

FACULTAD DE INGENIERÍA ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL TESIS

Desempeño mecánico de adoquines de concreto para tránsito ligero incorporando residuos de soldadura como sustituto parcial del agregado

PARA OPTAR EL TÍTULO PROFESIONAL DEINGENIERO CIVIL

Autor

Bach. Huamani Zuloeta Brandon Lee https://orcid.org/0000-0002-9064-9369

Asesor

MAG. Ruiz Saavedra Nepton David https://orcid.org/0000-0001-6847-9829

Línea de Investigación

Infraestructura, Tecnología y Medio Ambiente

Pimentel – Perú 2023

Quien suscribe la DECLARACIÓN JURADA, soy estudiante (s) del Programa de Estudios de Ingeniería Civil de la Universidad Señor de Sipán S.A.C, declaro bajo juramento que soy autor del trabajo titulado:

DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORANDO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firman:

Huamani Zuloeta Brandon Lee	DNI: 47845835	A. A. C.
-----------------------------	---------------	--

Pimentel, 26 de noviembre del 2023.

REPORTE DE SIMILITUD DE TURNITIN

Reporte de similitud

NOMBRE DEL TRABAJO

AUTOR

Desempeño mecánico de adoquines de c Brandon Lee Huamani Zuloeta oncreto para tránsito ligero incorporand o residuos de soldadura

RECUENTO DE PALABRAS

RECUENTO DE CARACTERES

10821 Words

53270 Characters

RECUENTO DE PÁGINAS

TAMAÑO DEL ARCHIVO

40 Pages

982.5KB

FECHA DE ENTREGA

FECHA DEL INFORME

Dec 8, 2023 4:44 PM GMT-5

Dec 8, 2023 4:45 PM GMT-5

16% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base o

- · 14% Base de datos de Internet
- · 1% Base de datos de publicaciones
- · Base de datos de Crossref
- · Base de datos de contenido publicado de Crossr
- 12% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

· Material bibliográfico

- · Material citado
- · Coincidencia baja (menos de 8 palabras)

DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORANDO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO

Aprobación del jurado

MAG. VILLEGAS GRANADOS LUIS MARIANO Presidente del Jurado de Tesis MAG. SALINAS VASQUEZ NESTOR RÁUL Secretario del Jurado de Tesis

MAG. CHAVEZ COTRINA CARLOS OVIDIO

Vocal del Jurado de Tesis

Dedicatoria

A todos los que han sido parte integral de mi vida académica y personal. Por el constante sacrificio y apoyo que ha sido la clave de mi éxito. A mis maestros y mentores, por su dedicación y pasión por enseñarme y guiarme en mi camino. A mi amada familia y a todas las personas que siempre que daba consejo para salir adelante y nunca rendirme, les agradezco de todo corazón.

Agradecimientos

Doy gracias a Dios por darme vida, salud, y sabiduría necesaria para lograr las Para nuestros metas establecidas. docentes de la Universidad especialmente para nuestros asesores y especialista de laboratorio LEWS que siempre me apoyaron en momentos buenos y malos, gracias a ellos pude lograr terminar mi desarrollo de proyecto de tesis.

Al Grupo HIMENDHU por la asesoría técnica la cual permitió realizar un excelente proyecto de investigación.

Al Ingeniero Isai Cespedes por su total respaldo durante mi proceso de sustentación.

Agradecerle a la mamita Lita por todo su apoyo muchísima gracias

Índice

De	dicato	ria	V
Agı	adec	imientos	vi
Índ	ice de	tablas	vii
Índ	ice de	e figuras	viii
Res	sume	η	x
Abs	stract		xi
I	INT	RODUCCIÓN	12
	1.1	Realidad problemática	12
	1.2	Formulación del problema	18
	1.3	Hipótesis	18
	1.4	Objetivos	18
	1.5	Teorías relacionadas al tema	18
II	MAT	ERIALES Y MÉTODO	26
	2.1	Tipo y Diseño de Investigación	26
	2.2	Variables, Operacionalización	26
	2.3	Población de estudio, muestra, muestreo y criterios de selección	29
	2.4	Técnicas e instrumentos de recolección de datos, validez y confiabilidad	31
	2.5	Procedimiento de análisis de datos	32
	2.6	Método de análisis unitario	33
	2.7	Criterios éticos	36
Ш	RES	ULTADOS Y DISCUSIÓN	37
	3.1	Resultados	37
	3.2	Discusión	47
IV	CON	ICLUSIONES Y RECOMENDACIONES	51
	4.1	Conclusiones	51
	4.2	Recomendaciones	52
RE	FERE	NCIAS	53
ΔΝ	EXO		58

OBSERVACIONES	3	3
---------------	---	---

Índice de tablas

Tabla I Tipo de adoquines	20
Tabla II Espesores nominales según tipo de aplicación	21
Tabla III Operacionalización de la variable independiente	27
Tabla IV Operacionalización de la variable dependiente	28
Tabla V Muestra para unidades de adoquines tipo II para un f´c 420 kg/cm²	30
Tabla VI Propiedades físicas del agregado fino	38
Tabla VII Propiedades físicas del agregado grueso	39
Tabla VIII Diseño de Mezcla - 420 kg/cm²	39

Índice de figuras

Fig. 1 Diagrama de flujo de procesos	35
Fig. 2 Curva granulométrica del agregado fino	37
Fig. 3 Curva granulométrica del agregado grueso (confitillo)	38
Fig. 4: Variación dimensional de Adoquines patrón - 420 kg/cm ²	40
Fig. 5: Variación dimensional de Adoquines 420 kg/cm² + 5% RR. SS	40
Fig. 6 Variación dimensional de Adoquines 420 kg/cm² + 10% RR.SS	41
Fig. 7: Variación dimensional de Adoquines 420 kg/cm2 + 15% RR	41
Fig. 8: Variación dimensional de Adoquines 420 kg/cm2 + 20% RR. SS	42
Fig. 9 Promedio de las absorciones de los adoquines	42
Fig. 10: Densidad promedio de los adoquines	43
Fig. 11 Fortalezas promedio de la resistencia a la compresión	44
Fig. 12 Incremento de la resistencia a compresión obtenida en porcentaje (%)	44
Fig. 13 Promedios de la resistencia a la flexión	45
Fig. 14 Incremento de la resistencia a flexión obtenida en porcentaje (%)	45
Fig. 15 Desgaste superficial	46

Resumen

Para satisfacer la demanda global de conservación de recursos no renovables, se deben hacer esfuerzos para encontrar materiales de reemplazo. Los restos de soldadura se pueden reciclar y utilizar de nuevo para fabricar elementos prefabricados como adoquines. La presente investigación presentó una metodología aplicada y diseño experimental, teniendo como objetivo general evaluar las propiedades físicas y mecánicas del adoquín de concreto para tránsito ligero sustituyendo parcialmente el agregado por residuos de soldadura. Se realizó un diseño de mezcla para un concreto de calidad f`c 420 kg/cm², basándose en la normativa ACI-211; se empleó el cemento Pacasmayo Tipo I, confitillo y en reemplazo de agregado con residuos de soldadura (RR. SS) con los porcentajes de 0%, 5%,10%, 15% y 20% en peso. El tamaño de la muestra estuvo compuesto por 220 adoquines. Posterior a esto, se hicieron pruebas de laboratorio para determinar la caracterización física de los materiales constituyentes, resistencia a la compresión, a la flexión, abrasión, densidad, absorción y variación dimensional de los adoquines. Los resultados mostraron que la sustitución de RR. SS aumento la resistencia a la compresión y flexión de los adoquines. El 10% de residuos de soldadura alcanzó la máxima resistencia y fue elegido como el mejor reemplazo obteniendo incrementos del 11.05% y 32.76% en los ensayos mencionados. En conclusión, este tipo de adoquín cumplió con los parámetros que indica la NTP 399.611, ASTM y COGUANOR NTG 41087 h1, por lo tanto, pueden ser utilizados para tránsito vehicular ligero.

Palabras Clave: Adoquines de concreto; residuos de soldadura; propiedades mecánicas; agregados.

Abstract

To meet the global demand for conservation of non-renewable resources, efforts must be made to find replacement materials. Welding scraps can be recycled and used again to make prefabricated elements such as paving stones. The present research presented an applied methodology and experimental design, with the general objective of evaluating the physical and mechanical properties of the concrete paver for light traffic, partially replacing the aggregate with welding residues. A mix design was carried out for a quality concrete of 420 kg/cm2, based on the ACI-211 regulations; Pacasmayo Type I cement was used, with confitillo and to replace welding residue aggregate (RR. SS) with the percentages of 5%, 10%, 15% and 20% by weight. The sample size was made up of 220 paving stones. After this, laboratory tests were carried out to determine the physical characterization of the constituent materials. resistance to compression, bending, abrasion, density, absorption and dimensional variation of the pavers. The results showed that the replacement of RR. SS increased the compression and bending resistance of the pavers. The 10% of welding waste reached the maximum resistance and was chosen as the best replacement, obtaining increases of 11.05% and 32.76% in the aforementioned tests. In conclusion, this type of paver complied with the parameters indicated by NTP 399.611, ASTM and COGUANOR NTG 41087 h1, therefore, they can be used for light vehicular traffic

Keywords: Concrete pavers: welding residues; mechanical properties; aggregates.

I INTRODUCCIÓN

1.1 Realidad problemática

El incremento de la contaminación ambiental en urbanizaciones, industrias y constructoras de obras civiles se vienen considerando como un problema frecuente que enfrenta la sociedad, en base a ello, se estima que los residuos generados de la industria del acero denominado principalmente como escoria [1]. Por otra parte, la producción de polímeros y metales se estima que el 75% se convierte en residuos, por ello, se viene buscando incrementar el reciclaje de estos materiales con la finalidad de buscar nuevas alternativas en el rubro de la construcción [2]; El sector construcción genera gran cantidad de desperdicios de materiales, tales como desperdicios de acero, por ello, se viene buscando la manera de poder eliminar estos materiales usándolos en la misma área de la construcción, pero reutilizándolos para crear nuevos materiales o suplir a otros [3].

Diversas investigaciones estiman que la utilización de adoquines con refuerzo también permite incrementar la permeabilidad, de tal forma que, se considera que dicha aplicación es favorable debido un incremento en sus resistencias mecánicas [4]. El área de la pavimentación debe promover las reutilizaciones y reciclajes de residuos sólidos, escoria de acero, residuos de soldadura de las grandes empresas industriales para los materiales de pavimentación sostenibles [5], por otra parte, la reducción de residuos de acero en beneficio de la sostenibilidad ambiental generalmente se centra en el avance de la infraestructura para mejora la calidad y durabilidad de las pavimentaciones [6].

La escoria de acero se usa hoy en día de gran intensidad como mezclas de agregados para la elaboración de bloques y unidades de adoquín a base de concretos para su manejo en pavimentación urbana [7], se viene implementando la incorporación de residuos de acero en pavimentos debido a su resistencia al degaste, dureza, textura superficial y presta adherencia al degaste, asimismo, es importante reconocer que las patologías en los pavimentos son muy frecuente, tales como, hinchamiento, bache y surcos en el tiempo de vida útil de un pavimento [8].

En el departamento de Lima, el incremento masivo de las vías deterioradas ha ido en aumento, del mismo modo, el diseño y sostenimiento inadecuado en la viabilidad llevan al caos vehicular, la incomodidad de los peatones y la contaminación ambiental [9], la finalidad en el uso de escorias de acero, es para disminuir el dióxido de carbono (CO2) que se expulsa cuando se fabrica el cemento o algún árido fino en la producción de concretos para distintas pavimentaciones [10]. Por otra parte, es importante destacar que los materiales como el concreto han ido cambiando en busca de mejorar y obtener más beneficios, por ello, se estima que los componentes que influyen en la elaboración de concretos de buenas calidades [11]. Debido a la falta de mantenimiento o por el mal uso que se les da se genera patologías de

gran magnitud, siendo uno de los principales problemas la incorrecta circulación de tránsito liviano y pesado en las diferentes zonas pavimentadas, que se encuentran total o parcialmente deterioradas [12].

Se viene considerando como necesario la búsqueda de diferentes procedimientos adecuados para un buen diseño, reparación y mantenimiento de las mismas, siendo viable la utilización de materiales residuales con la finalidad de mejorar sus prestaciones mecánicas [13], la grave problemática en los proyectos de pavimentación, o vías que se encuentran en mal estado debido a que aproximadamente el 50% de ellas se encuentran deterioradas significativamente, debido a su tiempo de vida útil o ineficiencia en su producción [14]. Para obtener materiales que produzcan pavimentos sostenibles y con buen comportamiento mecánico, en la industria de los pavimentos se promueve las reutilizaciones y reciclajes de residuos sólidos, como los residuos de soldadura.

Vijayakumar et al. [15], en su artículo tuvo como objetivo analizar los rasgos mecánicas del concreto en adoquines sustituir escoria de acero (EA) por áridos finos, para ello, utilizaron una metodología experimental con dosificaciones de EA en proporciones de 25%, 50%, 75% y 100%, los resultados obtenidos muestran que el esfuerzo a compresión para la muestra patrón fue de 43.76 N/mm², asimismo, se tiene valores de 44.08, 51.49, 45.65 N/mm² y 40.73 N/mm² respectivamente según porcentajes de adición, finalmente se determinó que el porcentaje óptimo es de 50% EA logrando un aumento del 17.66% en el esfuerzo a la compresión, concluyendo que la EA permite mejorar no significativamente el esfuerzo a compresión en la producción de adoquines.

Ananthi y Karthikeyan [16] en su artículo tuvo por objetivo determinar las propiedades mecánicas del concreto incorporando escoria de soldadura, mediante una metodología experimental aplicaron porcentajes de 10%, 20% y 30% de escoria por volumen del árido fino, los resultados obtenidos en la resistencia a la compresión fueron negativos para dosificaciones de 20% y 30% con una reducción del 4.49% y 16.75% a diferencia de la muestra control con un valor de 140 kg/cm², sin embargo, para un 10% de escoria se alcanzó un incremento de 6.94, estimando este último como la adición óptima, finamente los autores concluyeron el aumento de resistencia no fue significativo, además, se determinó que a mayor porcentaje de escoria los valores son deficientes.

Olofinnade et al. [1], en su artículo se tuvo por objetivo evaluar el aprovechamiento de escorias de acero como refuerzo en mezclas de concreto para adoquines, empleando una metodología experimental los autores consideraron dosificaciones 20%; 40%, 60%, 80% y 100% por peso de área, los resultados mostraron que se obtuvo un incremento del 15% con

un 40% de escoria de acero, asimismo, en la tracción se obtuvo un incremento del 10% con un 20% escoria, finalmente concluyeron que la escoria de hacer permite mejorar las prestaciones de las unidades de concreto de manera no significativa.

Padmapriya et al. [17], en su artículo se tuvo por objetivo determinar el efecto de las características del concreto con incorporación de escoria de acero, para ello, emplearon una metodología del tipo experimental añadiendo escoria de acero en proporciones de 20%, 40% y 60%, las derivaciones obtenidas muestran que la resistencia a la compresión presentó valores de 51.3 N/mm², 42.2 N/mm² y 40.4 N/mm² para 20, 40 y 60% respectivamente y la resistencia a flexión mostró resistencias de 2.9 N/mm², 1.8 N/mm² y 1.6 N/mm², respectivamente; se determinó que el porcentaje óptimo es 20%, finalmente concluyeron que a mayor incorporación de EA la resistencia a la compresión reduce ampliamente.

Ananthi y Karthikeyan [16], en su artículo se tuvo por objetivo determinar los rasgos mecánicas del concreto incorporando escoria de soldadura, en base a una metodología experimental aplicaron porcentajes de 10%, 20% y 30% de escoria por volumen del árido fino, las derivaciones obtenidas en la resistencia a la compresión fueron negativos para dosificaciones de 20% y 30% con una reducción del 4.49% y 16.75% a diferencia de la muestra control con un valor de 140 kg/cm², sin embargo, para un 10% de escoria se alcanzó un incremento de 6.94, estimando este último como la adición óptima, finamente los autores concluyeron el aumento de resistencia no fue significativo, además, se determinó que a mayor porcentaje de escoria los valores son deficientes.

Revilla et al. [18], en su artículo se tuvo por objetivo analizar las cualidades mecánicas de un pavimento rígido incorporando escoria de acero, aplicando una metodología con diseño experimental mediante la aplicación de residuos de escoria de horno de 3 diferentes dimensiones de 0/4 mm, 4/10 mm y 10/20 mm como agregado fino, las derivaciones obtenidas en el esfuerzo a compresión están por encima de los 45 MPa a los 7 días y a los 90 días alcanzó un valor máximo de 80 MPa. Concluyendo que el diseño de mezcla con fibras metálicas es la más óptima mejorando significativamente la resistencia mecánica.

Hossiney, et al. [19], en su artículo se tuvo como objetivo analizar el trabajo mecánico de los desechos de pavimento asfáltico como sustituto del agregado fino en la producción de adoquines de concreto, para ello, emplearon una metodología con diseño experimente mediante la sustitución de residuos de asfalto en participaciones de 5%, 10%, 15%, 20% y 25%. Obteniendo como resultados que para adoquines patrón el esfuerzo a compresión a los 28 días alcanzó un valor de 19.7 MPa, no obstante, para los porcentajes indicados se obtuvo

valores de 12.84 MPa, 15.35 MPa, 9.46 MPa, 5.7 MPa y 2.99 MPa, respectivamente, concluyendo las adiciones de residuos de pavimento asfáltico no mejoró la resistencia a la compresión y se encuentra por debajo de la muestra control.

Mohamad, et al. [20], en su artículo se tuvo como objetivo establecer el trabajo mecánico de adoquines para pavimentos con el uso de residuos de acero, para ello, emplearon una metodología experimental, donde los resultados determinan que los desechos de acero permiten hasta un 50% de mejora en la calidad de resistencia de las muestras, concluyendo que dicho material es viables y comparable con otros materiales de refuerzo, además, llegaron a la conclusión que su aplicación mejora considerablemente la resistencia en pavimentos, así aportará al sector de la construcción.

Fuentes [21], en su investigación titulada se tuvo por objetivo determinar el desempeño mecánico de adoquines de concreto que incorpora fibras de acero (FA) y fibras de polipropileno (FP), para ello, el autor aplicó una metodología experimental en base muestras de 20 cm x 10 cm x 6 cm, logrando resultados positivos en la resistencia a la compresión con 30% de Fibras de Acero, logrando un valor de 560.84 kg/cm², no obstante, con 20 gr/m³ de FP alcanzó una resistencia máxima de 389.53 kg/cm², concluyendo que las adiciones de FA en adoquines de concreto mejora significativamente sus rasgos mecánicas.

Risco [22], en su artículo de investigación se tuvo por finalidad evaluar el desempeño del polvo de acero (PA) y la ceniza de cáscaras de arroz (CCA), para ello, empleó un diseño cuasi-experimental con proporciones de 2.5% PA + 2.5%CCA y 5% PA + 5% CCA, los resultados obtenidos muestran un aumento positivo en las resistencia a la compresión estimando un valor de 420.25 kg/cm², por otra parte, su resistencia a la abrasión fue del 20% y 17% respectivamente a para ambas dosificaciones a diferencia de un 22% del concreto control a sus 28 días, finamente concluyó que ambos materiales en conjunto permiten un incremento reducido en las resistencias mecánicas de adoquines de concreto.

Neyra y Walter [23], artículo de se tuvo por finalidad establecer el comportamiento de las fibras de acero (FA) como refuerzo en mezclas para adoquines de concreto para pavimentos, aplicaron una metodología experimental en base muestras con 20% de FA, los resultados mostraron una resistencia máxima de 640 kg/cm² en el pavimento, asimismo, estableció que los agregados cumplen con los parámetros mínimos que requiere la vía en estudio, finalmente concluyeron que las FA permiten mejorar significativamente la resistencia permitiendo un mejor fluidez en adoquines.

Manrique y Manrique [24], en su investigación titulada "Elaboración de adoquines de concreto ecológico con adición de caucho y acero reciclado, para pavimentos de tránsito ligero - Mazamari 2021", se tuvo por finalidad estudiar las propiedades mecánicas del adoquin que incorpora acero molido y caucho residual, utilizando una metodología con diseño experimental con participaciones de 3%, 6% y 9% de ambos materiales como sustito a la arena de la mezcla, las derivaciones expusieron que las dosificaciones de acero y caucho no permiten mejorar la resistencia a la compresión, estando por debajo del concreto patrón que logró un valor de 386.8 kg/cm², de tal forma que, se observó una reducción máxima del 14.63% con 6% de sustitución, finalmente se concluyó que el acero y el caucho no mejoran la resistencia mecánica en adoquines de concreto.

Sinarahua [25], en su artículo de investigación, se tuvo como objetivo usual determinar de tal manera afectar en la incorporación de escoria metalúrgica en el diseño de mezclas asfálticas. Esta investigación fue experimental, los resultados del diseño practico según la metodología Marshall, se verifico que el empleo de escorias siderúrgicas en las mezclas asfáltica interviene en la estabilidad con 12.536 KN y en la fluencia con 14 mm. Conseguir dichos datos se tomó pruebas e información de las escorias que es un residuo de la fundición de metales de empresas metalúrgicas. La escoria impacta en el rendimiento de los rasgos mecánicos de las mezclas asfálticas.

Melgarejos [26], en su artículo de investigación tuvo como objetivo proponer una serie de mezclas de concreto reforzado con fibras de acero, cemento incorporando puzolánico y aditivos químicos para las obras de que involucra construcciones de pavimentos rígidos. Una propuesta para alargar la duración útil de las construcciones es la implementación de pavimentos duro de concretos reforzados con fibras de aceros y cemento ya que esta simboliza una opción duradera y sustentable que solicita el territorio y el mundo.

Villalobos [27], en su artículo de investigación, tuvo como objetivo determinar cuál es el desempeño de las limaduras de acero en las propiedades mecánicas del concreto. La metodología que se aplicó fue incorporar porcentajes de 5%, 10% y 15% de limaduras de acero en substitución del agregado fino. Las derivaciones obtenidas mostraron que cuando se adiciona 5% de limaduras de acero a una edad de 28 días su f´c= 24 MPa y a los 56 días su f´c= 27 MPa, evidenciado así un aumento del 12% en relación de la muestra patrón. Por último, se concluyó, en base a lo ya mencionado, que cuando se sustituye el agregado fino por limaduras de acero a un 5% obtiene una resistencia a la compresión adecuada.

Elera & Reyna [28], en su artículo de investigación, tuvo como objetivo conocer lo que causa en las cualidades del concreto la inscripción de escoria de acería. La metodología es añadir escoria de acería en porcentajes de 5%, 10% y 20%. Los hallazgos que se lograron exponen que la resistencia a la compresión de en los porcentajes indicados son de 66.9 N/mm², 53.2 N/mm² y 50.9 N/mm², respectivamente y su resistencia a flexión es de 3.7 N/mm², 2.6 N/mm² y 1.3 N/mm², respectivamente. Se concluyó que mientras mayor incorporación de escoria de acero la resistencia va disminuyendo, pero el porcentaje óptimo es del 5%.

La investigación pretende lograr que, incorporando residuos de soldadura en los adoquines, este material mejore las propiedades mecánicas, y que efectúen los parámetros de la NTP, siendo un gran aporte en el área de la ingeniería civil, este proyecto de investigación busca que se obtengan resultados beneficiosos para que se puedan aplicar en el campo que se necesite. Así mismo, se buscó estimar costos, en la elaboración de adoquines añadiendo residuos de soldadura, con la de los adoquines convencionales, para ello se necesita saber que es más beneficioso en los costos si utilizando los agregados pétreos o utilizando los residuos de soldadura. Finalmente, debido al uso exceso de desechos de residuos de soldadura, estos causan un impacto en el medio ambiente, para ello se busca brindar una alternativa de solución al complementarlo en el contorno de la ingeniería civil.

1.2 Formulación del problema

¿La incorporación de residuos de soldadura como sustituto parcial del agregado mejorará el rendimiento mecánico del adoquín para un tránsito ligero?

1.3 Hipótesis

La incorporación de residuos de soldadura como remplazo parcial del agregado mejorará las características mecánicas del adoquín diseñado para un tránsito ligero.

1.4 Objetivos

Objetivo general

Evaluar las propiedades físicas y mecánicas del adoquín de concreto para tránsito ligero sustituyendo parcialmente el agregado por residuos de soldadura.

Objetivos específicos

- Determinar el diseño de mezcla del adoquín de concreto sustituyendo parcialmente el agregado por residuos de soldadura al 0%, 5%, 10% y 15%, 20% y costo de producción.
- Evaluar las propiedades físicas de los adoquines, sustituyendo parcialmente residuos de soldadura, para un f´c=420 kg/cm².
- Evaluar las propiedades mecánicas de los adoquines, sustituyendo parcialmente residuos de soldadura, para un f´c=420 kg/cm².
- Determinar la dosificación óptima de residuos de soldadura para la elaboración de adoquines con fines de tránsito ligero mediante un análisis estadístico.

1.5 Teorías relacionadas al tema

Adoquines de concreto

Los bloques o adoquines son elementos hechos de piedra y cemento y pueden tener muchas formas diferentes, todas son regulares y se ubican encima de unas capas de arena de 3 a 5 cm de espesor, cuya función principal es eliminar los desniveles del terreno, dejar suficiente espacio para los adoquines y garantizar un apoyo igualitario y asistencial. También se utiliza para drenar el agua de infiltración de la junta, evitando dañar el soporte [29].

Ventajas de usar el Adoquín

Según Tobar et al. [30], una de sus principales ventajas es que poseen una vida útil de

hasta 30 años y no pierde su color, por lo que son ideales para la decoración.

Propiedades físicas

Impermeabilidad, resistencia a la flexión y solidez son solo algunas de sus propiedades. Por lo tanto, es resistente a los cambios ambientales, incluidos: heladas, precipitaciones corrosivas, daños y otros cambios. No se deforman a altas temperaturas, tienen muy buena resistencia a la compresión y destrucción, y su dureza los hace resistentes al rayado y la flexión.

El mantenimiento es sencillo y económico

Requieren un mantenimiento mínimo para corregir los desniveles del suelo o sustituir los adoquines si es necesario sin alterar la estética del terreno.

Clasificación de Adoquines

Con referencia a Solar [31], los adoquines se clasifican según su forma y propósito. Por su forma se divide en:

Adoquines rectangulares

Son los más utilizados en las construcciones peruanas. Vienen en tamaños de 20 cm x 10 cm x 4 cm, 20 cm x 10 cm x 8 cm y 20 cm x 10 cm x 10 cm en color original y también se presentan en los siguientes colores: Amarillo, Negro, Plomo, Rojo y Naranja.

Adoquín bicapa

Estos adoquines tienen las misma característica funcional y física que los tradicionales adoquines de forma rectangular y se elaboran en las mismas dimensiones. Las diferencias es que los colores artificiales de los adoquines se aplican solo en sus superficies, que queda visible después del adoquinado, lo que reducen los costos de los adoquines y precios a los consumidores.

Adoquines cuadrados

Estos adoquines tienen el mismo propósito y uso que el rectangular, las diferencias están solo en las formas para que puedas elegir libremente el modelo; tamaño 10 cm x 10 cm x 6 cm; 20 cm x 20 cm x 6 cm; 40 cm x 40 cm x 6 cm y 40 cm x 40 cm x 8 cm en el color natural y también con los colores rojo, amarillo, negro, plomo y naranja.

Losetas táctiles de orientación y advertencia

Utilizados en áreas peatonales como aceras y plazas, con forma de saliente de la superficie

para guiar a personas invidentes, y medidas de 20 cm x 20 cm x 6 cm y 40 cm x 40 cm x 6 cm, color natural, color rojo y amarillo.

