

FACULTAD DE INGENIERÍA ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

Caracterización Mecánica de la Adición de Microsílice por Cemento para la Elaboración de Concreto

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autor

Bach. Peralta Panta Jorge Keny https://orcid.org/0000-0002-7525-7543

Asesor

Mag. Idrogo Pérez Cesar Antonio https://orcid.org/0000-0003-4232-0144

Línea de Investigación Ingeniería, Infraestructura y Medio Ambiente

> Pimentel – Perú 2023

CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO

Aprobación del jurado)
-----------------------	---

MAG, SÁNCHEZ DÍAZ ELVER

Presidente del Jurado de Tesis

MAG, VILLEGAS GRANADOS LUIS MARIANO

Secretario del Jurado de Tesis

MAG, CHAVEZ COTRINA CARLOS OVIDIO

Vocal del Jurado de Tesis

Quien suscribe la DECLARACIÓN JURADA, soy egresado del Programa de **Estudios de Escuela profesional de Ingeniería Civil** de la Universidad Señor de Sipán S.A.C, declaro bajo juramento que soy autor del trabajo titulado:

CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán (CIEI USS) conforme a los principios y lineamientos detallados en dicho documento, en relación a las citas y referencias bibliográficas, respetando al derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firma:

Peralta Panta Jorge Keny	DNI: 76831042	Jose forto
--------------------------	---------------	------------

Pimentel, 13 de diciembre de 2023.

NOMBRE DEL TRABAJO

AUTOR

Caracterización Mecánica de la Adición de Microsílice por Cemento para la Elab oración de Concreto

Jorge Keny Peralta Panta

RECUENTO DE PALABRAS

RECUENTO DE CARACTERES

7185 Words

34424 Characters

RECUENTO DE PÁGINAS

TAMAÑO DEL ARCHIVO

39 Pages

972.8KB

FECHA DE ENTREGA

FECHA DEL INFORME

Dec 8, 2023 6:08 AM GMT-5

Dec 8, 2023 6:08 AM GMT-5

16% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base o

- 13% Base de datos de Internet
- 0% Base de datos de publicaciones

· Base de datos de Crossref

- Base de datos de contenido publicado de Crossr
- 8% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

- Material bibliográfico
- Coincidencia baja (menos de 8 palabras)
- Material citado

Dedicatoria

A mis padres, quienes fueron la principal fuente de motivación para cumplir todos mis objetivos.

A mis hermanos, por mostrarme todo su apoyo durante esta etapa de mi vida.

Agradecimientos

A Dios por siempre guiarme en mi vida.

A toda mi familia, por siempre apoyarme en paso de mi vida universitaria.

A mis docentes de universidad, por la formación académica brindada para lograr ser un gran profesional.

Índice

Dedicatoria	4
Agradecimientos	5
Índice de tablas	7
Índice de figuras	8
Índice de abreviaturas	9
Resumen	
Abstract	
I. INTRODUCCIÓN	
1.1. Realidad problemática	12
1.2. Formulación del problema	15
1.3. Hipótesis	15
1.4. Objetivos	15
1.5. Teorías relacionadas al tema	16
II. MATERIAL Y MÉTODO	22
2.1. Tipo y Diseño de Investigación	22
2.2. Variables, Operacionalización	23
2.3. Población de estudio, muestra, muestreo y criterios de selección	26
2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad	1.30
2.5. Procedimiento de análisis de datos	30
2.6. Criterios éticos	32
III. RESULTADOS Y DISCUSIÓN	33
3.1. Resultados	33
3.2. Discusión	38
IV. CONCLUSIONES Y RECOMENDACIONES	42
4.1. Conclusiones	42
4.2. Recomendaciones	42
REFERENCIAS	43
ANEXOS	48

Índice de tablas

Tabla I Operacionalización de la variable independiente24	4
Tabla II Operacionalización de la variable dependiente2	5
Tabla III RC y ME con 210 kg/cm²2	7
Tabla IV RC y ME con 280 kg/cm²2	7
Tabla V RF con 210 kg/cm²2	8
Tabla VI RF con 280 kg/cm²28	8
Tabla VII RT con 210 kg/cm²29	9
Tabla VIII RF con 280 kg/cm²29	9
Tabla IX Caracterización del AF34	4
Tabla X Caracterización del AG34	4
Tabla XI Caracterización física de muestra patrón 210 kg/cm² y 280 kg/cm²3	5
Tabla XII Caracterización física con adiciones para concreto de 210 kg/cm² y 280	
kg/cm²30	6

Índice de figuras

Fig. 1. Diagrama de flujo de procesos.	31
Fig. 2. Granulometría de agregados	33
Fig. 3. Diseño patrón. (a) RC, (b) RT, (c) RF, (d) ME.	35
Fig. 4. Diseño experimental 210 kg/cm ² . (a) RC, (b) RT, (c) RF, (d) ME	37
Fig. 5. Diseño experimental 280 kg/cm ² . (a) RC, (b) RT, (c) RF, (d) ME	37
Fig. 6. Porcentaje óptimo de adición.	38

Índice de abreviaturas

MI : Microsílice

CP : Concreto Patrón

CE : Concreto Experimental

DM : Diseño de Mezcla

PF : Propiedades Físicas

PM: Propiedades Mecánicas

EF : Estado Fresco

EE : Estado Endurecido

RC : Resistencia a Compresión

RT : Resistencia a Tracción

RF: Resistencia a Flexión

ME : Módulo de Elasticidad

AG : Agregado Grueso

AF : Agregado Fino

PU : Peso Unitario

PUS : Peso Unitario Suelto

PUC : Peso Unitario Consolidado

PE : Peso Específico

CH : Contenido de Humedad

GE: Gravedad Específica

MF : Módulo de Fineza

TMN : Tamaño Máximo Nominal

ET : Especificaciones Técnicas

ASTM: American Society for Testing and Materials

ACI : American Concrete Institute

NTP : Norma Técnica Peruana

Resumen

Esta investigación tuvo como objetivo la caracterización de las propiedades al adicionar microsílice por cemento para la elaboración del concreto. Se elaboraron 216 muestras de concreto para la evaluación de la resistencia a la compresión, tracción, flexión y módulo de elasticidad, por lo cual se trabajó con un grupo control que estuvo conformado por muestras de concreto sin ninguna adición y tres grupos experimentales conformados por muestras con adición de microsílice en porcentajes de 4%, 6% y 8%. Los resultados analizados mostraron que la adición de 8% de microsílice mejoran las propiedades mecánicas del concreto, aumentando su valor en 30.25% y 20.11% para resistencia a la compresión, 30.06% y 19.91% para resistencia a la tracción, 30.38% y 20.29% para resistencia a la flexión y, 28.64% y 5.93% para módulo de elasticidad, correspondiendo a los diseños de fc= 210 kg/cm² y fc=280 kg/cm² respectivamente. En base a lo anteriormente mencionado, se concluye que la adición de microsílice en la mezcla contribuye a mejorar las propiedades mecánicas del concreto.

Palabras Clave: Microsílice, concreto patrón, propiedades físicas, propiedades mecánicas.

Abstract

This research aimed to characterize the properties when adding microsilica to cement for

the production of concrete. A total of 216 concrete samples were prepared for the evaluation

of compressive strength, tensile strength, flexural strength and modulus of elasticity, for

which a control group was formed by concrete samples without any addition and three

experimental groups were formed by samples with microsilica substitution in percentages

of 4%, 6% and 8%. The analyzed results showed that the substitution of 8% microsilica

improved the mechanical properties of the concrete, increasing its value by 30.25% and

20.11% for compressive strength, 30.06% and 19.91% for tensile strength, 30.38% and

20.29% for flexural strength and 28.64% and 5.93% for modulus of elasticity, corresponding

to the designs of f'c= 210 kg/cm² and f'c=280 kg/cm² respectively. Based on the above, it is

concluded that the addition of microsilica in the mix contributes to improve the mechanical

properties of the concrete.

Keywords: Microsilica, standard concrete, physical properties, mechanical properties.

11

I. INTRODUCCIÓN

1.1. Realidad problemática.

En diversos sitios de Europa existe una tendencia en la preservación del medio ambiente en la industria de la construcción a través de un enfoque sostenible para el desarrollo. En algunas regiones de Rusia, se emplea la MI en diversas aplicaciones, aunque en ocasiones se desecha en exceso debido a su elevado contenido de sílice (SiO2). Se ha propuesto utilizar este material para la formulación de un nuevo tipo de concreto. Además, se señala que la finura de las partículas de MI contribuye al aumento de la resistencia a compresión de los concretos. En Argentina se busca abordar de manera más efectiva los problemas ambientales, es recomendable emplear materiales provenientes de desechos generados en procesos industriales. Esto se debe a que estos materiales no solo contribuyen a la contaminación del aire y de las fuentes de agua, sino que también generan costos significativos en términos de procesamiento, transporte y disposición final. Por lo tanto, se busca incorporar el uso de residuos [1] [2].

En Venezuela, hay un gran incremento en la producción de residuos generando un gran impacto, tal es el caso de las industrias de ferrosilicio las cuales han representado una significativa fuente emisión de contaminantes atmosféricos, es por eso que se busca la incorporación de residuos al concreto con el fin de que mejore las propiedades, así como también su durabilidad [3].

Con respecto a la problemática detallada se vienen ejecutando diversas investigaciones tanto a nivel mundial como nacional y local, las cuales serán expuestas a continuación.

Chukka et al. [15], pretendían comprobar cómo afectan los nanotubos de carbono (CNT) y el MI a la durabilidad y las PM del concreto. La trabajabilidad se redujo debido a la inclusión de CNT y MI con una elevada superficie específica, la RC incrementa en un 1.5% con incorporación de 7.5% de MI a los 90 días de edad. La RF y RT aumentan con un 7.5%

de adición de MI a los 28 días de edad, 7.5% fue la adición óptima en cuanto al ME.

Hakeem et al. [16], en su artículo científico, investigaron el potencial de la cáscara de huevo (ESS) como sustituto de árido fino con adición de MI y cenizas volantes en el hormigón. La RC del concreto aumentó gradualmente y alcanzó la máxima resistencia adición del 10% de ESS y 10% MI en un 27.73%. La máxima RC se alcanzó con la mezcla ESS de 10% y MI de 10% aumentaron la mezcla de control en un 33,33%. Asimismo, los datos estadísticos implicaban que las cenizas volantes y MI afectaban positivamente al módulo elástico del hormigón al igual que la RF.

Garg & Garg [17], ejecutaron un estudio para analizar los efectos de la adición del cemento con MI, residuos de fibra de polipropileno PFW y sus combinaciones. La adición del cemento por MI provocó una disminución de la trabajabilidad de las mezclas. Se encontró que la adición óptima de MI para la RC era de 12% debido a que ascendió a 16% a los 7 días de curado, de igual modo la misma adición incrementa a un 23% la RT.

Ali et al. [18], en su pesquisa evaluaron la incorporación de MI y fibra de coco como sustitución parcial del cemento. Identificaron que al incorporar 1,5% de fibra de coco y 5% de MI, la RT experimentó mejoras del 47% a diferencia de las de la mezcla de control. La RC mejoró en torno a un 16%, con una sustitución del 10% del cemento. Con la incorporación de MI y coco se redujo la trabajabilidad del hormigón, por lo que se modificó la dosificación de superplastificante para controlar la facilidad con la que se puede manipular y moldear las mezclas.

Keerio et al. [4], en su artículo científico evaluaron la adición de MI por cemento en porcentajes de 5%, 10% y 15% y polvo de vidrio residual en porcentajes de 10%, 20%, 30% y 40%. Obteniendo resultados óptimos con la adición de 10% de MI y 30% de polvo de vidrio con una RC de hasta 330 kg/cm².

Sastry et. al. [19], en su artículo científico evaluaron la incorporación de humo de

sílice (5%, 7.5%, 10%) y cenizas volantes (10%, 15%, 20%) por agregado fino. Los mejores resultados se observaron en la mezcla que contenía el 10% de humo de sílice la cual presentó una RC mejorada hasta un 28.7%.

Se consultaron diversos estudios en el ámbito nacional, como el de Ge et al. [20]., realizó un estudio a fin de investigar la influencia de diversos factores en las PM y durabilidad del concreto sostenible. El adobe patrón contaba con un porcentaje de 3% en cuanto a absorción de agua, lo cual con la incorporación de 10% de MI lo reduce a un 1.75%. La RF y RC aumentan un 23.7% y un 32% respectivamente a los 28 días de curado con una incorporación del 15%. La trabajabilidad de la pasta del concreto en polvo reactivo se ve obstaculizada por la adición excesiva de MI en el cemento.

Aquino [21], determinó la incidencia en la aplicación de MI y microfibra de polipropileno a la RC y RF de los morteros, se diseñaron muestras para hallar el comportamiento mecánico a los 7, 14 y 28 días. Una de sus conclusiones fue el incremento de la RC, llegando a un aumento de 7.02% y un 5.45% cuando se añade 5% de MI y 100g/m3 de microfibra de polipropileno.

García [22], en su investigación su principal acción fue descubrir la mejor dosificación mejorar las características del concreto. El MI se usó en diferentes porcentajes (4%, 6% y 8%), se usó superplastificantes con los siguientes porcentajes (0.8%, 1.2%, 1.6%), la relación de agua/aglutinante fue de 0.3, 0.35 y 0.40. Como resultado se pudo observar que el diseño con resultados más favorables fue la adición de 6% de MI y superplastificante de 1.2%.

Zúñiga y Condori [23], en su investigación, sostuvieron como fin el estudiar el impacto del MI en el concreto. Se usó MI en diferentes porcentajes (4% y 8% por peso de cemento). Se elaboró un total de 90 muestras que se repartieron de la siguiente manera: 30 contenían concreto matriz, 30 muestras contaban con 4% de MI y 30 muestras que

contenían 8%. Se pudo observar como resultado que el concreto con 4% de MI presentó una RC de 334,89 kg/cm², además, el hormigón con 8% alcanzó una mayor RC de 316.69 kg/cm².

Vega [24], tuvo por objetivo evaluar el uso de MI en la mezcla para mejorar sus propiedades. Se usó cemento MS y diferentes porcentajes de MI. Se realizaron cuatro diseños con MI (0%, 10%, 15% y 20%). Se calculó su temperatura, trabajabilidad y RC. Como resultado la mezcla que tuvo una mejor caracterización mecánica fue la que contenía 10% de MI en la cual se llegó a una RC de 302 kg/cm².

La justificación técnica de la pesquisa se basa en los resultados que presenta la incorporación del MI para la realización del concreto, esta incorporación contribuye a las propiedades del concreto. Dentro de lo ambiental y económico se recalca el uso de este residuo industrial. La importancia de esta investigación es la de la caracterización de la adición de MI en el concreto.

1.2. Formulación del problema

¿La adición de microsílice por cemento mejorará las propiedades físicas y mecánicas del concreto?

1.3. Hipótesis

La adición de microsílice por cemento mejorará las propiedades físicas y mecánicas del concreto.

1.4. Objetivos

Objetivo general

Evaluar la caracterización mecánica de la adición de microsílice por cemento para la elaboración de concreto.

Objetivos específicos

- Realizar un estudio de canteras, caracterizando las propiedades físicas de los agregados a utilizar en el concreto.
- Realizar la caracterización física y mecánica del concreto patrón de f'c=210 kg/cm² y f'c= 280 kg/cm².
- Realizar la caracterización física y mecánica del concreto con la adición de 4%, 6% y
 8% de microsílice con respecto al peso del cemento.
- Determinar el porcentaje óptimo de adición de microsílice para un diseño f'c=210 kg/cm²
 y f'c=280 kg/cm².

1.5. Teorías relacionadas al tema

Concreto. Aquel material proveniente de la mezcla de cemento, agua y diferentes agregados como arena y grava. Las características pueden modificarse en gran medida teniendo en cuenta la variación en las proporciones de sus materiales [25].

Cemento portland. Es aquella materia consecuencia de la trituración del Clinker Portland y el sulfato de calcio. [26]

Propiedades mecánicas del concreto

- Trabajabilidad: capacidad y facilidad de ser colocado y ser compactado de manera adecuada sin que en el proceso se produzca perdidas por segregación y pueda deformarse de manera continua sin que este se rompa y fluya alrededor de todos los recipientes donde será vaciado. [27]
- Cohesividad: es aquella propiedad por la cual se puede regular la probabilidad de segregación del concreto en su etapa cuando se ha mezclado y se maneja para colocación en obra. Al controlar y prevenir la aspereza, se mejora la manejabilidad de la mezcla durante la compactación, se vuelve más fácil de colocar y compactar adecuadamente [28].
- Resistencia a la compresión: Hace alusión a la capacidad del concreto de resistir cargas externas que actúan en dirección opuesta, causando la compresión del material.

Para medirlo se debe hacer un ensayo normado a la compresión sobre un cilindro de concreto de medida estándar de 15 cm de diámetro, por una altura de 30cm. El espécimen debe ser sometido a un curado bajo agua por un mínimo de 24 horas. Se deben someter a ensayo mínimo dos probetas para obtener un promedio de la RC [29].

Agua. El agua permite la hidratación y la manejabilidad del concreto. Solo una cantidad del agua hidrata al concreto y el resto simplemente se evapora. Se requieren porcentajes de 25%-30% de agua en relación al peso del cemento para hidratar adecuadamente el cemento, pero se debe tener en cuenta que para poder manejar la mezcla debe tener como mínimo un 40% [26].

Agregados. También denominados como áridos, los agregados son partículas que pueden ser naturales o artificiales y cuyos parámetros se encuentran establecidos en esta NTP [30].

Agregado fino. Es aquel conformado por la descomposición de rocas y debe pasar por la malla 9.5 mm (3/8"), mientras que en la malla Nº 200 debe quedarse.

Se debe tener en cuenta los siguientes requisitos:

Puede estar definido por arena natural, estas partículas deberán estar limpias, sin presencia de polvo y otros agentes perjudiciales o dañinos. De preferencia deberán ser resistentes y compactas [30].

Granulometría del AF. Se determina mediante un procedimiento de tamizado en el cual se pasa una muestra representativa del agregado a través de una serie de mallas [31], Sus requisitos le permiten mantener unos rangos amplios. La granulometría más beneficiosa dependerá tanto de la dimensión del agregado grueso como también de las características de la mezcla. Con una buena mezcla y teniendo una óptima relación de los agregados, no se tendría una variación notable en la resistencia al usar un amplio rango en la granulometría, dándose generalmente una buena economía como resultado de una granulometría uniforme [32].

Agregado grueso. La fracción que queda retenida en la malla Nº4 se refiere a las partículas de tamaño más grande que no pueden pasar a través de esta malla de tamiz. Este material se obtiene a partir de la desintegración o trituración de la roca y puede ser conocido como grava o piedra partida, dependiendo de las características específicas del material [30].

Granulometría del AG. Este agregado deberá cumplir una serie de requisitos:

Debe tener partículas limpias y libres de tierra, polvo y otros agentes perjudiciales.

Esta granulometría debe permitir lograr la densidad óptima del concreto.

No deberá retener más del 5% en el tamiz de 1 ½" y debe ser menor que el 6% del agregado que pasa en el tamiz de ¼".

Este debe estar debidamente graduado y respetar los límites permitidos en la norma [32].

Características físicas de los agregados

- Contenido de humedad. La NTP 339.185, lo refiere como aquella proporción de agua que contiene los agregados, dicha cantidad es expresada en porcentaje con respecto a la muestra seca [33]. La humedad está presente tanto a nivel superficial como en los poros del agregado.

La NTP 339.185 (2021), afirma que el contenido de la humedad total se puede calcular a partir de la ecuación:

- **Peso unitario.** Cantidad de material seco que se necesita para llenar completamente un recipiente de volumen igual a uno. Este puede determinarse suelto o compactado [26].

Microsílice. Es aquel polvo fino, derivado de la depuración del humo de los hornos de aleación metálica pertenecientes a la industria del ferrosilicón, en cual su composición es de 90% al 95% de SiO₂ amorfo y con características puzolánicas las cuales posibilitan

una transformación química con el Ca(OH)₂ para constituir un gel con reconocible aumento en sus características, principalmente su RC y su durabilidad [34].

 Características de las microsílice. Para, Gonzales, este producto es elaborado como polvo ultrafino de color gris [34]. A continuación, se muestran sus características típicas:

Contiene al menos un 90% de SIO2, el tamaño de sus partículas llegas a ser de 0.1-0.2 µm, superficie específica superior a los 15,000 m²/kg, tiene forma esférica sus partículas, bajo cantidad de carbón.

• Empleo de micro sílice en la construcción. En un principio este elemento fue considerado para reemplazar el cemento, aunque en determinadas áreas aún es de único uso. Algunas partes del hormigón pueden ser sustituidos por una pequeña cantidad de MI y su adición genera un aumento en la utilización de agua. Si se llega a utilizar esta adición es recomendable utilizar un aditivo reductor de agua para poder conservar la misma proporción de agua/cemento. Por su alto precio del mercado, es utilizado para optimizar las características del hormigón y así facilitar elementos con una muy alta RC y alto nivel de durabilidad. [34].

Existen resultados que muestran que, la RC incrementa con el uso del MI, como una adición del cemento, ya que este aditivo coopera de manera considerable en fortalecer la unión que se da entre la propia pasta del cemento y los agregados [35].

Ya que el uso de MI presenta una ventaja en cuanto a una mejora ambiental y es económicamente sostenible, se han realizado también investigaciones sobre su aplicación en la estabilización de suelos, y ha demostrado que contribuye en mejorar la dispersabilidad y propiedades netamente dinámicas de las muestras de suelo analizadas. Dichas investigaciones muestran mejoras en suelos poco profundos [36].

Para el uso estructural, se ha confirmado que el uso de MI reduce el flujo del

concreto según el incremento del porcentaje utilizado y demuestra un mejor rendimiento en RC y RT, desempeñándose una mejora cuando se incorpora un 15% del cemento utilizado en la muestra con humo de MI [37].

Incluso se ha considerado incorporar en ciertas mezclas el cemento por MI, las investigaciones realizadas se han basado en analizar la RC final del concreto, y se demuestra que las mezclas de concreto sin cemento que contienen hasta un 6% y 8% de MI, es lo más adecuado para ser empleado como aglutinantes en morteros. Además, también se observó que el MI brinda una un rápido incremento de la RC en el tiempo [38].

Resistencias requeridas. Una alta resistencia genera una elevada incertidumbre en los resultados de sus ensayos, debido a la dificultad que estos pasen por el ensayo en comparación a los normales. La elección de las dosificaciones en la mezcla, son influenciadas por el tiempo aproximado que tomará el ensayo del concreto. Este tiempo tiende a ser distinto de acuerdo con los requisitos de la elaboración pedida [34].

Propiedades físicas del concreto

Asentamiento. Este se dimensiona estando en estado fresco midiéndose su deformación debido a plasticidad y fluidez de la mezcla influyendo en la resistencia de este [39].

Temperatura. Es crucial ya que influye en la resistencia del concreto. Puede provocar una madurez temprana de la mezcla si la temperatura varia ascendente [40].

Peso unitario. Es la densidad del concreto o también peso volumétrico, suele estar entre los 2200 – 2400 kg/m³. Al evaluar el peso unitario será más sencillo identificar la variación entre el peso específico obtenido tanto en obra como en diseño [41].

Propiedades mecánicas del concreto

Resistencia a la compresión. Durante la evaluación de todo tipo de concreto este es el esfuerzo mecánico más importante. Esto se debe a que comprende la resistencia en relación al peso perpendicular. Esta puede variar dependiendo de su sección transversal y dimensiones [42].

Resistencia a la tracción. Se define como la carga a la cual se someterá una probeta, de ser el caso de superar a esta resistencia como resultado se produciría una rotura a la probeta, pero si esfuerzo sucede antes se obtendría la deformación plástica [43].

Resistencia a la flexión. Se puede definir como falla de una viga debido al momento, esta es en parte una medida procedente de la RT del concreto [44].

Módulo de elasticidad. Se evalúa a la deformación elástica a la cual es sometida el concreto, esta se calcula mediante el ensayo de compresión mediante las cargas tanto longitudinales o transversales sobre la probeta o espécimen [45].

II. MATERIAL Y MÉTODO

2.1. Tipo y Diseño de Investigación

Tipo de investigación

Ñaupas et al., Indica que la investigación aplicada se centra en la utilización práctica del conocimiento y la teoría en un ámbito concreto con el propósito de abordar dificultades y potenciar circunstancias en la realidad cotidiana [46].

Enfoque de la investigación

Hernández-Sampieri y Mendoza, precisan que el enfoque metodológico cuantitativo se fundamenta en la recolección y análisis de datos estadísticos para establecer patrones, relaciones y correlaciones entre variables, se parte de una teoría o hipótesis previa que se somete a prueba [47].

Diseño y nivel de la investigación

En la investigación cuasi experimental, el investigador emplea un conjunto experimental en el cual se aplica una modificación a la variable independiente, mientras que, en un conjunto de control, no se efectúa ninguna alteración en dicha variable [47].

$$G_{p1} \rightarrow O_{p1}$$

$$G_{p2} \rightarrow O_{p2}$$

$$G_{p3} \rightarrow O_{p3}$$

$$G_{p4} \rightarrow O_{p4}$$

$$G_{p5} \rightarrow O_{p5}$$

Donde:

 G_{p1-2} : Grupo de pruebas patrón

 G_{p3} : Prueba experimental, 4% MI

G_{p4}: Prueba experimental, 6% MI

 G_{p5} : Prueba experimental, 8% MI

 O_{p1-5} : Observación de resultados

2.2. Variables, Operacionalización

Variables

V. Independiente: Microsílice

V. Dependiente: Evaluación de la mezcla de concreto

Operacionalización

Tabla I
Operacionalización de la variable independiente

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Ítems	Instrument o	Valores finales	Tipo de variable	Escala de medició n
	Polvo fino, derivado de la depuración del humo de los hornos de aleación metálica	Se adicionará porcentajes de 4%, 6% y	PF - Diseño y mezcla	Peso	kg	_ Observació	Kg		
Microsílice				Volumen	m³	n y revisión documentar ia – Fichas de	m ³	Variable	De razón
	perteneciente s a la industria del ferrosilicón [34].	8% en base al peso del cemento.		Proporciones de los materiales	%	observació n y equipos de laboratorio.	——— numérica %	20.142011	

Nota: Se describe los porcentajes de la variable que se adicionaran.

Tabla II

Operacionalización de la variable dependiente

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Ítems	Instrumento	Valores finales	Tipo de variable	Escala de medición													
	La resistencia			Granulometría	kg		kg															
			PF de	PE	kg/m³	-	-	-	- -	- -	-	-			kg/m³	_						
			agregados	PU	kg/m³																	
				Absorción	%		%	_														
	del concreto se refiere a la	Se		PU	kg/m³	- Observación	kg/m³	-														
	capacidad del material para soportar fuerzas	adicionara al concreto con microsílice para mejorar sus PF y PM. PF y PM. Asentamiento pulg Temperatura C° RC RC RF		Asentamiento	pulg	y revisión documentaria – Fichas de observación y equipos de laboratorio.		– Variable numérica –														
Mezcla de concreto				Temperatura	C°							De razón	De razór									
ext exp defo	externas sin experimentar deformacione		PF v PM	RC																		
	s o fracturas [48].		. 2																			
				RT	kg/cm ²		kg/cm ²															
				.ME																		

Nota: Se describe tanto las PF de los agregados como las PF y PM del concreto.

2.3. Población de estudio, muestra, muestreo y criterios de selección

Cabezas et al., señala que la *población de estudio* es un conjunto total de sucesos, materias o fenómenos que cumplen con características que son de interés para un estudio en particular [49]. De esta manera, la población está conformada por los testigos de concreto con la adición de MI.

Muestra, subconjunto de la población determinado para ser analizado con el propósito de hacer inferencias sobre la población completa [49].

Criterios de selección.

Criterios de inclusión, el estudio se delimitó a los agregados procedentes de las canteras de Lambayeque.

Criterios de exclusión, no se consideró a los agregados procedentes de las canteras que no fueran procedentes de Lambayeque.

Muestreo no probabilístico, la selección de los estos elementos que conforman la muestra que no se determinará aleatoriamente y no todos tienen la misma probabilidad de ser seleccionados [49]. Se escogieron a conveniencia propia teniendo en cuenta los porcentajes de adición de microsílice, tiempo, diseño y ensayos del concreto. Se fabricaron 216 muestras, 54 fueron elaboradas como CP, y las restantes con adición de MI, según el siguiente detalle:

Tabla III RC y ME con 210 kg/cm²

Diac a de conocato		RC	
Diseño de concreto	7 días	14 días	28 días
CP10	3	3	3
Adición de 4% de MI (C10M4)	3	3	3
Adición de 6% de MI (C10M6)	3	3	3
Adición de 8% de MI (CP10M8)	3	3	3

Nota: Total de muestras elaboradas.

Tabla IV RC y ME con 280 kg/cm²

	RC	
7 días	14 días	28 días
3	3	3
3	3	3
3	3	3
3	3	3
	3 3 3	3 3 3 3 3 3

Nota: Total de muestras elaboradas.

Tabla V RF con 210 kg/cm²

RF			
7 días	14 días	28 días	
3	3	3	
3	3	3	
3	3	3	
3	3	3	
	3 3 3	7 días 14 días 3 3 3 3 3 3	

Nota: Total de muestras elaboradas.

Tabla VI RF con 280 kg/cm²

Diseño de concreto		RF	
Discrib de concreto	7 días	14 días	28 días
CP10	3	3	3
Adición de 4% de MI (C10M4)	3	3	3
Adición de 6% de MI (C10M6)	3	3	3
Adición de 8% de MI (CP10M8)	3	3	3

Nota: Total de muestras elaboradas.

Tabla VII RT con 210 kg/cm²

RT			
7 días	14 días	28 días	
3	3	3	
3	3	3	
3	3	3	
3	3	3	
	3 3 3	7 días 14 días 3 3 3 3 3 3	

Nota: Total de probetas elaboradas.

Tabla VIII RF con 280 kg/cm²

Diagraph and an annual a	RT		
Diseño de concreto	7 días	14 días	28 días
CP10	3	3	3
Adición de 4% de MI (C10M4)	3	3	3
Adición de 6% de MI (C10M6)	3	3	3
Adición de 8% de MI (CP10M8)	3	3	3

Nota: Total de probetas elaboradas.

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

La observación en investigación es una técnica utilizada para recopilar información y obtener datos empíricos sobre fenómenos o sujetos de estudio. Consiste en la atención sistemática y directa a los eventos, comportamientos o situaciones que se desean investigar, con el objetivo de recoger información detallada y precisa [47]. Para esta pesquisa se utilizó la técnica de observación, empleando la ficha de observación se pudo recopilar la información de todos los ensayos elaborados para que posteriormente fuerana analizados a detalle.

Confiabilidad, es refiere a la seguridad que se tiene sobre estos datos, debido a la precisión del instrumento que se usó para la medición [50]. Para comprobar la confiabilidad se anexó los certificados de calibración de los equipos usados los cuales se pueden encontrar en el Anexo 11.

Validez, se define como la característica que posee un instrumento con el cual se pueden realizar mediciones significativas con exactitud [50]. Se realizó el jucio de los expertos en sus respectivas fichas la cual se puede encontrar en el Anexo 11

2.5. Procedimiento de análisis de datos

El adecuado análisis de los resultados pretendía identificar la adecuada adición de MI que permita un adecuado incremento de las propiedades del concreto según sus respectivos días de curado, por ello fue empleado el programa Microsoft Excel, con el cual se realizaron tablas y gráficos que detallan los porcentajes de adiciones y su efectividad según los días de curado.

