

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL TESIS

Análisis de las propiedades mecánicas del concreto adicionando ceniza de cascarilla de café y reforzado con fibra de polipropileno

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autores:

Bach. Rivera Segura, Miguel Eduardo https://orcid.org/0000-0003-0004-4233 Bach. Alejandria Bustamante, Yelsen Anderson https://orcid.org/0000-0002-6504-5096

Asesor:

Dr. Muñoz Pérez, Sócrates Pedro https://orcid.org/0000-0003-3182-8735

Línea de Investigación

Tecnología e Innovación en el Desarrollo de la Construcción y la Industria en un Contexto de Sostenibilidad

Sublínea de Investigación

Innovación y Tecnificación en Ciencia de los Materiales, Diseño e Infraestructura

> Pimentel – Perú 2023

Quienes suscriben la DECLARACIÓN JURADA, somos **egresado (s)** del Programa de Estudios de la escuela de Ingeniería Civil de la Universidad Señor de Sipán S.A.C, declaramos bajo juramento que somos autores del trabajo titulado:

ANÁLISIS DE LAS PROPIEDADES MECÁNICAS DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ Y REFORZADO CON FIBRA DE POLIPROPILENO

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firman:

Alejandria Bustamante Yelsen Anderson	DNI: 76827889	Algorian de la companya della compan
Rivera Segura Miguel Eduardo	DNI: 72455727	Miguel 19.

Pimentel, 10 de junio del 2023.

REPORTE DE SIMILITUD TURNITIN

Reporte de Similitud

NOMBRE DEL TRABAJO

Análisis de las propiedades mecánicas del concreto adicionando ceniza de cascarilla de café y reforzado con fibra de polipropileno

AUTOR

Rivera Segura Miguel Eduardo Alejandria Bustamante Yelsen Anderson

RECUENTO DE PALABRAS RECUENTO DE CARACTERES

9912 Words 47992 Caracteres

RECUENTO DE PÁGINAS TAMAÑO DEL ARCHIVO

60 Pages 2.74MB

FECHA DE ENTREGA FECHA DEL INFORME

Nov 7, 2023 12:43 PM GMT-5 Nov 7, 2023 12:43 PM GMT-5

14% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base

- 14% Base de datos de internet
- 1% Base de datos publicados
- · 6% Base de datos de trabajos entregados

Resumen

ANÁLISIS DE LAS PROPIEDADES MECÁNICAS DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ Y REFORZADO CON FIBRA DE POLIPROPILENO

Aprobación del jurado			
MAG	G. VILLEGAS GRANADOS LUIS MARIAN		
	Presidente del Jurado de Tesis		
	Presidente del Jurado de Tesis		

MAG. CHÁVEZ COTRINA CARLOS OVIDIO

MAG. SALINAS VASQUEZ NESTOR PAUL

Secretario del Jurado de Tesis

Vocal del Jurado de Tesis

Dedicatoria

Dedicamos este trabajo a nuestros padres y hermanos que fueron cómplice del proceso de realización de esta investigación, y también por brindarnos el apoyo necesario para seguir creciendo de manera profesional.

Rivera Segura Miguel Eduardo

Alejandria Bustamante Yelsen Anderson

Agradecimientos

Agradecer a Dios, a nuestros padres y hermanos por habernos ayudado a superarnos y a no rendirnos tan fácilmente a lo largo de nuestra carrera profesional.

A nuestros amigos y compañeros por el apoyo incondicional.

A los docentes por cada momento de aprendizaje.

A la universidad Señor de Sipán por ser parte de nuestra formación profesional.

Rivera Segura Miguel Eduardo

Alejandria Bustamante Yelsen Anderson

Índice

Ded	dicatoria	3	V
Agr	adecim	ientos	vi
Índi	ice de t	ablas	viii
Índi	ice de fi	guras	ix
Res	sumen .		xi
Abs			
l.	INTRO	DDUCCIÓN	
	1.1.	Realidad problemática	13
	1.2.	Formulación del problema	20
	1.3.	Hipótesis	20
	1.4.	Objetivos	20
	1.5.	Teorías relacionadas al tema	20
II.	MATE	RIALES Y MÉTODO	26
	2.1.	Tipo y Diseño de Investigación	26
	2.2.	Variables, Operacionalización	26
	2.3.	Población de estudio, muestra, muestreo y criterios de selección	29
	2.4.	Técnicas e instrumentos de recolección de datos, validez y confiabilidad	32
	2.5.	Procedimiento de análisis de datos	32
	2.6.	Criterios éticos	45
III.	RESU	LTADOS Y DISCUSIÓN	47
	3.1.	Resultados	47
	3.2.	Discusión	71
IV.	CONC	LUSIONES Y RECOMENDACIONES	73
	4.1.	Conclusiones	73
	4.2.	Recomendaciones	74
RE	FEREN	CIAS	75
Λ N.I	EVOS		02

Índice de tablas

Tabla I Caracterización de áridos	.21
Tabla II Composición química de la CCC	.25
Tabla III Características de la fibra de polipropileno	.25
Tabla IV Operacionalización de la variable independiente	.27
Tabla V Operacionalización de la variable dependiente	.28
Tabla VI Muestra de especímenes cúbicos de 50 mm	.29
Tabla VII Muestra de probetas de concreto patrón y concreto con adiciones de CCC y para f'c=210kg/cm ²	
Tabla VIII Muestra de probetas de concreto patrón y concreto con adiciones de CCC y para f'c=280kg/cm ²	
Tabla IX Granulometría del agregado fino – Corporación Guevara Pátapo	.47
Tabla X Granulometría del agregado fino – Chancadora Sicán Ferreñafe	.48
Tabla XI Granulometría del agregado fino – Corporación Asfalpaca Tres Tomas	.48
Tabla XII Peso unitario suelto y compactado del agregado fino de cada cantera	.49
Tabla XIII Peso específico y absorción del agregado fino de cada cantera	.50
Tabla XIV Contenido de humedad del agregado fino de cada cantera	.50
Tabla XV Peso unitario suelto y compactado del agregado fino de cada cantera	.52
Tabla XVI Peso específico y absorción del agregado fino de cada cantera	.52
Tabla XVII Contenido de humedad del agregado fino de cada cantera	.53
Tabla XVIII Ensayo de abrasión (máquina de los ángeles)	.53
Tabla XIX Análisis de costos para concreto patrón de f'c=210 kg/cm²	.95
Tabla XX Análisis de costos para concreto patrón de f'c=280 kg/cm²	.95
Tabla XXI Análisis de costos para concreto de f'c=210 kg/cm² adicionando 10%CCC 1%FP	-
Tabla XXII Análisis de costos para concreto de f'c=280 kg/cm² adicionando 10%CCC	С у 95

Índice de figuras

Fig. 1. Diagrama de flujo general de la recolección de datos.	33
Fig. 2. Ubicación geográfica en Google Earth de la cantera Corporación Guevara - P	átapo.
	34
Fig. 3. Muestra de agregado grueso – cantera Corporación Guevara en Pátapo	34
Fig. 4. Muestra de agregado fino – cantera Corporación Guevara en Pátapo	34
Fig. 5. Ubicación geográfica en Google Earth de la cantera Chancadora Sicán - Ferr	eñafe.
	35
Fig. 6. Muestra de agregado grueso – cantera Chancadora Sicán – Ferreñafe	35
Fig. 7. Muestra de agregado fino – cantera Chancadora Sicán – Ferreñafe	36
Fig. 8. Ubicación geográfica en Google Earth de la cantera Corporación Asfalpaca	Tres
Tomas.	36
Fig. 9. Muestra de agregado grueso – cantera Corporación Asfalpaca – Tres Tomas	36
Fig. 10. Muestra de agregado fino – cantera Corporación Asfalpaca – Tres Tomas	37
Fig. 11. Quemado de la cascarilla de café.	37
Fig. 12. Fibra de polipropileno añadida a la mezcla.	38
Fig. 13. Curva granulométrica del agregado fino – Corporación Guevara Pátapo	47
Fig. 14. Curva granulométrica del agregado fino – Chancadora Sicán Ferreñafe	48
Fig. 15. Curva granulométrica del agregado fino – Corporación Asfalpaca Tres Tomas	49
Fig. 16. Curva granulométrica del agregado grueso – Corporación Guevara Pátapo	51
Fig. 17. Curva granulométrica del agregado grueso – Chancadora Sicán Ferreñafe	51
Fig. 18. Curva granulométrica del agregado grueso – Corporación Asfalpaca Tres Ton	าลร 52
Fig. 19. Ensayo de resistencia a la compresión del concreto patrón C21	54
Fig. 20. Ensayo de resistencia a la compresión de concreto patrón C21 con 5%CCC+	FP55
Fig. 21. Ensayo de resistencia a la compresión de concreto patrón C21 con 10%CC	C+FP.
	56
Fig. 22. Ensayo de resistencia a la compresión de concreto patrón C21 con 15%CC	C+FP.
	56
Fig. 23. Ensayo de resistencia a la tracción de concreto patrón C21	57
Fig. 24. Ensayo de resistencia a la tracción de concreto patrón C21 con 5%CCC+FP.	57
Fig. 25. Ensayo de resistencia a la tracción de concreto patrón C21 con 10%CCC+FP	58
Fig. 26. Ensayo de resistencia a la tracción de concreto patrón C21 con 15%CCC+FP	59
Fig. 27. Ensayo de resistencia a la flexión de concreto patrón C21	60

Fig. 2	8. Ensayo de resistencia a la flexión de concreto patrón C21 con 5%CCC+FP6	0
Fig. 2	9. Ensayo de resistencia a la flexión de concreto patrón C21 con 10%CCC+FP6	1
Fig. 3	0. Ensayo de resistencia a la flexión de concreto patrón C21 con 15%CCC+FP6	2
Fig. 3	1. Ensayo de resistencia a la compresión de concreto patrón C286.	2
Fig. 3	2. Ensayo de resistencia a la compresión de concreto patrón C28 con 5%CCC+FP6	3
Fig. 3	3. Ensayo de resistencia a la compresión de concreto patrón C28 con 10%CCC+FF) .
	6	4
Fig. 3	4. Ensayo de resistencia a la compresión de concreto patrón C28 con 15%CCC+FF) .
	6	5
Fig. 3	5. Ensayo de resistencia a la tracción de concreto patrón C286	6
Fig. 3	6. Ensayo de resistencia a la tracción de concreto patrón C28 con 5%CCC+FP6	6
Fig. 3	7. Ensayo de resistencia a la tracción de concreto patrón C28 con 10%CCC+FP6	7
Fig. 3	8. Ensayo de resistencia a la tracción de concreto patrón C28 con 15%CCC+FP6	8
Fig. 3	9. Ensayo de resistencia a la flexión de concreto patrón C286	9
Fig. 4	0. Ensayo de resistencia a la flexión de concreto patrón C28 con 5%CCC+FP6	9
Fig. 4	1. Ensayo de resistencia a la flexión de concreto patrón C28 con 10%CCC+FP7	0
Fig. 4	2. Ensayo de resistencia a la flexión de concreto patrón C28 con 15%CCC+FP7	1
Fig. 4	3. Ensayo de peso unitario suelto y compactado del agregado9	7
Fig.	4. Ensayo de peso específico, absorción y contenido de humedad de los agregados	; .
	9	8
Fig. 4	5. Preparación de la mezcla de concreto y Slump9	9
Fig. 4	6. Elaboración de las muestras de concreto10	0
Fig. 4	7. Ensayos mecánicos de las muestras de concreto10	1

ANÁLISIS DE LAS PROPIEDADES MECÁNICAS DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ Y REFORZADO CON FIBRA DE POLIPROPILENO

Resumen

El estudio tuvo como finalidad observar el comportamiento mecánico del concreto combinado con ceniza de cascarilla de café (CCC) y fibra de polipropileno (FP), está orientada a mejorar los estándares sometiendo a las muestras a ensayos para analizar sus propiedades; por lo tanto, esta es de tipo aplicada y tecnológica a nivel experimental. Se determinó las propiedades de los agregados para realizar diseños de mezcla de concreto patrón fc=210 kg/cm² y fc=280 kg/cm², y también diseños de mezcla de concreto patrón adicionando CCC al 5%, 10% y 15%; y FP al 1%, 2.5% y 5% en peso de cemento con el objetivo de determinar las propiedades mecánicas. Los resultados mostraron que para concretos de fc=210 kg/cm² la resistencia a la compresión es óptima con 5%CCC+1%FP; así mismo, para la resistencia a la tracción y flexión es óptima con 10%CCC+1%FP. De igual manera para concretos de fc=280 kg/cm² la resistencia a la compresión, tracción y flexión es óptima con 10%CCC+2.5%FP. Se concluye que la combinación de 10%CCC+1%FP es óptima para concretos de fc=280 kg/cm².

Palabras Clave: Concreto, propiedades mecánicas, ceniza de cascarilla de café, fibra de polipropileno

Abstract

The study was aimed at observing the mechanical behavior of concrete combined

with coffee husk ash (CHA) and polypropylene fiber (PF), it's oriented to improve the

standards by subjecting the samples to test to analyze their properties; therefore, this is an

applied and technological study at an experimental level. The properties of the aggregates

were determined to make mix designs of standard concrete f'c=210 kg/cm² and f'c=280

kg/cm², and also mix designs of standard concrete adding CHA at 5%, 10% and 15%; and

PF at 1%, 2.5% and 5% by weight of cement with the objective of determining the

mechanical properties. The results showed that for concrete with f'c=210 kg/cm² the

compressive strength is optimum with 5%CHC+1%PF; also, for tensile and flexural strength

it is optimum with 10%CHA+1%PF. In the same way, for concrete of f'c=280 kg/cm² the

compressive, tensile and flexural strength is optimal with 10%CHA+2.5%PF. It is concluded

that the combination of 10%CHA+1%PF is optimum for concretes of f'c=210 kg/cm² and the

combination of 10%CHA+2.5%PF is optimum for concretes of f'c=280 kg/cm².

Keywords: Concrete, mechanical properties, coffee husk ash, polypropylene fiber

χij

I. INTRODUCCIÓN

1.1. Realidad problemática.

El transcurso evolutivo del individuo nos hace partícipes de los avances y cambios que se aplican para optimizar dicha calidad en los humanos, por ello se viene desarrollando nuevas técnicas que permitan la reutilización de productos o restos para la producción del concreto. Un ejemplo claro son las cenizas generadas por la combustión de cascarilla de café, mediante su uso podemos reducir la cantidad de material desechado y minimizar los daños colaterales al medio ambiente [1]. Por este motivo, el sector de la construcción está considerando la incorporación de materiales cementantes suplementarios (MCS) como las cenizas volantes o puzolanas naturales [2], ya que estas contribuyen en las características del concreto adquiriendo mejoras y buenos reactivos en resistencia. Actualmente en los Países Bajos estos desechos acaban en vertederos o son quemados para generar energía [3], de igual forma en la India se presenta esta problemática donde muchos de estos residuos terminan en rellenos sanitarios y no son aprovechados de manera correcta [4].

La demanda del concreto aumentó considerablemente en cuanto a la industria de la construcción refiere debido al proceso que se da en cuento al crecimiento de la población [5], esto es reforzado por [6] quien señala que el concreto ocupa el segundo lugar de los materiales más usados, siendo el primer lugar el agua. Sin embargo, se han realizado prácticas empíricas en la elaboración de concreto que perjudican la calidad del mismo creando un peligro en la construcción y en la sociedad [7]. [8] señala que el 40% del agrietamiento en las estructuras se forma antes que el concreto entre en estado sólido, es por ello que existe la necesidad de realizar investigaciones experimentales con el fin de prevenir la formación de grietas y el deterioro de las estructuras.

Uno de los materiales más usados para evitar el agrietamiento son las fibras de polipropileno [9]. En China es muy común la práctica de adicionar FP en la mezcla de concreto, ya que estas brindan una mejor resistencia y durabilidad al concreto [10]. El uso del concreto en el Perú es muy importante ya que la población ha crecido

considerablemente y a causa de esto las familias se ven obligados a edificar su vivienda sin un asesoramiento profesional provocando que su vivienda sea débil y presente grietas [11]. Así mismo, la utilización de distintas adiciones en el concreto, permiten que se obtenga un concreto de mejor calidad [12].

El uso de FP puede mejorar la calidad del concreto aumentando la permeabilidad, favoreciendo que el agua no incida en la estructura disminuyendo la posibilidad que se produzcan grietas [13]. Es así que el uso del concreto con adición de fibras ha ganado popularidad por su alta durabilidad estructural [14]. Esto ha permitido que se realicen diversos estudios adicionando nuevos elementos al concreto, de manera que puedan optimizar sus propiedades haciendo que su uso sea mucho más beneficioso [15].

Por otro lado, en provincias como Jaén- San Ignacio, cultivan 8.5 x 10⁸ hectáreas de cafetales, con una producción aproximada de 1'275,000 quintales, lo que las convierte en uno de los productores más relevantes del Perú. Además, las cosechas de café han aumentado en un 98% [16]. Es por ello que, podemos utilizar estos residuos generados y aprovecharlos como agregados en el concreto, lo cual puede resultar beneficioso para aumentar u optimizar las propiedades mecánicas del concreto [17].

Actualmente existen muchas investigaciones que utilizan diversos materiales que se adicionan al concreto, convirtiéndolas en opciones que propician que el material de concreto resulte con menor impacto ecológico y con mejores características [18]. Tal como es el caso de la ceniza, ya que las adiciones de ceniza permiten mejorar la trabajabilidad del concreto [19], y también las adiciones de FP que mejoran la resistencia del concreto [20].

Mohamed y Djamila [21] en su estudio "Properties of Dune Sand Concrete Containing Coffee Waste", fue desarrollada con el fin de estudiar la posibilidad de utilizar los residuos del café en árido fino para sustituir a la arena en la fabricación de concreto. Se utilizó diferentes porcentajes (0%, 5%, 10%, 15%, 20%) de residuos de café para examinar los atributos mecánicos, físicos (trabajabilidad, densidad y porosidad) y térmicos (conductividad térmica y difusividad térmica) del concreto. Como resultado, el uso de los

residuos de café disminuye la trabajabilidad, densidad aparente y resistencia mecánica. Por último, se concluyó que el incremento en proporción residual cafeino reduce la solidez de flexión y concentración, 68% y 44% respectivamente.

Demissew et al. [22] en su investigación denominada "Partial Replacement of Cement by Coffee Husk Ash for C-25 Concrete Production", se planteó la finalidad de investigar la CCC como una alternativa y reemplazar al cemento ordinario parcialmente en la producción de concreto convencional. Se prepararon seis mezclas con diferentes porcentajes de reemplazo (0%, 2%, 3%, 5%, 10% y 15%) del cemento por CCC para un diseño convencional de 25MP. Se visualizan muestras hasta con 10% de reemplazo, obtienen una mejor resistencia. Concluyendo que, el reemplazo de cemento ordinario por CCC hasta el 10%, en las edades de 7, 14 y 28 días, muestran una resistencia avanzada de las muestras al ser sometidas a compresión.

Gedefaw et al. [23] en su estudio denominado "Experimental Investigation on the Effects of Coffee Husk Ash as Partial Replacement of Cement on Concrete Properties", dicha finalidad fue estudiar la posibilidad de sustitución simple con CCC, producción de hormigón en diferentes porcentajes (0%, 5%, 10% y 20%). La resistencia dada en función de la tracción disminuyó con el incremento de los niveles de ceniza ya que, al aumentar el contenido de CCC el tiempo de fraguado de la mezcla aumenta. Los resultados se midieron en el rango de 35.1-22.7 MPa en la muestra del día 28 con 5% y 20% de CCC. Mientras que la absorción de agua del concreto aumenta al agregar CCC, pero disminuye a medida que aumentan los días de curado debido a la naturaleza porosa de la CCC. Se concluyó que, el diseño de resistencia al ser sometidos a compresión se cumple hasta un nivel de reemplazo del 10% sin comprometer el comportamiento del concreto.

Tarekegn et al. [24] en su artículo denominado "Experimental Investigation of Concrete Characteristics Strength with Partial Replacement of Cement by Hybrid Coffee Husk and Sugarcane Bagasse Ash", tenía por meta realizar una evaluación experimental de las cualidades, fabricado parcialmente en CCC y bagazo de caña de azúcar (BCA). Este

estudio consideró diferentes fracciones CCC (0%, 5%, 10% y 15%) para examinar la muestra en su forma fresca y endurecido. Se optaron verificaciones de coeficiente compactación para estudiar la viabilidad del hormigón disminuyó hasta 15,15 % conforme aumentaba la tasa de reemplazo. Además, se realizaron indagaciones de tracción, concentración y desinencia para investigar propiedades, donde se concluye que se puede utilizar hasta un 10% de reemplazo de cemento por CCC en la producción de concreto, lo que a su vez sirve para minimizar los costos de construcción y la contaminación ambiental a través del reciclaje de residuos.

Hareu et al. [5] en su investigación denominada "Physical and Chemical Characterization of Coffee Husk Ash Effect on Partial Replacement of Cement in Concrete Production", se desarrolló en propósito de caracterizar las titularidades CCC, evaluó dichas características del material, pruebas de durabilidad con diferentes porcentajes de sustitución (5%, 10% y 20%). Los resultados evidenciaron un aumento notable en las características del concreto con un reemplazo de CCC de hasta un 5% y también muy satisfecho hasta el reemplazo de 10%, además, el aumento en el reemplazo de CCC de hasta al 20% es la dosificación ideal para la producción normal de mezcla. Finalmente, se muestra que el concreto parcialmente reemplazado, mejora la durabilidad al reducir la absorción de líquido y sulfato.

Dávila y Vigo [25] en su tesis de investigación titulada "Utilización de fibras de polipropileno recicladas de mascarillas faciales para evaluar las propiedades mecánicas del concreto 210 kg/cm², Trujillo 2021", estuvo orientada a establecer el grado de incidencia de FP en relación con el volumen de concreto. Se utilizó una técnica aplicada, de diseño cuasiexperimental con enfoque cuantitativo, en los resultados se demostró que el diseño ideal para el concreto es aquel que contiene un 0,22% de fibra añadida. Este diseño aumenta las cualidades del hormigón hasta un nivel óptimo al tiempo que acrecienta la flexión. De esta manera, concluyó la FP reciclada los morteros tienen un impacto con su rendimiento para un diseño de f'c=210 kg/cm² cuando se aplican raciones necesarias para

conseguir cambios positivos y duraderos.

Jalixto y Percca [26] en su artículo de investigación titulada "Influencia de las fibras de polipropileno en las propiedades plásticas y mecánicas del concreto F'c=210, 280 Kg/cm²- Cusco 2021", la finalidad general fue conocer cómo influye la FP en el rendimiento mecánico y las características plásticas f'c=210 - 280 kg/cm² en dosificaciones 0.10%, 0.20% y 0.30%. Posee una metodología aplicada nivel experimental. Dichas conclusiones con dimensionamiento de 210 kg/cm² revelaron que el asentamiento tiende a disminuir en un 35.1%, en el ensayo de compresión se logró un valor máximo de 13.53% con 0.30% de FP y en el ensayo de tracción un se obtuvo un valor máximo de 5,06% con 0,30% de FP. Con el dimensionamiento del concreto verificó que tiende a disminuir en un 38.9%, se logró un valor máximo de 5.73% con 0.30% de FP se obtuvo un valor máximo de 6,89% con 0,30% de FP. En conclusión, se demostró que las FP influyen negativamente y se recomienda utilizar aditivos suaves que mejoren el fraguado y la consistencia del hormigón, y la adición de FP impacta positivamente.

Ávila [27] en su tesis de indagación titulada "Influencia de la adición de fibras de polipropileno en el diseño de una viga de concreto armado", desarrollada en Lima, definió como objetivo evaluar el rendimiento de viga armada con aplicación FP principalmente en esfuerzos de comprensión y tracción mediante el método ACI 318 para f´c=210 kg/cm². Tiene enfoque cuantitativo. Se evidenció un incremento en tracción y flexión de 16.75% y 16.74% respectivamente. En conclusión, se determinó que las FP si incrementan sus cualidades.

Rosas [28] en su tesis de investigación titulada "Comparación de la resistencia en kg/cm² del concreto común y el concreto con ceniza de cáscara de café como sustituto porcentual del agregado fino", se planteó sustituir peso de cemento el agregado fino por CCC al 5%, 8% y 10% para analizar. Es experimentativo y resultó con diferencias de 16.19%, 25.58% y 27.59% respectivamente de acuerdo al diseño patrón. Concluyó que, al aumentar más porcentaje de CCC, obtendremos menores porcentajes de resistencia a

compresión.

Weninger [29] en su artículo de investigación titulado "Influencia de la adición de ceniza de cascarilla de café en las propiedades físicas y mecánicas del concreto, Piura", estableció como objetivo una influencia de aumentar CCC en distintos porcentajes (5%, 10%y 15%). Para la investigación emplearon una metodología con un diseño experimental. Como resultados, en la resistencia al ser comprimidos se obtuvo un aumento de 1.11% para CCC al 5% y un diseño de 210 kg/cm²; y un 6.69% de aumento para 10% de CCC y un diseño de 175 kg/cm². Donde se concluyó que las adiciones de ceniza si varían las características físicas y aumenta el rendimiento mecánico del concreto a compresión.

