	-		0	0			0	0		
0.025		30.5	.2			26.5	1			17.4	-1		
0.050		78.8	- 4			56.8				41.4	2		
0.075		125.5	6			85.6	4			55.4	3		
0.100	70.3	194.5	10	16.3	23.7	134.6	7	11.2	15.9	84.8	4	9.0	123
0.125		286.2	15			197.5	10			126.9	- 6		
0.150		362.4	18			281.5	13			188.9	10		
0.200	105.5	506.9	26	31.9	30.3	342.5	17	22.0	20.9	258.0	T)	17.7	16.
0.300		781.5	39			542.4	28			416.5	21		
0.000		998.4	51			701.9	36			500.0	25		
0.500													

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

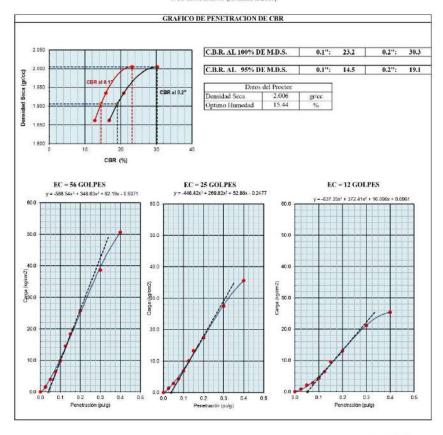
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 15% Escoria de Acero; Muestra: M-03 HORA DE MUESTREO (**): -MATERIAL (**) CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32

COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

ANEXO N° 5: Fichas técnicas de laboratorio del suelo adicionado las fibras de caucho.

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

Se Se

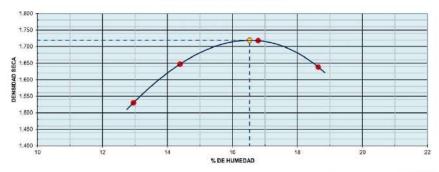
948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) : Arcilla inorgánica + 5% Fibra de Caucho; Muestra: M-01 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022 TECNICO ENCARGADO


SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)).

1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad ve	lumétrica	17 0		
Volumen del molde (cm3) 2105	PESO DEL MOLE	E (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10098	10426	10684	10551	
Peso suelo húmedo compactado (g)	3637	3965	4223	4090	
Peso volumétrico húmedo	1.728	1.884	2.006	1.943	
SZL SAMOONOM SOMEON	Contenido d	e humedad			100
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	474.4	401.5	364.5	524.4	
Peso suelo seco + tara (g)	420.0	351.0	312.1	442.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	54.4	50.5	52.4	82.4	
Peso de suelo seco (g)	420.0	351.0	312.1	442.0	
Contenido de agua	12.95	14.39	16.79	18.64	
Peso volumétrico seco	1.530	1.647	1.718	1.638	
Densidad maxima seca: 1.719	g/cm ³		Húmedad optima:	16.53	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.
- * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al eliente.

 (**) Datos proporcionados por el eliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla inorgânica + 5% Fibra de Caucho; Muestra: M-01 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO				
Dendidad volumétrica	N 61		S 1-2	6	-0.54 -0.54		
N° de molde	1	5	.50	5	70		
Nº capa		5	5		5		
Golpes por capa Nº		6	2:	5	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	11828	11884	11587	11702	11851	12026	
Peso de molde	7576	7576	7532	7532	7894	7894	
Peso de suelo húmedo	4252	4308	4055	4170	3957	4132	
Volumen del molde	2123	2123	2113	2113	2150	2150	
Densidad himeda	2,003	2.029	1.919	1.973	1.840	1.922	
% de lumedad	16.51	18.75	16.47	20.63	16.57	22.72	
Densidad seca	1.719	1.709	1.648	1.636	1.578	1.566	
Contenido de húmedad	12		-		**		
Nº de tarro	E4	-	8:	-	8	€.	
Tarro + suelo húmedo	346.5	346.5	300.5	300.5	427.8	427.8	
Tamo + suelo seco	297.4	291.8	258.0	249.1	367.0	348.6	
Peso de agua	49.1	54.7	42.5	51.4	60.8	79.2	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	297.4	291.8	258.0	249.1	367.0	348.6	
% de humedad	16.51	18.75	16.47	20.63	16.57	22.72	

		View or and the second			Expasión	1					
Fecha	Hora	Tiempo		Expasion		Expasión			Expasión		
Pecha	TiOta	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	96
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	94.1	2.39	2.1	102.1	2.59	2.2	133.9	3.40	3.6
17/11/22	14:30	42	102.1	2.59	2.2	118.4	3.01	2.6	149.5	3.80	3.3
18/11/22	14:30	65	114.4	2.91	2.5	132.1	3.36	2.9	162.3	4.12	3,6
19/11/22	14:30	95	127.4	3.24	2.8	148.9	3.78	3.3	178.4	4.53	3.5

				P	enetrac	ión							
Penetración	Carga		Molde Nº		15		Molde Nº		56		Mokle Nº	0	70
Penetracion	Stand	Car	rga	Cone	eción	Carga		Corre	eción	Car	nga.	Corre	сежн
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0.6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0			0	0			0	0		
0.025		24.5	1			18.7	1			11.4	1		
0.050		48.7	- 2			34.5	2			24.6	1		
0.075		78.0	4			54.4	3			40.5	2		
0.100	70,3	115.4	- 6	6.3	8.9	74.5	4	5.1	7.2	56.9	3	4.6	6.5
0.125		144.4	.2			95.4	- 5			75.4	4		
0.150		174.7	9			125.4	- 6			102.1	5		
0.200	105.5	228.4	12	12.5	11.6	175.9	9	10.0	9.4	147.2	-7	9.0	8.5
0.300		319.6	16			245.9	12			216.8	11		
0.400		392.4	20			291.1	15			256.5	13		
0.500													

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

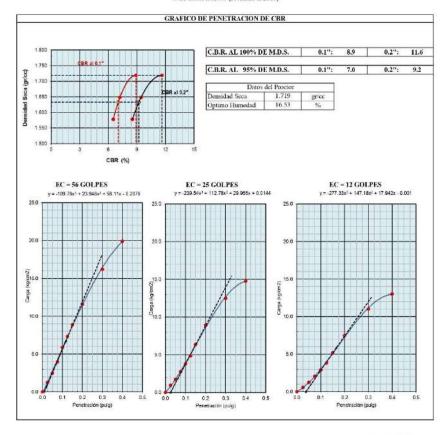
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla înorgânica + 5% Fibra de Caucho; Muestra: M-01 MATERIAL (**) HORA DE MUESTREO (**): -MUESTREADO POR (**): -

CODIGO DE MUESTRA (**) 32 COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

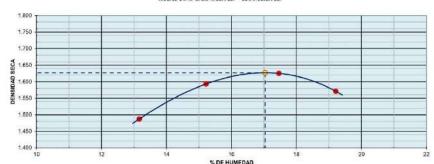
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 10% Fibra de Caucho; Muestra: M-01 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -


COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad ve	lumétrica	17 0		- :
Volumen del molde (cm3) 2105	PESO DEL MOLD	E (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10002	10324	10480	10402	
Peso suelo húmedo compactado (g)	3541	3863	4019	3941	
Peso volumétrico húmedo	1.682	1.835	1,909	1.872	
	Contenido d	e humedad		500,000	110
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	395.5	291.5	333.0	452.4	
Peso suelo seco + tara (g)	349.5	253.0	283.5	379.5	
Peso de la tara (g)	0.0	0.0	0.0	0.0	Ü
Peso de agua (g)	46.0	38.5	49.5	72.9	
Peso de suelo seco (g)	349.5	253.0	283.5	379.5	
Contenido de agua	13.16	15.22	17.46	19.21	
Peso volumétrico seco	1.487	1.593	1.625	1.571	
Densidad maxima seca. 1.627	g/cm ³		Húmedad optima:	17.04	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla inorgânica + 10% Fibra de Caucho; Muestra: M-01 HORA DE MUESTREO (**): CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	151			5	.g	
N° de molde	1	2	- 4	5	2	5
Nº capa		5	5			
Golpes por capa Nº		6	2:	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	11854	11911	11524	11644	11416	11576
Peso de molde	7808	7808	7594	7594	7639	7639
Peso de suelo húmedo	4046	4103	3930	4050	3777	3937
Volumen del molde	2121	2121	2150	2150	2160	2160
Densidad humeda	1.908	1.934	1.828	1.884	1.749	1.823
% de lumedad	17.23	19.47	17.36	21.50	17.43	23.22
Densidad seca	1.628	1.619	1.558	1.551	1.489	1.479
Contenido de húmedad						
N° de tarro	E4	-	8:	-	8	= 0.
Tarro + suelo húmedo	405.6	405.6	551.6	551.6	662.9	662.9
Tamo + suelo seco	346.0	339.5	470.0	454.0	564.5	538.0
Peso de agua	59.6	66.1	81.6	97.6	98.4	124.9
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	346.0	339.5	470.0	454.0	564.5	538.0
% de humedad	17.23	19.47	17.36	21.50	17.43	23.22

		View			Expasión	1					
Fecha	Hora	Tiempo				Expasión			Expasión		
recus	Hota	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	96
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	78.4	1.99	1.7	84.7	2.15	1.9	134.1	3.41	3.6
17/11/22	14:30	42	84.7	2.15	1.9	102.1	2.59	2.2	149.2	3.79	3
18/11/22	14:30	65	102.4	2.60	2.3	121.1	3.08	2.7	166.9	4.24	3.
19/11/22	14:30	95	112.4	2.85	2.5	154.4	3.92	3.4	179.4	4.56	4.8

				P	enetrac	ión							
Penetración	Carga		Molde Nº		12		Molde Nº		45		Mokle Nº	0	25
Penetracion	Stand	Car	rga	Cone	eción	Ca	гди	Corre	eción	Car	rga.	Corre	сежн
pulg	kg/cm2	Dial (div)	kg/em2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0			0	0			0	0		
0.025		18.9	1			14.5	1			9.6	0		
0.050		32.6	- 2			23.6	1.			16.5	1		
0.075		48.8	2			37.8	2			26.9	1		
0.100	70,3	74.5	4	5.9	8.3	52.4	3	4.0	5.6	39.6	2	3.4	4.8
0.125		99.5	9			68.9	3			55.5	- 3		
0.150		134.2	7			91,5	3			75.5	4		
0.200	105.5	189.4	10	113	10.7	132.5	7	7.6	7.2	106.9	5	6.4	6.1
0.300		261.6	13			176.1	9			142.2	7		
0.400		326.5	17			216.5	11			161.5	8		
0.500													