Adoquín para tránsito peatonal

Es un adoquín rectangular de dimensiones 20 cm x 10 cm x 4 cm, 320 kg/cm², apta para aceras, avenidas, parques, plazas, avenidas, paseos, patios, patios, perímetros de piscinas, terrazas, rampas, instalaciones deportivas (campos de fútbol), terrazas interiores y/o exteriores.

Adoquín para servicio liviano

Adoquines rectangulares con dimensiones de 20 cm x 10 cm x 6 cm, 420 kg/cm², ideal para terraplenes centrales y laterales, caminos internos urbanizados, calles y callejones, apartamentos y edificios de la ciudad privada.

Tránsito vehicular pesado

Adoquín rectangular con dimensiones de 20 cm x 10 cm x 8 cm; f´c 550 kg/cm² es adecuado para áreas de carga, puertos, terminales terrestres, aeropuertos y áreas de carga muy pesada, incluso para vehículos ferroviarios y de carretera.

En esta norma, describimos los requisitos fundamentales que deben cumplirse en la preparación de adoquines de concreto para pavimentos. Para su clasificación, los adoquines de concreto para pavimentos deben conocer su resistencia de acuerdo a su uso y espesor nominal. [32] . La Tabla I, detalla los tipos de adoquines y su uso.

Tabla I
Tipo de adoquines

Tipos	Usos
1	Adoquín para pavimento de uso peatonal
II	Adoquín para pavimentos de tránsitos vehiculares ligeros
III	Adoquín para pavimentos de tránsitos vehiculares pesados, patios industriales y contenedores

Nota. especificaciones de los tipos y usos de un adoquín [32].

Características de los adoquines

NTP 399.611 [32], menciona que los adoquines tienen que cumplir al menos con las

siguientes características:

Espesor nominal.

Los espesores nominales mínimos de los adoquines se muestran a en la Tabla II:

Tabla II
Espesores nominales según tipo de aplicación.

Nota. Espesores nominales de adoquines según sui tipo [32].

Tipos	Espesores nominales
I (Peatonal)	
Tipo: B, C y D	40mm / 60mm
Todos los tipos según la Norma TH.010	
II (Vehicular ligero)	60 mm / 80mm / 100mm
III (Vehicular pesado, patios industriales o de contenedores	≥ 80mm

Propiedades mecánicas

El adoquín presenta cualidades mecánicas muy puntuales como resistencia a la compresión [33].

En el ensayo de resistencia a la compresión del adoquín de concreto, se determinará aplicando una fuerza vertical a la probeta, luego trabajará en la pavimentadora y la prueba de compresión se calculará en los laboratorios con unas máquinas de pistón hidráulico, para que podamos garantizar una distribución uniforme de la fuerza en las pavimentadoras de concreto.

La máquina de pruebas debe ser lo suficientemente potente para probar el adoquín de hormigón, puede ser digital, de lo contrario, debe estar entre la base y la placa de acero donde los adoquines de hormigón entrarán en contacto con el compresor [32].

Propiedades físicas

Tomando en cuenta a la Norma UNE-EN1338 [34], sus propiedades físicas de los adoquines se presentarán en diferentes casos:

Resistencia al clima

Se calcula la absorción total de agua (Wa), comenzando de los tubos a (20 ± 5) °C, remojando a masa constante (M1) y secando a masa constante (M2). Obteniendo

Resistencia a la rotura

El ensayo para calcular la resistencia a la tracción de los adoquines consistirá en aplicarle una fuerza F mediante dos elementos de compresión semicilíndricos y rectangulares. Las secciones de compresión se seleccionarán en base a los sucesivos criterios:

- Adoquín rectangular: Ejes de simetrías longitudinales
- Adoquín cuadrado, hexagonal o similar: Ejes de simetrías cortas

Otra forma: La sección transversal de la sección es al menos 0,5 veces más larga que la forma dada, al menos el 75% del espesor de la losa en cada lado del área de la sección transversal.

La carga de rotura se expresará en unidades de longitud de rotura. Esta es la longitud promedio de las líneas de fractura anterior y posterior. Cuando se ensaya en dos partes de los mismos adoquines, la resistencia a la rotura (T) será el promedio de los dos resultados individuales (Ti).

Resistencia a la abrasión

La resistencia a la abrasión se establece por medio de un ensayo de disco ancho, que radica en frotar la superficie visible del adoquín en condiciones normales con un abrasivo (corindón o aluminio blanco fundido).

Ensayo de los agregados

Análisis granulométrico

En la NTP 400.012 [35], se halla las consideraciones que se utiliza para el ensayo de la granulometría consiguiendo la gradación del agregado fino y grueso.

Peso unitario

La NTP 400.017 [36], se utiliza para definir el Peso Unitario Seco (PUS) y Peso Unitario Compactado (PUC).

Peso específico y porcentaje de absorción

Para el ensayo del agregado fino se tomará en cuenta la N.T.P. 400.022 [37], Se usa un horno para secar la muestra selecta. Luego, la muestra se extrae, se seca en el horno y se deja

enfriar antes de pesarse después de ser vertido en el picnómetro y sumergirse en agua durante 24 ± 4 horas.

Propiedades físicas del concreto

Asentamiento

La N.T.P. 339.035 [38], es empleada para conseguir el asentamiento de la mezcla.

Temperatura

Está sujeta a la N.T.P. 339.184 [39], que alude indicaciones para conseguir la temperatura de la mezcla.

Peso unitario

Para el ensayo se empleará la N.T.P.339.046 [40]

Contenido de aire

Está sujeta NTP 339.080 [41], en la Fig. 13, Esta prueba de contenido de aire se ejecuta por el método de presión, instale la tapa y ajuste con los ganchos, abra las llaves de paso para la saturación de la muestra y con la ayuda de un bulbo de succión de goma llene la válvula del medidor la olla, ajuste el menisco hasta que esté a nivel cero.

Propiedades en estado endurecido del adoquín

Resistencia a la compresión

De acuerdo con la NTP 339.604 [42]: UNIDADES DE ALBAÑILERÍA, las unidades de concreto como los adoquines se someten a pruebas de compresión. Como se establece en la norma internacional ASTM C 140 [43]

Resistencia a la flexión

La norma internacional COGUANOR NTG 41087 h1 [44], sirvió de marco para el ensayo de resistencia a la flexión para fijar el Módulo de Ruptura (Mr) de las muestras de concretos.

Ensayo de desgaste por abrasión mediante el rodillo giratorio

La norma internacional ASTM C944 [45] o [46] NTG 41087 establece todas las reglas para

medir el porcentaje de desgaste de una muestra que ha sido expuesta a la acción del rodillo giratorio.

Ensayo de absorción

El ensayo de absorción del adoquín se realizó de acuerdo con todos los lineamientos y requisitos señalados en la NTP 339.604 [42] o según lo especificado en la norma internacional ASTM C 140. [43].

Residuos de soldadura

La escoria es un subproducto de la industria siderúrgica, compuesto principalmente por silicatos de calcio, hierro y magnesio, creados a partir de reacciones químicas en el proceso de formación de metales.

Escoria metálica

La escoria es un subproducto de la fundición de minerales para refinar metales. Pueden verse como mezclas de óxidos metálicos, sin embargo, pueden contener átomos metálicos en forma de sulfuros metálicos y elementos. La mayor parte de la escoria generada durante la fabricación de acero EAF se divide en dos categorías: oxidada y reducida o en blanco y negro. Este nombre se debe a que el proceso consta de dos pasos: fundición (oxidación) y refinación (reducción) [47]

La escoria negra se obtiene en el primer paso del proceso y está compuesta por óxidos de hierro, calcio, silicio y aluminio. En comparación con la escoria blanca, la masa de la escoria blanca es mucho mayor, la escoria blanca produce una gran cantidad de polvo fino debido a la trituración del silicato dicálcico en el proceso de enfriamiento de la escoria.

Uso de escoria en concreto de alto desempeño proporciona las siguientes ventajas

- La escoria permite que la suspensión absorba muy poca humedad durante la mezcla.
- Resistencia a largo plazo y módulo elástico mejorados, permeabilidad reducida
- Reducción térmica de la temperatura de hidratación
- El costo del concreto se reduce debido a una reducción significativa en la cantidad de plastificantes.

Tipos de escoria debido a las diversas técnicas de enfriamiento

Existen cuatro tipos diferentes de escorias, según Melgarejos [26], que atribuye a estos métodos de enfriamiento.

Escoria cristalizada

Este tipo de material se consigue mediante enfriamiento lento de material líquido. Se realiza en grandes fosas y el material se obtiene a partir de escorias cristalinas.

Escoria de grano

Este tipo de material se consigue mediante un material que se enfría repentinamente a un estado líquido y luego se asienta en agua fría, un proceso conocido como granulación cuando el material se rompe y se convierte en partículas muy pequeñas.

Escoria paletizada

Este tipo de escoria se producirá por la precipitación de esta sustancia sobre unos bidones en movimiento, que luego serán regados con abundante agua, lanzando la escoria al aire y formando un montón al tocar el suelo.

Escoria expandida

Un poco de integración lo decidirá, relación de agua a escoria. Como resultado, la producción de vapor después del enfriamiento da lugar a la formación de aglomerados ligeros.

II MATERIALES Y MÉTODO

2.1 Tipo y Diseño de Investigación

Tipo de investigación

La presente investigación tendrá el tipo aplicada, se encuentra direccionado hacia el logro de un nuevo conocimiento con la finalidad de procurar alternativas hacia el desarrollo sostenible. Por ello, se pretende encontrar nuevas tecnologías aplicables para estudiar el rendimiento mecánico de los adoquines a consecuencia de la adición de porcentajes de residuos de soldadura.

Diseño de la Investigación

La presente investigación tiene un diseño Experimental-Cuasiexperimental, es decir, está basado en ensayos ejecutados en un laboratorio para el diseño de adoquines con residuos de soldadura, direccionados para pruebas de resistencia mecánica.

$$X \rightarrow Y$$

Gb ----> Sx ----> Rx

Gb₁ ----> Sx₁ ----> Rx₁

Gb₂ ----> Sx₂ ----> Rx₂

Gb₃ ----> Sx₃ ----> Rx₃

Gb₄ ----> Sx₄ ----> Rx₄

Donde:

Gb1-4: Grupo experimental de pruebas.

Sx: Prueba patrón.

Sx1: Ensayo experimental, 5% de residuos de soldadura.

Sx2: Ensayo experimental, 10% de residuos de soldadura.

Sx3: Ensayo experimental, 15% de residuos de soldadura.

Sx4: Ensayo experimental, 20% de residuos de soldadura.

Rx1-4: Resultados de pruebas.

2.2 Variables, Operacionalización

Variable Independiente

Residuos de soldadura.

Variable Dependiente

Propiedades mecánicas de adoquines.

Operacionalización

La operacionalización se muestra para cada variable en las Tablas III y IV.

Tabla III

Operacionalización de la variable independiente

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Instrumento	Valores finales	Tipo de variable	Escala de medición	
	La escoria es un		Propiedades	Granulometría		%			
	subproducto de la industria siderúrgica,		físicas de los residuos de	Contenido de humedad	_	%	% Kg/m3		
	compuesto principalmente	Desarrollo de los ensayos físicos y	soldadura ⁻	Peso específico	Observación	Kg/m3			
Residuos	de calcio, hierro y quím Idadura magnesio, res creados a partir			físicos v		Óxido de sílice	ficha de	%	Variable
soldadura		químicos de los magnesio, residuos de creados a partir	guímicos do los	Óxido de aluminio		%	numérica		
quíi pr	de reacciones químicas en el			Óxido de hierro		%			
	proceso de			5%	_		•		
	formación de		Porcentajes de	10%		Kg			
	metales.		aplicación	15%		Ng			
				20%					

Tabla IV

Operacionalización de la variable dependiente

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Instrumento	Valores finales	Tipo de variable	Escala de medición	
				Temperatura °C		°C		Intervalo	
				Slump	-	Cm.	-		
			Propiedades físicas	Peso unitario	-	Kg/m3	-		
	Los adoquines son elementos hechos de	Desarrollo de los		Contenido de Vacío	Guías de Observación,	m/s	-		
Adoquines para tránsito ligero	cemento y piedra y se muestran en una gran diversidad de formas.	ensayos físicos y mecánicos de a los adoquines.	Propiedades mecánicas	Resistencia a compresión	guías de recolección de datos y formatos de laboratorio	recolección de datos y formatos de	Kg/cm2	Variable numérica	De razón
				Resistencia a la flexión					

2.3 Población de estudio, muestra, muestreo y criterios de selección

La población

Tanto el adoquín tradicional de concreto tipo II como el adoquín tipo II con residuos de soldadura incorporados en porcentajes variables conformarán la población, que será ensayada a compresión y absorción [48].

Muestra

Podría argumentarse que este grupo representa una pequeña porción de la población, y que sus principales características son la objetividad y la consistencia, lo que permite generalizar los resultados al resto de la población [49].

Para la muestra se tendrá en cuenta un tipo de diseño de f´c = 420 kg/cm2. Con la finalidad de cumplir con los objetivos se realizará unidades muestrales con forma prismática elaboradas a base de concreto; se elaborarán adoquines tanto para un diseño patrón sin sustitución (A.P) y para adoquines de concreto con sustitución de residuos de soldadura (RR. SS) en porcentajes de 5%, 10%, 15% y 20%.

El tiempo de rotura se procederá a realizar luego de su curado correspondiente a los 7, 14 y 28 días, con una muestra total a elaborar de 220 adoquines de concreto (ver Tabla V).

Tabla V

Muestra para unidades de adoquines tipo II para un f´c 420 kg/cm²

Tipo de elemento	N° de días de	Ensayo a realizar	P	Porcentaje de sustitución de residuos de soldadura					Tota I
	curad o		0 %	5%	10%	15%	20%		
		Absorción	0	0	0	0	0	0	15
Adoquines		Y Densidad	0	0	0	0	0	0	
de concreto			3	3	3	3	3	15	_
con residuos de		Abrasión	0	0	0	0	0	0	25
soldadura		-	0	0	0	0	0	0	
		-	5	5	5	5	5	25	
	7	Resistencia a	3	3	3	3	3	15	90
	14	compresión	3	3	3	3	3	15	
	28	-	3	3	3	3	3	15	
	7	Resistencia a	3	3	3	3	3	15	90
	14	la flexión	3	3	3	3	3	15	
	28		3	3	3	3	3	15	_

Muestreo

La conveniencia, el juicio humano o el determinismo, u otros criterios subjetivos, son los que afectan el proceso de selección en los métodos de muestreo no probabilístico [50].

Criterios de selección

La NTP 399.611 establece que se utiliza el promedio de tres muestras para determinar la resistencia a la compresión de cada tipo de adoquín.

2.4 Técnicas e instrumentos de recolección de datos, validez y confiabilidad

Una vez que se hayan operacionalizado y tabulado las variables dependientes e independientes, el siguiente paso será seleccionar un método de toma de notas para probar hipótesis o identificar incógnitas identificadas en el diseño de la investigación. Relacionarse siempre con la pregunta, los objetivos y el diseño de la investigación. [48].

Esta técnica se refiere a procedimientos o actividades utilizadas para recopilar información en un campo que se clasificaría como revisión de documentos, observación, investigación, etc.

Técnica de recolección de datos

Observación

El investigador claramente logra encontrar el comportamiento del sujeto sin realizar cambios o acciones que permitan manipular sobre el proyecto de tesis. [51].

Con ayuda de esta técnica estudiaremos el proceso de sustitución parcial de agregados por residuos de soldadura en proporciones del 5%, 10%, 15% y 20%, y los resultados globales quedarán registrados en un formato adecuado.

Análisis de documentos

La presente investigación está en base a un estudio de lineamientos o parámetros establecidos por la normativa nacional e internacional, libros, informes o artículos indexados en base de datos reconocidas acerca de la metodología a emplear para llevar a cabo el adecuado proceso o desarrollo de los ensavos.

Instrumentos de recolección de datos

Para esta investigación se utilizará como instrumentos de recolección de datos guías de observación de los formatos para ensayos a realizar, además de formatos de análisis de documentos en base a los ensayos de materiales que realizará.

Guía de observación

Una guía de observación es una forma metódica de recopilar relaciones que permite al observador situarse en el objeto de estudio, recogiendo todos los datos en función de las necesidades concretas que surgen. [52].

En este caso, el estudio utilizará un formato de cálculo que el investigador realizará como guía para las observaciones. Se procesan los formatos necesarios para la realización de ensayos con los que conoceremos las propiedades mecánicas de los adoquines.

Guía de análisis de documentos

Se utilizarán libros, revistas y seguiremos las normas aplicables que correspondan a cada ensayo a realizar, tales como las normas "ASTM", NTP, ACI y la Norma Nacional de Edificaciones (RNE) en el que se indicarán los pasos, métodos y cálculos que se realizarán durante el examen.

Validez

Es el grado o eficacia con el que el instrumento mide las variables presentadas en el estudio para medir esa eficacia en relación con los objetivos del instrumento o que los efectúe. [53].

Confiabilidad

La confiabilidad es una medida que se puede determinar utilizando diferentes métodos para determinar la precisión de los resultados obtenidos cuando se usan en diferentes situaciones o condiciones. [54].

Se realizará una revisión a través del juicio de expertos de la materia, quienes darán veracidad los resultados presentes en el estudio, datos reales y obtenidos luego una serie de ensayos correspondientes, siendo la metodología de análisis el aspecto más importante para el presente estudio.

2.5 Procedimiento de análisis de datos

El proceso consta de publicación, que implica determinar el formato o tamaño del material, y clasificación, que implica crear categorías de respuesta. [55].

El propósito de este análisis es proporcionar una base para mejorar soluciones o soluciones en nuestra investigación para lograr mejoras en nuestra investigación.

2.6 Método de análisis unitario

ANÁLISIS ECONOMICA DEL CONCRETO PATRON Y EXPERIMENTAL

Volumen Absoluto

Agregado Fino = 735.37 Kg

Peso de Cemento= 42.50 Kg

Cemento Bolsa m3= 15.83 Unid

Volumen Del Adoquín= L=20cm, A=10cm, H=6cm; v=1200

^{M3}=1000000 cm ; Desperdicio= 15%, 1150000

Total, de adoquines=958.33 Unidades

CONCRETO PATRON

Detalle	Unidad	Cantidad	Precio Unitario S/	Total S/					
MATERIALES	CONCRETO PATRON								
Cemento	bol	16.59	31.50	522.63					
Agregado Grueso	m3	0.49	60.00	29.27					
Agregado Fino	m3	0.44	60.00	26.52					
Agua	m3	0.22	5.00	1.10					
	S/579.52								

PRECIO POR UNIDAD

S/1.65 Soles

% OPTIMO (10% De Análisis Experimental)

Detalle	Unidad	Cantidad	Precio Unitario S/	Total S/					
MATERIALES	% OPTIMO (10% De Análisis Experimental)								
Cemento	bol	16.59	31.50	522.63					
Residuo de soldadura	Kg	65.84	0.3	19.7517					
Agregado Grueso	m3	0.49	90.00	43.91					
Agregado Fino	m3	0.44	60.00	26.52					
Agua	m3	0.22	5.00	1.10					
	S/613.91								

PRECIO POR UNIDAD

S/1.56 Soles

En la tabla realizada se puede ver los precios de elaboración de los adoquines incorporando residuos de soldadura como sustituto parcial del agregado para los adoquines 0%(Concreto Patrón) el costo por m3 es de un costo de S/559.52 Soles y por cada unidad es de un S/1.65 soles y para el 10% que fue el (Optimo del Análisis Experimental) tuvo un costo por m3 de

S/613.91 soles y por cada unidad fue de un S/ 1.56 Soles, por lo tanto se puede decir que la elaboración de adoquines experimental puede salir más baja, pero su precio es razonable porque su carga aumenta su resistencia respeto al concreto patrón y eso quiere decir que da bueno resultado.

Diagrama de flujo de procesos

En la Fig. 1. Se describe el proceso que se utilizará para desarrollar el trabajo de investigación.

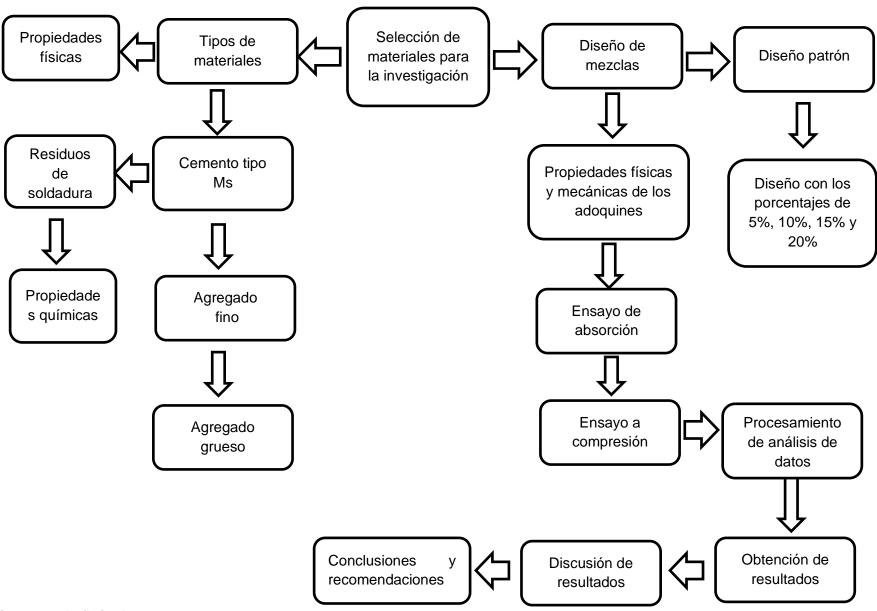


Fig. 1 Diagrama de flujo de procesos

2.7 Criterios éticos

La presente investigación tiene como propósito proporcionar nuevas aportaciones en la rama de la tecnología del concreto y de la transitabilidad en la ciudad, para ello, se estipula que todo lo documentado y detallado, ha sido seleccionado y verificado de manera adecuada, respetando otras investigaciones y dándoles el debido reconocimiento mediante las citas correspondientes. Asimismo, el nivel investigativo está basado en la normativa establecida por la Universidad Señor de Sipán, garantizando que los estudios realizados se encuentran en base a las Normas Técnicas Peruanas sin alteración alguna tanto en el proceso y el laboratorio.

III RESULTADOS Y DISCUSIÓN

3.1 Resultados

Según O.E 01 Determinar el diseño de mezcla del adoquín de concreto sustituyendo parcialmente el agregado por residuos de soldadura al 0%, 5%, 10% y 15%, 20% y costo de producción.

Para llegar a un diseño de mezcla para el adoquín de concreto, se procedió a estudiar las características físicas de los agregados para luego proceder en gabinete a realizar su diseño de mezcla control y los diseños con 5%, 10%, 15% y 20% RR. SOLD

Granulometría del agregado fino.

El análisis granulométrico se maneja para establecer las características del agregado fino; La validación del informe de laboratorio se ubica en el **Anexo 5**.

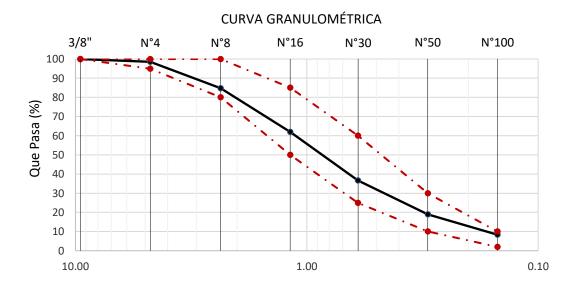


Fig. 2 Curva granulométrica del agregado fino

De acuerdo con la prueba granulométrica que se efectuó a una muestra, que consiguió un módulo de finura 2.91, esto está de acuerdo con la NTP 400.037, que establece que el módulo de finura no debe ser inferior a 2.3 ni superior a 3.1. La Tabla VI proporciona una descripción general de las derivaciones de las propiedades físicas.

Tabla VI
Propiedades físicas del agregado fino

Módulo de Fineza	2.91
Peso Unitario Suelto (Kg/m3)	1507.33
Peso Unitario Compactado (Kg/m3)	1593.79
Peso Específico (Kg/m3)	2398.57
Contenido de Humedad (%)	0.67
Porcentaje de Absorción (%)	1.37
. , ,	

Nota. La validad de las propiedades físicas del agregado grueso se encuentra en el informe de laboratorio ubicado en el **Anexo 5.**

Granulometría del agregado grueso

El análisis granulométrico se utiliza para determinar las características del agregado grueso; la curva granulométrica conseguida que se presenta en la Fig. 3, nos revela que está dentro de los límites establecidos por la normativa vigente. La validación de la curva granulométrica se encuentra en el informe de laboratorio ubicado en el **Anexo 5.**

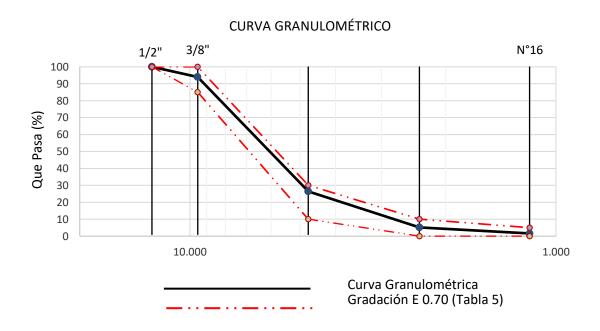


Fig. 3 Curva granulométrica del agregado grueso (confitillo)

Los datos de los cálculos de laboratorio de las características físicas del agregado grueso se presentan en la Tabla VII.

Tabla VII

Propiedades físicas del agregado grueso

Tamaño máximo nominal	N°4
Peso Unitario Suelto (Kg/m3)	1390.80
Peso Unitario Compactado (Kg/m3)	1528.61
Peso Específico	2751.45
Contenido de Humedad (%)	0.36
Porcentaje de Absorción (%)	1.98

Nota. La validad de las propiedades físicas del agregado grueso se encuentra en el informe de laboratorio ubicado en el **Anexo 5.**

Diseño de mezcla aplicando el ACI 211

La Tabla VIII, detalla la cantidad de material por m3, de peso y volumen, la cantidad de saco por m3 y el valor a/c, utilizados para concreto estándar de 420 kg/cm².

Tabla VIII

Diseño de Mezcla - 420 kg/cm²

Cant	tidades de ma	ateriales po	metros cúbic	cos	
Cemento	705.13	Kg/m ³			
Agua	235.73	L			
Agregado Fino	662.80	Kg/m ³			
Agregado Grueso	688.97	Kg/m ³			
	Cemento	Arena	Piedra	Agua	
Proporciones en peso	1.0	0.94	0.98	14.21	Lts
Proporciones en volumen	1.0	1.04	0.93	14.21	Lts
Factor cemento por m ³ de c	oncreto			16.59	Bolsas/m ³
Relación agua cemento de	diseño			0.312	

Nota. La validad de las dosificaciones mostradas en la Tabla VIII, se encuentra en el informe de laboratorio ubicado en el **Anexo 6.**

Según O.E 02 Evaluar las propiedades físicas de los adoquines, sustituyendo parcialmente residuos de soldadura, para un f´c=420 kg/cm².