Olórtegui y Vidarte [30] en su investigación titulada "Evaluación de la resistencia a compresión del concreto f'c=175 kg/cm², incorporando fibras de polipropileno del tipo multifilamento, Moyobamba, 2020", su finalidad fue reemplazar parcialmente el porcentaje. El estudio experimental está conformado por una población y muestra de 36 testigos cilíndricos de 6" x 12", se incorporó FP en los siguientes porcentajes: 1.5%, 2.5% y 3% para realizar los ensayos con especímenes. Como resultado obtuvo la evidencia un aumento de 10.87%, 21.9% y 23.34% al incorporar 1.5%, 2.5% y 3% respectivamente. Concluyó cuando se incorpora un 3% de FP en sustitución del agregado fino (arena), obteniendo un aumento del 23.34% a los 28 días de edad.

Mendizabal [31] en su tesis de estudio llamada "Fibra de polipropileno y las variaciones de las propiedades mecánicas del concreto f'c = 210 kg/cm²", establecieron como objeto afirmar de qué modo la FP. Se ejecutó mediante un método a nivel experimental al elaborar 18 probetas (6 testigos por diseño) para ensayar la resistencia a la compresión y 27 probetas (9 testigos por diseño) para evaluar el ensayo de resistencia a la flexión con dosificaciones de 300 g/m³, y 600 g/m³ las cuales fueron analizadas a los 7, 14 y 28 días respectivamente. Como resultados, en resistencia a la compresión se fijó un incremento del 2.66% y 7.32% con dosificaciones de 300 g/m³ y 600 g/m³ respectivamente, así mismo en resistencia a la flexión obtuvo un aumento de 9.90% y 20.62% con la

dosificación de 300 g/m³ y 600 g/m³ correspondientemente, estos resultados se obtuvieron a los 28 días. Se concluyó que la mezcla de concreto presenta resultados óptimos al incorporar FP.

Nuñez y Suarez [32] su estudio de indagación titulada "Resistencia a la compresión del concreto f'c=175 kg/cm² con la adición de cascarilla entera y molida de café", se planteó evaluar el concreto a compresión al incorporar en peso de agregado fino de concreto de 175 kg/cm². La investigación se realizó con un nivel experimental de enfoque cuantitativo en el que se ensayan un total de 63 unidades de muestras de hormigón cilíndricas estandarizadas. Como resultado, se encontró que la adición óptima era del 0,5% para la corteza entera y del 1,5% para la corteza molida mejoraban en un 8.69% y 3.68% a los 28 días de curado.

Huamán [17] en su tesis titulado "Evaluación de resistencia a compresión del concreto f'c=210 kg/cm², con adición de ceniza de cascara de café", tenia finalidad de valorar resist. que ofrece- comprensión fabricado con CCC. En su metodología es correlacional. El indicio del estudio la conforman las 162 probetas con los porcentajes de 0.5%, 1.0% y 1.5%; y la población por CCC y los agregados de la cantera Huaquilla. En el agregado fino y grueso resultó un grado de humedad promedio de 0.42 y 0.46. En la resistencia a la comprensión se tiene que adicionar CCC al 12.5% presta una alta resistencia al concreto con 238.90 kg/cm² y finalmente concluye que al utilizar CCC este permitirá prevenir y mitigar la contaminación.

La producción de concreto con nuevos materiales se puede establecer como una práctica que permita contrarrestar los efectos negativos generados en la naturaleza e impactar de manera positiva en el desarrollo de nuevas tecnologías con el concreto. Asimismo, la indagación manifiesta la producción de concreto empleando CCC reforzado con fibra de polipropileno, la importancia radica en determinar la influencia de estos materiales al realizar un estudio mecánico del concreto, ya que el uso de estos materiales significa reducir la contaminación debido a la producción del café y, además, a solucionar

problemas como la fisuración del concreto convencional.

1.2. Formulación del problema

- ¿De qué manera afecta la incorporación de ceniza de cascarilla de café y fibra de polipropileno en el comportamiento mecánico del concreto?

1.3. Hipótesis

La adición de 10% de CCC y 2.5% de FP muestra resultados óptimos en los atributos mecánicos del concreto.

1.4. Objetivos

Objetivo general

Analizar el comportamiento mecánico del concreto al adicionar ceniza de cascarilla de café y fibra de polipropileno.

Objetivos específicos

- Especificar las características físicas de los áridos.
- Evaluar las características mecánicas del concreto f'c=210 kg/cm² al combinar con ceniza de cascarilla de café al 5%, 10% y 15%; y fibra de polipropileno al 1%, 2.5% y 5%.
- Evaluar las características mecánicas del concreto f'c=280 kg/cm² al combinar con ceniza de cascarilla de café al 5%, 10% y 15%; y fibra de polipropileno al 1%, 2.5% y 5%.
- Identificar la combinación óptima de ceniza de cascarilla de café y fibra de polipropileno para concretos de 210 kg/cm² y 280 kg/cm².

1.5. Teorías relacionadas al tema

A. Concreto

Es una mezcla formada por cemento, áridos, agua y en algunas ocasiones se le añade algún tipo de aditivo [33]. Inicialmente tienen características de plasticidad y posteriormente su estado natural se endurecerá y adquirirá propiedades duraderas permanentes. Sus características han permitido el desarrollo de grandes proyectos de

infraestructura en todo el mundo, cuyo éxito está ligado a la aplicación de tecnologías avanzadas en materiales de construcción [34].

B. Cemento

Es el producto primordial que tiene un nivel de importancia muy significativo, pues se usa para todo tipo de trabajos [35]. Está compuesto por piedra caliza y arcilla molida, estos materiales son molidos, y posteriormente son expuestos a altas temperaturas, dentro de su composición también encontramos cal y yeso, a todo este compuesto también se le denomina Clinker [36].

C. Agregados

Son partículas que pueden ser manipuladas o procesadas [37]. Tienen tamaño variable va desde partículas casi indetectables hasta grandes trozos de piedra y, combinados con el cemento y el agua, constituyen los materiales requeridos para la producción de concreto. No se puede exagerar la importancia de la utilización, la calidad y el tipo adecuados de los áridos.

Tabla ICaracterización de áridos

Característica	Norma
Análisis granulométrico	NTP 400.012
Contenido de humedad	NTP 339.185
Peso unitario suelto y compactado	NTP 400.017
Pesos específicos y absorción	NTP 400.021 y NTP 400.022

Nota. Caracterización de los áridos con su respectiva normativa

Agregado Fino

Tienen su origen en la desintegración artificial o natural de la roca, cuya única condición es que debe pasar por colador: 9,5 mm (3/8 pulgadas), quedar atrapados por dicho colador 0.074 mm (N° 200) [37].

Agregado Grueso

Es aquel que queda retenido en el tamiz 4,75 mm (N° 4), puede ser grava natural o triturada teniendo su origen en la desintegración de la roca [37].

D. Aditivos

Son sustancias indispensables que permiten optimizar las propiedades del concreto fresco o endurecido, brindando menor absorción de agua, mayor resistencia a edades tempranas o reducción de porosidad y gravedad específica [38].

E. Propiedades físicas del concreto

• Trabajabilidad

La definición de trabajo, el carácter compuesto de la propiedad y su dependencia del tipo de construcción y los métodos de colocación, compactación y acabado son las razones por las que no existe un único método de ensayo que pueda utilizarse para medir el rendimiento.

Asentamiento

Es un dominio fundamental del concreto cuando se encuentra en estado fresco, con el apoyo del cono de Abrams y una regla se puede determinar el asentamiento o SLUMP [39].

• Relación agua/cemento

Es una propiedad del concreto que controla el desempeño del concreto endurecido, una relación a/c alta puede significar una porosidad excesiva y una resistencia pobre [40].

• Consistencia

Es el contraste que presenta la masa en su nuevo estado con las deformaciones que ha sufrido. La consistencia indica la fluidez y trabajabilidad del concreto, que es muy susceptible a los cambios de masa del agua, y se puede suponer que, para una

composición dada, la consistencia del concreto está sujeta a la suma de agua en la mezcla.

Temperatura

Se debe realizar un control de temperaturas, ya que el concreto puede verse afectado por el clima causando un aumento de hidratación o evaporando la humedad del concreto [41].

Fraguado

El fraguado es la merma y el endurecimiento de ductilidad del concreto, producido por el secado y cuajado de los hidróxidos metálicos debido a la respuesta química de los óxidos metálicos y el agua en el Clinker para formar cemento [42].

Endurecimiento

La etapa de endurecimiento inicia con el fraguado y esta es progresiva ya que gana resistencia a medida que el concreto endurece gracias a la reacción de los componentes del concreto.

Durabilidad

La durabilidad es conceptualizada como la vida útil o de servicio del concreto para soportar la acción de agentes químicos, físicos, biológicos [43].

F. Propiedades mecánicas del concreto

Si el concreto presenta las proporciones adecuadas, ninguna de sus propiedades se verá afectada, a excepción del tiempo de endurecimiento ya que depende del uso que se quiera dar [44]. Para gran parte de las aplicaciones estructurales, se emplea concreto de resistencia media (resistencia a la compresión de 20 a 40 MPa), aunque recientemente se ha producido comercialmente concreto de alta resistencia de hasta 130 MPa [45].

Ensayo de resistencia a la compresión

Es una prueba fundamental del concreto, radica en ingresar una muestra (probeta)

cilíndrica del material a probar en una prensa hidráulica. Luego de ello, el cilindro recibe una presión más alta a un ritmo señalado previamente hasta que se destroza, registrando toda la información requerida [46].

Ensayo de resistencia a la flexión

Esta prueba establece el procedimiento para determinar la resistencia a la flexión de vigas de concreto apoyadas con cargas a los tercios de la distancia entre apoyos [47].

• Ensayo de resistencia a la tracción

Esta prueba consiste en colocar la probeta cilíndrica aplicando cargas a compresión hasta el punto en que se haga la fractura de la misma [48]. La NTP 339.084 [49] establece los procedimientos que se deben llevar a cabo para la evaluación de los cilindros de concreto.

Por lo general, al reducir el rendimiento mecánico del concreto a compresión, también se reduce su rendimiento a tracción [50].

G. Ceniza de Cascarilla de Café (CCC)

Es una fibra natural que se puede adicionar en el concreto, sin embargo, al reducir este material a cenizas podemos determinar que tiene acción puzolánica debido al alto índice de contenido de sílice amorfa y por óxidos presentes en la cascarilla. Es por esta razón que las cenizas de la cascarilla de café se pueden utilizar como alternativa para aplicar nuevos métodos en la industria de la construcción [51].

Para obtener la ceniza como producto final se realiza un quemado manual de la cascarilla para llevarla a una incineración con temperaturas de 800 a 900°C (donde pierde aproximadamente el 85% de su peso) [52], de modo que la ceniza alcance una finura suficiente y atraviese la malla N°100 para su inclusión en la creación de mezcla de concreto [53].

Tabla IIComposición química de la CCC

Compuesto químico	Porcentaje
Óxido de Calcio (CaO)	22.0%
Óxido Férrico (Fe ₂ O ₃)	1.43 %
Óxido de Silicio (SiO) ₂	12.0%
Silicio	5.61%

Nota. Principales compuestos químicos de la CCC [29].

H. Fibra de Polipropileno (FP)

Es un material compuesto que se adiciona a la mezcla de concreto para mejorar la calidad de la construcción, tiene forma de monofilamentos que reduce y evita la aparición de grietas optimizando la dispersión de los materiales de la mezcla de concreto [54]. Se verificó que cumplan con la norma NTP 339.204 (Concreto reforzado con fibras) [55].

Tabla IIICaracterísticas de la fibra de polipropileno

Densidad	0,91 g/cm ³
Longitud	12,7 mm – 19 mm
Diámetro	0,03 mm – 0,05 mm
Alargamiento de rotura	> 250%
Módulo de elasticidad	1.4 GPa
Resistencia a la tracción	165 MPa
Porcentaje de absorción	0,0 %
Resistencia a la alcalinidad	Alta

II. MATERIALES Y MÉTODO

2.1. Tipo y Diseño de Investigación

Tipo de investigación

Es un análisis encaminado a evolucionar, pulir o mejorar la función de los actuales sistemas, procesos, estándares y leyes tecnológicas según el avance tecnológico. Por lo tanto, es una investigación aplicada-tecnológica [56].

Diseño de investigación

Este estudio es nivel cuasiexperimental ya que consiste en exponer a un grupo de sujetos (probetas y vigas) a ciertas condiciones, con el fin observar las reacciones producidas [57]. En este caso en el grupo control se encuentra el diseño patrón, es decir el diseño compuesto por los materiales convencionales, sin adición de ningún agregado; por otro lado, se encuentran los diseños con los agregados que se añadirán, es decir la CCC y FP en diferentes porcentajes de adición.

2.2. Variables, Operacionalización

Variable Independiente

Ceniza de cascarilla de café y fibra de polipropileno.

Variable Dependiente

Propiedades mecánicas del concreto.

Operacionalización

En la tabla IV - V se observa la operacionalización de las variables.

Tabla IVOperacionalización de la variable independiente

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Instrumento	Valores finales	Tipo de variable	Escala de medición			
			Adición de	5%							
		c€	ceniza de cascarilla de café 10% Obser anál docur	10%	Observación, análisis de	kg					
	La aplicación de	La influencia		documentos, guías de							
	ceniza de cascarilla de café y fibra de	de CCC y FP		1.0%	observación, formatos y			De razón			
Ceniza de		a través de dosificaciones porcentuales que se adicionan al concreto mediante	Adición de es fibra de polipropileno	2.5%	ensavos en el	kg					
cascarilla de café y fibra de	mitigar la			5.0%		Numérica					
polipropileno	ambiental y				Ag. fino	kg kg		kg kg			
	fisuración en el			Ag. grueso	Observación, – análisis de	kg	kg				
	concreto diseno d	concreto diseno de mezclas Dosificación	Fibra de polipropileno	documentos, kg	,						
		concreto	•	Ceniza de cascarilla de café	observación, kg formatos y ensayos en el	De ra	De razón				
				Contenido de cemento		ensayos en el		ensavos en el	sayos en el		
				Contenido de agua		kg	1				

Tabla VOperacionalización de la variable dependiente

Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Técnicas e instrumentos	Valores finales	Tipo de variable	Escala de medición
	La CCC estima una	El desempeño		Análisis granulométrico		gr		
	disminución de la resistencia mecánica	físico de los áridos y	Prop. físicas	Peso específico y absorción		gr/cm ²		
	del concreto, sin embargo, una	mecánico del concreto con	de los áridos	P. U. suelto y compactado	Observación, guía de	kg/m³		De razón
Prop.	correcta dosificación	adiciones de		Cont. de Humedad	observación,	%		
mecánicas del	permite obtener mejores resultados.	CCC y FP se miden		Ensayo de abrasión	análisis documentario,	%	Numérica	
concreto	Así mismo la FP ofrece una mayor	mediante pruebas de	1	R. a la flexión	resultados y registros de	kg/cm ²		_ ,
	resistencia al reforzar la mezcla de concreto.	laboratorio que determinan sus	Prop. mecánicas del concreto	R. a la tracción	laboratorio	kg/cm ²		De razón
	33.131010.	características.	CONCICIO	R. a la compresión		kg/cm ²		

2.3. Población de estudio, muestra, muestreo y criterios de selección

Población, es un total de 540 probetas cilíndricas y vigas de concreto elaboradas con y sin adiciones de CCC y FP.

Muestra, son las 360 probetas cilíndricas y 180 vigas de concreto, que son elaboradas con y sin adiciones de ceniza de cascarilla de café y fibra de polipropileno.

Muestreo, para evaluar el desempeño del concreto se elaboró probetas cilíndricas de 15 cm de diámetro x 30 cm de largo; y vigas de 15 cm de ancho x 15 cm de alto y 53 cm de largo, *Criterios de selección*, se elaboró dos diseños de concreto patrón de 210 kg/cm² (C21) y 280 kg/cm² (C28). Los materiales se incorporaron respecto al peso de cemento, se adicionó CCC en 5%, 10% y 15% combinados con FP en 1%, 2.5% y 5%. Teniendo un tiempo de rotura a los 7, 14 y 28 días. Se estableció distintas temperaturas de quemado para obtener CCC, posterior a ello se realizó el ensayo hidráulico con un concreto patrón (C21) [58].

Tabla VIMuestra de especímenes cúbicos de 50 mm

F'c = 210 kg/cm ²	C21	600°C	650°C	750°C	850°C
7 días	3	3	3	3	3
14 días	3	3	3	3	3
28 días	3	3	3	3	3
Total			45		

Tabla VIIMuestra de probetas de concreto patrón y concreto con adiciones de CCC y FP para f'c=210kg/cm²

Dosificación		Días de curado	R. a la Compresión	R. a la Tracción	R. a la Flexión	Probetas y vigas	
C21		7	3	3	3		
		14	3	3	3	27	
		28	3	3	3		
C21	5%CCC +	7	3	3	3		
	1%FP	14	3	3	3	27	
		28	3	3	3		
C21	5%CCC +	7	3	3	3		
	1%FP	14	3	3	3	27	
		28	3	3	3		
C21	5%CCC +	7	3	3	3		
	1%FP	14	3	3	3	27	
		28	3	3	3		
C21	10%CCC +	7	3	3	3		
	2.5%FP	14	3	3	3	27	
		28	3	3	3		
	10%CCC +	7	3	3	3		
C21	2.5%FP	14	3	3	3	27	
		28	3	3	3		
C21	10%CCC +	7	3	3	3		
	2.5%FP	14	3	3	3	27	
		28	3	3	3		
C21	15%CCC +	7	3	3	3		
	5%FP	14	3	3	3	27	
		28	3	3	3		
C21	15%CCC +	7	3	3	3		
	5%FP	14	3	3	3	27	
		28	3	3	3		
	15%CCC +	7	3	3	3		
C21	5%FP	14	3	3	3	27	
		28	3	3	3	270	
TOTAL							

Tabla VIIIMuestra de probetas de concreto patrón y concreto con adiciones de CCC y FP para f'c=280kg/cm²

Dosificación		Días de curado	R. a la Compresión	R. a la Tracción	R. a la Flexión	Probetas y vigas		
C28		7	3	3	3			
		14	3	3	3	27		
		28	3	3	3			
C28	5%CCC +	7	3	3	3			
	1%FP	14	3	3	3	27		
		28	3	3	3			
C28	5%CCC +	7	3	3	3			
	1%FP	14	3	3	3	27		
		28	3	3	3			
C28	5%CCC +	7	3	3	3			
	1%FP	14	3	3	3	27		
		28	3	3	3			
C28	10%CCC +	7	3	3	3			
	2.5%FP	14	3	3	3	27		
		28	3	3	3			
C28	10%CCC +	7	3	3	3			
	2.5%FP	14	3	3	3	27		
		28	3	3	3			
	10%CCC +	7	3	3	3			
C28	2.5%FP	14	3	3	3	27		
		28	3	3	3			
	15%CCC +	7	3	3	3			
C28	5%FP	14	3	3	3	27		
		28	3	3	3			
	15%CCC +	7	3	3	3			
C28	5%FP	14	3	3	3	27		
		28	3	3	3			
C28	15%CCC +	7	3	3	3	27		
	5%FP	14	3	3	3			
		28	3	3	3			
TOTAL								

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

2.4.1. Técnicas de recolección de datos

Observación

Es un enfoque metódico para captar las características más destacadas de los objetos, los acontecimientos, las realidades sociales y los individuos tal y como ocurren en sus entornos naturales. Ayuda a plantear nuevas cuestiones, formular hipótesis y verificarlas mediante pruebas empíricas [59]

Análisis documentario

Corresponde a las normativas internacionales como la "ASTM" y normativas nacionales como las "NTP" para el proceso de realización de los ensayos en laboratorio.

2.4.2. Instrumentos de recolección de datos

Guía de observación

Como instrumento competente este apartado corresponderá a los formatos y registros obtenidos en el laboratorio que permiten relacionar directamente los resultados con la normativa de referencia para comparar y llegar a una conclusión.

2.5. Procedimiento de análisis de datos

Se determinarán los diseños de mezcla según correspondan, para poder calcular las cantidades de ceniza de cascarilla de café y fibra de polipropileno, posteriormente, se procederá a obtener los agregados y se realizarán los diseños de mezcla en el laboratorio; por consiguiente, se esperará a la obtención de las probetas en las edades de 7, 21 y 28 días, para proceder con las pruebas de cada probeta; se determinarán los datos a través de las guías proporcionadas por el laboratorio, para luego elaborar gráficos en los cuales se evidencie de mejor manera las diferencias representativas de cada una de las pruebas y mezclas, cabe recalcar que los instrumentos de laboratorio serán correctamente calibrados para la obtención de datos de calidad, precisos y plausibles.

2.5.1. Diagrama de flujo

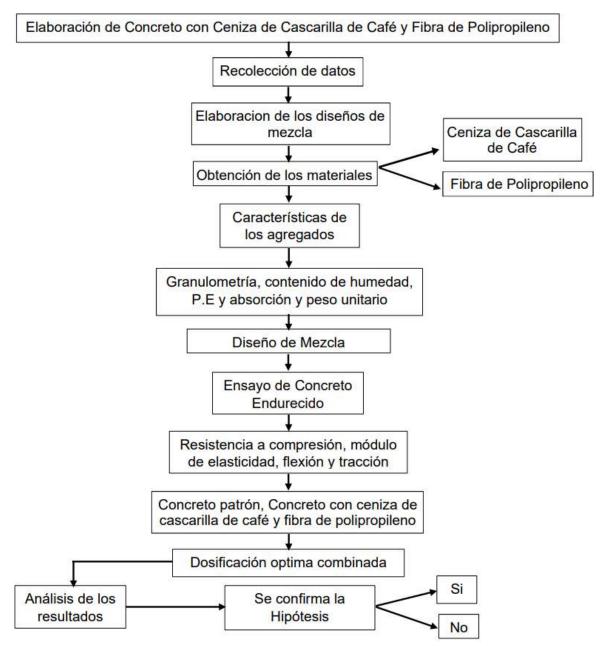


Fig. 1. Diagrama de flujo general de la recolección de datos.

2.5.2. Descripción de procesos

2.5.2.1. Materiales empleados

a. Ubicación y extracción de los agregados

Los áridos fueron extraídos están dentro del departamento de Lambayeque y se seleccionó aquella cantera que demuestre que la calidad del material sea la adecuada.

Cantera Corporación Guevara - Pátapo

Fig. 2. Ubicación geográfica en Google Earth de la cantera Corporación Guevara – Pátapo.

Fig. 3. Muestra de agregado grueso – cantera Corporación Guevara en Pátapo.

Fig. 4. Muestra de agregado fino – cantera Corporación Guevara en Pátapo.

Cantera Chancadora Sicán – Ferreñafe

Fig. 5. Ubicación geográfica en Google Earth de la cantera Chancadora Sicán – Ferreñafe.

Fig. 6. Muestra de agregado grueso – cantera Chancadora Sicán – Ferreñafe.

Fig. 7. Muestra de agregado fino – cantera Chancadora Sicán – Ferreñafe.

Cantera Corporación Asfalpaca – Tres Tomas

Fig. 8. Ubicación geográfica en Google Earth de la cantera Corporación Asfalpaca – Tres Tomas.

Fig. 9. Muestra de agregado grueso – cantera Corporación Asfalpaca – Tres Tomas.

Fig. 10. Muestra de agregado fino – cantera Corporación Asfalpaca – Tres Tomas.

b. Agua y Cemento

El agua y cemento utilizado para la preparación de los diseños de mezcla, fue extraída del laboratorio "A & R" ubicado en la Av. Vicente Ruso Mz S/N lote 8, Fundo El Cerrito.

c. Ceniza de Cascarilla de Café

Se quemó las cascarillas a temperaturas de 600°C, 650°C, 750°C y 850°C para obtener CCC, posterior a ello se realizó el normado por la NTP 334.051 con un concreto patrón (C21) de 210 kg/cm² [58]. Obteniendo mejores resultados a una temperatura de 750°C.

Fig. 11. Quemado de la cascarilla de café.

d. Fibra de polipropileno

Se utilizó microfibras sintéticas de 15 mm en bolsas de 600gr, que fueron adquiridas en la constructora Magnolias S.A.C. (Av. Clement Nro. 1470 Pueblo Libre – Lima).

Fig. 12. Fibra de polipropileno añadida a la mezcla.

2.5.2.2. Ensayos a los agregados pétreos

a. Análisis granulométrico de agregados (NTP 400.012)

Implementos

- Balanza
- Coladores granulométricos.
- Estufa a 110°C±5°C.

Se toman muestras de los agregados y se seca durante un periodo de 24 horas en el horno, pasado el tiempo de secado se selecciona los tamices y se vierte el agregado agitando de forma manual y, finalmente se toma nota del peso del material que ha quedado retenido en los tamices.

b. Peso unitario de los agregados (NTP 400.017)

Implementos

- Balanza.
- Envase de metal.
- Cuchareta.
- Listón punta redonda para apisonar.

<u>Peso unitario Suelto</u>: Con la ayuda del cucharón, el material se toma y se suelta a unos 5 cm teniendo como referencia el borde del recipiente, se llena hasta el ras del recipiente y posterior a ello se pesará.

<u>Peso unitario compactado:</u> El recipiente es llenado hasta 1/3 del total para apisonar con la varilla dando 25 golpes, repitiendo este procedimiento en tres capas, se llena hasta el ras del recipiente y posterior a ello se pesará.