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

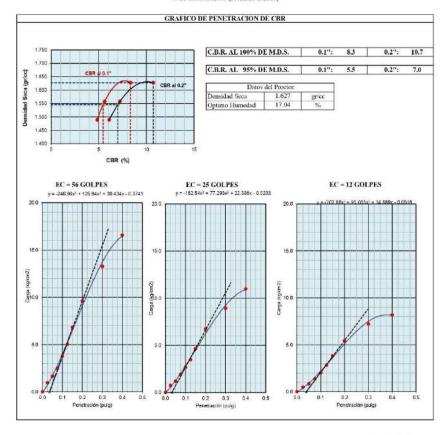
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 10% Fibra de Caucho; Muestra: M-01 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 12% Fibra de Caucho; Muestra: M-01 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022

: CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

		DATOS DE	ENSAYO			
		Dendidad w	lumétrica			
Volumen del molde (cm3)	2105	PESO DEL MOLI	E (g)	6461	METODO	"C"
Número de ensayos		1	2	3	4	
Peso molde + molde (g)		9845	10124	10300	10223	
Peso suelo húmedo compactado (g)		3384	3663	3839	3762	
Peso volumétrico húmedo		1.608	1.740	1.824	1.787	
		Contenido d	e humedad		40 DOCUMENT OF THE PARTY OF THE	
Número de recipiente		1	2	3	4	
Peso suelo húmedo + tara (g)		316.4	481.1	356.2	401.5	
Peso suelo seco + tara (g)		282.0	421.0	305.0	339.0	
Peso de la tara (g)		0.0	0.0	0.0	0.0	
Peso de agua (g)		34.4	60.1	51.2	62.5	
Peso de suelo seco (g)		282.0	421.0	305.0	339.0	
Contenido de agua		12.20	14.28	16.79	18.44	
Peso volumétrico seco		1.433	1.523	1.562	1.509	
Densidad máxima seca:	1.564	g/cm ³		Húmedad optima:	16.37	Va.

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) ; Arcilla inorgânica + 12% Fibra de Caucho; Muestra: M-01 HORA DE MUESTREO (**): CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	151			-	.g. 576	-
N° de molde	2	2	-19	,	3.	3
Nº capa		5	5			
Golpes por capa Nº		6	25	,	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	11900	11934	11086	11184	11035	11198
Peso de molde	8053	8053	7371	7371	7532	7532
Peso de suelo húmedo	3847	3881	3715	3813	3503	3666
Volumen del molde	2108	2108	2134	2134	2113	2113
Densidad humeda	1.825	1.841 18.40	1.741	1.787	1.658	1.735
% de lumedad	16.67		16.54	20.47	16.49	22.65
Densidad seca	1.564	1.555	1.494	1.483	1.423	1.415
Contenido de húmedad						
N° de tarro	E4	-	8	-	8	= 0.
Tarro + suelo húmedo	326.2	326.2	478.4	478.4	294.6	294.6
Tamo + suelo seco	279.6	275.5	410.5	397.1	252.9	240.2
Peso de agua	46.6	50.7	67.9	81.3	41.7	54.4
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	279.6	275.5	410.5	397.1	252.9	240.2
% de humedad	16.67	18.40	16.54	20.47	16:49	22.65

		View			Expasión	1						
Fecha	Hora	Tiempo		Expasion			Expasión			Expasión		
recus	TiOta	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	9%	
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
16/11/22	14:30	22	84.7	2.15	1.9	102.1	2.59	2.2	145.8	3.70	3.3	
17/11/22	14:30	42	102.1	2.59	2.2	121.1	3.08	2.7	163.9	4.16	3.5	
18/11/22	14:30	65	124.4	3.16	2.7	145.8	3.70	3.2	175.6	4.46	3.5	
19/11/22	14:30	95	138.4	3.52	3.0	164.4	4.18	3.6	184.1	4.68	4.	

				P	enetrac	ión							
Penetración	Carga		Molde Nº		2		Molde Nº		19		Mokle Nº	0	33
Penetracion	Stand	Car	298	Cone	eción	Ca	гди	Corre	eción	Ca	rga.	Corre	cesón
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0			0	0			0	0		
D 025		21.5	1			15.8	1			11.1	1		
0.050		42.4	2			32.6	2			18.5	1		
0.075		66.9	3			50.8	3			32.6	2		
0.100	70,3	90,4	- 5	5.4	2.7	67.5	3	3.7	5.2	48.5	2	2.9	43
0.125		115.8	.6			88.9				62.9	- 3		
0.150		151.7	8			108.9	5			80.5	4		
0.200	105.5	194.8	10	10.6	10.1	138.6	7	7.3	6.9	100.5	5	5.7	5.4
0.300		268.9	14			208.5	10			151.1	. 8		
0.000		319.6	16			254.8	13			195.9	10		
0.500													

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

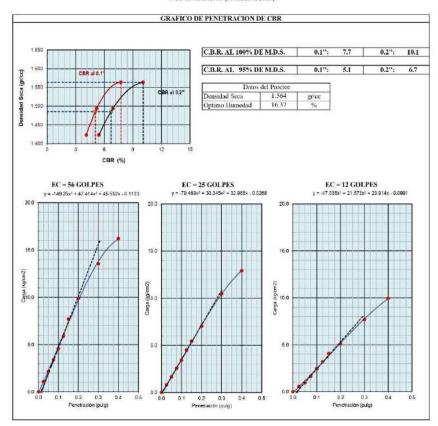
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 12% Fibra de Caucho; Muestra: M-01 HORA DE MUESTREO (**): -MATERIAL (**) CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32

COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

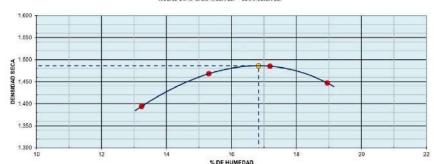
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 15% Fibra de Caucho; Muestra: M-01 HORA DE MUESTREO (**): -


CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

		DATOS DE	ENSAYO			
		Dendidad ve	lumétrica			
Volumen del molde (cm3)	2105	PESO DEL MOLI	E (g)	6461	METODO	"C"
Número de ensayos		1	2	3	4	
Peso molde + molde (g)		9784	10024	10124	10084	
Peso suelo húmedo compactado (g)		3323	3563	3663	3623	
Peso volumétrico húmedo		1.579	1.693	1.740	1.721	
	- 11	Contenido d	e humedad	101	C 1116	
Número de recipiente]]	1	2	3	4	
Peso suelo húmedo + tara (g)		423.5	550.0	300.0	316.4	
Peso suelo seco + tara (g)		374.0	477.0	256.0	266.0	
Peso de la tara (g)		0.0	0.0	0.0	0.0	
Peso de agua (g)		49.5	73.0	44.0	50,4	
Peso de suelo seco (g)		374.0	477.0	256.0	266.0	
Contenido de agua		13.24	15.30	17.19	18.95	
Peso volumétrico seco		1.394	1.468	1.485	1.447	
Densidad máxima seca:	1.486	g/cm ³		Húmedad optima:	16.84	6

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla inorgânica + 15% Fibra de Caucho; Muestra: M-01 HORA DE MUESTREO (**): CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			
Dendidad volumétrica	51 51		- Ind		-85 - 100 -	2
N° de molde	1	6	5	1	8.	2
Nº capa		5	5		5	
Golpes por capa Nº		6	25	\$	12	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	11484	11522	11236	11332	11292	11416
Peso de molde	7807	7807	7684	7684	7984	7984
Peso de suelo húmedo	3677	3715	3552	3648	3308	3432
Volumen del molde	2121	2121	2150	2150	2110	2110
Densidad humeda	1.734	1.752	1.652	1.697	1.568	1.627
% de lumedad	16.60	18.54	16.67	20.69	16.48	22.62
Densidad seca	1.487	1.478	1.416	1.406	1.346	1.327
Contenido de húmedad						
N° de tarro	E4	- 51	8	-	8	= 0.
Tarro + suelo húmedo	291.5	291.5	350.0	350.0	406.5	406.5
Tamo + suelo seco	2.50.0	245.9	300.0	290.0	349.0	331.5
Peso de agua	41.5	45.6	50.0	60.0	57.5	75.0
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	250,0	245.9	300.0	290.0	349.0	331.5
% de humedad	36.60	18.54	16.67	20.69	16:48	22.62

		View			Expasión	n					
Fecha	Hora	Tiempo					Expasión		Expasión		
recus	TiOta	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	96
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	64.8	1.65	1.4	84.7	2.15	1.9	132.1	3.36	2.5
17/11/22	14:30	42	84.4	2.14	1.9	102.1	2.59	2.2	146.9	3.73	3.2
18/11/22	14:30	65	94.4	2.40	2.1	123,1	3.13	2.7	166.9	4.24	3.7
19/11/22	14:30	95	112.1	2.85	2.5	154.8	3.93	3.4	187.4	4.76	4.1

				P	enetrac	ión							
Penetración	Carga		Molde Nº		16		Molde Nº		54		Mokle Nº	70	.82
Penetracion	Stand	Car	rga	Cone	eción	Ca	Сагдя		eción	Carga		Соттесскії	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0.6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0			0	0			0	0		
D 025		12.1	1			10.5	1			7.9	0		
0.050		24.5	1			18.5	1.			14.5	1		
0.075		40.1	2			27.4	t			24.5	1		
0.100	70,3	61.2	3	3.7	5.3	40.1	2	2.7	3.8	36.6	2	2.0	2.9
0.125		80.4	.0			54.6	3			45.4	2		
0.150		102.1	5			70.9	4			56.5	3		
0.200	105.5	128.4	6	7.2	6.8	92.1	5	5.3	5.0	73.5	- 4	4.1	3.5
0.300		174.4	9			132.1				111.0	-6		
0.400		202.4	10			158.4				120.5	- 6		
0.500													

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

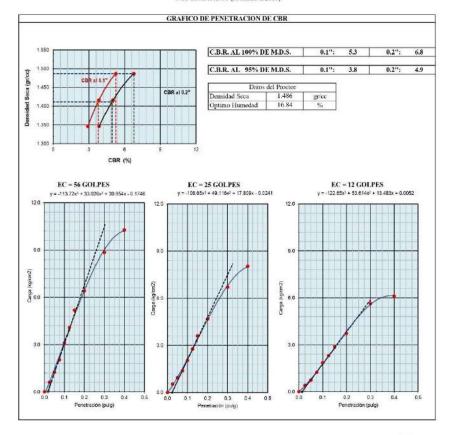
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 15% Fibra de Caucho; Muestra: M-01 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32

COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

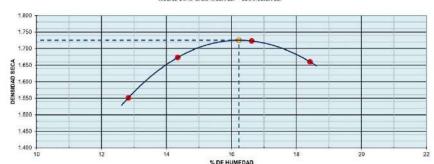
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 15/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 5% Fibra de Caucho; Muestra: M-02 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 16/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 16/11/2022


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 21/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