La NTP 399.611, especifica la tolerancia dimensional máxima que deben poseer los adoquines. Después de medir las muestras, se descubrió la información sobre los adoquines de concreto con 0%, 5%, 10%, 15% y 20% de residuos de soldadura. Dichos resultados se presentan en las siguientes figuras y es consistente con la NTP 399.611, sección 7.1; en la cual, se menciona las siguientes medidas: Largo =± 1.6 mm, Ancho = ±1.6 mm y Grosor = ±3.2 mm. La validación se encuentra en el informe de laboratorio ubicado en el **Anexo 16.**

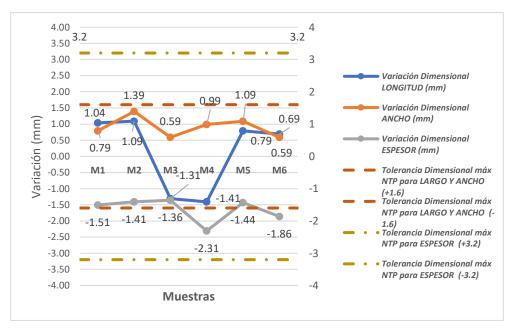


Fig. 4: Variación dimensional de Adoquines patrón - 420 kg/cm²

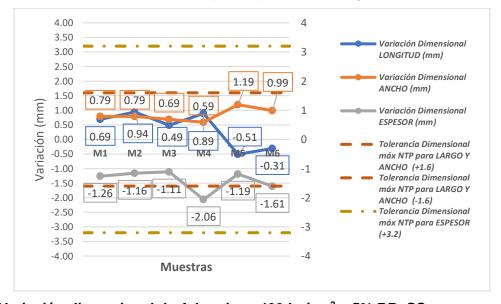


Fig. 5: Variación dimensional de Adoquines 420 kg/cm² + 5% RR. SS

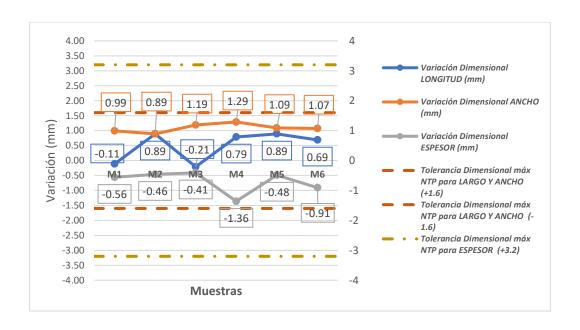


Fig. 6 Variación dimensional de Adoquines 420 kg/cm² + 10% RR.SS

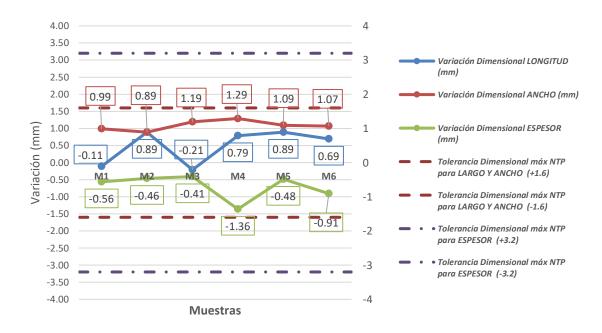


Fig. 7: Variación dimensional de Adoquines 420 kg/cm2 + 15% RR.

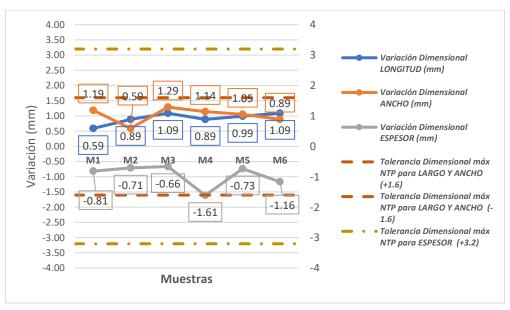


Fig. 8: Variación dimensional de Adoquines 420 kg/cm2 + 20% RR. SS Ensayo de absorción en adoquines

La NTP 399.611, establece que las muestras deben cumplir con los estándares de absorción, los cuales se muestran en la sección 7.2.1, que representa la mayor proporción de un promedio de tres adoquines.

Los resultados de la prueba de absorción, que abarcó adoquines de concreto con 0%, 5%, 10%, 15% y 20% de residuos de soldadura sumergido por 24 horas en agua y una resistencia de 420kg/cm². Dada la información, se sabe que se cumplieron los requerimientos de la NTP 399.611, numeral 7.2, que establece que el tamaño de la muestra para adoquines tipo II no debe ser mayor al 6%, en promedio, a través de la muestra de 3 especímenes. En la Fig. 9, se muestra gráficamente las absorciones de los adoquines por unidad. La validación se encuentra en el informe de laboratorio ubicado en el **Anexo 15.**

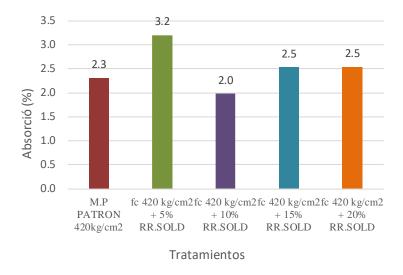


Fig. 9 Promedio de las absorciones de los adoquines

Ensayo de densidad en adoquines

Los resultados de la prueba de densidad, que involucró adoquines de concreto con 0%, 5%, 10%, 15% y 20% de residuos de soldadura sumergido una resistencia de 420kg/cm². Observamos que mientras mayor es el reemplazo del agregado por RR. SS, va incrementado la densidad de los adoquines. La validación se encuentra en el informe de laboratorio ubicado en el **Anexo 10**.

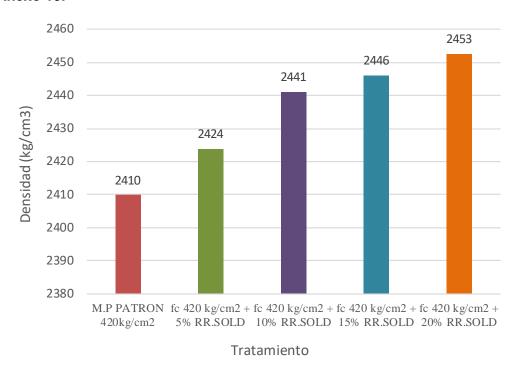


Fig. 10: Densidad promedio de los adoquines

Según O.E 03 Evaluar las propiedades mecánicas de los adoquines, sustituyendo parcialmente residuos de soldadura, para un f´c=420 kg/cm².

Resistencia a la compresión en adoquines

La NTP 399.611 establece que los adoquines Tipo II, deben cumplir con los requerimientos de resistencia a la compresión enumerados en la sección 7.1, donde especifica la resistencia a la compresión mínima (420 kg/cm²) requerida para un promedio de tres muestras.

Los resultados promedios de los ensayos de resistencia a la compresión, que involucró adoquines de concreto con 0%, 5%, 10%, 15% y 20% de residuos de soldadura. Dado que todas las muestras ensayadas a los 28 días de edad superaron la resistencia mínima de 420 kg/cm², se cumplieron los requerimientos de la NTP 399.611. La validación del informe de laboratorio se ubica en el **Anexo 12.**

En la Fig. 11 se muestra en una representación gráfica de los tratamientos del adoquín de concreto más la incorporación de RR.SS, donde destaca los promedios de las muestras de cada tratamiento a la edad de 7, 14 y 28 con la finalidad de poder observar sus fortalezas obtenidas por cada porcentaje (%) de RR.SS.

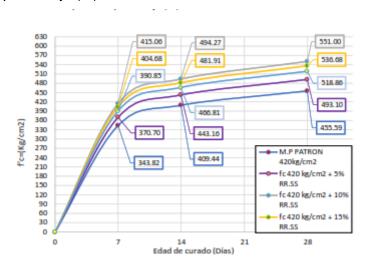


Fig. 11 Fortalezas promedio de la resistencia a la compresión

En la Fig. 12 los valores mostrados representan el incremento de la resistencia estudiada respecto al tratamiento control expresada en porcentaje.

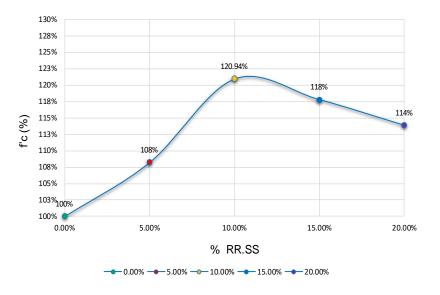


Fig. 12 Incremento de la resistencia a compresión obtenida en porcentaje (%) Resistencia a la flexión en adoquines

En la Fig. 13, se muestran los resultados promedio de la prueba de resistencia a la flexión, que involucró adoquines de concreto con 0%, 10%, 15% y 20% de residuos de soldadura. Se logra observar que todos los valores de módulo de rotura de los adoquines con sustitución del agregado por RR. SS superaron a la muestra patrón. La valides de los datos se encuentra

en el informe de laboratorio ubicado en el Anexo 13.

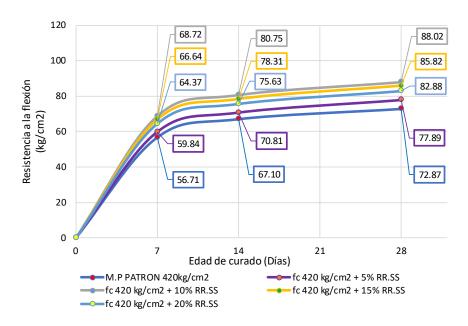


Fig. 13 Promedios de la resistencia a la flexión

En la Fig. 14 los valores mostrados representan el incremento de la resistencia estudiada respecto al tratamiento control expresada en porcentaje.

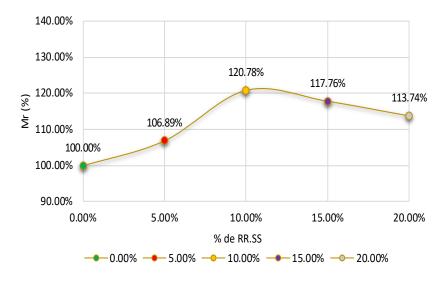


Fig. 14 Incremento de la resistencia a flexión obtenida en porcentaje (%)

Ensayo de abrasión por rodillo giratorio

Los resultados promedios de los ensayos de abrasión, que incluyó adoquines de concreto con 0%, 10%, 15% y 20% de residuos de soldadura. La Fig. 15, muestra el desgaste de la superficie de cada adoquín que se probó. La valides de los datos se encuentra en el informe de laboratorio ubicado en el **Anexo 13.**

Fig. 15 Desgaste superficial

Según O.E 04 Determinar la dosificación óptima de residuos de soldadura para la elaboración de adoquines con fines de tránsito ligero mediante un análisis estadístico.

Tabla XXII

Diseños de mezcla del f´c 420 kg/cm²

DISEÑO f´c=420kg/cm²					
	0%	5%	10%	15%	20%
Relación A/C	0.312	0.312	0.312	0.312	0.312
Cemento (kg/m³)	705.13	705.13	705.13	705.13	705.13
Agua (Lt)	220	220	220	220	220
Confitillo (Kg/m³)	686.50	686.50	686.50	686.50	686.50
A.F (Kg/m³)	658.39	625.47	589.55	559.63	527.21
P. Soldadura (Ka)					
R. Soldadura (Kg)	0	32.92	65.84	98.76	131.18

Para elección del diseño de mezcla óptimo, se analizó la **Fig. 9, Fig. 11, y Fig. 13** donde comparamos los resultados obtenidos en los ensayos de resistencia a la compresión, resistencia a la flexión y ensayo de abrasión. Esta comparación corresponde a los 5 porcentajes estudiados, donde determinamos que el diseño optimo será con un porcentaje de sustitución de la arena por los residuos de soldadura del 10%. Obteniendo resistencias como 562.35 kg/cm², 9.1 MPa, 1.03 kg/cm² y 0.39% de desgaste respecto a los ensayos mencionados.

El análisis estadístico demostró una fiabilidad del 98.3% y en las tablas se observa que, el instrumento sobre "Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura como sustituto parcial del agregado" es válido (correlaciones de Pearson superan al valor de 0.30 y el valor de la prueba del análisis de varianza es altamente significativo p < 0.01) y confiable (el valor de consistencia alfa de Cronbach es mayor a 0.80). El informe estadístico se ubica en el **Anexo 3.**

3.2 Discusión

Características de los agregados pétreos

Durante la granulometría se demostró que se encuentra dentro de los límites permisibles, según lo determina la NTP 400.037. La cantera La Victoria en Pátapo es donde se produce el agregado fino; además, su M.F fue de 2.91, que también se encuentra dentro de los rangos permitidos. El módulo de finura y la gradación o continuidad en los tamaños son dos factores cruciales a tener en cuenta al crear agregado fino. Según la teoría y algunas investigaciones sobre el impacto de la naturaleza y las cualidades de los agregados en el concreto, las arenas con un módulo de finura superior a 3.1 ya se consideran arenas gruesas y pueden dificultar el trabajo con la mezcla. Se descubrió que el agregado grueso estaba dentro de las medidas aceptables, a través de los HUSOS granulométricos. El tamaño máximo es una consideración crucial cuando se trata de agregado grueso; para producir adoquines, es primordial tener una piedra de tamaño pequeño porque sus dimensiones restringen severamente su tamaño. El confitillo es un árido fino que se obtiene de triturar artificialmente la piedra, llegando a tener una composición granulométrica parecida a la arena gruesa. El ensayo granulométrico se realizó haciendo uso de los tamices Nº 4, 8, 16, 30, 50 y 100, para conseguir una curva granulométrica bien detallada.

Con el propósito de determinar el agua efectiva, el contenido de humedad del agregado es un factor crucial a considerar junto con la absorción porque ambos afectan la cantidad de agua necesaria para una mezcla efectiva. Un alto contenido de absorción haría más difícil trabajar con la muestra. Los agregados tienen vacíos que están constantemente expuestos a la intemperie y la humedad en su estado natural. Como resultado nuestra arena y piedra presenta una absorción de 1.37% y 1.98% respectivamente. El contenido de humedad del agregado fino y grueso fue de 0.67 y 0.36% respectivamente. El peso específico del agregado fino y grueso fue de 2398.57 y 2751.45 kg/m3 respectivamente. Para calcular las proporciones de concreto por volumen, se necesita información sobre el peso unitario tanto suelto como compactado. El agregado fino tuvo un P.U.S de 1507.33 kg/m3 y el P.U.C de

1593.79 kg/m3; en tanto el agregado grueso tuvo un P.U.S de 1390.80 kg/m3 y el P.U.C de 1528.61 kg/m3.

Variación dimensional

Tomando en cuenta la NTP 399.611, en este requisito, se establece que la tolerancia dimensional máxima debe ser: Longitud = 1.6 mm, ancho = 1.6 mm y espesor = 3.2 mm, es un requerimiento arquitectónico más que una propiedad mecánica o física. Los primeros adoquines que se hicieron tuvieron variación regular, este sucedió porque la mezcla, estaba bastante seca y era poco trabajable; además, tuvo mucha influencia la relación a/c, la cantidad de agua de amasado y la temperatura. Al realizar el análisis de los resultados, se logró observar que los adoquines sin sustitución de RR. SS y los adoquines con presencia de RR. SS presentaron variación dimensional, que se atribuye principalmente al proceso de fabricación semiindustrial utilizado para fabricar estos adoquines. Hay que recordar que el error humano es más probable que ocurra cuando se fabrican adoquines que cuando se trata de grandes empresas nacionales que utilizan maquinaria.

Resistencia a la compresión de los adoquines

Para los adoquines de concreto que se generaron sustituyendo una parte del peso del agregado con residuos de soldadura, se pudo observar el siguiente comportamiento en la resistencia a compresión: en el transcurso de los siete días, todos las substituciones manifestaron un aumento de 7.8 a 20.7%, obteniendo resistencias entre 343.82 a 415.06 kg/cm2. A los 14 días, todos los reemplazos también demostraron crecimiento, pasando del 8.2 al 20.7%, y alcanzaron resistencias entre 409.44 a 494.27 kg/cm2. A los 28 días, el crecimiento se mantuvo del 8.2 al 20.9%, encontrando resistencias que oscilaban entre los 455.59 a 551.00 kg/cm2. En consecuencia, la resistencia mínima calculada por la norma de 442 kg/cm2, fue superada por los adoquines experimental y estándar.

Existen investigaciones, como por ejemplo la de Ananthi & Karthikeyan [16], quienes al sustituir escoria de soldadura por el agregado fino (0,10, 20 y 30%), observaron que la resistencia de los adoquines disminuyó en un 3, 11 y 21% con respecto a la mezcla de control. En tanto, Vijayakumar et al. [15], al reemplazar escoria de acero (EA) por agregado fino, obtuvieron un incremento del 17.7% resistencia en relación a su muestra estándar, para cantidades de reemplazo 50% EA. Por otra parte, los investigadores Olofinnade et al. [56], al elaborar adoquines con escoria de acero (EA), encontraron que al reemplazar 40% AE se consiguió un aumento del 15% de la resistencia en relación a su patrón. Así mismo, en sus estudios realizados Neyra & Walter [23], con el uso de fibras de acero (FA) como refuerzo en mezclas para adoquines de concreto para pavimentos, lograron el incremento de la resistencia de 10.3,16.6 y 6.69% con adiciones de FA al 10, 20 y 30% respectivamente, en relación al concreto de referencia.

Resistencia a la flexión de los adoquines

Para los adoquines de concreto que se generaron sustituyendo una parte del peso del agregado fino con residuos de soldadura, se pudo observar el siguiente comportamiento en resistencia a flexión: En el curso de los siete días, todos las substituciones manifestaron un aumento de 5.5 a 21.2 %, obteniendo resistencias entre 56.71 a 68.72 kg/cm2. A los 14 días, todos los reemplazos también demostraron crecimiento, pasando del 5.5 al 20.3%, y alcanzaron resistencias entre 67.10 a 80.75 kg/cm2. A los 28 días, el crecimiento se mantuvo del 6.9 al 20.8%, encontrando resistencias que oscilaban entre los 72.87 a 88.02 kg/cm2. Todos los adoquines con reemplazos de RR. SS en sus tres edades, superaron a los adoquines patrones.

En los estudios llevados a cabo por Ananthi y Karthikeyan [16], encontraron que la resistencia a la flexión de los adoquines aumento al sustituir escoria de soldadura (ES) por el agregado fino, logrando un incremento de 14.4 y 4.4% para ES10 y ES20, respectivamente; y a una tasa equivalente a la mezcla de control para la mezcla ES30. En tanto, Vijayakumar et al. [15], al reemplazar escoria de acero (EA) por agregado fino, presentaron un incremento del del 29.2 y 11.8% de resistencia para reemplazos de 25 y 50% EA respectivamente, con respecto a su muestra patrón.

Ensayo desgaste por abrasión

Primero, después de 28 días, se sometieron a prueba de abrasión tanto las muestras estándar como las que tenían reemplazos. Aunque no existe un patrón discernible de comportamiento entre las muestras, como se presenta en la Tabla XX, esto se hizo en base a que los porcentajes de desgastes por abrasión son variables que van a depender del proceder mecánico que consiga presentar o no los adoquines, donde se puede apreciar que los adoquines que contienen residuos de soldadura (RR. SS), lograron tener un menor porcentaje de desgaste que la muestra patrón, siendo un 10% de reemplazo con un valor menor de 0.39% que equivaldría a 26.4% de variación porcentual con respecto a la muestra patrón con un desgaste del 0.53%.

En los estudio llevados a cabo por Risco [22], se evaluó el desempeño del polvo de acero (PA) y la cenizas de cáscaras de arroz (CCA) en adoquines, empleando dosificaciones de 2.5%PA+2.5%CCA y 5%PA+5%5CCA, donde lograron obtener que su resistencia a la abrasión fue del 20% y 17% respectivamente, para ambas dosificaciones a diferencia de un 22% del concreto control a sus 28 días. Estos resultados son comparables en que, en ambos estudios, la muestra estándar mostró el mayor porcentaje de desgaste.

Ensayo de absorción

De acuerdo a los resultados los adoquines con reemplazos del 5, 15 y 20% RR. SS presentaron valores más altos de absorción de 3.2, 2.5 y 2.5% respectivamente; siendo el

10% con RR. SS el que obtuvo la absorción más baja de 2%, a diferencia de la muestra patrón que logró una absorción de 2.3%. De acuerdo con la NTP 399.611, el porcentaje de absorción de cada muestra no debe exceder el 7.5% y el promedio de tres unidades no debe exceder el 6%. Por lo tanto, se puede afirmar que todas las muestras tanto patrón y experimental cumplieron con lo estipulado en la norma.

Investigadores como Ananthi y Karthikeyan [16], al sustituir escoria de soldadura (ES) por el agregado fino (0,10, 20 y 30%); encontraron que el ES10 de la mezcla muestra una disminución en la absorción de agua de alrededor del 20.7 % en comparación con la mezcla de control, luego la absorción de agua aumenta en 11.4, 15.7 % para la mezcla ES20 y ES30.

Ensayo de densidad

Los gráficos nos permitieron ver un patrón y una tendencia de crecimiento en relación a la densidad de la muestra, lo cual se pudo ver en la sección de resultados. A medida que incrementaba el porcentaje de sustitución de residuos de soldadura, se observó un aumento en la densidad. Las densidades de los adoquines fueron 2410, 2424, 2441, 2446 y 2453 kg/m3 para RR. SS de 0, 5, 10, 15 y 20 %, respectivamente; donde se apreció un aumento del 0.6, 1.3, 1.5 y 1.7% con relación a la muestra patrón.

IV CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

Se determinó que el agregado fino tuvo un contenido de humedad de 0.67 %, M.F de 2.91 %, contenido de absorción de 1.37%, P.E de 2398.57 kg/cm³, PUC de 1593.79 kg/m³ y PUS del 1507.33 kg/m³ ; el agregado grueso tuvo un contenido de absorción de 1.98%, contenido de humedad de 0.36 %, T.M.N de Nº4 , peso específico de 2751.45 kg/m³, PUC de 1528.61 kg/m³ y PUS de 1390.80 kg/m³. Las proporciones selectas fueron 1:0.98:0.94 donde su relación a/c fue 0.312, cumpliendo con los parámetros establecidos para un buen diseño de mezcla a realizar.

Se evaluó las propiedades físicas del adoquín con el porcentaje óptimo de residuos de soldadura al 10% de sustitución por el agregado fino, teniendo un asentamiento de 1 ½", una temperatura de 27°C, un contenido de vacíos de 1.9% y con un peso unitario de 2295 gr/cm³, dónde los resultados se encuentran en un rango establecido a las normas requeridas.

Se evaluó mediante los ensayos mecánicos con el porcentaje óptimo de residuo de soldadura al 10% de sustitución por el agregado, teniendo una resistencia a la compresión de 556.64 kg/m² con un 33% de aumento respecto al adoquín patrón, una resistencia a flexión de 9.1 MPa con un 20.8% de aumento respecto al adoquín patrón y en abrasión 0.47% de desgaste, mejorando las propiedades físicas del adoquín.

Los datos demuestran que el reemplazo parcial de agregado por residuos de soldadura al 5%, 10%, 15% y 20%, los resultados cumplieron con los requisitos descritos en las normas antes mencionadas. Basándose en los resultados, el reemplazo del 10%, se tomará como el reemplazo optimo debido a que logro un mejor desempeño en las propiedades de los adoquines.

4.2 Recomendaciones

Se recomienda que, al realizar los ensayos de laboratorio, se deben ejecutar de acuerdo con la Norma Técnica Peruana (NTP), el ACI 211 del Instituto Americano del Concreto, entre otras, puesto que son los requisitos legales que se deben seguir para asegurar el buen proceder del concreto y evitar alteraciones en el diseño.

Para mejorar las características físicas de los adoquines y asegurar que cumplan con la NTP 399.611, se recomienda realizar un estudio de los agregados para obtener buenos ensayos físicos del adoquín en estado fresco en el que se recomienda un porcentaje no menor al 10% de los residuos de soldadura.

Se recomienda trabajar con un porcentaje no menor al 10% de sustitución por el agregado fino, ya que sus resistencias mecánicas aumentaron respecto al adoquín patrón, además de aportar beneficio en el ámbito social, económico y ambiental para el sector construcción.

Para fomentar el uso de residuos de soldadura recicladas para la construcción, se recomienda que los futuros investigadores en este campo indaguen más a fondo las características físicas de estos materiales.

REFERENCIAS

- [1] O. Olofinnade, A. Morawo, O. Okedairo and B. Kim, "Solid waste management in developing countries: Reusing of steel slag aggregate in eco-friendly interlocking concrete paving blocks production," *Estudios de caso en materiales de construcción,* vol. 14, no. 014258, p. 00532, 2021.
- [2] L. Tadeu, R. F. Bianchi and A. T. Bernardes, "Mechanical Property Assessment of Interlocking Plastic Pavers Manufactured from Electronic Industry Waste in Brazil," *Recycling*, vol. 6, no. 1, p. 15, 2021.
- [3] M. Contreras, M. Romero, M. J. Gázquez and J. P. Bolívar, "Recycled Aggregates from Construction and Demolition Waste in the Manufacture of Urban Pavements," *Materials*, vol. 14, no. 21, p. 6605, 2021.
- [4] J. Xin, X. Yan, P. He and C. S. Poon, "Sustainable design of pervious concrete using waste glass and recycled concrete aggregate," *Journal of Cleaner Production*, vol. 234, no. 1457, pp. 1102-1112, 2019.
- [5] B. Hyun, S. Lee and I. Chang, "Pervious Pavement Blocks Made from Recycled Polyethylene Terephthalate (PET): Fabrication and Engineering Properties," *Sostenibilidad*, vol. 12, no. 16, p. 6356, 2020.
- [6] N. Hossiney, H. K. Sepuri, M. K. Mohan, S. Chandra K, S. Lakshmish Kumar and . T. H K, "Geopolymer concrete paving blocks made with Recycled Asphalt Pavement (RAP) aggregates towards sustainable urban mobility development," *Ingeniería Cogent*, vol. 7, no. 1, p. 1824572, 2020.
- [7] A. Di Maria, M. Salman, M. Dubois and K. Van Acker, "Life cycle assessment to evaluate the environmental performance of new construction material from stainless steel slag," *International Journal of Life Cycle Assessment*, vol. 23, no. 11, pp. 2091-2109, 2018.
- [8] N. Saboo, . A. N. Prasad, . M. Sukhija, M. Chaudhary and A. K. Chandrappa, "Effect of the use of recycled asphalt pavement (RAP) aggregates on the performance of pervious paver blocks (PPB)," *Materiales de construcción y edificación*, vol. 262, p. 120581, 2020.
- [9] M. Dominguez and C. Fernández, "Propiedades mecánicas del concreto f'c=280kg/cm2 para pavimento al sustituir el cemento por cenizas de cascarilla de arroz en 5% Chimbote, Áncash.," Chimbote, 2020.
- [10] L. Sanchez, N. J. Tovar Perilla, G. J. Suarez Puentes, J. E. Bravo Cervera and D. F. Rojas Parra, "Mechanical and Market Study for Sand/Recycled-Plastic Cobbles in a Medium-Size Colombian City," *Recycling*, vol. 6, no. 1, pp. 1-13, 2021.