Diagramas de flujo de procesos

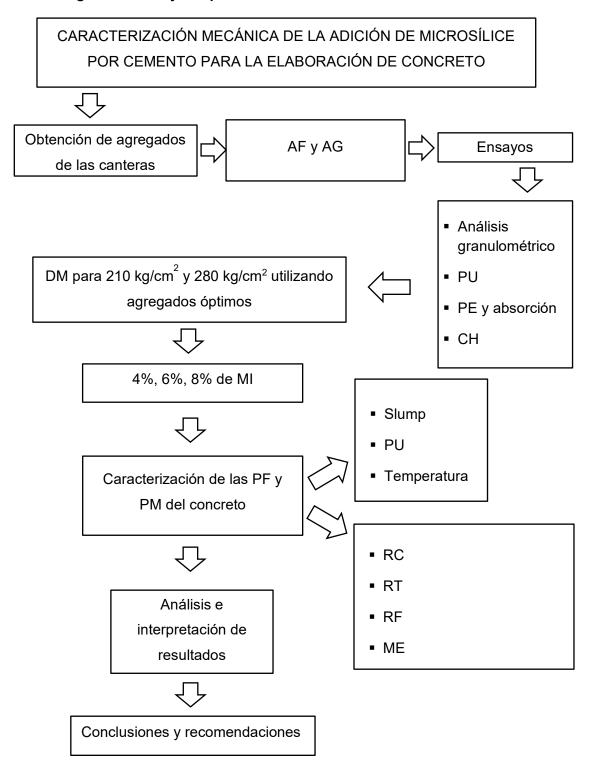


Fig. 1. Diagrama de flujo de procesos.

2.6. Criterios éticos

Para este trabajo de investigación se rigieron de acuerdo al Código de Ética en investigación de la USS S.A.C [51], la cual fue aprobada por Resolución de Directorio n° 058-2023/PD-USS, en la que como investigador se indicó ceñirse a los artículos 5 y 6 de este código que define temas como la transparencia del tema de investigación, rigor y también el cumplimiento de los diversos criterios éticos en esta comunidad científica.

III. RESULTADOS Y DISCUSIÓN

3.1. Resultados

- Estudio de canteras, caracterizando las propiedades físicas de los agregados a emplear en el concreto

Se ha analizado la composición física de agregados de tres canteras diferentes para su uso en el concreto detallados en Anexo 1, usando como material óptimo agregado grueso de la cantera Tres Tomas en Mesones Muro, Ferreñafe, Lambayeque, Perú, y agregado fino de la cantera Pacherrez, La Victoria, Pátapo, Chiclayo, Lambayeque, Perú. Cada cantera fue evaluada por separado y se compararon los resultados con los estándares de la norma NTP 400.037. La siguiente figura muestra las canteras que cumplen con los requisitos de la norma.

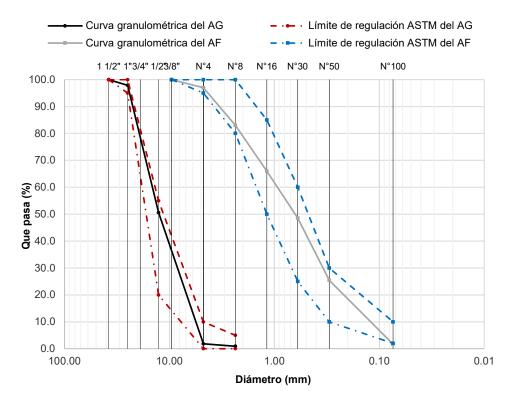


Fig. 2. Granulometría de agregados

Además de la selección de las canteras, se realizó la caracterización física de los agregados. Esto implica la realización de pruebas y análisis para determinar propiedades como la granulometría, densidad, absorción de agua, forma y textura superficial de los agregados. Estos datos son importantes para identificar la calidad de los agregados y asegurar que cumplan con los estándares requeridos para su uso en la construcción.

Tabla IX

Caracterización del AF

Característica	Medido
TMN	1/4"
MF	2.77
PUC (kg/m³)	1641.2
PUS (kg/m³)	1517.6
GE (gr/cm³)	2.643
Absorción (%)	0.96

Tabla X
Caracterización del AG

Característica	Medido
TMN	1 1/2"
PUC (Kg/m³)	1,495.9
PUS (Kg/m³)	1,455.1
GE (gr/cm³)	2.668
Absorción (%)	0.85
Abrasión (%)	23.6

- Caracterización física y mecánica del concreto patrón

En la Tabla XI se muestran los resultados obtenidos en laboratorio para un diseño patrón con relación a sus PF del concreto. En la Fig. 2 se muestran los resultados para cada PM del concreto; con mayor detalle se observan los valores hallados y mostrados en los informes de laboratorio de los Anexo 3, Anexo 4, Anexo 5 y Anexo 6.

Tabla XI

Caracterización física de muestra patrón 210 kg/cm² y 280 kg/cm²

Mezcla	P.U.	SLUMP (")	Temp. (°C)
	(kg/cm³)		
CP10	2,369.49	4.2	28.2
CP80	2,384.99	4.4	29.6

Nota: Resultados obtenidos para el diseño patrón.

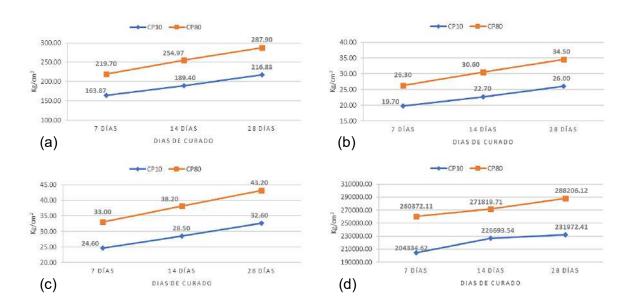


Fig. 3. Diseño patrón. (a) RC, (b) RT, (c) RF, (d) ME.

- PF y PM del concreto con la adición de 4%, 6% y 8% de MI respecto al peso del cemento.

Con respecto al diseño de 210 kg/cm² se obtuvo un aumento gradual en la propiedad evaluada, esto sugiere que la presencia de MI en el concreto aumenta ligeramente su peso unitario, lo que podría afectar su densidad, por otro lado, el asentamiento es menor conforme aumenta el MI en la muestra. Los resultados con relación al diseño de 280 kg/cm² señalan que la inclusión de MI en el concreto provoca una mejora en la mayoría de las PF a excepción del asentamiento el cual tiende a disminuir conforme aumenta el MI.

Tabla XII

Caracterización física con adiciones para concreto de 210 kg/cm² y 280 kg/cm²

Mezcla	P.U.	SLUMP (")	Temp. (°C)
Mezcia	(kg/cm³)		
CP10	2,369.49	4.2	28.2
C10M4	2,377.66	4.0	28.6
C10M6	2,385.16	3.4	28.4
C10M8	2,396.33	3.0	30.1
CP80	2,384.99	4.4	29.6
C10M4	2,394.11	4.0	29.8
C10M6	2,402.85	3.6	29.6
C10M8	2,413.12	3.3	30.4

Nota: Se muestran resultados obtenidos en laboratorio.

En la Fig. 4 y Fig. 5 se muestran los resultados para cada PM del concreto; con mayor detalle se observan los valores hallados y mostrados en los informes de laboratorio de los Anexo 3, Anexo 4, Anexo 5 y Anexo 6.

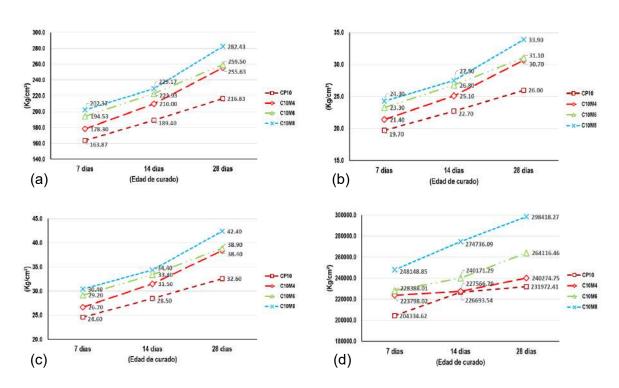


Fig. 4. Diseño experimental 210 kg/cm². (a) RC, (b) RT, (c) RF, (d) ME.

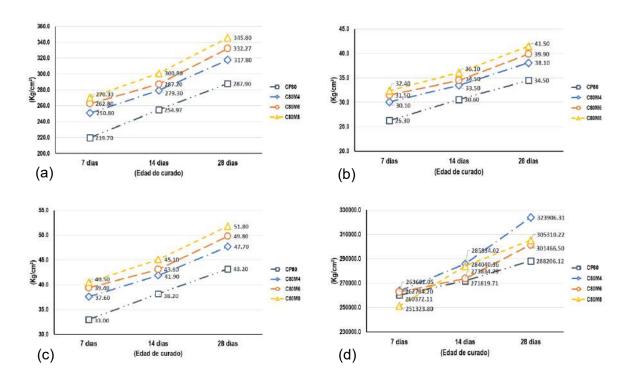


Fig. 5. Diseño experimental 280 kg/cm². (a) RC, (b) RT, (c) RF, (d) ME.

Determinación de porcentaje óptimo de adición de MI para un diseño f'c= 210
 kg/cm² y 280 kg/cm²

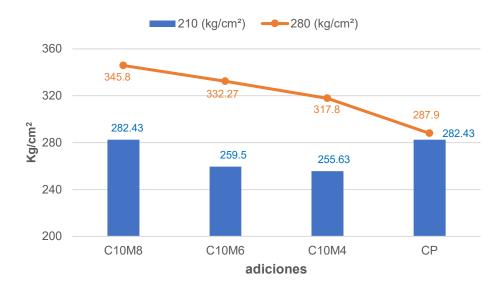


Fig. 6. Porcentaje óptimo de adición.

Con respecto a los diseños, en la Fig. 6 se ha mostrado un incremento en las PM al adicionar un 4%, 6% y 8% de MI respecto al peso por cemento, determinando que, el porcentaje de adición que adopta una mejora en las PM del concreto es el 8% de MI.

3.2. Discusión

Discusión 1. Referente al objetivo específico 1 sobre el estudio de canteras; se obtuvo que la CANTERA 3 cumple con los requisitos mínimos; ya que posee un módulo de fineza de 2.77, lo cual indica que son adecuados para obtener concreto con buena trabajabilidad y menor de segregación. Los terrones de arcilla y partículas frágiles tienen una concentración de solo el 0.15, lo cual se considera aceptable. Además, hay un contenido de material que pasa a través de la malla N°200 de aproximadamente el 1,7%. El valor obtenido para el equivalente de arena es del 76,70%, lo cual se considera adecuado para concretos con una resistencia igual o superior a 210 kg/cm². Además, la norma NTP 400.037 [32] destaca que, si se mantiene una buena proporción entre los agregados, no se observarán cambios significativos.

Discusión 2. Referente al objetivo específico 2, las PF y PM del CP de 210 kg/cm²

y 280 kg/cm², se pudo constatar que al utilizar los agregados provenientes de la Cantera 3, específicamente el AG (Tres Tomas) y el AF (Pacherrez), se lograron cumplir los requisitos mínimos para la preparación de muestras de concreto con PF y PM óptimas. Esto se evidencia en los diseños de mezcla con resistencias objetivas de 210 kg/cm² y 280 kg/cm². Asimismo, al realizar la dosificación del agua para los diseños de mezcla, se tomó en cuenta la humedad presente en los agregados, siendo de un 1,09% para la arena y un 0,93% para la piedra. Por su parte, Hakeem et al., refiere que para la elaboración de la mezcla se deben incorporar los agregados finos y gruesos correctamente, de tal manera que la incorporación del nuevo material pueda resultar beneficiosa [16], asimismo, las cualidades pueden modificarse en gran medida por la variación en las proporciones de sus materiales [52].

Discusión 3. Referente al objetivo específico 3, las PF y PM del CE de 4%, 6% y 8% de MI con respecto al peso del cemento, al analizar las PF se nota que al aumentar el porcentaje de MI, también se produce un aumento gradual en su peso unitario. No obstante, al adicionar el 8% de MI, se experimenta una disminución de aproximadamente el 30% en su asentamiento en comparación con la muestra de referencia. Además, se nota una ligera fluctuación en la temperatura con la incorporación de MI. Lo obtenido refuerza lo presentado por Hakeem et al., pues refiere que le MI afecta positivamente a las propiedades del concreto [16], sin embargo, Ali et al., menciona que debe tenerse cuidado con la incorporación o mezcla con materiales ajenos a la muestra patrón [18].

Por otro lado, en relación a las PM, es notable que la RC se incrementó con el tiempo de curado, así como al añadir cantidades crecientes de MI (4%, 6% y 8%). En contraste con la muestra CP10, la muestra C10M8 exhibe incremento del 30.25% a los 28 días de curado, respectivamente. Además, se notó que, en la muestra CP80, el incremento es del 20.11% en el día 28. De este modo, estos resultados revelan que los valores más elevados se lograron después de 28 días de curado, concluyendo que se requiere un período adecuado para que el concreto llegue a su máxima RC. Asimismo, Chukka et al.,

determinó que la propiedad en mención incrementa 1.5% con adición de 7.5% a los 90 días de curado [15]; mientras que autores como Ge et al. y Ali et al, concuerdan en que la adición de 10% fue la adecuada pues permitió un incremento de 32% y 1.5% a los 28 días de curado [20] [18], mientras que Vega con la misma adición obtuvo 302 kg/cm² [24]. Por otra parte, algunos autores discrepan, Garg & Garg, afirman que la adición de 12% mejora en 16% a los 7 días de curado [17] y Aquino al agregar 5% de MI aumenta en 7.02% [21].

Simultáneamente, en relación a la RT, se detectó que, a los 28 días de curado, la muestra C10M8 tiene un valor que es un 30,38% más alto que la muestra CP10. Del mismo modo, la muestra C80M8 registra un valor que es un 20,29% mayor que la muestra CP80. Según los resultados obtenidos, se concluye que los mejores valores se lograron al adicionar un 8% de MI después de 28 días de fraguado. Ahora, Chukka et al., refuerza lo obtenido, afirma que I con un 7.5% a los 28 días de curado se incrementa la propiedad ya mencionada. No obstante, hay autores que discrepan, pues para Ali et al., la adición adecuada fue10% que mostró mejoras del 47% [18], en el caso de Garg & Garg 12% el incremento fue de 23% [17].

En relación a la RF, se puede notar que al adicionar un 4% de MI, se presenta un incremento del 17.79% a los 28 días, en contraste con la muestra CP10. Al adicionar el 6% de MI, se evidencia un incremento de aproximadamente el 19.33% para el mismo periodo. Por último, al adicionar el 8% de MI, se registra un aumento significativo del 30,06% para 28 días de curado, respectivamente, en contraste con la muestra CP10. El aumento más significativo se logró al incorporar el 8% de MI. Además, al adicionar el 4% de MI, se evidencia un aumento del 10.42% en el período de 28 días de curado, en contraste con la muestra CP80. Del mismo modo, al incorporar el 6% de MI, se observa un incremento de 15,28%. Por último, al incorporar el 8% de MI, se registra un incremento notable de 19.91% para el periodo de 28 días de curado, en contraste con la muestra CP80. El análisis de los valores obtenidos en relación con las muestras CP10 y CP80, expresados en términos porcentuales, demuestra que la adición de MI mejora de manera significativa la propiedad

en mención. Los resultados de la presente pesquisa concuerdan con lo obtenido por Chukka et al., quienes afirman que la RF aumenta con 7.5% de adición a los 28 días de vida [15], Ge et al., discrepa en cierta manera debido a que con una adición de 10% aumenta un 23.7% a los 28 días. Así como también Sastry et al [19] indica que con una adición de 10% aumenta un 17.1 % a los 28 días. Por su parte, Hakeem et al., refiere que el MI incrementa las propiedades del concreto [16].

Y, en conclusión, en relación al ME, se puede ver de manera general que este incrementa conforme progresa el periodo de curado en todas las mezclas. Además, es evidente que las mezclas C10M8 y C80M8 exhiben el ME como el superior de los períodos de curado, lo que se puede inferir estas fueron las más rígidas. En contraste con las mezclas CP10 y CP80, se puede notar que las mezclas con incorporación de MI presentan ligeramente un mayor ME en todos los períodos de curado, lo cual sugiere que la adición de MI tiene el potencial de mejorar la rigidez del concreto. Por su parte, Chukka et al., refiere que en cuanto al módulo de elasticidad añadir el 7.5% de MI incrementa esta propiedad [15], lo cual refuerza los resultados de la presente indagación, por otro lado, Hakeem et al., refiere que el MI afecta positivamente al ME del hormigón [16].

Discusión 4. Referente al objetivo específico 4, determinar **el porcentaje óptimo de adición de MI**; se obtuvo que el porcentaje óptimo de adición es 8% de MI; no obstante, es importante tener en cuenta que las adiciones porcentuales pueden variar según los componentes que forman la mezcla. Chukka et al., concuerda en que la adición óptima de MI fue 7.5% [15] y para García fue el 6% [22]. Por otro lado, algunos autores discrepan, tales como Zuñiga y Condori, quienes obtuvieron un 4% como adición correcta [23], en la pesquisa de Aquino precisa al 5% [21], Por su parte, Hakeem et al. [16]. Ali et al. [18], Vega [24] y Keriio [4], coinciden en que 10% era la adición que generaba mejores resultados. Sin embargo, Ge et al. [20], discrepa debido a que identificó al 15% como la adición ideal.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

Luego de realizar un estudio exhaustivo e investigar a fondo los resultados obtenidos, se detallan las siguientes conclusiones:

Según la NTP 400.037 los requisitos mínimos cumplidos por las canteras fueron Tres Tomas y Pacherrez, tanto para AG y AF respectivamente.

Se elaboró la muestra patrón para los diseños 210 kg/cm² y 280 kg/cm² tras escoger los agregados de sus respectivas canteras.

Se elaboró las muestras modificadas para los diseños 210 kg/cm² y 280 kg/cm² adicionando 4%, 6% y 8% de microsílice.

Los resultados indican que, tras agregar a la mezcla diferentes dosificaciones de microsílice, se determinó que el porcentaje óptimo de adición fue de 8%.

4.2. Recomendaciones

Obtener muestras de los componentes de distintas zonas de la cantera con el fin de garantizar una representación precisa de la calidad del material disponible.

Emplear agregados de excelente calidad y elegir un tipo de cemento apropiado para lograr el diseño esperado. Es crucial asegurar que los materiales cumplan con las especificaciones necesarias.

La elección de la cantidad de MI que se incorporará debe realizarse con precaución para garantizar que no afecte de manera significativa la calidad final.

Determinar la finalidad de la adición de MI, ya que el propósito de la adición determinará el porcentaje óptimo de MI a utilizar.

REFERENCIAS

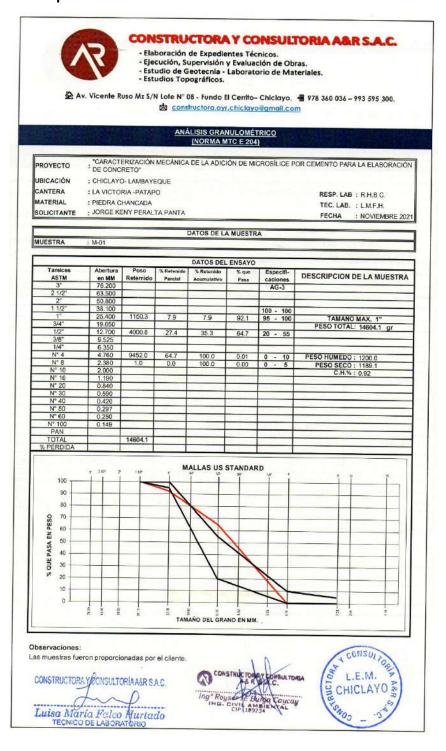
- [1] E. J. Vidaud Quintana y I. N. Vidaud Quintana, «Propiedades físico-mecánicas de los concretos reciclados,» 2015.
- [2] M. A. Trezza y V. F. Rahhal, «Behavior of the ground glass waste in blending cements: Comparative study with microsilice.,» *Revista Materia*, 2018.
- [3] A. STRUBINGER, F. MORALES y K. APONTE, «RIESGO AMBIENTAL Y USO DE CATALIZADOR GASTADO DE FCC EN MEZCLAS DE MORTEROS,» Revista de la Facultad de Ingeniería U.C.V, vol. 29, nº 4, pp. 93-106, 2014.
- [4] M. A. Keerio, S. A. Abbasi, A. Kumar y N. Bheel, «Effect of Silica Fume as Cementitious Material and Waste Glass as Fine Aggregate Replacement Constituent on Selected Properties of Concrete,» *Silicon*, vol. 14, pp. 165-176, 2020.
- [5] D. Nagrockienė, A. Rutkauskas, I. Pundienė y I. Girnienė, «The Effect of Silica Fume Addition on the Resistance of Concrete to Alkali Silica Reaction,» de *IOP Conference Series: Materials Science and Engineering*, Riga, 2019.
- [6] V. Kočí y R. Černý, «Directly foamed geopolymers: A review of recent studies,» Cement and Concrete Composites, vol. 130, nº 1, pp. 1-10, 2022.
- [7] M. Kalpana, C. Vaidevi, D. Vijayan and S. Benin, "Benefits of metakaolin over microsilica in developing high performance concrete," *Materials Today: Proceedings*, vol. 33, no. 1, pp. 977-983, 2020.
- [8] J. Abellán-García, N. Torres-Castellanos, J. Fernández-Gómez and A. Núñez-López, "Ultra-high-performance concrete with local high unburned carbon fly ash," *Dyna*, vol. 88, no. 216, pp. 38-47, 2021.
- [9] A. Onaizi, G. Huseien, N. Shukor and M. Amran, "Effect of nanomaterials inclusion on sustainability of cement-based concretes: a comprehensive review," *Construction and Building Materials*, vol. 306, no. 1, pp. 1-12, 2021.
- [10] N. Ahmed y F. Alkhafaji, «Performance of Nanoparticles Combination (SiO2, Al2O3) on Highway Concrete Pavement,» de *The International Conference on Engineering and Advanced Technology (ICEAT 2020)*, Assiut, 2020.
- [11] H. Hasan, I. Saleh and H. Razzaq, "Utilization: Fly Ash Is Included Into Hydraulic Concrete," *Journal of Pharmaceutical Negative Results*, vol. 13, no. 5, pp. 2752-2757, 2022.
- [12] M. Farfán and E. Leonardo, "Caucho reciclado en la resistencia a la compresión y flexión de concreto modificado con aditivo plastificante," *Revista Ingeniería de*

- Construcción, vol. 33, no. 3, pp. 241-250, 2018.
- [13] P. Caballero Redondo, C. Damiani Lazo y A. Ruiz Pico, «Optimización del concreto mediante la adición de nanosílice, empleando agregados de la cantera de Añashuayco de Arequipa,» *Revista de Ingeniería de Construcción,* vol. 36, nº 1, p. 17, 2020.
- [14] C. Clements, L. Tunstall, H. Bolaños and A. Hedayat, "Incorporation of Soluble Silicate to Optimize Solidification/Stabilization of Mine Tailings Through Alkali Activation," *Stabilization of Mine Tailings Through Alkali Activation*, vol. 1, no. 1, pp. 1-31, 2022.
- [15] N. Chukka, B. Reddy, K. Vasugi, Y. Reddy, L. Natrayan and S. Thanappan, "Experimental testing on mechanical, durability, and adsorption dispersion properties of concrete with multiwalled carbon nanotubes and silica fumes," *Adsorption Science* & *Technology*, vol. 1, no. 1, pp. 1-13, 2022.
- [16] I. Hakeem, R. Abd-Al Ftah, B. Tayeh and R. Hafez, "Eggshell as a fine aggregate replacer with silica fume and fly ash addition in concrete: A sustainable approach," *Case Studies in Construction Materials*, vol. 18, no. e01842, pp. 1-14, 2023.
- [17] R. Garg and R. Garg, "Performance evaluation of polypropylene fiber waste reinforced concrete in presence of silica fume," *Materials Today: Proceedings,* vol. 43, no. 2, pp. 809-816, 2021.
- [18] B. Ali, M. Fahad, S. Ullah, H. Ahmed, R. Alyousef and A. Deifalla, "Development of Ductile and Durable High Strength Concrete (HSC) through Interactive Incorporation of Coir Waste and Silica Fume," *Materials*, vol. 15, no. 7, pp. 2616-2637, 2022.
- [19] G. K. SASTRY, A. RAVITHEJA y C. S. REDDY, «EFFECT OF FOUNDRY SAND AND MINERAL ADMIXTURES ON MECHANICAL PROPERTIES OF CONCRETE,» *ARCHIVES OF ENGINEERING*, vol. 64, nº 1, pp. 117-131, 2018.
- [20] W. Ge, A. Wang, Z. Zhang, Y. Ge, Y. Chen, W. Li, H. Jiang, H. Shuai, C. Sun, S. Yao y L. Qiu, «Study on the workability, mechanical property and water absorption of reactive powder concrete,» Case Studies in Construction Materials, vol. 18, no e01777, pp. 1-21, 2023.
- [21] J. Aquino, «Diseño de mortero con adición de microsilice y microfibra de polipropileno para diferentes usos en el campo de ingeniería civil,» Universidad Nacional de Cajamarca, 2019.
- [22] L. Garcia, «Concreto de alto desempeño utilizando hormigón con adición de microsilice y superplastificante en la ciudad de Huancayo.,» Universidad Nacional

- del centro del Perú, Huancayo, 2018.
- [23] M. Zuñiga and Y. Condori, "Influencia de Adiciones de Microsílice en la Resistencia a la Compresión del Concreto Producido con Agregados de la Cantera de Arunta de la Ciudad de Tacna.," Universidad Privada de Tacna, Tacna, 2019.
- [24] E. Vega, «Evaluación experimental del uso de microsílice para la elaboración de concreto de alta resistencia,» Piura, 2019.
- [25] GEOSEISMIC, «GEOSEISMIC,» 01 diciembre 2017. [En línea]. Available: http://www.geoseismic.cl/propiedades-del-concreto/.
- [26] G. Rivera, Concreto simple, 2013.
- [27] I. L. Carvajal y L. E. Terreros, «Analisis de las propiedades mecánicas de un concreto convecional adicionando fibras de cáñamo,» UNIVERSIDAD CATÓLICA DE COLOMBIA, Bogotá D.C., 2016.
- [28] T. E. Harmsen, Diseño de Estructuras de Concreto Armado, Lima: Fondo Editorial, 2017.
- [29] NTP 339.034, Metodo de ensayo normalizado para la determinacion de la resistencia a la compresion del concreto en muestras cilindricas, Lima: INDECOPI, 2021.
- [30] NTP 400.011, Agregados definición y clasificación, Lima: INDECOPI, 2020.
- [31] NTP 400.012, Analisis granulometrico del agregado fino, grueso y global, Lima: INDECOPI, 2021.
- [32] NTP 400.037, Especificaciones normalizadas para agregados en concreto, Lima: INDECOPI, 2021.
- [33] Norma Técnica Peruana, Agregados. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado, Lima: INDECOPI, 2021.
- [34] R. M. Gonzales, «Concreto de alta resistencia utilizando aditivos Microsilice,» Universidad Nacional Hermilio Valdizán, Huánuco, 2016.
- [35] S. Priya T, «Experimental investigation on high performance RC column with manufactured sand and silica fume,» *IOP Conference Series: Materials Science and Engineering*, pp. 7,8, 2017.
- [36] M. Türköz, S. Umut Umu y O. Öztürk, «Effect of Silica Fume as a Waste Material for Sustainable Environment on the Stabilization and Dynamic Behavior of Dispersive Soil,» Sustainability, pp. 14,15,16, 2021.
- [37] C. R. Prasath, «Experimental Investigations on Flexural Behaviour of Self

- Compacting Concrete Beam with Silica Fume,» *IOP Conference Series: Materials Science and Engineering*, pp. 4,5, 2021.
- [38] . C. B. Cheah y . J. Nurshafarina, «Preliminary study on influence of silica fume on mechanical properties of no-cement mortars,» *IOP Conference Series: Materials* Science and Engineering, pp. 5,6,7, 2019.
- [39] L. Pacheco Flores, «Propiedades del concreto en estado fresco y endurecido,» Universidad Jose Carlos Mariátegui, Moquegua, 2017.
- [40] J. M. García Chumacero, «Evaluación de las propiedades físicas y mecánicas del concreto adicionando viruta de aluminio secundario, Lambayeque, 2020,» Universidad Señor de Sipán, Chiclayo, 2020.
- [41] F. Abanto Castillo, Tecnología del concreto, Lima: San Marcos, 2009.
- [42] M. H. Naser, F. H. Naser y M. Dhahir, «Tensile behavior of fiber reinforced cement mortar using wastes of electrical connections wires and galvanized binding wires,» *Construccion and Building Materials*, vol. 264, pp. 4-6, 2020.
- [43] D. Valdevino Marques, G. Cremona Parma, I. Fagundes Valezan, A. de Aguiar, B. Büchele Mendonça, A. Cruz Junior y L. Da Silva, «Cemental composites with polyurethane and recycled polyvinyl chloride: The influence of industrial waste addition on flammability,» *Inspiring Plastic Professionals*, vol. 42, no 8, pp. 3-7, 2021.
- [44] P. Swetapadma, S. Pradip y D. Robin, «Abrasion resistance and slake durability of copper slag aggregate concrete,» *Journal of Building Engineering*, vol. 35, 2021.
- [45] M. F. Serrano Guzmán y D. D. Pérez Ruiz, «ANÁLISIS DE SENSIBILIDAD PARA ESTIMAR EL MÓDULO DE ELASTICIDAD ESTÁTICO DEL CONCRETO,» Concreto y cemento. Investigación y desarrollo, vol. 2, 2010.
- [46] H. Ñaupas, M. Valdivia, J. Palacios and H. Romero, Metodologías de la Investigación Cuantitativa, Cualitativa y redacción de la tesis., Quinta edición ed., Bogotá: Ediciones de la U, 2018.
- [47] R. Hernández-Sampieri y C. Mendoza, Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta, Ciudad de México: McGraw-Hill Interamericana, 2018.
- [48] M. Hassoun and A. Al-Manaseer, Structural concrete: theory and design, Washington: Wiley, 2020.
- [49] E. Cabezas, D. Andrade and J. Torres, Introducción a la metodología de la investigación científica, Sangolquí: Universidad de las Fuerzas Armadas ESPE, 2018.

- [50] G. Gamarra, F. Wong, O. Pujay y T. Rivera, ESTADÍSITICA E INVESTIGACIÓN CON APLICACIONES DE SPSS, 2015, pp. 295-306.
- [51] USS S.A.C, «CÓDIGO DE ÉTICA EN INVESTIGACIÓN DE LA UNIVERSIDAD SEÑOR DE SIPAN S.A.C,» 2023. [En línea]. Available: https://www.uss.edu.pe/uss/TransparenciaDoc/RegInvestigacion/Reglamento%20C IEI.pdf.
- [52] GEOSEISMIC, «GEOSEISMIC,» 01 diciembre 2017. [En línea]. Available: http://www.geoseismic.cl/propiedades-del-concreto/.
- [53] N. Williams, K. Koltun, N. Strock y M. De Souza, «Female athlete triad and relative energy deficiency in sport: A focus on scientific rigor,» *Exercise and sport sciences reviews*, vol. 47, no 4, pp. 197-205, 2019.
- [54] S. Perez y F. Vallières, «How do religious people become atheists? Applying a grounded theory approach to propose a model of deconversion,» *Secularism and Nonreligion*, vol. 8, no 3, pp. 1-14, 2019.
- [55] D. Stigger, J. Barlem, K. Stigger, S. Cogo, D. Piexak y L. Rocha, «Postgraduate nursing students' conceptions on scientific integrity and research ethics.,» *Revista Brasileira de Enfermagem*, vol. 75, no 3, pp. 1-8, 2022.