		DATOS DE	ENSAYO			
		Dendidad ve	lumétrica			
Volumen del molde (cm3)	2105	PESO DEL MOLI	E (g)	6461	METODO	"C"
Número de ensayos		1	2	3	4	
Peso molde + molde (g)		10145	10487	10691	10598	
Peso suelo húmedo compactado (g)		3684	4026	4230	4137	
Peso volumétrico húmedo	J.	1.750	1.913	2.010	1.965	
		Contenido d	e humedad		2 10 10 10 10 10 10 10 10 10 10 10 10 10	
Número de recipiente	1	1	2	3	4	
Peso suelo húmedo + tara (g)		542.7	331.6	484.1	410.9	
Peso suelo seco + tara (g)		481.0	290.0	415.1	347.0	
Peso de la tara (g)		0.0	0.0	0.0	0.0	
Peso de agua (g)		61.7	41.6	69.0	63.9	
Peso de suelo seco (g)		481.0	290.0	415.1	347.0	
Contenido de agua		12.83	14.34	16.62	18.41	
Peso volumétrico seco		1.551	1.673	1.723	1.660	
Densidad maxima seca:	1.725	g/cm ³		Húmedad optima:	16.23	% ·

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 15/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla inorgânica + 5% Fibra de Caucho; Muestra: M-02 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 16/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 16/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 21/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	151				-8.5	
N° de molde		Ę.	32	2	1	1
Nº capa			5		5	
Golpes por capa Nº		6	25	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	12032	12084	11602	11723	12252	12426
Peso de molde	7844	7844	7532	7532	8299	8299
Peso de suelo húmedo	4188	4240	4070	4191	3953	4127
Volumen del molde	2086	2086	2113	2113	2134	2134
Densidad himeda	2,008	2.033	1.926	1.983	1.852	1,934
% de lumedad	16.36	18.41	16.31	20.45	16.75	22.70
Densidad seca	1.726	1.717	1.656	1.646	1.586	1.576
Contenido de húmedad			-		**	
Nº de tarro	E4		8	-	8	8.
Tarro + suelo húmedo	523.6	523.6	348.7	348.7	341.6	341.6
Tamo + suelo seco	450.0	442.2	299.8	289.5	292.6	278.4
Peso de agua	73.6	81.4	48.9	59.2	49.0	63.2
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	450.0	442.2	299.8	289.5	292.6	278.4
% de humedad	16.36	18.41	16.31	20.45	16.75	22.70

		View			Expasión	1					
Fecha	Hora	Tiempo		Expasion	111		Expasión		1	Expasión	
recua	TiOta	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	9%
16/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17/11/22	14:30	22	81.4	2.07	1.8	98.7	2.51	2.2	145.9	3.71	3.3
18/11/22	14:30	42	91.8	2.33	2.0	115.4	2.93	2.5	162.4	4.12	3.0
19/11/22	14:30	65	106.9	2.72	2.4	131.1	3.33	2.9	159.5	4.05	3.
20/11/22	14:30	95	125.1	3.18	2.8	148.4	3.77	3.3	178.8	4.54	3.5

				P	enetraci	ión							
Penetración	Carga		Molde Nº		- 4		Molde Nº		32		Mokle Nº	70	11
Penetración	Stand	Car	Carga		eción	Ca	гди	Corre	eción	Ca	rga.	Corre	сежн
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0.6	Dial (div)	kg/cm2	kg/cm2	%
0.000		.0	.0			0	0			ď	0		
0.025		22.8	1			17.5	1			10.5	-1		
6.050		45.6	2			31.5	2			22.6	1		
0.075		79.5	4			48.9	2			38.8	2		
0.100	70,3	113.5	6	6.1	8.7	75.6	4	5.2	7.4	55.4	3	4.5	6.4
0.125		142.9	.2			96.6	. 5			74.5	4		
0.150		189.5	9			128.0	6			103.6	- 5		
0.200	105.5	225.5	11	12.1	11.5	174.4	9	10.1	9.6	140.9	-7	8.9	8.4
0.300		325.4	17			243.5	12			217.4	11		
0.400		401.1	20			294.8	15			270.2	14		
0.500													

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

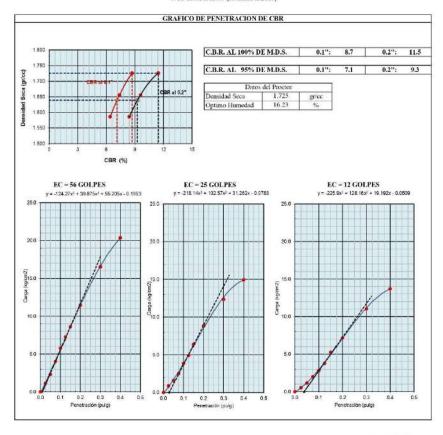
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla înorgânica + 5% Fibra de Caucho; Muestra: M-02 MATERIAL (**) HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

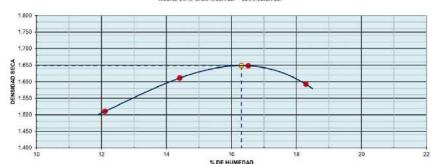
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 10% Fibra de Caucho; Muestra: M-02 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022


: CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad ve	olumétrica			
Volumen del molde (cm3) 2	PESO DEL MOLI	DE (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10024	10341	10504	10426	
Peso suelo húmedo compactado (g)	3563	3880	4043	3965	
Peso volumétrico húmedo	1.693	1.843	1,921	1.884	
32.5 - 30.110.000.000.11 - 9.001.110.	Contenido d	le humedad		10 1000000 11t	
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	400.0	418.4	324.5	374.4	
Peso suelo seco + tara (g)	356.8	365.7	278.5	316.5	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	43,2	52.7	46.0	57.9	
Peso de suelo seco (g)	356.8	365.7	278.5	316.5	
Contenido de agua	12.11	14.41	16.52	18.29	
Peso volumétrico seco	1.510	1.611	1.648	1.592	
Densidad máxima seca: 1	.648 g/cm ³		Húmedad optima:	16.31	6

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla inorgânica + 10% Fibra de Caucho; Muestra: M-02 HORA DE MUESTREO (**): CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	15.1		Si India		.e	
N° de molde		5	.5	1	3	8
Nº capa		5	5			
Golpes por capa Nº		6	2:	,	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	11978	12029	11466	11584	11618	11780
Peso de molde	7912	7912	7596	7596	7849	7849
Peso de suelo húmedo	4066	4117	3870	3988	3769	3931
Volumen del molde	2124	2124	2110	2110	2150	2150
Densidad humeda	1.914	1.938	1.834	1.890	1.753	1.828
% de humedad	16.21	18.53	16.35	20.68	16.44	22.27
Densidad seca	1.647	1.635	1.576	1.566	1.505	1.495
Contenido de húmedad	12		-		**	
N° de tarro	E4	-	8:	-	8	= 0.
Tarro + suelo húmedo	391.5	391.5	405.0	405.0	366.2	366.2
Tamo + suelo seco	336.9	330.3	348.1	335.6	314.5	299.5
Peso de agua	54.6	61.2	56.9	69.4	51.7	66.7
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	336.9	330.3	348.1	335.6	314.5	299.5
% de humedad	16.21	18.53	16.35	20.68	16.44	22.27

		View			Expasión	1						
Fecha	Hora	Tiempo		Expasion			Expasión		1	Expasión		
recus	TiOta	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	9%	
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
16/11/22	14:30	22	56.5	1.44	1.2	94.6	2.40	2.1	112.9	2.87	2.5	
17/11/22	14:30	42	84.7	2.15	1.9	106.6	2.71	2.3	126.5	3.21	2.3	
18/11/22	14:30	65	98.7	2.51	2.2	122.4	3.11	2.7	154.5	3.92	3,	
19/11/22	14:30	95	115.4	2.93	2.5	146.8	3.73	3.2	175.4	4.46	3.5	

				P	enetrac	ión							
Penetración	Carga		Molde Nº		.6		Molde Nº		54		Mokle Nº	90	38
Penetracion	Stand	Car	rga	Cone	eción	Ca	гди	Corre	eción	Ca	rga.	Corre	cesón
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0			0	0			0	0		
0.025		17.8	1			15.2	1			10.5	1		
0.050		30.5	- 2			23.4	1.			17.5	1		
0.075		49.5	3			38.9	2			27.5	1		
0.100	70,3	72.5	4	5.9	8.4	54.5	3	4.0	5.7	40.6	2	3.5	9.0
0.125		102.1	9			70.5	4			56.5	- 3		
0.150		138.5	7			92.6	5			78.9	4		
0.200	105.5	188.5	10	114	10.8	134.5	7	7.7	7.3	109.6	6	6.6	6.3
0.300		262.3	13			181.5	.9			145.6	7		
0.400		329.6	17			219.2	11			165.9	8		
0.500													

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

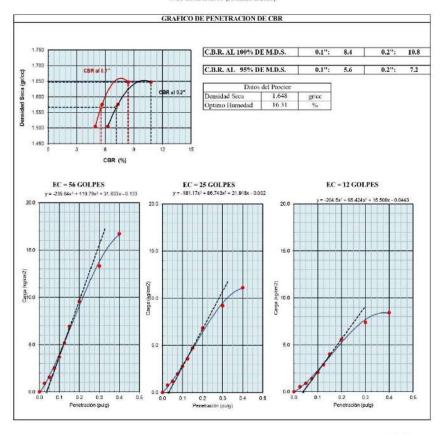
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 10% Fibra de Caucho; Muestra: M-02 MATERIAL (**)


CODIGO DE MUESTRA (**) 32 COORDENADAS (22) CÓDIGO INTERNO (**) : CI-447

TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE MUESTREO (**) : #########

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: ######### FECHA DE ENSAYO : ######## FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

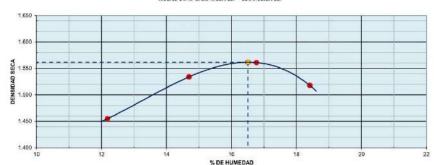
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 12% Fibra de Caucho; Muestra: M-02 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -FECHA DE RECEPCION: 15/11/2022 COORDENADAS (**) : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE				
	Dendidad v	lumétrica	17		
Volumen del molde (cm3) 2105	PESO DEL MOLI	E (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	9898	10165	10299	10245	
Peso suelo húmedo compactado (g)	3437	3704	3838	3784	
Peso volumétrico húmedo	1.633	1.760	1.823	1.798	
	Contenido d	e humedad			
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	344.4	361.4	434.5	491.4	
Peso suelo seco + tara (g)	307.0	315.1	372.1	415.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	37.4	46.3	62.4	76.4	
Peso de suelo seco (g)	307.0	315.1	372.1	415.0	
Contenido de agua	12.18	14.69	16.77	18.41	
Peso volumétrico seco	1.455	1.534	1.561	1.518	
Densidad maxima seca: 1.562	g/cm ³		Húmedad optima:	16.51	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) ; Arcilla inorgánica + 12% Fibra de Caucho; Muestra: M-02 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	Ni Ga		V 01		AL 500	
N° de molde	1	3	2	2	3	ŧ
Nº capa		5	5			
Golpes por capa Nº		6	2:	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	11552	11598	10805	10914	11229	11386
Peso de molde	7690	7690	7110	7110	7665	7665
Peso de suelo húmedo	3862	3908	3695	3804	3564	3721
Volumen del molde	2116	2116	2125	2125	2150	2150
Densidad himeda	1.825	1.847	1.739	1.790	1.658	1.731
% de lumedad	16.75	18.80	16.50	20.66	16.47	22.60
Densidad seca	1.563	1.555	1.493	1.484	1.424	1.412
Contenido de húmedad			-			
Nº de tarro	E4	-	8	-	8	= 0.
Tarro + suelo húmedo	352.6	352.6	547.8	547.8	619.6	619.6
Tarro + suelo seco	302.0	296.8	470.2	454.0	532.0	505.4
Peso de agua	50.6	55.8	77.6	93.8	87.6	114.2
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	302.0	296.8	470.2	454.0	532.0	505.4
% de humedad	16.75	18.80	16.50	20.66	16:47	22:60