- [11] M. Jaime and L. Portocarrero, "Influencia de la cascarilla y ceniza de cascarilla de arroz sobre la resistencia a la compresión de un concreto no estructural, Trujillo 2018," Trujillo, 2018.
- [12] J. Cordova and J. Valverde, "Uso de la ceniza de cascarilla de arroz (Oryza sativa) en el diseño de la losa del pavimento rígido de la Av. Chulucanas (Km. 1+800 a 2+800) Piura," Piura, 2019.
- [13] J. Aliaga and D. Badajos, "Adición de cenizas de cascarilla de arroz para el diseño de concreto f"c 210kg/cm2, Atalaya, Ucayali.," Lima, 2018.
- [14] M. Durant, "Diseño de pavimento rígido para optimizar la transitabilidad vehicular y peatonal del sector I Urbanización Urrunaga, José Leonardo Ortíz, Chiclayo Lambayeque," Chiclayo, 2019.
- [15] A. Vijayakumar, J. Raja Murugadoss and S. Praveen, "Development of Sustainable Concrete Using Alternative Building Materials By Replacing Industrial Waste Steel Slag for Aggregates," *International Journal of Engineering and Advanced Technology*, vol. 8, no. 6, pp. 2745-2749, 2019.
- [16] A. Ananthi and J. Karthikeyan, "Combined Performance of Polypropylene Fibre and Weld Slag in High Performance Concrete," *Journal of The Institution of Engineers (India): Series A,* vol. 98, no. 4, pp. 405-412, 2017.
- [17] R. Padmapriya, V. K. Bupesh Raja, V. Ganesh Kumar and J. Baalamurugan, "Effect on properties of concrete in partial replacement of fine aggregate by steel slag and cement by metakaolin," *Rasayan*, vol. 12, no. 4, pp. 1744-1751, 2019.
- [18] V. Revilla, V. Ortega López, M. Skaf, E. Pasquini and M. Pasetto, "Preliminary Validation of Steel Slag-Aggregate Concrete for Rigid Pavements: A Full-Scale Study," *Infrastructures*, vol. 6, no. 5, p. 64, 2021.
- [19] N. Hossiney, . H. Kiran Sepuri, M. Krishna Mohan, A. H R, S. Govindaraju and J. Chyne, "Alkali-activated concrete paver blocks made with recycled asphalt pavement (RAP) aggregates," *Case Studies in Construction Materials*, vol. 12, p. e00322, 2020.
- [20] H. Mohamad, N. Bolong, I. Saad, L. Gungat, J. Tioon, R. Pileh and M. Delton, "Manufacture of concrete paver block using waste materials and by-products: a review," International Journal of GEOMATE, vol. 22, no. 93, pp. 9-19, 2022.
- [21] C. Fuentes, "Pavimento intertrabado incorporando fibras de acero y polipropileno para mejorar las propiedades mecánicas, distrito de Lampa 2022," Lima, 2022.
- [22] I. Risco, "Análisis de la resistencia a la compresión, abrasión y absorción de humedad de adoquines de concreto tradicional con adición de polvillo reciclado de acero y cenizas

- recicladas de cáscara de arroz, Lima 2020," Lima, 2020.
- [23] S. Neyra y T. Walter, «Diseño de pavimentos con adoquines de concreto adicionando fibra de acero, Avenida César Vallejo, Villa el Salvador Lima- 2019,» Lima, 2019.
- [24] C. Manrique y C. Manrique, «Elaboración de adoquines de concreto ecológico con adición de caucho y acero reciclado, para pavimentos de tránsito ligero Mazamari 2021,» Lima, 2021.
- [25] L. Sinarahua, "Diseño y evaluación del esfuerzo a compresión del adoquín tipo II con incorporación de escoria de horno artesanal, Soritor 2020," Moyobamba, 2020.
- [26] C. Melgarejos, "Influencia de la Escoria al Producir Concreto Permeable en Pavimentos Urbanos de la Ciudad de Pasco Distrito de Yanacancha 2019," Cerro de Pasco, 2019.
- [27] M. E. Villalobos, "Evaluación de las propiedades mecánicas del concreto adicionando limaduras de acero," Pimentel, 2018.
- [28] C. R. Elera and E. Reyna, "Propuesta de un diseño de mezcla de concreto utilizando la escoria de acería como reemplazante proporcional del agregado grueso," Pimentel, 2019.
- [29] J. Coronado, Manual Centroamericano para Diseño de Pavimentos, 2002, p. 289.
- [30] M. Tobar, J. V. Pardo Castro, D. F. García Ruiz, D. A. Guzman and H. Y. Castillo Cáliz, "PROCESO CONSTRUCTIVO DE UN PAVIMENTO CON ADOQUINES," Lima, 2018.
- [31] J. S. Solar, Manual De Diseño de Pavimentos de Adoquines de Hormigón, Santiago: Instituto del Cemento y del Hormigón de Chile, 2017, p. 100.
- [32] «NTP 399.611,» NORMA TÉCNICA PERUANA Dirección de Normalización, 2017.
- [33] J. Pinedo Culqui, «"Diseño de adoquines para pisos de transito liviano reaprovec poliestireno expandido, agregados y emulsión asfáltica Tarapoto, 2018", » Respositorio institucional: UCV, lima, 2018.
- [34] «Norma UNE-EN1338,» 2018.
- [35] NTP 400.012, «AGREGADOS. Análisis granulométrico del agregado fino y grueso. Método de ensayo. 4a Edición,» INACAL, 2021.
- [36] NTP 400.017, «AGREGADOS. Método de ensayo para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados,» INACAL, 2020.
- [37] NTP 400.022, «AGREGADOS. Determinación de la densidad relativa (peso específico) y absorción del agregado fino. Método de ensayo. 4a Edición,» INACAL, 2021.
- [38] NTP 339.035, «CONCRETO. Medición del asentamiento del concreto de cemento hidráulico. Método de ensayo. 5ª Edición,» INACAL, 2022.

- [39] NTP 339.184, «CONCRETO. Determinación de la temperatura del concreto de cemento hidráulico recién mezclado. Método de ensayo. 3a Edición,» INACAL, 2021.
- [40] NTP 339.046, «CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del concreto. 3a Edición,» INACAL, 2019.
- [41] NTP 339.080, «CONCRETO. Método de ensayo para la determinación del contenido de aire en el concreto fresco. Método de presión. 3ª Edición,» INACAL, 2017.
- [42] NTP 399.604, «Método de muestreo y ensayo de unidades de albañilería de concreto,» Lima, 2002.
- [43] ASTM C140/C140M-18, «Métodos de prueba estándar para el muestreo y la prueba de unidades de concreto de albañilería y unidades relacionadas,» Washington: ASTM International, 2018.
- [44] COGUANOR NTG 41087 h1;, «Métodos de Ensayo. Determinación del módulo de ruptura de los adoquines de concreto,» Comisión Guatemalteca de Normas Ministerio de Economía, 2012.
- [45] ASTM C944-12, «Método de ensayo estándar para la resistencia a la abrasión del concreto y superficies de mortero por medio del cortador giratorio, Washington: ASTM International,» 2012.
- [46] COGUANOR NTG 41087 h2, «Métodos de Ensayo. Determinación de la resistencia al desgaste por abrasión de adoquines de concreto,» Comisión Guatemalteca de Normas Ministerio de Economía, 2012.
- [47] T. Heput, E. Ardelean, A. Socalici, S. Maksay and A. Gavanescu, "Desulfuración del acero con escorias sintéticas.," *Revista De Metalurgia*, vol. 43, no. 1, pp. 1-8, 2007.
- [48] S. Carrasco, METODOLOGÍA DE LA INVESTIGACIÓN CIENTÍFICA, Lima: SAN MARCOS EIR LTDA, 2019, p. 476.
- [49] G. Baena, Metodologia de Investigación, 3era edición ed., Mexico: Grupo editorial patria, 2017.
- [50] Á. Cea, Fundamentos y aplicaciones en metodología cuantitativa, Sintesis, 2012.
- [51] M. Borja, "Metodología de la investigacgión científica para ingenieros," Chiclayo, 2016.
- [52] R. Hernandez, C. Fernández and P. Baptista, Metodología de la Investigación, INTERAMERICANA EDITORES, S.A. DE C.V, 2018, p. 746.
- [53] S. Gomez, Metodología de la investigación, Tlalnepantla: Red Tercer Milenio S.C., 2012.
- [54] C. M. Arispe Alburqueque, J. S. Yangali Vicente, M. A. Guerrero Bejarano, O. Rivera Lozada de Bonilla, L. A. Acuña Gambia and C. Arellana Sacramento, La Investigacion

- Cientifica, Guayaquil: Departamento de Investigacion y Postgrados Universidad Internacional del Ecuador, 2020, p. 131.
- [55] C. I. Muñoz, Metodologia de la investigación, Mexico: Editorial Progreso S.A de C.V, 2015.
- [56] O. Olofinnade, A. Morawo, O. Okedairo and B. Kim, "Solid waste management in developing countries: Reusing of steel slag aggregate in eco-friendly interlocking concrete paving blocks production," *Estudios de caso en materiales de construcción*, vol. 14, p. 00532, 2021.
- [57] J. Xin, X. Yan, P. He and C. S. Poon, "Sustainable design of pervious concrete using waste glass and recycled concrete aggregate," *Journal of Cleaner Production*, vol. 234, pp. 1102-1112, 2019.
- [58] N. Saboo, . A. N. Prasad, . M. Sukhija, M. Chaudhary and A. K. Chandrappa, "Effect of the use of recycled asphalt pavement (RAP) aggregates on the performance of pervious paver blocks (PPB)," *Materiales de construcción y edificación*, vol. 262, p. 120581, 2020.
- [59] NTP 339.185, «AGREGADOS. Determinación del contenido de humedad total evaporable de agregados por secado. Método de ensayo. 3a Edición,» INACAL, 2021.

ANEXOS

Anexo 1 Matriz de consistencia59
Anexo 2 Validación de expertos60
Anexo 3 Análisis estadístico68
Anexo 4 Calibración de equipos71
Anexo 5 Análisis físicos del agregado fino86
Anexo 6 Diseño de mezcla del adoquín de concreto control y adoquín al 0%, 5%, 10% y 20%.
93
Anexo 7 Dosificación en volumen del adoquín de concreto control93
Anexo 8 Ensayo de temperatura del adoquín de concreto control y adoquín de concreto al
0%, 10%, 15% y 20%98
Anexo 9 Ensayo de asentamiento del adoquín de concreto control y adoquín de100
Anexo 10 Ensayo de densidad del adoquín de concreto control y adoquín de concreto102
Anexo 11 Ensayo de contenido de aire del adoquín de concreto control y adoquín de concreto
al 0%, 10%, 15% y 20%104
Anexo 12 Ensayo de compresión del adoquín de concreto control y adoquín de concreto al
0%, 10%, 15% y 20%105
Anexo 13 Ensayo a flexión del adoquín de concreto control y adoquín de concreto112
Anexo 14 Ensayo de desgaste del adoquín de concreto control y adoquín de concreto117
Anexo 15 Ensayo de absorción del adoquín de concreto control y adoquín de122
Anexo 16 Variación dimensional del adoquín de concreto control y adoquín de concreto al
0%, 10%, 15% y 20%127
Anexo 17 Autorización para el recojo de información138

Anexo 1 Matriz de consistencia

	DESEMPEÑO MECÁNICO DE ADOQUINES DE C	ONCRETO PARA TRÁNSITO LIG	ERO INCORPORAN	DO RESIDUOS DE SOLDA	DURA COMO SUSTITUTO
Titulo:	PARCIAL DEL AGREGADO				
Problema de investigación	OBJETIVOS	HIPOTESIS	VARIABLE	Dimensiones	INDICADORES
Problema general	OBJETIVO GENERAL	HIPÓTESIS GENERAL	VARIABLE INDEPENDIENTE		PROPIEDADES FÍSICAS
¿La	Evaluar las propiedades físicas y mecánicas del adoquín de concreto para tránsito ligero sustituyendo parcialmente el agregado por residuos de soldadura.	La incorporación de residuos de soldadura como remplazo parcial del agregado mejorará las características mecánicas del adoquín diseñado para un tránsito ligero.	Residuos de soldadura	Propiedades Físicas	1- Dimensionamiento
incorporación	OBJETIVO ESPECIFICO	HIPÓTESIS NULA (Ho)	VARIABLE	_ 1 Topicaaaco 1 Toloao	
de residuos		HIPO I ESIS NULA (HO)	DEPENDIENTE		
de soldadura como sustituto parcial del agregado mejorará el rendimiento mecánico del adoquín para un tránsito	 Determinar el diseño de mezcla del adoquín de concreto sustituyendo parcialmente el agregado por residuos de soldadura al 0%, 5%, 10% y 15%, 20% y costo de producción. Evaluar las propiedades físicas de los adoquines, sustituyendo parcialmente residuos de soldadura, para un f´c=420 kg/cm2. 	La incorporación de residuos de soldadura en un 5%, en la producción de adoquines para transito ligero, en reemplazo parcial del agregado, mejorará las propiedades mecánicas de los adoquines convencionales HIPÓTESIS ALTERNATIVA (Ha)		Propiedades mecánicas del adoquín de concreto convencional	PROPIEDADES FÍSICAS Y MECÁNICAS 1- Temperatura 2- Slump 3- Peso unitario 4- Contenido de vacíos
ligero?	 3- Evaluar las propiedades mecánicas de los adoquines, sustituyendo parcialmente residuos de soldadura, para un f´c=420 kg/cm2 4- Determinar la dosificación óptima de residuos de soldadura para la elaboración de adoquines con fines de tránsito ligero mediante un análisis estadístico. 	La incorporación de residuos de soldadura en un 5%, en la producción de adoquines para transito ligero, en reemplazo parcial del agregado mejorará las propiedades mecánicas de los adoquines convencionales.	Las propiedades físico-mecánicas del concreto	Propiedades mecánicas del adoquín de concreto convencional sustituyendo parcialmente el agregado por residuos de soldadura	5- Compresión 6- Flexión 7- Abrasión

INSTRUMENTOS DE VALIDACION ESTADISTICA CON CRITERIO JUECES EXPERTOS Y CRITERIO MUESTRA PILOTO

VALIDEZ Y CONFIABILIDAD POR 5 JUECES EXPERTOS

INSTRUMENTO SOBRE MÉTODO DE ENSAYO PARA DETERMINAR LA "DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO"

	CLARID		
	CÁNICO DE ADOQUINE PORADO RESIDUOS DE PARCIAL DEL A	SOLDADURA COM	
A	ADOQUÍN F'C= 420 kg	/ cm³ + 10% R.S	A Arrena de Cara de Cara
la l	Ensayo a Compresión	Ensayo a Flexión	Ensayo a Abrasión
JUEZ 1	1	1	0
JUEZ 2	1	1	1
JUEZ 3	1	1	1
JUEZ 4	1	1	1
JUEZ 5	1	0	1
S	5	4	4
n	5	5	5
C	2	2	2
V de Alken por preg=	1	0.80	0.80
V de Alken por preg=	0.88		

DESEMPEÑO MEC LIGERO INCORP	CONTEXT ÉANICO DE ADOQUINES ORADO RESIDUOS DE PARCIAL DEL AG	DE CONCRETO P SOLDADURA COM	ARA TRÁNSITO IO SUSTITUTO
	ADOQUÍN F'C= 420 kg/	cm ³ + 10% R.S	
	Ensayo a Compresión	Ensayo a Flexión	Ensayo a Abrasión
JUEZ 1	1	1	0
JUEZ 2	1	1	1
JUEZ 3	0	1	1
JUEZ 4	1	1	1
JUEZ 5	1	0	1
s	4	4	4
n	5	5	5
С	2	2	2
V de Alken por preg=	0.80	0.80	0.80
V de Alken por preg=	0.80		

DESEMPEÑO MEC LIGERO INCORP	CONGRUEI CANICO DE ADOQUINES ORADO RESIDUOS DE PARCIAL DEL AC	DE CONCRETO P SOLDADURA COM	ARA TRÁNSITO O SUSTITUTO
	ADOQUÍN F'C= 420 kg/	cm3 + 10% R.S	
	Ensayo a Compresión	Ensayo a Flexión	Ensayo a Abrasión
JUEZ 1	1	1	0
JUEZ 2	1	1	11
JUEZ 3	PERSONAL PROPERTY.	1	1
JUEZ 4	and the sample of the	There is 4	1
JUEZ 5	max 1	0	1
s	5	4	4
n	5	5	5
c	2	2	2
V de Alken por preg=	1.00	0.80	0.80
V de Alken por preg=	0.86		

NORTH THE RESERVE TO	DOMINIO DEL CONS	TRUCTO	100
DESEMPEÑO MEC LIGERO INCORP	ÁNICO DE ADOQUINES I ORADO RESIDUOS DE SO PARCIAL DEL AGR	OLDADURA COMO SI EGADO	TRÁNSITO USTITUTO
	ADOQUÍN F'C= 420 kg/ co	m³ + 10% R.S	
	Ensayo a Compresión	Ensayo a Flexión	Ensayo a Abrasión
JUEZ 1	1	1	1
JUEZ 2	1	1	1
JUEZ 3	0	1	1
JUEZ 4		1	1
JUEZ 5	Statistics &	0	1
5	4	4	5
n	5	45	5
С	2 (1) 4	2	2
V de Alken por preg=	0.80	0.80	1.00
V de Alken por preg=		0.90	

V de Aiken del Instrumento por Jueces expertos

0.88

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Coico Delgado Cristhian Amar	Supervisor de Calidad	Prueba de compresión, flexión y abrasión	Brandon Lee Huamani Zuloeta

Título de la Investigación:

"DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO"

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEM S	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	Α	Todo bien
2	Α	Todo bien
3	A	Todo bien
4	Α	Todo bien

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

. 0	Dimensiones/Items		Clari dad		Context		Congrue ncia		Dominio del construct o	
	Adoquin	Si	No	Sī	No	Sī	No	Sī	No	
1	Compresión	X		X	202.00	X		X		
2	Flexión	X		X	The same	X		X		
3	Abrasión		x	-	x		x	and the same	×	

Observaciones (precisar si hay suficiend	cia):		
Opinión de aplicabilidad: Aplicable (X)) Apellidos y nombres del juez validador Especialidad: Ing. Civil)	No aplicable

63

Ficha de validación según AIKEN

iv. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento	
Ticona Juarez Jorge	Logistica	Prueba de compresión, flexión y abrasión	Brandon Lee Huamani Zuloeta	

Título de la Investigación:

"DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO"

v. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEM S	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Todo bien
2	A	Todo bien
3	A	Todo bien
4	A	Todo bien

VI. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte	Claridad		Contexto		Congruen		Dominio del constructo	
	Adoquines	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X	and the same	X	
2	Flexión	X		X		X		X	
3	Abrasión	X		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador:

Especialidad: Ing. Civil

TREMENORAL TONALLARZ INGENIERO CIVIL REG. CIP. 320583

Ficha de validación según AIKEN

x. Datos generales

Apellidos y nombres del informante donde labo		Nombre del instrumento de evaluación	Autor del Instrumento		
DERRY CAMINO	RESIDEUTS	Prueba de comprensión, flexión y abrasión	Brandon Lee		
José MIGUEL	DO 08RS		Huamani Zuloeta		

Título de la Investigación:

"DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO"

xi. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEM S	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Todo bien
2	Α	Todo bien
3	A	Todo bien
4	A	Todo bien

XII. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte ms	Clarida d		Context		Congrue ncia		Dominio del construct	
	Bloques	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		x	
2	Flexión	X	9735	X		X		X	
3	Abrasión	X		X		х	en e	Х	

Observaciones (precisar si hay suficiencia):

Ficha de validación según AIKEN

VII. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento	
Migul Angel	Ingeniera	Prueba de compresión flexión y abrasión	Brandon Lee	
Rung Peroles	Residulo		Huamani Zuloeta	

Título de la Investigación:

"DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO"

VIII. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEM S	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Todo bien
2	Α	Todo bien
3	Α	Todo bien
4	Α	Todo bien

IX. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/ite ms	Clarida d		Context		Congrue ncia		Dominio del construct o	
	Adoquín	Si	No	Si	No	Si	No	Si	No
1	Compresión	X			X	X			X
2	Compresión Flexión	X		X		X		X	
3	Abrasión	X		X		X		X	

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No Apellidos y nombres del juez validador: Especialidad: Ing. Civil	o aplicable

Ficha de validación según AIKEN

xIII. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Jimeniz Mera Miguel	Supervisor de	Prueba de comprensión, Flexión y Abrasión	Brandon Lee Huamani Zuloeta

Título de la Investigación:

"DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO"

xiv. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

S	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Todo bien
2	A	Todo bien
3	Α	Todo bien
4	Α	Todo bien

xv. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/ite ms	CI d	arida	Cor	ntext	Co	ngrue ia	del	ninio Istruct
	Adoquín	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		X	
2	Flexión		X		X	X	-	X	
3	Abrasión	X		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable (

) Apellidos y nombres del juez validador:

Especialidad: Ing. Civil

ING. CHAL

C.I.P. 44268 RUC. 10168356901

DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO

Ensayo de Compresión

Estadísticos de fiabilidad

Alfa de Cronbach	N de elementos
,998	5

Estadísticos total-elemento

10		Varianza de la escala si se elimina el elemento	Correlación elemento-total corregida	Correlación múltiple al cuadrado	Alfa de Cronbach si se elimina el elemento
PATRON FC 420 R/C 0,312	13.5	48951,181	,997	,998	,999
AP + 5% R.S	COMPRESIÓN	46994,359	,998	,999	,998
AP + 10% R.S	DE ADOQUÍN FC 420 - A/C 0,312	44527,682	,999	1,000	,998
AP + 15% R.S	420 - 740 0,312	45253,716	,999	,999	,998
AP + 20% R.S		45916,369	,999	1,000	,997

		ANO	/A			
		Suma de cuadrados	gł	Media cuadrática	F	Sig.
Inter-p	ersonas	202607,639	14	14471,974		
	Inter-elementos	66477,500	4	16619,375	724,791	,000
Intra-personas	Residual	1284,074	56	22,930		
	Total	67761,575	60	1129,360		
To	otal	270369,214	74	3653,638		

Media global = 451,7279

Ensayo de Flexión

Estadísticos de fiabilidad

Alfa de Cronbach	N de elementos
,998	5

Estadísticos total-elemento

		Varianza de la escala si se elímina el elemento	Correlación elemento- total corregida	Correlación múltiple al cuadrado	Alfa de Cronbach si se elimina el elemento
PATRON FC 420 R/C 0,312		1061,132	,994	,995	,999
AP + 5% R.S	FLEXIÓN DE ADOQUÍN FC	1010,656	,995	,995	,997
AP + 10% R.S	420 - A/C	966,762	,997	,998	,997
AP + 15% R.S	0,312	971,671	,998	1,000	,997
AP + 20% R.S		989,548	,998	1,000	,997

ANOVA

		ANO	VM			
		Suma de	gt	Media	F	Sig.
		cuadrados		cuadrática		
Inter-p	ersonas	4372,374	14	312,312		
	Inter-elementos	1837,317	4	459,329	663,061	,000
Intra-personas	Residual	38,793	56	,693		
	Total	1876,110	60	31,269		
To	otal	6248,484	74	84,439		

Media global = 73,0924

Ensayo de Abrasión

Estadísticos de fiabilidad

Alfa de Cronbach	N de elementos
,950	5

Estadísticos total-elemento

	Media de la escala si se elimina el elemento	Varianza de la escala si se elimina el elemento	Correlación elemento-total corregida	Alfa de Cronbach si se elimina el elemento
PATRON FC 420 R/C 0,312	1,7760	,039	,759	,956
AP + 5% R.S	1,8460	,035	,806	,948
AP + 10% R.S	1,9160	,033	,863	,939
AP + 15% R.S	1,8660	,032	,965	,919
AP + 20% R.S	1,8280	,034	,943	,924

 -		
	w	

		Suma de	gl	Media	F	Sig.
		cuadrados		cuadrática	(1.75%)	
Inter-personas		,043	4	,011		
	Inter-elementos	,053	4	,013	24,518	,000
Intra-personas	Residual	,009	16	,001		
	Total	,061	20	,003		
Total		,104	24	,004		

Media global = ,4616

En las tablas se observa que, el instrumento sobre "Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura como sustituto parcial del agregado" es válido (correlaciones de Pearson superan al valor de 0.30 y el valor de la prueba del análisis de varianza es altamente significativo p < 0.01) y confiable (el valor de consistencia alfa de Cronbach es mayor a 0/80).

LIG. ESTADÍSTICA
MG. INVESTIGACIÓN
DR. EDUCACIÓN
DR. EDUCACIÓN
COESPE 282

PERUTEST S.A.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA

RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN Área de Metrología PT - LF - 0104 - 2023

Laboratorio de Fuerza

Este certificado de calibración documenta la trazabilidad a los

internacionales, que realizan las

unidades de la medición de acuerdo

con el Sistema Internacional de

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer

en su momento la ejecución de una recalibración, la cual está en función

medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar

el uso inadecuado de este

instrumento, ni de una incorrecta

interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no

podrá ser reproducido parcialmente

sin la aprobación por escrito del

El certificado de calibración sin firma

laboratorio que lo emite.

y sello carece de validez.

conservación mantenimiento del instrumento de

nacionales

patrones

Unidades (Sf).

U50.

1. Expediente 4686-2023

2. Solicitante LABORATORIO DE ENSAYOS DE

MATERIALES Y SUELOS W & C E.I.R.L. -

LEMS W & C E.I.R.L.

3. Dirección CALLA FE NRO. 0167 UPIS SEÑOR DE LOS

MILAGROS LAMBAYEQUE - CHICLAYO -

4. Equipo PRENSA DE CONCRETO

Capacidad 2000 kN

Marca A Y A INSTRUMENT

Modelo STYE-2000B

Número de Serie 131214

Procedencia CHINA

Identificación NO INDICA

Indicación DIGITAL Marca MC STYLE-2000B Modelo Número de Serie 131214 Resolución 0.01 / 0.1 kN (*

Ubicación

NO INDICA

2023-09-02

Fecha de Emisión 2023-09-02

5. Fecha de Calibración

Jefe del Laboratorio de Metrología

JOSE A EJANDRO FLORES MINAYA

Sello

LABORATORIO

WRUTES?

913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

O Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

> CERTIFICADO DE CALIBRACIÓN PT - LF - 0104 - 2023

Área de Metrología Laboratorio de Fuerza

6. Método de Calibración

La calibración se realiza por comparación directa entre el valor de fuerza indicada en el dispositivo indicador de la máquina a ser calibrada y la indicación de fuerza real tomada del instrumento de medición de fuerza patrón siguiendo la PC-032 "Procedimiento para la calibración de máquinas de ensayos uniaxiales" Edicion 01 de INACAL - DM

7. Lugar de calibración

En el laboratorio del cliente Laboratorio de Materiales de LEMS W & C E.I.R.L

8. Condiciones Ambientales

	Inicial	Final
Temperatura	26.0 °C	26.0 °C
Humedad Relativa	58 % HR	58 % HR

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibradés en PUCP - Laboratorio de estructuras antisismicas	Celda de Carga Capacidad: 150,000 kg.f	INF-LE N° 093-23 (B)
ELICROM	TERMOHIGROMETRO DIGITAL	CCP-0102-001-23

10. Observaciones

- Se colocó una etíqueta autoadhesiva con la indicación CALIBRADO.
- PERU - Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de ensayo uniaxiales de clase de 2.0 según la norma UNE-EN ISO 7500-1.