El cálculo se realiza de la siguiente manera:

Cálculo de densidad de masa:

$$D=\frac{M-R}{Vr}$$

Donde:

D= Densidad (kg/m³)

M= Masa del agregado (kg)

Vr= Volumen del envase (m³)

R= Masa del recipiente (kg)

Cálculo de densidad de masa saturada superficialmente seco (DSSS):

$$DSSS = D\left[1 + \frac{Ch}{100}\right]$$

Donde:

Ch= Contenido de humedad (%)

DSSS= Densidad de masa en condición DSSS (kg/m³)

c. Peso específico y absorción de los agregados (NTP 400.021 y NTP 400.022)

Para el agregado grueso (NTP 400.021)

Herramientas

- Balanza.
- Depósito o recipiente para el agua.
- Canasta metálica de 3.35 mm.

Horno a 110°C±5°C.

Tamiz N° 4.

Se toma lo retenido por el tamiz N° 4, se coloca el agregado en un recipiente para introducir al horno a temperas de 110° C \pm 5°C, posterior a ello se retira el material y se deja sumergido en agua por 24 horas para el proceso de enfriamiento para luego retirar el material y registrar su peso.

El cálculo se realiza de la siguiente manera:

Cálculo de peso específico de masa (Pem):

$$Pem = \frac{Mms}{Mmsc - Mms} * 100$$

Donde:

Mms= Masa de la muestra seca (gr.)

Mmsc= Masa de la muestra superficialmente seca (gr.)

Mms= Masa de la muestra saturada (gr.)

Cálculo de masa saturada superficialmente seca (PeSSS):

$$PeSSS = \left[\frac{Mmsc}{Mmsc - Mms}\right] * 100$$

Cálculo del peso específico aparente (Pea):

$$Pea = \left[\frac{Msc}{Msc - Mms}\right] * 100$$

Cálculo de absorción (Ab):

$$Ab = \left[\frac{Mmsc - Mms}{Mms}\right] * 100$$

Para el agregado fino (NTP 400.022)

Herramientas

Balanza.

Barra compactadora y molde metálico de 75 mm de altura con φ interior de 40mm y φ interior superior de 90 mm.

- Picnómetro de 500 cm³.
- Horno a 110°C±5°C.
- Tamiz N° 4.

El agregado retenido en el tamiz N° 4 se introduce al horno a temperatura de 110°C ± 5°C, posterior a ello se retira y se enfría para colocarlo en agua por 24 horas para luego retirar el material y secarlo superficialmente con aire caliente. Para la prueba se incorpora una porción de la muestra hasta llenar el cono metálico y luego se deja caer la barra 25 veces, luego al picnómetro se añaden 500 gr y se llena con agua, se mueve para eliminar las burbujas de aire y llenarlo completamente. Por último, se retira el material que se encuentra en el picnómetro y se coloca en el horno por 24 horas, se retira y se deja que inicie el proceso de enfriamiento para tomar su peso.

El cálculo se realiza de la siguiente manera:

Cálculo de peso específico de masa (Pem)

$$Pem = \frac{X}{(Y + Z - W)}$$

Donde:

X= Muestra que fue secada en el horno (gr.)

Y= Picnómetro lleno hasta el límite grabado (gr.)

W= Picnómetro lleno de agregado fino con agua hasta el límite grabado (gr.)

Z= Porción saturada superficialmente seca (gr.)

Cálculo de peso específico saturado superficialmente seca (PeSSS)

$$PeSSS = \frac{Z}{(Y + Z - W)}$$

Cálculo de peso específico aparente (Pea)

$$Pea = \frac{X}{(Y + X - W)}$$

Cálculo de la absorción

Abs (%) =
$$\frac{Z - X}{X} * 100$$

d. Contenido de humedad de los agregados (NTP 339.185)

Herramientas

- Balanza.
- Recipiente metálico.
- Cucharón.
- Estufa a 110°C±5°C.

Se pesa a condición ambiental de peso mínimo (kg), se coloca en un recipiente para luego llevarlo al horno. Se deja enfriar la masa y pesamos.

El cálculo se realiza de la siguiente manera:

Cálculo del contenido de humedad:

$$C = 100 * \frac{W - D}{D}$$

Donde:

C= Cantidad total de humedad (%)

W= Masa a condición ambiental (gr.)

D= Masa secada en el horno (gr.)

e. Abrasión de agregados gruesos (NTP 400.019)

Herramientas

- Balanza.
- Esferas de 46 mm y 48 mm.
- Tamiz N° 4.
- Horno a 110°C±5°C.

El material retenido en el colador N° 4 se coloca en la máquina junto con las esferas. Posterior a ello, el material se pasa por el colador N° 12, se lava el material y se deja en el

horno (secado). Finalmente, se retira y se pesa el material.

El cálculo se realiza de la siguiente manera

Porcentaje de pérdida por abrasión (PPa):

$$P = \frac{X - Y}{X} * 100$$

Donde:

P= Pérdida del material (%).

X= Masa inicial de la muestra (gr.)

Y= Masa final después de las revoluciones (gr.)

2.5.2.3. Diseños de mezcla

Se realizó diseños, ACI 211. De igual manera, efectuó misma forma con adiciones CCC (5%, 10% y 15%) y FP (1%, 2.5% y 5%).

2.5.2.4. Ensayos en estado fresco

a. Medición del asentamiento o Slump (NTP 339.035)

Herramientas

- Bandeja.
- Cono de Abrams.
- Wincha.
- Barra de punta redonda para compactar.

Se toma el cono de Abrams y se deja sobre una bandeja, se fija y se llena en 3 capas golpeando el material 25 veces por capa, luego de llenar se retira lentamente.

b. Medición de temperatura (NTP 339.184)

Herramientas

- Termómetro de precisión de ± 0.5°C.
- _ Recipiente con una profundidad de 3 pulg.

Utilizando el recipiente para verter la mezcla, se coloca el termómetro hasta el fondo del recipiente durante 2 minutos aproximadamente para tener una lectura estable del termómetro.

c. Medición de peso unitario (NTP 339.046)

Herramientas

- Balanza.
- _ Recipiente (Olla Washington).
- Barra compactadora.
- Martillo de goma.

Se utiliza el recipiente para verter mezcla en 3 capas y con la barra se golpea 25 veces por capa, mientras con el martillo de goma se golpea para eliminar el aire retenido, finalmente de retira el excedente y se procede a pesar.

El cálculo se realiza de la siguiente manera

Calcular la densidad de masa:

$$Dc = \frac{Mc - Mr}{Vr}$$

Donde:

Dc= Densidad del concreto (kg/m³)

Mc= Recipiente completamente lleno de concreto (kg.)

Mr= Masa de recipiente (kg.)

Vr= Volumen interior del recipiente (m³)

d. Medición de contenido de aire (NTP 339.046)

Herramientas

- Medidor de aire.
- Olla Washington.
- Varilla alisada de 5/8", punta roma de 60 cm de largo.
- Martillo de goma.

Se vierte la mezcla en 3 capas y se golpea 25 veces por capa, se retira el excedente y se cierra el recipiente con una tapa que presenta un medidor de aire, posterior a ello se satura con agua y se toma registros del contenido de aire.

2.5.2.5. Ensayos en estado endurecido

a. Resistencia a la compresión (NTP 339.034)

Herramientas

_	Máquina de ensayo debidamente calibrada.
_	Probeta.
_	Vernier.
_	Placas o almohadillas de neopreno.
Con	la ayuda del vernier se realiza la medición del diámetro y longitud de la probeta, se
colo	ca las placas a la probeta y se introduce a la máquina de ensayo y por último se toma
regis	tro de la carga final aplicada.
b. R	esistencia a la tracción (NTP 339.084)
	Herramientas
_	Máquina de ensayo debidamente calibrada.
_	Probeta.
_	Vernier.
_	Placas o almohadillas de neopreno.
Con	la ayuda del vernier se toma medida del diámetro y longitud de la probeta, se coloca las
placa	as a la probeta y se introduce a la máquina de ensayo y por último se toma registro de
la ca	rga final aplicada.
c. R	esistencia a la flexión (NTP 339.078)
	Herramientas
_	Máquina de ensayo debidamente calibrada.
_	Viga de concreto.
_	Regla.
_	Placas o almohadillas de neopreno.
Con	la regla se mide 2.5cm a partir de los apoyos y luego de marca los tercios de la viga y
colo	car las placas, luego de introduce a la máquina de ensayo aplicando la carga de forma
lenta	y progresiva y por último se toma registro de la carga final aplicada.

2.6. Criterios éticos

Este trabajo rige en los criterios de credibilidad, originalidad, respeto,

responsabilidad y honestidad: donde se tomó en cuenta los datos, los cuales no se manipularon de ninguna manera, para demostrar la calidad de los mismos, los cuales permitirán expandir el conocimiento de los diseños de concreto a futuro, los cuales proporcionarán no solo la confiabilidad estructural, sino también la seguridad y protección ambiental, al utilizar este tipo de agregados. Así mismo, esta investigación contó con asesoramiento de expertos para corroborar y validar los resultados siendo esta una investigación con rigor científico.

III. RESULTADOS Y DISCUSIÓN

3.1. Resultados

3.1.1. En relación al objetivo N° 1, características del agregado fino

Se muestra las tablas y/o figuras con el propósito de emplear de manera adecuada el agregado fino en los diseños de mezcla.

3.1.1.1. Granulometría

Cantera "Corporación Guevara – Pátapo"

Tabla IXGranulometría del agregado fino – Corporación Guevara Pátapo

		a doi agrogado		aorara i atapo	
Malla	Material retenido	Retenido	Retenido	Que pasa	Finura
(pulg)	(gr)	(%)	acumulado (%)	(%)	
3/8"	0.5	0.1	0.1	99.9	
N°4	12.3	2.5	2.6	97.4	
N°8	52.3	10.5	13.0	87.0	
N°16	82.9	16.6	29.6	70.4	2.61
N°30	71.3	14.3	43.9	56.1	
N°50	159.6	31.9	75.8	24.2	
N°100	103.4	20.7	96.5	3.5	
N° 200	12.5	2.5	99.0	1.0	
Fondo	5.20	1.0	100.0	0.0	

Nota. Datos obtenidos en laboratorio

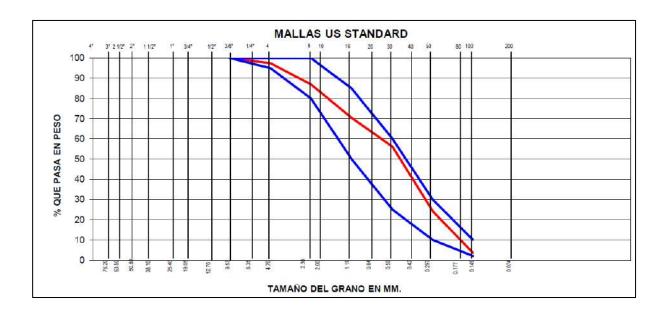


Fig. 13. Curva granulométrica del agregado fino – Corporación Guevara Pátapo

Nota. La curva granulométrica presenta los límites definidos por la NTP 400.012.

Cantera "Chancadora Sicán – Ferreñafe"

Tabla XGranulometría del agregado fino – Chancadora Sicán Ferreñafe

Malla (pulg)	Material retenido (gr)	Retenido (%)	Retenido acumulado (%)	Que pasa (%)	Finura
3/8"	-	-	-	-	
N°4	75.8	15.2	15.2	84.8	
N°8	94.6	18.9	34.1	65.9	
N°16	104.3	20.9	54.9	45.1	3.78
N°30	128.0	25.6	80.5	19.5	
N°50	76.3	15.3	95.8	4.2	
N°100	6.7	1.3	97.1	2.9	
N° 200	1.5	0.3	97.4	2.6	
Fondo	12.8	2.6	100.0	0.0	

Nota. Datos obtenidos en laboratorio

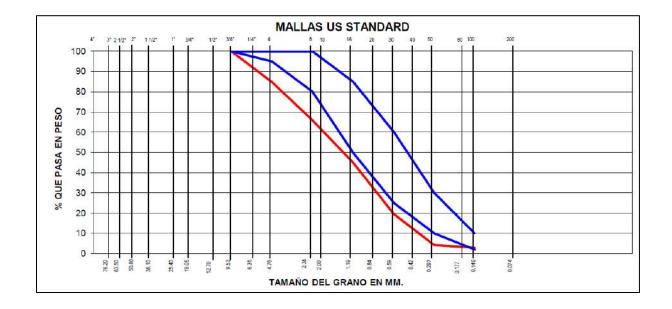


Fig. 14. Curva granulométrica del agregado fino – Chancadora Sicán Ferreñafe

Nota. La curva granulométrica presenta los límites definidos por la NTP 400.012.

Cantera "Corporación Asfalpaca – Tres Tomas"

Tabla XIGranulometría del agregado fino – Corporación Asfalpaca Tres Tomas

Malla	Material retenido	Retenido	Retenido	Que pasa	Finura
(pulg)	(gr)	(%)	acumulado (%)	(%)	
3/8"	-	-	-	-	

N°4	74.3	14.9	14.9	85.1	
N°8	128.6	25.7	40.6	59.4	
N°16	83.2	16.6	57.2	42.8	3.79
N°30	94.6	18.9	76.1	23.9	
N°50	88.6	17.7	93.9	6.1	
N°100	11.2	2.2	96.1	3.9	
N° 200	5.8	1.2	97.3	2.7	
Fondo	13.7	2.7	100.0	0.0	

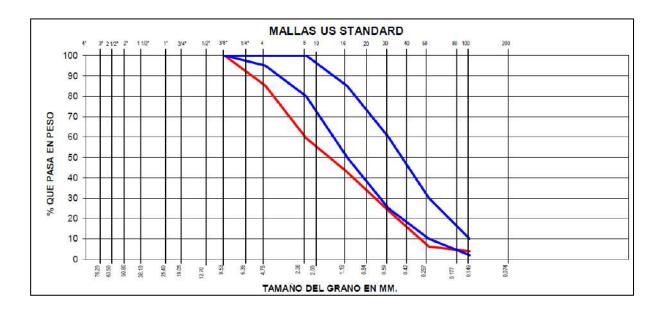


Fig. 15. Curva granulométrica del agregado fino – Corporación Asfalpaca Tres Tomas
 Nota. La curva granulométrica presenta los límites definidos por la NTP 400.012.

3.1.1.2. Peso unitario suelto y compactado

Tabla XIIPeso unitario suelto y compactado del agregado fino de cada cantera

.		
Cantera	P.U.S.	P.U.C.
"Corporación	1611.3	1736.3
Guevara" – Pátapo	kg/m³	kg/m³
	1.107.1	4050.0
"Chancadora Sicán"	1427.4	1653.6
Ferreñafe	kg/m³	kg/m³
"Corporación	1436.3	1525.3
Asfalpaca" - Tres	kg/m³	kg/m³

Tomas	·
Nota. Datos obtenidos en laboratorio	

3.1.1.3. Peso específico y absorción

Tabla XIIIPeso específico y absorción del agregado fino de cada cantera

	Cantera	"Corporación Guevara" – Pátapo	"Chancadora Sicán" – Ferreñafe	"Corporación Asfalpaca" – Tres Tomas
	P.E de masa	2.671 gr/cm ³	2.641 gr/cm ³	2.388 gr/cm ³
Descripción	P.E de masa saturado superficialmente seco	2.699 gr/cm ³	2.681 gr/cm ³	2.418 gr/cm ³
	P.E aparente	2.748 gr/cm ³	2.751 gr/cm ³	2.463 gr/cm ³
	Porcentaje de absorción	1.05%	1.52%	1.27%

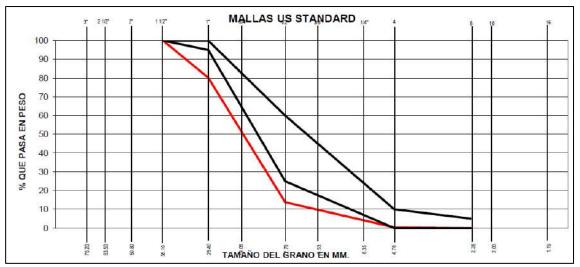
Nota. Datos obtenidos en laboratorio

3.1.1.4. Contenido de humedad

Tabla XIVContenido de humedad del agregado fino de cada cantera

	Cantera	"Corporación Guevara" – Pátapo	"Chancadora Sicán" – Ferreñafe	"Corporación Asfalpaca" – Tres Tomas
Descripción	Peso muestra húmeda	1310.0 gr	1000.0 gr	1200.0 gr
•	Peso muestra seca	1288.0 gr	986.0 gr	1179.0 gr
	Cont. Humedad	1.71%	1.42%	1.78%

Nota. Datos obtenidos en laboratorio

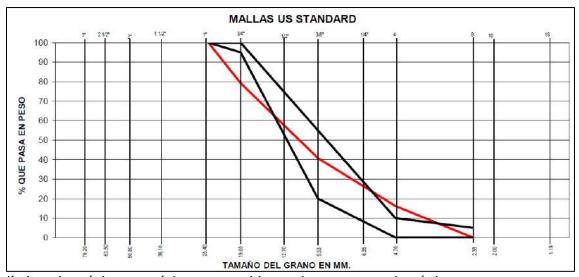

3.1.2. Respecto al objetivo N° 1, características físicas del agregado grueso

Se muestra las tablas y/o figuras con el propósito de emplear de manera adecuada el agregado fino en los diseños de mezcla.

3.1.2.1. Granulometría

Cantera "Corporación Guevara" – Pátapo

Los datos obtenidos en el laboratorio se muestran en la Figura 16, se detalla los



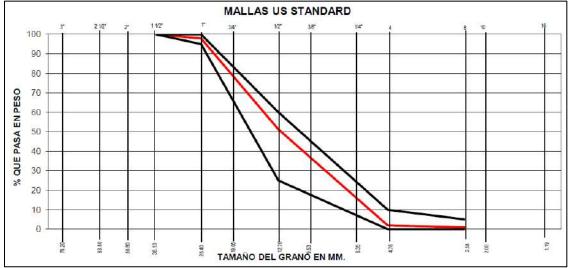
límites de máximos y mínimos requeridos en la curva granulométrica.

Fig. 16. Curva granulométrica del agregado grueso – Corporación Guevara Pátapo Nota. La curva granulométrica presenta los límites definidos por la NTP 400.012.

Cantera "Chancadora Sicán" – Ferreñafe

Los datos obtenidos en el laboratorio se muestran en la Figura 17, se detalla los

límites de máximos y mínimos requeridos en la curva granulométrica.


Fig. 17. Curva granulométrica del agregado grueso – Chancadora Sicán Ferreñafe

Nota. La curva granulométrica se encuentra fuera de los límites definidos por la NTP

400.012.

Cantera "Corporación Asfalpaca" – Tres Tomas

Los datos obtenidos en el laboratorio se muestran en la Figura 17, se detalla los

límites de máximos y mínimos requeridos en la curva granulométrica.

Fig. 18. Curva granulométrica del agregado grueso – Corporación Asfalpaca Tres Tomas Nota. La curva granulométrica presenta los límites definidos por la NTP 400.012.

3.1.2.2. Peso unitario suelto y compactado

Tabla XVPeso unitario suelto y compactado del agregado fino de cada cantera

Cantera	P.U.S.	P.U.C.
"Corporación Guevara" –	1538.6	1630.5
Pátapo	kg/m³	kg/m³
"Chancadora Sicán" –	1405.6	1488.3
Ferreñafe	kg/m³	kg/m³
"Corporación Asfalpaca" –	1457.8	1560.2
Tres Tomas	kg/m³	kg/m³

Nota. Datos obtenidos en laboratorio

3.1.2.3. Peso específico y absorción

Tabla XVIPeso específico y absorción del agregado fino de cada cantera

	"Corporación	"Chancadora	"Corporación
Cantera	Guevara" –	Sicán" –	Asfalpaca" -
	Pátapo	Ferreñafe	Tres Tomas

	P.E de masa	2.573 gr/cm ³	2.714 gr/cm ³	2.632 gr/cm ³
Descripción	P.E de masa saturado superficialmente seco	2.591 gr/cm ³	2.729 gr/cm ³	2.666 gr/cm ³
	P.E aparente	2.620 gr/cm ³	2.756 gr/cm ³	2.726 gr/cm ³
	Porcentaje de absorción	0.70%	0.55%	1.31%

3.1.2.4. Contenido de humedad

Tabla XVIIContenido de humedad del agregado fino de cada cantera

	Cantera	"Corporación Guevara" – Pátapo	"Chancadora Sicán" – Ferreñafe	"Corporación Asfalpaca" – Tres Tomas
	Peso muestra húmeda	1200.0 gr	1250.0 gr	1300.0 gr
Descripción	Peso muestra seca	1184.6 gr	1232.4 gr	1283.0 gr
	Cont. Humedad	1.30%	1.43%	1.33%

Nota. Datos obtenidos en laboratorio

3.1.2.5. Ensayo de Abrasión

Tabla XVIIIEnsayo de abrasión (máquina de los ángeles)

	Cantera	"Corporación Guevara" – Pátapo	"Chancadora Sicán" – Ferreñafe	"Corporación Asfalpaca" – Tres Tomas
Descripción	Masa total	5000.0 gr	5000.0 gr	5000.0 gr
	Masa retenida en la malla N°12	2425 gr	1867 gr	4012 gr
	Mesa perdida después del ensayo	2575 gr	3133 gr	988 gr
	Desgaste	51.5%	62.7%	19.8%

Nota. Datos obtenidos en laboratorio

Luego de verificar la ejecucion con la normativa establecida, se determinó que la cantera "Chancadora Sicán" – Ferreñafe no obedece con las normas necesarias de cantera "Corporación Guevara" – Pátapo si cuenta con los requerimientos necesarios y se optó por utilizar material de esa cantera. Además, la "Corporación Asfalpaca" – Tres

Tomas también tiene requerimientos necesarios para la elaboración de concreto.

3.1.3. Respecto al objetivo N° 2, características mecánicas del concreto f'c=210 kg/cm²

3.1.3.1. Resistencia a la compresión – NTP 339.034

Concreto patrón f'c=210 kg/cm²

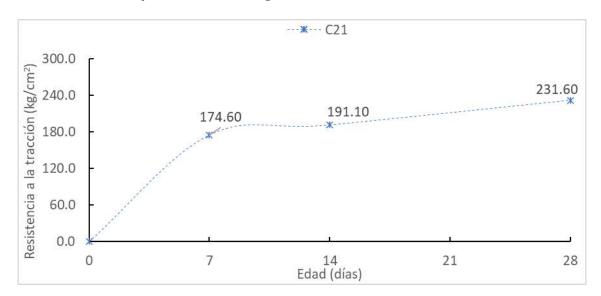
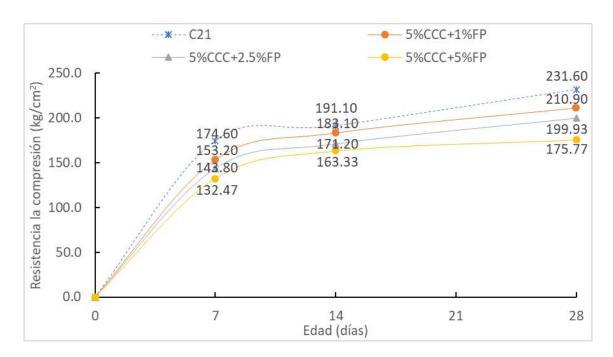



Fig. 19. Ensayo de resistencia a la compresión del concreto patrón C21.

Nota. Datos obtenidos en laboratorio.

El concreto de f'c=210 kg/cm² alcanzó una resistencia a la compresión máxima de 231.60 kg/cm² a los 28 días.

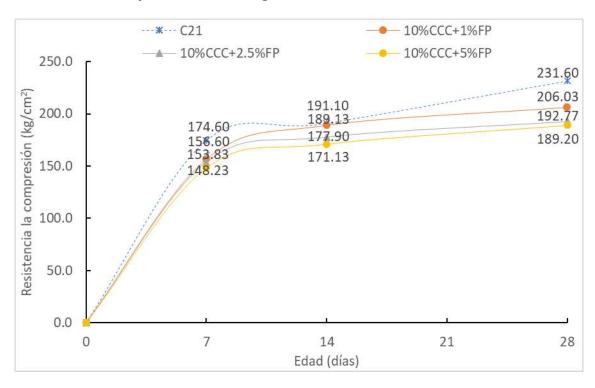

Concreto patrón f'c=210 kg/cm² con 5%CCC+ FP

Fig. 20. Ensayo de resistencia a la compresión de concreto patrón C21 con 5%CCC+FP. **Nota.** Datos obtenidos en laboratorio.

En la Figura N° 20 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=210 kg/cm² con 5%CCC y 1%FP presenta los resultados más favorables, alcanzando una resistencia a la compresión máxima de 210.90 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

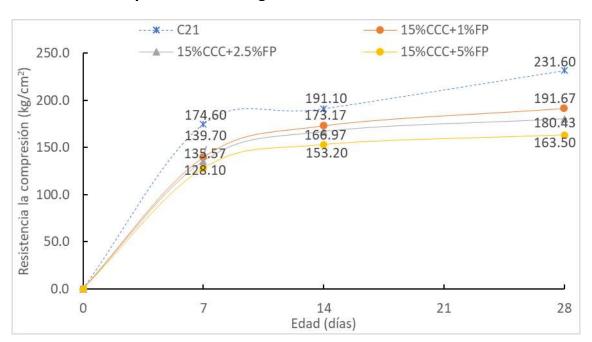

Concreto patrón f'c=210 kg/cm² con 10%CCC+FP

Fig. 21. Ensayo de resistencia a la compresión de concreto patrón C21 con 10%CCC+FP. Nota. Datos obtenidos en laboratorio.