		View			Expasión	1					
Fecha	Hora	Tiempo		Expasion			Expasión		1	Expasión	
Pecha	TiOta	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	%
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	77.6	1.97	1.7	105.4	2.68	2.3	142.6	3.62	3.1
17/11/22	14:30	42	94.8	2.41	2.1	132.1	3.36	2.9	154.8	3.93	3.4
18/11/22	14:30	65	115.6	2.94	2.5	142.4	3.62	3.1	172.4	4.38	3.5
19/11/22	14:30	95	133.8	3.40	2.9	164.2	4.17	3.6	188.7	4.79	4.3

				P	enetrac	ión							
Penetración	Carga		Molde Nº		13		Molde Nº		22		Mokle Nº	0	37
Репенасион	Stand	Car	298	Cone	eción	Ca	гди	Corre	eción	Ca	rga.	Corre	сежн
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0			0	0			0	0		
0.025		19.8	1			13.8	1			10.5	1		
0.050		40.5	2			33.6	2			19.5	1		
0.075		67.5	3			48.5	2			33.9	2		
0.100	70,3	89.5	- 5	5.5	7.9	66.6	3	3.8	3.4	49.5	3	2.9	43
0.125		114.5	.6			84.5	4			63.6	- 3		
0.150		152.5	8			104.5	5			81.5	4		
0.200	105.5	195.5	10	10.8	10.2	141.1	7	7.5	7.2	102.4	5	5.8	5.5
0.300		267.8	14			208.9	10			153.5	. 8		
0.400		321.5	16			254.9	13			199.8	10		
0.500													

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

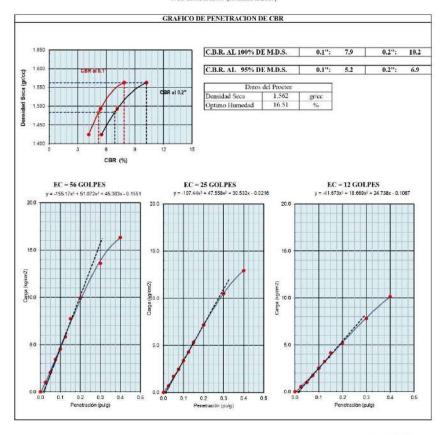
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 12% Fibra de Caucho; Muestra: M-02 MATERIAL (**) HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

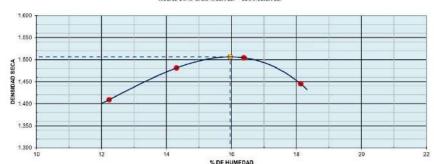
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 15% Fibra de Caucho; Muestra: M-02 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022


: CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad v	olumétrica			
Volumen del molde (cm3) 21	105 PESO DEL MOLI	DE (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	9791	10024	10145	10054	
Peso suelo húmedo compactado (g)	3330	3563	3684	3593	
Peso volumétrico húmedo	1.582	1.693	1.750	1.707	
	Contenido d	le humedad	100	10 PRODUCE 110	
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	487.1	341.1	540.6	290.6	
Peso suelo seco + tara (g)	434.0	298.4	464.5	246.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	53.1	42.7	76.1	44.6	
Peso de suelo seco (g)	434.0	298,4	464.5	246.0	
Contenido de agua	12.24	14.31	16.38	18.13	
Peso volumétrico seco	1.409	1.481	1.504	1.445	

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) ; Arcilla inorgânica + 15% Fibra de Caucho; Muestra: M-02 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO				
Dendidad volumétrica	15.1			3	.g. 576	-	
N° de molde		§	-17	7	33		
Nº capa		5	5		5		
Golpes por capa Nº		6	25	5	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturack	
Peso molde + suelo húmedo	11818	11885	11571	11678	10895	11056	
Peso de molde	8125	8125	8053	8053	7532	7532	
Peso de suelo húmedo	3693	3760	3518	3625	3363	3524	
Volumen del molde	2114	2114	2108	2108	2113	2113	
Densidad humeda	1.747	1.779	1.669	1.720	1.592	1.668	
% de humedad	15.85	18.54	16.05	20.41	16.39	22.70	
Densidad seca	1.508	1.501	1.438	1.428	1.368	1.359	
Contenido de húmedad							
N° de tarro	E4	-	8	-	8	= 0.	
Tarro + suelo húmedo	429.0	429.0	314,5	314.5	264.9	261.9	
Tamo + suelo seco	370.3	361.9	271.0	261.2	227.6	215.9	
Peso de agua	58.7	67.1	43.5	53.3	37.3	49.0	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	370,3	361.9	271.0	261.2	227.6	215.9	
% de humedad	15.85	18.54	16.05	20.41	16.39	22.70	

		View and the second			Expasión	1					
Fecha	a Hora Tien		Expasion			Expasión			1	Expasión	
recta	TiOta	Hr.	Dial	mm	36	Dial	mm	9%	Dial	mm	%
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	65.4	1.66	1.4	94.1	2.39	2.1	123.1	3.13	2.
17/11/22	14:30	42	84.5	2.15	1.9	112.1	2.85	2.5	140.4	3.57	3
18/11/22	14:30	65	98.7	2.51	2.2	126.5	3.21	2.8	152.4	3.87	3,
19/11/22	14:30	95	119.1	3.03	2.6	145.7	3.70	3.2	172.4	4.38	3.1

				P	enetrac	ión							
Penetración	Carga		Molde Nº		5		Molde Nº		17		Mokle Nº	70	33
Penetracion	Stand	Carga		Сотгессіон		eción Carga		Corrección		Carga		Correcci	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0.6	Dial (div)	kg/cm2	kg/cm2	96
0.000		0	.0			0	0			0	0		
D 025		13.2	1			8.9	.0			6.5	0		
0.050		25.5	1			16.8	1.			12.4	1		
0.075		41.5	2			25.5	t			22.6	1		
0.100	70,3	58.7	3	3.6	5.2	38,8	2	2,6	3.7	34.5	2	2.0	2.8
0.125		78.6	.0			52.5	3			40.5	2		
0.150		98.4	5			69.8	4			51.1	3		
0.200	105.5	128.9	6	7.1	6.7	86.5	- 34	5.2	4.9	70.5	- 4	3.9	3.7
0.300		178.9	9			135.9				100.2	- 5		
0.400		206.5	10			162.1	8			125.6	- 6		
0.500													

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

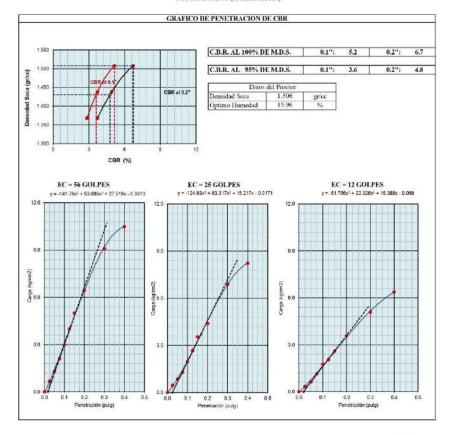
(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 15% Fibra de Caucho; Muestra: M-02 MATERIAL (**) HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) ; Arcilla inorgânica + 15% Fibra de Caucho; Muestra: M-03 HORA DE MUESTREO (**): CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO				
Dendidad volumétrica	51 51				at the		
N° de molde	1	3	1		23		
№ capa			5		5		
Golpes por capa Nº		6	2:	5	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	11372	11414	10962	11051	11328	11466	
Peso de molde	7690	7690	7441	7441	7910	7910	
Peso de suelo húmedo	3682	3724	3521	3610	3418	3556	
Volumen del molde	2116	2116	2119	2119	2165	2165	
Densidad hitmeda	1.740	1.760	1.662	1.704	1.579	1.642	
% de lumedad	16.55	18.47	16.63	20.37	16.74	22.43	
Densidad seca	1,493	1.486	1.425	1.416	1.353	1.341	
Contenido de húmedad							
N° de tarro	150	- 51	-	1-1	8	5).	
Tarro + suelo húmedo	388.1	388.1	574.4	574.4	311.1	311.1	
Tamo + suelo seco	333.0	327.6	492.5	477.2	266.5	254.1	
Peso de agua	55.1	60.5	81.9	97.2	44.6	57.0	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	333.0	327.6	492.5	477,2	266.5	254.1	
% de humedad	16.55	18,47	16.63	20:37	16.74	22.43	

		View			Expasión	1					
Fecha	echa Hora Ti			Expasion			Expasión			Expasión	
recua	TiOta	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	9%
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	55.2	1.40	1.2	84.4	2.14	1.9	118.1	3.00	2,0
17/11/22	14:30	42	78.6	2.00	1.7	105.9	2.69	2.3	134.8	3.42	3.5
18/11/22	14:30	65	94.7	2,41	2.1	121.1	3.08	2.7	152.4	3.87	3,
19/11/22	14:30	95	112.4	2.85	2.5	143.4	3.64	3.2	168.9	4.29	3.