9 913 028 621 / 913 028 622

9 913 028 623 / 913 028 624

@ www.perutest.com.pe

Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

@ PERUTEST SAC

BORATORIO

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA

RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 0104 - 2023

Área de Metrología Laboratorio de Fuerza

Página 3 de 3

11. Resultados de Medición

	cación Equipo	Sept 10		uerza (Ascenso) Referencia	Y of Lat
%	F((kN)	F ₁ (kN)	F ₂ (kN)	F ₃ (kN)	Fpromedio (kN)
10	100	100.8	101.1	100.9	101.0
20	200	201.0	201.4	201.1	201.3
30	300	301.6	301.6	301.5	301.5
40	400	400.8	400.8	400.7	400.8
50	500	501.7	500.7	501.6	501.2
60	600	600.5	600.0	600.4	600.2
70	700	700.7	700,7	700.5	700.7
80	800	799.6	790.9	799.3	795.2
90	900	899.8	900.5	899.6	900.1
100	1000	1001.6	1000.3	1001.3	1000.8
Retorn	o a Cero	0.0	0.0	0.0	Sec. 103

Indicación	En	ores Encontrados en	el Sistema de Medi	ición	Incertidumbre
del Equipo F (kN)	Exactitud q (%)	Repetibilidad b (%)	Reversibilidad v (%)	Resol. Relativa ø (%)	U (k=2) (%)
100	-0.97	0.29	0.00	0.10	0.60
200	-0.62	0.19	0.00	0.05	0.58
300	-0.51	0.03	0.00	0.03	0.58
400	-0.20	0.04	0.00	0.03	0.58
500	-0.23	0.21	0.00	0.02	0.59
600	-0.04	0.07	0.00	0.02	0.58
700	-0.09	0.03	0.00	0.01	0.57
800	0.60	1.10	0.00	0.01	0.85
900	-0.01	0.11	0.00	0.01	0.58

MÁXIMO ERROR RELATIVO DE CERO (f₀) 0.00 %

0.13

LABORATORIO

PERU

0.01

12. Incertidumbre

1000

-0.08

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

- 913 028 621 / 913 028 622
- 9 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

Área de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN PT - LF - 056 - 2023

1. Expediente 1912-2023 Esta certificado de calibración documenta la transbilidad a los 2. Solicitante LABORATORIO DE ENSAYOS DE patrones nacionales o internacionales, MATERIALES Y SUELOS W&C E.I.R.L. que realizan las unidades de la medición de acuerdo con el Sistema 3. Dirección CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS Internacional de Unidades (SI). MILAGROS - CHICLAYO - LAMBAYEQUE Los resultados son validos en el momento de la calibración. Al 4. Equipo PRENSA MULTIUSOS solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del Capacidad 5000 kgf uso, conservación y mantenimiento del instrumento de medición o Marca FORNEY reglamento vigente. Modelo 7691F PERUTEST S.A.C. no se responsabilira de los perjuicios que pueda ocasionar el Número de Serie 2491 uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí Procedencia U.S.A. declarados. Identificación NO INDICA Este certificado de calibración no podráser reproducido parcialmente sin la Indicación DIGITAL aprobación por escrito del laboratorio Marca OHAUS que lo emite. Modelo DEFENDER 300 El certificado de calibración sin firma y NO INDICA Número de Serie sello carece de validez. Resolución 0.1 kgf Ubicación NO INDICA 5. Fecha de Calibración 2023-03-01 Fecha de Emisión Jefe del Laboratorio de Metrologia Sello 2023-03-02 LABORATORIO

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

JOSE ALLIANDRO FLORES MINAYA

PERU

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 057 - 2023

Área de Metrología Laboratorio de Fuerza

Página 3 de 3

11. Resultados de Medición

	cación Equipo	15 No.		uerza (Ascenso) Referencia	20
%	$F_i(kgf)$	F ₁ (kg!)	F2 (kgf)	F ₁ (kgf)	Fpromedio (kgf
10	2000	1990	2000	2000	1996
20	4000	4001	4021	4001	4008
30	6000	6042	6042	6042	6042
40	8000	8044	8044	8044	8044
50	10000	10046	10046	10046	10046
60	12000	12048	12048	12048	12048
70	14000	14050	14050	14050	14050
80	16000	16052	16052	16052	16052
90	18000	18054	18054	18054	18054
100	20000	20057	20057	20057	20057
Retorn	io a Cero	100.0	100.0	120.0	Q2 10 0

Indicación	Ēr	rores Encontrados er	n el Sistema de Medi	ición	Incertidumbre
del Equipo	Exactitud	Repetibilidad	Reversibilidad	Resol. Relativa	U (k=2)
F(kgf)	0 (%)	b (%)	v (%)	ar (%)	(%)
2000	0.39	0.50	1.00	0.50	0.66
4000	0.36	0.50	2.56	0.25	1.20
6000	-0.35	0,00	1.41	0.17	0.79
8000	-0.27	0.00	1.10	0.13	0.65
10000	-0.23	0.00	0.91	0.10	0.57
12000	-0.20	0.00	0.79	0.08	0.52
14000	-0.18	0.00	0.71	0.07	0.49
16000	-0.16	0,00	0.65	0.06	0.47
18000	-0.15	0.00	0.60	0.06	0.46
20000	-0.14	0.00	0.52	0.05	0.44

MÁXIMO ERROR RELATIVO DE CERO (f_n) 0.60 %

LABORATORIC

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

- 9 913 028 621 / 913 028 622
- @ 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 056 - 2023

Área de Metrología Laboratorio de Fuerza

Página 2 de 3

6. Método de Calibración

La calibración se realiza por comparación directa entre el valor de fuerza indicada en el dispositivo indicador de la máquina a ser calibrada y la indicación de la fuerza real tomada del instrumento de medición de fuerza patrón siguiendo la PC-032 "Procedimiento para la calibración de máquinas de ensayos uniaxiales" Edición 01 del INACAL -DM.

7. Lugar de calibración

Las instalaciones del cliento. CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

C D A	Inicial	Final
Temperatura	27.8 °C	27.8 °C
Humedad Relativa	65 % HR	65 % HF

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe de calibración
Celdas patrones calibradas en PUCP -	Celda de Carga	S 20 10 8
Laboratorio de estructures	Código: LF-001	INF-LE 093-23 A/C
antisismicas	Capacidad: 10,000 kg/f	

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CAUBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de enseyo uniaxiales de clase de 1.0 según la norma UNE-EN ISO 7500-1.
- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 508 Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

LABORATOR

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA

RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 056 - 2023

Área de Metrologia Laboratorio de Fuerza

Prigina 3 de 3

11. Resultados de Medición

	cación Equipo	3 16		uerza (Ascenso) Referencia	15" 15" A
96	Fi(kgf)	F ₁ (kgf)	F ₂ (kgf)	F3 (kgf)	F _{Promedio} (kgf
10	500	500.6	499.3	499.3	499.7
20	1000	1002.0	1000,2	1000.6	1000.8
30	1500	1501.6	1499.9	1500.7	1500.6
40	2000	2003.1	2001.9	2004.8	2003.3
50	2500	2501.4	2499.5	2500.4	2500.5
60	3000	3001.9	2999.4	3000.4	3000.4
70	3500	3502.1	3499.7	3501.7	3500.8
80	4000	4002.3	4000.0	4001.0	4000.8
90	4500	4502.8	4500.2	4501.2	4501.1
100	5000	5003.7	5000.4	5001.4	5001.3
Retorn	o a Cero	0.0	0.0	0.0	5502.5

Indicación	En	rores Encontrados en	el Sistema de Medi	ción	Incertidumbre
del Equipo F (kgf)	Exactitud q (%)	Repetibilidad b (%)	Reversibilidad v (%)	Resol. Relativa α (%)	U (k=2) (%)
500	0.07	0.26	-0.02	0.02	0.36
1000	-0.08	0.18	-0.03	0.01	0.35
1500	-0.04	0.11	-0.03	0.01	0.34
2000	-0.17	0.14	-0.07	0.01	0.35
2500	-0.02	0.08	-0.04	0.00	0.34
3000	-0.01	80.0	-0.01	0.00	0.34
3500	-0.02	0.07	0.01	0.00	0.34
4000	-0.02	0.06	0.00	0.00	0.34
4500	-0.02	0.06	0.00	0.00	0.34
5000	-0.03	0.07	0.02	0.00	020

MÁXIMO ERROR RELATIVO DE CERO (f₀) 0.00 %

LABORATORIC

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%. La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

- 913 028 621 / 913 028 622
- @ 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Área de Metrología Laboratorio de Temperatura

1. Expediente 1912-2023 2. Solicitante LABORATORIO DE **ENSAYOS** MATERIALES Y SUELOS W & C E.I.R.L. 3. Dirección CALLE LA FE NRO. 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - CHICLAYO -LAMBAYEQUE 4. Equipo HORNO Alcance Máximo 300 °C Marca PERUTEST Modelo PT-H225 Número de Serie 0120 Procedencia PERÚ

Descripción	Controlador / Selector	Instrumento de medición
Alcance	30 °C a 300 °C	30 °C a 300 °C
División de escala / Resolución	0.1 °C	0.1 °C
Tipo	CONTROLADOR	TERMÓMETRO

NO INDICA

NO INDICA

Este certificado de calibración documenta la trazabilidad a los patrones DE nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Página 1 de 5

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

5. Fecha de Calibración 2023-03-01

Fecha de Emisión

Identificación

Ubicación

Jefe del Laboratorio de Metrología

Sello

Sello

2023-03-02

JOSE A EJANDRO FLORES MINAYA

913 028 621 / 913 028 622

913 028 623 / 913 028 624

@ www.perutest.com.pe

O Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

> CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Área de Metrología Laboratorio de Temperatura

Página 2 de 5

6. Método de Calibración

La calibración se efectuó por comparación directa con termómetros calibrados que tiene trazabilidad a la Escala Internacional de Temperatura de 1990 (EIT 90), se utilizó el Procedimiento para la Calibración de Medios Isotérmicos con aire como Medio Termostático PC-018 2da edición.

7. Lugar de calibración

En las instalaciones del cliente.

CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

1	Inicial	Final
Temperatura	26.3 °C	26.3 °C
Humedad Relativa	64 %	64 %

9. Patrones de referencia

10	Trazabilidad	Patrón utilizado	Certificado y/o Informe de calibración
office	SAT	Termometro de indicacion digital	LT-0417-2023
5100	METROIL	THERMOHIGROMETRO DIGITAL BOECO MODELO: HTC-8	1AT-1704-2022

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (*) Código indicado en una etiqueta adherido al equipo.
- La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición.
- 9 913 028 621 / 913 028 622
- 9 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

LABORATO

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LT - 037 - 2023

Área de Metrología Laboratorio de Temperanea

Página 3 de 5

11. Resultados de Medición

Temperatura ambiental promedio

26.3 °C

Tiempo de calentamiento y estabilización del equipo

2 horse

El controlador se seteo en 110

PARA LA TEMPERATURA DE 110 °C

Tiempo	Termometro	136	TEMPE	RATUR	RAS EN	LAS PO	SICIO	NES DE	MEDIC	IÓN (°C	3)		Stonopa
ricinpo	del equipo		NIVE	L SUP	RIOR			NIVI	EL INFE	RIOR		T prom	fmax-Tmi
(min)	(°C)	1	2	3	- 4	5	6	7	8	9	10	("0")	(00)
00	110.0	105.8	107.1	105.8	109.7	112.4	109.7	112.3	111.0	109.0	109.7	109.2	6.6
02	110.0	105.8	107.1	105.8	109.7	113.0	109.7	111.9	109.7	108.6	109.7	109.1	7.2
04	110.0	105.8	106.9	105.8	109.6	112.6	109.6	112.4	111.3	108.6	109.6	109.2	6.8
06	110.0	105.5	107.0	105.5	109.7	112.6	109,7	112.5	110.5	108.6	109.7	109.1	7.1
08	110.0	105.7	107.1	105.7	109.7	112.4	109.7	112.4	111.0	109.0	109.7	109.2	6.7
10	110.0	105.6	107.0	105.7	109.6	113.0	109.6	112.3	109.7	108.6	109.6	109.1	7.4
12	110,0	105.5	107.1	105.5	109.7	112.6	109.7	112.4	111.0	108.6	109.7	109.2	7.1
14	110.0	105.5	105.9	105.5	109.7	112.6	109.7	112.7	109.7	109.0	109.7	109.1	7.2
16	110.0	106.1	107.0	106.1	109.6	112.4	109.6	112.5	111.3	108.6	109.6	109.3	6.4
18	110.0	106.3	107.1	106.3	109.7	113.0	109.7	112.6	110.5	109.0	109.7	109.4	6.7
20	110.0	106.2	107.1	106.2	109,7	112.6	109.7	112.3	111.3	108.6	109.7	109.3	6.4
22	110.0	106.1	107.1	106.1	109.6	112.6	109.6	112.7	110.5	108.6	109.6	109.2	6.6
24	110.0	106.2	106.9	106.2	109.7	112.6	109.7	112.6	111.0	108.6	109.7	109.3	6.4
26	110.0	106.5	107.0	106.5	109.7	112,4	109.7	112.3	109.7	108.6	109.7	109.2	5.9
28	110.0	106.3	106.9	106.3	109.6	113.0	109.6	112.6	111.3	108.6	109.6	109.4	6.7
30	110.0	105.4	107,0	106.4	109.7	112.4	109.7	112.5	110.5	109.0	109.7	109.3	6.1
32	110.0	105.4	107,1	105.4	109.7	113.0	109.7	112.7	111.0	108.6	109.7	109.4	6.5
34	110.0	105.3	107.0	106.3	109.6	112.6	109.6	112.6	109.7	109.0	109.6	109.2	6.3
36	110.0	105.2	107.1	106.2	109.7	112.6	109.7	112.3	111.3	108.6	109.7	109.3	6.4
38	110.0	106.3	107.1	106.3	109.7	113.0	109.7	112.4	110.5	108.6	109.7	109.3	6.7
40	110.0	106.4	106.9	106.4	109.6	112.6	109.6	112.4	111.0	109.0	109.6	109.3	6.2
42	110.0	105.9	107.0	105.9	109.7	112.4	109.7	112.8	109.7	108.6	109.7	109.1	6.9
44	110.0	106.7	107.0	106.7	109.7	113.0	109.7	112.7	111.0	108.6	109.7	109.5	6.3
46	110.0	106.7	107.1	106.7	109.6	112.6	109.6	112.7	109.7	108.6	109.6	109.3	6.0
48	110.0	106.6	107.1	106.6	109.7	112.6	109.7	212.3	111.3	109.0	109.7	109.5	6.0
50	110.0	106.3	106.9	106.3	109.7	112.4	109.7	112.4	110.5	108.6	109.7	109.2	6.1
52	110.0	106.4	107.0	106.4	109.6	113.0	109.6	112.5	111.3	108.6	109.6	109.4	6.6
54	110.0	106.2	107.1	106.2	109.6	112.6	109.6	112.7	111.0	108.6	109.6	109.3	6.5
56	110.0	105.4	107.1	105.4	109.7	112.6	109.7	112.6	109.7	108.6	109.7	109.2	6.2
58	110.0	106.3	106.9	106.3	109.7	113.0	109.7	112.4	111.3	109.0	109.7	109.4	6.7
60	110.0	105.1	107.0	105.1	109.6	112.6	109.6	112.4	110.5	108.6	109.6	109.2	6.7
T.PROM.	110.0	105.1	107.0	105.1	109.7	112.7	109.7	112.5	110.6	108.7	109.7	109.3	for to
T.MAX	110.0	105.7	107.1	106.7	109.7	113.0	109.7	112.8	111.3	109.0	109.7	0	13
THE WHAT	2.4 40 40 40 10	NAME OF TAXABLE PARTY.	100000	EVOLUDICAN.			100000				C 10 10 10 10 10 10 10 10 10 10 10 10 10	A TOTAL CONTRACTOR	A - 1 - 10

913 028 621 / 913 028 622

110.0

- @ 913 028 623 / 913 028 624
- www.perutest.com.pe

DTT

- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe

109.6

O PERUTEST SAC

106.9 105.5 109.6 112.4

LABORATORIO

ERUTEST S.A.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Area de Metrología Laboratorio de Masas

1. Expediente 1912-2023 2. Solicitante LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W&C E.I.R.L. 3. Dirección CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE 4. Equipo de medición BALANZA ELECTRÓNICA Capacidad Máxima 2000 g División de escala (d) 0.01 g Div. de verificación (e) 0.1 Clase de exactitud Marca AMPUT Modelo 457 Número de Serie NO INDICA

0.2 g

NO INDICA

NO INDICA

Página 1 de 4 certificado calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma sello carece de validez.

5. Fecha de Calibración 2023-03-01

Fecha de Emisión

2023-03-02

Capacidad minima

Procedencia

Identificación

Jefe del Laboratorio de Metrologia

Sello

LABORATOR PERU

OSE ALEJANDRO FLORES MINAYA

- 913 028 621 / 913 028 622
- @ 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 508 Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA

RUC N° 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Área de Metrología Laboratorio de Masas

Página 2 de 4

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase III y Clase IIII" del SNM- INACAL

7. Lugar de calibración

En las instalaciones del cliente.

CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

Contract of	Inicial	Final
Temperatura	26.5 °C	26.5 °C
Humedad Relativa	53%	55%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	Patrón utilizado	Certificado de calibración
ELICROM	JUEGO DE PESAS 1 mg a 1 kg (Clase de Exactitud: F1)	CCP-0908-001-22

10. Observaciones

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
- (**) Código indicada en una etiqueta adherido al equipo.

9 913 028 621 / 913 028 622

913 028 623 / 913 028 624

O Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

PERUTEST S.A

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

> CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Área de Metrologia Laboratorio de Masas

Página 3 de 4

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	TIENE	CURSOR	NO TIENE
201	10 00	NIVELACIÓN	TIENE	10.	70

ENSAYO DE REPETIBILIDAD

Inicial Final Temperatura 26.4 °C 26.4 °C

Medición	Carga L1 =	1,000	g	Carga L2 =	2,000	q	
No	!(g)	ΔL (mg)	E(mg)	1(g)	ΔL(mg)	E(mg)	
1100	1000.00	5	0	2000.00	5	0	
2	1000.00	4 0	A 1 8	2000.01	8	7	
3	1000.01	8	7.0	2000.00	3	2	
4	1000.00	95 0	0	2000.00	6	-1	
5 0	1000.00	6	3 -10	2000.00	2	3	
6	1000.01	9	6	2000.00	5	0	
67	1000.00	4	1.	2000.00	4	3 15	
8	1000.00	5 0	0	2000.00	6	041	
9	1000.00	6	6 -100	2000.01	8	7	
10	1000.00	.94 8	.1	2000.00	6	4-1	
8 0	Diferencia	a Máxima	8	Diferenci	a Máxima	8	
	Error Máxim	o Permisible	200		o Permisible	300	

ENSAYO DE EXCENTRICIDAD

Posición de las cargas

Temperatura

Inicial Final 26,4 °C 26.4 °C

PERU

ABORATORIO

Posición	Deter	minación (del Error en Ce	ero Eo	9 1	Determina	ción del Erro	Corregido E	С
de la Carga	Carga Minima*	I (g)	ΔL (mg)	Eo (mg)	Carga L(g)	1 (g)	ΔL(mg)	E(mg)	Ec (mg)
10	6. 2	0.10	5	00	(S)	1000.00	5	0	0
2	10	0.11	8 8	7 5	14	1000.00	84 8	61 3	-6
3	0.10	0.10	6	-1	1000.00	1000.00	6	100	0
4	- N	0.10	05 4	.00	2	1000.00	5 6	0 0	0
5	25 05	0.10	6	0 10	18	1000.01	8	8 7	8 8
* Valor	entre 0 y 10	e	0	200		The second second second	mo permisible	9 6	200

- 9 913 028 621 / 913 028 622
- @ 913 028 623 / 913 028 624
- www.perutest.com.pe
- Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- A PEDITEST SAC

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LM - 0111 - 2023

Área de Metrología Laboratorio de Masas

Página 4 de 4

ENSAYO DE PESAJE

Carga	10	CREC	IENTES	100	1	DECRECIENTES				
L(g)	1 (g)	ΔL(mg)	E(mg)		No.	1000		62	e.m.p **	
0.10	0.10	6	-1	Ec (mg)	1 (g)	ΔL(mg)	E(mg)	Ec (mg)	(±mg)	
0.20	0.20	5	0	1,0	0.20	5	0	24.45	100	
10.00	10.00	6	94 3	0	10.00	5	- 0	1	100	
100.00	100.00	2 7	-2	20 -1 °	100.00	4	1.9	2 0	100	
500.00	500.00	6	-1	0	500.00	0.5	0	1	200	
800.00	800.00	5	0	5 1 5	800.00	6	0 -1	000	200	
1000.00	1000.00	6	91 /	0	1000.00	97 0	-2	-1	200	
1200.00	1200.00	6	3 10	000	1200.00	2	3 8	. 4 .	200	
1500.00	1500.00	4	1	2	1500.00	3	2	3	200	
1800.00	1800.01	8	975	8	1800.00	3	2	3 0	200	
2000.00	2000,01	8	7	8	2000.01	8	7	8	300	

^{**} error máximo permisible

Levenda: L

L: Carga aplicada a la balanza.

ΔL: Carga adicional.

E_o: Error en cero.

I: Indicación de la balanza.

E: Error encontrado

E_C: Error corregido.

Incertidumbre expandida de medición

0

 $U = 2 \times \sqrt{(0.000028)}$

g²

0.00000000001

ABORATORIC

Lectura corregida

R CORREGIOA

R

0.0000026 R

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de certificad de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Fin del documento

- 9 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

Acreditación de Laboratorio

Registro de la Propiedad Industrial Dirección de Signos Distintivos

CERTIFICADO Nº 00137704

La Dirección de Signos Distintivos del Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual – INDECOPI, certifica que por mandato de la Resolución Nº 008139-2022/DSD - INDECOPI de fecha 25 de marzo de 2022, ha quedado inscrito en el Registro de Marcas de Servicio, el siguiente signo:

Signo La denominación LEMS W&C y logotipo, conforme al modelo

Distingue Servicios de estudio de mecánica de suelos, estudio de evaluación de

estructuras, ensayos y control de calidad del concreto, mezclas asfáltica,

emulsiones asfálticas, suelos y materiales.

42 de la Clasificación Internacional. Clase

Solicitud 0935718-2022

LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W & C E.I.R.L. - LEMS W & C E.I.R.L. Titular

Perú Pais

Vigencia 25 de marzo de 2032

Anexo 5 Análisis físicos del agregado fino

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

Solicitud de Ensayo

:0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

Fin de Ensayo

: Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura Inicio de Ensayo

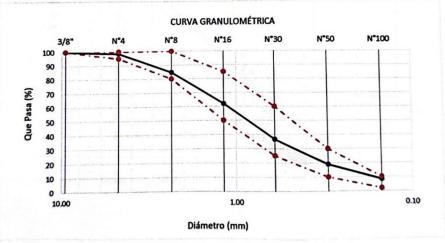
: Lunes, 5 de junio del 2023 : Martes, 06 de junio del 2023 : Jueves, 08 de junio del 2023

ENSAYO

: AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

NORMA

: N.T.P. 400.012


Muestra

: Arena Gruesa

Cantera: La Victoria-Pátapo

Malla		% %	% Retenido	% Que Pasa	GRADACIÓN
Pulg.	(mm.)	Retenido	Acumulado	Acumulado	"C"
3/8"	9.520	0.0	0.0	100.0	100
Nº 4	4.750	1.5	1.5	98.5	95 - 100
No 8	2.360	13.8	15.3	84.7	80 - 100
Nº 16	1.180	22.8	38.1	61.9	50 - 85
Nº 30	0.600	25.4	63.4	36.6	25 - 60
Nº 50	0.300	17.6	81.1	18.9	10 - 30
Nº 100	0.150	10.6	91.6	8.4	2 - 10

 0.150	20.0		
			T 221
	MÓDULO	DE FINEZA	2.91

<u>Observaciones:</u>
- Muestreo, identificación y ensayo realizado por el solicitante.

ON ARTURO OLAYA AGUILAR Ensayos de materiales y suelos

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334

Email: lemswycelrl@gmail.com

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto

Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

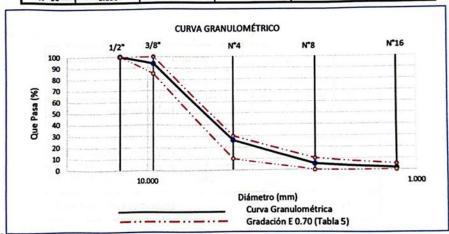
Fecha de Apertura Inicio de Esayo Fin de Ensayo

: Lunes, 5 de junio del 2023 : Martes, 06 de junio del 2023 : Jueves, 08 de junio del 2023

ENSAYO

: AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

NORMA


: N.T.P. 400.012

Muestra

: Confitillo

Cantera: Tres Tomas - Ferreñafe

Malla		%	% Retenido	% Que Pasa	GRADACIÓN
Pulg.	(mm.)	Retenido	Acumulado	Acumulado	E 0.70
1/2"	12.700	0.0	0.0	100.0	100
3/8"	9.520	6.0	6.0	94.0	85 - 100
Nº 4	4.750	67.6	73.7	26.3	10 - 30
Nº 8	2.360	21.3	94.9	5.1	0 - 10
Nº 16	1.180	3.5	98.4	1.6	0 - 5

Observaciones:

- Muestreo, identificación y ensayo realizado por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSYTOS DE MATERIALES Y SUELOS

Prolongación Bolognesi Km. 3.5
Pimentel – Lambayeque
R.U.C. 20480781334
Email: servicios@lemswyceirl.com

Solicitud de Ensayo : 0506B-23/ LEMS W&C

Solicitante : BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

 Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura como sustituto parcial del agregado fino

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura : Lunes, 5 de junio del 2023 Inicio de Ensayo : Martes, 06 de junio del 2023 Fin de Ensayo : Miércoles, 07 de junio del 2023

Ensayo : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad

total evaporable de agregados por secado.

Referencia : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra: 0

Peso Unitario Suelto Humedo	(Kg/m³)	1518
Peso Unitario Suelto Seco	(Kg/m³)	1507
Contenido de Humedad	(%)	0.67

Peso Unitario Compactado Humedo	(Kg/m³)	1605
Peso Unitario Compactado Seco	(Kg/m³)	1594
Contenido de Humedad	(%)	0.67

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo : 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura Inicio de Ensayo

Fin de Ensayo

: Lunes, 5 de junio del 2023 : Martes, 06 de junio del 2023 : Miércoles, 07 de junio del 2023

Ensayo

: AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado.

Referencia

: NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra:

0

Peso Unitario Suelto Humedo	(Kg/m³)	1518
Peso Unitario Suelto Seco	(Kg/m³)	1507
Contenido de Humedad	(%)	0.67

Peso Unitario Compactado Humedo	(Kg/m³)	1605
Peso Unitario Compactado Seco	(Kg/m³)	1594
Contenido de Humedad	(%)	0.67

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

WILSON ARTURO OLAYA AGUILAR

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

INFORME

Pag. 1 de 1

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero

incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación Fecha de Apertura : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.: Lunes, 5 de junio del 2023

Inicio de Ensayo

: Miércoles, 07 de junio del 2023

Fin de Ensayo

: Viernes, 09 de junio del 2023

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado fino.

al

REFERENCIA: N.T.P. 400.022

Muestra: Arena Gruesa

Cantera: La Victoria-Pátapo

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.399
2 PORCENTAJE DE ABSORCIÓN	%	1.369

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

MIGUEL ANGEL RU

90

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

Agregado de cantera:

0506B-23/ LEMS W&C BRANDON LEE HUAMANI ZULOETA CÓDIGO TESISTA

Pátapo Tres Tomas

AGREGADO GRUESO

	a) Tamaño máximo nominal	N° 04	pulgadas
	b) Peso Unitario suelto seco	1390.80	kg/cm ^a
	c) Peso Unitario compactado seco	1528.61	kg/cm ^a
Tres Tomas	d) Peso específico de masa seco	2751.45	kg/cm ^a
	e) Contenido de humedad	0.36	%
	f) Contenido de absorción	1.98	%
	g) Módulo de fineza (adimensional)		
	a) Tamaño máximo nominal		pulgadas
	b) Peso Unitario suelto seco		kg/cm3
	c) Peso Unitario compactado seco		kg/cm3
	d) Peso específico de masa seco		kg/cm3
	e) Contenido de humedad		%
	f) Contenido de absorción		%
	g) Módulo de fineza (adimensional)		

AGREGADO FINO

	a) Tamaño máximo nominal		pulgadas
	b) Peso Unitario suelto seco	1507.33	kg/cm ^k
	c) Peso Unitario compactado seco	1593.79	kg/cm*
Pátapo	d) Peso específico de masa seco	2398.57	kg/cm*
	e) Contenido de humedad	0.67	%
	f) Contenido de absorción	1.37	%
	g) Módulo de fineza (adimensional)	2.91	
	a) Tamaño máximo nominal		pulgadas
	b) Peso Unitario suelto seco		kg/cm3
R. DE	c) Peso Unitario compactado seco		kg/cm3
SOLDADURA	d) Peso específico de masa seco		kg/cm3
SOLDADONA	e) Contenido de humedad		%
	f) Contenido de absorción		%
	g) Módulo de fineza (adimensional)		REVISAR

Prolongación Bolognesi Km. 3.5

Pimentel – Lambayeque
R.U.C. 20480781334

Email: servicios@lemswyceirl.com

INFORME

Solicitud de Ensayo : 0506B-23/ LEMS W&C

Solicitante : BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra : Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero

incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación : Dist.Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura : Lunes, 5 de junio del 2023 Inicio de Ensayo : Miércoles, 07 de junio del 2023 Fin de Ensayo : Viernes, 09 de junio del 2023

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado grueso.