En la Figura N° 21 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=210 kg/cm² con 10%CCC y 1%FP presenta los resultados más favorables, alcanzando una resistencia a la compresión máxima de 206.03 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

Concreto patrón f'c=210 kg/cm² con 15%CCC+FP

Fig. 22. Ensayo de resistencia a la compresión de concreto patrón C21 con 15%CCC+FP. Nota. Datos obtenidos en laboratorio.

En la Figura N° 22 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=210 kg/cm² con 15%CCC y 1%FP presenta los resultados más favorables, alcanzando una resistencia a la compresión máxima de 191.67 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

3.1.3.2. Resistencia la tracción – NTP 339.084

Concreto patrón f'c=210 kg/cm²

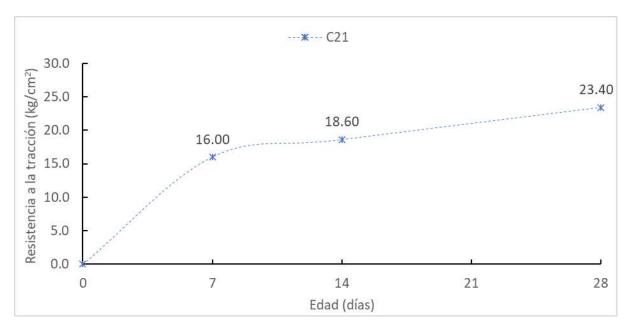


Fig. 23. Ensayo de resistencia a la tracción de concreto patrón C21.

El concreto de f'c=210 kg/cm² alcanzó una resistencia a la tracción máxima de 23.40 kg/cm² a los 28 días.

Concreto patrón f'c=210 kg/cm² con 5%CCC+ FP

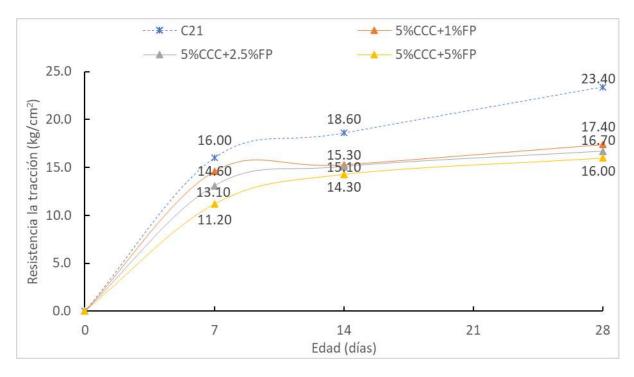


Fig. 24. Ensayo de resistencia a la tracción de concreto patrón C21 con 5%CCC+FP.

Nota. Datos obtenidos en laboratorio.

En la Figura N° 24 se puede observar el desempeño de las probetas ensayadas a los 7, 14

y 28 días. La combinación de concreto f'c=210 kg/cm² con 5%CCC y 1%FP presenta los resultados más favorables, alcanzando una resistencia a la tracción máxima de 17.40 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

Concreto patrón f'c=210 kg/cm² con 10%CCC+ FP

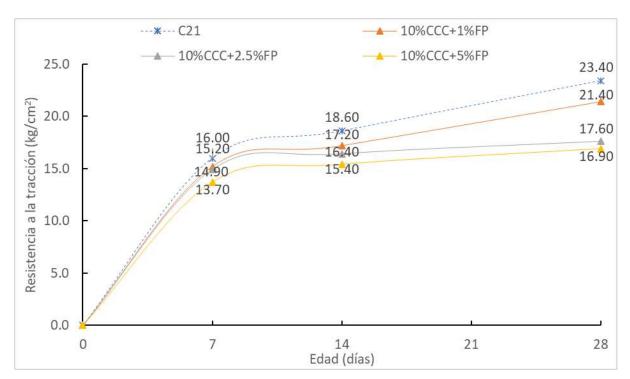


Fig. 25. Ensayo de resistencia a la tracción de concreto patrón C21 con 10%CCC+FP.

Nota. Datos obtenidos en laboratorio.

En la Figura N° 25 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=210 kg/cm² con 10%CCC y 1%FP presenta los resultados más favorables, alcanzando una resistencia a la tracción máxima de 21.40 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

Concreto patrón f'c=210 kg/cm² con 15%CCC+ FP

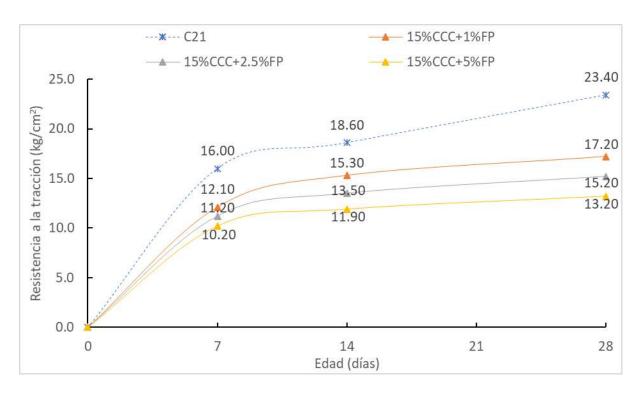


Fig. 26. Ensayo de resistencia a la tracción de concreto patrón C21 con 15%CCC+FP.

En la Figura N° 26 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=210 kg/cm² con 15%CCC y 1%FP presenta los resultados más favorables, alcanzando una resistencia a la tracción máxima de 21.40 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

3.1.3.3. Resistencia la flexión – NTP 339.078 Concreto patrón f'c=210 kg/cm²

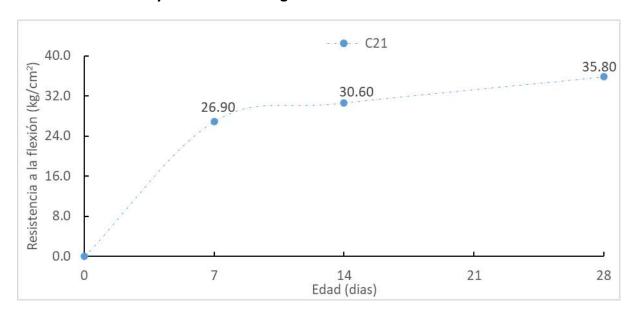


Fig. 27. Ensayo de resistencia a la flexión de concreto patrón C21.

El concreto de f'c=210 kg/cm² alcanzó una resistencia a la flexión máxima de 35.80 kg/cm² a los 28 días.

Concreto patrón f'c=210 kg/cm² con 5%CCC+ FP

Fig. 28. Ensayo de resistencia a la flexión de concreto patrón C21 con 5%CCC+FP.

Nota. Datos obtenidos en laboratorio.

En la Figura N° 28 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=210 kg/cm² con 5%CCC y 1%FP presenta los resultados más favorables, alcanzando una resistencia a la flexión máxima de 31.30 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

Concreto patrón f'c=210 kg/cm² con 10%CCC+ FP

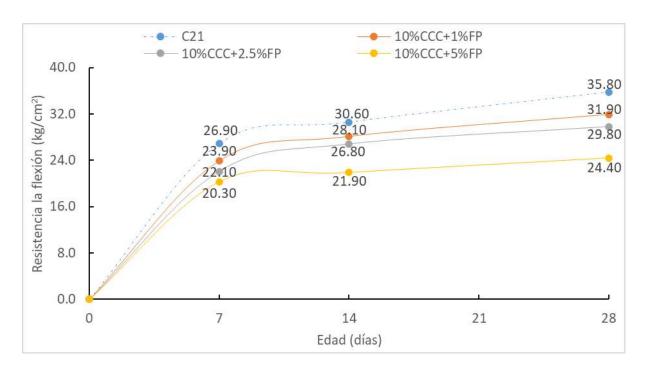


Fig. 29. Ensayo de resistencia a la flexión de concreto patrón C21 con 10%CCC+FP.

En la Figura N° 29 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=210 kg/cm² con 10%CCC y 1%FP presenta los resultados más favorables, alcanzando una resistencia a la flexión máxima de 31.90 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

Concreto patrón f'c=210 kg/cm² con 15%CCC+ FP

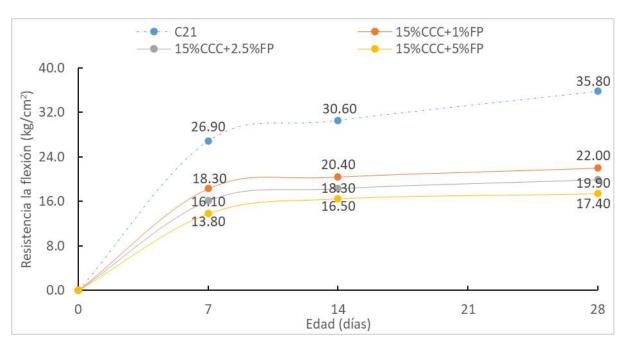


Fig. 30. Ensayo de resistencia a la flexión de concreto patrón C21 con 15%CCC+FP.

Nota. Datos obtenidos en laboratorio.

En la Figura N° 30 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=210 kg/cm² con 15%CCC y 1%FP presenta los resultados más favorables, alcanzando una resistencia a la flexión máxima de 22.00 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

3.1.4. Respecto al objetivo N° 3, características mecánicas del concreto f'c=280 kg/cm²

3.1.4.1. Resistencia la compresión – NTP 339.084

Concreto patrón f'c=280 kg/cm²

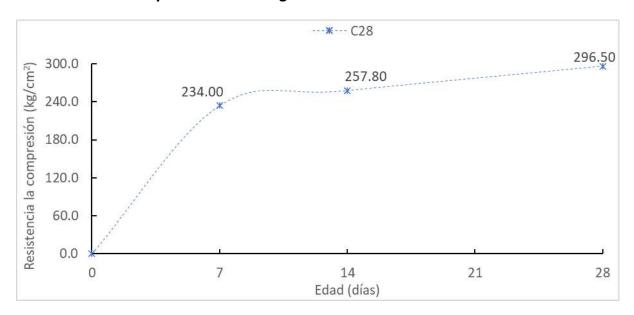


Fig. 31. Ensayo de resistencia a la compresión de concreto patrón C28.

Nota. Datos obtenidos en laboratorio.

El concreto de f'c=280 kg/cm² alcanzó una resistencia a la compresión máxima de 296.50 kg/cm² a los 28 días.

Concreto patrón f'c=280 kg/cm² con 5%CCC+ FP

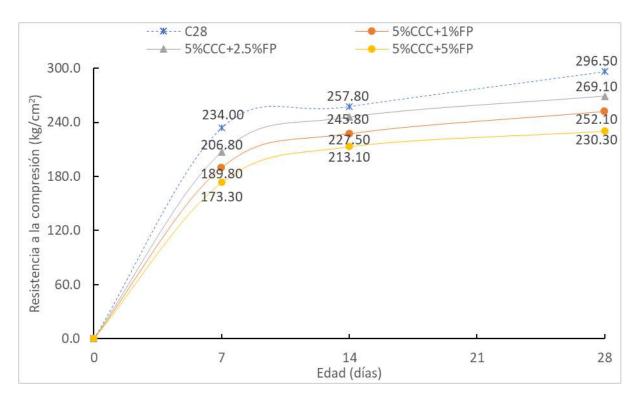
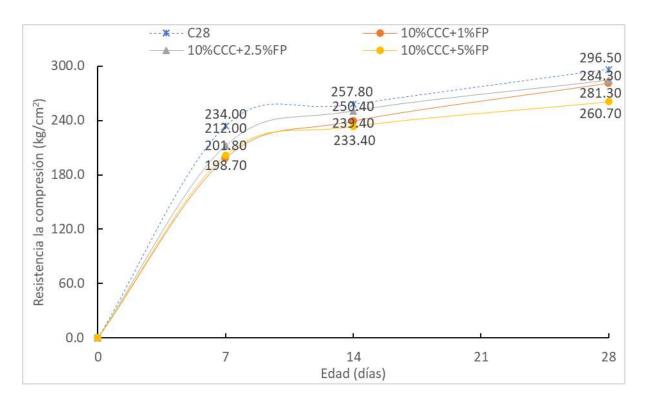



Fig. 32. Ensayo de resistencia a la compresión de concreto patrón C28 con 5%CCC+FP.

En la Figura N° 32 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=280 kg/cm² con 5%CCC y 2.5%FP presenta los resultados más favorables, alcanzando una resistencia a la compresión máxima de 269.10 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

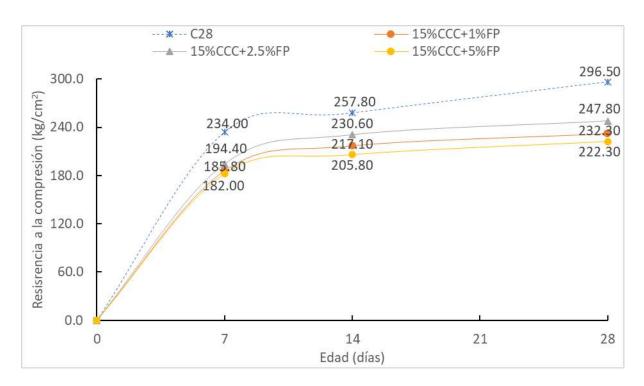

Concreto patrón f'c=280 kg/cm² con 10%CCC+ FP

Fig. 33. Ensayo de resistencia a la compresión de concreto patrón C28 con 10%CCC+FP. **Nota.** Datos obtenidos en laboratorio.

En la Figura N° 33 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=280 kg/cm² con 10%CCC y 2.5%FP presenta los resultados más favorables, alcanzando una resistencia a la compresión máxima de 284.30 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

Concreto patrón f'c=280 kg/cm² con 15%CCC+ FP

Fig. 34. Ensayo de resistencia a la compresión de concreto patrón C28 con 15%CCC+FP. **Nota.** Datos obtenidos en laboratorio.

En la Figura N° 34 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=280 kg/cm² con 15%CCC y 2.5%FP presenta los resultados más favorables, alcanzando una resistencia a la compresión máxima de 247.80 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

3.1.4.2. Resistencia la tracción – NTP 339.084 Concreto patrón f'c=280 kg/cm²

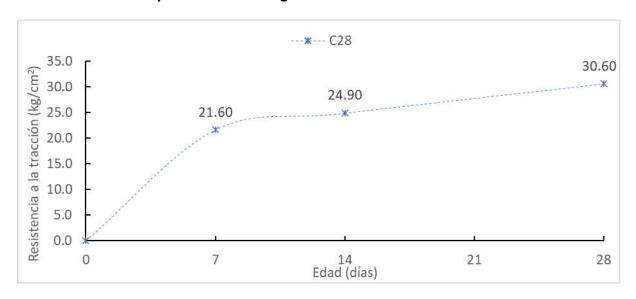


Fig. 35. Ensayo de resistencia a la tracción de concreto patrón C28.

El concreto de f'c=280 kg/cm² alcanzó una resistencia a la tracción máxima de 30.60 kg/cm² a los 28 días.

Concreto patrón f'c=280 kg/cm² con 5%CCC+ FP

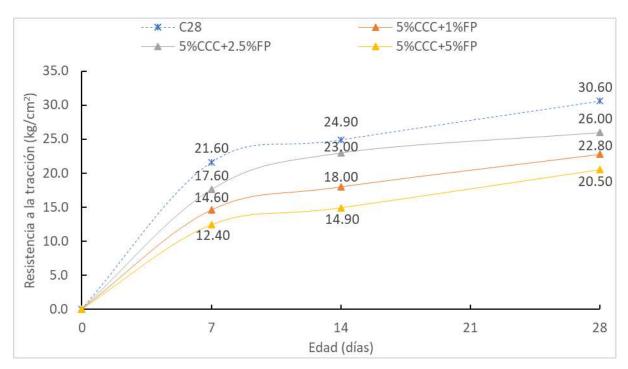


Fig. 36. Ensayo de resistencia a la tracción de concreto patrón C28 con 5%CCC+FP.

Nota. Datos obtenidos en laboratorio.

En la Figura N° 36 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=280 kg/cm² con 5%CCC y 2.5%FP presenta los resultados más favorables, alcanzando una resistencia a la tracción máxima de 26.00 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

Concreto patrón f'c=280 kg/cm² con 10%CCC+ FP

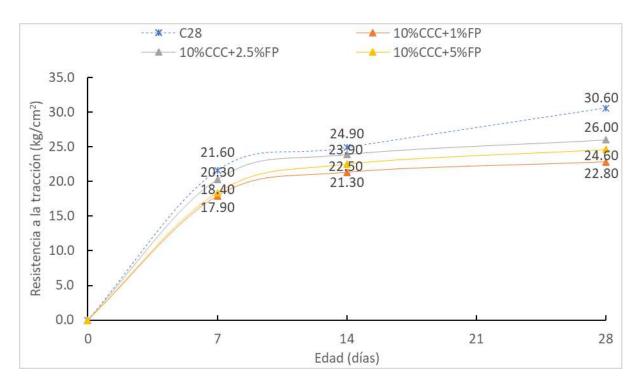


Fig. 37. Ensayo de resistencia a la tracción de concreto patrón C28 con 10%CCC+FP.

En la Figura N° 37 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=280 kg/cm² con 10%CCC y 2.5%FP presenta los resultados más favorables, alcanzando una resistencia a la tracción máxima de 26.00 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

Concreto patrón f'c=280 kg/cm² con 15%CCC+ FP

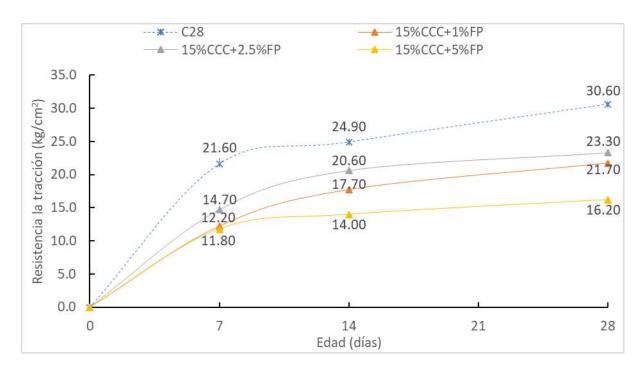


Fig. 38. Ensayo de resistencia a la tracción de concreto patrón C28 con 15%CCC+FP.

En la Figura N° 37 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=280 kg/cm² con 15%CCC y 2.5%FP presenta los resultados más favorables, alcanzando una resistencia a la tracción máxima de 23.30 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

3.1.4.3. Resistencia la flexión – NTP 339.078 Concreto patrón f'c=280 kg/cm²

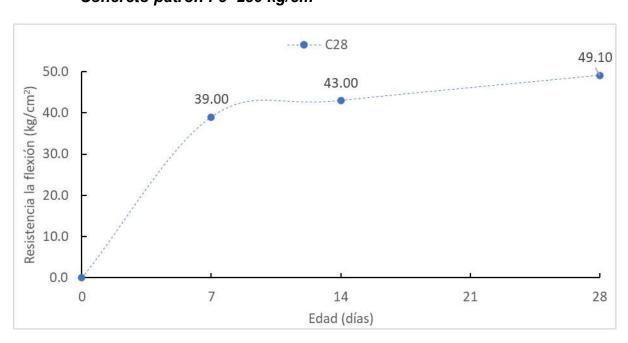


Fig. 39. Ensayo de resistencia a la flexión de concreto patrón C28.

El concreto de f'c=280 kg/cm² alcanzó una resistencia a la flexión máxima de 49.10 kg/cm² a los 28 días.

Concreto patrón f'c=280 kg/cm² con 5%CCC+ FP

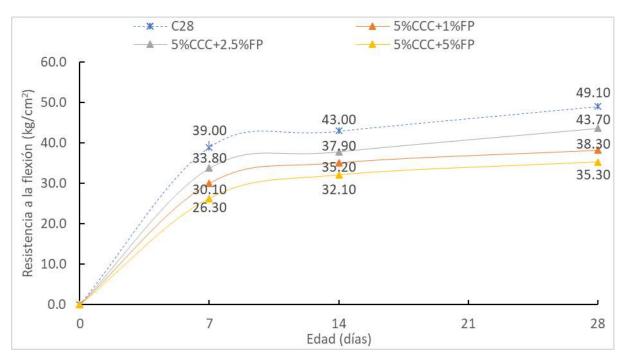


Fig. 40. Ensayo de resistencia a la flexión de concreto patrón C28 con 5%CCC+FP.

Nota. Datos obtenidos en laboratorio.

En la Figura N° 40 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=280 kg/cm² con 5%CCC y 2.5%FP presenta los resultados más favorables, alcanzando una resistencia a la flexión máxima de 43.70 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

Concreto patrón f'c=280 kg/cm² con 10%CCC+ FP

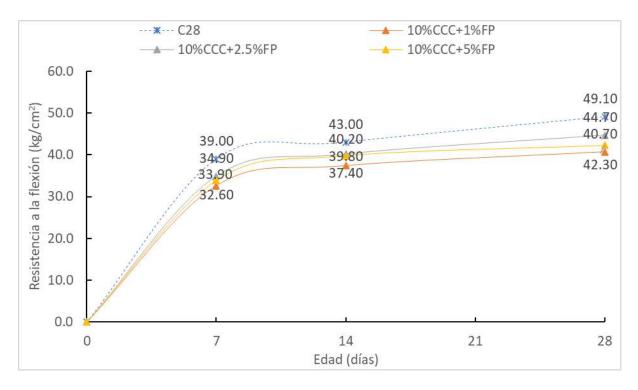


Fig. 41. Ensayo de resistencia a la flexión de concreto patrón C28 con 10%CCC+FP.

En la Figura N° 41 se puede observar el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=280 kg/cm² con 10%CCC y 2.5%FP presenta los resultados más favorables, alcanzando una resistencia a la flexión máxima de 44.70 kg/cm², está resistencia se va reduciendo a medida que se aumenta el contenido de FP.

Concreto patrón f'c=280 kg/cm² con 15%CCC+ FP

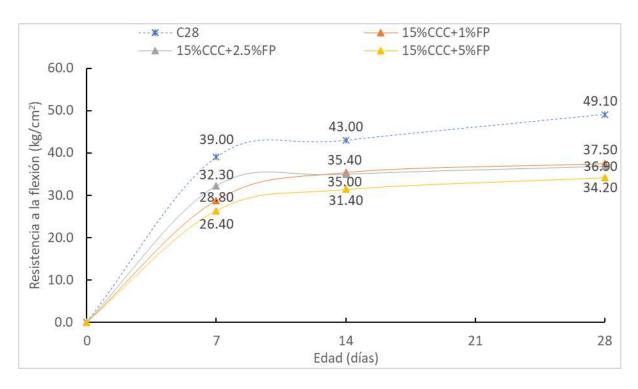


Fig. 42. Ensayo de resistencia a la flexión de concreto patrón C28 con 15%CCC+FP.

La Figura N° 42 evidencia el desempeño de las probetas ensayadas a los 7, 14 y 28 días. La combinación de concreto f'c=280 kg/cm² con 15%CCC y 1%FP alcanza una resistencia a la flexión máxima de 37.50 kg/cm², sin embargo, está resistencia se va reduciendo mientras aumenta el contenido de FP.

3.2. Discusión

Los resultados obtenidos respecto a compresión fueron similares a la investigación de Mohamed & Djamila [21] quienes demuestran que incorporar de residuos de café influye en la resistencia a la compresión del concreto, de igual forma Reta & Mahto [60] y Gedefaw et al. [23] respaldan la investigación al demostrar que si se sustituye el cemento de manera parcial por CCC la capacidad del concreto de resistir a la compresión es afectada.

Los resultados obtenidos respecto a tracción fueron semejantes a la investigación de Tarekegn et al. [24] quien señala que la adición CCC en la mezcla de concreto disminuye la resistencia a la tracción. Por otro lado, las investigaciones de Zahid et al. [61] y Zhang et al. [62] refuerzan la investigación al indicar que el concreto resiste a la tracción gracias a la adición de FP

Los resultados respecto a la flexión del concreto fueron similares a Tarekegn et al. [24], quien en su investigación demuestran que la resistencia a la flexión se ve afectada por la sustitución parcial del cemento por CCC. Así mismo, Abdul et al. [6] está de acuerdo que la adición de FP en el concreto aumenta la resistencia a la flexión.

Por otro lado, los resultados de la investigación muestran que la FP tiene un mejor desempeño en el concreto a menores cantidad, esto es afirmado por Jalixto & Percca [26], quienes señalan que el valor máximo de adición de FP es 0.3%, ya que a medida que se aumenta las cantidades de FP se ve comprometida la mezcla de concreto. Además, en esta investigación la aplicación de FP se ve afectada por la cantidad de CCC añadida a la mezcla de concreto.

También se identificó que el concreto con 10% CCC y 1% de FP representa la combinación óptima para una resistencia de 210 kg/cm². Además, se registró que 10% de CCC con 2.5% de FP es la combinación óptima para concretos con una resistencia de 280 kg/cm², de manera que no alteren sus propiedades.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

El presente estudio permitió determinar la interpretación de los áridos y el análisis mecánico del concreto con adiciones de CCC y FP mediante un análisis de rotura de probetas y vigas de diferentes edades y distintas dosificaciones, lo que nos permitió concluir que:

Respecto al objetivo N° 1, el estudio de canteras permitió demostrar las cualidades de los áridos más aptos para realizar una buena producción de concreto, además de obedecer con lo especificado en la norma, siendo estas: la cantera "Corporación Guevara – Pátapo" de donde se optó por utilizar el agregado fino, presentando una finura de 2.61 y el agregado grueso de la cantera "Corporación Asfalpaca – Tres Tomas" que presenta un tamaño máximo nominal de 1 ½", siendo estos indicadores para la producción de concretos de buena trabajabilidad.