				P	enetrac	ión							
Penetración	Carga		Molde Nº		13		Molde Nº		1		Mokle Nº	70	23
Penetración	Stand	Carga		Corrección		Ca	гди	Corrección		Ca	Carga		сежн
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	96
0.000		.0	.0			0	0			0	0		
D 025		11.9	1			8.7	.0			5.8	0		
0.050		24.5	1			15.4	1.			11.5	1		
0.075		38.8	2			23.6	t			19.5	1		
0.100	70,3	56,7	3	3.8	5.4	34.5	2	2.8	4.0	32.5	2	2.1	3.0
0.125		79.5				50.6	3			38.5	2		
0.150		99.6	5			86.5	3			48.5	2		
0.200	105.5	128.5	7	7.4	7.0	88.5	- 34	5.5	5.2	71.5	-4	4.1	3.9
0.300		181.5	9			136.9				95,4	- 5		
8.400		208.2	- 11			165.9				126.9	- 6		
0.500													

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

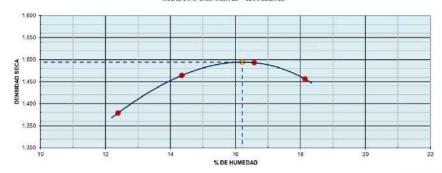
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 15% Fibra de Caucho; Muestra: M-03 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -FECHA DE RECEPCION: 15/11/2022 COORDENADAS (**)


: CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad v	olumétrica			
Volumen del molde (cm3) 21	05 PESO DEL MOLI	DE (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	9724	9984	10124	10081	
Peso suelo húmedo compactado (g)	3263	3523	3663	3620	
Peso volumétrico húmedo	1.550	1.674	1.740	1.720	
	Contenido d	le humedad			10.
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	348.4	394.5	347.4	387.5	
Peso suelo seco + tara (g)	310.0	345.0	298.0	328.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	38.4	49.5	49.4	59.5	
Peso de suelo seco (g)	310.0	345.0	298.0	328.0	
Contenido de agua	12.39	14.35	16.58	18.14	
Peso volumétrico seco	1.379	1.464	1.493	1.456	
Densidad maxima seca: 1.4	194 g/cm ³		Húmedad optima:	16.21	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

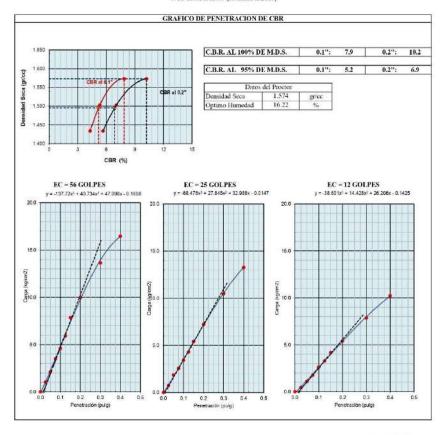
^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 12% Fibra de Caucho; Muestra: M-03 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

: José Andres Mestanza Díaz y José Alejandro Perez CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) ; Arcilla inorgânica + 12% Fibra de Caucho; Muestra: M-03 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO				
Dendidad volumétrica	No.		S 2.5		.45	2	
N° de molde	.6	6	-1/	t.	-44		
№ capa		5	5		5		
Golpes por capa Nº		6	25	,	1	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + suelo húmedo	11756	11802	11429	11534	11384	11546	
Peso de molde	7894	7894	7704	7704	7798	7798	
Peso de suelo húmedo	3862	3908	3725	3830	3586	3748	
Volumen del molde	2110	2110	2130	2130	2150	2150	
Densidad humeda	1,830	1.852	1.749	1.798	1.668	1.743	
% de humedad	16.32	18.55	16.40	20.41	16.35	22.45	
Densidad seca	1.573	1.562	1.503	1.493	1.434	1.423	
Contenido de húmedad							
N° de tarro	E4		8	-	8	= 0.	
Tarro + suelo húmedo	581.6	581.6	433.6	433.6	341.5	341.5	
Tamo † suelo seco	500.0	490.6	372.5	360.1	293.5	278.9	
Peso de agua	81.6	91.0	61.1	73.5	48.0	62.6	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	500.0	490.6	372.5	360.1	293.5	278.9	
% de humedad	16.32	18.55	16.40	20.41	16.35	22.45	

		View			Expasión	1					
Fecha	a Hora Tier		Expasion				Expasión		1	Expasión	
recus	TiOta	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	96
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	68.6	1.74	1.5	87.4	2.22	1.9	121.1	3.08	2.1
17/11/22	14:30	42	84.7	2.15	1.9	102.1	2.59	2.2	138.9	3.53	3
18/11/22	14:30	65	100.1	2.54	2.2	121.1	3.08	2.7	154.4	3.92	3,
19/11/22	14:30	95	115.4	2.93	2.5	147.2	3.74	3.2	172.4	4.38	3.1

				P	enetrac	ión							
Penetración	Carga		Molde Nº		66		Molde Nº		14		Mokle Nº	70	44
Penetracion	Stand	Car	Carga Correct		Corrección Carga		гди	Corrección		Carga		Соггесскії	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0.6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0			0	0			0	0		
0.025		20.5	1			14.5	1			8.9	0		
0.050		41.5	2			36.8	2			21.5	1		
0.075		68.8	3			50.4	3			34.5	2		
0.100	70.3	90,5	- 5	5.5	7.9	67.5	3	3.7	5.3	51.4	3	3.0	4.3
0.125		115.5	.6			84.8	4			64.8	- 3		
0.150		154.8	8			108.5	5			82.4	4		
0.200	105.5	196.5	10	10.8	10.2	142.5	7	7.4	7.1	106.5	5	6.0	5.7
0.300		268.8	14			208.8	10			154.8	. 8		
0.000		324.5	16			261.5	13			201.4	10		
0.500												,,	

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

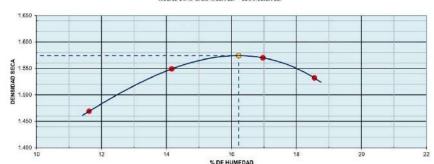
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 12% Fibra de Caucho; Muestra: M-03 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -


COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m³ (56 000 pie-lbf/pie³)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad ve	lumétrica			
Volumen del molde (cm3) 2105	PESO DEL MOLI	E (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	9912	10184	10326	10284	
Peso suelo húmedo compactado (g)	3451	3723	3865	3823	
Peso volumétrico húmedo	1.639	1.769	1.836	1.816	
S.L. Silv. Swith _ Silvino!	Contenido d	e humedad		10	
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	351.6	411.9	362.6	548.9	
Peso suelo seco + tara (g)	315.0	360.8	310.0	463.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	36.6	51.1	52.6	85.9	
Peso de suelo seco (g)	315.0	360.8	310.0	463.0	
Contenido de agua	11.62	14.16	16.97	18.55	
Peso volumétrico seco	1.469	1.549	1.570	1.532	
Densidad maxima seca. 1.574	g/cm ³		Húmedad optima:	16.22 9	6

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.

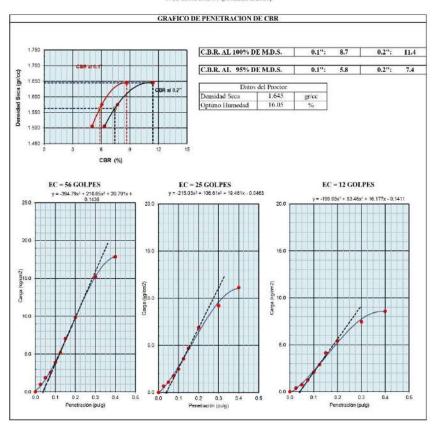
 * Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
- (**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 10% Fibra de Caucho; Muestra: M-03 MATERIAL (**) HORA DE MUESTREO (**): -

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32 COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

FECHA DE EMISION: 20/11/2022

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

; Segundo A. Carranza Mejia

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez FECHA DE MUESTREO (**): 14/11/2022 MATERIAL (**) ; Arcilla inorgânica + 10% Fibra de Caucho; Muestra: M-03 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	39				-45	45
N° de molde	3	i.	-19	•	8.49	9
№ capa			5		5	
Golpes por capa №		6	25	,	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	12066	12108	11284	11405	11598	11760
Peso de molde	8031	8031	7371	7371	7894	7894
Peso de suelo húmedo	4035	4077	3913	4034	3704	3866
Volumen del molde	2110	2110	2134	2134	2110	2110
Densidad hitmeda	1.912	1.932	1.834	1.890	1.755	1.832
% de lumedad	16.24	18.14	16.41	20.74	16.51	22.42
Densidad seca	1.645	1.635	1.575	1.565	1.506	1.496
Contenido de húmedad						
N° de tarro		- 51		-	8	5).
Tarro + suelo lúmedo	361.5	361.5	259.6	259.6	323.2	323.2
Tamo + suelo seco	311.0	306.0	223.0	215.0	277.4	264.0
Peso de agua	50.5	55.5	36.6	44.6	45.8	59.2
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	311.0	306.0	223.0	215.0	277.4	264.0
% de humedad	16.24	18.14	16.41	20.74	16.51	22.42

		View			Expasión	1					
Fecha	Hora	Tiempo		Expasion			Expasión		1	Expasión	
Pecha	TiOta	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	%
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	73.6	1.87	1.6	84.7	2.15	1.9	124.6	3.16	2.8
17/11/22	14:30	42	84.7	2.15	1.9	102.1	2.59	2.2	138.4	3.52	3.1
18/11/22	14:30	65	94.4	2.40	2.1	123.6	3.14	2.7	152.9	3.88	3,4
19/11/22	14:30	95	112.1	2.85	2.5	143.4	3.64	3.2	173.1	4.40	3.8

			P	enetraci	ión							
Carga		Molde Nº		3		Molde Nº	7	19		Mokle Nº	0	49
Stand	Car	298	Cone	eción	Ca	гди	Corre	eción	Ca	rga.	Corre	сежн
kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0/6	Dial (div)	kg/cm2	kg/cm2	%
	0	.0			0	0			ū	0		
	19.4	1			13.2	1			7.5	0		
	38.8	- 2			21.5	1.			14.5	1		
	50.5	3			34.5	2			24.5	1		
70.3	76.8	4	6.1	8.7	48.9	2	4.3	6.1	41.2	2	3.5	5.0
	102.5	.5			70.5	4			56.9	3		
	138.6	7			92.6	3			81.5	-4		
105.5	193.4	10	12.0	11.4	135.6	7	8.1	7.7	106.6	5	6.7	6.3
	299.7	15			181.5	9			146.8	. 7		
1	352.1	18			219.4	11.			168.9	9		
	Stand kg/em2	Stand. Car kg/cn2 Dat (dry) 0 19.4 38.8 50.3 76.8 102.5 138.6 105.5 195.4 209.7	Strod. Cargs:	Chirgin Molde N° Stand Cargar Corne kg*en/2 Dal (div) kg*en/2 lgs*en/2 19.4 1 36.8 2 59.5 3 70.3 70.8 4 61 102.5 6 105.5 195.4 10 120. 120 299.7 15	Clurgn Molde № 3 Stand. Curge Corrección kg/en2 Dal (dro) kg/en2 kg/en2 % 0 0 0 kg/en2 % % 9.6 8 2 <td> Stand Cargat Corrección Cargat Kg/cm2 Mg/cm2 Mg/cm2</td> <td> Carga Molde № 3 Molde № </td> <td>Curgan Moldle № 3 Moldle № Correction Carps Correction Carps Correction Carps Correction Carps Correction Carps Correction Carps Correction Correction Correction Correction Correction Regional <th< td=""><td> Corp. Molde N° 3 Molde N° 19 </td><td> Chirgin Molde N° 3 Molde N° 19 </td><td> Compa</td><td> Corp. Molde N° 3 Molde N° 19 Molde N° Corp. </td></th<></td>	Stand Cargat Corrección Cargat Kg/cm2 Mg/cm2 Mg/cm2	Carga Molde № 3 Molde №	Curgan Moldle № 3 Moldle № Correction Carps Correction Carps Correction Carps Correction Carps Correction Carps Correction Carps Correction Correction Correction Correction Correction Regional Regional <th< td=""><td> Corp. Molde N° 3 Molde N° 19 </td><td> Chirgin Molde N° 3 Molde N° 19 </td><td> Compa</td><td> Corp. Molde N° 3 Molde N° 19 Molde N° Corp. </td></th<>	Corp. Molde N° 3 Molde N° 19	Chirgin Molde N° 3 Molde N° 19	Compa	Corp. Molde N° 3 Molde N° 19 Molde N° Corp.