ANEXOS

ÍNDICE DE ANEXOS

ANEXO 1. ENSAYOS DE ANÁLISIS GRANOLUMÉTRICO DEL AGREGADO FINO	Y
GRUESO DE LAS CANTERAS	49
ANEXO 2. INFORME DE DISEÑO DE MEZCLA	91
ANEXO 3. ENSAYO DE RESISTENCIA A LA COMPRESIÓN DEL CONCRETO	95
ANEXO 4. ENSAYO DE RESISTENCIA A LA FLEXIÓN DEL CONCRETO	119
ANEXO 5. ENSAYO DE RESISTENCIA A LA TRACCIÓN DEL CONCRETO	144
ANEXO 6. ENSAYO DE MODULO DE ELASTICIDAD ESTATICO DEL CONCRETO	Α
COMPRESION	168
ANEXO 7. CERTIFICADOS DE CALIBRACION	176
ANEXO 8. CERTIFICADOS DE ACREDITACION DE LABORATORIO	192
ANEXO 9 DISEÑO DE MEZCLA POR METRO CÚBICO	194
ANEXO 10. COSTO DE PRODUCCIÓN	196
ANEXO 11. VALIDEZ Y CONFIABILIDAD DE LOS RESULTADOS OBTENIDOS CO	NC
CRITERIO DE JUICIO EXPERTO	198
ANEXO 12. PANEL FOTOGRAFICO	212

ANEXO 1. ENSAYOS DE ANÁLISIS GRANOLUMÉTRICO DEL AGREGADO FINO Y GRUESO DE LAS CANTERAS

a) Cantera Pátapo - La Victoria

- Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

- Estudio de Geotecnia - Laboratorio de Materiales.

- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 📲 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com
ANALISIS GRANULOMETRICO

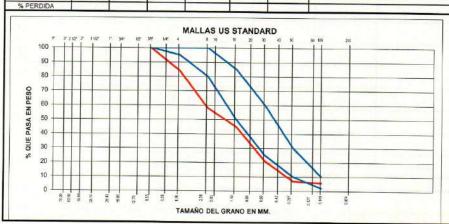
(NORMA MTC E 204)

"CARACTERIZACIÓN MECANICA DE LA ADICIÓN DE MICROSILICE POR CEMENTO PARA LA ELABORACIÓN

PROYECTO DE CONCRETO

UBICACIÓN ; CHICLAYO- LAMBAYEQUE

: LA VICTORIA -PATAPO CANTERA : ARENA ZARANDEADA MATERIAL


SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB : R.H.B.C.

TEC. LAB. : L.M.F.H. FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

				DATOS DE	L ENSAY	0	
Tamices ASTM	Abertura en MM	Peso Retenido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especificaci	DESCRIPCION DE LA MUESTRA
3"	76.200						
2 1/2"	63.500						
2"	50.800						
1 1/2"	38,100						
1"	25.400						TAMANO MAX. 1/4"
3/4"	19.050						PESO TOTAL: 500.0 gr
1/2"	12.700						gi
3/8"	9.525					100	
1/4"	6.350				100.0	100	
N° 4	4.760	80.0	16.0	16.0	84.0	95 - 100	MODULO DE FINEZA: 3.80
N° 8	2.380	130.4	26.1	42.1	57.9	80 - 100	
N° 10	2.000						PESO HUMEDO: 1200.0 gr
N° 16	1.190	65.1	13.0	55.1	44.9	50 - 85	PESO SECO : 1188.0 gr
N° 20	0.840					-	C.H.% 1.01
N° 30	0.590	120.0	24.0	79.1	20.9	25 - 60	
N* 40	0.420						The second secon
N° 50	0.297	70.3	14.1	93.2	6.8	10 - 30	
N° 60	0.250						No. of Manager Control of the Contro
N° 100	0.149	5.8	1.2	94.3	5.7	2 - 10	
N° 200	0.074	3.0	0.6	94.9	5.1	1	
PAN	1 0	25.4	5.1	100.0	0.0		
TOTAL						1	
PERDIDA							

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y CONSULTORÍA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

b) Tres Tomas - Ferreñafe

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

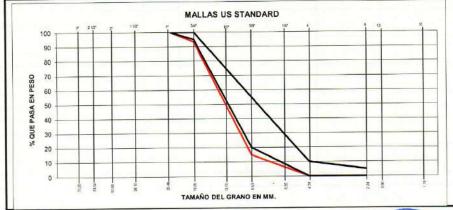
🔁 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 🖷 978 360 036 - 993 595 300.

documents of the constructors of the construct

ANÁLISIS GRANULOMÉTRICO (NORMA MTC E 204)

CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN PROYECTO

DE CONCRETO"


UBICACIÓN : CHICLAYO- LAMBAYEQUE RESP. LAB.: R.H.B.C. : TRES TOMAS - FERREÑAFE CANTERA TEC. LAB. : L.M.F.H. : AGREGADO GRUESO MATERIAL FECHA: NOVIEMBRE 2021

SOLICITANTE : JORGE KENY PERALTA PANTA

DATOS DE LA MUESTRA

MUESTRA : M-01

DATOS DEL ENSAYO							
Tamices ASTM	Abertura en MM	Peso Reternido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especifi- caciones	DESCRIPCION DE LA MUESTRA
3"	76.200					AG-2	
2 1/2"	63.500						
2"	50.800						
1 1/2"	38.100						**************************************
1"	25.400					100 - 100	TAMANO MAX. 1"
3/4"	19.050	235.8	6.7	6.7	93.3	95 - 100	PESO TOTAL: 3503.0 gr
1/2"	12.700						
3/8"	9.525	2750.4	78.5	85.2	14.8	20 - 55	
1/4"	6,350						SECOND SECON
N° 4	4.760	516.0	14.7	100.0	0.0	0 - 10	PESO HUMEDO: 750.0 gr
N° 8	2.380	0.8	0.0	100.0	0.0	0 - 5	PESO SECO : 745.0 gr
N° 10	2.000						C.H.%: 0.67
N° 16	1.190						
N° 20	0.840						
N° 30	0.590						
N° 40	0.420						
N° 50	0.297						
N° 60	0.250						
N° 100	0.149						
N° 200	0.074					COLUMN TO SERVICE	
PAN							
TOTAL		3503					
% PERDIDA							

Observaciones: Las muestras fueron proporcionadas por el cliente

CONSTRUCTORA Y & PONSULTORÍA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

CONSULTON

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
 Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🙆 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 📲 978 360 036 - 993 595 300.

de constructora.ayr.chiclayo@gmail.com

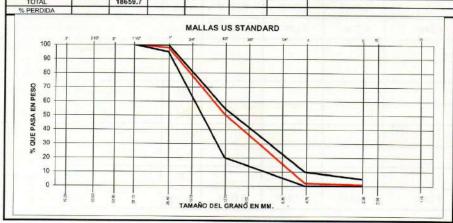
ANÁLISIS GRANULOMÉTRICO (NORMA MTC E 204)

CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN PROYECTO

DE CONCRETO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : ZAÑA - TRES TOMAS - FERREÑAFE


MATERIAL : AGREGADO GRUESO

SOLICITANTE : JORGE KENY PERALTA PANTA FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

Tamices ASTM	Abertura en MM	Peso Reternido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especifi- caciones	DESCRIPCION DE LA MUESTRA
3"	76.200				- 10000	AG-3	
2 1/2"	63.500						
2*	50.800						
1 1/2"	38.100				100.0	100 - 100	
1"	25.400	394.5	2.1	2.1	97.9	95 - 100	TAMANO MAX, 1 1/2"
3/4*	19.050	-					PESO TOTAL: 18659.7 gr
1/2*	12.700	8824.2	47.3	49.4	50.6	20 - 55	
3/8"	9.525						
1/4"	6.350				77.5		
N° 4	4.760	9100.0	48.8	98.2	1.8	0 - 10	PESO HUMEDO: 1300.0
N*8	2.380	172.0	0.9	99.1	0.9	0 - 5	PESO SECO: 1288.0
N° 10	2.000				11100		C.H.%: 0.93
N° 16	1,190						
N° 20	0.840						
N° 30	0.590			700			2430410
N° 40	0.420						
N° 50	0.297						
N° 60	0.250						
N° 100	0.149						
N° 200	0.074	Vanda and					
PAN		169.00					
TOTAL		18659.7					
6 PERDIDA							

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

CONSTRUCTORA LEONSULTORIA

CONSULTON

RESP. LAB. : R.H.B.C.

TEC. LAB. : L.M.F.H.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

⚠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, 🖷 978 360 036 – 993 595 300.

de constructora.ayr.chiclayo@gmail.com

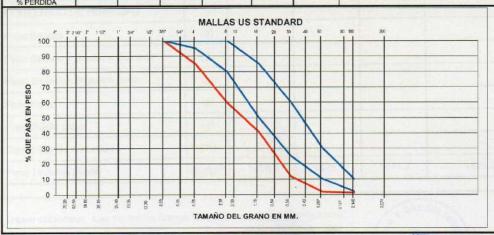
ANALISIS GRANULOMETRICO (NORMA MTC E 204)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN PROYECTO

DE CONCRETO

: CHICLAYO- LAMBAYEQUE UBICACIÓN

CANTERA : TRES TOMAS - FERREÑAFE MATERIAL : AGREGADO FINO


SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB. : R.H.B.C. TEC. LAB.: L.M.F.H.

FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

				DATOS DE	L ENSAY	0	
Tamices ASTM	Abertura en MM	Peso Retenido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especificaci ones	DESCRIPCION DE LA MUESTRA
3*	76.200						
2 1/2"	63.500						
2*	50.800						
1 1/2"	38.100		Carried States			A STATE OF THE PARTY OF THE PAR	
1"	25.400						TAMANO MAX. 1/4"
3/4"	19.050						PESO TOTAL: 500.0 gr
1/2"	12.700						
3/8"	9.525					The state of the s	
1/4"	6.350		-			100	
N° 4	4.760	75.6	15.1	15.1	84.9	95 - 100	MODULO DE FINEZA: 4.00
N° 8	2.380	125.2	25.0	40.2	59.8	80 - 100	
N° 10	2.000						PESO HUMEDO: 1000.0 gr
N° 16	1.190	96.0	19.2	59.4	40.6	50 - 85	PESO SECO: 987.0 gr
N° 20	0.840					E CV. Line	C.H.% 1.32
N° 30	0.590	145.0	29.0	88.4	11.6	25 - 60	
N° 40	0.420	(6)					
N° 50	0.297	50.0	10.0	98.4	1.6	10 - 30	With the Control of t
N° 60	0.250						
N° 100	0.149	2.7	0.5	98.9	1.1	2 - 10	
N° 200	0.074	4.0	8.0	99.7	0.3		
PAN		1.5	0.3	100.0	0.0	//	The same of the sa
TOTAL							
% PERDIDA	-	No. of the Party o					

Observaciones: Las muestras fueron proporcionadas por el solicitante

CONSTRUCTORAY CONSULTORIAA&R S.A.C.

Luisa María Falco Hurtado

CONSULTONIE L.E.M.

c) Pacherrez - La Victoria

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

⚠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, @ 978 360 036 - 993 595 300.

de constructora.ayr.chiclayo@gmail.com

ANALISIS GRANULOMETRICO (NORMA MTC E 204)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN

PROYECTO DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : PACHERREZ - LA VICTORIA - PATAPO

: AGREGADO FINO MATERIAL SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

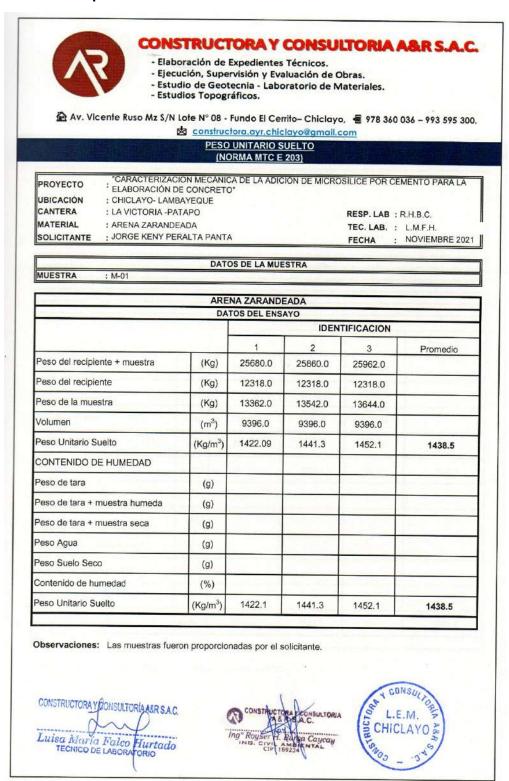
TEC. LAB. : L.M.F.H.

FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

Tamices	Abertura	Peso	% Retenido	% Retenido	% que	Especificaci	
ASTM	en MM	Retenido	Parcial	Acumulativo	Pasa	ones	DESCRIPCION DE LA MUESTRA
3"	76,200					-	
2 1/2"	63,500					1	
2"	50.800						
1 1/2"	38.100					0	
1"	25.400						TAMANO MAX, 1/4"
3/4"	19.050						PESO TOTAL: 500.0 gr
1/2"	12.700						
3/8"	9.525				100		
1/4"	6.350				100.0	100	
N° 4	4.760	15.00	3.0	3.0	97.0	95 - 100	MODULO DE FINEZA: 2.77
N° 8	2.380	70.00	14.0	17.0	83.0	80 - 100	
N° 10	2.000						PESO HUMEDO: 1300.0 gr
N° 16	1.190	85.10	17.0	34.0	66.0	50 - 85	PESO SECO : 1286.0 gr
N° 20	0.840						C.H.% 1.09
N° 30	0.590	87.40	17.5	51.5	48.5	25 - 60	Contract of the Contract of th
N° 40	0.420						
N° 50	0.297	115.60	23.1	74.6	25.4	10 - 30	
N° 60	0.250						
N° 100	0.149	110.50	22.1	96.7	3.3	2 - 10	
N° 200	0.074	8.00	1.6	98.3	1.7		
PAN		8.40	1.7	100.0	0.0	1516.6	VI VICENTIA DE LA CONTRA DELIGIA DE LA CONTRA DELIGIA DE LA CONTRA DELIGIA DE LA CONTRA DELIGIA DE LA CONTRA DELIGIA DE LA CONTRA DE LA
TOTAL							
6 PERDIDA							


Observaciones: Las muestras fueron proporcionadas por el solicitante. CONSTRUCTORAY CONSULTORIA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

CONSULTORE CHICLAYO

ANEXO 01.02. ENSAYOS DE PESO UNITARIO SUELTO, COMPACTADO DEL AGREGADO FINO Y GRUESO DE LA CANTERAS

a) Cantera Pátapo - La Victoria

SOLICITANTE

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 🖷 978 360 036 - 993 595 300. description of the constructor o

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

CARACTERIZACIÓN MECANICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA PROYECTO

: ELABORACIÓN DE CONCRETO" UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : LA VICTORIA -PATAPO MATERIAL

: ARENA ZARANDEADA TEC. LAB. : L.M.F.H. : JORGE KENY PERALTA PANTA

FECHA : NOVIEMBRE 2021

RESP. LAB: R.H.B.C.

DATOS DE LA MUESTRA MUESTRA : M-01

	A	RENA ZARANI			
		DATOS DEL EN	BRADE CONTRACTOR		
			IDENTII	FICACION	
		1	2	3	Promedic
Peso del reciiente + muestra	(Kg)	26516.0	26610.0	26704.0	
Peso del recipiente	(Kg)	12318.0	12318.0	12318.0	
Peso de la muestra	(Kg)	14198.0	14292.0	14386.0	
Volumen	(m ³)	9396.0	9396.0	9396.0	
Peso Unitario Compactado	(Kg/m ³)	1511.1	1521.1	1531.1	1521.1
CONTENIDO DE HUMEDAD					
Peso de tara	(g)				
Peso de tara + muestra humeda	(g)		-	-	
Peso de tara + muestra seca	(g)	2		-	
Contenido de humedad	(%)				
Peso Unitario Compactado	(Kg/m³)	1511.1	1521.1	1531.1	1521.1

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y DONSULTORÍA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

INSULTORIA

- Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

- Estudio de Geotecnia - Laboratorio de Materiales.

- Estudios Topográficos.

🕰 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, 🔞 978 360 036 — 993 595 300. de constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

PROYECTO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

CANTERA

: LA VICTORIA -PATAPO

RESP. LAB.: R.H.B.C.

MATERIAL

: PIEDRA CHANCADA

TEC. LAB. : L.M.F.H.

SOLICITANTE : JORGE KENY PERALTA PANTA

FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

		DRA CHAN				
	I	IDENTIFICACION				
		1	2	3	Promedio	
Peso del recipiente + muestra	(Kg)	26706.0	26887.0	26976.0		
Peso del recipiente	(Kg)	12318.0	12318.0	12318.0		
Peso de la muestra	(Kg)	14388.0	14569.0	14658.0		
Volumen	(m ³)	9396.0	9396.0	9396.0		
Peso Unitario Suelto	(Kg/m ³)	1531.3	1550.6	1560.0	1547.3	
CONTENIDO DE HUMEDAD					100	
Peso de tara	(g)					
Peso de tara + muestra humeda	(g)					
Peso de tara + muestra seca	(g)					
Peso Agua	(g)					
Peso Suelo Seco	(g)					
Contenido de humedad	(%)					
Peso Unitario Suelto	(Kg/m ³)	1531.3	1550.6	1560.0	1547.3	

Observaciones:

Las muestras fueron proporcionadas por el cliente.

CONSULTORIA ASR S.A.C.

Luisa María Fsico Hurtado TECNICO DE LABORATORIO

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

de constructora.ayr.chiclayo@gmail.com

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

PROYECTO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

: ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

CANTERA

: LA VICTORIA -PATAPO

MATERIAL SOLICITANTE : PIEDRA CHANCADA

: JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C. TEC. LAB. : L.M.F.H.

FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA	: M-01

		PIEDRA CHAN	100000000000000000000000000000000000000		-	
	DATOS DEL ENSAYO IDENTIFICACION					
		1	2	3	Promedio	
		NACOLARIA DE			Promedio	
Peso del reciiente + muestra	(Kg)	27587.0	27740.0	27834.0		
Peso del recipiente	(Kg)	12328.0	12328.0	12328.0		
Peso de la muestra	(Kg)	15259.0	15412.0	15506.0		
Volumen	(m ³)	9396.0	9396.0	9396.0		
Peso Unitario Compactado	(Kg/m ³)	1624.0	1640.3	1650.3	1638.2	
CONTENIDO DE HUMEDAD						
Peso de tara	(g)	22				
Peso de tara + muestra humeda	(g)		181			
Peso de tara + muestra seca	(g)		1.0			
Contenido de humedad	(%)					
Peso Unitario Compactado	(Kg/m ³)	1624.0	1640.3	1650.3	1638.2	

Observaciones:

Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORAL CONSULTORIA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

b) Cantera Tres Tomas - Ferreñafe

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ¶ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

PROYECTO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

CANTERA MATERIAL : TRES TOMAS - FERREÑAFE

: AGREGADO FINO

SOLICITANTE :

: JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

TEC. LAB. : L.M.F.H.

FECHA: NOVIEMBRE 2021

		DATOS DE LA MUESTRA
MUESTRA	: M-01	THE WALLSHAM

	AG	REGADO FII	NO		
	DAT	OS DEL ENSA	AYO		
			IDEN	TIFICACION	
		1	2	3	Promedio
Peso del recipiente + muestra	(Kg)	14689.0	14769.0	14854.0	
Peso del recipiente	(Kg)	7210.0	7210.0	7210.0	
Peso de la muestra	(Kg)	7479.0	7559.0	7644.0	
Volumen	(m ³)	5302.0	5302.0	5302.0	
Peso Unitario Suelto	(Kg/m ³)	1410.60	1425.7	1441.7	1426.0
CONTENIDO DE HUMEDAD					
Peso de tara	(g)				
Peso de tara + muestra humeda	(g)				
Peso de tara + muestra seca	(g)				
Peso Agua	(g)				
Peso Suelo Seco	(g)				
Contenido de humedad	(%)	leta i_l			
Peso Unitario Suelto	(Kg/m ³)	1410.6	1425.7	1441.7	1426.0

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA CONSULTORIA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO Ing Royser H. Rung Caycay

CHICLAYO &

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, € 978 360 036 - 993 595 300.

de constructora.ayr.chiclayo@gmail.com

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

PROYECTO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

: ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

CANTERA

: TRES TOMAS - FERREÑAFE

RESP. LAB. : R.H.B.C.

MATERIAL

TEC. LAB. : L.M.F.H.

: AGREGADO FINO

SOLICITANTE : JORGE KENY PERALTA PANTA FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

		AGREGADO I	A CONTRACTOR OF THE PARTY OF TH		
	11	DATOS DEL EN	SAYO		-11-14
	-Carrier I	1000	IDENTIF	ICACION	
		1	2	3	Promedio
Peso del reciiente + muestra	(Kg)	15912.0	15992.0	16069.0	
Peso del recipiente	(Kg)	7210.0	7210.0	7210.0	
Peso de la muestra	(Kg)	8702.0	8782.0	8859.0	
Volumen	(m ³)	5302.0	5302.0	5302.0	
Peso Unitario Compactado	(Kg/m³)	1641.3	1656,4	1670.9	1656.2
CONTENIDO DE HUMEDAD					
Peso de tara	(g)		-		
Peso de tara + muestra humeda	(g)				
Peso de tara + muestra seca	(g)				Talle?
Contenido de humedad	(%)				
Peso Unitario Compactado	(Kg/m ³)	1641.3	1656.4	1670.9	1656.2

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA YOONSULTORIA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

ing Royset N. Burga Caycay

CONSULTOR

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito— Chiclayo, 🖷 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

PROYECTO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

CANTERA

: TRES TOMAS - FERREÑAFE

RESP. LAB.: R.H.B.C.

MATERIAL

: AGREGADO GRUESO

TEC. LAB. : L.M.F.H.

SOLICITANTE

AONEOADO GROEGO

FECHA: NOVIEMBRE 2021

: JORGE KENY PERALTA PANTA

FECHA: NOVIEMBRE 202

DATOS DE LA MUESTRA

MUESTRA : M-01

	AG	REGADO F	INO		
	DAT	OS DEL ENSA	AYO		
			IDEN	TIFICACION	
		1	2	3	Promedio
Peso del recipiente + muestra	(Kg)	14541.0	14625.0	14808.0	
Peso del recipiente	(Kg)	7210.0	7210.0	7210.0	
Peso de la muestra	(Kg)	7331.0	7415.0	7598.0	
Volumen	(m ³)	5302.0	5302.0	5302.0	
Peso Unitario Suelto	(Kg/m ³)	1382.69	1398.5	1433.0	1404.8
CONTENIDO DE HUMEDAD					
Peso de tara	(g)				
Peso de tara + muestra humeda	(g)				
Peso de tara + muestra seca	(g)				
Peso Agua	(g)				
Peso Suelo Seco	(g)				
Contenido de humedad	(%)				
Peso Unitario Suelto	(Kg/m ³)	1382.7	1398.5	1433.0	1404.8

Observaciones: Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORA Y/OONSULTORIA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO ina" Rouse

H. Binga Caycay

L.E.M. ASS

- Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

- Estudio de Geotecnia - Laboratorio de Materiales.

- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, @ 978 360 036 - 993 595 300.

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

PROYECTO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

ELABORACIÓN DE CONCRETO"

UBICACIÓN

; CHICLAYO- LAMBAYEQUE

CANTERA

: TRES TOMAS - FERREÑAFE

MATERIAL

10000100

SOLICITANTE

: AGREGADO GRUESO

. .

: JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

TEC. LAB.: L.M.F.H.

FECHA: NOVIEMBRE 2021

		DATOS DE LA MUESTRA
MUESTRA	: M-01	TAKE OF STREET

		AGREGADO	Control of the contro		
		DATOS DEL EN	ISAYO		
11 11 19 11			IDENT	IFICACION	
	Jen Hay	1	2	3	Promedio
Peso del reciiente + muestra	(Kg)	15082.0	15199.0	15052.0	
Peso del recipiente	(Kg)	7210.0	7210.0	7210.0	
Peso de la muestra	(Kg)	7872.0	7989.0	7842.0	
Volumen	(m ³)	5302.0	5302.0	5302.0	
Peso Unitario Compactado	(Kg/m ³)	1484.7	1506.8	1479.1	1490.2
CONTENIDO DE HUMEDAD					
Peso de tara	(g)	-			
Peso de tara + muestra humeda	(g)		177		
Peso de tara + muestra seca	(g)		n = :	-	
Contenido de humedad	(%)				
Peso Unitario Compactado	(Kg/m ³)	1484.7	1506.8	1479.1	1490.2

Observaciones: Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORA Y CONSULTORÍA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO CONSTRUCTORA PLONSULTORIA
M& B. A.A.C.

Ing. Royser H. Burga Caucay

CONSULTANIA L.E.M. L.E.M. CHICLAYO & STORY CHICLAYO & STORY CONSULTANIA CONSUL

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🏠 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 🖷 978 360 036 - 993 595 300. disconstructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

PROYECTO

CARACTERIZACION MECANICA DE LA ADICIÓN DE MICROSILICE POR CEMENTO PARA LA

UBICACIÓN

ELABORACIÓN DE CONCRETO"

CANTERA

MUESTRA

: CHICLAYO- LAMBAYEQUE : ZAÑA - TRES TOMAS - FERREÑAFE

MATERIAL SOLICITANTE

: AGREGADO GRUESO

: M-01

: JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

TEC. LAB. : L.M.F.H.

FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

		GADO GRU	The state of the s	THE PARTY				
	DATOS DEL ENSAYO							
			IDENI	TFICACION				
		1	2	3	Promedio			
Peso del recipiente + muestra	(Kg)	26080.0	25980.0	25940.0				
Peso del recipiente	(Kg)	12328.0	12328.0	12328.0				
Peso de la muestra	(Kg)	13752.0	13652.0	13612.0				
Volumen	(m ³)	9396.0	9396.0	9396.0				
Peso Unitario Suelto	(Kg/m ³)	1463.60	1453.0	1448.7	1455.1			
CONTENIDO DE HUMEDAD								
Peso de tara	(g)							
Peso de tara + muestra humeda	(g)							
Peso de tara + muestra seca	(g)							
Peso Agua	(g)							
Peso Suelo Seco	(g)							
Contenido de humedad	(%)							
Peso Unitario Suelto	(Kg/m ³)	1463.6	1453.0	1448.7	1455.1			

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

Luisa Marta Falco Hurtado TECNICO DE LABORA ORIO

L.E.M.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, = 978 360 036 - 993 595 300.

do constructora.ayr.chiclayo@gmail.com

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

PROYECTO "CARACTERIZACIÓN MECANICA DE LA ADICIÓN DE MICROSILICE POR CEMENTO PARA LA : ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : ZAÑA - TRES TOMAS - FERREÑAFE

MATERIAL : AGREGADO GRUESO

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C. TEC. LAB. : L.M.F.H.

FECHA: NOVIEMBRE 2021

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

		GREGADO GR			
		DATOS DEL ENS		ICACION	
		1	2	3	Promedio
Peso del reciiente + muestra	(Kg)	26450.0	26360.0	26340.0	
Peso del recipiente	(Kg)	12328.0	12328.0	12328.0	
Peso de la muestra	(Kg)	14122.0	14032.0	14012.0	
Volumen	(m ³)	9396.0	9396.0	9396.0	
Peso Unitario Compactado	(Kg/m ³)	1503.0	1493.4	1491.3	1495.9
CONTENIDO DE HUMEDAD					Live S
Peso de tara	(g)				
Peso de tara + muestra humeda	(g)	- #	H-Tu T		
Peso de tara + muestra seca	(g)			-	
Contenido de humedad	(%)				
Peso Unitario Compactado	(Kg/m ³)	1503.0	1493.4	1491.3	1495.9

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY CONSULTORIAA&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO CONSTRUCTOR LECUSULTORIA

CONSULTORIAL L.E.M. AAR

c) Cantera Pacherrez - La Victoria - Pátapo

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, @ 978 360 036 - 993 595 300.

de constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

PROYECTO : "CARACTERIZACIÓN MECANICA DE LA ADICIÓN DE MICROSILICE POR CEMENTO PARA LA

PROYECTO : ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : PACHERREZ - LA VICTORIA - PATAPO RESP. LAB. : R.H.B.C.
MATERIAL : AGREGADO FINO TEC. LAB. : L.M.F.H.

SOLICITANTE : JORGE KENY PERALTA PANTA FECHA : NOVIEMBRE 2021

DATOS DE LA MUESTRA MUESTRA : M-01

	AG	REGADO FI	OV		
	DAT	OS DEL ENSA	AYO		
			IDEN	TIFICACION	
		1	2	3	Promedio
Peso del recipiente + muestra	(Kg)	7731.0	7703.0	7701.0	
Peso del recipiente	(Kg)	3438.0	3438.0	3438.0	
Peso de la muestra	(Kg)	4293.0	4265.0	4263.0	
Volumen	(m ³)	2816.0	2816.0	2816.0	
Peso Unitario Suelto	(Kg/m ³)	1524.50	1514.6	1513.8	1517.6
CONTENIDO DE HUMEDAD					
Peso de tara	(g)				
Peso de tara + muestra humeda	(g)				
Peso de tara + muestra seca	(g)				
Peso Agua	(g)				
Peso Suelo Seco	(g)				
Contenido de humedad	(%)				1921
Peso Unitario Suelto	(Kg/m ³)	1524.5	1514.6	1513.8	1517.6

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y CONSULTORÍA A&R S.A.C.

Luisa Maria Falco Hurtado TECNICO DE LABORATORIO Ing Royser N. Burna Caycay

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 🖷 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com
PESO UNITARIO COMPACTADO

(NORMA MTC E 203)

PROYECTO

CARACTERIZACIÓN MECÀNICA DE LA ADICIÓN DE MICROSILICE POR CEMENTO PARA LA

ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

CANTERA

: PACHERREZ - LA VICTORIA - PATAPO

RESP. LAB.: R.H.B.C.

MATERIAL

: AGREGADO FINO

TEC. LAB. : L.M.F.H.

SOLICITANTE

: JORGE KENY PERALTA PANTA

FECHA: NOVIEMBRE 2021

DAT	os	DE	LA	MUES	TRA

MUESTRA : M-01

		AGREGADO	The most		
		DATOS DEL EN	SAYO		
			IDENTIF	ICACION	
		1	2	3	Promedic
Peso del reciiente + muestra	(Kg)	8078.0	8059.0	8042.0	
Peso del recipiente	(Kg)	3438.0	3438.0	3438.0	
Peso de la muestra	(Kg)	4640.0	4621.0	4604.0	
Volumen	(m ³)	2816.0	2816.0	2816.0	
Peso Unitario Compactado	(Kg/m ³)	1647.7	1641.0	1634.9	1641.2
CONTENIDO DE HUMEDAD					
Peso de tara	(g)	-		-	
Peso de tara + muestra humeda	(g)				
Peso de tara + muestra seca	(g)	•			
Contenido de humedad	(%)				
Peso Unitario Compactado	(Kg/m³)	1647.7	1641.0	1634.9	1641.2

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y CONSULTORÍA A&R S.A.C.

Luisa Maria Falco Hurtado TECNICO DE LABORATORIO

CONSTRUCTORAY CONSULTORIA
AS AS A.C.

Ing. Royse At Burga Caycay
ING. CIV. 189222

ANEXO 01.03. ENSAYOS DE GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS

a) Cantera La Victoria – Pátapo

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 🖷 978 360 036 – 993 595 300.

de constructora.ayr.chiclayo@gmail.com

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 205)

"CARACTERIZACION MECANICA DE LA ADICION DE MICROSILICE POR CEMENTO PARA LA

PROYECTO : ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : LA VICTORIA -PATAPO RESP. LAB : R.H.B.C.
MATERIAL : ARENA ZARANDEADA TEC. LAB. : L.M.F.H.