Respecto al objetivo N° 2, del análisis mecánico del concreto f'c=210 kg/cm² con CCC y FP se concluyó que: Los mejores resultados para la resistencia a la compresión se presenta con una combinación de 5%CCC+1%FP, en la resistencia la tracción y flexión con una combinación de 10%CCC+1%FP; con una diferencia de 8.94%, 8.55% y 10.89 respectivamente de acuerdo al concreto patrón C21.

Respecto al objetivo N° 3, del análisis mecánico del concreto f'c=280 kg/cm² con CCC y FP se concluyó que: Se presente óptimos resultados para la resistencia la compresión con una combinación de 10%CCC+2.5%FP, en la resistencia a la tracción y flexión con una combinación de 10%CCC+2.5%FP; con una diferencia de 4.11%, 15.03% y 8.96% respectivamente de acuerdo al concreto patrón C28.

Respecto al objetivo N° 4, en base al análisis mecánico de las propiedades del concreto, se determinó que la combinación óptima para concretos f'c=210 kg/cm² es de 10%CCC+1%FP y para concretos de f'c=280 kg/cm² es de 10%CCC+2.5%FP.

4.2. Recomendaciones

Se recomienda realizar una exploración sistemática de trabajos que se hayan realizado de preferencia con los materiales seleccionados en el presente estudio, de esta manera se podrá determinar de manera correcta los porcentajes adecuados para llevar a cabo una investigación.

Se sugiere llevar a cabo estudios previos como el estudio de canteras la cual permite conocer a mejor detalle las características de los áridos a emplear y facilitará la obtención de resultados confiables al momento de realizar los ensayos mecánicos correspondiente y analizar su comportamiento.

Se recomienda la adición de ceniza a la mezcla de concreto en dosificaciones menores al 10%, ya que los resultados demostraron que a mayor cantidad de ceniza las características del concreto se ven afectadas.

Se recomienda realizar un análisis mecánico de cascarilla café y polipropileno de manera independiente para evaluar el desempeño del concreto y determinar un porcentaje óptimo de cada uno de los materiales. De esta manera podremos obtener referencias para realizar diseños de mezcla con otras cenizas volantes y/o fibras, para concretos 210 - 280 kg/cm².

REFERENCIAS

- [1] A. Kumar and A. Gupta, "Investigation of the effect of bagasse ash, hooked steel fibers and glassfibers on the mechanical properties of concrete," *Materials Today: Proceedings*, vol. 44, no. 1, pp. 801-807, 2021.
- [2] V. Charitha, V. Athira, V. Jittin, A. Bahurudeen and P. Nanthagopalan, "Use of different agro-waste ashes in concrete for effective upcycling of locally available resources," *Construction and Building Materials*, vol. 285, p. 122851, 2021.
- [3] M. Van Keulen and J. Kirchherr, "The implementation of the circular economy: barriers and enablers in the coffee value chain," *Journal of Cleaner Production*, vol. 281, p. 125033, 2021.
- [4] K. Gaddam, "Sustainability studies on concrete partial replacement of sugarcane granular bagasse-ash in cement," *IOP Conference Series: Earth and,* vol. 822, no. 1, p. 9, 2021.
- [5] W. Hareru, F. Asfaw and T. Ghebrab, "Physical and Chemical Characterization of Coffee Husk Ash Effect on Partial Replacement of Cement in Concrete Production," *International Journal of Sustainable Construction Engineering and Technology*, vol. 13, no. 1, pp. 167-184, 2022.
- [6] A. Abdul, S. Muhammad, I. Muhammad, I. Yasir, A. Usman, A. Hisham and D. Ahmed, "Coupled effect of polypropylene fibers and slag on the impact resistance and mechanical properties of concrete," *Materials*, vol. 15, no. 16, p. 5654, 2022.
- [7] D. Gautam, R. Adhikari, R. Rupakhety and K. Pushkar, "An empirical method for seismic vulnerability assessment of Nepali school buildings," *Bulletin of Earthquake Engineering*, vol. 18, no. 13, p. 5965–5982, 2020.
- [8] G. Moelich, J. van Zyl, N. Rabie and R. Combrinck, "The influence of solar radiation on plastic shrinkage cracking in concrete," *Cement and Concrete Composites*, vol. 123, p.

- 104182, 2021.
- [9] A. Ahmed, A. Gamil, T. S.M., Z. Abotalib and O. Abdullah, "Advances on concrete strength properties after adding polypropylene fibers from health personal protective equipment (PPE) of COVID-19: Implication on waste management and sustainable environment," *Physics and Chemistry of the Earth, Parts A/B/C*, vol. 128, p. 103260, 2022.
- [10] H. Zhu, Y. Hu, Q. Lin and R. Ma, "Restrained cracking failure behavior of concrete due to temperature and shrinkage," *Construction and Building Materials*, vol. 244, p. 118318, 2020.
- [11] C. Detquizán, «Diseño de concreto estructural empleando fibra de polipropileno para reforzamiento de viviendas autoconstruidas en las Delicias de Villa, Chorrillos 2021,» Lima, 2021.
- [12] S. Huaquisto y G. Belizario, «Utilización de la ceniza volante en la dosificación del concreto como sustituto del cemento,» Revista de Investigaciones Altoandinas, vol. 20, nº 2, pp. 225-234, 2018.
- [13] R. Castoldi, L. Souza and F. Andrade, "Comparative study on the mechanical behavior and durability of polypropylene and sisal fiber reinforced concretes," *Construction and Building Materials*, vol. 211, pp. 617-628, 2019.
- [14] S. Muñoz, F. Sandoval, E. Martínez y J. Pazos, «Revisión de la resistencia a la compresión del concreto incorporando variedades de adiciones de fibras,» Revista Cubana de Ingeniería, vol. 12, nº 1, pp. 89-102, 2021.
- [15] G. Vilchez y R. Vilchez, «Diseño de Concreto con Adición de Fibras Secas de Maíz para Habilitaciones en el Distrito de Villa María del Triunfo,» 2019.
- [16] Fórum Cultural del Café, «Café de Perú,» fórumcafé, nº 82, pp. 6-10, 2020.
- [17] O. Huamán, «Evaluación de resistencia a compresión del concreto f'c 210 kg/m2, con

- adición de ceniza de cascara de café,» 2021.
- [18] Y. Coronel, L. Altamirano y S. Muñoz, «Cenizas y fibras utilizadas en la elaboración de concreto,» Revista del Instituto de investigación de la Facultad de minas, metalurgia y ciencias geográficas, vol. 25, nº 49, pp. 321-329, 2022.
- [19] R. Ramos, «Efecto de la incorporación de cenizas de ichu en la elaboración de concreto estructural en el distrito de Chaupimarca, Pasco 2021,» 2022.
- [20] L. Lorrén, «Diseño definitivo de la infraestructura educativa inicial pública N°10982 -Hacienda Chacupe, distrito de la Victoria, provincia de Chiclayo.,» Chiclayo, 2018.
- [21] G. Mohamed and B. Djamila, "Properties of dune sand concrete containing coffee waste," *MATEC Web of Conferences*, vol. 149, no. 01039, 2018.
- [22] A. Demissew, F. Fufa and S. Assefa, "Partial replacement of cement by coffe husk ash for C-25 concrete production," *Journal of Civil Engineering, Science and Technology,* vol. 10, no. 1, pp. 12-21, 2019.
- [23] A. Gedefaw, B. Worku, S. Asrat, B. Tilahun and M. Damtie, "Experimental Investigation on the Effects of Coffee Husk Ash as Partial Replacement of Cement on Concrete Properties," Advances in Materials Science and Engineering, vol. 2022, p. 10, 2022.
- [24] M. Tarekegn, K. Getachew and G. Kenea, "Experimental Investigation of Concrete Characteristics Strength with Partial Replacement of Cement by Hybrid Coffee Husk and Sugarcane Bagasse Ash," Advances in Materials Science and Engineering, vol. 2022, 2022.
- [25] R. Dávila y J. Vigo, «Utilización de fibras de polipropileno recicladas de mascarillas faciales para evaluar las propiedades mecánicas del concreto 210 kg/cm2, Trujillo 2021,» 2021.
- [26] B. Jalixto y A. Percca, «Influencia de las fibras de polipropileno en las propiedades plásticas y mecánicas del concreto F'c=210, 280 Kg/cm2- Cusco 2021,» 2021.

- [27] P. Ávila, «Influencia de la adición de fibras de polipropileno en el diseño de una viga de concreto armado,» 2020.
- [28] M. Rosas, «Comparación de la resistencia en kg/cm2 del concreto común y el concreto con ceniza de cáscara de café como sustituto porcentual del agregado fino,» 2020.
- [29] L. Weninger, «Influencia de la adición de ceniza de cascarilla de café en las propiedades físicas y mecánicas del concreto, Piura,» 2020.
- [30] P. Olórtegui y M. Vidarte, «Evaluación de la resistencia a compresión del concreto f'c=175 kg/cm2, incorporando fibras de polipropileno del tipo multifilamento, Moyobamba, 2020,» 2020.
- [31] L. Mendizabal, «Fibra de Polipropileno y las Variaciones de las Propiedades Mecánicas del Concreto f'c = 210 kg/cm2,» 2019.
- [32] Y. Nuñez y G. Suarez, «Resistencia a la compresión del concreto f'c=175 kg/cm² con la adición de cascarilla entera y molida de café, 2021,» 2022.
- [33] W. García, «Evaluación de las propiedades físico-mecánias de bloques de concreto ligero corporando polvo de escoria de aluminio, Lambayeque 2020,» 2022.
- [34] J. Carbonell y C. Puccio, «Diseño de infraestructura vial para transitabilidad entre localidades 25 de febrero Km0+000, Pueblo Nuevo y Mochumí Km14+660, Mórrope, Lambayeque - 2018,» 2018.
- [35] E. Crespo, Materiales de construcción para edificación y obra civil, San Vicente: Editorial Club Universitario, 2009.
- [36] M. León y F. Ramírez, «Caracterización morfológica de agregados para concreto,» Revista ingeniería de construcción, vol. 26, 2010.
- [37] NTP 400.011, AGREGADOS. Definición y clasificación de agregados para uso en morteros y concretos, 3a edición ed., 2020.

- [38] NTP 334.084, CEMENTOS. Aditivos funcionales a usarse en la producción de cementos Pórtland. Requisitos, 3a edición ed., 2019.
- [39] K. Aswed, M. Hassan and H. Al-Quraishi, "Optimisation and Prediction of Fresh Ultra-High-Performance Concrete Properties Enhanced with Nanosilica," *Journal of Advanced Concrete Technology*, vol. 20, no. 2, 2022.
- [40] H. Wong, A. Poole, B. Wells, M. Eden, R. Barnes, J. Ferrari, R. Fox, M. Yio, O. Copuroglu, G. Guðmundsson, R. Hardie, U. Jakobsen, K. Makoubi, A. Mitchinson, P. Raybould, J. Strongman and N. Buenfeld, "Microscopy techniques for determining water-cement (w/c) ratio in hardened concrete: a round-robin assessment," *Materials and Structures*, vol. 53, no. 25, 2020.
- [41] M. Saidi, K. Jadidi and M. Karakouzian, "Assessment of quality of fresh concrete delivered at varying temperatures," *CivilEng*, pp. 135-146, 2022.
- [42] T. Lee and J. Lee, "Setting time and compressive strength prediction model of concrete by nondestructive ultrasonic pulse velocity testing at early age," *Construction and building materials*, vol. 252, p. 119027, 2020.
- [43] S. Manzoor and A. Yousuf, "Stabilisation of Soils with Lime: A Review," *Journal of Materials and Environmental Science*, vol. 11, no. 9, pp. 1538-1551, 2020.
- [44] G. Medina y M. Ramos, «Análisis de las propiedades físicas y mecánicas del concreto adicionando dosificaciones de viruta de acero tratada con criba vibratoria, Lima,» 2021.
- [45] J. Calsina, «Análisis de las características mecánicas del concreto incorporando agregado de concreto reciclado en la ciudad de Juliaca 2021,» 2021.
- [46] NTP 339.034, CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras cilíndricas. Método de ensayo, 5a edición ed., 2021.
- [47] NTP 339.078, CONCRETO. Determinación de la resistencia a la flexión del concreto

- en vigas simplemente apoyadas con cargas a los tercios de la distancia entre apoyos. Método de ensayo, 4a edición ed., 2022.
- [48] L. Sembrera, «Evaluación de las propiedades físicas y mecánicas del concreto con sustitución de cenizas de bagazo de caña,» 2022.
- [49] NTP 339.084, CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión diametral de una probeta cilíndrica, 2012.
- [50] E. Sousa, R. Alves, L. Barreto and A. Silva, "Analysis of pathological manifestations and structural recovery of the sports gymnasium for the 2016 Olympic Games in Brazil," *Electronic Journal of Geotechnical Engineering*, vol. 20, no. 26, p. 13023– 13035, 2016.
- [51] J. Molocho y D. Rodíguez, «Adición de la cascarilla de café y sus cenizas para mejorar la resistencia a la compresión del concreto f'c=210 kg/cm2, en las viviendas económicas de Moyobamba,» 2020.
- [52] R. Iparraguirre, «Influencia de la adición de la ceniza de la cascarilla de café en las propiedades del concreto f'c = 210 kg/cm2, Oxapampa,» 2021.
- [53] E. Manals, D. Salas y M. Penedo, «Caracterización de la biomasa vegetal "cascarilla de café",» *Tecnología química*, vol. 38, nº 1, pp. 169-181, 2018.
 - W. Carhuapoma, «Efecto de las fibras de polipropileno para concretos de resistencias a la compresion de 210 kg/cm2 y 280 kg/cm2, elaborados con agregados de la cantera de Cochamarca-Pasco,» 2018.
- [55] NTP 339.204, CONCRETO. Especificación normalizada del concreto reforzado con fibra, 2016.
- [56] E. Nicomendes, «Tipos de Investigación,» pp. 1-4, 2018.
- [57] G. Guevara, A. Verdesoto y N. Castro, «Metodologías de investigación educativa

- (descriptivas, experimentales, participativas, y de investigación-acción),» *RECIMUNDO*, pp. 163-173, 2020.
- [58] NTP 334.051, CEMENTOS. Determinación de la resistencia a la compresión de morteros de cemento hidráulico usando especímenes cúbicos de 50 mm de lado. Método de ensayo, 7 ed., 2022.
- [59] M. Nizama y L. Nizama, «El enfoque cualitativo en la investigación jurídica, proyecto de investigación cualitativa y seminario de tesis,» VOX JURIS, vol. 38, nº 2, pp. 69-90, 2020.
- [60] Y. Reta and S. Mahto, "Experimental investigation on coffee husk ash as a partial replacement of cement for C-25 concrete," *CIKITUSI*, vol. 6, no. 6, pp. 152-158, 2019.
- [61] F. Zahid, M. Shahjalal, K. Islam, M. Tiznobaik and A. Shahria, "Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber," *Construction and Building Materials*, vol. 225, pp. 983-996, 2019.
- [62] H. Zhang, L. Wang, K. Zheng, T. Bakura and P. G. Totakhil, "Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete," *Construction and Building Materials*, vol. 187, pp. 584-595, 2018.

ANEXOS

Anexo 1: CARTA DE AUTORIZACIÓN PARA EL RECOLECCIÓN DE LA INFORMACIÓN

Chiclayo, 10 de junio del 2023

Quien suscribe:

Sr. Royser H. Burga Caycay

Representante Legal – Empresa Constructora y Consultoría A&R

AUTORIZA: Permiso para recojo de información pertinente en función del

proyecto de investigación, denominada ANÁLISIS MECÁNICO DEL CONCRETO

ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ Y REFORZADO CON FIBRA DE

POLIPROPILENO

Por el presente, el que suscribe, Royser Burga Caycay representante legal de la empresa

Constructora y Consultoria A&R AUTORIZO a los estudiantes Alejandria Bustamante

Anderson y Rivera Segura Miguel identificados con DNI N° 76827889 y DNI N° 72455727

respectivamente, estudiantes del Programa de Estudios de la escuela de Ingeniería Civil. Y

autores del trabajo de investigación denominado ANÁLISIS DE LAS PROPIEDADES

MECÁNICAS DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ Y

REFORZADO CON FIBRA DE POLIPROPILENO al uso de dicha información que conforma

el expediente técnico, así como hojas de memorias, cálculos entre otros como planos para

efectos exclusivamente académicos de la elaboración de tesis, enunciada líneas arriba de

quien solicita se garantice la absoluta confidencialidad de la información solicitada.

Atentamente.

CONSTRUCTORAN CONSULTORIA

Ing Royser H Barga Cayca

Nombre y Apellidos: Royser H. Burga Caycay

DNI Nº: 46909198

Cargo de la empresa: Gerente General

82

Anexo 2: VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE EL ANÁLISIS DE LAS PROPIEDADES MECÁNICAS DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ Y REFORZADO CON FIBRA DE POLIPROPILENO

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ANÁLISIS DE LAS PROPIEDADES MECÁNICAS DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ Y REFORZADO CON FIBRA DE POLIPROPILENO

Estadísticas de fiabilidad a Compresión

		Varianza de		Alfa de
		escala si el	Correlación total	Cronbach si el
		elemento se ha	de elementos	elemento se ha
		suprimido	corregida	suprimido
5%CCC Y 1% FP		206201,805	,999	,996
5%CCC Y 2.5% FP		204987,046	,990	,997
5%CCC Y 5% FP		210166,468	,992	,997
10%CCC Y 1% FP		205420,320	1,000	,996
10%CCC Y 2.5% FP	210	212440,177	1,000	,997
10%CCC Y 5% FP		211651,189	,999	,997
15%CCC Y 1% FP		206340,302	,999	996
15%CCC Y 2.5% FP		209470,878	,994	.997
15%CCC Y 5% FP		213889,935	,993	,997
5%CCC Y 1% FP		201684,226	1,000	,996
5%CCC Y 2.5% FP		201763,768	1,000	,996
5%CCC Y 5% FP		203849,417	,994	,996
10%CCC Y 1% FP		198829,168	,998	,997
10%CCC Y 2.5% FP	280	193519,782	,983	,998
10%CCC Y 5% FP		202075,915	,999	996
15%CCC Y 1% FP		205574,093	,996	,996
15%CCC Y 2.5% FP		208781,298	,997	,997
15%CCC Y 5% FP		211878,270	1,000	.997

ANOVA

		Suma de		Media		
		cuadrados	gl	cuadrática	F	Sig
Inter sujetos		25659,756	2	12829,878		
Intra sujetos	Entre elementos	53336,357	17	3137,433	77,374	,000
	Residuo	1378,672	34	40,549		
	Total	54715,030	51	1072,844		
Total		80374,786	53	1516,505		

Media global = 197,0135

Estadísticas de fiabilidad a Flexión

Alfa de Cronbach	N de elementos
,996	18

Estadisticas de total de elemento

		Varianza de		Alfa de
		escala si el	Correlación total	Cronbach si el
		elemento se ha	de elementos	elemento se ha
		suprimido	corregida	suprimido
5%CCC Y 1% FP		3289,043	964	.991
5%CCC Y 2.5% FP		3453,623	1,000	,991
5%CCC Y 5% FP		3521,023	,989	,992
10%CCC Y 1% FP		3274,813	,998	,991
10%CCC Y 2.5% FP	210	3288,263	999	,991
10%CCC Y 5% FP		3504,870	,976	,992
15%CCC Y 1% FP		3524,243	1,000	,992
15%CCC Y 2.5% FP		3518,040	1,000	,992
15%CCC Y 5% FP		3526,510	,980	,992
5%CCC Y 1% FP		3258,943	,998	,991
5%CCC Y 2.5% FP		3173,943	,980	,991
5%CCC Y 5% FP		3212,013	,996	,991
10%CCC Y 1% FP		3180,123	,995	,991
10%CCC Y 2.5% FP	280	3171,863	,999	,991
10%CCC Y 5% FP		3331,843	,944	,991
15%CCC Y 1% FP		3224,410	.976	,991
15%CCC Y 2.5% FP		3470,343	1,000	,992
15%CCC Y 5% FP		3281,213	.997	,991

ANOVA Media Suma de cuadrática Sig cuadrados gl Inter sujetos 416,444 2 208,222 17 178,881 105,208 ,000 Intra sujetos Entre elementos 3040,982 57,809 1,700 Residuo 34 51 60,761 3098,791 Total Total 3515,235 66,325

Media global = 202,0413

Estadísticas de fiabilidad Tracción

Alfa de Cronbach	N de elementos
989	18

		Varianza de		Alfa de
		escala si el	Correlación total	Cronbach si el
		elemento se ha	de elementos	elemento se ha
		suprimido	corregida	suprimido
5%CCC Y 1% FP		2341,438	,942	.990
5%CCC Y 2.5% FP		2300,109	1,000	,989
5%CCC Y 5% FP		2241,643	,993	,988
10%CCC Y 1% FP		2181,566	,963	,988
10%CCC Y 2.5% FP	210	2343,561	1,000	,990
10%CCC Y 5% FP		2319,597	1,000	,989
15%CCC Y 1% FP		2227,605	,995	,988
15%CCC Y 2.5% FP		2280,707	,999	,989
15%CCC Y 5% FP		2328,936	1,000	,989
5%CCC Y 1% FP		2087,935	,987	,988
5%CCC Y 2.5% FP		2073,880	,993	,989
5%CCC Y 5% FP		2095,687	,957	,989
10%CCC Y 1% FP		2236,303	.984	,988
10%CCC Y 2.5% FP	280	2199,154	,995	,988
10%CCC Y 5% FP		2175,189	,990	,988
15%CCC Y 1% FP		2024,753	,999	,989
15%CCC Y 2.5% FP		2063,519	.985	,989
15%CCC Y 5% FP		2262,540	.999	.989

		A	NOVA			
		Suma de		Media		
		cuadrados	gl	cuadrática	F	Sig
Inter sujetos		275,151	2	137,575		
Intra sujetos	Entre elementos	566,626	17	33,331	22,833	,000
	Residuo	49,633	34	1,460		
	Total	616,259	51	12,084		
Total		891,410	53	16,819		

Media global = 17,0720

En las tablas se observa que, el instrumento sobre Análisis de las propiedades mecánicas del concreto adicionando ceniza de cascarilla de café y reforzado con fibra de polipropilenoes válido (correlaciones de Pearson superan al valor de 0.30 y el valor de la prueba del análisis de varianza es altamente significativo p < 0.01) y confiable (el valor de consistencia alfa de cronbach es mayor a 0.80).

Luis Arturo Montenegro Conneche
Lic. Establistica
G. INVESTIGACION
DA EDUCACION
COESPE 262

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE ANÁLISIS DE LAS PROPIEDADES MECÁNICAS DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ Y REFORZADO CON FIBRA DE POLIPROPILENO

	Compresión	Flexión	Tracción
JUEZ 1	1	0	1
JUEZ 2	1	0	1
JUEZ 3	1	1	1
JUEZ 4	1	1	1
JUEZ 5	1	1	1

	Compresión	Flexion	Tracción
S	5	3	5
n	5		
c	2		
V de Aiken por preg	1	0.6	1

	Claridad
V de Aiken por criterio	0.8667

	Compresión	Flexión	Tracción
JUEZ 1	1	1	1
JUEZ 2	1	0	1
JUEZ 3	1	1	1
JUEZ 4	1	1	1
JUEZ 5	1	1	1

	Compresión	Flexión	Tracción
S	5	4	5
n	5		
c	2		
V de Aiken por preg =	1	0.8	1

	Contexto
V de Aiken por criterio	0.9333

	Compresión	Flexión	Tracción
JUEZ 1	1	1	1
JUEZ 2	1	1	1
JUEZ 3	1	1	1
JUEZ 4	1	1	1
JUEZ 5	1	0	1

	Compresión	Flexión	Tracción
S	5	4	5
n	5		
c	2		
V de Aiken por preg =	1	0.8	1

	Congruencia
V de Aiken por criterio	0.9333

	Compresión	Flexion	Tracción
JUEZ 1	0	1	1
JUEZ 2	0	1	1
JUEZ 3	0	1	1
JUEZ 4	1	1	1
JUEZ 5	1	1	1

	Compresión	Elevión	Tracción
	Compresion	Flexion	Haccion
S	2	5	5
n	5		
C	2		
V de Aiken por preg =	0.4	1	1

	Dominio del constructo
V de Aiken por criterio	0.8

V de Aiken del cuestionario 0 8833

En las tablas se observa sobre Evaluación de Propiedades Mecánicas del Concreto Adicionando Ceniza de Cascarilla de Café y Reforzado con Fibra de Polipropileno(FP)es válido (Este coeficiente puede obtener valores entre 0 hasta 1, a medida que va aumentando el valor de computado, el ítem tendrá una mayor validez de contenido).