REFERENCIA: N.T.P. 400.021

Muestra: Confitillo Muestra: Cantera Tres Tomas - Ferreñafe

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.751
2 PORCENTAJE DE ABSORCIÓN	%	1.982

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

MIGUEL ANGEL RUIZ PERALES

Anexo 6 Diseño de mezcla del concreto patrón y diseño experimental al (10% fue el óptimo)

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

DISEÑO DE MEZCLAS PATRÓN PARA UN CONCRETO DE

Ag. Fino

1507.33

1593.79

2398.57

0.67

1.37

2.909

pula

kg/m³

kg/m³

kg/m³

Ag. Grueso

N° 04

1390.80

1528.61

2751.45

0.36

1.98

Solicitud de Ensayo

0506B-23/ LEMS W&C

Solicitante Proyecto

BRANDON LEE HUAMANI ZULOETA

Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura Fecha de Vaceado Lunes, 5 de junio del 2023 Viemes, 16 de junio del 2023

DISEÑO DE MEZCLAS SEGÚN ACI 211

1) DATOS PARA EL DISEÑO:

Grueso:

Tres tomas

Fino:

- a) Tamaño máximo nominal
- b) Peso Unitario suelto seco
- c) Peso Unitario compactado seco
- d) Peso específico de masa seco
- e) Contenido de humedad
- f) Contenido de absorción
- g) Módulo de fineza (adimensional)

Cemento:

Tipo=

Tipo I

Peso esp.=

3120 kg/m3

2) RESISTENCIA DE DISEÑO REQUERIDA (F'cr)

En nuestro caso, como no contamos con ningun tipo de registro en obra, para poder hallar la desviación estándar, para hallar un valor promedio de resistencia, más aún no se cuenta con un registro o control de calidad en obra; pasaríamos a verificar el caso b), de la siguiente manera:

fc=	420 kg/cm2	
f'(cr)=	518 kg/cm2	

fc	fer
< 210	fc+70
210-350	f'c+84
>350	f'c+98

3) CONTENIDO DE AIRE

T.M.N=	N° 04
%Aire=	3 %

4) CONTENIDO DE AGUA

T.M.N=	N° 04
Slump=	1"
Agua=	220 l/m3

WILSON ARTURO OLAYA AGUILAR

5) RELACIÓN a/c

f(cr)=	518 kg/cm2
a/c=	0.312

6) CONTENIDO DE CEMENTO

Agua=	220 l/m3
a/c=	0.312
C=	705.13 kg

7) FACTOR CEMENTO

1 bls=	42.5 kg/bls
C=	705.13 kg
F.C=	16.59 bls/m3

8) PESO AGREGADO GRUESO

T.M.N=	N° 04
b/br=	0.4491
P.U.S.C=	1528.61 kg/m3
Peso A.G=	686.498751 kg

9) VOLUMEN ABSOLUTO

Ag. Fino= Aire=	658.39 kg	>	0.27449302 m3 0.03
Aire=	3 %	>	0.03
Agua=	220 Vm3		0.22 m3

10) CORRECCIÓN POR HUMEDAD

Humedad (%)		
Agreg.	Grueso	Fino
Patapo	0.36 %	No.
Tres tomas		0.67 %

Agregado Fino: Agregado Grueso: Tres tomas Patapo

Ag. Grueso= 686.50 kg Ag. Fino= 658.39 kg ----> 688.97 kg -----> 662.80 kg

11) APORTE DE AGUA A LA MEZCLA

Absorción (%)		
Agreg.	Grueso	Fino
Patapo	1.98 %	- addition
Tres tomas		1.37 %

Agregado Fino: Agregado Grueso: Tres tomas Patapo

Ag. Grueso= Ag. Fino= 686.50 kg 658.39 kg -11.12 lts -4.61 lts -15.73 lts

LEME WED EIRL.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS A LEMS WAD EIRL.

MIGUEL ANGEL RUIZ PERALES

12) AGUA EFECTIVA

Agua= 220 lts Aporte= -15.73 lts A E= 235.7300148 lts

13) PROPORCIONES DEL DISEÑO

Cemento	A. Grueso	A Fino	Agua
705.13 kg	688.97 kg	662.80 kg	235.730015 Its

PESO:

Cemento	A. Grueso	A Fino	Agua
1	0.98	0.94	14.2080909 Its

VOLUMEN:

Cemento	A. Grueso	A Fino	Agua
1	1.04	0.93	14.2080909 Its

14) PESOS PARA UNA TANDA

Elemento	Cantidad	Volumen	Total	Carry Control
Probeta	3	0.0016m3	0.00471	(D10x H20 cm)
Adoquines	45	0.0012m3	0.054	(20x10x6 cm)

Adoquines:

Cemento	38.077 kg
A. Grueso	37.204 kg
A Fino	35.791 kg
Agua	12.729 lts

14) PESOS PARA UNA TANDA (DESPERDICIO 15%)

Adoquines:

Cemento	43.788 kg
A. Grueso	42.785 kg
A Fino	41.160 kg
Agua	14.639 kg

LEMS WEE EIRL

WILSON ARTURO OLAYA AGUILAR

ALEMS WAC EIRE

GUEL ANGEL RUIZ PERALE

DISEÑO DEL CONCRETO EXPERIMENTAL (10% OPTIMO DE RR.SS)

12) AGUA EFECTIVA

Agua= 220 lts Aporte= -15.73 lts A.E= 235.7300148 lts

13) PROPORCIONES DEL DISEÑO

Cemento	A. Grueso	A Fino	Agua
705.13 kg	688.97 kg	662.80 kg	235.730015 Its

PESO:

Cemento	A. Grueso	A Fino	Agua	
1	0.98	The second secon	14.2080909 Its	

VOLUMEN:

Cemento	A. Grueso	A Fino	Agua
1	1.04	0.93	14.2080909 Its

14) PESOS PARA UNA TANDA

Elemento	Cantidad	Volumen	Total	
Probeta	3	0.0016m3	0.00471	(D10x H20 cm)
Adoquines	45	0.0012m3	0.054	(20x10x6 cm)

Adoquines:

Cemento	38.077 kg
A. Grueso	37.204 kg
A Fino	35.791 kg
Agua	12.729 Its

14) PESOS PARA UNA TANDA (DESPERDICIO 15%)

Adoquines:

43.788 kg
42.785 kg
41.160 kg
14.639 kg

15) PESOS DE MATERIAL RECICLADO POR TANDA (DESPERDICIO 15%)

MATERIAL				
PORCENTAJE	RR.SOLDADURA	AGREGADO FINO		
10%	4.120 kg	37.040 kg		

% OPTIMO DEL DISEÑO EXPERIMENTAL

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE NATERIALES Y SUELOS

MIGUEL ANGEL RUIZ PERALES INGENIERO CIVIL CIP: 24694

DOSIFICACIÓN EN VOLUMEN

1. MATERIALES:

Agregado Fino

Agregado Grueso

P.U.S.S Humedad 1507.33 0.67

P.U.S.S Humedad 1390.80

2. MATERIALES POR TANDA:

Cemento Agua efectiva Agregado fino húmedo Agregado grueso húmedo

42.50 kg/bls 14.20809 its/bls 39.95 kg/bls 41.53 kg/bls

3. PESOS UNITARIOS HÚMEDOS:

1 m3=35 ft3

A. Fino A. Grueso

1508.337 1391.804

kg kg

A. Fino A. Grueso

43.10 kg/ft3 39.77 kg/ft3

4. DOSIFICACIÓN EN VOLUMEN

Cemento 1

Ag. fino húmedo 0.93

Ag. grueso húmedo 1.04

Agua efectiva

14.208

It/bis

WILSON ARTURO OLAYA AGUILAR TEC ENSAYOS DE MATERIALES Y SUELOS

MIGUEL ANGEL RUIZ PERALES

Anexo 8 Ensayo de temperatura del adoquín de concreto control y adoquín de concreto al 0%, 5%, 10%, 15% y 20%

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: servicios@lemswycseirl.com

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero

incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura Inicio de Ensayo Fin de Ensayo : Lunes, 5 de junio del 2023: Viernes, 16 de junio del 2023: Viernes, 14 de julio del 2023

Ensayo

: HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la

temperatura de mezcla de hormigón.

Referencia

: N.T.P. 339.184

Diseño	IDENTIFICACIÓN	Diseño f`c (kg/cm²)	Fecha de vaciado (Días)	Temperatura (C°)
DM-01	Mezcla de concreto- f'c= 420 kg/cm2	420	16/06/2023	26.0

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

LEMS WEE EIRL.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS QE MATERIALES Y SUELOS LEMB WAC EIRL

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: servicios@lemswycseirl.com

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura

: Lunes, 5 de junio del 2023 : Viemes, 16 de junio del 2023

Inicio de Ensayo Fin de Ensayo

: Viemes, 14 de julio del 2023

Ensayo

: HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la

temperatura de mezcla de hormigón.

Referencia

: N.T.P. 339.184

Diseño	IDENTIFICACIÓN	Diseño f´c (kg/cm²)	Fecha de vaciado (Días)	Temperatura (C°)
DM-01	Mezcla de concreto - f´c= 420 kg/cm2 + 5% RESIDUOS DE SOLDADURA	420	16/06/2023	25.0
DM-02	Mezcla de concreto - f'c= 420 kg/cm2 + 10% RESIDUOS DE SOLDADURA	420	16/06/2023	27.0
DM-03	Mezcla de concreto - f´c= 420 kg/cm2 + 15% RESIDUOS DE SOLDADURA	420	16/06/2023	28.0
DM-04	Mezcla de concreto - f'c= 420 kg/cm2 + 20% RESIDUOS DE SOLDADURA	420	16/06/2023	26.0

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR
TEC ENSAYOS DE MATERIALES Y SUELOS

Anexo 9 Ensayo de asentamiento del adoquín de concreto control y adoquín de concreto al 0%, 5%, 10%, 15% y 20%

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20548885974

mail: servicios@lemswycseirl.co

THE SELVICIOS SOCCOCC

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado

residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura Inicio de Ensayo : Lunes, 5 de junio del 2023 : Viernes, 16 de junio del 2023

Fin de Ensayo

: Viemes, 14 de julio del 2023

Ensayo

; HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del

concreto de cemento Portland.

Referencia

: N.T.P. 339.035:2009

Diseño	IDENTIFICACIÓN	Diseño	Fecha de vaciado (Días)	Asentamiento	
Oiseno	IDENTIFICACION	f´c (kg/cm²)		Obtenido (pulg)	Obtenido (cm)
DM-01	Mezcla de concreto- f'c= 420 kg/cm2	420	16/06/2023	2 +	5.08

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR
TEC. ENSAYOS DE MATERIALES Y SUELOS

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20548885974

Email: servicios@lemswycseirl.com

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado

residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura

: Lunes, 5 de junio del 2023 : Viemes, 16 de junio del 2023

Inicio de Ensayo Fin de Ensayo

: Viernes, 16 de julio del 2023

Ensayo

: HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del

concreto de cemento Portland.

Referencia

: N.T.P. 339.035:2009

Diseño		Diseño	Fecha de vaciado	Asent	amiento
	IDENTIFICACIÓN	f´c (kg/cm²)	(Días)	Obtenido (pulg)	Obtenido (cm)
DM-01	Mezcla de concreto - f'c= 420 kg/cm2 + 5% RESIDUOS DE SOLDADURA	420	16/06/2023	1 3/4	4.45
DM-02	Mezcla de concreto - f'c= 420 kg/cm2 + 10% RESIDUOS DE SOLDADURA	420	16/06/2023	1 1/2	3.81
DM-03	Mezcla de concreto - f'c= 420 kg/cm2 + 15% RESIDUOS DE SOLDADURA	420	16/06/2023	1 1/4	3.18
DM-04	Mezcia de concreto - f´c= 420 kg/cm2 + 20% RESIDUOS DE SOLDADURA	420	16/06/2023	1	2.54

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR

Anexo 10 Ensayo de densidad del adoquín de concreto control y adoquín de concreto al 0%, 5%, 10%, 15% y 20%

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo

RNP Servicios S0608589

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado

residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura Inicio de Ensayo

Fin de Ensayo

: Lunes, 5 de junio del 2023 : Viemes, 16 de junio del 2023 : Viemes, 14 de julio del 2023

Ensayo

: CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del concreto. 2º Edición

Referencia

: N.T.P. 339.046 : 2008 (revisada el 2018)

Muestra Nº	IDENTIFICACIÓN	Diseño f°c (kg/cm²)	Fecha de vaciado (Días)	DENSIDAD (Kg/m³)
01	Mezcla de concreto- f'c= 420 kg/cm2	420	16/06/2023	2217

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante,

ON ARTURO OLAYA AGUILAR

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado

residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura Inicio de Ensayo : Lunes, 5 de junio del 2023 : Viernes, 16 de junio del 2023

Fin de Ensayo

: Viemes, 14 de julio del 2023

Ensayo

: CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y

contenido de aire (método gravimétrico) del concreto. 2º Edición

Referencia

: N.T.P. 339.046 : 2008 (revisada el 2018)

Muestra Nº	IDENTIFICACIÓN	Diseño f´c (kg/cm²)	Fecha de vaciado (Días)	DENSIDAD (Kg/m³)	
01	Mezcla de concreto - f'c= 420 kg/cm2 + 5% RESIDUOS DE SOLDADURA	420	16/06/2023	2254	
02	Mezcla de concreto - f'c= 420 kg/cm2 + 10% RESIDUOS DE SOLDADURA	420	16/06/2023	2295	
03	Mezcla de concreto - f'c= 420 kg/cm2 + 15% RESIDUOS DE SOLDADURA	420	16/06/2023	2340	
04	Mezcla de concreto - f'c= 420 kg/cm2 + 20% RESIDUOS DE SOLDADURA	420	16/06/2023	2382	

OBSERVACIONES:

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS OF MATERIALES Y SUELOS

- Muestreo, identificación y ensayo realizado por el solicitante,

LEMS WAC EIRL

Anexo 11 Ensayo de contenido de aire del adoquín de concreto control y adoquín de concreto al 0%, 5%, 10%, 15% y 20%

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: servicios@lemswycseirl.com

Solicitud de Ensavo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero

incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura

: Lunes, 5 de junio del 2023

Inicio de Ensayo Fin de Ensayo : Viemes, 16 de junio del 2023 : Viemes, 14 de julio del 2023

Ensayo

. HORMIGON (CONCRETO). Método por presión para la determinación del contenido

de aire en mezclas frescas.

Referencia Tipo de Medidor : NTP 339.080 : Medidor "B"

Diseño	Diseño IDENTIFICACIÓN		Fecha de vaciado (Días)	Contenido de aire (%)
DM-01	Mezcla de concreto- f'c= 420 kg/cm2	420	16/06/2023	2.3

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

Prolongación Bolognesi Km. 3.5 Pimentel - Lambayeque R.U.C. 20480781334

Email: servicios@lemswycseirl.com

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura

como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque

Fecha de Apertura

: Lunes, 5 de junio del 2023

Inicio de Ensayo Fin de Ensayo

: Viernes, 16 de junio del 2023 : Viernes, 14 de julio del 2023

Ensayo

HORMIGON (CONCRETO). Método por presión para la determinación del contenido de aire en mezclas

frescas. : NTP 339.080

Referencia Tipo de Medidor

: Medidor "B"

Diseño	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Dias)	Contenido de aire (%)			
DM-01	Mezcia de concreto - l'c= 420 kg/cm2 + 5% RESIDUOS DE SOLDADURA	420	16/06/2023	11:30 a. m.	Medido "B"	2.00	
DM-02	Mezcla de concreto - f'c= 420 kg/cm2 + 10% RESIDUOS DE SOLDADURA	420	16/06/2023	13:30 p.m	Medido "B"	1.90	
DM-03	Mezcia de concreto - f'c= 420 kg/cm2 + 15% RESIDUOS DE SOLDADURA	420	16/06/2023	15:30 p.m	Medido "B"	1.80	
DM-04	Mezcia de concreto - f'c= 420 kg/cm2 + 20% RESIDUOS DE SOLDADURA	420	16/06/2023	17:00 p.m	Medido "B"	1.60	

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

AS WE'C EIRL.

Anexo 12 Ensayo de compresión del adoquín de concreto control y adoquín de concreto al 0%, 5%, 10%, 15% y 20%

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado

residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura : Lunes, 5 de junio del 2023 Inicio de Esayo

Fin de Ensayo

: Viernes, 16 de junio del 2023 : Viernes, 14 de julio del 2023

Muestra

: Adoquín tipo II - f'c =420kg/cm2

NORMA: : NTP 399.611

TÍTULO : UNIDADES DE ALBAÑILERÍA. Adoquines de concreto para pavimentos. Requisitos

ENSAYO: Resistencia a la Compresión

Muestra N°	Descripción de la muestra.	Fecha	Fecha	Edad	CARGA	ÁREA	Resistencia a la Compresión	
		Vaciado	Ensayo	Días	(N)	(mm²)	Мра	Kg/Cm ²
01		16/06/2023	23/06/2023	7	678099	20099	33.74	344
02		16/06/2023	23/06/2023	7	682629	20502	33.30	340
03	Patrón R a/c=0.312	16/06/2023	23/06/2023	7	695579	20301	34.26	349
04		16/06/2023	23/06/2023	7	680359	20301	33.51	342
05		16/06/2023	23/06/2023	7	689099	20402	33.78	344
06	Patrón R a/c=0.312	16/06/2023	30/06/2023	14	813727	20426	39.84	406
07		16/06/2023	30/06/2023	14	819147	20729	39.52	403
08		16/06/2023	30/06/2023	14	834697	20200	41.32	421
09		16/06/2023	30/06/2023	14	816437	20577	39.68	405
10		16/06/2023	30/06/2023	14	826917	20464	40.41	412
11	Patrón R a/c=0.312	16/06/2023	14/07/2023	28	904136	20502	44.10	450
12		16/06/2023	14/07/2023	28	910166	20600	44.18	451
13		16/06/2023	14/07/2023	28	927435	20196	45.92	468
14		16/06/2023	14/07/2023	28	907151	20551	44.14	450
15		16/06/2023	14/07/2023	28	918800	20398	45.04	459

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

W&E EIRL

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334

Email: servicios@lemswyceirl.com

Solicitud de Ensayo: 0506B-23/ LEMS W&C

: BRANDON LEE HUAMANI ZULOETA Solicitante

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado Proyecto / Obra

residuos de soldadura como sustituto parcial del agregado

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. Ubicación

Fecha de Apertura : Lunes, 5 de junio del 2023 : Viernes, 16 de junio del 2023 Inicio de Esayo Fin de Ensayo : Viernes, 14 de julio del 2023

: Adoquín tipo II - f'c =420kg/cm2 Muestra

NORMA: : NTP 399.611

TÍTULO : UNIDADES DE ALBAÑILERÍA. Adoquines de concreto para pavimentos. Requisitos

ENSAYO: Resistencia a la Compresión

Muestra N°	Descripción de la muestra.	Fecha	Fecha	Edad	CARGA	ÁREA	Resistencia a la Compresión	
		Vaciado	Ensayo	Días	(N)	(mm²)	Мра	Kg/Cm ²
01		16/06/2023	23/06/2023	7	728958	20301	35.91	366
02	Patrón R a/c=0.312 +	16/06/2023	23/06/2023	7	733818	20201	36.33	370
03	5% RESIDUOS DE SOLDADURA	16/06/2023	23/06/2023	7	747748	20301	36.83	376
04	SOLDADURA	16/06/2023	23/06/2023	7	731388	20251	36.12	368
05		16/06/2023	23/06/2023	7	740788	20251	36.58	373
06	Patrón R a/c=0.312 + 5% RESIDUOS DE SOLDADURA	16/06/2023	30/06/2023	14	874746	20225	43.25	441
07		16/06/2023	30/06/2023	14	880586	20528	42.90	437
08		16/06/2023	30/06/2023	14	897296	20200	44.42	453
09		16/06/2023	30/06/2023	14	877666	20376	43.07	439
10		16/06/2023	30/06/2023	14	888946	20364	43.65	445
11	Patrón R a/c=0.312 + 5% RESIDUOS DE SOLDADURA	16/06/2023	14/07/2023	28	971945	20301	47.88	488
12		16/06/2023	14/07/2023	28	978424	20400	47.96	489
13		16/06/2023	14/07/2023	28	996994	20196	49.37	503
14		16/06/2023	14/07/2023	28	975184	20351	47.92	489
15		16/06/2023	14/07/2023	28	987714	20298	48.66	496

OBSERVACIONES:

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

- Muestreo, identificación y ensayos realizados por el solicitante.

MIGUEL ANGEL RUIZ PERALES

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334

Email: servicios@lemswyceirl.com

Solicitud de Ensayo: 0506B-23/ LEMS W&C

RNP Servicios S0608589

: BRANDON LEE HUAMANI ZULOETA Solicitante

Proyecto / Obra : Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado

residuos de soldadura como sustituto parcial del agregado

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura : Lunes, 5 de junio del 2023 : Viernes, 16 de junio del 2023 Inicio de Esayo : Viernes, 14 de julio del 2023 Fin de Ensayo

: Adoquín tipo II - f'c =420kg/cm2 Muestra

NORMA: : NTP 399.611

TÍTULO : UNIDADES DE ALBAÑILERÍA. Adoquines de concreto para pavimentos. Requisitos

ENSAYO: Resistencia a la Compresión

Muestra	Descripción de la	Fecha	Fecha	Edad	CARGA	ÁREA		encia a la presión
N°	muestra.	Vaciado	Ensayo	Días	(N)	(mm²)	Мра	Kg/Cm ²
01		16/06/2023	23/06/2023	7	728958	20301	35.91	366
02	Patrón R a/c=0.312 +	16/06/2023	23/06/2023	7	733818	20201	36.33	370
03	5% RESIDUOS DE SOLDADURA	16/06/2023	23/06/2023	7	747748	20301	36.83	376
04	SOLDADORA	16/06/2023	23/06/2023	7	731388	20251	36.12	368
05		16/06/2023	23/06/2023	7	740788	20251	36.58	373
06		16/06/2023	30/06/2023	14	874746	20225	43.25	441
07	Patrón R a/c=0.312 +	16/06/2023	30/06/2023	14	880586	20528	42.90	437
08	5% RESIDUOS DE SOLDADURA	16/06/2023	30/06/2023	14	897296	20200	44.42	453
09	SOLDADORA	16/06/2023	30/06/2023	14	877666	20376	43.07	439
10		16/06/2023	30/06/2023	14	888946	20364	43.65	445
11		16/06/2023	14/07/2023	28	971945	20301	47.88	488
12	Patrón R a/c=0.312 +	16/06/2023	14/07/2023	28	978424	20400	47.96	489
13	5% RESIDUOS DE	16/06/2023	14/07/2023	28	996994	20196	49.37	503
14	SOLDADURA	16/06/2023	14/07/2023	28	975184	20351	47.92	489
15	<u> </u>	16/06/2023	14/07/2023	28	987714	20298	48.66	496

OBSERVACIONES:

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

- Muestreo, identificación y ensayos realizados por el solicitante.

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo: 0506B-23/ LEMS W&C

Solicitante : BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra : Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado

residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Inicio de Esayo

Fecha de Apertura : Lunes, 5 de junio del 2023 : Viernes, 16 de junio del 2023

Fin de Ensayo

: Viernes, 14 de julio del 2023

Muestra

: Adoquín tipo II - f'c =420kg/cm2

NORMA: : NTP 399.611

TÍTULO : UNIDADES DE ALBAÑILERÍA. Adoquines de concreto para pavimentos. Requisitos

ENSAYO: Resistencia a la Compresión

Muestra	Descripción de la	Fecha	Fecha	Edad	CARGA	ÁREA		encia a la presión
N°	muestra.	Vaciado	Ensayo	Días	(N)	(mm²)	Мра	Kg/Cm ²
01		16/06/2023	23/06/2023	7	813727	20301	40.08	409
02	Patrón R a/c=0.312 +	16/06/2023	23/06/2023	7	819157	20201	40.55	414
03	10% RESIDUOS DE SOLDADURA	16/06/2023	23/06/2023	7	834697	20100	41.53	423
04	SOLDADORA	16/06/2023	23/06/2023	7	816437	20251	40.32	411
05		16/06/2023	23/06/2023	7	826927	20150	41.04	418
06		16/06/2023	30/06/2023	14	976464	20451	47.75	487
07	Patrón R a/c=0.312 +	16/06/2023	30/06/2023	14	982984	20100	48.90	499
08	10% RESIDUOS DE SOLDADURA	16/06/2023	30/06/2023	14	1001634	20600	48.62	496
09	SOLDADORA	16/06/2023	30/06/2023	14	979724	20276	48.32	493
10		16/06/2023	30/06/2023	14	992304	20350	48.76	497
11		16/06/2023	14/07/2023	28	1084963	20502	52.92	540
12	Patrón R a/c=0.312 +	16/06/2023	14/07/2023	28	1092203	20200	54.07	551
13	10% RESIDUOS DE	16/06/2023	14/07/2023	28	1112922	20196	55.11	562
14	SOLDADURA	16/06/2023	14/07/2023	28	1088583	20351	53.49	545
15	,	16/06/2023	14/07/2023	28	1102562	20198	54.59	557

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceid.com

Solicitud de Ensayo: 0506B-23/ LEMS W&C

Solicitante : BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra : Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado

residuos de soldadura como sustituto parcial del agregado

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura : Lunes, 5 de junio del 2023 Inicio de Esayo : Viernes, 16 de junio del 2023 Fin de Ensayo : Viernes, 14 de julio del 2023

Muestra : Adoquín tipo II - f'c =420kg/cm2

NORMA: : NTP 399.611

TÍTULO : UNIDADES DE ALBAÑILERÍA. Adoquines de concreto para pavimentos. Requisitos

ENSAYO: Resistencia a la Compresión

Muestra	Descripción de la	Fecha	Fecha	Edad	CARGA	ÁREA		encia a la presión
N°	muestra.	Vaciado	Ensayo	Días	(N)	(mm²)	Мра	Kg/Cm ²
01	prime to the second	16/06/2023	23/06/2023	7	793387	20301	39.08	399
02	Patrón R a/c=0.312 +	16/06/2023	23/06/2023	7	798667	20201	39.54	403
03	15% RESIDUOS DE	16/06/2023	23/06/2023	7	813827	20100	40.49	413
04	SOLDADURA	16/06/2023	23/06/2023	7	796027	20251	39.31	401
05		16/06/2023	23/06/2023	7	806247	20150	40.01	408
06	e esercica de al	16/06/2023	30/06/2023	14	952055	20451	46.55	475
07	Patrón R a/c=0.312 +	16/06/2023	30/06/2023	14	958405	20100	47.68	486
08	15% RESIDUOS DE	16/06/2023	30/06/2023	14	976594	20600	47.41	483
09	SOLDADURA	16/06/2023	30/06/2023	14	955225	20276	47.11	480
10		16/06/2023	30/06/2023	14	967495	20350	47.54	485
11	, , ,	16/06/2023	14/07/2023	28	1057843	20301	52.11	531
12	Patrón R a/c=0.312+	16/06/2023	14/07/2023	28	1064893	20400	52.20	532
13	15% RESIDUOS DE SOLDADURA	16/06/2023	14/07/2023	28	1085103	20196	53.73	548
14	SULDADURA	16/06/2023	14/07/2023	28	1061363	20351	52.15	532
15		16/06/2023	14/07/2023	28	1074993	20298	52.96	540

OBSERVACIONES:

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

- Muestreo, identificación y ensayos realizados por el solicitante.