SOLICITANTE : JORGE KENY PERALTA PANTA FECHA : NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01 **DATOS DEL ENSAYO** Peso Mat. Sat. Sup. Seco (en Aire) (gr) 300.0 300.0 В Peso Frasco + agua 658 662 C Peso Frasco + agua + A (gr) 958.0 962.0 Peso del Mat. + agua en el frasco (gr) 842.3 845.1 E Vol de masa + vol de vacío = C-D (gr) 115.7 116.9

Pe. De Mat. Seco en estufa (105°C) (gr) 297.4 297.50 G Vol de masa = E - (A - F) (gr) 113.1 114.4 **PROMEDIO** Pe bulk (Base seca) = F/E 2.570 2.545 2.558 Pe bulk (Base saturada) = A/E 2.593 2.566 2.580 Pe aparente (Base Seca) = F/G 2.630 2.601 2.615 % de absorción = ((A - F)/F)*100 0.874 0.840 0.86%

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y CONSULTORÍA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO CONSTRUCTOR HOOMSULTORIA

ACRUSE N. Bulga Cayeay

ING. CIVIL ANSIERTAL

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

constructora.ayr.chiclayo@gmail.com

PESO ESPECIFICO Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 206)

PROYECTO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

: CHICLAYO- LAMBAYEQUE

UBICACIÓN CANTERA MATERIAL

: LA VICTORIA -PATAPO

: PIEDRA CHANCADA

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB.: R.H.B.C.

TEC. LAB. : L.M.F.H.

FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

		DATOS DEL ENSA	AYO	
A	Peso Mat.Sat. Sup. Seca (En Aire) (gr)	1002.00	1006.00	
В	Peso Mat.Sat. Sup. Seca (En Agua) (gr)	613.00	610.00	
C	Vol. de masa + vol de vacíos = A-B (gr)	389.00	396.00	
D	Peso material seco en estufa (105 °C)(gr)	996.20	999.40	
E	Vol. de masa = C- (A - D) (gr)	383.2	389.4	PROMEDIO
	Pe bulk (Base seca) = D/C	2.561	2.524	2.542
	Pe bulk (Base saturada) = A/C	2.576	2.540	2.558
	Pe Aparente (Base Seca) = D/E	2.600	2.567	2.583
	% de absorción = ((A - D) / D * 100)	0.582	0.660	0.62%

Observaciones:

Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

b) Cantera Tres Tomas - Ferreñafe

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, @ 978 360 036 - 993 595 300.

Constructora.ayr.chiclayo@gmail.com

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 205)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : TRES TOMAS - FERREÑAFE

MATERIAL : AGREGADO FINO

: AGREGADO FINO TEC. LAB. : L.M.F.H.

SOLICITANTE : JORGE KENY PERALTA PANTA FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

PROYECTO

	DA	ATOS DEL ENSA	YO	
Α	Peso Mat. Sat. Sup. Seco (en Aire) (gr)	300.0	300.0	
В	Peso Frasco + agua	656.4	659.6	
С	Peso Frasco + agua + A (gr)	956.4	959.6	
D	Peso del Mat. + agua en el frasco (gr)	841.18	844.2	
E	Vol de masa + vol de vacío = C-D (gr)	115.22	115.4	
F	Pe. De Mat. Seco en estufa (105°C) (gr)	296.95	296.94	
G	Vol de masa = E - (A - F) (gr)	112.2	112.3	PROMEDIO
	Pe bulk (Base seca) = F/E	2.577	2.573	2.575
	Pe bulk (Base saturada) = A/E	2.604	2.600	2.602
	Pe aparente (Base Seca) = F/G	2.647	2.643	2.645
	% de absorción = ((A - F)/F)*100	1.027	1.031	1.03%

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y CONSULTORÍA A&R S.A.C.

Luisa Maria Falco Hurtado TECNICO DE LABORATORIO CONSTRUCTANT CONSULTORIA
AS SAA.C.

Ing. Roysen H. Burga Caycay
ING. CIVIL AMBIENTA

CHICLAYO & A STANDARD CHICLAYO & A STANDARD CHICLAYO & A STANDARD CHICLAYO & A STANDARD CHICAGO CONTRACTOR CON

RESP. LAB.: R.H.B.C.

MATERIAL

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.

- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito— Chiclayo, 🖷 978 360 036 – 993 595 300.

Sonstructora.ayr.chiclayo@gmail.com

PESO ESPECIFICO Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 206)

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : TRES TOMAS- FERREÑAFE

: TRES TOMAS- FERREÑAFE RESP. LAB. : R.H.B.C. : AGREGADO GRUESO TEC. LAB. : L.M.F.H.

SOLICITANTE : JORGE KENY PERALTA PANTA

FECHA: NOVIEMBRE 2021

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

DATOS DEL ENSAYO					
A	Peso Mat.Sat. Sup. Seca (En Aire) (gr)	1250.0	1700.0		
В	Peso Mat.Sat. Sup. Seca (En Agua) (gr)	788	1071		
С	Vol. de masa + vol de vacios = A-B (gr)	462	629		
D	Peso material seco en estufa (105 °C)(gr)	1242.8	1690.5		
E	Vol. de masa = C- (A - D) (gr)	454.8	619.5	PROMEDIO	
	Pe bulk (Base seca) = D/C	2.690	2.688	2.689	
	Pe bulk (Base saturada) = A/C	2.706	2.703	2.704	
	Pe Aparente (Base Seca) = D/E	2.733	2.729	2.731	
	% de absorción = ((A - D) / D * 100)	0.58	0.56	0.57%	

Observaciones: Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORAY PONSULTORIA A&R S.A.C.

Luisa María Falca Hurtado TECNICO DE LABORATORIO CONSTRUCTORA CONSULTORIA

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, 📲 978 360 036 — 993 595 300. de constructora.ayr.chiclayo@gmail.com

PESO ESPECIFICO Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 206)

CARACTERIZACIÓN MECANICA DE LA ADICIÓN DE MICROSILICE POR CEMENTO PARA LA PROYECTO : ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : ZAÑA - TRES TOMAS - FERREÑAFE

MATERIAL : AGREGADO GRUESO

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB. : R.H.B.C.

TEC. LAB. : L.M.F.H.

FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

DATOS DEL ENSAYO					
A	Peso Mat.Sat. Sup. Seca (En Aire) (gr)	994.3	985.6		
В	Peso Mat.Sat. Sup. Seca (En Agua) (gr)	617.9	609.4		
С	Vol. de masa + vol de vacíos = A-B (gr)	376.4	376.2		
D	Peso material seco en estufa (105 ℃)(gr)	986	977.2		
E	Vol. de masa = C- (A - D) (gr)	368.1	367.8	PROMEDIO	
	Pe bulk (Base seca) = D/C	2.620	2.598	2.609	
	Pe bulk (Base saturada) = A/C	2.642	2.620	2.631	
	Pe Aparente (Base Seca) = D/E	2.679	2.657	2.668	
	% de absorción = ((A - D) / D * 100)	0.842	0.860	0.85%	

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y PONSULTORÍA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

CONSULTOR

c) Cantera Pacherrez - La Victoria - Patapo

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ■ 978 360 036 - 993 595 300.

de constructora.ayr.chiclayo@gmail.com

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 205)

PROYECTO

CARACTERIZACIÓN MECANICA DE LA ADICIÓN DE MICROSILICE POR CEMENTO PARA LA

ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

CANTERA

: PACHERREZ - LA VICTORIA - PATAPO

RESP. LAB. : R.H.B.C.

MATERIAL

: AGREGADO FINO

TEC. LAB. : L.M.F.H.

SOLICITANTE : JORGE KENY PERALTA PANTA

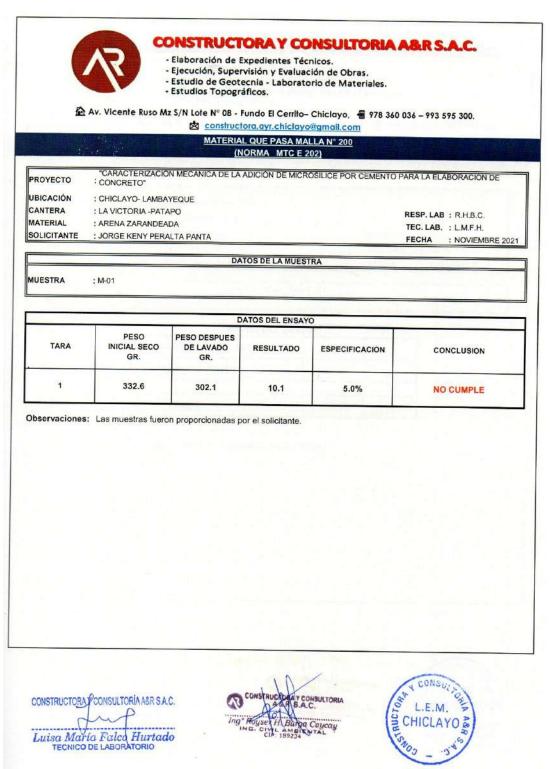
FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

	DA	ATOS DEL ENSA	YO	
Α	Peso Mat. Sat. Sup. Seco (en Aire) (gr)	500.0	500.0	
В	Peso Frasco + agua	694.8	697.3	
С	Peso Frasco + agua + A (gr)	1194.8	1197.3	
D	Peso del Mat. + agua en el frasco (gr)	1002.7	1005.1	
E	Vol de masa + vol de vacío = C-D (gr)	192.1	192.2	
F	Pe. De Mat. Seco en estufa (105°C) (gr)	495.5	495.0	
G	Vol de masa = E - (A - F) (gr)	187.6	187.2	PROMEDIO
	Pe bulk (Base seca) = F/E	2.579	2.575	2.577
	Pe bulk (Base saturada) = A/E	2.603	2.601	2.602
	Pe aparente (Base Seca) = F/G	2.641	2.644	2.643
	% de absorción = ((A - F)/F)*100	0.908	1.010	0.96%

Observaciones: Las muestras fueron proporcionadas por el solicitante.


CONSTRUCTORA Y CONSULTORÍA A&R S.A.C.

Luisa Maria Falco Hurtado
TECNICO DE LABORATORIO

ONSULTORIA

ANEXO 01.04. ENSAYO DE MATERIAL QUE PASA LA MALLA N°200 EN EL AGREGADO FINO

a) Cantera La Victoria - Patapo

b) Cantera Tres Tomas - Ferreñafe

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

⚠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, @ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

MATERIAL QUE PASA MALLA Nº 200

(NORMA MTC E 202)

CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSILICE POR CEMENTO PARA LA ELABORACIÓN DE PROYECTO

: CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

RESP. LAB. : R.H.B.C. CANTERA : TRES TOMAS - FERREÑAFE : AGREGADO FINO TEC. LAB. : L.M.F.H. MATERIAL

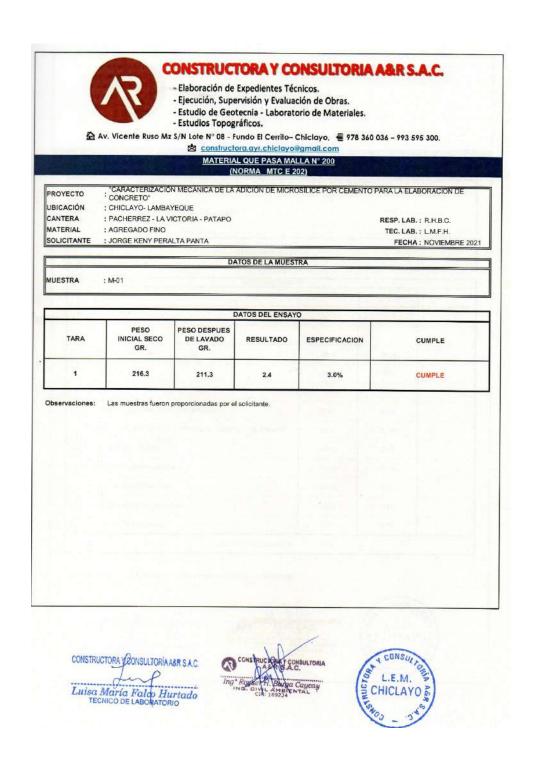
FECHA: NOVIEMBRE 2021 SOLICITANTE : JORGE KENY PERALTA PANTA

DATOS DE LA MUESTRA

MUESTRA : M-01

		D.	ATOS DEL ENSAY	0	
TARA	PESO INICIAL SECO GR.	PESO DESPUES DE LAVADO GR.	RESULTADO	ESPECIFICACION	CUMPLE
1	235	220.0	6.8	5.0%	NO CUMPLE

Observaciones: Las muestras fueron proporcionadas por el solicitante.


CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

DISULTORIA

c) Cantera Pacherrez – La Victoria – Patapo

ANEXO 01.05. ENSAYO DE ABRASIOIN (MAQUINA DE LOS ANGELES)

a) Cantera La Victoria - Pátapo

b) Cantera Tres Tomas - Ferreñafe

MATERIAL

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

RESP. LAB.: R.H.B.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🏠 Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 🖷 978 360 036 – 993 595 300. de constructora.ayr.chiclayo@gmail.com

ENSAYO DE ABRASION (MAQUINA DE LOS ANGELES) (NORMA MTC E - 207)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA PROYECTO

ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : TRES TOMAS - FERREÑAFE

> : AGREGADO GRUESO TEC. LAB. : L.M.F.H.

SOLICITANTE : JORGE KENY PERALTA PANTA FECHA: NOVIEMBRE 2021

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

TA	MIZ			
PASA	RETIENE	В		
3"	2 1/2"		9	
2 1/2"	2"			
2"	1 1/2"			Total In the second
1 1/2"	1"			
1"	3/4"			
3/4"	1/2"	2500		
1/2"	3/8"	2500		
3/8"	1/4"			
1/4"	No 4			
PESO TOTAL		5000		
PESO RETENIC	OO EN TAMIZ N°12	1987		
PERDIDA DESF	PUES DEL ENSAYO	3013		
N° DE ESFERA	S	11		
PESO DE LAS E	ESFERAS	4598		255
	DE DESGASTE	60.3		

Observaciones:

Las muestras fueron proporcionadas por el cliente

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

Luisa Maria Falco Hurtado

CONSULTOR

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito− Chiclayo, ¶ 978 360 036 − 993 595 300.

☑ constructora.ayr.chiclayo@gmail.com

ENSAYO DE ABRASION (MAQUINA DE LOS ANGELES) (NORMA MTC E - 207)

PROYECTO : "CARACTERIZACION MECANICA DE LA ADICION DE MICROSILICE POR CEMENTO PARA LA

PROYECTO : ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : ZAÑA - TRES TOMAS - FERREÑAFE

MATERIAL : AGREGADO GRUESO

SOLICITANTE : JORGE KENY PERALTA PANTA

TEC. LAB.: L.M.F.H. FECHA: NOVIEMBRE 2021

RESP. LAB.: R.H.B.C.

DATOS DE LA MUESTRA

MUESTRA : M-01

		DATOS DEL	ENSAYO		
TA	MIZ	B			Mark 1
PASA	RETIENE	В			
3"	2 1/2"				
2 1/2"	2"				
2"	1 1/2"				
1 1/2"	1"				
1"	3/4"	ri wys		Tan Yi	
3/4"	1/2"	2500			
1/2"	3/8"	2500			
3/8"	1/4"				
1/4"	No 4				
PESO TOTAL		5000			
PESO RETENID	O EN TAMIZ N°12	3822			
PERDIDA DESP	UES DEL ENSAYO	1178			
N° DE ESFERAS	3	11			
PESO DE LAS E	SFERAS	4598			
% [DE DESGASTE	23.6	1 - 1 - 1	FIED IT	

Observaciones:

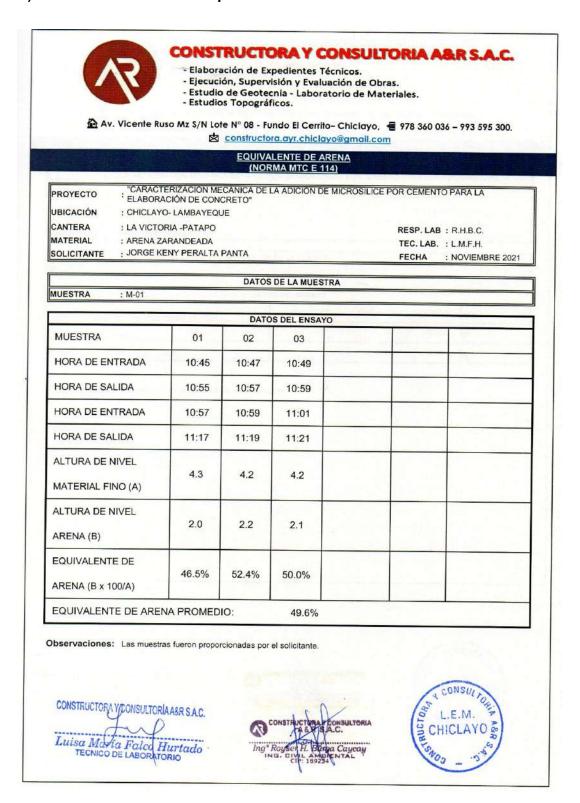
Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y CONSULTORÍA A&R S.A.C.

Luisa María Falco Murtado

CONSTRUCTOR A CONSULTORIA

RESIA C.


Ing. Royser H. Rurgh Caycay
ING. DIVI. AMB. ENTAL

CIP. 189231 ENTAL

ANEXO 01.06. ENSAYO DE EQUIVALENTE DE ARENA

a) Cantera La Victoria - Patapo

b) Cantera Tres Tomas - Ferreñafe

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito− Chiclayo, ¶ 978 360 036 − 993 595 300.

★ constructora.ayr.chiclayo@gmail.com

EQUIVALENTE DE ARENA (NORMA MTC E 114)

"CARACTERIZACIÓN MECÂNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : TRES TOMAS - FERREÑAFE

MATERIAL : AGREGADO FINO
SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C. TEC. LAB.: L.M.F.H.

FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA

MUESTRA : M-01

PROYECTO

DATOS DEL ENSAYO					
MUESTRA	01	02	03		
HORA DE ENTRADA	08:12	08:14	08:16		
HORA DE SALIDA	08:22	08:24	08:26		
HORA DE ENTRADA	08:24	08:26	08:28		
HORA DE SALIDA	08:44	08:46	08:48		
ALTURA DE NIVEL MATERIAL FINO (A)	3.6	3.5	3.8		
ALTURA DE NIVEL ARENA (B)	1.8	1.9	2.0		
EQUIVALENTE DE ARENA (B x 100/A)	50.0%	54.3%	52.6%		

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY CONSULTORIA & R S.A.C.

Luisa Maria Falco Hurtado TECNICO DE LABORATORIO CONSTRUCTORAL CONSULTORIA

CONSULTORIAL CONSULTATION CONSULTORIAL CONSULTORIAL CONSULTATION CONSULTORIAL CONSULTATION CONSU

c) Cantera Pacherrez - La Victoria

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 🖷 978 360 036 - 993 595 300.

de constructora.ayr.chiclayo@gmail.com

EQUIVALENTE DE ARENA (NORMA MTC E 114)

"CARACTERIZACIÓN MECANICA DE LA ADICIÓN DE MICROSILICE POR CEMENTO PARA LA

PROYECTO : ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE
CANTERA : PACHERREZ - LA VICTORIA - PATAPO

MATERIAL : AGREGADO FINO

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

TEC. LAB. : L.M.F.H.

FECHA: NOVIEMBRE 2021

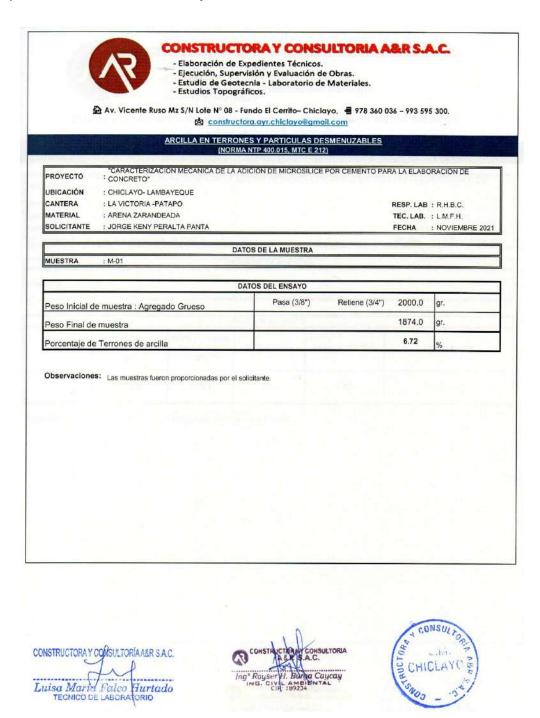
DATOS DE LA MUESTRA

MUESTRA : M-01

DATOS DEL ENSAYO					
MUESTRA	01	02	03		
HORA DE ENTRADA	08:35	08:37	08:39		
HORA DE SALIDA	08:45	08:47	08:49		
HORA DE ENTRADA	08:47	08:49	08:51		
HORA DE SALIDA	09:07	09:09	09:11		
ALTURA DE NIVEL MATERIAL FINO (A)	3.2	3.0	3.2		
ALTURA DE NIVEL ARENA (B)	2.4	2.5	2.3		
EQUIVALENTE DE ARENA (B x 100/A)	75.0%	83.3%	71.9%		

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY CONSULTORIA A&R S.A.C.


Luisa Maria Falco Hurtado
TECNICO DE LABORATORIO

CONSTRUCTORY CONSULTORIA
A RIS A.C.
Ing Royserti, Barba Caycay

ANEXO 01.07. ENSAYO DE ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES

a) Cantera La Victoria - Pátapo

b) Cantera Tres Tomas - Ferreñafe

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🔁 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 📲 978 360 036 - 993 595 300.

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (NORMA NTP 400.015, MTC E 212)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : TRES TOMAS - FERREÑAFE MATERIAL : AGREGADO FINO SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C. TEC. LAB. : L.M.F.H. FECHA: NOVIEMBRE 2021

		DATOS DE LA MUESTRA	
MUESTRA	: M-01	A STATE OF THE STA	

	DATOS DEL ENSAYO			
Peso Inicial de muestra : Agregado Grueso	Pasa (3/8")	Retiene (3/4")	2500.0	gr.
Peso Final de muestra			2401.0	gr.
Porcentaje de Terrones de arcilla		A DESCRIPTION	4.12	%

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y GONSULTORIA A&R S.A.C.

Luisa María Falco Hurtado
TECNICO DE LABORATORIO

c) Cantera Pacherrez – La Victoria – Pátapo

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🕰 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, 🖷 978 360 036 – 993 595 300.

de constructora.ayr.chiclayo@gmail.com

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (NORMA NTP 400.015, MTC E 212)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : PACHERREZ - LA VICTORIA - PATAPO RESP. LAB.: R.H.B.C. MATERIAL : AGREGADO FINO TEC. LAB. : L.M.F.H.

SOLICITANTE : JORGE KENY PERALTA PANTA FECHA: NOVIEMBRE 2021

DATOS DE LA MUESTRA MUESTRA : M-01

DATOS DEL ENSAYO Pasa (3/8") Retiene (3/4") 2000.0 gr. Peso Inicial de muestra : Agregado Grueso 1997.0 gr. Peso Final de muestra 0.15 Porcentaje de Terrones de arcilla

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y CONSULTORÍA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

ANEXO 01.08. ENSAYO DE DETERMINACION DE CARBON Y LIGNITO

a) Cantera La Victoria - Pátapo

PROYECTO

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ☐ 978 360 036 - 993 595 300.

□ constructora.ayr.chiclayo@gmail.com

DETERMINACION DE CARBON Y LIGNITO (NORMA MTC E 211)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

: ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : LA VICTORIA -PATAPO RESP. LAB : R.H.B.C.

MATERIAL : ARENA ZARANDEADA TEC. LAB. : L.M.F.H.

SOLICITANTE : JORGE KENY PERALTA PANTA FECHA : NOVIEMBRE 2021

Г		-20201227313320220	
		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

DATOS DEL ENS	AYO	
Peso de las particulas decantadas	20,300	g
Peso de la muestra (Malla 3/4")	3000	g
Carbon y Lignito	0.677	96

Observaciones: Las muestras fueron proporcionadas por el solicitante.

Luise Marin Pales Burtists

b) Cantera Tres Tomas - Ferreñafe

PROYECTO

MATERIAL

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito - Chiclayo,
♣ 978 340 034 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

DETERMINACION DE CARBON Y LIGNITO (NORMA MTC E 211)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : TRES TOMAS - FERREÑAFE

: TRES TOMAS - FERREÑAFE RESP. LAB. : R.H.B.C. : AGREGADO FINO TEC. LAB. : L.M.F.H.

SOLICITANTE : JORGE KENY PERALTA PANTA FECHA: NOVIEMBRE 2021.

DATOS DE LA MUESTRA
MUESTRA : M-D1

DATOS DEL ENS	AYO	
Peso de las particulas decantadas	11.300	g
Peso de la muestra (Malla 3/4")	2000	g
Carbon y Lignito	0.565	96

Observaciones: Las muestras fueron proporcionadas por el solicitante.

Sur P

CONTRACTOR OF THE PARTY OF THE

c) Cantera Pacherrez – La Victoria – Pátapo

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🛍 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 👨 978 360 036 - 993 595 300.

d constructora.ayr.chiclayo@gmail.com

DETERMINACION DE CARBON Y LIGNITO (NORMA MTC E 211)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA

PROYECTO ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : PACHERREZ - LA VICTORIA - PATAPO RESP. LAB. : R.H.B.C.
MATERIAL : AGREGADO FINO TEC. LAB. : L.M.F.H.

SOLICITANTE JORGE KENY PERALTA PANTA FECHA : NOVIEMBRE 2021

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

DATOS DEL EI	NSAYO	ч
Peso de las particulas decantadas	1.000	5
Peso de la muestra (Malla 3/4°)	2230	5
Carbon y Lignito	0.045	35

Observaciones: Las muestras fueron proporcionadas por el solicitante.

Lucal Merita Vales Hartedis

ANEXO 01.09. CUADRO RESUMEN DE ANALISIS DE CANTERAS

IV. RESULTADOS DEL ANALISIS DE CANTERAS

En los cuadros siguientes se presenta los datos usados para el diseño de concreto

CANTERA 1 - LA VICTORIA - PATAPO

Tabla 3: Resultados de agregado fino

	AGREGAD	O FINO				
		ESPECIFICACIONES TÉCNICAS				
ENSAYOS DE LABOI	RATORIO	RANGOS (%)	RESULTADO (%)	OBSERVACIÓN		
Contenido de Hum	nedad		1.01	-		
Módulo de fineza		2.3 -3.1	3.80	NO CUMPLE		
Terrones de arcillas y partículas friables, máx. porcentaje		3	6.72	NO CUMPLE		
Material más fino que pasa la malla N°200, máx. porcentaje		3	10.10	NO CUMPLE		
Carbón y lignito, máx.	orcentaje	0.5	0.68	NO CUMPLE		
Durabilidad del agregado, m	náx. porcentaje	15	22.96	NO CUMPLE		
Facilitate de como	Resistencia <210 kg/cm2	65	40.00			
Equivalente de arena	Resistencia >210 kg/cm2	75	49.63	NO CUMPLE		

Tabla 4: Resultados de agregado grueso

AGREGADO	GRUESO		
	ESPE	CIFICACIONES	TÉCNICAS
ENSAYOS DE LABORATORIO	RANGOS (%)	RESULTADO (%)	OBSERVACIÓN
Contenido de Humedad	<u></u>	0.92	
Terrones de arcillas y partículas friables, máx. porcentaje	3	7.16	NO CUMPLE
Durabilidad del agregado, máx. porcentaje	18	22.29	NO CUMPLE
Resistencia mecánica de los agregados - Abrasión, no mayor qué %	40	55.70	NO CUMPLE

CONSTRUCTOR AV VICENTE RUSO

Luisa Muria Falco Huriado
Teónico de Laboratorio

Cente Ruso Mz S/N Lote N° 08 – Fundo el Cerrito – Chiclayo, 978 360 036 – 993 595 300.

CANTERA 2 – TRES TOMAS - FERREÑAFE Tabla 5: Resultados de agregado fino

	AGREGA	OO FINO			
	ESPECIFICACIONES TÉCNICAS				
ENSAYOS DE LABO	RATORIO	RANGOS (%)	RESULTADO (%)	OBSERVACIÓ	
Contenido de Hun	nedad		1.32	-	
Módulo de fineza		2.3 -3.1	4	NO CUMPLE	
Terrones de arcillas y partículas friables, máx. porcentaje		3	4.12	NO CUMPLE	
Material más fino que pasa la malla N°200, máx. porcentaje		3	6.8	NO CUMPLE	
Carbón y lignito, máx.	porcentaje	0.5	0.565	NO CUMPLE	
Durabilidad del agregado, n	náx. porcentaje	15	18.10	NO CUMPLE	
E-dall-dal	Resistencia <210 kg/cm2	65	50.0		
Equivalente de arena	Resistencia >210 kg/cm2	75	52.3	NO CUMPLE	

Tabla 6: Resultados de agregado grueso

AGREGADO	GRUESO					
	ESPECIFICACIONES TÉCNICAS					
ENSAYOS DE LABORATORIO	RANGOS (%)	RESULTADO (%)	OBSERVACIÓN			
Contenido de Humedad	-	0.67	2			
Terrones de arcillas y partículas friables, máx. porcentaje	3	8.39	NO CUMPLE			
Durabilidad del agregado, máx. porcentaje	18	26.13	NO CUMPLE			
Resistencia mecánica de los agregados - Abrasión, no mayor qué %	40	60.3	NO CUMPLE			

CONSTRUCTORAY CONSULTORIA ARR SAC

Luisa Maria Falco Hurtado
TÉCNICO DE LABORATORIO

Ing Royses H. Burga Caycay

Av. Vicente Ruso Mz S/N Lote N° 08 – Fundo el Cerrito – Chiclayo, 978 360 036 – 993 595 300.