Luis Arauro Montenegro Canacho
Luc. ESTADISTICA
MG. INVESTIGACION
DM. EDUCACION

Ficha de validación según AIKEN

Datos generales

nombres del informante	Cargo o Institución donde labora	instrumento de	Autor del Instrumento
Eysten Oblitas Terrillo Título de la Invest		Prueba de comprensión, flexión, tracción	Rivera Segura Miguel Eduardo Alejandria Bustamante Yelsen Anderson

Análisis de las propiedades mecánicas del concreto adicionando ceniza de cascarilla de café y reforzado con fibra de polipropileno

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	Α	Correcto
2	Α	Correcto

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte ms	Ma	laridad	Cor	ntext	Con	gruen	del	ninio nstructo
	Fc= 210 Kg/cm2	S	I No	SI	No	SI	No	SI	No
1	Compresión	X		X		X			X
2	Flexión		Х	X		X		X	
3	Tracción	Х		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Eysten Oblitas Terrillo Especialidad: Ing. Civil

INSENIERO CIVIL

Ficha de validación según AIKEN

I. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Quintanilla Castro Efrain Humberto	Ingeniero Civil	Prueba de comprensión, flexión, tracción	Rivera Segura Migue Eduardo Alejandria Bustamante Yelsen Anderson

Título de la Investigación:

Análisis de las propiedades mecánicas del concreto adicionando ceniza de cascarilla de café y reforzado con fibra de polipropileno

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN		
1	A	Correcto		
2	A	Correcto		

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte ms		ridad	Cor	ntext	Concla	gruen	Dom del con	inio structo
	Fc= 210 Kg/cm2	SI	No	SI	No	SI	No	SI	No
1	Compresión	X		X		X			X
2	Flexión		X		X	Х		X	
3	Tracción	X		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable (

) Apellidos y nombres del juez validador: Quintanilla Castro Efraín Humberto

Especialidad: Ing. Civil

ONSORCIO ANCIAS DEL ORIENTE

Ing. Efrain Humberto Quintamilla Castro MG AMBERTAL CIP N° 153650 RFE DEL ANEA SSOMA

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Yoner Chavez Burgos	Ing. Civil	Prueba de comprensión, flexión, tracción	Rivera Segura Miguel Eduardo Alejandria Bustamante Yelsen Anderson

Análisis de las propiedades mecánicas del concreto adicionando ceniza de cascarilla de café y reforzado con fibra de polipropileno

Aspectos de validación de cada Item H.

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	A	Correcto
2	A	Correcto

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte ms	Cla	ridad	Cor	ntext	Con	gruen	Dom del con:	inio structo
	Fc= 210 Kg/cm2	81	No	81	No	SI	No	Si	No
1	Compresión	Х		Х		X			X
2	Flexión	X		X		X		X	
3	Tracción	X	1	X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Yoner Chavez Burgos Especialidad: Ing. Civil

Ficha de validación según AIKEN

I. Datos generales

nombres del	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Andrés Gaspar de los Ríos Arbildo	ing. Civil	Prueba de comprensión, flexión, tracción	Rivera Segura Migue Eduardo Alejandria Bustamante Yelsen Anderson

Análisis de las propiedades mecánicas del concreto adicascarilla de café y reforzado con fibra de polipropileno

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	Α	Correcto
2	Α	Correcto

Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte ms	Cla	ridad	Cor	ntext	Con cia	gruen	Dom del con	inio structo
	Fc= 210 Kg/cm2	SI	No	SI	No	SI	No	SI	No
1	Compresión	X		X		X		X	
2	Flexión	X		X		X		X	
3	Tracción	X		X		X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Andrés Gaspar de los Ríos Arbildo Especialidad: Ing. Civil

eg. del Coleg. de Ing. Nº 20858

Ficha de validación según AIKEN

i. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
José Luis Delgado Sánchez	Residente de Obra	Prueba de comprensión, flexión, tracción	Rivera Segura Miguel Eduardo Alejandria Bustamante Yelsen Anderson

Análisis de las propiedades mecánicas del concreto adicionando ceniza de cascarilla de café y reforzado con fibra de polipropileno

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
1	Α	Todo bien
2	A	Todo bien

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte ms	Cla	ridad	Cor	ntext	Con	gruen	Dom del con:	inio structo
	Fc= 210 Kg/cm2	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		Х		X		X	
2	Flexión	Х		Х		X		X	
3	Tracción	X		Х	-	X		X	

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: José Luis Delgado Sánchez

Especialidad: Ing. Civil

JOSE LUIS DELGADO SANCHEZ INGENIERO CIVIL REG. CIP. Nº 312295

Anexo 3: ANÁLISIS DE ECONÓMICO POR M³ DEL CONCRETO F'C=210 KG/CM² Y F'C=280 KG/CM² CON LAS ADICIONES ÓPTIMAS CORRESPONDIENTES

Tabla XIXAnálisis de costos para concreto patrón de f'c=210 kg/cm²

Insumos	Unidad	Cantidad	Precio unitario	Parcial
Agua	gln	49.60	5.00	248.00
Cemento	bol	8.82	21.30	187.87
Agregado grueso	m^3	0.74	61.84	45.76
Agregado fino	m^3	0.47	55.93	26.29
Mano de obra	glb	1.00	110.00	110.00
Equipos	glb	1.00	15.00	15.00
	Te	otal		632.91

Tabla XXAnálisis de costos para concreto patrón de f'c=280 kg/cm²

Insumos	Unidad	Cantidad	Precio unitario	Parcial
Agua	gln	49.70	5.00	248.50
Cemento	bol	10.38	21.30	221.09
Agregado grueso	m^3	0.74	61.84	45.76
Agregado fino	m^3	0.44	55.93	24.61
Mano de obra	glb	1.00	110.00	110.00
Equipos	glb	1.00	15.00	15.00
	664.96			

Tabla XXIAnálisis de costos para concreto de f'c=210 kg/cm² adicionando 10%CCC y 1%FP

Insumos	Unidad	Cantidad	Precio unitario	Parcial
Agua	gln	49.60	5.00	248.00
Cemento	bol	8.82	21.30	187.87
Agregado grueso	m^3	0.74	61.84	45.76
Agregado fino	m^3	0.47	55.93	26.29
Ceniza de cascarilla de café	kg	38.00	17.30	657.40
Fibra de polipropileno	kg	4.00	42.00	168.00
Mano de obra	glb	1.00	110.00	110.00
Equipos	glb	1.00	15.00	15.00
	Total			1,458.31

Análisis de costos para concreto de f'c=280 kg/cm² adicionando 10%CCC y 2.5%FP

Insumos	Unidad	Cantidad	Precio unitario	Parcial
Agua	gln	49.70	5.00	248.00
Cemento	bol	10.38	21.30	221.09
Agregado grueso	m^3	0.74	61.84	45.76
Agregado fino	m^3	0.44	55.93	24.61
Ceniza de cascarilla de café	kg	44.00	17.30	761.20
Fibra de polipropileno	kg	11.00	42.00	462.00
Mano de obra	glb	1.00	110.00	110.00
Equipos	glb	1.00	15.00	15.00
	Total			1,888.16

La comparativa de precios por m³ entre el concreto patrón y el concreto con adiciones de CCC y FP muestra que el costo de producción de concreto aumenta en 130.41% y 183.95% para las resistencias de 210 kg/cm² y 280 kg/cm² respectivamente, lo que demuestra que económicamente es desfavorable.

Anexo 4: PANEL FOTOGRÁFICO

Fig. 43. Ensayo de peso unitario suelto y compactado del agregado.

Fig. 44. Ensayo de peso específico, absorción y contenido de humedad de los agregados.

Fig. 45. Preparación de la mezcla de concreto y Slump.

Fig. 46. Elaboración de las muestras de concreto

Fig. 47. Ensayos mecánicos de las muestras de concreto.

ESTUDIO DE CANTERAS

SOLICITADO POR: ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

PROYECTO:

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

SEPTIEMBRE 2022

ÍNDICE

١.	INTRODUCCIÓN	. 2
H.	GENERALIDADES.	. 3
2.1	OBJETIVO	. 3
2.2	METODOLOGÍA	. 3
2.3	UBICACIÓN DEL PROYECTO	. 4
Ш.	MARCO TEÓRICO	. 5
IV.	RESULTADOS DEL ANALISIS DE CANTERAS	11
V.	CONCLUSIONES Y RECOMENDACIONES	14
REF	FERENCIAS BIBLIOGRÁFICAS	16

INFORME TÉCNICO ESTUDIO DE CANTERAS

PROYECTO: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

I.INTRODUCCIÓN

El presente informe tiene por finalidad dar a conocer las actividades realizadas por el personal encargado del Control de Calidad (QC) para el Proyecto: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)". Las labores de Control de Calidad (QC) en esa fase del proyecto se refieren a los ensayos del agregado fino y agregado grueso, en cumplimiento de las especificaciones técnicas del proyecto para el diseño de mezclas de concreto.

El concreto es un material de construcción inventado y fabricado por el hombre a partir de una combinación adecuadamente dosificada y convenientemente mezclada de cemento Portland, agua, agregado fino y grueso; mezcla a la que se puede añadir aditivos, adiciones y fibra. Las propiedades y características del concreto para cada uso particular; así como para las especificaciones requeridas por los materiales empleados en la producción deben ceñirse a la normatividad NTP y MTC. Por ello, se debe tener plena conciencia que la calidad en las diferentes etapas del proceso constructivo es imprescindible y rentable en la medida que se evitan gastos de reparación y reforzamientos de las estructuras. El proceso de minimizar defectos y fallas en las obras de concreto requiere de buena preparación técnica y de un exigente control de calidad.

II.GENERALIDADES.

2.1 OBJETIVO

El estudio de las canteras comprende la ubicación, investigación y comprobación física, mecánica y química de los materiales agregados inertes. Se seleccionará únicamente aquella cantera que demuestren que la calidad y cantidad del material existente son adecuadas y suficientes para la construcción total de la estructura. Se realizará el análisis de los ensayos de agregados tanto fino como gruesos obtenidos de las siguientes canteras:

Cantera 1:

Agregado fino (Arena gruesa): Cantera Corporación Guevara - Pátapo Agregado grueso (Piedra): Cantera Corporación Guevara - Pátapo

Cantera 2:

Agregado fino (Arena gruesa): Cantera Chancadora Sicán Agregado grueso (Piedra chancada): Cantera Chancadora Sicán

Cantera 3:

Agregado fino (Arena gruesa): Cantera Asfalpaca – Tres tomas Agregado grueso (Piedra chancada): Cantera Asfalpaca – Tres tomas

2.2 METODOLOGÍA

Se realizó las siguientes actividades para el estudio de canteras:

- Reconocimiento de campo del área de la cantera considerada como fuentes de materiales granulares.
- Extracción de 1 muestras de la cantera.
- Ensayos de laboratorio con el objetivo de conocer las características necesarias para el proyecto como, para la arena se realizó ensayos de: granulometría, peso unitario suelto y compacto, equivalente de arena y para el agregado grueso se realizó los ensayos de: granulometría, peso unitario suelto y compacto, peso específico, equivalente de arena, terrones de arcillas y partículas friables, carbón y lignito, durabilidad del agregado y abrasión.

2.3 UBICACIÓN DEL PROYECTO

El proyecto se desarrollará en la provincia de Chiclayo – departamento de Lambayeque.

Figura 1: Ubicación de cantera Guevara - Patapo

Figura 2: Ubicación de cantera Chancadora Sican- Ferreñafe

Figura 3: Ubicación de cantera Asfalpaca - Ferreñafe

III.MARCO TEÓRICO

3.1. Concreto

El concreto es una estructura compuesta por cemento portland, agregados, agua y aire; en proporciones adecuadas, que permitan obtener un elemento que cumpla propiedades de durabilidad y de resistencia a la compresión, entre otras. En algunos casos se adiciona aditivos.

El cemento y el agua reaccionan químicamente uniendo las partículas de los agregados, constituyendo un material heterogéneo. Algunas veces se añaden ciertas sustancias, llamadas aditivos, que mejoran o modifican algunas propiedades del concreto.

3.2. Control de calidad del concreto.

Al ser el concreto un material que se utiliza masivamente en sinfín de estructuras ingenieriles, es indispensable controlar la calidad del concreto, ya que de ello dependerá finalmente el comportamiento de la estructura durante su vida útil.

Las normativas existentes son las siguientes:

- Muestreo de concreto fresco: NTP 339.096. A96, ASTM C-172
- Asentamiento del concreto fresco con el cono de Abrams: NTP 339.035, ASTM C-143.

Av. Vicente Ruso Mz S/N Lote N° 08 – Fundo el Cerrito – Chiclayo, 978 360 036 – 993 595 300.
☑ constructora.ayr.chiclayo@gmail.com

- Elaboración y curado de probetas cilíndricas en obra: NTP 339.033, ASTM C-31
- Ensavo de resistencia a la compresión: NTP 339.034, ASTM C-39.

3.2.1. Selección y calidad de los componentes del concreto.

Para que el concreto sea durable durante su vida útil, es decir resistente a la agresividad del medio ambiente que se manifiesta mediante acciones físicas, mecánicas, químicas y/o biológicas; no solo es importante la resistencia a la compresión sino también considerar una propiedad muy importante como es la durabilidad.

Agregados

Llamados también áridos, son materiales inertes que se combinan con los aglomerantes (cemento, cal, etc.) y el agua formando los concretos y morteros.

La importancia de los agregados radica en que constituyen alrededor del 75% en volumen, de una mezcla típica del concreto.

Es importante que los agregados tengan una buena resistencia a los elementos, que su superficie libre de impurezas como barro, limo y materia orgánica, que puedan debilitar el enlace con la pasta de cemento.

· Agregados finos.

Se considera como agregado fino a la arena o piedra natural triturada, de dimensiones reducidas y que pasan el tamiz 9.5mm (3/8") y que cumple con los límites establecidos en la norma NTP 400.037.

Sus partículas serán limpias, de perfiles preferentemente angulares, duras, compactas y resistentes, deberá estar libre de partículas escamosas, materia orgánica y otras sustancias dañinas.

Las arenas provienen de la desintegración natural de rocas; y que arrastrados por corrientes aéreas y fluviales se acumulan en lugares determinados.

La granulometría de las arenas esta definida por la distribución de tamaños los cuales se determinan por separación con una serie de mallas normalizadas. Las mallas normalizadas utilizadas por el agregado fino son las Nº 4; 8; 16;30; 50 Y 100. Según la ASTM la arena debe tener un módulo de fineza no menor a 2.3 ni mayor a 3.1.

Tabla 1:Requisitos mínimos de aceptación para agregados finos

CARACTERÍSTICAS	MASA TOTAL DE LA MUESTRA	
Terrones de arcillas y partículas deleznables	3% (máx.)	
Material que pasa el tamiz de 75 mm (N°200)	3% (máx.)	
Cantidad de partículas livianas	0.5% (máx.)	
Contenido de sulfatos, expresado como ión SO4	1.2% (máx.)	
Contenido de cloruros, expresado como ión Cl	0.10% (máx.)	
Carbón y lignito	0.5% (máx.)	
Materia orgánica		
Equivalente de arena	65%min ≤ 210kg/cm2	
	75%min ≥ 210kg/cm2	
Durabilidad al sulfato de magnesio	15% máx.	
Módulo de fineza	2.3 – 3.1	
3.0 REQUERIMIENTOS GRANULOMÉTRICO	S	
Tamiz	Porcentaje que pasa	
9.5mm (3/8")	100	
4.75mm(N°4)	95 - 100	
2.36mm(N°8)	80 - 100	
1.18mm(N°16)	50 - 85	
600um(N°30)	25 - 60	
300um(N°50)	10 - 30	
150um(N°100)	2 - 10	

La norma ASTM, Exceptúa los concretos preparados con más de 300 kg/m³ de los porcentajes requeridos por el material que pasa las mallas N° 50 Y N°100, en este caso puede reducirse a 5% y 0% respectivamente.

Además, la norma prescribe que la diferencia entre el contenido que pasa una malla y el retenido en las siguientes, no debe ser mayor del 45% del total de la muestra. De esta manera, se tiende a una granulometría más regular.

NB

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

Para que el concreto tenga una adecuada trabajabilidad, las partículas de agregado grueso deben estar espaciadas de manera tal que puedan moverse con relativa facilidad, durante los procesos de mezclado y colocación.

En este sentido, el agregado fino actúa como lubricante del agregado grueso ayudándolo a distribuir en toda su masa.

En general, en cuanto a granulometría se refiere, los mejores resultados se obtienen con agregados de granulometrías que queden dentro de las normas y que den curvas granulométricas suaves.

El módulo de fineza es un índice aproximado del tamaño medio de los agregados. Cuando este índice es bajo quiere decir que el agregado es fino, cuando es alto es señal de lo contrario. El módulo de fineza, no distingue las granulometrías, pero en caso de agregados que estén dentro de los porcentajes especificados en las normas granulométricas, sirve para controlar la uniformidad de los mismo.

Se estima que las arenas comprendidas entre los módulos de 2.2 y 2.8 producen concretos de buena trabajabilidad y reducida segregación y las que se encuentran entre 2.8 y 3.1 son las más favorables para los concretos de alta resistencia.

Agregado grueso

Se define como agregado grueso al material retenido en el tamiz NTP 4.75 mm (N° 4) proveniente de la desintegración natural mecánica de las rocas y que cumple con los límites establecidos en la norma NTP 400.037.

El agregado grueso podrá consistir de grava natural o triturada. Sus partículas serán limpias, de perfil permanente angular o semi angular, duras compactas, resistentes y de textura preferentemente escamosas, materia orgánica u otras sustancias dañinas.

Tabla 2: Requisitos mínimos de aceptación para agregados gruesos

CARACTERÍSTICAS					MASA TOTAL DE LA MUESTRA			
Terrones de arc	illas y part	iculas dele	znables		3%	(máx.)		
Cantidad de par	tículas livi	anas			1%	(máx.)		
Contenido de s SO ₄		0.06%	% (máx.)					
Contenido de cloruros, expresado como ión Cl					0.109	6 (máx)		
Carbón y lignito					0.5% (máx.)			
Abrasión					40 máx.			
Durabilidad al su	Ilfato de ma	agnesio		18 máx.				
2.0 REQUERIMI	ENTOS G	RANULON	METRICO	3			***	
Tamiz	AG-1	AG-2	AG-3	AG-4	AG-5	AG-6	HUSO -57	
63 mm (2.5")		15		198	100		3 .	
50 mm (2")	-	<u> </u>	-	100	95 - 100	100	39	
37.5 mm (1 1/2")	P =	- 2	100	95 - 100	51	90 - 100	100	
25 mm (1")	-	100	95 - 100		35 - 70	20 - 55	95 - 100	
19 mm (3/4")	100	95 - 100	- 22	35 - 70	27	0 - 15	92	
12.5 mm (1/2")	90 - 100		2 5- 60	150	10 - 30		25 - 60	
9.5 mm (3/8")	40 - 70	20 - 55	(2	10 - 30	1.00	0 - 5	(42	
4.75 mm (N°4)	0 - 15	0 - 10	0 - 10	0 - 5	0 - 5	3	0 - 10	
2.36 mm(N°8)	0 - 5	0 - 5	0 - 5	3+3	-	*	0 - 5	

El agregado grueso deberá estar graduado dentro de los límites establecidos en la NTP 400.037 o en la norma ASTM C33, los cuales están indicados en la tabla N19 El tamaño máximo de los agregados gruesos en el concreto armado se fija por la exigencia de que pueda entrar fácilmente en los encofrados y entre las barras de la armadura.

El tamaño máximo del conjunto de agregados, está dado por la cobertura de la malla inmediata superior a la que retiene el 15% o más, al cribar por ella el agregado más grueso.

El tamaño máximo según la NTP 400.037 se define como aquel que corresponde al menor tamiz por el que pasa toda la muestra de agregado grueso.

En ningún caso el tamaño máximo del agregado deberá ser mayor que:

- 1/5 de la menor dimensión, entre caras de encofrados.
- 1/3 de la altura de las losas.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo el Cerrito - Chiclayo, 978 360 036 - 993 595 300.

 ¾ del espacio libre entre las barras o alambres individuales de refuerzo, paquetes de barras, cables o ductos de preesfuerzos.

Estas limitaciones están dirigidas a que las barras de refuerzo quedan convenientemente recubiertas y no se presenten cavidades de las llamadas "cangrejeras". Sin embargo, pueden omitirse por excepción, si el ingeniero civil responsable demuestra que la trabajabilidad y los métodos de compactación son tales que el concreto se puede colocar sin la formación de vacios o cangrejeras. Se considera que, cuando se incrementa el tamaño máximo del agregado, se

reducen los requerimientos del agua de mezcla, incrementándose la resistencia del concreo. En general este principio es válido con agregados hasta 1 ½". En tamaños mayores, solo es aplicable a concretos con bajo contenido de cemento.

Si el agregado no cumple con los requisitos mencionados anteriormente, pordrá ser empreado, previa autorización de la inspección, siempre que el constructor demuestre que los concretos preparados con dicho agregado tienen propiedades por lo menos iguales a las de concretos de características similares preparados con un agregado fino que cumple con los requisitos antes mencioandos.

IV.RESULTADOS DEL ANALISIS DE CANTERAS

En los cuadros siguientes se presenta los datos usados para el diseño de concreto.

CANTERA 1 - CORPORACIÓN GUEVARA

Tabla 3: Resultados de agregado fino

AGREGADO FINO							
		ESPECIFICACIONES TÉCNICAS					
ENSAYOS DE LABOF	RANGOS (%)	RESULTADO (%)	OBSERVACIÓ				
Contenido de Hum	-	1,71	-				
Módulo de fine:	2.3 -3.1	2.61	CUMPLE				
Terrones de arcillas y partícul porcentaje	3	0.10	CUMPLE				
Material más fino que pasa la r porcentaje	3	1.20	CUMPLE				
Carbón y lignito, máx. p	oorcentaje	0,5	0,044	CUMPLE			
Durabilidad del agregado, n	15	8.10	CUMPLE				
Equivalente de arena	Resistencia <210 kg/cm2	65	70.0	OUMPLE.			
	Resistencia >210 kg/cm2	75	79.0	CUMPLE			

Tabla 4: Resultados de agregado grueso

AGREGADO GRUESO						
	ESPECIFICACIONES TÉCNICAS					
ENSAYOS DE LABORATORIO	RANGOS (%)	RESULTADO (%)	OBSERVACIÓN			
Contenido de Humedad	-	1,30	943			
Terrones de arcillas y partículas friables, máx. porcentaje	5	8,45	NO CUMPLE			
Durabilidad del agregado, máx. porcentaje	18	12,87	CUMPLE			
Resistencia mecánica de los agregados - Abrasión, no mayor qué %	40	51,50	NO CUMPLE			

[★] Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo el Cerrito - Chiclayo, 978 360 036 - 993 595 300.

CANTERA 2 - CHANCADORA SICAN

Tabla 5: Resultados de agregado fino

AGREGADO FINO								
		ESPECIFICACIONES TÉCNICAS						
ENSAYOS DE LABOF	RANGOS (%)	RESULTADO (%)	OBSERVACIÓN					
Contenido de Hum	-	1,42	2 4					
Módulo de fine:	2.3 -3.1	3,78	NO CUMPLE					
Terrones de arcillas y partícul porcentaje	3	4,25	NO CUMPLE					
Material más fino que pasa la r porcentaje	3	7,10	NO CUMPLE					
Carbón y lignito, máx. p	0,5	0,571	NO CUMPLE					
Durabilidad del agregado, m	15	9,90	CUMPLE					
Equivalente de arena	Resistencia <210 kg/cm2	65						
	Resistencia >210 kg/cm2	75	53,60	NO CUMPLE				

Tabla 6: Resultados de agregado grueso

AGREGADO GRUESO							
	ESPECIFICACIONES TÉCNICAS						
ENSAYOS DE LABORATORIO	RANGOS (%)	RESULTADO (%)	OBSERVACIÓN				
Contenido de Humedad	-	1,43					
Terrones de arcillas y partículas friables, máx. porcentaje	5	6,91	NO CUMPLE				
Durabilidad del agregado, máx. porcentaje	18	22,73	NO CUMPLE				
Resistencia mecánica de los agregados - Abrasión, no mayor que %	40	62,70	NO CUMPLE				

CANTERA 3 - ASFALPACA - TRES TOMAS

Tabla 7: Resultados de agregado fino

AGREGADO FINO							
		ESPECIFICACIONES TÉCNICAS					
ENSAYOS DE LABOR	RANGOS (%)	RESULTADO (%)	OBSERVACIÓN				
Contenido de Hum	-	1,78	=)				
Módulo de fine:	2.3 -3.1	3.79	NO CUMPLE				
Terrones de arcillas y partícul porcentaje	3	7.24	NO CUMPLE				
Material más fino que pasa la r porcentaje	3	6.40	NO CUMPLE				
Carbón y lignito, máx. p	0,5	0,653	NO CUMPLE				
Durabilidad del agregado, n	15	14.75	CUMPLE				
Equivalente de arena	Resistencia <210 kg/cm2	65					
	Resistencia >210 kg/cm2	75	50.9	NO CUMPLE			

Tabla 8: Resultados de agregado grueso

AGREGADO GRUESO							
	ESPECIFICACIONES TÉCNICAS						
ENSAYOS DE LABORATORIO	RANGOS (%)	RESULTADO (%)	OBSERVACIÓN				
Contenido de Humedad		1,33	当				
Terrones de arcillas y partículas friables, máx. porcentaje	5	3,18	CUMPLE				
Durabilidad del agregado, máx. porcentaje	18	10,32	CUMPLE				
Resistencia mecánica de los agregados - Abrasión, no mayor qué %	40	19,80	CUMPLE				

V. CONCLUSIONES Y RECOMENDACIONES

- Para la calidad de los materiales a disponer para el uso de concreto, debemos adecuarnos al cumplimiento de las normas establecidas por el MTC
 MANUAL DE LAS ESPECIFICACIONES TÉCNICAS GENERALES PARA CONSTRUCCIÓN (EG-2013).
- Los agregados para el diseño de mezclas fueron proporcionados por los solicitantes ALEJANDRÍA BUSTAMANTE YELSEN ANDERSON - RIVERA SEGURA MIGUEL EDUARDO, para luego ser llevadas a nuestro laboratorio.
- La Cantera 2 (CHANCADORA SICAN), elegida para el estudio han mostrado resultados que no están dentro de las especificaciones técnicas necesarias para el correcto uso para materiales de concreto por lo que no es aconsejable el uso de ellos.
- Por otro lado, los resultados de la cantera 3 (Cantera ASFALPACA)
 CUMPLE con los requerimientos necesarios del proyecto para el empleo del agregado grueso dentro de la elaboración del concreto, es por ello que se recomienda utilizar la piedra de dicha cantera. Y de la cantera 1 (Cantera CORPORACION GUEVARA) CUMPLE con los requerimientos del agregado fino, por ello se recomienda utilizar la arena de dicha cantera.
- Entre los resultados obtenidos (CANTERA 3), se tiene un módulo de fineza de 2.61 lo cual es un indicador para obtener concretos de buena trabajabilidad y con un grado menor de segregación. Los terrones de arcilla y partículas friables presentan solo el 0.10% lo cual es aceptable, además, presenta 1.2% de material pasante de la malla N°200. El resultado del equivalente de arena es 79.00% lo cual cumple para concretos mayores o iguales a 210 kg/cm2, donde la norma de pide como mínimo 75% en el ensayo de equivalente de arena.
- Las mezclas de concreto consistirán en una mezcla de agregados grueso y agregado fino, agua y cemento en la proporción del diseño.
- La graduación de cada uno de los agregados producirá al estar bien proporcionado, una mezcla conforme a los límites de graduación del tipo especificado.