LEMS WAD

I ANGEL RUIZ PERALES

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo: 0506B-23/ LEMS W&C

Solicitante

BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado

residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de Apertura : Lunes, 5 de junio del 2023

Inicio de Esayo Fin de Ensayo

: Viernes, 16 de junio del 2023 : Viernes, 14 de julio del 2023

Muestra

: Adoquín tipo II - f'c =420kg/cm2

NORMA: : NTP 399.611

TÍTULO : UNIDADES DE ALBAÑILERÍA. Adoquines de concreto para pavimentos. Requisitos

ENSAYO: Resistencia a la Compresión

Muestra	Descripción de la	Fecha	Fecha	Edad	CARGA	ÁREA		encia a la presión
N°	muestra.	Vaciado	Ensayo	Días	(N)	(mm²)	Мра	Kg/Cm ²
01		16/06/2023	23/06/2023	7	766258	20301	37.74	385
02	Patrón R a/c=0.312 +	16/06/2023	23/06/2023	7	771368	20201	38.19	389
03	20% RESIDUOS DE SOLDADURA	16/06/2023	23/06/2023	7	786008	20100	39.10	399
04	SOLDADURA	16/06/2023	23/06/2023	7	768818	20251	37.96	387
05		16/06/2023	23/06/2023	7	778688	20150	38.64	394
06		16/06/2023	30/06/2023	14	919505	20451	44.96	458
07	Patrón R a/c=0.312 +	16/06/2023	30/06/2023	14	925635	20100	46.05	470
08	20% RESIDUOS DE SOLDADURA	16/06/2023	30/06/2023	14	943205	20400	46.24	471
09	SOLDADUKA	16/06/2023	30/06/2023	14	922575	20276	45.50	464
10		16/06/2023	30/06/2023	14	934415	20250	46.14	471
11		16/06/2023	14/07/2023	28	1021674	20502	49.83	508
12	Patrón R a/c=0.312+	16/06/2023	14/07/2023	28	1028484	20200	50.92	519
13	20% RESIDUOS DE SOLDADURA	16/06/2023	14/07/2023	28	1048003	20196	51.89	529
14	SOLDADORA	16/06/2023	14/07/2023	28	1025084	20351	50.37	514
15		16/06/2023	14/07/2023	28	1038243	20198	51.40	524

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

Anexo 13 Ensayo a flexión del adoquín de concreto control y adoquín de concreto al 0%, 5%, 10%, 15% y 20%

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo

0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura

como sustituto parcial del agregado

Fecha de Apertura

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Inicio de Ensayo

: Lunes, 5 de junio del 2023 : Viernes, 16 de junio del 2023 : Viernes, 14 de julio del 2023

Fin de Ensayo MUESTRA:

Adoquín tipo II - f'c = 420kg/cm2

Tres tomas

Código

: ITINTEC 399.124:1988

Titulo Norma : ADOQUINES DE CONCRETO (HORMIGON) PARA PAVIMENTOS.

Requisitos y Métodos de ensayo.

Ensayo

: Método de ensayo para determinar la resistencia a la flexión.

Muestra	Descripción de	Fecha	Fecha	Edad	Carga	Longitud	Ancho	Espesor	Luz		encia a la por Flexión
N°	la muestra.	Vaciado	Ensayo	Días	(N)	L ₀ (mm)	A (mm)	H (mm)	L (mm)	Мра	Kg/Cm ²
01		16/06/2023	23/06/2023	7	6855	198	103	57	180	5.5	56
02	25.	16/06/2023	23/06/2023	7	6973	201	102	58	180	5.5	56
03	Patrón R a/c=0.312	16/06/2023	23/06/2023	7	6956	201	101	57	180	5.7	58
04	a/c-0.312	16/06/2023	23/06/2023	7	6877	200	102	58	180	5.5	56
05		16/06/2023	23/06/2023	7	6891	201	101	58	180	5.6	57
06		16/06/2023	30/06/2023	14	8682	200	102	59	180	6.6	67
07	35 35 11	16/06/2023	30/06/2023	14	8833	201	103	59	180	6.7	68
08	Patrón R a/c=0.312	16/06/2023	30/06/2023	14	8811	200	101	60	180	6.5	67
09	a/c-0.312	16/06/2023	30/06/2023	14	8711	201	103	59	180	6.6	67
10	1	16/06/2023	30/06/2023	14	8729	201	102	60	180	6.5	67
11		16/06/2023	14/07/2023	28	9139	201	102	58	180	7.2	73
12	T 100 / 1	16/06/2023	14/07/2023	28	9298	200	103	59	180	7.0	71
13	Patrón R a/c=0.312	16/06/2023	14/07/2023	28	9274	198	102	58	180	7.3	74
14	a/t=0.312	16/06/2023	14/07/2023	28	9170	201	103	59	180	7.1	72
15	1	16/06/2023	14/07/2023	28	9188	199	103	58	180	7.2	73

Donde: Lo= Longitud del eje mayor del adoquín (mm)

L= Distancia entre ejes de los apoyos (mm)

A= Longitud del eje menor del adoquín (mm)

H= Espesor del adoquín (mm)

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

EIRL.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo

0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura

como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura Inicio de Ensayo Fin de Ensayo

: Lunes, 5 de junio del 2023 : Viernes, 16 de junio del 2023 : Viemes, 14 de julio del 2023

MUESTRA:

Adoquín tipo II - f'c = 420kg/cm2

Código

: ITINTEC 399.124: 1988

Titulo

: ADOQUINES DE CONCRETO (HORMIGON) PARA PAVIMENTOS.

Norma Ensayo

Requisitos y Métodos de ensayo. : Método de ensayo para determinar la resistencia a la flexión.

Muestra	Descripción de	Fecha	Fecha	Edad	Carga	Longitud	Ancho	Espesor	Luz		encia a la por Flexión
N°	la muestra.	Vaciado	Ensayo	Días	(N)	L ₀ (mm)	A (mm)	H (mm)	L (mm)	Мра	Kg/Cm ²
01		16/06/2023	23/06/2023	7	7290	198	103	57	180	5.9	60
02	Patrón R	16/06/2023	23/06/2023	7	7338	201	102	58	180	5.8	59
03	a/c=0.312 + 5%RESIDUOS DE	16/06/2023	23/06/2023	7	7257	201	101	57	180	6.0	61
04	SOLDADURA	16/06/2023	23/06/2023	7	7314	200	102	58	180	5.8	60
05		16/06/2023	23/06/2023	7	7261	201	101	58	180	5.9	60
06		16/06/2023	30/06/2023	14	9233	200	102	59	180	7.0	72
07	Patrón R	16/06/2023	30/06/2023	14	9295	201	103	59	180	7.0	71
08	a/c=0.312 + 5%RESIDUOS DE	16/06/2023	30/06/2023	14	9192	200	101	60	180	6.8	70
09	SOLDADURA	16/06/2023	30/06/2023	14	9264	201	103	59	180	7.0	71
10		16/06/2023	30/06/2023	14	9197	201	102	60	180	6.9	70
11		16/06/2023	14/07/2023	28	9719	201	101	58	180	7.7	79
12	Patrón R	16/06/2023	14/07/2023	28	9784	200	101	59	180	7.5	77
13	a/c=0.312 + 5%RESIDUOS DE	16/06/2023	14/07/2023	28	9676	198	102	57	180	7.9	80
14	SOLDADURA	16/06/2023	14/07/2023	28	9752	201	103	59	180	7.5	77
15		16/06/2023	14/07/2023	28	9681	199	103	58	180	7.6	77

Donde:

L₀= Longitud del eje mayor del adoquín (mm)

L= Distancia entre ejes de los apoyos (mm)

A= Longitud del eje menor del adoquín (mm)

H= Espesor del adoquín (mm)

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo

0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura

como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura Inicio de Ensayo : Lunes, 5 de junio del 2023: Viernes, 16 de junio del 2023: Viernes, 14 de julio del 2023

Fin de Ensayo

MUESTRA:

Adoquín tipo II - f c = 420kg/cm2

Código

: ITINTEC 399.124:1988

Titulo

: ADOQUINES DE CONCRETO (HORMIGON) PARA PAVIMENTOS.

Norma

Requisitos y Métodos de ensayo.

Ensayo

: Método de ensayo para determinar la resistencia a la flexión.

Muestra	Descripción de	Fecha	Fecha	Edad	Carga	Longitud	Ancho	Espesor	Luz		encia a la por Flexión
N°	la muestra.	Vaciado	Ensayo	Días	(N)	L _o (mm)	A (mm)	H (mm)	L (mm)	Мра	Kg/Cm ²
01	L THE DISTRIBUTE	16/06/2023	23/06/2023	7	8284	201	101	57	180	6.8	70
02	Patrón R	16/06/2023	23/06/2023	7	8192	201	101	58	180	6.5	67
03	a/c=0.312 + 10%RESIDUOS	16/06/2023	23/06/2023	7	8347	201	100	57	180	6.9	71
04	DE SOLDADURA	16/06/2023	23/06/2023	7	8238	201	101	58	180	6.7	68
05		16/06/2023	23/06/2023	7	8269	201	100	58	180	6.7	69
06	and the second second	16/06/2023	30/06/2023	14	10493	201	102	59	180	8.0	81
07	Patrón R	16/06/2023	30/06/2023	14	10376	201	100	59	180	8.0	82
08	a/c=0.312 + 10%RESIDUOS	16/06/2023	30/06/2023	14	10573	200	103	60	180	7.7	79
09	DE SOLDADURA	16/06/2023	30/06/2023	14	10435	201	101	59	180	8.0	82
10		16/06/2023	30/06/2023	14	10474	201	102	60	180	7.9	80
11	THE R. LEWIS CO., LANSING MICHIGAN	16/06/2023	14/07/2023	28	10850	201	102	58	180	8.5	87
12	Patrón R	16/06/2023	14/07/2023	28	10922	200	101	59	180	8.4	86
13	a/c=0.312 + 10%RESIDUOS	16/06/2023	14/07/2023	28	11129	198	102	57	180	9.1	92
14	DE SOLDADURA	16/06/2023	14/07/2023	28	10886	201	102	59	180	8.5	86
15	X 15 (Salpa	16/06/2023	14/07/2023	28	11026	199	102	58	180	8.7	89

Donde:

Lo= Longitud del eje mayor del adoquín (mm)

L= Distancia entre ejes de los apoyos (mm)

A= Longitud del eje menor del adoquín (mm)

H= Espesor del adoquín (mm)

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

W&O EIRL

WII SON ARTURO OLAYA AGUILAR

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo

0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura

como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura Inicio de Ensayo Fin de Ensayo

: Lunes, 5 de junio del 2023 : Viernes, 16 de junio del 2023 : Viernes, 14 de julio del 2023

MUESTRA:

Adoquín tipo II - f'c = 420kg/cm2

Código

: ITINTEC 399.124 : 1988

Titulo

: ADOQUINES DE CONCRETO (HORMIGON) PARA PAVIMENTOS.

Norma

Requisitos y Métodos de ensayo.

Ensayo

: Método de ensayo para determinar la resistencia a la flexión.

Muestra	Descripción de	Fecha	Fecha	Edad	Carga	Longitud	Ancho	Espesor	Luz		encia a la por Flexión
N°	la muestra.	Vaciado	Ensayo	Días	(N)	L ₀ (mm)	A (mm)	H (mm)	L (mm)	Мра	Kg/Cm ²
01	1.00	16/06/2023	23/06/2023	7	7934	201	101	57	180	6.5	67
02	Patrón R	16/06/2023	23/06/2023	7	7987	201	101	58	180	6.4	65
03	a/c=0.312 + 15	16/06/2023	23/06/2023	7	8138	201	100	57	180	6.8	69
04	%RESIDUOS DE SOLDADURA	16/06/2023	23/06/2023	7	7960	201	101	58	180	6.5	66
05		16/06/2023	23/06/2023	7	8062	201	100	58	180	6.6	67
06		16/06/2023	30/06/2023	14	10050	201	102	59	180	7.6	78
07	Patrón R	16/06/2023	30/06/2023	14	10116	201	100	59	180	7.8	80
08	a/c=0.312 + 15	16/06/2023	30/06/2023	14	10309	200	103	60	180	7.5	77
09	%RESIDUOS DE SOLDADURA	16/06/2023	30/06/2023	14	10083	201	101	59	180	7.7	79
10		16/06/2023	30/06/2023	14	10212	201	102	60	180	7.7	78
11		16/06/2023	14/07/2023	28	10578	201	102	58	180	8.3	85
12	Patrón R	16/06/2023	14/07/2023	28	10649	200	101	59	180	8.2	83
13	a/c=0.312 + 15	16/06/2023	14/07/2023	28	10851	198	102	57	180	8.8	90
14	%RESIDUOS DE SOLDADURA	16/06/2023	14/07/2023	28	10614	201	102	59	180	8.2	84
15	1	16/06/2023	14/07/2023	28	10750	199	102	58	180	8.5	87

Donde:

L₀= Longitud del eje mayor del adoquín (mm)

L= Distancia entre ejes de los apoyos (mm)

A= Longitud del eje menor del adoquín (mm)

H= Espesor del adoquín (mm)

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

WILSONARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitud de Ensayo

0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura

como sustituto parcial del agregado

Ubicación Fecha de Apertura : Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Inicio de Ensayo Fin de Ensayo

: Lunes, 5 de junio del 2023 : Viemes, 16 de junio del 2023 : Viernes, 14 de julio del 2023

MUESTRA:

Adoquín tipo II - f c = 420kg/cm2

Código

: ITINTEC 399.124:1988

Titulo

: ADOQUINES DE CONCRETO (HORMIGON) PARA PAVIMENTOS.

Norma

Requisitos y Métodos de ensayo.

Ensayo

: Método de ensayo para determinar la resistencia a la flexión.

Muestra	Descripción de	Fecha	Fecha	Edad	Carga	Longitud	Ancho	Espesor	Luz		encia a la por Flexión
N°	la muestra.	Vaciado	Ensayo	Días	(N)	L ₀ (mm)	A (mm)	H (mm)	L (mm)	Мра	Kg/Cm ²
01	1.00	16/06/2023	23/06/2023	7	7663	201	101	57	180	6.3	64
02	Patrón R	16/06/2023	23/06/2023	7	7714	201	101	58	180	6.2	63
03	a/c=0.312 + 20%RESIDUOS	16/06/2023	23/06/2023	7	7860	201	100	57	180	6.5	67
04	DE SOLDADURA	16/06/2023	23/06/2023	7	7688	201	101	58	180	6.2	64
05		16/06/2023	23/06/2023	7	7787	201	100	58	180	6.3	65
06		16/06/2023	30/06/2023	14	9706	201	102	59	180	7.4	75
07	Patrón R	16/06/2023	30/06/2023	14	9771	201	100	59	180	7.6	77
08	a/c=0.312 + 20%RESIDUOS	16/06/2023	30/06/2023	14	9956	200	103	60	180	7.2	74
09	DE SOLDADURA	16/06/2023	30/06/2023	14	9738	201	101	59	180	7.5	76
10		16/06/2023	30/06/2023	14	9863	201	102	60	180	7.4	76
11		16/06/2023	14/07/2023	28	10217	201	102	58	180	8.0	82
12	Patrón R	16/06/2023	14/07/2023	28	10285	200	101	59	180	7.9	81
13	a/c=0.312 +	16/06/2023	14/07/2023	28	10480	198	102	57	180	8.5	87
14	20%RESIDUOS DE SOLDADURA	16/06/2023	14/07/2023	28	10251	201	102	59	180	8.0	81
15		16/06/2023	14/07/2023	28	10382	199	102	58	180	8.2	84

Donde:

Lo= Longitud del eje mayor del adoquín (mm)

L= Distancia entre ejes de los apoyos (mm)

A= Longitud del eje menor del adoquín (mm)

H= Espesor del adoquín (mm)

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

S WEG EIRL

Anexo 14 Ensayo de desgaste del adoquín de concreto control y adoquín de concreto al 0%, 5%, 10%, 15% y 20%

Chiclayo - Lambayequ R.U.C. 20480781334

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

* Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos

de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura

: Lunes, 5 de junio del 2023 : Viemes, 16 de junio del 2023

Inicio de Esayo Fin de Ensayo

: Viernes, 14 de julio del 2023

ENSAYO

. Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method (Método normalizado para la resistencia a la abrasión del concreto o superficies de mortero mediante el ensayo del rodillo giratorio).

NORMA

: ASTM C944 / C944M - 12

Muestra	Descripción o nombre de la muestra	Fecha Vaciado	Fecha Ensayo	Edad (días)	Tiempo Abrasión (Minutos)	ciclo	Carga (N)	Masa Inicial (g)	Masa Final (g)	Desgaste (g)	Desgaste (%)
M-1		16/06/2023	14/07/2023	28	2	3	98	1713.6	1705.4	8.21	0.48
M-2		16/06/2023	14/07/2023	28	2	3	98	1679.9	1671.4	8.53	0.51
M-3	PATRÓN - F'C =420 KG/CM2	16/06/2023	14/07/2023	28	2	3	98	1674.9	1665.6	9.27	0.55
M-4		16/06/2023	14/07/2023	28	2	3	98	1697.0	1687.0	10.02	0.59
M-5		16/06/2023	14/07/2023	28	2	3	98	1677.3	1668.4	8.88	0.53

NOTA 1 : Según norma se deberá ensayar como mínimo tres especimenes.

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

Chiclayo - Lembayeque R.U.C. 20480781334

Email: servicios@lemswyceirl.com

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

* Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos

de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura Inicio de Esayo : Lunes, 5 de junio del 2023 : Viemes, 16 de junio del 2023

Fin de Ensayo

: Viemes, 14 de julio del 2023

ENSAYO

Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-

Cutter Method (Método normalizado para la resistencia a la abrasión del concreto o superficies

de mortero mediante el ensayo del rodillo giratorio).

NORMA

: ASTM C944 / C944M - 12

Muestra	Descripción o nombre de la muestra	Fecha Vaciado	Fecha Ensayo	Edad (días)	Tiempo Abrasión (Minutos)	ciclo	Carga (N)	Masa Inicial (g)	Masa Final (g)	Desgaste (g)	Desgaste (%)
M-1		16/06/2023	14/07/2023	28	2	3	98	1818.1	1811.2	6.96	0.38
M-2	F'C =420	16/06/2023	14/07/2023	28	2	3	98	1659.1	1651.7	7.38	0.45
M-3	KG/CM2 + 5% RESIDUOS DE	16/06/2023	14/07/2023	28	2	3	98	1562.4	1554.4	8.02	0.51
M-4	SOLDADURA	16/06/2023	14/07/2023	28	2	3	98	1738.9	1730.2	8.67	0.50
M-5		16/06/2023	14/07/2023	28	2	3	98	1610.6	1603.0	7.63	0.47

NOTA 1 : Según norma se deberá ensayar como mínimo tres especimenes.

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS LEMS W&C EIRL

Chiclayo – Lambayeque R.U.C. 20480781334

Email: servicios@lemswyceirl.com

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos

de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura

: Lunes, 5 de junio del 2023

Inicio de Esayo Fin de Ensayo : Viemes, 16 de junio del 2023 : Viemes, 14 de julio del 2023

ENSAYO

. Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method (Método normalizado para la resistencia a la abrasión del concreto o superficies

de mortero mediante el ensayo del rodillo giratorio).

NORMA

: ASTM C944 / C944M - 12

Muestra	Descripción o nombre de la muestra	Fecha Vaciado	Fecha Ensayo	Edad (días)	Tiempo Abrasión (Minutos)	ciclo	Carga (N)	Masa Inicial (g)	Masa Final (g)	Desgaste (g)	Desgaste (%)
M-1		16/06/2023	14/07/2023	28	2	3	98	1650.6	1645.4	5.21	0.32
M-2	F'C =420	16/06/2023	14/07/2023	28	2	3	98	1555.3	1549.6	5.77	0.37
M-3	KG/CM2 + 10% RESIDUOS DE	16/06/2023	14/07/2023	28	2	3	98	1672.6	1666.3	6.27	0.38
M-4	SOLDADURA	16/06/2023	14/07/2023	28	2	3	98	1603.2	1596.4	6.78	0.42
M-5		16/06/2023	14/07/2023	28	2	3	98	1613.8	1606.2	7.63	0.47

NOTA 1 : Según norma se deberá ensayar como mínimo tres especimenes.

W&C EIRL.

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS LEMS W&C EIRL.

Chiclayo - Lambayeque R.U.C. 20480781334

Email: servicios@lemswyceirl.com

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos

de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura

: Lunes, 5 de junio del 2023

Inicio de Esayo

: Viemes, 16 de junio del 2023

Fin de Ensayo

: Viemes, 14 de julio del 2023

ENSAYO

Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-

Cutter Method (Método normalizado para la resistencia a la abrasión del concreto o superficies

de mortero mediante el ensayo del rodillo giratorio).

NORMA

: ASTM C944 / C944M - 12

Muestra	Descripción o nombre de la muestra	Fecha Vaciado	Fecha Ensayo	Edad (días)	Tiempo Abrasión (Minutos)	ciclo	Carga (N)	Masa Inicial (g)	Masa Final (g)	Desgaste (g)	Desgaste (%)
M-1	F'C =420 KG/CM2 + 15% RESIDUOS DE SOLDADURA	16/06/2023	14/07/2023	28	2	3	98	1841.3	1834.6	6.71	0.36
M-2		16/06/2023	14/07/2023	28	2	3	98	1669.7	1662.6	7.15	0.43
M-3		16/06/2023	14/07/2023	28	2	3	98	1757.0	1749.2	7.77	0.44
M-4		16/06/2023	14/07/2023	28	2	3	98	1755.8	1747.4	8.40	0.48
M-5		16/06/2023	14/07/2023	28	2	3	98	1713.2	1704.6	8.63	0.50

NOTA 1 : Según norma se deberá ensayar como mínimo tres especimenes.

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

Chiclayo – Lambayeque
R.U.C. 20480781334
self: servicios@lemsywceirl.com

Solicitud de Ensayo

: 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto / Obra

Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos

de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura

: Lunes, 5 de junio del 2023

Inicio de Esayo

: Viemes, 16 de junio del 2023

Fin de Ensayo

: Viernes, 14 de julio del 2023

ENSAYO

Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method (Método normalizado para la resistencia a la abrasión del concreto o superficies

de mortero mediante el ensayo del rodillo giratorio).

NORMA

: ASTM C944 / C944M - 12

Muestra	Descripción o nombre de la muestra	Fecha Vaciado	Fecha Ensayo	Edad (días)	Tiempo Abrasión (Minutos)	ciclo	Carga (N)	Masa Inicial (g)	Masa Final (g)	Desgaste (g)	Desgaste (%)
M-1	F'C =420 KG/CM2 + 20% RESIDUOS DE SOLDADURA	16/06/2023	14/07/2023	28	2	3	98	1690.8	1683.9	6.96	0.41
M-2		16/06/2023	14/07/2023	28	2	3	98	1659.7	1652.1	7.60	0.46
M-3		16/06/2023	14/07/2023	28	2	3	98	1634.5	1626.4	8.02	0.49
M-4		16/06/2023	14/07/2023	28	2	3	98	1675.5	1667.0	8.45	0.50
M-5		16/06/2023	14/07/2023	28	2	3	98	1646.9	1638.0	8.88	0.54

NOTA 1 : Según norma se deberá ensayar como mínimo tres especimenes.

OBSERVACIONES:

- Muestreo, identificación y ensayos realizados por el solicitante.

.....

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS LEMS W&C EIRL

Anexo 15 Ensayo de absorción del adoquín de concreto control y adoquín de concreto al 0%, 5%, 10%, 15% y 20%

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0506B-23/ LEMS W&C

Solicitante : BRANDON LEE HUAMANI ZULOETA

Proyecto : Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero

incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación : Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura : Lunes, 5 de junio del 2023
Inicio de Ensayo Viemes, 16 de junio del 2023
Viemes, 14 de julio del 2023

Código : 399.604 : 2002

Titulo : UNIDADES DE ALBAÑILERIA. Métodos de muestreo y ensayo de ladrillo usados en

albañileria de concreto.

Ensayo Absorción y Densidad

Muestra N°	Denominación o Descripción de la muestra.	Masa Saturada (g)	Masa Sumergida (g)	Masa Seca al horno (g)	DENSIDAD (Kg/m³)	ABSORCIÓN (%)
01		2334	1398	2275	2431	2.6
02		2263	1353	2215	2434	2.2
03	Adoquín Tipo II Patrón Ra/c = 0.312	2330	1397	2273	2436	2.5
04		2382	1391	2335	2356	2.0
05		2358	1394.5	2305	2392	2.3

NOTA 1 : Según norma se deberá ensayar como mínimo tres especimenes.

OBSERVACIONES:

- Muestreo e identificación y ensayo realizados por el solicitante.

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0506B-23/ LEMS W&C

Solicitante

BRANDON LEE HUAMANI ZULOETA

Proyecto

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero

incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura Inicio de Ensayo

Fin de Ensayo

: Lunes, 5 de junio del 2023 Viemes, 16 de junio del 2023 Viemes, 14 de julio del 2023

Código

: 399.604 : 2002

Titulo

: UNIDADES DE ALBAÑILERIA. Métodos de muestreo y ensayo de ladrillo usados en

albañileria de concreto.

Ensayo

Absorción y Densidad

Muestra N°	Denominación o Descripción de la muestra.	Masa Saturada (g)	Masa Sumergida (g)	Masa Seca al homo (g)	DENSIDAD (Kg/m³)	ABSORCIÓN (%)
01		2.391	1.434	2.327	2432	2.8
02		2.466	1.48	2.389	2423	3.2
03	Adoquín Tipo II Ra/c = 0.312 + 5% RESIDUOS DE	2.418	1.459	2.322	2421	4.1
04	SOLDADURA	2.24	1.341	2.174	2418	3.0
05		2.3155	1.3875	2.2505	2425	2.9

NOTA 1 : Según norma se deberá ensayar como mínimo tres especimenes.

OBSERVACIONES:

- Muestreo e identificación y ensayo realizados por el solicitante.

SON ARTURO OLAYA AGUILAR

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0506B-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero

incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura Inicio de Ensayo

: Lunes, 5 de junio del 2023 Viemes, 16 de junio del 2023 Viemes, 14 de julio del 2023

Fin de Ensayo

: 399.604 : 2002

Código **Titulo**

: UNIDADES DE ALBAÑILERIA. Métodos de muestreo y ensayo de ladrillo usados en

albañileria de concreto.