 □ constructora.ayr.chiclayo@gmail.com

CANTERA 3

AGREGADO GRUESO: ZAÑA – TRES TOMAS – FERREÑAFE AGREGADO FINO: PACHERREZ – LA VICTORIA - PATAPO

Tabla 7: Resultados de agregado fino

	AGRE	GADO FINO		
		ESF	PECIFICACIONES TÉC	NICAS
ENSAYOS DE LABORATORIO		RANGOS (%)	RESULTADO (%)	OBSERVACIÓN
Contenido de Humedad		-	1.09	-
Módulo de fineza		2.3 -3.1	2.77	CUMPLE
Terrones de arcillas y partículas friables, máx. porcentaje		3	0.15	CUMPLE
Material más fino que pasa la malla N°200, máx. porcentaje		3	2.4	CUMPLE
Carbón y lignito, má	k. porcentaje	0.5	0.45	CUMPLE
Durabilidad del agregado, máx. porcentaje		15	11.20	CUMPLE
	Resistencia <210 kg/cm2	65	76.7	CUMPLE
Equivalente de arena	Resistencia >210 kg/cm2	75	76.7	COMPLE

Tabla 8: Resultados de agregado grueso

AGREGADO	GRUESO				
	ESPECIFICACIONES TÉCNICAS				
ENSAYOS DE LABORATORIO	RANGOS (%)	RESULTADO (%)	OBSERVACIÓN		
Contenido de Humedad	-	0.93			
Terrones de arcillas y partículas friables, máx. porcentaje	3	3.71	CUMPLE		
Durabilidad del agregado, máx. porcentaje	18	11.20	CUMPLE		
Resistencia mecánica de los agregados - Abrasión, no mayor qué %	40	23.60	CUMPLE		

ANEXO 2. INFORME DE DISEÑO DE MEZCLA

a) Diseño De Mezcla F'c=210 Kg/Cm²

PROYECTO : UBICACIÓN : CANTERA :				El Cerrito- Chicla yr.chiclayo@gmai	yo,	- 173 575 300.	
UBICACIÓN :	DIS	SEÑO DE MEZO	LA DE CONCRE	TO NORMAL CO	N CEMENTO PORT	LAND	
	"CARACTERIZACIÓN	MECÁNICA DE LA	ADICIÓN DE MICRO	BÎLICE POR CEMENT	O PARA LA ELABORAC	IÓN DE CONCRETO*	
	AGREGADO ENO (PA		CTORIA - PATAPO) Y	AGREGADO GRUES	O (ZAÑA - TRES TOM	AS - FERREÑAFE)	
MATERIAL :	CONCRETO		5321030=303000000M6				
Fo : SOLICITADO :	210 Kg/cm2 JORGE KENY PERALT	A PANTA				SP. LAB.: R.H.B.C. CHA: NOVIEMBRE 2	021
CONCRETO:	And in case of the last of the		Fe Committee of the Com	100000000000000000000000000000000000000	PESO SECO	ALCOHOL: NAME OF TAXABLE PARTY.	TAMARO
	PESO	MODULO	HUMEDAD	PORGENTAJE	A CONTRACTOR OF THE PARTY.	PESO SECO	1000000
CARACTERIST.	ESPECIFICO	PINEZA	NATURAL	ABSORCION	SUELTO K/M3	COMPACTADO K/M3	NOMINAL
CEMENTO	3110	-	1 2 2	- de			
AGR, FINO	2643	2.77	1,09	0,96	1618	1641	N*4
AGR, GRUESO	2668	120	0.93	0.85	1456	1496	12
	VALORES DE DISEÑO						
	DE DIDENG			5) RELACION DE	wc:	0.516	
1) ASENTAMIENTO:			3" a 4"	6) AGUA		193	LT.
2) TAMAÑO MAXIMO NO			NO NO	7) AIRE INCORPO	RADO	1.50	%
3) CON AIRE INCORPOR 4) VOL. DE AGREG, GR			0.673	-			
% DE ADITIVOS EN BAS		3:	NO				
FACTOR CEMENTO:			375	k/m3			
CANTIDAD DE AGREG.			1007	k/m3			
CANTIDAD DE AGREG.	FINO:		777	k/m3			
VOLUMEN ABSOLUTO	DE CEMENTO:		0,121	m3			
VOLUMEN ABSOLUTO			0.193	m3			_
VOLUMEN ABSOLUTO			0.015	m3 m3	PASTA: MORTERO:	0.3286	m3 m3
SUMA VOLUMEN ABSO			0.706	m3		L	1000
			0.706	7 .			
VOLUMEN ABSOLUTO			0.294	m3 m3			
	TOTAL		1.000				
CEMENTO:	CANTIDAD DE MATER	375	k/m3		СО	EFICIENTE DE APORTE	bol/m3c
AGUA:		193	B/m3			50.5	glr/m3c
AGREGADO FINO : AGREGADO GRUESO:		1007	k/m3 k/m3			0.51	m3a/m3c m3p/m3c
AGREGADO GRUESO:		1007	Kema			0.09	
		7			E LOS AGREGADOS		227
	766	k/m3 k/m3	AGREGADO FIN		0.13 %	1.01	n n
FINO, HUM:	A STATE OF THE STA		VOLUMEN DE A	SUA:	%	1.82	_ x
FINO, HUM:				ORREG. POR HUM.:	VOLUMEN APARENTE	191 EN DIE3	IVm3
FINO, HUM: GRUESO HUM.:		METRO CUBICO				and the second	
FING, HUM: GRUESO HUM.: CANTIDAD DE MATERIA		376	k/m3		8.82		
FINO, HUM: GRUESO HUM: CANTIDAD DE MATERIA CEMENTO: RANGO DE AGUA:	LES CORREGIDAS POP	375 191	k/m3 IVm3		21.67		
FINO, HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO:	LES CORREGIDAS POR	376	k/m3				
FINO, HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO: RANGO DE AGUA: AGREG, FINO HUMEDO AGREG, GRUESO HUMI	LES CORREGIDAS POR	375 191 786	k/m3 B/m3 k/m3	PROPO	21.67 18.28 24.65 RCION EN VOLUMEN F	PiE3	
FINO, HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO: RANGO DE AGUA: AGREG, FINO HUMEDO AGREG, GRUESO HUMI	LES CORREGIDAS POR EDO: OPORCION EN PESO	375 191 786	k/m3 B/m3 k/m3	PROPO	21.67 18.28 24.05 RCION EN VOLUMEN F Cemento :	1 Bolse	
GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO: RANGO DE AGUA: AGREG, FINO HUMEDO AGREG, GRUESO HUMI	LES CORREGIDAS POF EDO: OPORCION EN PESO	376 191 786 1016	k/m3 B/m3 k/m3	PROPO	21.67 18.28 24.65 RCION EN VOLUMEN F	ALC: NAME OF TAXABLE PARTY.	

b) Diseño De Mezcla F'c=280 Kg/Cm²

ANEXO 02.03. CUADRO RESUMEN DE DISEÑO DE MEZCLAS DEL CONCRETO

Cuadro N°05 Diseño de concreto de 210 kg/cm² - Cemento Tipo I

DESCRIPCIÓN	UNIDAD	CANTIDAD
Tamaño Máximo Nominal	pulgada	1"
Slump	pulgada	3 - 4"
Aire Atrapado	%	1.50
Módulo de Fineza		2.77
Relación a/c	PARTITION OF	0.515
PROPORCION EN P	ESO	
Cemento	kg	sas Albag sa 1 nivada , r
Agregado grueso	kg	2.70
Agregado fino	kg	2.10
Agua	It	0.51
PROPORCION EN V	OLUMEN PIE ³	
Cemento	bls	Servering 1
Agregado grueso	pie ³ /bls	2.79
Agregado fino	pie ³ /bls	2.07
Agua	lt/bls	21.7

CHICLAYO AA

Cuadro Nº06 Diseño de concreto de 280 kg/cm² - Cemento Tipo I

DESCRIPCIÓN	UNIDAD	CANTIDAD	
Tamaño Máximo Nominal	pulgada	1"	εΛ
Slump	pulgada	3 - 4"	CONSTRUCTORA Y CONSTITUCIONAL
Aire Atrapado	%	1.50	A TO
Módulo de Fineza		2.77	Ing. Rober H. Burgh Co
Relación a/c	M. T. P. L. L. L. D.	0.438	in a line and a
PROPORCION EN PI	ESO		
Cemento	kg	1	
Agregado grueso	kg	2.30	
Agregado fino	kg	1.70	3 1
Agua	lt .	0.43	CONSTRUCTORA Y CONSULTORIA ALR SAC
PROPORCION EN V	OLUMEN PIE ³		uisa Muria Falco Hurtudo
Cemento	bls	1	realise de Expansions
Agregado grueso	pie ³ /bls	2.38	
Agregado fino	pie ³ /bls	1.63	
Agua	It/bls	18.4	

ANEXO 3. ENSAYO DE RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

a) Concreto Patrón F'c=210 Kg/Cm²

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ■ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

 MATERIAL
 : CONCRETO

 ESTRUCTURA
 : F'c=210 kg/cm2

 TEC. RESP.: L.M.F.H.

PROBETA ESTRUCTURA		AREA	f'c	FE	CHA	EDAD	LECTURA	RESISTI	ENCIA
	cm2	Kg/cm2	MOLDEO	ROTURA	DIAS	kg	Kg/cm2	%	
1	MUESTRA PATRON - 4	180.1	210	12/11/2021	19/11/2021	7	29690	164.8	78.5
2	MUESTRA PATRON - 5	182.5	210	12/11/2021	19/11/2021	7	28790	157.7	75.1
3	MUESTRA PATRON - 6	180.66	210	12/11/2021	19/11/2021	7	30550	169.1	80.5

OBSERVACIONES:

CONSTRUCTORA Y CONSULTORIA AAR S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

CONSULT
L.E.M.
E CHICLAYO &
SNO2 - 550

Concrete	os normales
Eclad (dias)	F'c (Kg/cm2) (%)
1	25 - 35
3:	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ₹ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

MATERIAL : CONCRETO

ESTRUCTURA : F'c=210 kg/cm2

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

PROBETA ESTRUCTURA	AREA	f'c	FE	CHA	EDAD	LECTURA	RESIST	ENCIA	
N°	ESTRUCTURA	cm2	Kg/cm2	MOLDEO	ROTURA	DIAS	kg	Kg/cm2	%
1	PROBETA - 01	176.7	210	12/11/2021	26/11/2021	14	33430	189.2	90.1
2	PROBETA - 02	179.1	210	12/11/2021	26/11/2021	14	33210	185.4	88.3
3	PROBETA - 03	178.60	210	12/11/2021	26/11/2021	14	34570	193.6	92.2

OBSERVACIONES: Las probetas fueron proporcionadas por el solicitante a nuestro laboratorio.

Solo participamos en las roturas.

El suscrito no se responsabiliza de las conclusiones y usos que se deriven de este ensayo.

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 58
7	70 - 85
14	85 - 95
28	100 - 120

CONSTRUCTORA CONSULTORIAAR S.A.C.

Luisa María Falco Hurtado FECNICO DE LABORATORIO Ing RoyserH. Burga Caycay

H. Buya Caycay

L.E.M.

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ¥ 978 360 036 - 993 595 300.
★ constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

MATERIAL : CONCRETO

ESTRUCTURA : F'c=210 kg/cm2

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

PROBETA	DBETA N° ESTRUCTURA	AREA	f'c	FEC	CHA	EDAD	LECTURA	RESIST	ENCIA
N°		cm2	Kg/cm2	MOLDEO	ROTURA	DIAS	kg	Kg/cm2	%
1	PROBETA 1	176.2	210	12/11/2021	10/12/2021	28	37210	211.1	100.5
2	PROBETA 2	176.7	210	12/11/2021	10/12/2021	28	40350	228.3	108.7
3	PROBETA 3	176.55	210	12/11/2021	10/12/2021	28	37270	211.1	100.5

OBSERVACIONES:

Concrete	os normales
Edad (dias)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

CONSTRUCTORA POONSULTORIA AGR S.A.C.

Luisa María Falco Hyrtado TECNICO DE LABORATORIO CONSTRUCTORIA CONSULTORIA ING. SOURCE AMBIENTAL

L.E.M.

b) Concreto F'c=210 Kg/Cm² + 4% De Microsílice

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito—Chiclayo, 個 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

PROYECTO

: JORGE KENY PERALTA PANTA SOLICITANTE

: PROBETAS CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2 ESTRUCTURA

RESP. LAB.: R.H.B.C.

TEC. RESP.: L.M.F.H.

CODIGO	ESTRUCTURA	FE	CHA	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P1	PROBETA 01	25/02/2022	4/03/2022	7	210	15,07	30	178,37	5351,05	12247	2288,7	30140	169,0	80,5
P2	PROBETA 02	25/02/2022	4/03/2022	7	210	15,09	30,1	178,84	5383,14	12287	2282,5	31930	178,5	85,0
P3	PROBETA 03	25/02/2022	4/03/2022	7	210	15,05	30	177,90	5336,85	12255	2296,3	33330	187,4	89,2

Concrete	os normales						
Edad (días)	F'c (Kg/cm2) (9						
1	25 - 35						
3	42 - 53						
7	70 - 85						
14	85 - 95						
28	100 - 120						

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 图 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MEGÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

ESTRUCTURA : PROBETAS CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

TEC. RESP. : L.M.F.H.

CODIGO	ESTRUCTURA	FECHA		EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	11/03/2022	14	210	15,02	30	177,19	5315,60	12221	2299,1	37710	212,8	101,3
P4	PROBETA 04	25/02/2022	11/03/2022	14	210	15,04	30	177,66	5329,76	12208	2290,5	38700	217,8	103,7
P5	PROBETA 05	25/02/2022	11/03/2022	14	210	15,07	30,1	178,37	5368,88	12215	2275,1	35570	199,4	95,0

Concrete	os normales					
Edad (días)	F'c (Kg/cm2) (%)					
1	25 - 35					
3	42 - 53					
7	70 - 85					
14	85 - 95					
28	100 - 120					

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito— Chiclayo. 4 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

ESTRUCTURA : PROBETAS CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

CODIGO	ESTRUCTURA	FE	СНА	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	25/03/2022	28	210	15,08	30,1	178,60	5376,01	12324	2292,4	41350	231,5	110,2
P4	PROBETA 04	25/02/2022	25/03/2022	28	210	15,1	30,1	179,08	5390,28	12352	2291,5	48380	270,2	128,6
P5	PROBETA 05	25/02/2022	25/03/2022	28	210	15,1	30	179,08	5372,37	12348	2298,4	47500	265,2	126,3

Concretos normales							
Edad (días)	F'c (Kg/cm2) (%)						
1	25 - 35						
3	42 - 53						
7	70 - 85						
14	85 - 95						
28	100 - 120						

c) Concreto F'c=210 Kg/Cm² + 6% De Microsílice

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

盘 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, 图 978 360 036 − 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

PROYECTO

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

ESTRUCTURA : PROBETAS CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

TEC. RESP. : L.M.F.H.

CODIGO	ESTRUCTURA	FE	СНА	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°		MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P1	PROBETA 01	25/02/2022	4/03/2022	7	210	15,04	30	177,66	5329,76	12149	2279,5	34680	195,2	93,0
P2	PROBETA 02	25/02/2022	4/03/2022	7	210	15,09	30	178,84	5365,26	12231	2279,7	32780	183,3	87,3
Р3	PROBETA 03	25/02/2022	4/03/2022	7	210	15,06	30,1	178,13	5361,76	12202	2275,7	36540	205,1	97.7

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

ESTRUCTURA : PROBETAS CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

TEC. RESP.: L.M.F.H.

CODIGO	ESTRUCTURA	FE	CHA	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	11/03/2022	14	210	15,08	30,1	178,60	5376,01	12243	2277,3	43370	242,8	115,6
P4	PROBETA 04	25/02/2022	11/03/2022	14	210	15,09	30	178,84	5365,26	12291	2290,8	36440	203,8	97,0
P5	PROBETA 05	25/02/2022	11/03/2022	14	210	15,05	30,1	177,90	5354,64	12255	2288,7	39520	222,2	105,8

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 图 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB. : R.H.B.C.

ESTRUCTURA : PROBETAS CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

CODIGO	ESTRUCTURA	FE	СНА	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
Р3	PROBETA 03	25/02/2022	25/03/2022	28	210	15,12	30,2	179,55	5422,52	12342	2276,1	46440	258,6	123,2
P4	PROBETA 04	25/02/2022	25/03/2022	28	210	15,1	30,2	179,08	5408,19	12338	2281,4	46080	257,3	122,5
P5	PROBETA 05	25/02/2022	25/03/2022	28	210	15,09	30,1	178,84	5383,14	12355	2295,1	46970	262,6	125,1

OBSERVACIONES:

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

TEC. RESP. : L.M.F.H.

d) Concreto F'c=210 Kg/Cm² + 8% De Microsílice

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

ESTRUCTURA : PROBE

: PROBETAS CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

CODIGO	ESTRUCTURA	FE	СНА	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°		MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P1	PROBETA 01	25/02/2022	4/03/2022	7	210	15,03	30	177,42	5322,68	12313	2313,3	34930	196,9	93,7
P2	PROBETA 02	25/02/2022	4/03/2022	7	210	15,04	30,1	177,66	5347,53	12061	2255,4	37850	213,0	101,
P3	PROBETA 03	25/02/2022	4/03/2022	7	210	15,09	30	178,84	5365,26	12124	2259,7	35270	197,2	93,9

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

盘 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, 图 978 360 036 − 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : PROBETAS CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

CODIGO	ESTRUCTURA	FE	СНА	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	STATE A	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	11/03/2022	14	210	15,05	30	177,90	5336,85	12308	2306,2	38160	214,5	102,
P4	PROBETA 04	25/02/2022	11/03/2022	14	210	15,04	30,1	177,66	5347,53	12233	2287,6	40190	226,2	107,
P5	PROBETA 05	25/02/2022	11/03/2022	14	210	15,01	30	176,95	5308,52	12256	2308,7	43670	246,8	117.

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

: PROBETAS CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

RESP. LAB.: R.H.B.C.

TEC. RESP. : L.M.F.H.

CODIGO	ESTRUCTURA	FE	СНА	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	25/03/2022	28	210	15,05	30,1	177,90	5354,64	12352	2306,8	47050	264,5	125,9
P4	PROBETA 04	25/02/2022	25/03/2022	28	210	15,04	30	177,66	5329,76	12359	2318,9	50420	283,8	135,1
P5	PROBETA 05	25/02/2022	25/03/2022	28	210	15,01	30,1	176,95	5326,22	12361	2320,8	52900	299,0	142,4

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

e) Concreto Patrón F'c=280 Kg/Cm²

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo,

78 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

MATERIAL : CONCRETO

ESTRUCTURA : F'c=280 kg/cm2

RESP. LAB.: R.H.B.C.
TEC. RESP.: L.M.F.H.

PROBETA N°	ESTRUCTURA	AREA cm2	f'c Kg/cm2	FECHA		EDAD	LECTURA	RESISTENCIA	
				MOLDEO	ROTURA	DIAS	kg	Kg/cm2	%
1	MUESTRA PATRON - 1	180.9	280	12/11/2021	19/11/2021	7	40580	224.3	80.1
2	MUESTRA PATRON - 2	180.9	280	12/11/2021	19/11/2021	7	37280	206.1	73.6
3	MUESTRA PATRON - 3	180.90	280	12/11/2021	19/11/2021	7	41380	228.7	81.7

OBSERVACIONES:

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

Concretos normales				
Edad (dias)	F'c (Kg/cm2) (%)			
1	25 - 35			
3	42 - 53			
7	70 - 85			
14	85 - 95			
28	100 - 120			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito− Chiclayo, 相 978 360 036 − 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

MATERIAL : CONCRETO

ESTRUCTURA : F'c=280 kg/cm2

RESP. LAB.: R.H.B.C.

TEC. RESP. : L.M.F.H.

PROBETA N°	ESTRUCTURA	AREA	f'c	FE	СНА	EDAD	LECTURA	RESISTENCIA	
	ESTRUCTURA	cm2	Kg/cm2	MOLDEO	ROTURA	DIAS	kg	Kg/cm2	%
1	PROBETA - 04	179.8	280	12/11/2021	26/11/2021	14	46580	259.1	92.5
2	PROBETA - 05	179.6	280	12/11/2021	26/11/2021	14	45990	256.1	91.5
3	PROBETA - 06	179.32	280	12/11/2021	26/11/2021	14	44780	249.7	89.2

OBSERVACIONES: Las probetas fueron proporcionadas por el solicitante a nuestro laboratorio.

Solo participamos en las roturas.

El suscrito no se responsabiliza de las conclusiones y usos que se deriven de este ensayo.

Concretos normales							
Edad (dias)	F'c (Kg/cm2) (%)						
1	25 - 35						
.3	42 - 53						
7	70 - 85						
14	85 - 95						
28	100 - 120						

CONSTRUCTORA Y CONSULTORÍA A&R S.A.C.

Luisa Maria Falco Hurtado

CONSTRUCTORIA CONSULTORIA AND LA LA C.

CONSULTONO AS L.E.M. AS CHICLAYO &

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, ** 978 360 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

MATERIAL : CONCRETO

ESTRUCTURA : F'c=280 kg/cm2

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

PROBETA	ESTRUCTURA	AREA	f'c	FE(CHA	EDAD	LECTURA	RESISTENCIA	
N°	ESTRUCTURA	cm2	Kg/cm2	MOLDEO ROTURA		DIAS	kg	Kg/cm2	%
1	PROBETA 4	177.2	280	12/11/2021	10/12/2021	28	49860	281.5	100.5
2	PROBETA 5	176.5	280	12/11/2021	10/12/2021	28	51250	290.4	103.7
3	PROBETA 6	176.71	280	12/11/2021	10/12/2021	28	51570	291.8	104.2

OBSERVACIONES:

Contret	os normales							
Edad (dias)	F'c (Kg/cm2) (%)							
1	25 - 35							
3	42 - 53							
7	70 - 85							
14	85 - 95							
28	100 - 120							

CONSTRUCTORAY CONSULTORIAA&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO CONSTRUCTOR ONSULTORIA

f) Concreto F'c=280 Kg/Cm² + 4% De Microsílice

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : PROBETAS CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

RESP. LAB.: R.H.B.C.
TEC. RESP.: L.M.F.H.

CODIGO	FE	СНА	EDAD	F'c	DIÁMETRO	ALTURA	LTURA AREA	AREA VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA		
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P1	PROBETA 01	25/02/2022	4/03/2022	7	280	15,04	30	177,66	5329,76	12147	2279,1	43450,0	244,6	87,3
P2	PROBETA 02	25/02/2022	4/03/2022	7	280	15,07	30	178,37	5351,05	12259	2291,0	45100,0	252,8	90,3
P3	PROBETA 03	25/02/2022	4/03/2022	7	280	15,04	30,1	177,66	5347,53	12189	2279,4	45310,0	255,0	91,1

Concretos normales								
Edad (días)	F'c (Kg/cm2) (%							
1	25 - 35							
3	42 - 53							
7	70 - 85							
14	85 - 95							
28	100 - 120							

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 胃 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB.: R.H.B.C.

ESTRUCTURA : PROBETAS CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2 TEC. RESP. : L.M.F.H.

CODIGO	ESTRUCTURA	FECHA		EDAD	DAD F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	11/03/2022	14	280	15,06	30,1	178,13	5361,76	12198	2275,0	51440,0	288,8	103,1
P4	PROBETA 04	25/02/2022	11/03/2022	14	280	15,07	30	178,37	5351,05	12174	2275,1	49060,0	275,0	98,2
P5	PROBETA 05	25/02/2022	11/03/2022	14	280	15,09	30,1	178,84	5383,14	12156	2258,2	49020,0	274,1	97,9

Concrete	os normales							
Edad (días)	F'c (Kg/cm2) (%)							
1	25 - 35							
3	42 - 53							
7	70 - 85							
14	85 - 95							
28	100 - 120							

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

盘 Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito— Chiclayo。 图 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

PROYECTO

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

ESTRUCTURA : PROBETAS CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

TEC. RESP. : L.M.F.H.

CODIGO	ESTRUCTURA	FECHA		EDAD	AD F'c	DIÁMETRO	ALTURA	A AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	25/03/2022	28	280	15,07	30	178,37	5351,05	12241	2287,6	56230,0	315,2	112,6
P4	PROBETA 04	25/02/2022	25/03/2022	28	280	15,08	30	178,60	5358,15	12309	2297,2	55500,0	310,7	111,0
P5	PROBETA 05	25/02/2022	25/03/2022	28	280	15,01	30,1	176,95	5326,22	12258	2301,4	57950,0	327,5	117,0

Concretos normales								
Edad (días)	F'c (Kg/cm2) (%)							
1	25 - 35							
3	42 - 53							
7	70 - 85							
14	85 - 95							
28	100 - 120							

g) Concreto F'c=280 Kg/Cm² + 6% De Microsílice

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito—Chiclayo, 4 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB. : R.H.B.C.

ESTRUCTURA : PROBETAS CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2 TEC. RESP. : L.M.F.H.

CODIGO	CODIGO	FECHA		EDAD	DAD F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P1	PROBETA 01	25/02/2022	4/03/2022	7	280	15,05	30,1	177,90	5354,64	12128	2265,0	46120,0	259,3	92,6
P2	PROBETA 02	25/02/2022	4/03/2022	7	280	15,07	30,1	178,37	5368,88	12244	2280,5	46260,0	259,4	92,6
P3	PROBETA 03	25/02/2022	4/03/2022	7	280	15,04	30	177,66	5329,76	12166	2282,7	47910,0	269,7	96,3

Concrete	os normales							
Edad (días)	F'c (Kg/cm2) (%)							
1	25 - 35							
3	42 - 53							
7	70 - 85							
14	85 - 95							
28	100 - 120							

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 图 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

ESTRUCTURA : PROBETAS CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

TEC. RESP. : L.M.F.H.

CODIGO	ESTRUCTURA	FE	CHA	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°		MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	11/03/2022	14	280	15,07	30	178,37	5351,05	12319	2302,2	51630,0	289,5	103,4
P4	PROBETA 04	25/02/2022	11/03/2022	14	280	15,04	30	177,66	5329,76	12205	2290,0	49860,0	280,7	100,2
P5	PROBETA 05	25/02/2022	11/03/2022	14	280	15,01	30,1	176,95	5326,22	12254	2300,7	51570,0	291,4	104,

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 图 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

ESTRUCTURA : PROBETAS CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

TEC. RESP. : L.M.F.H.

CODIGO	ESTRUCTURA	FE	СНА	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	25/03/2022	28	280	15,07	30,2	178,37	5386,72	12253	2274,7	59790,0	335,2	119,7
P4	PROBETA 04	25/02/2022	25/03/2022	28	280	15,08	30,1	178,60	5376,01	12430	2312,1	59610,0	333,8	119,2
P5	PROBETA 05	25/02/2022	25/03/2022	28	280	15,01	30,1	176,95	5326,22	12258	2301,4	58000,0	327,8	117,1

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

h) Concreto F'c=280 Kg/Cm² + 8% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 49 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB.: R.H.B.C.

ESTRUCTURA : PROBETAS CON 8% DE DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2 TEC. RESP.: L.M.F.H.

CODIGO	FETRUCTURA	FE	CHA	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	ESTRUCTURA	MOLDEO ROTURA		DIAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P1	PROBETA 01	25/02/2022	4/03/2022	7	280	15,04	30	177,66	5329,76	12228	2294,3	47350,0	266,5	95,2
P2	PROBETA 02	25/02/2022	4/03/2022	7	280	15,02	30	177,19	5315,60	12232	2301,2	47910,0	270,4	96,6
P3	PROBETA 03	25/02/2022	4/03/2022	7	280	15,09	30	178,84	5365,26	12202	2274,3	49020,0	274,1	97,9

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MEGÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : PROBETAS CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

RESP. LAB.: R.H.B.C.

TEC. RESP. : L.M.F.H.

CODIGO	ESTRUCTURA	FE	CHA	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	ESTRUCTURA	MOLDEO	ROTURA	DIAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	11/03/2022	14	280	15,07	30	178,37	5351,05	12241	2287,6	53080,0	297,6	106,3
P4	PROBETA 04	25/02/2022	11/03/2022	14	280	15,08	30	178,60	5358,15	12309	2297,2	54330,0	304,2	108,6
P5	PROBETA 05	25/02/2022	11/03/2022	14	280	15,01	30,1	176,95	5326,22	12258	2301,4	53200,0	300,6	107,4

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 图 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : PROBETAS CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

RESP. LAB. : R.H.B.C.

TEC. RESP.: L.M.F.H.

CODIGO	FOTOUGTUDA	FE	СНА	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	ENCIA
N°	ESTRUCTURA	MOLDEO	ROTURA	DIAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
P3	PROBETA 03	25/02/2022	25/03/2022	28	280	15,3	30	183,85	5515,63	12245	2220,1	63700,0	346,5	123,7
P4	PROBETA 04	25/02/2022	25/03/2022	28	280	15,04	30	177,66	5329,76	12530	2350,9	62100,0	349,5	124,8
P5	PROBETA 05	25/02/2022	25/03/2022	28	280	15,1	30,2	179,08	5408,19	12570	2324,3	61130,0	341,4	121,9

Concrete	os normales
Edad (días)	F'c (Kg/cm2) (%)
1	25 - 35
3	42 - 53
7	70 - 85
14	85 - 95
28	100 - 120

ANEXO 4. ENSAYO DE RESISTENCIA A LA FLEXIÓN DEL CONCRETO

a) Concreto Patrón F'c=210 Kg/Cm²

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito - Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : F'C = 210 KG/CM2

RESP. LAB. ; R.H.B.C.

TEC. RESP. : L.M.F.H.

№ DE PROB.	ANCHO Ø B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15.00	15.00	44,80	54.5	10080	29759	2.95	12/11/2021	19/11/2021	7	1860	24.7		5	
P2	15.00	15.00	44.80	54.5	10080	29840	2.96	12/11/2021	19/11/2021	7	1790	23.8	24.8	210	11.7
P3	15.00	15.00	44.80	54.5	10080	29760	2.95	12/11/2021	19/11/2021	7	1910	25.4			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ∰ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@amail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB.: R.H.B.C.

TEC. RESP. : L.M.F.H. ESTRUCTURA : F'C = 210 KG/CM2

№ DE PROB.	ANCHO ® B	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15.00	15.00	44,80	54.5	10080	29870	2.96	12/11/2021	26/11/2021	14	2140	28.4			
P2	15.00	15.00	44.80	54.5	10080	29880	2.96	12/11/2021	26/11/2021	14	2100	27.9	28.5	210	13.5
P3	15.00	15.00	44.80	54.5	10080	29760	2.95	12/11/2021	26/11/2021	14	2190	29.1			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ∰ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@amail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO : "CARACTERIZACIÓN MECÂNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : F'C = 210 KG/CM2

Nº DE PROB.	ANCHO ⊕ B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15.00	15.00	44,80	54.5	10080	29870	2.96	12/11/2021	10/12/2021	28	2390	31.7			
P2	15.00	15.00	44.80	54.5	10080	29790	2.96	12/11/2021	10/12/2021	28	2590	34.4	32.6	210	15.5
P3	15.00	15.00	44.80	54.5	10080	29850	2.96	12/11/2021	10/12/2021	28	2390	31.7			

OBSERVACIONES:

CONTRICTORY SCHOOL FARE AND

RESP. LAB. ; R.H.B.C.

TEC. RESP. : L.M.F.H.

b) Concreto F'c=210 Kg/Cm² + 4% De Microsílice

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, ₹ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO : "CARACTERIZACIÓN MEGÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA

RESP. LAB.: R.H.B.C.

: CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2 TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ⊕ B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%
P1	15,00	15,00	48,50	54,5	10913	29780	2,73	4/04/2022	11/04/2022	7	1760	25,3			
P2	15,00	15,00	48,50	54,5	10913	29740	2,73	4/04/2022	11/04/2022	7	1860	26,7	26,7	210	12,7
P3	15,00	15,00	48,50	54,5	10913	29850	2,74	4/04/2022	11/04/2022	7	1960	28,2			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, ¶ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

ESTRUCTURA

UBICACIÓN

: CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

RESP. LAB.: R.H.B.C.

TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%
P1	15,00	15,00	48,50	54,5	10913	29770	2,73	4/04/2022	18/04/2022	14	2220	31,9			
P2	15,00	15,00	48,50	54,5	10913	29830	2,73	4/04/2022	18/04/2022	14	2280	32,8	31,5	210	15,0
P3	15,00	15,00	48,50	54,5	10913	29730	2,72	4/04/2022	18/04/2022	14	2080	29,9			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ■ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

: CHICLAYO- LAMBAYEQUE UBICACIÓN

ESTRUCTURA

: JORGE KENY PERALTA PANTA SOLICITANTE

: CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ⊕ B (CM)	ALTURA ⊕ H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29950	2,74	4/04/2022	2/05/2022	28	2420	34,8			
P2	15,00	15,00	48,50	54,5	10913	29830	2,73	4/04/2022	2/05/2022	28	2820	40,5	38,4	210	18,3
P3	15,00	15,00	48,50	54,5	10913	29810	2,73	4/04/2022	2/05/2022	28	2770	39,8			

c) Concreto F'c=210 Kg/Cm² + 6% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz 5/N Lote N° 08 - Fundo El Cerrito-Chiclayo. ◀ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA RESP. LAB.: R.H.B.C.

: CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2 ESTRUCTURA

TEC. RESP.: L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA @ H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29880	2,74	4/04/2022	11/04/2022	7	2040	29,3			
P2	15,00	15,00	48,50	54,5	10913	29650	2,72	4/04/2022	11/04/2022	7	1920	27,6	29,2	210	13,9
P3	15,00	15,00	48,50	54,5	10913	29670	2,72	4/04/2022	11/04/2022	7	2140	30,8			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 9 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

ESTRUCTURA

: CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29780	2,73	4/04/2022	18/04/2022	14	2530	36,4			
P2	15,00	15,00	48,50	54,5	10913	29820	2,73	4/04/2022	18/04/2022	14	2130	30,6	33,4	210	15,9
P3	15,00	15,00	48,50	54,5	10913	29740	2,73	4/04/2022	18/04/2022	14	2320	33,3			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

TECNICO DE LABORATORIO

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito-Chiclayo, 🛂 978 360 036 - 993 595 300.

Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

N° DE PROB.	ANCHO ⊕ B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%
P1	15,00	15,00	48,50	54,5	10913	29980	2,75	4/04/2022	2/05/2022	28	2700	38,8		1	
P2	15,00	15,00	48,50	54,5	10913	29700	2,72	4/04/2022	2/05/2022	28	2690	38,7	38,9	210	18,5
P3	15,00	15,00	48,50	54,5	10913	29610	2,71	4/04/2022	2/05/2022	28	2740	39,4			

OBSERVACIONES:

Agyer H. Barga Caycay
No. Civil Audiental
Civil Audiental
Civil Audiental

RESP. LAB.: R.H.B.C.

d) Concreto F'c=210 Kg/Cm² + 8% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

PROYECTO

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB.: R.H.B.C.

ESTRUCTURA : CON 8% DE MICROSÍLICE CON UNA RESISTENCIA FC = 210 KG/CM2 TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29850	2,74	4/04/2022	11/04/2022	7	2050	29,5			
P2	15,00	15,00	48,50	54,5	10913	29750	2,73	4/04/2022	11/04/2022	7	2230	32.0	30,4	210	14,5
P3	15,00	15,00	48,50	54,5	10913	29670	2,72	4/04/2022	11/04/2022	7	2060	29,6			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito-Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

ESTRUCTURA

: CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO Ø B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST.(%)
P1	15,00	15,00	48,50	54,5	10913	29820	2,73	4/04/2022	18/04/2022	14	2240	32,2			
P2	15,00	15,00	48,50	54,5	10913	29740	2,73	4/04/2022	18/04/2022	14	2360	33,9	34,4	210	16,4
P3	15,00	15,00	48,50	54,5	10913	29860	2,74	4/04/2022	18/04/2022	14	2580	37,1			

OBSERVACIONES:

CHICLAYO

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito-Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@amail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

: CHICLAYO- LAMBAYEQUE UBICACIÓN

PROYECTO

: JORGE KENY PERALTA PANTA SOLICITANTE

ESTRUCTURA : CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2 RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%
P1	15,00	15,00	48,50	54,5	10913	29820	2,73	4/04/2022	2/05/2022	28	2760	39,7			P.
P2	15,00	15,00	48,50	54,5	10913	29770	2,73	4/04/2022	2/05/2022	28	2970	42,7	42,4	210	20,2
P3	15,00	15,00	48,50	54,5	10913	29710	2,72	4/04/2022	2/05/2022	28	3120	44,8			

e) Concreto Patrón F'c=280 Kg/Cm²

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, ∰ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@amail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : F'C = 280 KG/CM2 RESP. LAB.: R.H.B.C.

TEC. RESP. : L.M.F.H.

№ DE PROB.	ANCHO Ø B (CM)	ALTURA & H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CMS)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mps)	RESIST. (%)
P1	15.00	15.00	44.80	54.5	10080	29770	2.95	12/11/2021	19/11/2021	7	2540	33.7			
P2	15.00	15.00	44.80	54.5	10080	29810	2,96	12/11/2021	19/11/2021	7	2330	30.9	33.0	280	11.8
P3	15.00	15.00	44.80	54.5	10080	29550	2.93	12/11/2021	19/11/2021	7	2590	34.4			

OBSERVACIONES:

CONSTRUCTORAY SCIENCES GAMERIAGO

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, ∰ 778 340 034 - 993 595 300.

Constructora.ayr.chiclayo@amail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : F'C = 280 KG/CM2 TEC. RESP. : L.M.F.H.

Nº DE PROB.	ANCHO ® B	ALTURA ® H	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CMS)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mps)	RESIST. (%)
P1	15.00	15.00	44.80	54.5	10080	29770	2.96	12/11/2021	26/11/2021	14	2930	38.9			
P2	15.00	15.00	44.80	54.5	10080	29860	2.96	12/11/2021	28/11/2021	14	2890	38.4	38.2	280	13.7
P3	15.00	15.00	44.80	54.5	10080	29720	2.95	12/11/2021	26/11/2021	14	2820	37.4			

OBSERVACIONES:

CONSTRUCTORAL SCIENCE STATE OF THE CONSTRUCTION OF THE CONSTRUCTIO

RESP. LAB.: R.H.B.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, ∰ 978 340 034 - 993 595 300.

☆ constructora.ayr.chiclayo@amail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C. ESTRUCTURA

TEC. RESP. : L.M.F.H. : F'C = 280 KG/CM2

Nº DE PROB.	ANCHO ® B (CM)	ALTURA ® H	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CMS)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15.00	15.00	44.80	54.5	10080	29840	2.96	12/11/2021	10/12/2021	28	3180	42.2			
P2	15.00	15.00	44.80	54.5	10080	29850	2.96	12/11/2021	10/12/2021	28	3290	43.7	43.2	280	15.4
P3	15.00	15.00	44.80	54.5	10080	29870	2.96	12/11/2021	10/12/2021	28	3300	43.8			

OBSERVACIONES:

CONSTRUCTORAL SCHOOL PROPERTY.

f) Concreto F'c=280 Kg/Cm² + 4% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N lote N° 08 - Fundo El Cerrito- Chiclayo, ₹ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

PROYECTO

ESTRUCTURA

: JORGE KENY PERALTA PANTA SOLICITANTE

: CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2 TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA @ H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29880	2,74	25/02/2022	4/03/2022	7	2550	36,6			
P2	15,00	15,00	48,50	54,5	10913	29760	2,73	25/02/2022	4/03/2022	7	2640	37,9	37,6	280	13,4
P3	15,00	15,00	48,50	54,5	10913	29810	2,73	25/02/2022	4/03/2022	7	2660	38,2			

OBSERVACIONES:

RESP. LAB. : R.H.B.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.
constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

PROYECTO

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB. : R.H.B.C.

: CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2 ESTRUCTURA

TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29710	2,72	25/02/2022	11/03/2022	14	3010	43,3			
P2	15,00	15,00	48,50	54,5	10913	29750	2,73	25/02/2022	11/03/2022	14	2870	41,2	41,9	280	15,0
P3	15,00	15,00	48,50	54,5	10913	29790	2,73	25/02/2022	11/03/2022	14	2860	41,1			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, ◀ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

ESTRUCTURA

: CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%
P1	15,00	15,00	48,50	54,5	10913	29850	2,74	25/02/2022	25/03/2022	28	3290	47,3			
P2	15,00	15,00	48,50	54,5	10913	29790	2,73	25/02/2022	25/03/2022	28	3240	46,6	47,7	280	17,0
P3	15,00	15,00	48,50	54,5	10913	29720	2,72	25/02/2022	25/03/2022	28	3420	49,1			

g) Concreto F'c=280 Kg/Cm² + 6% De Microsílice

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz 5/N Lote N° 08 - Fundo El Cerito-Chiclayo, ₹ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

PROYECTO

SOLICITANTE : JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

ESTRUCTURA : CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2 TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29830	2,73	25/02/2022	4/03/2022	7	2700	38,8			
P2	15,00	15,00	48,50	54,5	10913	29770	2,73	25/02/2022	4/03/2022	7	2710	38,9	39,4	280	14,1
P3	15,00	15,00	48,50	54,5	10913	29720	2,72	25/02/2022	4/03/2022	7	2820	40,5		-	

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ■ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

ESTRUCTURA

: CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO® B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29650	2,72	25/02/2022	11/03/2022	14	3020	43,4			
P2	15,00	15,00	48,50	54,5	10913	29690	2,72	25/02/2022	11/03/2022	14	2930	42,1	43,1	280	15,4
P3	15,00	15,00	48,50	54,5	10913	29750	2,73	25/02/2022	11/03/2022	14	3040	43,7			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, ◀ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

ESTRUCTURA

: CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA ® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29620	2,71	25/02/2022	25/03/2022	28	3490	50,2			
P2	15,00	15,00	48,50	54,5	10913	29740	2,73	25/02/2022	25/03/2022	28	3480	50,0	49,8	280	17,8
P3	15,00	15,00	48,50	54,5	10913	29770	2,73	25/02/2022	25/03/2022	28	3420	49,1			

h) Concreto F'c=280 Kg/Cm² + 8% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, ₹ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

ESTRUCTURA

SOLICITANTE : JORGE KENY PERALTA PANTA

: CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

RESP. LAB. : R.H.B.C.

TEC. RESP.: L.M.F.H.

N° DE PROB.	ANCHO ® B (CM)	ALTURA® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%
P1	15,00	15,00	48,50	54,5	10913	29740	2,73	25/02/2022	4/03/2022	7	2780	39,9			
P2	15,00	15,00	48,50	54,5	10913	29780	2,73	25/02/2022	4/03/2022	7	2820	40,5	40,5	280	14,5
P3	15,00	15,00	48,50	54,5	10913	29730	2,72	25/02/2022	4/03/2022	7	2860	41,1			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 🎒 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

PROYECTO

: JORGE KENY PERALTA PANTA SOLICITANTE

: CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2 ESTRUCTURA

RESP. LAB.: R.H.B.C.

TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO® B (CM)	ALTURA® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29750	2,73	25/02/2022	11/03/2022	14	3110	44,7			
P2	15,00	15,00	48,50	54,5	10913	29820	2,73	25/02/2022	11/03/2022	14	3170	45,6	45,1	280	16,1
P3	15,00	15,00	48,50	54,5	10913	29760	2,73	25/02/2022	11/03/2022	14	3140	45,1			

: CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, ∰ 978 360 036 - 993 595 300.

Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA FLEXIÓN DEL CONCRETO - N.T.P. 339.078:2012 (REVISADA EL 2017)

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

PROYECTO

ESTRUCTURA

; JORGE KENY PERALTA PANTA SOLICITANTE

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

N° DE PROB.	ANCHO Ø B (CM)	ALTURA® H (CM)	LUZ DEL ENSAYO (CM)	LONGITUD TOTAL DE PRISMA	VOLUMEN (CM3)	PESO PROB.	DENSIDAD SECA (KG/CM3)	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA FELXIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	15,00	48,50	54,5	10913	29770	2,73	25/02/2022	25/03/2022	28	3610	51,9	77.1		
P2	15,00	15,00	48,50	54,5	10913	29760	2,73	25/02/2022	25/03/2022	28	3650	52,5	51,8	280	18,5
P3	15,00	15,00	48,50	54,5	10913	29740	2,73	25/02/2022	25/03/2022	28	3560	51,2			

CHICLAYO

ANEXO 5. ENSAYO DE RESISTENCIA A LA TRACCIÓN DEL CONCRETO

a) Concreto Patrón F'c=210 Kg/Cm²

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 📳 778 340 034 - 993 595 300.

constructora.ayr.chiclayo@amail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB. : R.H.B.C.

ESTRUCTURA : F'C = 210 KG/CM2 TEC. RESP. : L.M.F.H.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15.02	30.1	5333	12350	12/11/2021	19/11/2021	7	14030	19.8		Ev v	,
P2	15.01	30.0	5333	12410	12/11/2021	19/11/2021	7	13400	18.9	19.7	210	9.4
Р3	15.01	30.2	5333	12260	12/11/2021	19/11/2021	7	14450	20.3			

Lines Meria Jaico Hurtano

CONSTRUCTOR OF STREET

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 4 978 340 034 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

: CHICLAYO- LAMBAYEQUE UBICACIÓN

: JORGE KENY PERALTA PANTA SOLICITANTE

ESTRUCTURA TEC. RESP. : L.M.F.H. : F'C = 210 KG/CM2

RESIST, A LA RESIST. DIAMETRO VOLUMEN **PESO** RESIST. N° DE PROB. LONGITUD MOLDEO ROTURA DIAS CARGA TRACCIÓN **PROMEDIO** RESIST. (%) (CM) (CM3) PROB. Espec. (Mpa) (kg/cm2) (kg/cm2) P1 15.00 30.2 5337 12480 12/11/2021 26/11/2021 14 16130 22.7 P2 5337 12450 14 15820 22.7 15.02 30.1 12/11/2021 26/11/2021 22.3 210 10.8 P3 15.01 30.2 5337 12290 12/11/2021 26/11/2021 14 16550 23.2

CONSTRUCTORAY OWNSHITTED AND THE

RESP. LAB.: R.H.B.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

👜 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 🤻 978 340 034 - 993 595 300.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB. : R.H.B.C.

ESTRUCTURA : F'C = 210 KG/CM2 TEC. RESP.: L.M.F.H.

Nº DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15.02	30.2	5351	12270	12/11/2021	10/12/2021	28	18010	25.3		() ()	
P2	15.02	30.0	5351	12390	12/11/2021	10/12/2021	28	19420	27.4	26.0	210	12.4
P3	15.00	30.2	5351	12270	12/11/2021	10/12/2021	28	18020	25.3			

ониндами опентий мене

Lineal Sheria Maleo Francisio TECHICO TE LABORATORIO DONESSUITORN SONSILITORN
Instrument III Barras Corror

b) Concreto F'c=210 Kg/Cm² + 4% De Microsílice

: CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA ESTRUCTURA

RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,03	30,0	5323	12217	25/02/2022	4/03/2022	7	14400	20,3			
P2	15,01	30,2	5323	12235	25/02/2022	4/03/2022	7	15270	21,4	21,4	210	10,2
P3	15,01	30,1	5323	12341	25/02/2022	4/03/2022	7	15980	22,5	1		

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

ESTRUCTURA

: JORGE KENY PERALTA PANTA SOLICITANTE

: CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

RESP. LAB.: R.H.B.C.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,02	30,1	5333	12420	25/02/2022	11/03/2022	14	18110	25,5			
P2	15,00	30,0	5333	12201	25/02/2022	11/03/2022	14	18430	26,1	25,1	210	12,0
P3	15,01	30,2	5333	12450	25/02/2022	11/03/2022	14	16990	23,9			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz \$/N Lote № 08 - Fundo El Cerrito- Chiclayo, ② 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

: JORGE KENY PERALTA PANTA SOLICITANTE

RESP. LAB.: R.H.B.C.

ESTRUCTURA

PROYECTO

: CON 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	30,1	5319	12260	25/02/2022	25/03/2022	28	19750	27,8			
P2	15,01	30,1	5319	12350	25/02/2022	25/03/2022	28	22980	32,4	30,7	210	14,6
P3	15,00	30,0	5319	12270	25/02/2022	25/03/2022	28	22510	31,8			

c) Concreto F'c=210 Kg/Cm² + 6% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN SOLICITANTE : CHICLAYO- LAMBAYEQUE

: JORGE KENY PERALTA PANTA

ESTRUCTURA

: CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

RESP. LAB.: R.H.B.C.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,02	30,2	5351	12350	25/02/2022	4/03/2022	7	16700	23,4			
P2	15,01	30,1	5351	12480	25/02/2022	4/03/2022	7	15580	22,0	23,3	210	11,1
P3	15,01	30,3	5351	12250	25/02/2022	4/03/2022	7	17580	24,6			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, \$\frac{100}{200}\$ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2 RESP. LAB.: R.H.B.C.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,01	30,1	5326	12360	25/02/2022	11/03/2022	14	20680	29,1			
P2	15,02	30,2	5326	12330	25/02/2022	11/03/2022	14	17430	24,5	26,8	210	12,7
P3	15,01	30,2	5326	12380	25/02/2022	11/03/2022	14	18990	26,7			

: CON 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

ESTRUCTURA

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB.: R.H.B.C.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,02	30,0	5316	12362	25/02/2022	25/03/2022	28	21950	31,0			
P2	15,02	30,2	5316	12290	25/02/2022	25/03/2022	28	21990	30,9	31,1	210	14,8
P3	15,00	30,0	5316	12325	25/02/2022	25/03/2022	28	22250	31,5	TEN.	-1-1	

d) Concreto F'c=210 Kg/Cm² + 8% De Microsílice

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 🔞 978 360 036 - 993 595 300.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

RESP. LAB.: R.H.B.C.
TEC. RESP.: L.M.F.H.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	30,1	5319	12330	25/02/2022	4/03/2022	7	16750	23,6			
P2	15,00	30,1	5319	12248	25/02/2022	4/03/2022	7	18180	25,6	24,3	210	11,6
P3	15,01	30,2	5319	12306	25/02/2022	4/03/2022	7	16880	23,7	111		

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB.: R.H.B.C. TEC. RESP.: L.M.F.H.

ESTRUCTURA : CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,01	30,0	5309	12260	25/02/2022	11/03/2022	14	18180	25,7			
P2	15,00	30,1	5309	12450	25/02/2022	11/03/2022	14	19230	27,1	27,5	210	13,1
P3	15,02	30,2	5309	12302	25/02/2022	11/03/2022	14	21080	29,6			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ₹ 978 360 036 - 993 595 300.

Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB.: R.H.B.C.

ESTRUCTURA : CON 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 210 KG/CM2 TEC. RESP. : L.M.F.H.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST.(%)
P1	15,02	30,1	5333	12240	25/02/2022	25/03/2022	28	22530	31,7			
P2	15,00	30,2	5333	12340	25/02/2022	25/03/2022	28	24270	34,1	33,9	210	16,2
P3	15,00	30,0	5333	12460	25/02/2022	25/03/2022	28	25410	35,9			

L.E.M. CHICLAYO

e) Concreto Patrón F'c=280 Kg/Cm²

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 🖥 978 340 034 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

: JORGE KENY PERALTA PANTA SOLICITANTE

TEC. RESP. : L.M.F.H. **ESTRUCTURA** : F'C = 280 KG/CM2

Nº DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15.00	30.1	5319	12240	12/11/2021	19/11/2021	7	19070	26.9		(V V)	
P2	15.02	30.0	5319	12370	12/11/2021	19/11/2021	7	17460	24.7	26.3	280	9.4
P3	15.00	30.1	5319	12410	12/11/2021	19/11/2021	7	19440	27.4			

RESP. LAB. : R.H.B.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 🍕 978 340 034 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

: JORGE KENY PERALTA PANTA SOLICITANTE

ESTRUCTURA : F'C = 280 KG/CM2 TEC. RESP. : L.M.F.H.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST.(%)
P1	15.01	30.2	5344	12450	12/11/2021	26/11/2021	14	22120	31.1		O 0	
P2	15.00	30.1	5344	12460	12/11/2021	26/11/2021	14	21770	30.7	30.6	280	10.9
P3	15.02	30.2	5344	12380	12/11/2021	26/11/2021	14	21370	30.0			

RESP. LAB.: R.H.B.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 4 978 340 034 - 993 595 300.
constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA RESP. LAB. : R.H.B.C.

ESTRUCTURA : F'C = 280 KG/CM2 TEC. RESP. : L.M.F.H.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15.02	30.1	5319	12220	12/11/2021	10/12/2021	28	23990	33.8		δ V	
P2	15.02	30.2	5319	12370	12/11/2021	10/12/2021	28	24780	34.8	34.5	280	12.3
P3	15.00	30.2	5319	12425	12/11/2021	10/12/2021	28	24950	35.0			

Limed Maria Vales Historia

DONESSUITOSAN DONALIZONA Ing-Nassy III Sarra Corror

f) Concreto F'c=280 Kg/Cm² + 4% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo,

¶ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

ESTRUCTURA

: ADICIONANDO 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	30,2	5337	12390	25/02/2022	4/03/2022	7	20840	29,3			
P2	15,20	30,2	5337	12450	25/02/2022	4/03/2022	7	21840	30,3	30,1	280	10,7
P3	15,01	30,1	5337	12280	25/02/2022	4/03/2022	7	21750	30,6			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito− Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

ESTRUCTURA

: ADICIONANDO 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST.(%)
P1	15,02	30,1	5333	12362	25/02/2022	11/03/2022	14	24630	34,7			
P2	15,01	30,1	5333	12330	25/02/2022	11/03/2022	14	23400	33,0	33,5	280	12,0
P3	15,02	30,1	5333	12280	25/02/2022	11/03/2022	14	23380	32,9			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

ESTRUCTURA

: ADICIONANDO 4% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,02	30,1	5333	12230	25/02/2022	25/03/2022	28	26870	37,8			
P2	15,01	30,0	5333	12240	25/02/2022	25/03/2022	28	26380	37,3	38,1	280	13,6
Р3	15,01	30,1	5333	12310	25/02/2022	25/03/2022	28	27890	39,3			

g) Concreto F'c=280 Kg/Cm² + 6% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz.\$/N Lote N° 08 - Fundo El Cerrito− Chiclayo, ∰ 978 360 036 − 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

ESTRUCTURA

SOLICITANTE : JORGE KENY PERALTA PANTA

: ADICIONANDO 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

RESP. LAB. : R.H.B.C.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,02	30,2	5351	12421	25/02/2022	4/03/2022	7	22140	31,1			
P2	15,01	30,0	5351	12320	25/02/2022	4/03/2022	7	22020	31,1	31,5	280	11,3
P3	15,00	30,1	5351	12450	25/02/2022	4/03/2022	7	22980	32,4			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

ESTRUCTURA : ADICIONANDO 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,01	30,0	5309	12462	25/02/2022	11/03/2022	14	24530	34,7			
P2	15,00	30,2	5309	12430	25/02/2022	11/03/2022	14	24000	33,7	34,5	280	12,3
P3	15,02	30,1	5309	12270	25/02/2022	11/03/2022	14	24880	35,0			

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, \$\frac{a}{2}\$ 978 360 036 - 993 595 300.

Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO" PROYECTO

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

ESTRUCTURA

: ADICIONANDO 6% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,01	30,1	5326	12250	25/02/2022	25/03/2022	28	28540	40,2			
P2	15,00	30,0	5326	12320	25/02/2022	25/03/2022	28	28380	40,1	39,9	280	14,2
Р3	15,02	30,2	5326	12370	25/02/2022	25/03/2022	28	27990	39,3	1-0-3		

h) Concreto F'c=280 Kg/Cm² + 8% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz 5/N Lote N° 08 - Fundo El Cerrito- Chiclayo. ₹ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

PROYECTO

ESTRUCTURA

SOLICITANTE : JORGE KENY PERALTA PANTA

: ADICIONANDO 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2 TEC. RESP.: L.M.F.H.

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	30,1	5319	12362	25/02/2022	4/03/2022	7	22730	32,0	A 1 1 3 1		
P2	15,20	30,1	5319	12284	25/02/2022	4/03/2022	7	23280	32,4	32,4	280	11,6
P3	15,00	30,1	5319	12280	25/02/2022	4/03/2022	7	23320	32,9	- 15		

RESP. LAB. : R.H.B.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito—Chiclayo, ₹ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

ESTRUCTURA

: ADICIONANDO 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,02	30,0	5316	12220	25/02/2022	11/03/2022	14	25270	35,7			
P2	15,00	30,0	5316	12280	25/02/2022	11/03/2022	14	25780	36,5	36,1	280	12,9
P3	15,01	30,1	5316	12310	25/02/2022	11/03/2022	14	25590	36,1		EY 51	

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz \$/N Lote № 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

ESTRUCTURA

: ADICIONANDO 8% DE MICROSÍLICE CON UNA RESISTENCIA F'C = 280 KG/CM2

N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (Mpa)	RESIST. (%)
P1	15,00	30,1	5319	12460	25/02/2022	25/03/2022	28	29540	41,7			
P2	15,00	30,2	5319	12380	25/02/2022	25/03/2022	28	29780	41,9	41,5	280	14,8
P3	15,01	30,2	5319	12290	25/02/2022	25/03/2022	28	29210	41,0			

ANEXO 6. ENSAYO DE MODULO DE ELASTICIDAD ESTATICO DEL CONCRETO A COMPRESION

a) Concreto Patrón F'c=210 Kg/Cm²

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, = 978 360 036 - 993 595 300. de constructora.ayr.chiclayo@gmail.com

ENSAYO DE MODULO DE ELASTICIDAD ESTATICO DEL CONCRETO A COMPRESION

(ASTM C-469)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE PROYECTO

CONCRETO'

SOLICITANTE

ESTRUCTURA

: CHICLAYO- LAMBAYEQUE UBICACIÓN

: JORGE KENY PERALTA PANTA RESP. LAB.: R.H.B.C. : Patrón - f'c= 210 kg/cm2 TEC. RESP.: L.M.F.H.

Esfuerzo Promedio Esfuerzo S1 Edad σ_{u} € unitaria E. Fecha de Fecha IDENTIFICACIÓN Ensavo vaciado (40% a.) (0.000050) (Dias) (Kg/cm²) $\epsilon_2 (S_2)$ Kg/cm² Kg/cm² Kg/cm² Kg/cm² Patrón - f'c= 210 kg/cm2 12/11/2021 19/11/2021 7 163.62 65 9 20514 0.000327 202978 Patrón - f'c= 210 kg/cm2 0.000332 204334.62 12/11/2021 19/11/2021 7 162.92 65 7.98008 202971 Patrón - f'c= 210 kg/cm2 12/11/2021 19/11/2021 7 172.88 69 8.67662 0.000342 207055 Patrón - f'c= 210 kg/cm2 12/11/2021 26/11/2021 14 186.68 75 10.67428 0.000335 224935 8.02917 0.000341 226693 54 Patrón - f'c= 210 kg/cm2 12/11/2021 26/11/2021 14 183.02 73 223722 0.000343 Patrón - f'c= 210 kg/cm2 26/11/2021 193.04 9.31479 231423 12/11/2021 14 77 5.13318 0.000382 Patrón - f'c= 210 kg/cm2 12/11/2021 10/12/2021 28 191.01 76 231362.69 Patrón - f'c= 210 kg/cm2 12/11/2021 10/12/2021 28 197.86 79 8.74289 0.000392 234223.34 231972.41 Patrón - f'c= 210 kg/cm2 12/11/2021 10/12/2021 28 196.16 78 5.80135 0.000391 230331.19

Observaciones:

CONSTRUCTORAY CONSULTORÍA A&R S.A.C.

Luisa María Falco Hurtado TECNICO DE LABORATORIO

CONSULTOR

b) Concreto F'c=210 Kg/Cm² + 4% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, \$\frac{10}{20}\$ 978 360 036 - 993 595 300.

Constructora.ayr.chiclayo@gmail.com

ENSAYO DE MODULO DE ELASTICIDAD ESTATICO DEL CONCRETO A COMPRESION (ASTM C-469)

PROYECTO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE

: CONCRETO

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

SOLICITANTE

: JORGE KENY PERALTA PANTA

RESP. LAB. : R.H.B.C.

ESTRUCTURA

: f'c= 210 kg/cm2 AGREGANDO 4% DE MICROSÍLICE

TEC. RESP. : L.M.F.H.

IDENTIFICACIÓN	Fecha de	Fecha	Edad	σ_{u}	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
ibe. This is a second	vaciado	Ensayo	(Días)	(Kg/cm ²)	(40%a _u) Kg/cm²	(0.000050) Kg/cm ²	$\epsilon_2 (S_2)$	Kg/cm ²	Kg/cm ²
r'c= 210 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	4/03/2022	7	166,10	66	6,94090	0,000319	221520	
"c= 210 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	4/03/2022	7	180,74	72	6,84007	0,000342	223897	223798,02
"c= 210 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	4/03/2022	7	188,61	75	7,34176	0,000351	225977	
"c= 210 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	11/03/2022	14	210,58	84	6,41228	0,000391	227911	
"c= 210 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	11/03/2022	14	213,27	85	7,98968	0,000388	228950	227566,79
"c= 210 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	11/03/2022	14	198,63	79	10,09102	0,000357	225840	
C= 210 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	25/03/2022	28	191,01	76	5,13318	0,000410	238712,36	
"c= 210 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	25/03/2022	28	197,86	79	7,07758	0,000460	242975,29	240274,75
c= 210 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	25/03/2022	28	196,16	78	3,66016	0,000413	239136,60	

Observaciones:

CONSIDERIOR DE MANAGEMENTAL

LIP ROSSET H. BUTGO COSCO

LIP ROSSET H. BUTGO

CHICLAYO A A CONSULTORIA A A CONSULTORIA A A CONSULTORIA A CONSULTORIA A CONSULTORIA A CONSULTOR

c) Concreto F'c=210 Kg/Cm² + 6% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

⚠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 🖁 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ENSAYO DE MODULO DE ELASTICIDAD ESTATICO DEL CONCRETO A COMPRESION (ASTM C-469)

PROYECTO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE

' CONCRETO

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

RESP. LAB. : R.H.B.C.

SOLICITANTE ESTRUCTURA : JORGE KENY PERALTA PANTA : f'c= 210 kg/cm2 AGREGANDO 6% DE MICROSÍLICE

TEC. RESP. : L.M.F.H.

IDENTIFICACIÓN	Fecha de	Fecha	Edad	συ	Esfuerzo S2	Esfuerzo \$1	€ unitaria	Ec	Promedio E _c
IDENTIFICACION	vaciado	Ensayo	(Días)	(Kg/cm²)	(40%σ _υ) Kg/cm ²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm ²
f'c= 210 kg/cm2 AGREGANDO 6% DE MICROSÍLICE	25/02/2022	4/03/2022	7	191,12	76	4,35692	0,000363	230574	
f'c= 210 kg/cm2 AGREGANDO 6% DE MICROSÍLICE	25/02/2022	4/03/2022	7	185,50	74	15,96016	0,000310	224248	228388,01
f'c= 210 kg/cm2 AGREGANDO 6% DE MICROSÍLICE	25/02/2022	4/03/2022	7	206,77	83	14,68351	0,000345	230342	
f'c= 210 kg/cm2 AGREGANDO 6% DE MICROSÍLICE	25/02/2022	11/03/2022	14	242,18	97	6,07480	0,000422	243918	240171,29
f'c= 210 kg/cm2 AGREGANDO 6% DE MICROSÍLICE	25/02/2022	11/03/2022	14	200,82	80	8,46056	0,000357	234063	
f'c= 210 kg/cm2 AGREGANDO 6% DE MICROSÍLICE	25/02/2022	11/03/2022	14	220,80	88	3,10493	0,000401	242532	
f'c= 210 kg/cm2 AGREGANDO 6% DE MICROSÍLICE	25/02/2022	25/03/2022	28	191,01	76	5,32148	0,000420	262321,75	
f'c= 210 kg/cm2 AGREGANDO 6% DE MICROSÍLICE	25/02/2022	25/03/2022	28	248,45	99	15,54292	0,000374	265292,63	264116,46
f'c= 210 kg/cm2 AGREGANDO 6% DE MICROSÍLICE	25/02/2022	25/03/2022	28	255,12	102	14,78140	0,000396	264735,01	

d) Concreto F'c=210 Kg/Cm² + 8% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, \$\frac{1}{48}\$ 978 360 036 - 993 595 300.
constructora.ayr.chiclayo@gmail.com

ENSAYO DE MODULO DE ELASTICIDAD ESTATICO DEL CONCRETO A COMPRESION (ASTM C-469)

PROYECTO

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

CONCRETO

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

RESP. LAB. : R.H.B.C.

SOLICITANTE ESTRUCTURA : JORGE KENY PERALTA PANTA

: f'c= 210 kg/cm2 AGREGANDO 8% DE MICROSÍLICE

TEC. RESP. : L.M.F.H.