Revisado y aprobado.

TECNICO ENCARGADO

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

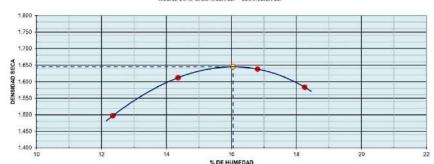
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 10% Fibra de Caucho; Muestra: M-03 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -


FECHA DE RECEPCION: 15/11/2022 COORDENADAS (**) : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	337753011111111			
	Dendidad ve	lumétrica	17 (4)		
Volumen del molde (cm3) 2105	PESO DEL MOLE	E (g)	6461	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10002	10341	10489	10402	
Peso suelo húmedo compactado (g)	3541	3880	4028	3941	
Peso volumétrico húmedo	1.682	1.843	1,914	1.872	
Salar Adam Salar S	Contenido d	e humedad			116
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	631.4	561.5	436.6	474.8	
Peso suelo seco + tara (g)	562.0	491.0	373.8	401.5	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	69,4	70.5	62.8	73.3	
Peso de suelo seco (g)	562.0	491.0	373.8	401.5	
Contenido de agua	12.35	14.36	16.80	18.26	
Peso volumétrico seco	1.497	1.612	1.638	1.583	
Densidad maxima seca: 1.645	g/cm ³		Húmedad optima:	16.05	%

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

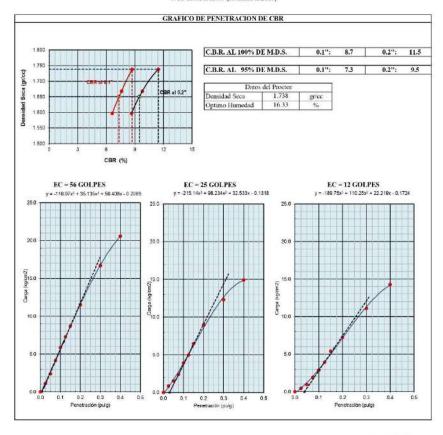
^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO


"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**) : ######### CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla înorgânica + 5% Fibra de Caucho; Muestra: M-03 MATERIAL (**) HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -32

COORDENADAS (22) FECHA DE RECEPCION: ######### CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO : ######## TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

FECHA DE EMISION: 20/11/2022

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ; "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque UBICACIÓN (*º)

; Segundo A. Carranza Mejia

CLIENTE (**) FECHA DE MUESTREO (**): 14/11/2022 : José Andres Mestanza Díaz y José Alejandro Perez MATERIAL (**) ; Arcilla inorgânica + 5% Fibra de Caucho; Muestra: M-03 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -1 -COORDENADAS (2#) FECHA DE RECEPCION: 15/11/2022 CÓDIGO INTERNO (**) : CI-447 FECHA DE ENSAYO: 15/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE EL	NSAYO			
Dendidad volumétrica	E1 67				.T12	4
N° de molde	2	i	66	5	1)
№ capa			5			
Golpes por capa Nº	3	6	25	5	1	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + suelo húmedo	12136	12202	11998	12105	11626	11806
Peso de mokle	7894	7894	7894	7894	7657	7657
Peso de suelo húmedo	4242	4308	4104	4211	3960	4149
Volumen del molde	2099	2099	2110	2110	2134	2134
Densidad hitmeda	2.021	2.052	1.945	1.996	1.860	1.944
% de humedad	16.31	18.74	16.60	20.46	16.48	22.49
Densidad seca	1.738	1.728	1.668	1.657	1.597	1.587
Contenido de húmedad						
Nº de tarro	E4		8	-	8	= 0.
Tarro + suelo húmedo	403.6	403.6	298.5	298.5	569.6	569.6
Tarro + suelo seco	347.0	339.9	256.0	247.8	489.0	465.0
Peso de agua	56.6	63.7	42.5	50.7	80.6	104.6
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	347.0	339.9	256.0	247.8	489.0	465.0
% de humedad	16.31	18.74	16.60	20.46	16:48	22.49

		View			Expasión	1					
Fecha	Hora	Tiempo		Expasion	J. C.		Expasión		1	Expasión	
recus	Hota	Hr.	Dial	mm	36	Dial	mm	96	Dial	mm	96
15/11/22	14:30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16/11/22	14:30	22	78.1	1.98	1.7	88.9	2.26	2.0	138.9	3.53	3.1
17/11/22	14:30	42	88.8	2.26	2.0	104.4	2.65	2.3	155.7	3.95	3.
18/11/22	14:30	65	102.1	2.59	2.2	126.5	3.21	2.8	163.0	4.14	3,0
19/11/22	14:30	95	118.5	3.01	2.6	154.3	3.92	3.4	182.4	4.63	4.8

				P	enetrac	ión							
Penetración	Carga		Molde Nº		21		Molde Nº		66		Mokle Nº	70	10
Penetracion	Stand	Car	298	Cone	eción	Ca	гди	Corre	eción	Ca	rga.	Corre	сежн
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	0.6	Dial (div)	kg/cm2	kg/cm2	%
0.000		0	.0			0	0			ď	0		
0.025		21.8	1			16.9	1			8.9	0		
0.050		48.8	- 2			30.5	2			18.9	1		
0.075		81.5	4			47.5	2			37.5	2		
0.100	70.3	115.4	- 6	6.1	8.7	76.9	4	5.3	7.6	66.5	3	4.7	6.6
0.125		143.6	2			97.8	- 5			77.5	4		
0.150		171.4	9			127.5	6			106.3	- 5		
0.200	105.5	228.9	12	12.1	11.5	178.8	9	10.3	9.8	142.5	-7	9.1	8.6
0.300		328.8	17			242.4	12			218.5	11		
8,400		405.6	21			294.3	15			281.4	14		
0.500													

Revisado y aprobado.

TECNICO ENCARGADO

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

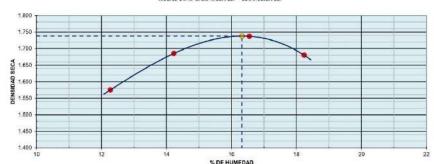
Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del Suelo"

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

FECHA DE MUESTREO (**): 14/11/2022 CLIENTE (**) : José Andres Mestanza Diaz y José Alejandro Perez MATERIAL (**) : Arcilla inorgánica + 5% Fibra de Caucho; Muestra: M-03 HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 : CI-447 CÓDIGO INTERNO (**) FECHA DE ENSAYO: 15/11/2022


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 20/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 1º Edición

NTP 339.141:1999 (revisada el 2019)

Dendidad v	olumétrica			
105 PESO DEL MOLI	DE (g)	6461	METODO	"C"
1	2	3	4	
10184	10512	10723	10642	
3723	4051	4262	4181	
1.769	1.924	2.025	1.986	
Contenido d	le humedad			
1	2	3	4	
562.5	324.4	351.4	368.9	
501.0	284.0	301.5	312.0	
0.0	0.0	0.0	0.0	
61.5	40.4	49.9	56.9	
501.0	284.0	301.5	312.0	
12.28	14.23	16.55	18.24	
1.575	1.685	1.737	1.680	
	105 PESO DEL MOLI 1 10184 3723 1.769 Contenido d 1 562.5 501.0 0.0 61.5 501.0 12.28	105 PESO DEL MOLDE (g) : 1 2 10184 10512 3723 4051 1.769 1.924 Contenido de humedad 1 2 562.5 322.4 501.0 284.0 0.0 0.0 61.5 40.4 501.0 284.0 12.28 14.23	DESCRIPTION PESO DEL MOLDE (g) :	105 PESO DEL MOLDE (g) : 6461 METODO 1 2 3 4

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

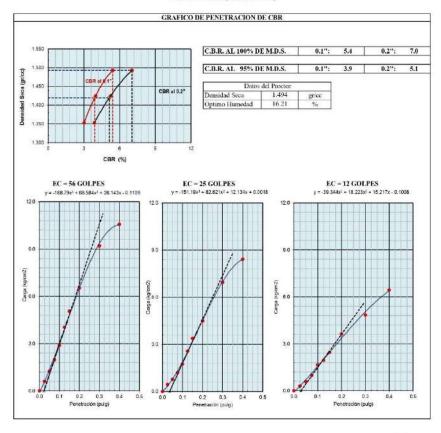
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

"Influencia de la Escoria de Acero y Fibra de Caucho en las Propiedades Mecánicas y Microestructurales del PROYECTO (**)

UBICACIÓN (**) ; Av. Grau - Distrito de La Victoria - Provincia de Chiclayo - Departamento de Lambayeque

CLIENTE (**) : José Andres Mestanza Díaz y José Alejandro Perez ; Arcilla inorgânica + 15% Fibra de Caucho; Muestra: M-03 MATERIAL (**)


CODIGO DE MUESTRA (**) 32 COORDENADAS (22) CÓDIGO INTERNO (**)

: CI-447

TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE MUESTREO (**) : ######### HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: ######### FECHA DE ENSAYO : ######## FECHA DE EMISION: ########

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

ANEXO N° 6: Fichas de validación según AIKEN.

Ficha de validación según AIKEN

Dates congrales

	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Olivos Aguilar Armando Junior	Ing, Civil	Prueba propiedades físicas del suelo, propiedades químicas del suelo, contenido óptimo de humedad, densidad máxima seca y CBR	Mestanza Díaz José Andrés Pérez Villanueva José Alejandro

II.

Aspectos de validación de cada Item
Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Correcto
2	A	Correcto
3	A	Correcto
4	A	Correcto
5	A	Correcto

ш Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/items	Clarid	ad	Conte	xto	Congru	encia	Dominio	
	Suelo con residuos de acero	Si	No	Si	No	Si	No	SI	No
1	Propiedades físicas del suelo	X			Х		X		X
2	Propiedades químicas del suelo		X	X		Х		X	
3	Contenido óptimo de humedad	Х		X		X		Х	
4	Densidad máxima seca	X		Х		Х		X	
5	CBR	X		X		X		X	
	Suelo con fibras de caucho	Si	No	Si	No	Si	No	Si	No
1	Propiedades físicas del suelo	X			Х		X		Х
2	Propiedades químicas del suelo		X	X		Х		X	
3	Contenido óptimo de humedad	X		Х		Х		Х	
4	Densidad máxima seca	X		X		X	_	X	
5	CBR	Х		Х		Х		Х	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Yoner Chavez Burgos Especialidad: Ing. Civil

spellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
orres Lora Luis Alberto	Residente de Obra	Prueba propiedades físicas del suelo, propiedades químicas del suelo, contenido óptimo de humedad, densidad máxima seca y CBR	Mestanza Díaz José Andrés Pérez Villanueva José Alejandro

II.

Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto, Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN	
1	A	Correcto	
2	A	Correcto	
3	A	Correcto	
4	A	Correcto	
5	A	Correcto	

Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Ítems	Claridad		Contexto		Congruencia		Dominio del constructo	
	Suelo con residuos de acero	Si	No	Si	No	Si	No	Si	No
1	Propiedades físicas del suelo	Х			Х		Х		X
2	Propiedades químicas del suelo		X	X		X		X	
3	Contenido óptimo de humedad	X		X		X		X	
4	Densidad máxima seca	X		X		X		X	
5	CBR	X		X		Х		X	
	Suelo con fibras de caucho	Si	No	Si	No	Si	No	Si	No
1	Propiedades físicas del suelo	X			X		X		X
2	Propiedades químicas del suelo		X	X		X	12772	X	
3	Contenido óptimo de humedad	X		×		Х		Х	
4	Densidad máxima seca	X		X		X		X	
5	CBR	X		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: José Luis Delgado Sánchez Especialidad: Ing. Civil

TUIS ALBERTO TO RES LORA INCEDIDA O CIVIL REG. CIP. 240935

207

Apellidos y nombres del nformante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Vallejos Pérez Victor Joel	Residente de Obra	Prueba propiedades físicas del suelo, propiedades químicas del suelo, contenido óptimo de humedad, densidad máxima seca y CBR	Mestanza Díaz José Andrés Pérez Villanueva José Alejandro

II.

Aspectos de validación de cada Item
Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN		
1	A	Correcto		
2	A	Correcto		
3	Α	Correcto		
4	A	Correcto		
5	A	Correcto		

	Dimensiones/Ítems	Claridad		Contexto		Congruencia		Dominio del constructo	
	Suelo con residuos de acero	Si	No	Si	No	Si	No	Si	No
1	Propiedades físicas del suelo	X			X		Х		X
2	Propiedades químicas del suelo		X	X		X		X	
3	Contenido óptimo de humedad	X		X		X		X	
4	Densidad máxima seca	X		X		X		X	
5	CBR	Х		Х		Х		Х	
	Suelo con fibras de caucho	Si	No	Si	No	Si	No	Si	No
1	Propiedades físicas del suelo	X			Х		Х		Х
2	Propiedades químicas del suelo		X	X		X		X	
3	Contenido óptimo de humedad	X		X		X		X	
4	Densidad máxima seca	X		Х		X		Х	
5	CBR	Х		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Robert Enrique Abarca

Especialidad: Ing. Civil

INGENIERO CIVIL

VICTOR JOEL VALLEJOS PÉREZ

CIP 143246

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Ángeles Trejo José Enrique	Residente de Obra	Prueba propiedades físicas del suelo, propiedades químicas del suelo, contenido óptimo de humedad, densidad máxima seca y CBR	Mestanza Díaz José Andrés Pérez Villanueva José Alejandro

II.

Aspectos de validación de cada Item
Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN		
1	A	Correcto		
2	A	Correcto		
3	A	Correcto		
4	A	Correcto		
5	A	Correcto		

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/İtems Claridad		Contexto		Congruencia		Dominio del constructo		
	Suelo con residuos de acero	Si	No	Si	No	Si	No	Si	No
1	Propiedades físicas del suelo	X			X		X		X
2	Propiedades químicas del suelo		X	X		X		Х	
3	Contenido óptimo de humedad	X		X		X		X	
4	Densidad máxima seca	X		X		X		Х	
5	CBR	X		X		X		X	
	Suelo con fibras de caucho	Si	No	Si	No	Si	No	Si	No
1	Propiedades físicas del suelo	X			X		X		X
2	Propiedades químicas del suelo		X	X		X		X	
3	Contenido óptimo de humedad	X		X		X		X	
4	Densidad máxima seca	X		X		Х		X	
5	CBR	X		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: José Enrique Ángeles Trejo

Especialidad: Ing. Civil

José Enrique Angeles Trejo INGENIERO CIVIL Reg. C.I.P. N° 60702

Mestanza Diaz José Andrés Pérez Villanueva José Alejandro
ropiedades químicas o, contenido óptimo de d, densidad máxima

II.

Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN	
1	A	Correcto	
2	A	Correcto	
3	A	Correcto	
4	A	Correcto	
5	Α	Correcto	

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/İtems Claridad		Contexto		Congruencia		Dominio del constructo		
	Suelo con residuos de acero	Si	No	Si	No	Si	No	Si	No
1	Propiedades físicas del suelo	X			X		X		×
2	Propiedades químicas del suelo		X	X		X		X	
3	Contenido óptimo de humedad	X		X		X		Х	
4	Densidad máxima seca	X		X		X		X	
5	CBR	X		×		X		Х	
	Suelo con fibras de caucho	Si	No	Si	No	Si	No	Si	No
1	Propiedades físicas del suelo	X			X		X		Х
2	Propiedades químicas del suelo		X	X		Х		Х	
3	Contenido óptimo de humedad	X		X		Х		X	
4	Densidad máxima seca	Х		X		X		Х	
5	CBR	X		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Otiniano Ocampo

Especialidad: Ing. Civil

YONER CHAVEZ BURGOS ING. CIVIL REG. CIP Nº 287804

ANEXO N° 7: Validez y confiabilidad por 5 jueces expertos.

VALIDEZ Y CONFIABILIDAD POR 5 JUECES EXPERTOS

INFLUENCIA DE LOS RESIDUOS DE ACERO Y FIBRA DE CAUCHO EN LA ESTABILIZACIÓN DEL SUELO

Claridad
O I WI I WWW

	Suelo	con residuo	s de ace	ero		Suelo co	n fibras de	caucho		
	PF del suelo	PQ del suelo	CO	DMS	CB R	PF del suelo	PQ del suelo	сон	DM S	CB R
JUEZ 1	1	0	1	1	1	0	1	1	1	1
JUEZ 2	1	1	1	1	1	1	1	1	1	1
JUEZ 3	1	1	1	1	1	1	1	0	1	1
JUEZ 4	1	1	1	1	1	1	1	1	1	1
JUEZ 5	1	1	1	0	1	1	1	1	1	1

		Suelo	con residuo:	s de ace	ero		Suelo co	n fibras de	caucho		
		PF del suelo	PQ del suelo	CO	DMS	CB R	PF del suelo	PQ del suelo	сон	DM S	CB R
(S)	5	4	5		4		4	5	4	5	5
(n)	5										
(c)	2										
V =	1	0.8	1		0.8		0.8	1	0.8	1	L

	Claridad
V de Aiken por criterio	0.9

Contexto

	Suelo	con residuo	s de ace	ero		Suelo c	on fibr	as de d	caucho		
	PF del suelo	PQ del suelo	CO	DMS	CB R	PF del suelo		del elo	сон	DM S	CB R
JUEZ 1	0	1	1		1		0	1	1	Š	1
JUEZ 2	1	0	1		1		1	0	1	8	1
JUEZ 3	1	1	1		1		1	1	1		1
JUEZ 4	1	1	1		1		1	1	1		1
JUEZ 5	1	1	1		0		1	1	1		1

		Suelo	con residuo:	s de ace	ero		Suelo co	n fibras de	caucho		
		PF del suelo	PQ del suelo	CO	DMS	CB R	PF del suelo	PQ del suelo	сон	DM S	CB R
(S)	4	4	5		4		4	4	5	5	;
(n)	5										
(c)	2										
V =	0.	0.8	1		0.8		0.8	0.8	1		
v -	8	0.8			0.6		0.8	0.8	1	15	10

	Contexto
V de Aiken por criterio	0.875
Congrue	ncia

	Suelo	con residuos	s de ace	ero		Suelo co	n fibras de	caucho		
	PF del suelo	PQ del suelo	CO	DMS	CB R	PF del suelo	PQ del suelo	сон	DM S	CB R
JUEZ 1	0	1	1	1		0	1	1	1	
JUEZ 2	1	1	1	1		1	0	1	1	
JUEZ 3	1	1	1	1		1	1	1	1	
JUEZ 4	1	1	1	1		1	1	1	1	
JUEZ 5	1	1	1	0		1	1	1	1	

		Suelo	con residuo:	s de ac	ero		Suelo co	n fibras de	caucho		
		PF del suelo	PQ del suelo	CO	DMS	CB R	PF del suelo	PQ del suelo	сон	DM S	CB R
(S)	4	5	5		4		4	4	5	5	
(n)	5										
(c)	0										
V =	0.8	1	1		0. 8		0.8	0.8	1	1	

	Congruencia
V de Aiken por criterio	0.9

Dominio del constructo

	5	Suelo con resid	uos de	acero		Suelo d	on fibras de cau	icho		
	PF del suelo	PQ del suelo	OCH	DMS	CBR	PF del suelo	PQ del suelo	OCH	DMS	CBR
JUEZ 1	1	1	1	1	1	1	1	1	1	1
JUEZ 2	1	1	1	1	1	1	1	1	1	1
JUEZ 3	0	1	1	1	1	1	1	1	1	1
JUEZ 4	1	1	1	1	1	1	1	1	1	1
JUEZ 5	1	1	1	1	1	1	1	0	1	1

		Suelo con resid	luos de acero		Suelo d	on fibras de cau	icho	
	PF del suelo	PQ del suelo	OCH DMS	CBR	PF del suelo	PQ del suelo	OCH DMS	CBR
(S)	4	5 5	5		5	5	4	5
(n)	5							
(c)	0							
V =	0.8	1 1	1		1	1	0.8	1

	Dominio del constructo
V de Aiken por criterio	0.95

Luis Braro Ventereur Carrecto
Lic. ESTADISTICA
MG. INVESTIGACION
OR. EQUIZACION
COSSPE 262

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE LA INFLUENCIA DE LOS RESIDUOS DE ACERO Y FIBRA DE CAUCHO EN LA ESTABILIZACIÓN DEL SUELO

Estadísticas de fiabilidad

Alfa de Cronbach	N de elementos
.996	8

	Suelo	Correlación total de elementos corregida	Alfa de Cronbach si e elemento se ha suprimido
PF del suelo		,998	,995
PQ del suelo	Residuos de	1,000	,995
СОН	Acero	,998	,996
DMS		,997	,998
CBR		,998	,997
PF del suelo		,995	,995
PQ del suelo	Fibras de	,999	,995
СОН	caucho	1,000	,995
DMS		,998	,995
CBR		,997	,999

ANOVA

			2.2001.001			
		Suma de		Media		
		cuadrados	gl	cuadrática	F	Sig
Inter sujetos		219895,250	4	54973,813		
Intra sujetos	Entre elementos	4561,375	7	651,625	2,992	,018
	Residuo	6098,750	28	217,813		
	Total	10660,125	35	304,575		
Total		230555,375	39	5911,676		

En las tablas se observa que, el instrumento es sobre influencia de la incorporación de residuos de acero y fibra de Caucho en la estabilización del suelo (correlaciones de Pearson superan al valor de 0.30 y el valor de la prueba del análisis de varianza es altamente significativo p < 0.05) y confiable (el valor de consistencia alfa de Cronbach es mayor a 0.80).