R

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

Según los resultados obtenidos de los ensayos la Cantera 3 (Cantera ASFALPACA), CUMPLE con las especificaciones técnicas del agregado grueso y la cantera 1 (Cantera CORPORACION GUEVARA), CUMPLE con las especificaciones técnicas del agregado fino, por lo tanto, el material analizado de dichas canteras es APTO para CONCRETO, por cumplir con las especificaciones técnicas de la norma ESPECIFICACIONES TÉCNICAS GENERALES PARA CONSTRUCCIÓN (EG-2013).

REFERENCIAS BIBLIOGRÁFICAS.

- CASTILLO, F. A. (2009). TECNOLOGÍA DEL CONCRETO. LIMA: SAN MARCOS.
- LÓPEZ, E. R. (2007). DISEÑO DE MEZCLAS. LIMA.

★ Av. Vicente Ruso Mz S/N Lote N° 08 – Fundo el Cerrito – Chiclayo, 978 360 036 – 993 595 300.
Constructora.ayr.chiclayo@gmail.com

Anexo 6: RESULTADOS DE ENSAYOS DE LABORATORIO DE LOS AGREGADOS

CANTERA 1

AGREGRADO GRUESO

AGREGADO FINO

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ANALISIS GRANULOMETRICO (NORMA MTC E 204)

, "ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFE(CCC) Y

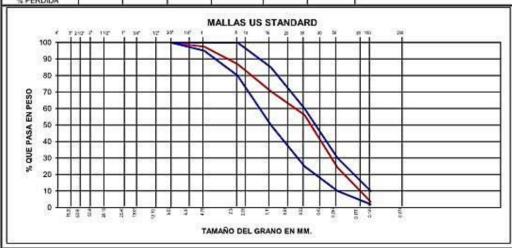
REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C.

MATERIAL : ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON : RIVERA SEGURA MIGUEL EDUARDO


SEN ANDERSON FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

PROYECTO

				DATOS DE	L ENSAY	0	
Tamices ASTM	Abertura en MM	Peso Retenido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especificaci ones	DESCRIPCION DE LA MUESTRA
3*	76,200						
2 1/2"	63,500	,					2
2*	50,800			9	8	(1	§
1 1/2*	38,100						
1"	25,400	3			3	9	TAMANO MAX. NOMINAL 3/8
3/4"	19,050			9		3	PESO TOTAL: 500,0 gr
1/2"	12,700				100.0		
3/8"	9.525	0,5	0,1	0.1	99,9	100	Ê
1/4"	6.350			3	12/10/12	4	Ü
N° 4	4.760	12,30	2,5	2,6	97,4	95 - 100	MODULO DE FINEZA: 2,61
N° 8	2,380	52,30	10.5	13,0	87.0	80 - 100	b comment of the second
N° 10	2,000						PESO HUMEDO: 1310,0 gr
N° 16	1,190	82,90	16,6	29,6	70,4	50 - 85	PESO SECO : 1288,0 gr
N* 20	0,840	g comme	30.000	J. Historia	3 38000	177	C.H.% 1,71
N* 30	0,590	71,30	14,3	43,9	56,1	25 - 60	***************************************
N* 40	0,420	i manan		ii	9	Branch Christ	è
N° 50	0.297	159,60	31,9	75,8	24,2	10 - 30	
N° 60	0.250						
N° 100	0.149	103,40	20,7	96,5	3,5	2 - 10	
N° 200	0,074	12,50	2,5	99,0	1.0		8
PAN		5.20	1,0	100,0	0,0		
TOTAL	98 3		100	3 31	3 17		Š
& PERDIDA	3			0			S

Observaciones: Las muestras fueron proporcionadas por el solicitante.

Construction of Sales Humado

CONCIDENT CONTROL CONT

PROYECTO

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, 42 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

"ANALISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C.
MATERIAL : ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA : SEPTIEMBRE 2022

DATOS DE LA MUESTRA
MUESTRA : M-01

	AG	REGADO FI	10			
	DAT	OS DEL ENSA	YO			
		IDENTIFICACION				
		1	2	3	Promedio	
Peso del recipiente + muestra	(Kg)	7983,0	7968,0	7975,0		
Peso del recipiente	(Kg)	3438,0	3438,0	3438,0		
Peso de la muestra	(Kg)	4545,0	4530,0	4537,0		
Volumen	(m ³)	2816,0	2816,0	2816,0		
Peso Unitario Suelto	(Kg/m³)	1613,99	1608,7	1611,2	1611,3	
CONTENIDO DE HUMEDAD	- 50			X X		
Peso de tara	(g)					
Peso de tara + muestra humeda	(g)	7.5				
Peso de tara + muestra seca	(g)					
Peso Agua	(g)					
Peso Suelo Seco	(g)					
Contenido de humedad	(%)					
Peso Unitario Suelto	(Kg/m³)	1614,0	1608,7	1611,2	1611,3	

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY CARRELYCOMOUR CAC

Luisal Maria Pales Huntado
Yachino na salatra romo

CONSTRUCTOR AS CONSULTORIA

Ing Stayon III Agrae Cupray

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ¥ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

'ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB.: R.H.B.C. ; ARENA GRUESA MATERIAL TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA MUESTRA : M-01

	AGREGADO FINO							
8		DATOS DEL EN						
	L		IDENTIF	ICACION				
		81	2	3	Promedio			
Peso del reciiente + muestra	(Kg)	8308,0	8316,0	8358,0				
Peso del recipiente	(Kg)	3438,0	3438,0	3438,0				
Peso de la muestra	(Kg)	4870,0	4878,0	4920,0				
Volumen	(m³)	2816,0	2816,0	2816,0				
Peso Unitario Compactado	(Kg/m³)	1729,4	1732,2	1747,2	1736,3			
CONTENIDO DE HUMEDAD								
Peso de tara	(g)	溪	20	2 2				
Peso de tara + muestra humeda	(g)	12	<u>u</u> g	3 9				
Peso de tara + muestra seca	(g)	些	8	55				
Contenido de humedad	(%)							
Peso Unitario Compactado	(Kg/m³)	1729,4	1732,2	1747,2	1736,3			

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAL DEVISION PARAGRAPHICA

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 205)

'ANÁLISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE PROYECTO

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE FECHA: SEPTIEMBRE 2022

RIVERA SEGURA MIGUEL EDUARDO

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

	DATOS DEL ENSAYO								
A	Peso Mat. Sat. Sup. Seco (en Aire) (gr)	500,6	500,8	1.0					
В	Peso Frasco + agua	659,4	661,8	018					
С	Peso Frasco + agua + A (gr)	1160,0	1162,6	= E					
D	Peso del Mat. + agua en el frasco (gr)	973,3	978,2	0477					
E	Vol de masa + vol de vacio = C-D (gr)	186,7	184,4	124 87					
F	Pe. De Mat. Seco en estufa (105°C) (gr)	495,5	495,5						
G	Vol de masa = E - (A - F) (gr)	181,6	179,1	PROMEDIO					
	Pe bulk (Base seca) = F/E	2,654	2,687	2,671					
	Pe bulk (Base saturada) = A/E	2,681	2,716	2,699					
	Pe aparente (Base Seca) = F/G	2,729	2,767	2,748					
	% de absorción = ((A - F)/F)*100	1,03	1,07	1,05%					

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CTORAY CONSTITUTORIALIST SIZ

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ¶ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (NORMA NTP 400,015, MTC E 212)

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON

FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C.

MATERIAL : ARENA GRUESA TEC. LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

SOLICITANTE : RIVERA SEGURA MIGUEL EDUARDO FECHA : SEPTIEMBRE 2022

		DATOS DE LA MUESTRA	
MUESTRA	: M-01	SOCIAL ESCALA PROCESSA AND AND AND AND AND AND AND AND AND AN	

DATOS DEL ENSAYO							
Peso Inicial de muestra : Agregado Grueso	Pasa (3/8*)	Retiene (3/4*)	2000,0	gr.			
Peso Final de muestra			1998,0	gr.			
Porcentaje de Terrones de arcilla	y .		0,10	%			

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTION VOICES TO ANDROIS

State Parts Parts Parts of the Parts of the

CONSTRUCT SAME CONSCIONAL

L.E.M.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, № 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

DETERMINACION DE CARBON Y LIGNITO (NORMA MTC E 211)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE PROYECTO

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

: CHICLAYO- LAMBAYEQUE UBICACIÓN

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB.: R.H.B.C. MATERIAL : ARENA GRUESA TEC, LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO FECHA: SEPTIEMBRE 2022

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

DATOS DEL ENSAYO							
Peso de las particulas decantadas	1,000	g					
Peso de la muestra (Malla 3/4")	2296	g					
Carbon y Lignito	0,044	%					

Observaciones: Las muestras fueron proporcionadas por el solicitante.

> CONSTRUCTORAY OCCUSANTO FRANCISCO dusd

Luisa Maria Palco Hurtario

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ** 978 360 036 - 993 595 300.

EQUIVALENTE DE ARENA (NORMA MTC E 114)

"ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y

PROYECTO : REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C.

MATERIAL : ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA : SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

0	DATOS DEL ENSAYO							
MUESTRA	01	02	03					
HORA DE ENTRADA	08:35	08:37	08:39					
HORA DE SALIDA	08:45	08:47	08:49					
HORA DE ENTRADA	08:47	08:49	08:51					
HORA DE SALIDA	09:07	09:09	09:11					
ALTURA DE NIVEL MATERIAL FINO (A)	3,3	3,2	3,5					
ALTURA DE NIVEL ARENA (B)	2,6	2,5	2,8					
EQUIVALENTE DE ARENA (B x 100/A)	78,8%	78,1%	80,0%					

EQUIVALENTE DE ARENA PROMEDIO: 79,0%

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY OF STATEMENT AND SEC

Moria Palce Hurtgelo

COASTRUATION OF COSSICTORIA

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ♣ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

MATERIAL QUE PASA MALLA Nº 200 (NORMA MTC E 202)

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON

FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA ; CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C.

MATERIAL ; ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

DATOS DEL ENSAYO									
TARA	PESO INICIAL SECO GR.	PESO DESPUES DE LAVADO GR.	RESULTADO	ESPECIFICACION	CUMPLE				
1	257	254,0	1,2	3,0%	CUMPLE				

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CHETALOTORIA PRINTORIALIST SAC Palas C

TECHICO TE LABORATORIO

CONSTRUCTOR DEPOSICIONIA

L.E.M.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, 49 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

ENSAYO DE MATERIA ORGANICA (NORMA NTP 400.024, MTC E 213)

. "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO : CON FIBRA DE POLIPROPILENO(FP)" PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

: CORPORACION GUEVARA - PATAPO CANTERA RESP. LAB. : R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE FECHA: SEPTIEMBRE 2022 RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

	DATOS DEL ENSAYO								
1	N* DE ENSAYO	2							
86			8 SE						
	HORA DE ENTRADA	08:10	09:20						
-	HORA DE SALIDA	14;10	15:20						
1	PESO DE MUESTRA SECA + RECIPIENTE	91,52	80,84						
2	PESO DE MUESTRA SECA + RECIPIENTE DESPUÉS DE ENSAYO	91,28	80,68						
3	PESO DE RECIPIENTE	50,00	50,00						
4	PESO DE MUESTRA INICIAL	41,52	30,84						
5	PESO DE MUESTRA FINAL	41,28	30,68						
6	PESO DE MATERIA ORGANICA	0,24	0,16						
7	% MATERIA ORGÁNICA	0,58	0,52						
10.7	% DE MATERIA ORGÁNICA :	0,55	%						

Observaciones: Las muestras fueron proporcionadas por el solicitante.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales. - Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 49 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

DURABILIDAD DEL AGREGADO FINO (SULFATO DE MAGNESIO)

MTC E 209

ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE PROYECTO

POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE

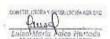
CANTERA : CORPORACION GUEVARA - PATAPO

MATERIAL

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

RESP. LAB.: R.H.B.C. TEC. LAB.: L.M.F.H.

FECHA: SEPTIEMBRE 2022


INALTERABILIDAD DEL AGREGADO FINO: Análisis cuantitativo.

INALTERABILIDAD DEL AGREGADO FINO:

Fracción		1	2	3	4	5
1000		Gradación	Peso de la fracción	Peso Retenido	Perdida	Perdida
1 an	emiz Original ensayada		ensayada	después del ensayo	total	Corregida
Pasa	Retiene	(%)	(e)	(g)	(%)	(%)
3/8*	N* 4	12,3	92.4	89,9	2,71	0,33
N° 4	N* 8	52,3	67,8	65,4	3,54	1,85
N° 8	N° 16	82,9	71,2	67,8	4,78	3,96
N° 16	N" 30	71,3	63,9	63,1	1,25	0,89
N° 30	N* 50	159,6	90,2	89,8	0,44	0,71
N° 50	N* 100	103,4	87,2	86,9	0,34	0,36
тот	AL	481,8	472,7	462,9		8,10

OBSERVACIO	ONES: Las muestras fueron proporcionadas por el solicitante	
		•••••

8,10

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ¶ 978 360 036 - 993 595 300.

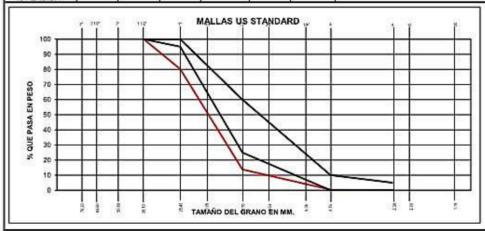
constructora.ayr.chiclayo⊗gmail.com

ANÁLISIS GRANULOMÉTRICO (NORMA MTC E 204)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE


CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB : R.H.B.C. MATERIAL : PIEDRA CHANCADA TEC. LAB .: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO FECHA: SEPTIEMBRE 2022 SOLICITANTE

DATOS DE LA MUESTRA

MUESTRA : M-01

				DATOS DEL	ENSAYO	Save to	
Tamices ASTM	Abertura en MM	Peso Reternido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especifi- caciones	DESCRIPCION DE LA MUESTRA
3*	76,200	8 3		ğ 70		HUSO 57	
2 1/2"	63,500	6 3		8 8			i)
2*	50,800			1			
1 1/2"	38,100	Townson!	Agame	2 acoust 2	-0.00 (0.000)	100 - 100	
15	25,400	1263,7	19,8	19,8	80,2	95 - 100	TAMANO MAX. NOMINAL 1"
3/4"	19,050						PESO TOTAL: 6377,9 gr
1/2*	12,700	4234,2	66.4	86,2	13,8	25 - 60	ji =
3/8*	9,525	Same and the		3 100 100	HILL CO.	1000	Ž
1/4"	6,350			7			
N° 4	4,760	856,2	13,4	99,6	0,37	0 - 10	PESO HUMEDO: 1200,0
N° B	2,380	23,8	0,4	100,0	0,00	0 - 5	PESO SECO: 1184,6
N° 10	2,000	6		3	0.77.0017	3	C.H.%: 1,30
N* 16	1,190						
N° 20	0,840	2 - 3		0 0		8	9
N° 30	0,590	0 0		ř – i		- 1	7
N° 40	0,420						
N° 50	0,297	3. 3		8 3		8	
N° 60	0,250	8 8		3 3		8 -	2
N° 100	0,149						
PAN	26	Š		2 2		0	\(\)
TOTAL		6377,9		ŭ 8		8	<u> </u>
PERDIDA	51	3		8 8		8	V

Observaciones:

Las muestras fueron proporcionadas por el cliente.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, → 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

"ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

: CHICLAYO- LAMBAYEQUE UBICACIÓN

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB.: R.H.B.C. MATERIAL : PIEDRA CHANCADA TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA							
MUESTRA	: M-01						

PIEDRA CHANCADA DATOS DEL ENSAYO									
			THE PARTY NAMED IN COLUMN	NTIFICACION					
		1	2	3	Promedio				
Peso del recipiente + muestra	(Kg)	26712,3	26826,4	26786,0					
Peso del recipiente	(Kg)	12318,0	12318,0	12318,0					
Peso de la muestra	(Kg)	14394,3	14508,4	14468,0					
Volumen	(m ³)	9396,0	9396,0	9396,0					
Peso Unitario Suelto	(Kg/m³)	1532,0	1544,1	1539,8	1538,6				
CONTENIDO DE HUMEDAD									
Peso de tara	(g)		ÿ.						
Peso de tara + muestra humeda	(g)								
Peso de tara + muestra seca	(g)								
Peso Agua	(g)								
Peso Suelo Seco	(g)		Š.						
Contenido de humedad	(%)								
Peso Unitario Suelto	(Kg/m³)	1532,0	1544,1	1539,8	1538,6				

Observaciones:

Las muestras fueron proporcionadas por el cliente.

CTORAY OCHBULTORIAMER SIC

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN ; CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP, LAB. : R.H.B.C.
MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON : RIVERA SEGURA MIGUEL EDUARDO FECHA : SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

DATOS DEL ENSAYO									
	110		IDENTI	FICACION					
		ž 1	2	3	Promedio				
Peso del reciiente + muestra	(Kg)	27635,0	27486,0	27824,0					
Peso del recipiente	(Kg)	12328,0	12328,0	12328,0					
Peso de la muestra	(Kg)	15307,0	15158,0	15496,0					
Volumen	(m³)	9396,0	9396,0	9396,0					
Peso Unitario Compactado	(Kg/m³)	1629,1	1613,2	1649,2	1630,5				
CONTENIDO DE HUMEDAD	100								
Peso de tara	(g)	32	(2)	8					
Peso de tara + muestra humeda	(g)	84	73 4 5	@					
Peso de tara + muestra seca	(g)	:*	980	91					
Contenido de humedad	(%)								
Peso Unitario Compactado	(Kg/m³)	1629,1	1613,2	1649,2	1630,5				

Observaciones:

Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORS & COMPATICAL ASSESSED.

Luised Marky Alice Hustonia
Technique of Lancardons

CONSTRUCTORAN CONSULTORIA

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, № 978 360 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

PESO ESPECIFICO Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 206)

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C.
MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON : RIVERA SEGURA MIGUEL EDUARDO FECHA : SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

	ı	DATOS DEL ENSA	AYO	
Α	Peso Mat.Sat. Sup. Seca (En Aire) (gr)	1002,00	1006,00	
В	Peso Mat.Sat. Sup. Seca (En Agua) (gr)	624,20	608,30	
С	Vol. de masa + vol de vacios = A-B (gr)	377,80	397,70	
D	Peso material seco en estufa (105 °C)(gr)	995,70	998,40	
E	Vol. de masa = C- (A - D) (gr)	371,5	390,1	PROMEDIO
	Pe bulk (Base seca) = D/C	2,636	2,510	2,573
	Pe bulk (Base saturada) = A/C	2,652	2,530	2,591
	Pe Aparente (Base Seca) = D/E	2,680	2,559	2,620
	% de absorción = ((A - D) / D * 100)	0,633	0,761	0,70%

Observaciones:

Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORAY OCHSULTCHIA ASR SAC

TECNICO NE LABORATORIO

CONSTRUCTOR OF CONSULTORIA

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🏚 Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 📲 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

ENSAYO DE ABRASION (MAQUINA DE LOS ANGELES) (NORMA MTC E - 207)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB.: R.H.B.C. MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

, ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA MUESTRA : M-01

TA	MIZ		_ 1		
PASA	RETIENE	A	В	c	D
2"	1 1/2"				
1 1/2"	1*				
1"	3/4"				
3/4"	1/2*		2500		
1/2"	3/8"		2500		
3/8"	1/4*		3 9		
1/4"	N*4		5		
N°4	N*8		V.		
PESO TOTAL			5000		
PESO RETENII	DO EN TAMIZ N°12		2425	= -	
PERDIDA DESPUES DEL ENSAYO			2575		
Nº DE ESFERAS			11		
PESO DE LAS ESFERAS			4598		
TIEMPO DE RO	OTACIONES (m)		15		
0/1	DE DESGASTE		51,5		

Observaciones:

Las muestras fueron proporcionadas por el cliente.

Cusa Susa a Maria Palen Hurtado

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 49 978 360 036 - 993 595 300.

<u>constructora.ayr.chiclayo@gmail.com</u>

DURABILIDAD DEL AGREGADO GRUESO (SULFATO DE MAGNESIO) (NORMA MTC E 209)

*ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON PROYECTO

FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C. MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE FECHA: SEPTIEMBRE 2022 RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA

MUESTRA : M-01

	DATOS DEL ENSAYO											
FRAC	FRACCION		GRADACION ORIGINAL %			Perdida	Perdida					
PASA	RETIENE	Page fraccio		REUENE Wretenido		Peso de fracción ensayada	Peso retenido después del ensayo	depues del ensato (gr)	depues del ensato (%)	Perdida corregida		
			A	В	С	D	E	F				
2 1/2"	2"											
2"	1 1/2"				8			14				
1 1/2"	1"	1263,7	19,9	954,3	842,3	112,0	11,7	2,33				
1"	3/4"							2)				
3/4"	1/2"	4234,2	66,6	748,0	674,0	74,0	9,9	6,59				
1/2"	3/8"											
3/8"	N° 4	856,2	13,5	669,0	473,0	196,0	29,3	3,95				
	< N° 4							D				
SUMA TOTAL		6354,1	100	5049,3				12,87				

Observaciones: Las muestras fueron proporcionadas por el cliente.