IDENTIFICACIÓN	Fecha de vaciado	Fecha Ensayo	Edad	σ,	Esfuerzo S2 (40%σ _u)	Esluerzo S1 (0.000050)	ε unitaria ε ₂ (S ₂)	E _c	Promedio E _c
			(Dias)	(Kg/cm ²)	Kg/cm ²	Kg/cm ²	E ₂ (S ₂)	Kg/cm ⁻	Kg/cm ²
f'c= 210 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	25/02/2022	4/03/2022	7	192,50	77	2,62071	0,000354	244795	
f'c= 210 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	25/02/2022	4/03/2022	7	211,36	85	7,71403	0,000354	252654	248148,85
f'c= 210 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	25/02/2022	4/03/2022	7	199,59	80	6,03073	0,000349	246997	
f'c= 210 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	25/02/2022	11/03/2022	14	213,09	85	6,74977	0,000339	271465	
f'c= 210 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	25/02/2022	11/03/2022	14	221,48	89	11,63326	0,000330	275058	274736,09
f'c= 210 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	25/02/2022	11/03/2022	14	241,01	96	7,56827	0,000370	277686	
f'c= 210 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	25/02/2022	25/03/2022	28	221,47	89	2,45607	0,000358	290338,68	
f´c= 210 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	25/02/2022	25/03/2022	28	239,46	96	6,66125	0,000381	293533,42	298418,27
f'c= 210 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	25/02/2022	25/03/2022	28	227,42	91	7,72064	0,000392	311382,72	

e) Concreto Patrón F'c=280 Kg/Cm²

PROYECTO

ESTRUCTURA

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito-Chiclayo, ₹ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ENSAYO DE MODULO DE ELASTICIDAD ESTATICO DEL CONCRETO A COMPRESION (ASTM C-469)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE

CONCRETO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

 : JORGE KENY PERALTA PANTA
 RESP. LAB. : R.H.B.C.

 : Patrón - f c= 280 kg/cm2
 TEC. RESP. : L.M.F.H.

IDENTIFICACIÓN	Fecha de	Fecha	Edad	σ	Esfuerzo S2	Esfuerzo S1	€ unitaria	Ec	Promedio E _c
IDENTIFICACION	vaciado	Ensayo	(Días)	(Kg/cm ²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	ε ₂ (S ₂)	Kg/cm ²	Kg/cm ²
Patrón - f c= 280 kg/cm2	12/11/2021	19/11/2021	7	223.63	89	4.42608	0.000373	263178	
Patrón - f c= 280 kg/cm2	12/11/2021	19/11/2021	7	210.96	84	4.78805	0.000360	256805	260372.11
Patrón - f c= 280 kg/cm2	12/11/2021	19/11/2021	7	234.16	94	9.54428	0.000372	261133	
Patrón - f c= 280 kg/cm2	12/11/2021	26/11/2021	14	260.11	104	9.56218	0.000393	275746	
Patrón - f c= 280 kg/cm2	12/11/2021	26/11/2021	14	253.45	101	6.68338	0.000397	272657	271819.71
Patrón - f c= 280 kg/cm2	12/11/2021	26/11/2021	14	250.06	100	3.36367	0.000412	267057	
Patrón - f'c= 280 kg/cm2	12/11/2021	10/12/2021	28	267.57	107	20.74013	0.000361	286509.85	
Patrón - f c= 280 kg/cm2	12/11/2021	10/12/2021	28	267.57	107	19.72756	0.000368	292883.32	288206.12
Patrón - f c= 280 kg/cm2	12/11/2021	10/12/2021	28	261.62	105	16.29914	0.000402	285225.18	

f) Concreto F'c=280 Kg/Cm² + 4% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito— Chiclayo, 图 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

ENSAYO DE MODULO DE ELASTICIDAD ESTATICO DEL CONCRETO A COMPRESION (ASTM C-469)

PROYECTO : "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : JORGE KENY PERALTA PANTA

ESTRUCTURA : f'c= 280 kg/cm2 AGREGANDO 4% DE MICROSÍLICE

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

IDENTIFICACIÓN	Fecha de vaciado	Fecha Ensayo	Edad	σ _u	Esfuerzo S2 (40%σ _u)	Esfuerzo S1 (0.000050)	ϵ unitaria ϵ_2 (S ₂)	E _c	Promedio E _c
			(Días)	(Kg/cm ²)	Kg/cm ²	Kg/cm ²	£2 (S2)	Kg/cm ²	Kg/cm ²
f'c= 280 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	4/03/2022	7	239,45	96	9,95868	0,000382	258474	
f'c= 280 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	4/03/2022	7	255,21	102	6,55507	0,000411	264694	263681,05
f'c= 280 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	4/03/2022	7	256,40	103	2,27245	0,000424	267875	
f'c= 280 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	11/03/2022	14	287,25	115	9,78717	0,000409	292833	
f'c= 280 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	11/03/2022	14	270,37	108	12,45540	0,000388	282850	285834,02
f'c= 280 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	11/03/2022	14	273,73	109	12,53733	0,000394	281819	
f´c= 280 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	25/03/2022	28	273,19	109	11,73455	0,000396	324195,63	
f'c= 280 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	25/03/2022	28	308,04	123	17,39327	0,000376	321442,69	323906,31
f'c= 280 kg/cm2 AGREGANDO 4% DE MICROSÍLICE	25/02/2022	25/03/2022	28	280,52	112	12,83044	0,000413	326080,61	

g) Concreto F'c=280 Kg/Cm² + 6% De Microsílice

- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.

- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ☐ 978 360 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

ENSAYO DE MODULO DE ELASTICIDAD ESTATICO DEL CONCRETO A COMPRESION (ASTM C-469)

PROYECTO

: "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO"

UBICACIÓN SOLICITANTE : CHICLAYO- LAMBAYEQUE

: JORGE KENY PERALTA PANTA

RESP. LAB.: R.H.B.C.

ESTRUCTURA

: f'c= 280 kg/cm AGREGANDO 6% DE MICROSÍLICE

TEC. RESP. : L.M.F.H.

IDENTIFICACIÓN	Fecha de	Fecha	Edad	σα	Esfuerzo S2	Esfuerzo S1	ε unitaria	E _c	Promedio E _c
IDENTIFICACION	vaciado	Ensayo	(Días)	(Kg/cm ²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	ε ₂ (S ₂)	Kg/cm ²	Kg/cm ²
f'c= 280 kg/cm AGREGANDO 6% DE MICROSÍLICE	25/02/2022	4/03/2022	7	254,16	102	9,62673	0,000403	260962	
f'c= 280 kg/cm AGREGANDO 6% DE MICROSÍLICE	25/02/2022	4/03/2022	7	261,78	105	6,55507	0,000424	262756	262784,20
f'c= 280 kg/cm AGREGANDO 6% DE MICROSÍLICE	25/02/2022	4/03/2022	7	271,12	108	2,27245	0,000451	264635	
f'c= 280 kg/cm AGREGANDO 6% DE MICROSÍLICE	25/02/2022	11/03/2022	14	288,31	115	9,78717	0,000429	278187	273834,79
f'c= 280 kg/cm AGREGANDO 6% DE MICROSÍLICE	25/02/2022	11/03/2022	14	274,77	110	12,45540	0,000410	270333	
f'c= 280 kg/cm AGREGANDO 6% DE MICROSÍLICE	25/02/2022	11/03/2022	14	287,97	115	12,53733	0,000426	272985	
f'c= 280 kg/cm AGREGANDO 6% DE MICROSÍLICE	25/02/2022	25/03/2022	28	273,19	109	11,73455	0,000447	302687,30	
f'c= 280 kg/cm AGREGANDO 6% DE MICROSÍLICE	25/02/2022	25/03/2022	28	308,04	123	17,39327	0,000429	301196,64	301466,50
f'c= 280 kg/cm AGREGANDO 6% DE MICROSÍLICE	25/02/2022	25/03/2022	28	280,52	112	12,83044	0,000444	300515,56	

h) Concreto F'c=280 Kg/Cm² + 8% De Microsílice

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ₹ 978 360 036 - 993 595 300.
constructora.ayr.chiclayo@gmail.com

ENSAYO DE MODULO DE ELASTICIDAD ESTATICO DEL CONCRETO A COMPRESION (ASTM C-469)

"CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE PROYECTO CONCRETO"

ESTRUCTURA

: CHICLAYO- LAMBAYEQUE UBICACIÓN

: JORGE KENY PERALTA PANTA SOLICITANTE

: f'c= 280 kg/cm2 AGREGANDO 8% DE MICROSÍLICE

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

IDENTIFICACIÓN	Fecha de vaciado	Fecha	Edad	σu	Esfuerzo S2	Esfuerzo S1	€ unitaria	E,	Promedio E _c
	vaciado	Ensayo	(Días)	(Kg/cm ²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	€2 (S2)	Kg/cm ²	Kg/cm ²
f'c= 280 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	4/04/2022	11/04/2022	7	260,94	104	9,62673	0,000430	249535	
f'c= 280 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	4/04/2022	11/04/2022	7	271,12	108	6,55507	0,000456	251156	251323,80
f'c= 280 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	4/04/2022	11/04/2022	7	277,40	111	2,27245	0,000479	253280	
f'c= 280 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	4/04/2022	18/04/2022	14	296,41	119	9,78717	0,000434	282957	
f'c= 280 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	4/04/2022	18/04/2022	14	299,41	120	12,45540	0,000426	285164	284040,36
f'c= 280 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	4/04/2022	18/04/2022	14	297,08	119	12,53733	0,000424	284001	
f'c= 280 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	4/04/2022	2/05/2022	28	273,19	109	11,73455	0,000468	308209,43	
f'c= 280 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	4/04/2022	2/05/2022	28	308,04	123	17,39327	0,000442	305217,75	305310,22
f c= 280 kg/cm2 AGREGANDO 8% DE MICROSÍLICE	4/04/2022	2/05/2022	28	280,52	112	12,83044	0,000465	302503,49	

ANEXO 7. CERTIFICADOS DE CALIBRACION

a) Calibración de la balanza

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC-038

DOG-42 / Ed.00 - Sep 2019

Certificado de Calibración LMB21-0797

ORDEN DE TRABAJO : OT21-0638

CLIENTE : CONSTRUCTORA Y CONSULTORIA A & R

: Av. Vicente Russo Mza. S/ N Lote. 8 Fundo DIRECCIÓN

El Cerrito - Chiclayo - Lambayeque - Perú

LUGAR DE CALIBRACIÓN : ÁREA DE LABORATORIO

INSTRUMENTO : BALANZA

CALIBRADO

: NO AUTOMÁTICA CLASIFICACIÓN

: ELECTRÓNICA

MARCA / FABRICANTE : OHAUS

MODELO : NV622ZH

NÚMERO DE SERIE : 8341205143

: USA PROCEDENCIA

IDENTIFICACION : BAL-OH-001G-01

CAPACIDAD MAXIMA : 620

CAPACIDAD MÍNIMA : 0,20 g

DIV. DE ESCALA (d) : 0,01

DIV. DE VERIFICACIÓN (e) : 0,1

CLASE DE EXACTITUD

AT LOCAL : 10 °C

COEF. DERIVA TÉRMICA : 1E-05 °C1 FECHA DE CALIBRACIÓN : 2021-11-03

FECHA DE EMISIÓN : 2021-11-04

El presente Certificado de Calibración evidencia la trazabilidad del proceso de calibración con patrones Nacionales o internacionales, los cuales representan las unidades de medida de acuerdo con el Sistema internacional de Unidades (SI) y no debe utilizarse como certificado de conformidad con normas de producto.

MULTI SERVICE GROUP E.I.R.L. como organismo de evaluación de la conformidad de tercera parte ejecula servicios de calibración a la vez que calibra y mantiene sus patrones de referencia con la finalidad de garantizar la trazabilidad de las mediciones.

Con el fin de asegurar la calidad de sus mediciones, el usuario deberla recalibrar sus instrumentos a intervalos apropiados

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición, que resulta de multiplicar la incertidumbre estándar por el tactor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la Incertidumbre de la Medición". Generalmente, el valor de la magnitud està dentro del intervalo de los valores determinados con la incertidumbre expandida con u aproximadamente 95 % una probabilidad de

Los resultados reportados son válidos para las condiciones y momento en que se realizó la calibración. Al solicitante le corresponde disponer en su momento la recalibración.

MULTI SERVICE GROUP EI.R.L. no se responsabiliza por cualquier daño derivado del uso inadecuado del equipo calibrado, así como de una incorrecta interpretación de los resultados del presente certificado.

Sello

Director de Laboratorio Dante Abelino Pérez

PROHIBIOA LA REPROCUCCIÓN DE ESTE DOCUMENTO SALVO AUT Jr. Lian Gravas Nro. 1855 Urt. Floren 78 - Lama 36 Tell., 01 680 operaciones@magneri.com / metrocogastamosco.

b) Calibración de horno

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 024

CERTIFICADO DE CALIBRACIÓN

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de

medición que resulta de multiplicar la

incertidumbre estándar por el factor de cobertura

k=2. La incertidumbre fue determinada según la "guía para la Expresión de la incertidumbre en la

medición". Generalmente, el valor de la magnitud

está dentro del intervalo de los valores determinados con la incertidumbre expandida con

Los resultados son válidos en el momento y en las

condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución

de una recalibración, la cual está en función del

uso, conservación y mantenimiento del equipo o

Los resultados no deben ser utilizados como una certificación de conformidad con normas de

producto o como certificado del sistema de

CORPORACIÓN 2M & N S.A.C. no se responsabiliza de los periuicios que pueda ocasionar el uso inadecuado de este equipo, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados. El certificado de

calibración sin firma y sello carece de validez.

reglamentaciones vigentes.

calidad

una probabilidad de aproximadamente 95%.

273-CT-T-2021 Área de Metrología

Página 1 de 7

Expediente 909-10-2021

CONSTRUCTORA Y CONSULTORÍA A & R S.A.C. Solicitante

Dirección Av. Vicente Russo Mza, S/N Lote, 8 Fundo El Cerrito - Chiclayo -

Lambayeque - Perú

HORNO Equipo

ORION Marca

Modelo HL-03

No indica

Identificación H-02 (*)

Ubicación Área de Laboratorio

Procedencia No Indica Tipo de Ventilación

Nro. de Niveles 4

Alcance del Equipo 50 °C a 300 °C

Características Técnicas del Controlador del Medio Isotermo

Descripción	TERMÓMETRO CONTROLADOR
Marca / Modelo	Autonics / TCN4L
Alcance de indicación	0 °C a 400 °C
Resolución	0,1°C
Tipo	Digital
Identificación	No indica

Del 2021-11-03 al 2021-11-04

Lugar: Área de Laboratorio - CONSTRUCTORA Y CONSULTORÍA A & R S.A.C.

Av. Vicente Russo Mza, S/N Lote, 8 Fundo El Cerrito - Chiclayo - Lambayeque - Perú

Método utilizado: Por comparación directa siguiendo el procedimiento, PC-018-"Procedimiento de Calibración o Caracterización

de Medios Isotermos con aire como medio termostático" SNM-INDECOPI (Segunda Edición) - Junio 2009.

Fecha de calibración

2021-11-10 Fecha de emisión

ALVAREZ NAVARRO ANGEL GUSTAVO CORPORACION 2M N.S.A.C. JEFE DE METROLOGIA logistica@2myn.com Fecha: 10/11/2021 19:08 Filmado con www.locapu.pe

VELASCO NAVARRO MIRIAN ARACELI CORPORACION 2M N.S.A.C. GERENTE GENERAL logistica@2myn.com Fecha: 10/11/2021 19:12

Cód. de Servicio: 01319-A Cód. FT-T-03 Rev. 03

PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN ESCRITA POR CORPORACIÓN 2M & N S.A.C. Jr. Chiclayo N° 489 Int. A Rimac - Lima - Perú | Telf.: (01) 381-6230 RPC: 989-645-623 / 961-505-209 Página web: www.2myn.com | Correos: ventas@2myn.com | metrologia@2myn.com

c) Calibración de prensa de concreto

Certificado de Calibración - Laboratorio de Fuerza

F-25214-001 R0

Los resultados emitidos en este Certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados

solo corresponden al fitem que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjulcios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada

Este Certificado de Calibración documenta y asegura la trazabilidad de los resultados a patrones nacionales e internacionales, que

reproducen las unidades de medida de acuerdo

El usuario es responsable de la Calibración de los instrumentos en apropiados intervalos de

The results issued in this Certificate relates to the time and conditions under which the measurements. These results correspond to the

item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information

This Calibration Certificate documents and

ensures the traceability of the reported results to national and internationals standards, which

realize the units of measurement according to the International System of Units (SI). The user is responsable for Calibration the measuring instruments at appropriate time

provided by the customer.

intervals

con el Sistema Internacional de Unidades (SI).

por el solicitante

Calibration Certificate - Laboratory of Force

Page / Pág. 1 de 6

Equipo MÁQUINA ELETRICA DIGITAL PARA ENSAYOS DE Instrument CONCRETOS

Fabricante PERUTEST

Modelo PC-120

Número de Serie 1066 Serie I Number Identificación Interna PC-01

Capacidad Máxima 101973 kgf

Solicitante CONSTRUCTORA Y CONSULTORIA A & R
Customer SOCIEDAD ANONIMA CERRADA

Dirección AV. VICENTE RUSSO MZA. SN LOTE. 8 FND. EL

CERRITO LAMBAYEQUE - CHICLAYO - CHICLAYO

Ciudad CHICLAYO - PERÚ

Fecha de Calibración 2021 – 12 – 22

Fecha de Emisión 2022 – 01 – 11

Número de páginas del certificado, incluyendo anexos

Sin la aprobación del Láboratorio de Metrología Pinzuar no se puede reproducir el Certificado, excepto cuando se reproduce en su totalidad, ya que proporciona la segundad que las partes del Certificado no se secan de contexto. Los certificados de celibración sin firma no son validos.

Without the approved of the Pinzuer Metrobgy Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the Certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan el Certificado

mber of pages of the certificate and documents atlact

Signatures Authorizing the Certificate

lng. Miguel Andrés Vela Avellaneda

Tecg. Francisco Durán Romero

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratorio de Metrología: CI 18 #1035-72 | PBX, 57 (1) 745 4555 - 3174233640 | laboretrologia@pinzuar.com.co | WWWPNZJAR.COM.CC

d) Certificado abrasión los ángeles

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Area de Metrología

2. Solicitante

Laboratorio de Tiempo y Frecuencia

CERTIFICADO DE CALIBRACIÓN CA - LTF - 010 - 2022

01930-2022 1. Expediente

SOCIEDAD ANONIMA CERRADA

CONSTRUCTORA Y CONSULTORIA A &

AV. VICENTE RUSSO MZA. SN LOTE. 8 FND. EL 3. Dirección CERRITO - CHICLAYO - CHICLAYO - LAMBAYEQUE

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

MÁQUINA PARA PRUEBAS DE ABRASIÓN TIPO 4. Instrumento de medición LOS ÁNGELES

0108

PT-MA

PERÚ

PERUTEST **Fabricante**

Número de Serie

Modelo

Alcance de Indicación 0 a 9999 rpm

Div. de escala/Resolución 1 rpm

Identificación NO INDICA

DIGITAL Tipo de indicación

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde

disponer en su momento la ejecución de una

recalibración, la cual está en función del uso,

conservación y mantenimiento del instrumento de medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de

la calibración agui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

carece de validez.

6. Lugar de calibración AV. VICENTE RUSSO MZA. SN LOTE. 8 FND. EL CERRITO -CHICLAYO - CHICLAYO

LAMBAYEQUE

2022-04-08

Fecha de Emisión

Procedencia

Jefe del Laboratorio de Metrología

Sello

2022-04-09

5. Fecha de Calibración

MANUEL ALEJANDRO ALAGA TORRES

- 977 997 385 913 028 621
- 913 028 622 -913 028 623
- 913 028 624

- O Av. Chillon Lote 50 B Comas Lima Lima
- o comercial@calibratec.com.pe
- CALIBRATEC SAC

e) Certificado tamices

Certificado de Calibración - Laboratorio de Longitud

L-25122-003 RO

la

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

Este certificado de calibración documenta y

asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-

nales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information

This calibration certificate documents and This calibration certificate accuments and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International

The user is responsable for recalibrating the measuring instruments at appropriate time

provided by the customer.

System of Units (SI).

intervals

instrumentos y/o de la suministrada por el solicitante

tiempo.

Calibration Certificate - Dimensional Metrology Laboratory

Page / Pág 1 de 3

información

Equipo TAMIZ 8" Fabricante PINZUAR

Modelo GRANOTEST

Número de Serie Identificación Interna

Malla 3/4 in.

Solicitante CONSTRUCTORA Y CONSULTORIA A & R

TAM-3/4-01

SOCIEDAD ANONIMA CERRADA

Dirección

Av. Vicente Russo Mza. SN Lote. 8 Fnd. El Cerrito Lambayeque - Chiclayo - Chiclayo

Ciudad Chiclayo

Fecha de Calibración 2021 - 12 - 13

Fecha de Emisión 2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

Sin la aprobación del Laboratorio de Metrología Princuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos,

Without the approval of the Prazum Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned cash action certificates are not valid.

Firmas que Autorizan Certificado

lng. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Calibration Certificate - Dimensional Metrology Laboratory

L-25122-004 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al Item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan

Este certificado de calibración documenta y

asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information

This calibration certificate documents and

ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to

the International System of Units (SI). The user is responsable for recalibrating the measuring instruments at appropriate time

provided by the customer.

derivarse del uso inadecuado instrumentos y/o de la in suministrada por el solicitante.

Unidades (SI)

Page / Pág 1 de 3

información

TAMIZ 8" Equipo

Fabricante PINZUAR

Modelo GRANOTEST

Número de Serie 73032

Identificación Interna TAM-3/8-01

Malla 3/8 in.

CONSTRUCTORA Y CONSULTORIA A & R Solicitante

SOCIEDAD ANONIMA CERRADA

Dirección Av. Vicente Russo Mza, SN Lote, 8 Fnd, El

Cerrito Lambayeque - Chiclayo - Chiclayo

Ciudad Chiclayo

Fecha de Calibración 2021 - 12 - 13

2021 - 12 - 20 Fecha de Emisión

Número de páginas del certificado, incluyendo anexos

En la aprobación del Laboratorio de Métrologia Pinquer no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la segundad que las partes del certificado no se sasan de contexto. Los certificados de calibración sin firma no son váldos

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not laken our of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Ivan Martinez

Director Laboratorio de Metrología

Tecg. Jaiver Arnulfo López Metrólogo Laboratorio de Metrología

intervals

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratoro de Metrobaía: CI 18 #1038-72 I PBX 57 (1) 745 4555 - 3174233640 I laboratoro de Metrobaío de Metro

LABORATORIO DE METROLOGÍA PINZUAR S.A.S.

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 · Cel.: 316 538 5810 - 317 423 3640 www.pinzuar.com.co

Certificado de Calibración - Laboratorio de Longitud

L-25122-001 R1

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-nales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any

damages that may arise from the improper use of the instruments and/or the information

This calibration certificate documents and

ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to

the International System of Units (SI). The user is responsable for recalibrating the measuring instruments at appropriate time

derivarse del uso inadecuado instrumentos y/o de la in suministrada por el solicitante.

Unidades (SI).

Page / Pág 1 de 3

información

Calibration Certificate - Dimensional Metrology Laboratory

TAMIZ 8" Equipo PINZUAR Fabricante Modelo GRANOTEST

Número de Serie 79310

Identificación Interna TAM-3-01

Malla

CONSTRUCTORA Y CONSULTORIA A & R SOCIEDAD ANONIMA CERRADA Solicitante

Dirección Av. Vicente Russo Mza. SN Lote, 8 Fnd, El

Cerrito Lambayeque - Chiclayo - Chiclayo

Ciudad Chiclayo

Fecha de Calibración 2021 - 12 - 13

2022 - 09 - 12

Número de páginas del certificado, incluyendo anexos

Fecha de Emisión

Sh la aprobación del Laboratorio de Métrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la segundad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son visidos.

Without the approval of the Prizuar Methology Laboratory, the report can not be reproduced, except when it is reproduced in its enthety, since it provides the security that the parts of the certificate are not taken out of context. I incremed extinction certificate are not waiti

Firmas que Autorizan Certificado

Ing. Sergio lyan Martinez

provided by the customer

Tecg. Jaiver Arnulfo López

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Calibration Certificate - Dimensional Metrology Laboratory

L-25122-002 RO

Page / Pág 1 de 3

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

GRANOTEST

Número de Serie

73328

Identificación Interna

TAM-1 1/2-01

Malla

1 ½ in.

Solicitante

CONSTRUCTORA Y CONSULTORIA A & R

SOCIEDAD ANONIMA CERRADA

Dirección

Av. Vicente Russo Mza. SN Lote, 8 Fnd. El

Cerrito

Lambayeque - Chiclayo - Chiclayo

Ciudad

Chiclayo

Fecha de Calibración

2021 - 12 - 13

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

03 intervals.

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la suministrada por el solicitante la información

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to The desirements. These results correspond to the Item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the oustomer.

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la segundad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Prizuar Midrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calculation certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez Director Laboratorio de Metrología

Tecg. Jaiver Arnulfo López

LM-PO-12-F-01 R13.4

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Calibration Certificate - Dimensional Metrology Laboratory

L-25122-005 RO

Page / Pág 1 de 3

Equipo

Fabricante

TAMIZ 8" PINZUAR

Modelo

GRANOTEST

Número de Serie

74652

Identificación Interna

TAM-4-01

Malla

No. 4

Solicitante

CONSTRUCTORA Y CONSULTORIA A & R

SOCIEDAD ANONIMA CERRADA

Dirección Address

Av. Vicente Russo Mza. SN Lote, 8 Fnd. El

Cerrito

Lambayeque - Chiclayo - Chiclayo

Ciudad

Chiclayo

Fecha de Calibración

2021 - 12 - 13

2021 - 12 - 20

Fecha de Emisión

Número de páginas del certificado, incluyendo anexos

03

Este certificado de calibración documenta v asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al ítem que se relaciona en

esta página. El laboratorio que lo emite no

ser responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información

suministrada por el solicitante.

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

Sir la aprobación del Laboratorio de Mérología Pinquar no se puede reproducir el informe, excepto cuando se reproduce en su titalidad, ya que proporciona la segundad que las partes del certificado no se sacan de contento. Los certificados de calibración sin firme no son válidos.

Williaut the approval of the Piczuar Meleriology Laboratory, the report can not be reproduced, except when it is reproduced in its enthety, since it provides the excurity that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

LM-PC-12-F-01 R13-4

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratorio de Metrología: C1*8 #1038-72 | PBX, 57 (15 745 4555 - \$174233640 | laboratrologia/arizuar.com.co | WWW.PNZUAR.C1

LABORATORIO DE METROLOGÍA PINZUAR S.A.S.

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 · Cel.: 316 538 5810 - 317 423 3640 www.pinzuar.com.co

Certificado de Calibración - Laboratorio de Longitud

Calibration Certificate - Dimensional Metrology Laboratory

L-25122-006 R1

Page / Pág 1 de 3

TAMIZ 8" Equipo PINZUAR Fabricante

Modelo GRANOTEST

Número de Serie 80024

Identificación Interna TAM-8-01

Malla No. 8

CONSTRUCTORA Y CONSULTORIA A & R SOCIEDAD ANONIMA CERRADA Solicitante

Dirección Av. Vicente Russo Mza. SN Lote. 8 Fnd. El

Cerrito

Lambayeque - Chiclayo - Chiclayo

Ciudad Chiclayo

Fecha de Calibración 2021 - 12 - 14

2022 - 09 - 12 Fecha de Emisión

Número de páginas del certificado, incluyendo anexos

Sh la aprobación del Laboratorio de Metrologia Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la segundad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son validos

Without the approval of the Prozuer Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entitlety, since it provides the security that the parts of the certificate are not taken our of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Director Laboratorio de Metrología

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al Item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado instrumentos y/o de la in suministrada por el solicitante. información

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-nales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI)

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time intervals

03

Tecg. Jaiver Arnulfo López Metrólogo Laboratorio de Metrología

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO Fuerza | Longitud | Masa | Par Torsional | Presión | Temperatura

Calibration Certificate - Dimensional Metrology Laboratory

L-25122-008 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

Este certificado de calibración documenta y

asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-nales, que reproducen las unidades de medida de acuerdo con el Sistema

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to the time and conditions under which the

measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of

measurement according to the International

The user is responsable for recalibrating the measuring instruments at appropriate time

instrumentos y/o de la suministrada por el solicitante.

Internacional de Unidades (SI),

provided by the customer.

System of Units (SI).

Page / Pág 1 de 3

información

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

GRANOTEST

Número de Serie

77541

Identificación Interna

TAM-16-01

Malla

No. 16

Solicitante

CONSTRUCTORA Y CONSULTORIA A & R

SOCIEDAD ANONIMA CERRADA

Dirección

Av. Vicente Russo Mza. SN Lote, 8 Fnd. El Cerrito

Lambayeque - Chiclayo - Chiclayo

Chiclayo Ciudad

Fecha de Calibración Date of calibration

2021 - 12 - 14

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

03 intervals

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Fixtuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of content. Unsigned cashs alon certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez
Director Laboratorio de Metrolonía

Teca. Jaiver Arnulfo López

LM-PC-12-F-01 R13.4

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratorio de Metrología: C118 #1038-72 | FBX: 57 (1) 745 4555 - \$174233640 | laboretrologio@pinzuarcomico | WWWPNZJA

LABORATORIO DE METROLOGÍA PINZUAR S.A.S.

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 · Cel.: 316 538 5810 - 317 423 3640 www.pinzuar.com.co

Certificado de Calibración - Laboratorio de Longitud

Calibration Certificate - Dimensional Metrology Laboratory

L-25122-009 R1

Los resultados emitidos en este certificado se refleren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any

damages that may arise from the improper use of the instruments and/or the information

This calibration certificate documents and

ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to

the International System of Units (SI). The user is responsable for recalibrating the measuring instruments at appropriate time

provided by the customer

intervals.

derivarse del uso inadecuado instrumentos y/o de la in suministrada por el solicitante.

Unidades (SI).

Page / Pág 1 de 3

información

TAMIZ 8" Equipo PINZUAR Fabricante

Modelo GRANOTEST

Número de Serie 70694

Identificación Interna TAM-30-01

Malla No. 30

CONSTRUCTORA Y CONSULTORIA A & R SOCIEDAD ANONIMA CERRADA Solicitante

Av. Vicente Russo Mza. SN Lote, 8 Fnd. El Dirección

Cerrito

Lambayeque - Chiclayo - Chiclayo

Ciudad Chiclayo

Fecha de Calibración 2021 - 12 - 14

Fecha de Emisión 2022 - 09 - 05

Número de páginas del certificado, incluyendo anexos

Sin la aprobación del Laboratorio de Métrología Plinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sezan de contexto. Los certificados de calibración sin firma no son válidos,

Without the approval of the Prozum Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken conf

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

LM-PC-12-F-01 R13.4

LABORATORIO DE METROLOGÍA PINZUAR S.A.S.

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 · Cel.: 316 538 5810 - 317 423 3640 www.pinzuar.com.co

Certificado de Calibración - Laboratorio de Longitud

L-25122-007 R1

Los resultados emitidos en este certificado se refleren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

Este certificado de calibración documenta y

asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-

nales, que reproducen las unidades de medida de acuerdo con el Sistema

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to the time and conditions under which the

measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of

measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

instrumentos y/o de la suministrada por el solicitante

Internacional de Unidades (SI).

provided by the customer.

tiempo.

Calibration Certificate - Dimensional Metrology Laboratory

Page / Pág 1 de 3

información

TAMIZ 8" Equipo PINZUAR **Fabricante** GRANOTEST Modelo 73235 Número de Serie Identificación Interna TAM-40-01

Malla No. 40

Solicitante CONSTRUCTORA Y CONSULTORIA A & R SOCIEDAD ANONIMA CERRADA

Dirección Av. Vicente Russo Mza. SN Lote. 8 Fnd. El

Lambaveque - Chiclavo - Chiclavo Chiclayo Ciudad

Fecha de Calibración 2021 - 12 - 14

Fecha de Emisión 2022 - 09 - 12

Número de páginas del certificado, incluyendo anexos

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el Informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Pirayar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

ing. Sergio Iván Martinez

Tecg. Jaiver Arnulfo López

Calibration Certificate - Dimensional Metrology Laboratory

L-25122-010 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

Este certificado de calibración documenta y

asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-nales, que reproducen las unidades de medida de acuerdo con el Sistema

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to the time and conditions under which the

measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International

The user is responsable for recalibrating the measuring instruments at appropriate time

instrumentos y/o de la suministrada por el solicitante.