ANEXO Nº 8: Certificados de calibración de equipos.

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS

SERVICIOS DE LABORATORIO DE ENSAYO DE SUELOS Y PAVIMENTOS, CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO

Área de Metrología Laboratorio de Fuerza CERTIFICADO DE CALIBRACIÓN SLSP - LF - 013-2022

pág. 1 de 3

1.- Expediente

2.- Cliente

: SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C

Dirección

: Av. Vicente Ruso Lote 1, Fundo El Cerrito (Al costado de la Quinta Arellano -

Prolongación Bolognesi).

: 013

3.- Equipo:

PRENSA CBR Marca : NO INDICA Modelo : NO INDICA N° Serie : NO INDICA · NO INDICA Procedencia Identificación P-CBR-02 Clase: NO INDICA Indicador (tipo): : DIGITAL Marca WEBOWT ID226

Modelo N° Serie: Capacidad máxima: Resolución : 0.1 (kgf)

4.- Fecha y lugar de calibración

Fecha de calibración : 12/07/2022

Lugar de calibración Av. Vicente Ruso Lote 1, Fundo El

: ID22601688

: 5000 (kgf)

Cerrito (Al costado de la Quinta Arellano - Prolongación Bolognesi).

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

Servicios de Laboratorio de Suelos y Pavimentos S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

5.- Método de calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al LEDI - PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Máquinas de Ensayos Uniaxiales Estáticos. Parte 1:Máquinas de ensayo de tracción/compresión. Verificación y calibración del Sistema de medida de Fuerza."-Julio 2006.

6.- Condiciones Ambientales

	Inicial	Final	
Temperatura	19.2 °C	20 °C	
Humedad	72 %HR	71 %HR	

Fecha de Emisión:

12/07/2022

Ing. Secunding Burga Fernandez

Jefe del Laboratorio de Metrología

Jan Carlos Chavesta Re Jan Carlos Chavesta Reyes

Técnico de Metrología

- Av. Vicente Ruso Lote 1, Fundo El Cerrito (Al Costado de la Quinta Arellano Prolongación Bolognesi)
- 4 Servicios de Laboratorios Chiclayo - EMP Asfaltos
 - 948 852 622 954 131 476 998 928 250
- emp_calibraciones@hotmail.com servicios_lab@hotmail.com.

SERVICIOS DE LABORATORIO DE ENSAYO DE SUELOS Y PAVIMENTOS, CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO

Área de Metrología Laboratorio de Fuerza CERTIFICADO DE CALIBRACIÓN SLSP - LF - 013-2022 pág. 2 de 3

7.- Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado	
LABORATORIO DE ESTRUCTURAS ANTISÍSMICAS (PUCP)	CELDA DE CARGA DE 4500 kgf	INF - LE 262 - 21 B	

8.- Resultados de medición

Indicación del Equipo				uerza (Ascenso) referencia	
%	F _i (kN)	F ₁ (kN)	F ₂ (kN)	Fa (kN)	F _{promedio} (kN)
9.0	4.4	4.4	4.4	4.4	4.4
18.0	8.8	8.8	8.8	8.8	8.8
27.0	13.2	13.2	13.2	13.2	13.2
36.0	17.7	17.6	17.6	17.6	17.6
45.0	22.1	22.0	22.0	22.0	22.0
54.0	26.5	26.4	26.4	26.4	26.4
63.0	30.9	30.8	30.8	30.8	30.8
72.0	35.3	35.2	35.2	35.3	35.2
81.0	39.7	39.7	39.7	39.7	39.7
90.0	44.1	44.1	44.0	44.1	44.1
Retorr	no a cero	0.0	0.0	0.0	

Indicación del Equipo F (kN)	Errores Encontrados en el Sistema de Medición				
	Error de medida	Repetibilidad	Resol.Relativa	Incertidumbre expandida (k = 2)	
	q (%)	b (%)	a (%)	(u)	(u%)
4.4	-0.62	0.31	2	0.06	1.32
8.8	-0.33	0.31	1.13	0.06	0.68
13.2	-0.21	0.15	0.76	0.06	0.45
17.7	-0.26	0.04	0.57	0.06	0.33
22.1	-0.17	0.06	0.45	0.14	0.64
26.5	-0.18	0.07	0.38	0.06	0.23
30.9	-0.16	0.04	0.32	0.06	0.19
35.3	-0.16	0.02	0.28	0.06	0.17
39.7	-0.15	0.01	0.25	0.06	0.15
44.1	-0.16	0.08	0.23	0.06	0.15

Incertidumbre por error de cero u₀ 0.00

9.- Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura K=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

LABORATORIO ARBADE CAUBRACIÓN

Av. Vicente Ruso Lote 1, Fundo El Cerrito (Al Costado de la Quinta Arellano - Prolongación Bolognesi)

Servicios de Laboratorios Chiclayo - EMP Asfaltos

emp_calibraciones@hotmail.com

servicios_lab@hotmail.com.

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C

SERVICIOS DE LABORATORIO DE ENSAYO DE SUELOS Y PAVIMENTOS, CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO

Área de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN SLSP - LF - 013-2022

pág. 3 de 3

- Errores Encontrados en el Sistema de Medición Error de medida
- Errores Encontrados en el Sistema de Medición Repetibilidad
- O Errores Encontrados en el Sistema de Medición Resol.Relativa

10. Observaciones

- Se colocó una etiqueta con la indicación CALIBRADO. Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de \pm 2,0 °C.

- Av. Vicente Ruso Lote 1, Fundo El Cerrito (Al Costado de la Quinta Arellano Prolongación Bolognesi)
- f Servicios de Laboratorios Chiclayo - EMP Asfaltos
 - 948 852 622 954 131 476 998 928 250
- emp_calibraciones@hotmail.com servicios_lab@hotmail.com.

ANEXO Nº 9. Certificación de laboratorio.

Certificado

La Dirección de Acreditación del Instituto Nacional de Calidad - INACAL, en el marco de la Ley Nº 30224. OTORGA el presente certificado de Acreditación a:

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C.

Laboratorio de Ensayo

En su sede ubicada en: Av. Vicente Ruso Lote 1 fundo El Cerrito, distrito y provincia de Chiclayo, departamento de Lambayeque

Con base en la norma

NTP-ISO/IEC 17025:2017 Requisitos Generales para la Competencia de los Laboratorios de Ensayo y Calibración

Facultándolo a emitir Informes de Ensayo con Símbolo de Acreditación. En el alcance de la acreditación otorgada que se detalla en el DA-acr-06P-21F que forma parte integral del presente certificado llevando el mismo número de registro indicado líneas abajo.

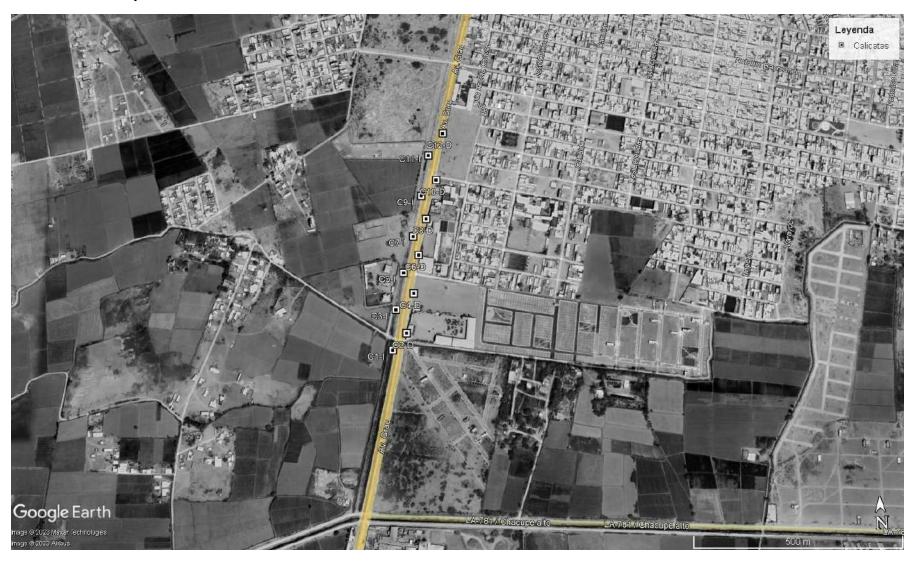
> Fecha de Acreditación: 14 de febrero de 2023 Fecha de Vencimiento: 13 de febrero de 2026

PATRICIA AGUILAR RODRIGUEZ Directora (d.t.). Dirección de Acreditación - INACAL

Fecha de emisión: 27 de febrero de 2023

Registro Nº: LE-203

temporales. El alcance y vigencia debe confirmarse en la pagina web www.inacal.gob.pe/acreditacion/categoria/acreditados. y/o a través del codigo QR al momento de hacer uso del presente certificado. La Dirección de Acreditación del INACAL es firmante del Acuerdo de Reconocimiento Multilateral (MLA) de Inter American Accreditación Cooperation (TAAC) e International Accreditación Forum (TAE) y de


Acuerdo de Reconocimiento Mutuo con la International Laboratory Accreditation Cooperation (ILAC)

DA-acr-01P-02M Ver. 03

Cedula: N° 043-2023-INACAL/DA

Contrato Nº: 006-2023/INACAL-DA

ANEXO N° 10: Mapa de ubicación de calicatas.

ANEXO N° 11. Panel fotográfico.

NOMBRE DEL TRABAJO

Influencia de los residuos de acero y fibr a de caucho en la estabilización del suel o **AUTOR**

José Andrés - José Alejandro Mestanza Díaz - Pérez Villanueva

RECUENTO DE PALABRAS

14032 Words

RECUENTO DE PÁGINAS

55 Pages

FECHA DE ENTREGA

Dec 10, 2023 11:01 PM GMT-5

RECUENTO DE CARACTERES

65976 Characters

TAMAÑO DEL ARCHIVO

1.9MB

FECHA DEL INFORME

Dec 10, 2023 11:02 PM GMT-5

17% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base o

- 14% Base de datos de Internet
- · Base de datos de Crossref
- 11% Base de datos de trabajos entregados
- 2% Base de datos de publicaciones
- Base de datos de contenido publicado de Crossr

Excluir del Reporte de Similitud

- Material bibliográfico
- Coincidencia baja (menos de 8 palabras)
- Material citado