Ensayo

Absorción y Densidad

Muestra N°	Denominación o Descripción de la muestra.	Masa Saturada (g)	Masa Sumergida (g)	Masa Seca al homo (g)	DENSIDAD (Kg/m³)	ABSORCIÓN (%)
01		2373	1424	2330	2455	1.8
02	Adams for The all	2368	1423	2323	2458	1.9
03	Adoquín Tipo II Ra/c = 0.312 + 10% RESIDUOS DE	2325	1385	2279	2424	2.0
04	SOLDADURA	2424	1446	2380	2434	1.8
05		2398.5	1435	2345	2434	2.3

NOTA 1 : Según norma se deberá ensayar como mínimo tres especimenes.

OBSERVACIONES:

- Muestreo e identificación y ensayo realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSÁYOS DE MATERIALES Y SUELOS

INGENIERO CIV

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0506B-23/ LEMS W&C

Solicitante

BRANDON LEE HUAMANI ZULOETA

Proyecto

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura Inicio de Ensayo

Fin de Ensayo

: Lunes, 5 de junio del 2023 Viemes, 16 de junio del 2023 Viemes, 14 de julio del 2023

Código

: 399.604 : 2002

Titulo

: UNIDADES DE ALBAÑILERIA. Métodos de muestreo y ensayo de ladrillo usados en

albañileria de concreto.

Ensayo

Absorción y Densidad

Muestra N°	Denominación o Descripción de la muestra.	Masa Saturada (g)	Masa Sumergida (g)	Masa Seca al homo (g)	DENSIDAD (Kg/m³)	ABSORCIÓN (%)
01		2519	1501	2460	2417	2.4
02	04-1804	2397	1445	2322	2439	3.2
03	Adoquín Tipo II Ra/c = 0.312 + 15% RESIDUOS DE	2500	1512	2450	2480	2.0
04	SOLDADURA	2399	1447	2350	2468	2.1
05		2459	1474	2390	2426	2.9

NOTA 1 : Según norma se deberá ensayar como mínimo tres especimenes.

OBSERVACIONES:

- Muestreo e identificación y ensayo realizados por el solicitante.

SONARTURO OLAYA AGUILAR

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334

Email: lemswyceirl@gmail.com

Solicitud de Ensayo : 0506B-23/ LEMS W&C

Solicitante

BRANDON LEE HUAMANI ZULOETA

Proyecto

: Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero

incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura

: Lunes, 5 de junio del 2023 Viernes, 16 de junio del 2023

Inicio de Ensayo Fin de Ensayo

Viemes, 14 de julio del 2023

Código

: 399.604:2002

Titulo

: UNIDADES DE ALBAÑILERIA. Métodos de muestreo y ensayo de ladrillo usados en

albañileria de concreto.

Ensayo

Absorción y Densidad

Muestra N°	Denominación o Descripción de la muestra.	Masa Saturada (g)	Masa Sumergida (g)	Masa Seca al horno (g)	DENSIDAD (Kg/m³)	ABSORCIÓN (%)
01		2485	1493	2427	2447	2.4
02	Adoquín Tipo II Ra/c = 0.312 + 20% RESIDUOS DE	2517	1520	2457	2464	3.2
03		2514	1512	2453	2448	2.0
04	SOLDADURA	2333	1408	2273	2457	2.1
05		2409	1450.5	2345	2447	2.9

NOTA 1 : Según norma se deberá ensayar como mínimo tres especimenes.

OBSERVACIONES:

- Muestreo e identificación y ensayo realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

Anexo 16 Variación dimensional del adoquín de concreto control y adoquín de concreto al 0%, 5%, 10%, 15% y 20%

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334 mail: lemswyceirl@gmail.com

Solicitud de Ensayo

0506A-23/ LEMS W&C

BRANDON LEE HUAMANI ZULOETA

DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÂNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO

Fecha de Apertura Inicio de Ensayo Fin de Ensayo

Lunes, 5 de junio del 2023 Martes, 11 de julio del 2023 Miércoles, 13 de julio del 2023

399.611 : 2010

UNIDADES DE ALBAÑILERIA. Adoquines de concreto para pevimentos. Requisitos

		Dim	ensiones Re	ales	Varia	ción Dimens	ional	NTD 200 611	NTP 399,611
Muestra N°	Denominación o Descripción de la muestra.	Longitud Real (mm)	Ancho Real (mm)	Espesor Real (mm)	Variación de Longitud (mm)	Variación de Ancho (mm)	de Espesor	NTP 399.811 Tolerancia Máxima para Long y Ancho	Tolerancia Máxima para
01		201.04	100.79	58.49	1.04	0.79	-1.51		
02		201.09	101.39	58.59	1.09	1.39	-1.41		
03	Adoquín Tipo II	198.69	100.59	58.64	-1.31	0.59	-1.36		
04	Patrón Ra/c = 0.312	198.59	100.99	57.69	-1.41	0.99	-2.31	21.6	± 3.2
05		200.79	101.09	58.57	0.79	1.09	-1.44		
06		200.69	100.59	58.14	0.69	0.59	-1.86		

NOTA 1 : Según norma se deberá ensayar como mínimo seis especimenes.

OBSERVACIONES:

- Muestreo e identificación y ensayo realizados por el solicitante.

W&C EIRL

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

&C EIRL.

Solicitud de Ensayo 0506A-23/ LEMS W&C

BRANDON LEE HUAMANI ZULOETA Solicitante

Proyecto

DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO

Ubicación

Fecha de Apertura Inicio de Ensayo Fin de Ensayo

Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

: Lunes, 5 de junio del 2023 Martes, 11 de julio del 2023 Miércoles, 13 de julio del 2023

Código

Titulo : UNIDADES DE ALBAÑILERIA. Adoquines de concreto para pavimentos. Requisitos

Tolerancia Dimensional

		Din	nensiones Re	ales	Varia	ción Dimens	onal	NTP 399,611	NTP 399,611
Muestra N°	Denominación o Descripción de la muestra.	Longitud Real (mm)	Ancho Real (mm)	Espesor Real (mm)	Variación de Longitud (mm)	Variación de Ancho (mm)	Variación de Espesor (mm)	Tolerancia Máxima para Long y Ancho	Tolerancia Máxima para Espesor
01		200.69	100.79	58.74	0.69	0.79	-1.26		
02		200.94	100.79	58.84	0.94	0.79	-1.16		
03	Adoquin Tipo II Ra/c = 0.312	200.49	100.69	58.89	0.49	0.69	-1.11		±3.2
04	+ 5% RESIDUOS DE SOLDADURA	200.89	100.59	57.94	0.89	0.59	-2.06	± 1.6	13.2
05		199.49	101.19	58.82	-0.51	1.19	-1.19		
06		199.69	100.99	58.39	-0.31	0.99	-1.61		

NOTA 1 : Según norma se deberá ensayar como mínimo seis especimenes.

OBSERVACIONES:

- Muestreo e identificación y ensayo realizados por el solicitante.

WILSON ARTURO DLAYA AGUILAR TEC. ENSAYUS DE MATERIALES Y SUELOS

EIRL.

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

Solicitud de Ensayo

Solicitante

Proyecto

: 0606A-23/ LEMS W&C
 : BRANDON LEE HUAMANI ZULOETA
 : DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO

Ubicación

: Dist. Pimentel, Prov. Chiclayo, Dpto. Lambayeque.

Fecha de Apertura Inicio de Ensayo Fin de Ensayo

: Lunes, 5 de junio del 2023 Martes, 11 de julio del 2023 Miércoles, 13 de julio del 2023

Código

: 399.611 : 2010

Titulo

: UNIDADES DE ALBAÑILERIA. Adoquines de concreto para pavimentos. Requisitos

Tolerancia Dimensional Ensayo

A	THE RESERVED	Dim	ensiones Re	ales	Varia	ción Dimens	onal	NTP 399,611	NTP 399,611
Muestra N°	Denominación o Descripción de la muestra.	Longitud Real (mm)	Ancho Real (mm)	Espesor Real (mm)	Variación de Longitud (mm)	Variación de Ancho (mm)	Variación de Espesor (mm)	Tolerancia Máxima para Long y Ancho	Tolerancia Máxima para Espesor
01		200.99	100.09	59.69	0.99	0.09	-0.31		
02		201.09	100.04	59.79	1.09	0.04	-0.21		
03	Adoquín Tipo II Ra/c = 0.312 + 10%	200.09	99.54	59.84	0.09	-0.46	-0.16	± 1.6	± 3.2
04	RESIDUOS DE SOLDADURA	199.89	99.59	58.89	-0.11	-0.41	-1.11	11.6	13.2
05		200.59	99.79	59.77	0.59	-0.21	-0.23		
06		200.69	99.84	59.34	0.69	-0.16	-0.66		

NOTA 1 : Según norma se deberá ensayar como mínimo seis especimenes.

OBSERVACIONES:

- Muestreo e identificación y ensayo realizados por el solicitante.

. . AGUILAR WILSON ATUS PL MAIERIALES Y SUELOS TEC. ENS

EN

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

Solicitud de Ensayo

0506A-23/ LEMS W&C

Solicitante Proyecto

DESCA-23/ LEMS WAG BRANDON LEE HUAMANI ZULOETA DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO SUSTITUTO PARCIAL DEL AGREGADO

Ubicación Fecha de Apertura Inicio de Ensayo Fin de Ensayo

Dist. Pirmentel, Prov. Chiclayo, Dpto. Lambayeque.
Lunes, 5 de junio del 2023
Martes, 11 de julio del 2023
Miércoles, 13 de julio del 2023

: 399.611 : 2010 Código

: UNIDADES DE ALBAÑILERIA. Adoquines de concreto para pavimentos. Requisitos Titulo

Ensayo

		Dim	nensiones Re	ales	Varia	ción Dimens	onal	NTP 399,611	NTP 399,611
Muestra N°	Denominación o Descripción de la muestra.	Longitud Real (mm)	Ancho Real (mm)	Espesor Real (mm)	Variación de Longitud (mm)	Variación de Ancho (mm)	de Espesor	Tolerancia Máxima para Long y Ancho	Tolerancia Máxima para
01		199.89	100.99	59.44	-0.11	0.99	-0.56		
02		200.89	100.89	59.54	0.89	0.89	-0.46		
03	Adoquín Tipo II Ra/c = 0.312	199.79	101.19	59.59	-0.21	1.19	-0.41	± 1.6	±3.2
04	RESIDUOS DE SOLDADURA	200.79	101.29	58.64	0.79	1.29	-1.36]	
05		200.89	101.09	59.52	0.89	1.09	-0.48		
06		200.69	101.07	59.09	0.69	1.07	-0.91		

NOTA 1 : Según norma se deberá ensayar como mínimo seis especimenes.

OBSERVACIONES:

- Muestreo e identificación y ensayo realizados por el solicitante.

WILSON/ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

LEMS WED EIRL.

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

Solicitud de Ensayo

: 0506A-23/ LEMS W&C

Solicitante

: BRANDON LEE HUAMANI ZULOETA

Proyecto

DESEMPEÑO MECÁNICO DE ADOQUINES DE CONCRETO PARA TRÁNSITO LIGERO INCORPORADO RESIDUOS DE SOLDADURA COMO

SUSTITUTO PARCIAL DEL AGREGADO

Fecha de Apertura Inicio de Ensayo Fin de Ensayo

: Lunes, 5 de junio del 2023 Martes, 11 de julio del 2023 Miércoles, 13 de julio del 2023

Código

Titulo

: 399.611 : 2010 : UNIDADES DE ALBAÑILERIA. Adoquines de concreto para pavimentos. Requisitos

Ensayo

Tolerancia Dimensional

-		Dim	ensiones Re	ales	Varia	ción Dimens	onal	NTP 399,611	NTP 399.611
Muestra N°	Denominación o Descripción de la muestra.	Longitud Real (mm)	Ancho Real (mm)	Espesor Real (mm)	Variación de Longitud (mm)	Variación de Ancho (mm)	Variación de Espesor (mm)	Tolerancia Máxima para Long y Ancho	Tolerancia Máxima para Espesor
01	10 70	200.59	101.19	59.19	0.59	1.19	-0.81		
02	A #	200.89	100.59	59.29	0.89	0.59	-0.71		
03	Adoquín Tipo II Ra/c = 0.312	201.09	101.29	59.34	1.09	1.29	-0.66		±3.2
04	+ 20% RESIDUOS DE SOLDADURA	200.89	101.14	58.39	0.89	1.14	-1.61	± 1.6	13.2
05		200.99	101.05	59.27	0.99	1.05	-0.73		
06		201.09	100.89	58.84	1.09	0.89	-1.16		

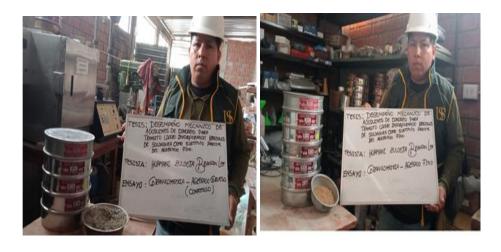
NOTA 1 : Según norma se deberá ensayar como mínimo seis especimenes.

OBSERVACIONES:

- Muestreo e identificación y ensayo realizados por el solicitante.

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

W&C EIRL.


MIGUEL ANGEL RUIZ PERALES

131

PANEL FOTOGRAFICO

• Ensayos de laboratorio

Granulometría del agregado fino y grueso(confitillo)

Peso Unitario del agregado fino y grueso (confitillo)

Peso específico y porcentaje de absorción del agregado fino y grueso (confitillo)

Asentamiento del concreto

Temperatura del concreto

Peso unitario del concreto

Contenido de aire del concreto

Resistencia a la compresión de los adoquines

Resistencia a la flexión de los adoquines

Absorción y densidad de los adoquines

Abrasión de los adoquines

Anexo 17 Autorización para el recojo de información

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334 Email: lemswycein@gmail.com

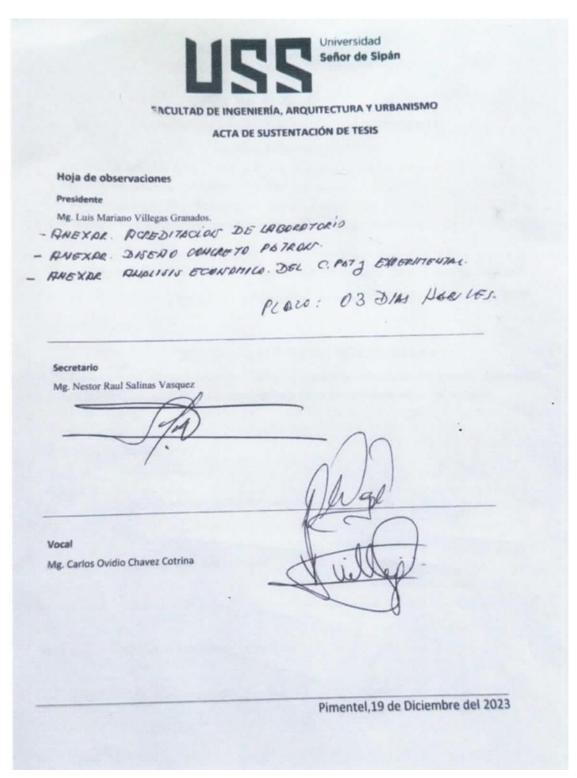
CARTA DE AUTORIZACIÓN PARA EL RECOLECCIÓN DE LA INFORMACIÓN Chiclayo, 19 de julio del 2023

Quien suscribe:

Sr. Wilson Arturo Olaya Aguilar

Representante Legal – LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS

W & C E.I.R.L. - LEMS W & C E.I.R.L.


AUTORIZA: Permiso para recojo de Información pertinente en función del proyecto de investigación, denominado "Desempeño mecánico de adoquines de concreto para tránsito ligero incorporando residuos de soldadura como sustituto parcial del agregado".

THE CHICK TO SHEET SWEET

Por el presente, el que suscribe, Wilson Arturo Olaya Aguilar representante legal de la empresa LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W & C E.I.R.L. - LEMS W & C E.I.R.L. AUTORIZO el estudiante Brandon lee Huamani Zuloeta identificado con DNI Nº 47845835 de la Escuela Profesional de Ingeniería Civil de la UNIVERSIDAD SEÑOR DE SIPÁN y autor del trabajo de investigación denominado "Desempeño mecánico de adoquines de concreto para tránsito ligero incorporando residuos de soldadura como sustituto parcial del agregado" para el uso de laboratorio técnico y formatos de procesamiento de datos y cálculo para obtención de resultados de control de calidad en efectos exclusivamente académicos de la elaboración de tesis, enunciada líneas arriba de quien solicita se garantice la absoluta confidencialidad de la información solicitada.

ARTURO OLAYA AGUILAR

OBSERVACIONES SUBSANADA

2.6 Método de análisis unitario

ANÁLISIS ECONOMICA DEL CONCRETO PATRON Y EXPERIMENTAL

Volumen Absoluto

Agregado Fino = 735.37 Kg

Peso de Cemento= 42.50 Kg

Cemento Bolsa m3= 15.83 Unid

Volumen Del Adoquín= L=20cm, A=10cm, H=6cm; v=1200

M3=1000000 cm

Desperdicio= 15%, 1150000

Total, de adoquines=958.33 Unidades

CONCRETO PATRON

Detalle	Unidad	Cantidad	Precio Unitario S/	Total S/
MATERIALES		CONC	CRETO PATRON)
Cemento	bol	16.59	31.50	522.63
Agregado Grueso	m3	0.49	60.00	29.27
Agregado Fino	m3	0.44	60.00	26.52
Agua	m3	0.22	5.00	1.10
	1	OTAL		S/579.52

PRECIO POR UNIDAD

S/1.65 Soles

% OPTIMO (10% De Análisis Experimental)

Detalle	Unidad	Cantidad	Precio Unitario S/	Total S/
MATERIALES		% OPTIMO (10	% De Análisis Exper	imental)
Cemento	bol	16.59	31.50	522.63
Residuo de soldadura	Kg	65.84	0.3	19.7517
Agregado Grueso	m3	0.49	90.00	43.91
Agregado Fino	m3	0.44	60.00	26.52
Agua	m3	0.22	5.00	1.10
	TC	TAL		S/613.91

PRECIO POR UNIDAD

S/1.56 Soles

En la tabla realizada se puede ver los precios de elaboración de los adoquines incorporando residuos de soldadura como sustituto parcial del agregado para los adoquines 0%(Concreto Patrón) el costo por m3 es de un costo de S/559.52 Soles y por cada unidad es de un S/1.65 soles y para el 10% que fue el (Optimo del Análisis Experimental) tuvo/un costo por

m3 de S/613.91 soles y por cada unidad fue de un S/ 1.56 Soles, por lo tanto se puede decir que la elaboración de adoquines experimental puede salir más baja, pero su precio es razonable porque su carga aumenta su resistencia respeto al concreto patrón y eso quiere decir que da bueno resultado.

Anexo 6 Diseño de mezcla del concreto patrón y diseño experimental al (10% fue el optimo)

Prolongación Bolognesi Km 3.5 Chiclayo - Lambayeque R.U.C. 20480781334 Email: lemswyceirl@gmail.com

Solicitud de Ensayo

Solicitante

Proyecto

0506B-23/ LEMS W&C

BRANDON LEE HUAMANI ZULOETA

Tesis: Desempeño mecánico de adoquines de concreto para tránsito ligero incorporado residuos de soldadura como sustituto parcial del agregado

Ubicación

Fecha de Apertura Fecha de Vaceado Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Lunes, 5 de junio del 2023

Viemes, 16 de junio del 2023

DISEÑO DE MEZCLAS SEGÚN ACI 211

1) DATOS PARA EL DISEÑO:

Grueso:

Tres tomas

Fino:

Patapo

- a) Tamaño máximo nominal
- b) Peso Unitario suelto seco
- c) Peso Unitario compactado seco
- d) Peso especifico de masa seco
- e) Contenido de humedad
- f) Contenido de absorción
- g) Módulo de fineza (adimensional)

Cemento:

Тіро=

Tipo I 3120 kg/m3 DISEÑO DE MEZCLAS PATRÓN PARA UN CONCRETO DE

Ag. Grueso	Ag. Fino	
N° 04		pulg
1390.80	1507.33	kg/m ³
1528.61	1593.79	kg/m ³
2751.45	2398.57	kg/m ³
0.36	0.67	%
1.98	1.37	%
	2.909]

2) RESISTENCIA DE DISEÑO REQUERIDA (For)

En nuestro caso, como no contamos con ningun tipo de registro en obra, para poder hallar la desviación estándar, para hallar un valor promedio de resistencia, más aún no se cuenta con un registro o control de calidad en obra; pasaríamos a verificar el caso b), de la siguiente manera:

fc=	420 kg/cm2
f(cr)=	518 kg/cm2

Fc	f'er
< 210	fc+70
210-350	fc+84
>350	ľc+98

3) CONTENIDO DE AIRE

T.M.N= %Aire= 3 %

4) CONTENIDO DE AGUA

CLU,

T.M.N= N° 04 Slump: 220 Vm3 Agua=

W&C EIRL

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERNALES Y BUELOS

LEM8

5) RELACIÓN a/c

f(cr)=	518 kg/cm2
a/c=	0.312

6) CONTENIDO DE CEMENTO

Agua=	220 l/m3
a/c=	0.312
C=	705.13 kg

7) FACTOR CEMENTO

1 bls=	42.5 kg/bls
C=	705.13 kg
F.C=	16.59 bls/m3

8) PESO AGREGADO GRUESO

T.M.N=	N° 04
b/br=	0.4491
P.U.S.C=	1528.61 kg/m3
Peso A.G=	686.498751 kg

9) VOLUMEN ABSOLUTO

220 Vm3	>	0.22 m3
3 %	>	0.03
658.39 kg	>	0.27449302 m3
686.50 kg	>	0.249504353 m3
705.13 kg	>	0.22600263 m3
	686.50 kg 658.39 kg 3 %	686.50 kg> 658.39 kg>

10) CORRECCIÓN POR HUMEDAD

Humedad (%)		
Agreg.	Grueso	Fino
Patapo	0.36 %	
Tres tomas	-	0.67 %

Agregado Fino: Agregado Grueso: Tres tomas Patapo

Ag. Grueso= Ag. Fino= 686.50 kg 658.39 kg ----> 688.97 kg ----> 662.80 kg

11) APORTE DE AGUA A LA MEZCLA

	Absorción (%)	
Agreg.	Grueso	Fino
Patapo	1.98 %	-
Tres tomas		1.37 %

Agregado Fino: Agregado Grueso: Tres tomas Patapo

Ag. Grueso= Ag. Fino= 686.50 kg 658.39 kg __>

-11.12 lts -4.61 lts -15.73 lts

WILSON ARTURO OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

LEMS W&C EIRL

LEMB WAC EIRL

12) AGUA EFECTIVA

Agus* 220 its Aporte* -15 73 its A E* 235.7300148 its

13) PROPORCIONES DEL DISEÑO

Cemento	A. Grusso	A Fino	Agus
705 13 kg	688 97 kg	662 80 kg	235.730015 Hs

PESO:

Cemento	A. Grueso	A Fino	Agua
1	0.98	0 94	14 2080909 its

VOLUMEN:

Cemento	A. Grueso	A Fino	Agua
1	1.04	0.93	14 2080909 hs

14) PESOS PARA UNA TANDA

Elemento	Cantidad	Volumen	Total	
Probeta	3	0.0016m3	0.00471	(D10x H20 cm)
Adoquines	45	0 0012m3	0.054	(20x10x6 cm)

Adoquines:

Cemento	38.077 kg
A. Grueso	37 204 kg
A Fino	35.791 kg
Agus	12.729 its

14) PESOS PARA UNA TANDA (DESPERDICIO 15%)

Adoquines:

Cemento	43 788 kg	
A. Grueso	42.785 kg	
A Fino	41.160 kg	
Agua	14.639 kg	

LEMS WELL EIRL

WE SON ARTURO CLAYA AGUILAR TEC ENEATOR DE MITERIALES Y SURLOS

DISEÑO DEL CONCRETO EXPERIMENTAL (10% OPTIMO DE RR.SS)

12) AGUA EFECTIVA

220 lts -15.73 lts Aporte= -15.73 lts A.E= 235.7300148 lts

13) PROPORCIONES DEL DISEÑO

A. Grueso	A Fino	Agua
688.97 kg	662 80 kg	235.730015 Its
A. Grueso	A Fino	Agua
0.98	0.94	14 2080909 Hs
	688.97 kg	688 97 kg 662 80 kg A. Grueso A Fino

14) PESOS PARA UNA TANDA

Elemento	Cantidad	Volumen	Total	
Probeta	3	0.0016m3	0.00471	(D10x H20 cm)
Adoquines	45	0.0012m3	0.054	(20x10x6 cm)

Adoquines:

Cemento	38.077 kg
A. Grueso	37.204 kg
A Fino	35.791 kg
Agua	12.729 lts

14) PESOS PARA UNA TANDA (DESPERDICIO 15%)

WILSON ARTURO OLAYA AGUILAR TEC ENSATOS DE MATERIALES Y SUELOS

Adoquines:

Cemento	43.788 kg	
A. Grueso	42.785 kg	
A Fino	41.160 kg	
Agua	14.639 kg	

15) PESOS DE MATERIAL RECICLADO POR TANDA (DESPERDICIO 15%)

MATERIAL PORCENTAJE RR.SOLDADURAAGREGADO FINO 4.120 kg 37.040 kg % OPTIMO DEL DISEÑO EXPERIMENTAL

DOSIFICACIÓN EN VOLUMEN

1. MATERIALES

Agregado Fino

Agregado Crueso

P.U.33 Humedad 1107 53 0.67

P.U 0.6 Humeded 1390 80 0.36

2. MATERIALES POR TANDA

Cemento Agua efectiva Agregado fino húmedo Agregado grueso húmedo

42 50 kg/bls 14 20809 Hs/bls 39 95 kg/bls 41 53 kg/bls

3. PESOS UNITARIOS HÚMEDOS:

1 m1=35 ft

A Fino A Grueso

1508 337 1391 504

A Fine

43.10 kg/ft3 39.77 kg/ft3

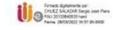
4. DOSIFICACIÓN EN VOLUMEN

Cemento .

Ag. fino húmedo 0.93 Ag. gruese húmedo 1,04

Agua efectiva

14.208


t/bis

MIGUEL ANGEL RUIZ PERALES

EME WEC FIEL WILSON ARTURO OLAYA ACUILAR

146

Registro de la Propiedad Industrial

Dirección de Signos Distintivos

CERTIFICADO Nº 00137704

La Dirección de Signos Distintivos del Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual – INDECOPI, certifica que por mandato de la Resolución Nº 008139-2022/DSD - INDECOPI de fecha 25 de marzo de 2022, ha quedado inscrito en el Registro de Marcas de Servicio, el siguiente signo:

La denominación LEMS W&C y logotipo, conforme al modelo Signo

Servicios de estudio de mecánica de suelos, estudio de evaluación de estructuras, ensayos y control de calidad del concreto, mezclas asfáltica, emulsiones asfálticas, suelos y materiales. Distingue

42 de la Clasificación Internacional. Clase

0935718-2022 Solicitud

LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W & C Titular

E.I.R.L. - LEMS W & C E.I.R.L.

País Perú

Vigencia 25 de marzo de 2032

o electrónico archivado por Indecopi, aplicando lo dispuesto por el Art. 25 de ntaria. Final. del D.S. 026-2016-PCM. Su autenticidad e integridad pueden

s://enlinea.indecopi.gob.pe/vertificador

Id Documento:wtenwa22bp

INSTITUTO NACIONAL DE DEFENSA DE LA COMPETENCIA Y DE LA PROTECCIÓN DE LA PROPIEDAD INTELECTUAL