Internacional de Unidades (SI),

Page / Pág 1 de 3

información

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

GRANOTEST

Número de Serie

80270

Identificación Interna

TAM-50-01

Malla

No. 50

Solicitante

CONSTRUCTORA Y CONSULTORIA A & R

SOCIEDAD ANONIMA CERRADA

Dirección

Lambayeque - Chiclayo - Chiclayo

Ciudad

Av. Vicente Russo Mza. SN Lote, 8 Fnd. El Cerrito

Chiclayo

Fecha de Calibración

2021 - 12 - 14

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totaliciad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Piratuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of content. Unsigned calcharion certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez Director Laboratorio de Metrología

Tecg. Jaiver Arnulfo López

System of Units (SI).

intervals.

03

LM-PC-12-F-01 R13.4

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratorio de Metrología: CL18 #1038-72 LPBX 57 (*1.745.4555 - 3174283640 Licitometrologiazioni de LWWWPNZUAR.COMCC

L-25122-011 RO

Calibration Certificate - Dimensional Metrology Laboratory

Page / Pág 1 de 3

Equipo

Fabricante

TAMIZ 8" PINZUAR

Modelo

GRANOTEST

Número de Serie

79415

Identificación Interna

TAM-100-01

Malla

No. 100

Solicitante

CONSTRUCTORA Y CONSULTORIA A & R SOCIEDAD ANONIMA CERRADA

Av. Vicente Russo Mza, SN Lote, 8 Fnd, El

Cerrito

Ciudad

Dirección

Lambayeque - Chiclayo - Chiclayo

Chiclayo

Fecha de Calibración

2021 - 12 - 15

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-nales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI)

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time intervals.

Sin la aprobación del Laboratorio de Metrologia Pinquar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la segundad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

03

Without the approval of the Prizuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken our of content. Unsigned cultivation certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez Director Laboratorio de Metrología

Tecg. Jaiver Arnulfo López

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

abcratoria de Metrología: C1 ° 8 #1038-72 | PBX: 57 (1) 745 4555 - 3174233640 | laboretrologio/giphzuar.com.co | WWWPNZLAR.COM.CO

190

L-25122-012 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no

se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado de calibración documenta y

asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-nales, que reproducen las unidades de medida

de acuerdo con el Sistema Internacional de

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to

measurements. These results correspond the flem that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability of the reported results

to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time intervals.

Unidades (SI)

tiempo.

Calibration Certificate - Dimensional Metrology Laboratory

Page / Pág 1 de 3

Equipo TAMIZ 8"

Fabricante PINZUAR

GRANOTEST Modelo

Número de Serie

Address

TAM-200-01 Identificación Interna

Malla No. 200

CONSTRUCTORA Y CONSULTORIA A & R SOCIEDAD ANONIMA CERRADA Solicitante

72838

Av. Vicente Russo Mza. SN Lote, 8 Fnd. El Dirección

Cerrito

Lambayeque - Chiclayo - Chiclayo

Ciudad Chiclayo

2021 - 12 - 15 Fecha de Calibración

2021 - 12 - 20 Fecha de Emisión

Número de páginas del certificado, incluyendo anexos

Sin la aprobación del Laboratorio de Metrologia Phizuar no se puede reproducir el informe: excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contento. Los pertificados de celibración sia firma no son válidos.

03

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, ance it provides the eccurity that the parts of the certificate are not taken out of content. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio I∜án Martínez

Tecg. Jaiver Arnulfo López

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratorio de Metrologia: CL18 #1038-72 | P9X 57 (1) 745-4565 - 3174233640 | laboretrologia@cira.area

ANEXO 8. CERTIFICADOS DE ACREDITACION DE LABORATORIO

Certificado

La Dirección de Acreditación del Instituto Nacional de Calidad – INACAL, en el marco de la Ley N° 30224, **OTORGA** el presente certificado de Acreditación a:

CONSTRUCTORA Y CONSULTORIA A & R SOCIEDAD ANONIMA CERRADA

Laboratorio de Ensayo

En su sede ubicada en: Av. Vicente Russo N. 1530 - interior D y F - Fundo el Cerrito, Chiclayo, Lambayeque.

Con base en la norma

NTP-ISO/IEC 17025:2017 Requisitos Generales para la Competencia de los Laboratorios de Ensayo y Calibración

Facultándolo a emitir Informes de Ensayo con Símbolo de Acreditación. En el alcance de la acreditación otorgada que se detalla en el DA-acr-06P-21F que forma parte integral del presente certificado llevando el mismo número de registro indicado líneas abajo.

Fecha de Acreditación: 29 de agosto de 2023 Fecha de Vencimiento: 28 de agosto de 2026

PATRICIA AGUILAR RODRÍGUEZ

Directora (d.t.). Dirección de Acreditación - INACAL.

Fecha de emisión: 08 de setiembre de 2023

Cedula: N°: 299-2023-INACAL/DA Contrato N°: 053-2023/INACAL-DA Registro N°: LE - 216

El presente cerdificado dene validez con su correspondente Alcance de Acreditación y cédula de notificación dado que el alcance puede estar sujeto a ampliaciones, redocciones, actualizaciones y suspensiones temporales. El alcance y vigencia debe conflicinarse en la página web www.lancal.gob.pefacreditacion/categoria/acreditados, y/o a través del código QE al momento de hacer uso del presente cerdificacio

La Dirección de Acreditación del INACAL es timiente del Acciento de Reconactimiento Multifotorial OMLAD de Inter American Acceditation Cooperation (ILAC) e International Acceditation Forum (IAE) y del Acceditation del Reconactimiento Multip con la International Laboratory Accreditation (ILAC).

DA-acr-01P-02M Ver. 03

CERTIFICADO PE GC 23/9001/09 0216

El Sistema de Gestión de:

"CONSTRUCTORA Y CONSULTORIA A & R SOCIEDAD ANONIMA CERRADA"

Dispone de un Sistema de Gestión de la Calidad, que ha sido evaluado y certificado en cuanto a su cumplimiento de los requisitos de:

ISO 9001:2015

Para las siguientes actividades:

"Servicios de laboratorios de ensayo de materiales (suelos, concreto y asfalto). Estudios geotécnicos, geofísicos y topográficos. Servicio de control de calidad en obras (cimentaciones y pavimentos) y Consultorías en general."

Que se realiza en:

AV. VICENTE RUSSO NRO, 1530 INT. D-F FND. EL CERRITO. CHICLAYO - CHICLAYO - LAMBAYEQUE.

La validez de este certificado está sujeta a las auditorías de seguimiento y cualquier verificación deberá hacerse con las oficinas de LOT® INTERNACIONAL

La validez de este certificado está sujeta a las auditorías de seguimiento y cualquier verificación deberá hacerse con las oficinas de LOT® INTERNACIONAL Este certificado es válido desde el 06/10/2023 hasta el 05/10/2026 Auditoría de Re-Certificación será 90 días antes del 05/10/2026 Edición 1. Certificado con LOT® INTERNACIONAL desde el 06/10/2023

Autorizado por

Horacio Vergara Arancibia LOT® INTERNACIONAL

www.lo⊠nternacional.com

CERTIFICADO PE GC 23/9001/09 0216

Página 1 de 1 F-3.2.5-1

LOT INTERNACIONAL

ANEXO 9 DISEÑO DE MEZCLA POR METRO CÚBICO

Cuadro I

Diseño de mezcla patrón con f´c = 210 kg/cm²

Cantidad de mate	Cantidad de materiales por metro cúbico					
Relació	Relación A/C= 0.515					
Cemento	375	Kg/m ³				
Agua	193	L				
Agregado fino	777	Kg/m ³				
Agregado grueso	1007	Kg/m ³				

Cuadro II

Diseño de mezcla patrón con f´c = 280 kg/cm²

Cantidad de mater	Cantidad de materiales por metro cúbico					
Relació	Relación A/C= 0.438					
Cemento	441	Kg/m ³				
Agua	193	L				
Agregado fino	721	Kg/m ³				
Agregado grueso	1007	Kg/m ³				

Cantidad de materiales por metro cúbico						
Rel	Relación A/C= 0.515					
Materiales	% de microsílice					
ivialei iales	4%	6%	8%			
Cemento (Kg/m³)	375	375	375			
Agua (L)	193	193	193			
Agregado fino (Kg/m³)	777	777	777			
Agregado grueso (Kg/m³)	1007	1007	1007			
Microsílice (Kg/m³)	15	22.5	30			

Cuadro IV $\label{eq:cuadro IV}$ Diseño experimental con % de microsílice para f´c = 280 kg/cm²

Relación A/C= 0.68					
Motoriolog		% de micros	sílice		
Materiales <u> </u>	4%	6%	8%		
Cemento (Kg/m³)	441	441	441		
Agua (L)	193	193	193		
Agregado fino (Kg/m³)	721	721	721		
Agregado grueso (Kg/m³)	1007	1007	1007		
Microsílice (Kg/m³)	17.64	26.46	35.28		

ANEXO 10. COSTO DE PRODUCCIÓN

Cuadro V
Se especifican los costos para 1m³ de un diseño patrón de f'c=210 kg/cm²

Análisis de costos unitarios						
Recursos	Descripción	Unidad	Cantidad	Precio Unitario S/.	Total S/	
Mano de obra	Oficial	hh	1.00	60.00	60.00	
wano de obra	Peón	hh	4.00	50.00	200.00	
	Cemento	bol	8.82	27.50	242.55	
	Agregado Fino	m^3	0.51	50.00	25.50	
Materiales	Agregado Grueso	m^3	0.69	50.00	34.50	
	Agua	m^3	0.19	5.00	0.95	
	Combustible	gal	1.00	15.00	15.00	
Equipos	Trompo	hm	1.00	50.00	50.00	
_		TOTAL			628.50	

Cuadro VI
Se especifican los costos para 1m³ de un diseño patrón de f'c=280 kg/cm²

Análisis de costos unitarios							
Recursos	Descripción	Unidad	Cantidad	Precio Unitario S/.	Total S/.		
Mano de obra	Oficial	hh	1.00	60.00	60.00		
Mano de obra	Peón	hh	4.00	50.00	200.00		
	Cemento	bol	10.38	27.50	285.45		
	Agregado Fino	m^3	0.48	50.00	24.00		
Materiales	Agregado Grueso	m^3	0.69	50.00	34.50		
	Agua	m^3	0.19	5.00	0.95		
	Combustible	gal	1.00	15.00	15.00		
Equipos	Trompo	hm	1.00	50.00	50.00		
TOTAL							

Cuadro VII

Se especifican los costos para 1m³ de un diseño de f'c=210 kg/cm² con el porcentaje óptimo de 8% de microsílice

Análisis de costos unitarios							
Recursos	Descripción	Unidad	Cantidad	Precio Unitario S/.	Total S/.		
Mano de obra	Oficial	hh	1.00	60.00	60.00		
wano de obra	Peón	hh	4.00	50.00	200.00		
	Cemento	bol	8.82	27.50	242.55		
	Microsílice	kg	30.00	10.00	300.00		
Materiales	Agregado Fino	m^3	0.51	50.00	25.50		
wateriales	Agregado Grueso	m^3	0.69	50.00	34.50		
	Agua	m^3	0.19	5.00	0.95		
	Combustible	gal	1.00	15.00	15.00		
Equipos	Trompo	hm	1.00	50.00	50.00		
TOTAL 928.5							

Cuadro VIII

Se especifican los costos para 1m³ de un diseño de f'c=280 kg/cm² con el porcentaje óptimo de 8% de microsílice

Análisis de costos unitarios							
Recursos	Descripción	Unidad	Cantidad	Precio Unitario S/.	Total S/.		
Mano de obra	Oficial	hh	1.00	60.00	60.00		
Mano de obra	Peón	hh	4.00	50.00	200.00		
	Cemento	bol	10.38	27.50	285.45		
	Microsílice	kg	35.28	10.00	352.3		
Materiales	Agregado Fino	m^3	0.48	50.00	24.00		
Materiales	Agregado Grueso	m^3	0.69	50.00	34.50		
	Agua	m^3	0.19	5.00	0.95		
	Combustible	gal	1.00	15.00	15.00		
Equipos	Trompo	hm	1.00	50.00	50.00		
TOTAL							

ANEXO 11. VALIDEZ Y CONFIABILIDAD DE LOS RESULTADOS OBTENIDOS CON CRITERIO DE JUICIO EXPERTO

Colegiatura Nº

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Tamora Ternero Ranald Harcelo	LARNENU ILLANDIUS	Prueba de compresión, tracción, flexión y módulo de elasticidad	-Peralta Panta Jorge Keny

II. Aspectos de validación de cada Item

Ficha de validación según AIKEN

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFIÇACIÓN Y OPINIÓN		
1	A	Correcto		
2	A	Correcto		
3	A	Correcto		
4	A	Correcto		

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/İtems	Claridad Contexto		texto	Congruencia		Dominio del constructo		
	F'c= 210 Kg/cm ²	Sí	No	Sí	No	Sí	No	Sí	No
1	Resistencia a compresión	X		X		X		X	
2	Resistencia a tracción		X		×	X		×	
3	Resistencia a flexión	X		X		×			X
4	Módulo de elasticidad	X		X	Excess on the	X		X	
_	F'c= 280 Kg/cm ²	Sí	No	Sí	No	Si	No	Sí	No
1	Resistencia a compresión	X		X		×		X	
2	Resistencia a tracción		X		X	×		×	
3	Resistencia a flexión	X		X		×			×
4	Módulo de elasticidad	X		X		X		×	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X)	Aplicable después de corregir () No aplicable () Juez Nº01
Apellidos y nombres del juez validador:	Lamora Jernero Koneld Marcelo - JUEZ Nº01
Especialidad: Ingeniero cini	

Colegiatura Nº 311738

Ficha de validación según AIKEN

I. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Ojeda Neùra Fiorela Katherine	ASISTENTE DE OBRA	Prueba de compresión, tracción, flexión y módulo de elasticidad	-Peralta Panta Jorge Keny

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	TODO CORRECTO
2	A	TODO CORRECTO
3	A	TODO CORRECTO
4	Α	TODO CORPECTO

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Ítems	Claridad		Contexto		Congruencia		Dominio del constructo	
	F'c= 210 Kg/cm ²	Sí	No	Sí	No	Sí	No	Sí	No
1	Resistencia a compresión	X		X		X		X	
	Resistencia a tracción	X	17 - 10 - 17 - 12 - 12	X		X		X	
3	Resistencia a flexión		×	X		X		X	
4	Módulo de elasticidad	X		X			X		X
	F'c= 280 Kg/cm ²	Sí	No	Sí	No	Sí	No	Sí	No
1	Resistencia a compresión	X		X		X		X	
2	Resistencia a tracción	X		X		X	1	X	
3	Resistencia a flexión		X	X		×		×	
4	Módulo de elasticidad	X		X			X		X

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: DIEDA NEIRA FICRELA KATHERINE - TUERNE Especialidad: TNGENIERIA CIVIL

Colegiatura Nº 320491

Ficha de validación según AIKEN

I. Datos generales

donde labora	instrumento de evaluación	Autor del Instrumento
Hunicipalided	compresión, tracción,	-Peralta Panta Jorge Keny
)	oyectista- lunicipalidad	Oyectista— lunicipalided listr. Overcoto leasticidad

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	Α	Todo conecto
2	Α	Todo Conecto
3	Á	Todo Correcto
4	A	Todo correcto

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Ítems	Claridad		Contexto		Congruencia		Dominio del constructo	
-	F'c= 210 Kg/cm ²	Sí	No	Sí	No	Sí,	No	Sí	No
1	Resistencia a compresión	X		X		X		X	L
2	Resistencia a tracción	X		X		X		X	
3	Resistencia a flexión	X		X		X		X	
4	Módulo de elasticidad	X		X			X	X	
	F'c= 280 Kg/cm ²	Sí	No	Sí	No	Sí	No	Śí	No
1	Resistencia a compresión	X		Х		X		X	
2	Resistencia a tracción	X		X		X		X	
3	Resistencia a flexión	X		X		X		X	
4	Módulo de elasticidad	X		X			X	X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Chararry Koosi Julio Cesar - Juez Moosi Especialidad: Ingeniero Civil

JULIOCESAR CHAVARRY KOOSI INGENIERO CIVIL REG. CIP. 320491

Colegiatura Nº 24 69 04

Ficha de validación según AIKEN

I. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Ruit Perales Myud Angel	Laboratores LEMS WEC EIRL	Prueba de compresión, tracción, flexión y módulo de elasticidad	-Peralta Panta Jorge Keny

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Tab corneto
2	A	Todo correcto
3	A	Ted cornete
4	A	Toda correcto

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Ítems	Claridad		Contexto		Congruencia		Dominio del constructo	
	F'c= 210 Kg/cm ²	Sí	No	Sí	No	Sí	No	Sí	No
1	Resistencia a compresión	X		X		×		×	
2	Resistencia a tracción	×		X		×		×	
3	Resistencia a flexión	X		×			×	X	
4	Módulo de elasticidad	X		×		×		X	
	F'c= 280 Kg/cm ²	Sí	No	Sí	No	Sí	No	Sí	No
1	Resistencia a compresión	×		×		×		X	
	Resistencia a tracción	X		×		×		×	
3	Resistencia a flexión	X		×			×	X	
	Módulo de elasticidad	X		X		×		×	

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Kwit Terroter Mind Argul — Juez № 05
Especialidad: Lg. Cwil

INGENIERO CIVIL CIP. 246904

Colegiatura N°

Ficha de validación según AIKEN

ı.	Datos	general	89

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Briones Quiros Jorge Alberto	Coordinador de Progectos de Emenso del Hospital Solleia del Hospital Solleia	Prueba de compresión, tracción, flexión y módulo de elasticidad	-Peralta Panta Jorge Keny

Caracterización Mecánica de la Adición de Microsílice por Cemento para la Elaboración de Concreto.

II. Aspectos de validación de cada Item

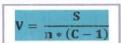
Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Todo Correcto
2	A	Toda Correcto
3	A	Todo Chrecto
4	A	Todo Correcto

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

Dimension	Dimensiones/Ítems F'c= 210 Kg/cm²		Claridad		Contexto		ruencia	Dominio del constructo	
F'c= 210 Kg/c			i No	Sí	No	Sí	No	Sí	No
1 Resistencia a	compresión	X		×		×		X	
2 Resistencia a	tracción	X		×		×		×	
3 Resistencia a	flexión	X		×		×		×	A STATE OF THE STA
4 Módulo de ela	sticidad		×	X		×		X	
F'c= 280 Kg/c	m ²	Sí	No	Sí	No	Sí	No	Sí	No
1 Resistencia a		X		×		X		×	
2 Resistencia a	tracción	X		×		×		×	
3 Resistencia a	flexión	X		X		×		×	
4 Módulo de ela	sticidad		X	X		X		×	

Observaciones (precisar si hay suficiencia):


Opinión de aplicabilidad: Aplicable (<	Aplicable después de corregir () No aplicable ()	
Apellidos y nombres del juez validador:	Aplicable después de corregir () No aplicable () Briones Quiros Torge Alberto - Juez (205
Especialidad: Ingeniero Civel	0 0	

JORGE ALBERTO PRIONES QUIROZ INGENIERO CIVIL REG. CIP 230084

VALIDEZ Y CONFIABILIDAD POR 5 JUECES EXPERTOS

INSTRUMENTO SOBRE MÉTODO DE ENSAYO PARA LA CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO

				CLARIDA	D			
DISEÑO			210 Kg/cm ² n + 8% Micro	sílice	F'c= 280 Kg/cm ² Diseño Patrón + 8% Microsílice			
ENSAYO	Compresión	Tracción	Flexión	Módulo de elasticidad	Compresión	Tracción	Flexión	Módulo de elasticidad
Juez 1	1	0	1	1	1	0	1	1
Juez 2	1	1	0	1	1	1	0	1
Juez 3	1	1	1	1	1	1	1	1
Juez 4	1	0	1	1	1	0	1	1
Juez 5	1	1	1	0	1	1	1	0
S	5	3	4	4	5	3	4	4
n	5	5	5	5	5	5	5	5
С	2	2	2	2	2	2	2	2
V de Aiken por ensayo	1	0.6	0.8	0.8	1	0.6	8.0	0.8
V de Aiken por diseño				0	.8000			

				CONTEXT	0			
DISEÑO			210 Kg/cm ² n + 8% Micro	sílice	F'c= 280 Kg/cm ² Diseño Patrón + 8% Microsílice			
ENSAYO	Compresión	Tracción	Flexión	Módulo de elasticidad	Compresión	Tracción	Flexión	Módulo de elasticidad
Juez 1	1	0	1	1	1	0	1	1
Juez 2	1	1	1	1	1	1	1	1
Juez 3	1	1	1	1	1	1	1	1
Juez 4	1	1	1	1	1	1	1	1
Juez 5	1	1	1	1	1	1	1	1
S	5	4	5	5	5	4	5	5
n	5	5	5	5	5	5	5	5
С	2	2	2	2	2	2	2	2
V de Aiken por ensayo	1	0.8	1	1	1	8.0	1	1
V de Aiken por diseño				0	.9500			

-		F'c= '	F'c= 210 Kg/cm ²			F'c= 280 Kg/cm ²			
DISEÑO			n + 8% Micro	sílice		Diseño Patro	ón + 8% Micro	sílice	
ENSAYO	Compresión	Tracción	Flexión	Módulo de elasticidad	Compresión	Tracción	Flexión	Módulo de elasticidad	
Juez 1	1	1	1	1	1	1	1	1	
Juez 2	1	1	1	0	1	1	1	0	
Juez 3	1	1	1	0	1	1	1	0	
Juez 4	1	1	1	1	1	1	1	1	
Juez 5	1	1	1	1	1	1	1	1	
S	5	5	5	3	5	5	5	3	
n	5	5	5	5	5	5	5	5	
С	2	2	2	2	2	2	2	2	
V de Aiken por ensayo	1	1	1	0.6	1	1	1	0.6	
V de Aiken por diseño				0.	.9000				

			DOM	INIO DEL CON	ISTRUCTO			
DISEÑO		F'c= 210 Kg/cm² Diseño Patrón + 8% Microsílice			F'c= 280 Kg/cm ²			
DIOLIGO						Diseño Patre	ón + 8% Micro	osílice
ENSAYO	Compresión	Tracción	Flexión	Módulo de elasticidad	Compresión	Tracción	Flexión	Módulo de elasticidad
Juez 1	1	1	0	1	1	1	0	1
Juez 2	1	1	1	0	1	1	1	0
Juez 3	1	1	1	1	1	1	1	1
Juez 4	1	1	1	1	1	1	1	1
Juez 5	1	1	1	1	1	1	1	1
S	5	5	4	4	5	5	4	4
n	5	5	5	5	5	5	5	5
С	2	2	2	2	2	2	2	2
V de Aiken por ensayo	1	1	0.8	0.8	1	1	0.8	0.8
V de Aiken por diseño				0	.9000			

V_{promedio} de Aiken del instrumento por jueces expertos

0.8875

Luis Arturo Montenegro Carracho
LIC. ESTADÍSTICA
MG. INVESTIGACIÓN
DR. EDUCACIÓN
COESPE 262

TESIS: CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO

TESISTA: PERALTA PANTA, JORGE KENY

omoresión

210 Kg/cm ²							
Dia de Ensayo	PATRÓN	4% MICROSÍLICE	6% MICROSÍLICE	8% MICROSÍLICE			
7 dias	163.87	178.3	194.53	202.37			
14 dias	189.4	210	222.93	229.17			
28 dias	216.83	255.63	259.5	282.43			

280 Kg/cm ²							
Día de Ensayo	PATRÓN	4% MICROSÍLICE	6% MICROSÍLICE	8% MICROSÍLICE			
7 dias	219.7	250.8	262.8	270.33			
14 dias	254.97	279.3	287.2	300.8			
28 dias	287.9	317.8	332.27	345.8			

Tracción

210 Kg/cm²							
Día de Ensayo	PATRÓN	4% MICROSÍLICE	6% MICROSÍLICE	8% MICROSÍLICE			
7 días	19.7	21.4	23.3	24.3			
14 dias	22.7	25.1	26.8	27.5			
28 dias	26	30.7	31.1	33.9			

280 Kg/cm ²							
Día de Ensayo	PATRÓN	4% MICROSÍLICE	6% MICROSÍLICE	8% MICROSÍLICE			
7 dias	26.3	30.1	31.5	32.4			
14 dias	30.6	33.5	34.5	36.1			
28 dias	34.5	38.1	39.9	41.5			

lexión

210 Kg/cm ²							
Día de Ensayo	PATRÓN	4% MICROSÍLICE	6% MICROSÍLICE	8% MICROSÍLICE			
7 dias	24.5	26.7	29.2	30.4			
14 dias	28.5	31.5	33.4	34.4			
28 dias	32.6	38.4	38.9	42.4			

280 Kg/cm ²							
Día de Ensayo	PATRÓN	4% MICROSÍLICE	6% MICROSÍLICE	8% MICROSÍLICE			
7 dias	33	37.6	39.4	40.5			
14 dias	38.2	41.9	43.1	45.1			
28 dias	43.2	47.7	49.8	51.8			

Módulo

210 Kg/cm ²					
Día de Ensayo	PATRÓN	4% MICROSÍLICE	6% MICROSÍLICE	8% MICROSÍLICE	
7 dias	204334.62	223798.02	228388.01	248148.85	
14 dias	226693.54	223798.02	240171.29	274736.09	
28 dias	231972.41	240274.75	264116.46	298418.27	

280 Kg/cm²					
Día de Ensayo	PATRÓN	4% MICROSÍLICE	6% MICROSÍLICE	8% MICROSÍLICE	
7 dias	269372.11	263681.05	262784.2	251323.8	
14 dias	271819.71	285834.02	273834.79	284040.36	
28 dias	288206.12	323906.31	301466.50	305310.22	

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO".

COMPRESIÓN.

Estadísticas de fiabilidad

Alfa de Cronbach	N de elementos
.997	8

Estadísticas de total de elemento Varianza de escala si el Correlación total Cronbach si el elemento se ha de elementos elemento se ha .998 210DP 63807.043 .996 4M% 57662.169 1.000 .997 210 kg/cm² 6M% 60733.755 1.000 .997 .994 .997 56873.812 .991 60102.573 280DP 1.000 .997 60211.326 4M% 280 kg/cm² .997 .996 59471.100 6M%

ANOVA

58099.736

1.000

.997

		Suma de		Media		
		cuadrados	gl	cuadrática	F	Sig
Inter sujetos		19460.519	2	9730.259		
Intra sujetos	Entre elementos	35109.681	7	5015.669	196.363	<.001
	Residuo	357.599	14	25.543		
	Total	35467.280	21	1688.918		
Total		54927.799	23	2388.165		

Media global = 250.6071

8M%

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO".

TRACCIÓN.

Estadísticas de fiabilidad

Alfa de Cronbach	N de elementos
.997	8

Estadísticas de total de elemento Alfa de Varianza de Correlación total Cronbach si el escala si el elemento se ha de elementos elemento se ha corregida suprimido 921.760 217.7000 210DP 1.000 830.743 214.7667 4M% 210 kg/cm² .999 876.143 213.4333 6M% .994 820.303 211.9333 .990 866.583 210.0333 280DP 1.000 869.590 206.6000 4M% 280 kg/cm² 856.030 .997 205.2000 6M% 1.000 203.8333 836.803

		ANG	AVC			
		Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter sujetos		280.623	2	140.311		
ntra sujetos	Entre elementos	505.903	7	72.272	186.996	<.001
THE COLOR	Residuo	5.411	14	.386		
	Total	511.314	21	24.348		
Total		791.936	23	34.432		

Media global = 30.0625

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO".

FLEXIÓN.

Estadísticas de fiabilidad

Alfa de Cronbach	N de elementos
.997	88

		Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
210DP		1437.160	.996	.998
4M%	/% 210 kg/cm²	1297.023	1.000	.997
6M%		1371.363	1.000	.997
8M%		1282.823	.994	.997
280DP		1356.363	.992	.997
4M%		1356.243	1.000	.997
6M%	280 kg/cm ²	1342.333	.997	.997
8M%		1311.403	1.000	.997

		ANO	AVC			
	1 1	Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter sujetos		438.806	2	219.403		
Intra sujetos	Entre elementos	783.743	7	111.963	197.396	<.001
	Residuo	7.941	14	.567		
	Total	791.684	21	37.699		
Total		1230.490	23	53.500		

Media global = 37.5958

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE "CARACTERIZACIÓN MECÁNICA DE LA ADICIÓN DE MICROSÍLICE POR CEMENTO PARA LA ELABORACIÓN DE CONCRETO".

MÓDULO DE ELASTICIDAD.

Estadísticas de fiabilidad

Alfa de Cronbach	N de elementos
.971	8

Estadísticas de total de elemento

		Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Alfa de Cronbach si el elemento se ha suprimido
210DP		19104070126.988	.892	.970
4M%	M%	20419617559.718	.892	.975
6M%	210 kg/cm ²	17786494235.464	.992	.963
8M%		16002570876.602	.990	.962
280DP		20096694757.025	.942	.973
4M% 280 kg/cm ²	200 ka/am²	14658530895.739	.996	.967
	200 kg/cm	17374086348.755	.983	.962
8M%		15610830722.289	.969	.965

A	N	0	٧	A

ANOVA						
		Suma de cuadrados	gl	Media cuadrática	F	Sig
1000	160					
Inter sujetos		5733912990.607	2	2866956495.304		
Intra sujetos	Entre elementos	14691916505.59	7	2098845215.085	25.684	<.001
	Residuo	1144054505.393	14	81718178.957		
	Total	15835971010.99	21	754093857.666		
Total		21569884001.59	23	937821043.547		

Media global = 261934.5633

En las tablas se observa que, el instrumento sobre "Caracterización mecánica de la adición de microsílice por cemento para la elaboración de concreto" es válido (correlaciones de Pearson superan al valor de 0.30 y el valor de la prueba del análisis de varianza es altamente significativo p < 0.01) y confiable (el valor de consistencia alfa de Cronbach es mayor a 0.80).

Luis Artup Montenegro Caninch
Lic. Estadistica
MG. INVESTIGACIÓN
DR. EDUCACIÓN
COESPE 282

ANEXO 12. PANEL FOTOGRAFICO

<u>Fotografía 01</u>: Recolección de agregado grueso 1/2", Cantera Tres Tomas

<u>Fotografía 02</u>: Obtención de agregado fino, Cantera Pátapo – La Victoria

<u>Fotografía 03</u>: Pesado de agregado fino en estado de humedad natural

<u>Fotografía 04</u>: Tamizado del agregado grueso

Fotografía 05: Agregado grueso seleccionado después de ser humedecido.

Fotografía 06: Ingresando agregado grueso al horno para su total secado.

<u>Fotografía 07</u>: Realizando el peso unitario del agregado grueso

<u>Fotografía 08</u>: Realizando ensayo de SLUMP en el concreto.

<u>Fotografía 09</u>: Probetas de concreto con adiciones de 4% de microsílice

<u>Fotografía 10</u>: Ensayo de resistencia a la compresión, en probetas con adiciones

<u>Fotografía 11</u>: Probetas de concreto con adiciones de 6% de microsílice

<u>Fotografía 12</u>: Ensayo de resistencia a la compresión, en probetas con adiciones de 6% de microsílice

<u>Fotografía 13</u>: Probetas de concreto con adiciones de 8% de microsílice

<u>Fotografía 14</u>: Ensayo de resistencia a la compresión, en probetas con adiciones de 8% de micro sílice