стори у формационных вые

- Elaboración de Expedientes Técnicos.
 Ejecución, Supervisión y Evaluación de Obras.
 Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Late N° 08 - Funda El Cerrito- Chiclayo, 👊 978 360 036 - 993 595 300.

constructora.ayr.chiclaye@gmail.com

TERRONES DE ARCILLAS Y PARTICULAS DELEZNABLES - MTC E 212

"ANALISIS MEGÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAPÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" PROYECTO

CHICLAYO- LAWBAYEQUE UBICACIÓN

CORPORACION GUEVARA - PATAPO RESP. LAB.: R.H.B.C. CANTERA PEDRA CHANCADA TEC. LAB. : LMF.H. MATERIAL

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO FECHA: SEPTIEMBRE 2022 SOLICITANTE

AGREGADO GRUESO:

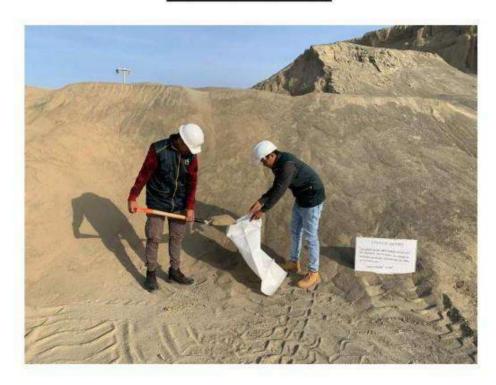
Tamaño de las particulas entre los tamicas de :		Peso de la muestra antes del ensayo	Tamario del tamiz para remover el residuo del ensayo Peso de la muestra despu del ensayo		Poso de la perdida del material	Perdida
Pasa	Rotiene	(9)		(a)	(g)	(%)
3/4" (19.0 m.m)	N° 4 (4.75 m.m)	1056.0	N° B (2.36 m.m)	965.8	69,20	8,45%

ESPECIFICACION MAX.	5%
mor main recomment means	928

OBSERVACIONES: Las muestras fueron proporcionadas por el solicitante.

comprisor quantification Filed Stoke Pake Particle
TEDRED TO DESCRIPTION

CANTERA 2



AGREGRADO GRUESO

AGREGADO FINO

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ◄ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ANALISIS GRANULOMETRICO

(NORMA MTC E 204)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : CHANCADORA SICAN

RESP. LAB.: R.H.B.C. : ARENA GRUESA MATERIAL TEC. LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO FECHA: SEPTIEMBRE 2022 SOLICITANTE

DATOS DE LA MUESTRA

MUESTRA : M-01

	DATOS DEL ENSAYO									
Tamices ASTM	Abertura en MM	Peso Retenido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especificaci ones	DESCRIPCION DE LA MUESTRA			
3"	76,200	Delice stranger	- ASSESSED.				Š.			
2 1/2"	63,500									
Z*	50,800						E			
1 1/2*	38,100				9					
17	25,400						TAMANO MAX. 1/4"			
3/4"	19,050			9	1	3	PESO TOTAL: 500,0 gr			
1/2"	12,700						S 2000 (2017 - 2000 (2017 - 2017)			
3/8"	9,525									
1/4*	6.350	14131.00.44	2744.002	B comme	B was	100	Barbara and a comment and a comment			
N° 4	4,760	75,8	15,2	15,2	84,8	95 - 100	MODULO DE FINEZA: 3,78			
N° 8	2,380	94,6	18,9	34,1	65,9	80 - 100				
N° 10	2,000	0.0000000		a service of	B com	France Section	PESO HUMEDO: 1000,0 gr			
N* 16	1,190	104,3	20,9	54.9	45,1	50 - 85	PESO SECO: 986,0 gr			
N° 20	0,840						C.H.% 1,42			
N° 30	0,590	128,0	25,6	80.5	19,5	25 - 60	8			
N° 40	0,420	1,000,000		1000000	9	11 200-1- 300-	2			
N° 50	0,297	76,3	15,3	95.8	4.2	10 - 30				
N° 60	0,250	40.45		S crows =	i ces		8			
N° 100	0,149	6,7	1,3	97.1	2,9	2 - 10	(i)			
N° 200	0.074	1,5	0,3	97.4	2.6					
PAN	D = 1	12,8	2,6	100,0	0,0	0	Č .			
TOTAL	9 3			8		0	8			
6 PERDIDA										

Observaciones: Las muestras fueron proporcionadas por el solicitante.

gridher **pa**neultoniush eac Luisin Maria Jaleo Hurtado

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ◄ 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE PROYECTO

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA RESP. LAB.: R.H.B.C. : CHANCADORA SICAN MATERIAL TEC. LAB.: L.M.F.H. : ARENA GRUESA

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022 SOLICITANTE

RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

		REGADO FI								
DATOS DEL ENSAYO IDENTIFICACION										
	-	00	IDEN	TIFICACION	9942 S 1844					
		1	2	3	Promedio					
Peso del recipiente + muestra	(Kg)	14693,0	14789,0	14852,0						
Peso del recipiente	(Kg)	7210,0	7210,0	7210,0						
Peso de la muestra	(Kg)	7483,0	7579,0	7642,0						
Volumen	(m ³)	5302,0	5302,0	5302,0						
Peso Unitario Suelto	(Kg/m³)	1411,35	1429,5	1441,3	1427,4					
CONTENIDO DE HUMEDAD										
Peso de tara	(g)									
Peso de tara + muestra humeda	(g)									
Peso de tara + muestra seca	(g)	*		Ĩ						
Peso Agua	(g)									
Peso Suelo Seco	(g)									
Contenido de humedad	(%)	9								
Peso Unitario Suelto	(Kg/m ³)	1411,4	1429,5	1441,3	1427,4					

Observaciones: Las muestras fueron proporcionadas por el solicitante.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, → 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : CHANCADORA SICAN

RESP. LAB.: R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE FECHA: SEPTIEMBRE 2022 RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

	AGREGADO FINO DATOS DEL ENSAYO									
	ı	011.00 022 21		FICACION						
		1	2	3	Promedic					
Peso del reciiente + muestra	(Kg)	15936,0	15984,8	16012,0						
Peso del recipiente	(Kg)	7210,0	7210,0	7210,0						
Peso de la muestra	(Kg)	8726,0	8774,8	8802,0						
Volumen	(m ³)	5302,0	5302,0	5302,0						
Peso Unitario Compactado	(Kg/m³)	1645,8	1655,0	1660,1	1653,6					
CONTENIDO DE HUMEDAD										
Peso de tara	(g)	×	2	22						
Peso de tara + muestra humeda	(g)	12	1 18	-3						
Peso de tara + muestra seca	(g)	92)	8	E .						
Contenido de humedad	(%)									
Peso Unitario Compactado	(Kg/m³)	1645,8	1655,0	1660,1	1653,6					

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y CONSULTORIA ALRISAC

Luisa Maria Falco Hurtado

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ¾ 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 205)

'ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE PROYECTO

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CHANCADORA SICAN RESP. LAB. : R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022 SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

	DA	ATOS DEL ENSA	YO	
Α	Peso Mat. Sat. Sup. Seco (en Aire) (gr)	300,0	300,0	2977
В	Peso Frasco + agua	657,9	644,3	124 27
С	Peso Frasco + agua + A (gr)	957,9	944,3	
D	Peso del Mat. + agua en el frasco (gr)	843,5	834,8	19 33
Ε	Vol de masa + vol de vacio = C-D (gr)	114,4	109,5	eatr
F	Pe. De Mat. Seco en estufa (105°C) (gr)	295,64	295,40	27.0
G	Vol de masa = E - (A - F) (gr)	110,0	104,9	PROMEDIO
	Pe bulk (Base seca) = F/E	2,584	2,698	2,641
	Pe bulk (Base saturada) = A/E	2,622	2,740	2,681
	Pe aparente (Base Seca) = F/G	2,687	2,816	2,751
	% de absorción = ((A - F)/F)*100	1,475	1,557	1,52%

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY COMMITTOGIAASR STO.

Luisa Maria Talco Hurtada
TECNICO TE LAGORATORIO

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ♣ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (NORMA NTP 400.015, MTC E 212)

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CHANCADORA SICAN RESP. LAB. : R.H.B.C.
MATERIAL : ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA : SEPTIEMBRE 2022

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

DATOS DEL ENSAYO				
Peso Inicial de muestra : Agregado Grueso	Pasa (3/8")	Retiene (3/4")	2500,0	gr.
Peso Final de muestra	6		2398,0	gr,
Porcentaje de Terrones de arcilla	- 27.		4,25	%

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY COME PORTAGENCIA CONSTRUCTOR CONSTRUCTOR

ing Hoyard HI Shran

L.E.M.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lole N° 08 - Fundo El Cerrito- Chiclayo, ♣ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

EQUIVALENTE DE ARENA (NORMA MTC E 114)

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE
CANTERA : CHANCADORA SICAN
MATERIAL : ARENA GRUESA

: CHANCADORA SICAN RESP. LAB. : R.H.B.C. : ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA : SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

	DATOS DEL ENSAYO							
MUESTRA	01	02	03					
HORA DE ENTRADA	08:12	08:14	08:16					
HORA DE SALIDA	08:22	08:24	08:26					
HORA DE ENTRADA	08:24	08:26	08:28					
HORA DE SALIDA	08:44	08:46	08:48					
ALTURA DE NIVEL MATERIAL FINO (A)	3,5	3,2	3,4					
ALTURA DE NIVEL ARENA (B)	1,7	1,8	1,9					
EQUIVALENTE DE ARENA (B x 100/A)	48,6%	56,3%	55,9%					

EQUIVALENTE DE ARENA PROMEDIO: 53,6%

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY CONSTRUCTORALIS SAC - CHARACTER FAILER HUTTORIS TECNICO DE LABORATORIO CONSTRUCTORAN CONSULTORIA

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, № 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

MATERIAL QUE PASA MALLA Nº 200 (NORMA MTC E 202)

PROYECTO : "ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON

PROYECTO : FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO-LAMBAYEQUE

CANTERA : CHANCADORA SICAN RESP. LAB. : R.H.B.C.
MATERIAL : ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

		D.	ATOS DEL ENSAY	0	
TARA	PESO INICIAL SECO GR.	PESO DESPUES DE LAVADO GR.	RESULTADO	ESPECIFICACION	CUMPLE
1	258	241,0	7,1	5,0%	NO CUMPLE

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORNY CARRICTORNAM CAR Laised Marka Palco Hustado TECNICO DE LABORATORIO CONSTRUCTOR OF CONSULTORIA

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ¾ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

DETERMINACION DE CARBON Y LIGNITO (NORMA MTC E 211)

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN ; CHICLAYO- LAMBAYEQUE

CANTERA : CHANCADORA SICAN RESP. LAB. : R.H.B.C.

MATERIAL : ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON : RIVERA SEGURA MIGUEL EDUARDO FECHA : SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

DATOS DEL ENSAYO					
Peso de las particulas decantadas	11,300	g			
Peso de la muestra (Malla 3/4")	1980	g			
Carbon y Lignito	0,571	%			

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA Y GRISHLETORIA ASR SAC

uisa Maria Valco Hurtado

CONSTRUCTORAN CONSULTORIA

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 49 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ENSAYO DE MATERIA ORGANICA (NORMA NTP 400.024, MTC E 213)

ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP) PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : CHANCADORA SICAN MATERIAL

RESP. LAB. : R.H.B.C. : ARENA GRUESA TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE FECHA: SEPTIEMBRE 2022 RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

	DATOS DEL ENSAYO			
	N* DE ENSAYO	Í	2	
1			· · · · · · · · · · · · · · · · · · ·	
	HORA DE ENTRADA	10:20	11:00	
I	HORA DE SALIDA	16:20	17:00	
1	PESO DE MUESTRA SECA + RECIPIENTE	87,86	96,86	
2	PESO DE MUESTRA SECA + RECIPIENTE DESPUÉS DE ENSAYO	87,51	96,49	
3	PESO DE RECIPIENTE	55,00	55,00	
	PESO DE MUESTRA INICIAL	32,86	41,86	
5	PESO DE MUESTRA FINAL	32,51	41,49	
5	PESO DE MATERIA ORGANICA	0,35	0,37	
	% MATERIA ORGÁNICA	1,07	0,88	
Ċ.	% DE MATERIA ORGÁNICA :	0,97	%	

Las muestras fueron proporcionadas por el solicitante. Observaciones:

CONSTRUCTORAY CONSULTORIA MERICACI.

Luisa Maria Falco Hintado

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 📲 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

DURABILIDAD DEL AGREGADO FINO (SULFATO DE MAGNESIO) - MTC E 209

ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE PROYECTO POLIPROPILENO(FP)*

UBICACIÓN CHICLAYO- LAMBAYEQUE

CANTERA CHANCADORA SICAN

MATERIAL

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

ARENA GRUESA SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO RESP. LAB.: R.H.B.C. TEC. LAB.: L.M.F.H.

FECHA: SEPTIEMBRE 2022

INALTERABILIDAD DEL AGREGADO FINO: Análisis cuantitativo.

Fracción		1	2	3	4	5
Tamiz		Gradación	Peso de la fracción	Peso Retenido	Perdida	Perdida
161		Original	ensayada	después del ensayo	total	Corregida
Pasa	Retiene	(%)	(9)	(g)	(%)	(%)
3/8"	N* 4	75,8	134,2	128,6	4,17	3,16
N° 4	N° 8	94,60	124,3	122,5	1,45	1,37
N° 8	Nº 16	104,3	79,6	78,1	1,88	1,97
N* 16	N* 30	128,0	75,2	74,3	1,20	1,53
N° 30	N° 50	76,3	81,4	79,6	2,21	1,69
N° 50	N° 100	6,7	75,2	73,2	2,66	0,18
тот	TAL	485,7	569,9	556,3		9,90

INALTERABILIDAD DEL AGREGADO FINO:

%

OBSERVACIONES: Las muestras fueron proporcionadas por el solicitante.

9,90

Luisa Maria Malco Huricalo

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

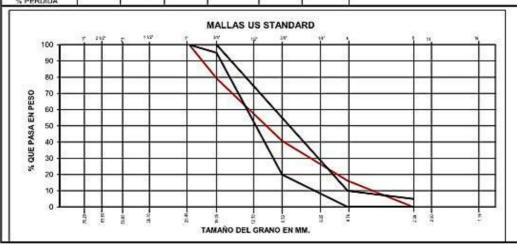
★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ♥ 978 360 036 - 993 595 300.

ANÁLISIS GRANULOMÉTRICO (NORMA MTC E 204)

'ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : CHANCADORA SICAN MATERIAL : PIEDRA CHANCADA


RESP. LAB. : R.H.B.C. TEC. LAB. ; L.M.F.H.

SOLICITANTES : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON : RIVERA SEGURA MIGUEL EDUARDO

FECHA: SEPTIEMBRE 2022

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

				DATOS DE	L ENSAY	0	
Tamices ASTM	Abertura en MM	Peso Reternido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especifi- caciones	DESCRIPCION DE LA MUESTRA
3*	76,200					AG-2	31
2 1/2"	63,500	2				1	
2*	50,800	0					
1 1/2"	38,100	F 8		3		January 17	C Superar operations are occur.
1.	25,400	3 8			0	100 - 100	TAMANO MAX. 1"
3/4"	19,050	1234,2	20,8	20,8	79,2	95 - 100	PESO TOTAL: 5940,3 gr
1/2"	12,700	Sharman m.S	8000000	100010	HEAT.	A	
3/8"	9,525	2286,4	38,5	59,3	40,7	20 - 55	TI CONTRACTOR OF THE CONTRACTO
1/4"	6,350						
N° 4	4,760	1456,3	24,5	83,8	16,2	0 - 10	PESO HUMEDO: 1250,0 gr
N* 8	2,380	963,4	16,2	100.0	0.0	0 - 5	PESO SECO: 1232,4 gr
N° 10	2,000						C.H.%: 1,43
N° 16	1,190	Fig. 3				3	
N° 20	0,840	Fi 3				9_ 3	
N° 30	0,590						
N° 40	0,420	B 3				8 8	
N° 50	0,297	E 3				0 0	·
N° 60	0,250					3 8	
N° 100	0,149					S 85	
N° 200	0,074	3		1	-	3 8	
PAN	18 11 18	SI 2				8.	
TOTAL		5940,3					
PERDIDA	16	1				3	

Observaciones: Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORAY CARBAJIC HARBIT SAC LIMBO MORTIL POLICE HIPLICAL

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ♣ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE PROYECTO

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CHANCADORA SICAN RESP. LAB.: R.H.B.C. MATERIAL : PIEDRA CHANCADA TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022 SOLICITANTES :

RIVERA SEGURA MIGUEL EDUARDO

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

		REGADO F			
			IDEN	TIFICACION	
		1	2	3	Promedio
Peso del recipiente + muestra	(Kg)	14537,0	14638,0	14812,0	
Peso del recipiente	(Kg)	7210,0	7210,0	7210,0	
Peso de la muestra	(Kg)	7327,0	7428,0	7602,0	
Volumen	(m ³)	5302,0	5302,0	5302,0	
Peso Unitario Suelto	(Kg/m³)	1381,93	1401,0	1433,8	1405,6
CONTENIDO DE HUMEDAD					
Peso de tara	(g)				
Peso de tara + muestra humeda	(g)				
Peso de tara + muestra seca	(g)				
Peso Agua	(g)				
Peso Suelo Seco	(g)				
Contenido de humedad	(%)		0		
Peso Unitario Suelto	(Kg/m³)	1381,9	1401,0	1433,8	1405,6

Observaciones: Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORAY CHEULTORIAMR SAC Luised Maria Valco Hurtada TECNICO "E LABORATORIO

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ♥ 978 360 036 - 993 595 300.
© constructora,ayr.chiclayo@gmail.com

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CHANCADORA SICAN RESP. LAB. : R.H.B.C.

MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

SOLICITANTES : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA : SEPTIEMBRE 2022

DATES DE LA MUE

DATOS DE LA MUESTRA

MUESTRA : M-01

		AGREGADO DATOS DEL EN	Marie Control		
2		DATOS DEL EN		FICACION	
		1	2	3	Promedio
Peso del reciiente + muestra	(Kg)	15073,0	15146,0	15084,0	
Peso del recipiente	(Kg)	7210,0	7210,0	7210,0	
Peso de la muestra	(Kg)	7863,0	7936,0	7874,0	
Volumen	(m ³)	5302,0	5302,0	5302,0	
Peso Unitario Compactado	(Kg/m³)	1483,0	1496,8	1485,1	1488,3
CONTENIDO DE HUMEDAD					
Peso de tara	(g)		ā		
Peso de tara + muestra humeda	(g)		æ		
Peso de tara + muestra seca	(g)	8	13	19	
Contenido de humedad	(%)				
Peso Unitario Compactado	(Kg/m³)	1483,0	1496,8	1485,1	1488,3

Observaciones: Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORAY CHEMICTORIAASR SHO

Luisa Maria Valco Hurtzulo
Vacanto He Luicoraronio

CONSTRUCTOR OF EQUISION OF THE PROPERTY OF T

MUESTRA

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🏚 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito− Chiclayo, 📲 978 360 036 − 993 595 300. constructora.ayr.chiclayo@gmail.com

PESO ESPECIFICO Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 206)

*ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) PROYECTO

Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE

: M-01

CANTERA : TRES TOMAS- FERREÑAFE RESP. LAB. ; R.H.B.C. MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTES

RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA

FECHA: SEPTIEMBRE 2022

	DA	TOS DEL ENSA	YO	77
A	Peso Mat.Sat. Sup. Seca (En Aire) (gr)	1250,0	1700,0	
В	Peso Mat.Sat. Sup. Seca (En Agua) (gr)	788,4	1082	
С	Vol. de masa + vol de vacios = A-B (gr)	461,6	618	
D	Peso material seco en estufa (105 °C)(gr)	1242,6	1691,3	- *
E	Vol. de masa = C- (A - D) (gr)	454,2	609,3	PROMEDIO
	Pe bulk (Base seca) = D/C	2,692	2,737	2,714
	Pe bulk (Base saturada) = A/C	2,708	2,751	2,729
	Pe Aparente (Base Seca) = D/E	2,736	2,776	2,756
	% de absorción = ((A - D) / D * 100)	0,60	0,51	0,55%

Las muestras fueron proporcionadas por el cliente. Observaciones:

CONSTRUCTORA Y CAPISULICHÍA ASR SAC

Luisa Maria Talco Hurtado

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, → 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

ENSAYO DE ABRASION (MAQUINA DE LOS ANGELES) (NORMA MTC E - 207)

"ANALISIS MECÀNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) PROYECTO

Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CHANCADORA SICAN RESP. LAB.: R.H.B.C. MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTES FECHA: SEPTIEMBRE 2022 RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

		DATOS DEL E	OYASA	Y1
TAMIZ		В		
PASA	RETIENE	. 6		
3"	2 1/2"			
2 1/2"	2*			
2"	1 1/2"			
1 1/2*	1"	3		1
1"	3/4*			
3/4"	1/2*	2500		
1/2"	3/8"	2500		
3/8"	1/4*			ĺ
1/4"	No 4			
PESO TOTAL		5000		
PESO RETENIDO	D EN TAMIZ N°12	1867		
PERDIDA DESPU	PERDIDA DESPUES DEL ENSAYO		1	
N° DE ESFERAS	N° DE ESFERAS			
PESO DE LAS ES	SFERAS	4598		
% D	E DESGASTE	62,7		

Observaciones: Las muestras fueron proporcionadas por el cliente.

CONSTRUCTORAY CHISHITOIDAARRSAC
Luisa María Valen Hirrindo

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, • 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

DURABILIDAD DEL AGREGADO GRUESO (SULFATO DE MAGNESIO) (MTC E 209)

'ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFE(CCC) Y REFORZADO CON PROYECTO

FIBRA DE POLIPROPILENO(FP)* : CHICLAYO- LAMBAYEQUE

CANTERA : CHANCADORA SICAN RESP. LAB. : R.H.B.C. MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTES FECHA: SEPTIEMBRE 2022

RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA

MUESTRA : M-01

UBICACIÓN

			DAT	OS DEL ENSA	YO				
FRACCI	ON	GRADACION ORIGINAL		PESO DE LA	PESO	PERDIDA	PERDIDA	and and and a	
PASA	RETIENE	Peso	200-89000	- W Retenido	FRACCION ENSAYADA	RETENIDO DESPUES DEL ENSAYO	DESPUES DEL ENSAYO (gr)	DESPUES DEL ENSAYO %	PERDIDA CORREGIDA
			А	В	С	D	NEW .	F	
2 1/2"	2"								
2"	1 1/2"								
1 1/2"	(I)					i i			
1.5	3/4"	1234,20	24,80	100,00	83,50	16,50	16,50	4,09	
3/4"	1/2"								
1/2"	3/8"	2286,40	45,94	100,00	71,40	28,60	28,60	13,14	
3/8"	N° 4	1456,3	29,26	100,00	81,20	18,80	18,80	5,50	
	< N° 4			-					
TOTALES		4976,9	100,0	600				22,73	

Observaciones: Las muestras fueron proporcionadas por el cliente.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia Laboratorio de Materiales. Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 42 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

TERRONES DE ARCILLAS Y PARTICULAS DELEZNABLES - MTC E 212

PROYECTO "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN CHICLAYO- LAMBAYEOUE CANTERA CHANCADORA SICAN MATERIAL

RESP. LAB. : RHB.C.

PIEDRA CHANCADA SOLICITANTE

TEC. LAB.: LMF.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

FECHA: SEPTIEMBRE 2022

AGREGADO GRUESO:

Tamaño de las particulas entre los tamices de :		Peso de la muestra antes del ensayo	Tamaño del tamiz para remover el residuo del ensayo	Peso de la muestra despues del ensayo	Peso de la perdida del material	Perdida
Pasa	Retiene	(g)	11.10-02	(g)	(9)	(%)
3/4* (19.0 m.m)	№ 4 (4.75 m.m)	1186,0	Nº 8 (2.36 m.m)	1104,0	82,00	6,91%

ESPECIFICACION MAX. 5%

OBSERVACIONES: Las muestras lueron proporcionadas por el cliente.

sourcestangenous area

Husd

CANTERA 3

AGREGRADO GRUESO

AGREGADO FINO

PROYECTO

MUESTRA

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🏚 Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito— Chiclayo, 📲 978 360 036 — 993 595 300.

constructora.ayr.chiclayo@gmail.com

ANALISIS GRANULOMETRICO (NORMA MTC E 204)

'ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN ; CHICLAYO - LAMBAYEQUE

: M-01

CANTERA : ASFALPACA - TRES TOMAS - FERREÑAFE RESP. LAB: R.H.B.C. MATERIAL TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

FECHA: SEPTIEMBRE 2022

	DATOS DEL ENSAYO									
Tamices ASTM	Abertura on MM	Peso Retenido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especificaci ones	DESCRIPCION DE LA MUESTRA			
3*	76,200									
2 1/2*	63,500		8 0	- 5		16 3	(
2*	50,800		0.00							
1 1/2"	38,100									
1*	25,400		(i)				TAMANO MAX. 1/4"			
3/4"	19,050			_		18	PESO TOTAL: 500.0 gr			
1/2"	12,700						711100000000000000000000000000000000000			
3/8"	9,525		0 0	- 8	200 MARCO 10	100	į.			
1/4"	6,350		i		100,0	100	Assert conservations provide the			
N' 4	4,760	74,3	14,9	14,9	85,1	95 - 100	MODULO DE FINEZA: 3,79			
N° 8	2,380	128,6	25,7	40.6	59,4	80 - 100				
N° 10	2,000	1000-0	2 1/200 - 5		2-30m)	The state of	PESO HUMEDO: 1200,0 gr			
N° 16	1,190	83,2	16,6	57.2	42,8	50 - 85	PESO SECO: 1179,0 gr			
N° 20	0,840				11001000	V	C.H.% 1,78			
N° 30	0,590	94,6	18,9	76.1	23,9	25 - 60	785			
N° 40	0,420						ii.			
N° 50	0,297	88,6	17,7	93.9	6,1	10 - 30				
N° 60	0,250	10100		195000	ill.	18m - 200				
N* 100	0,149	11,2	2,2	96.1	3,9	2 - 10				
N° 200	0.074	5,8	1.2	97,3	2.7					
PAN	8	13,7	2,7	100,0	0,0	19 3				
TOTAL	<u> </u>	113300.10	2 -000	- Davis O	00040401					
% PERDIDA										

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTION OF SELECTION AND SELECTION OF S

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, → 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

"ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFE(CCC) PROYECTO

Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

CANTERA : ASFALPAÇA - TRES TOMAS - FERREÑAFE RESP. LAB: R.H.B.C. MATERIAL : ARENA GRUESA TEC, LAB.; L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022 SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

	DAT	OS DEL ENSA	AYO		
			IDEN	TIFICACION	
		A	2	3	Promedio
Peso del recipiente + muestra	(Kg)	25694,0	25845,0	25894,0	
Peso del recipiente	(Kg)	12318,0	12318,0	12318,0	
Peso de la muestra	(Kg)	13376,0	13527,0	13576,0	
Volumen	(m³)	9396,0	9396,0	9396,0	
Peso Unitario Suelto	(Kg/m ³)	1423,58	1439,7	1444,9	1436,0
CONTENIDO DE HUMEDAD			O O		
Peso de tara	(g)		¥.	200	
Peso de tara + muestra humeda	(g)		-	SE 89 E	
Peso de tara + muestra seca	(g)				
Peso Agua	(g)			42 44	
Peso Suelo Seco	(g)		<u> </u>	36 30 3	
Contenido de humedad	(%)		ž	· 15	
Peso Unitario Suelto	(Kg/m ³)	1423,6	1439,7	1444,9	1436,0

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY SOURESTORIAANS EAR Luisio Maria Valco Hurtado

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, 📲 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

"ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFE(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

; CHICLAYO - LAMBAYEQUE UBICACIÓN

CANTERA : ASFALPACA - TRES TOMAS - FERREÑAFE RESP. LAB: R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB .: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022 SOLICITANTE

RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA					
MUESTRA	: M-01				

	Α	RENA ZARANI DATOS DEL EN			
	1	DATOS DEL EN	TO THE REAL PROPERTY.	ICACION	
		4	2	3	Promedic
Peso del reciiente + muestra	(Kg)	26652,0	26586,0	26712,0	
Peso del recipiente	(Kg)	12318,0	12318,0	12318,0	
Peso de la muestra	(Kg)	14334,0	14268,0	14394,0	
Volumen	(m ³)	9396,0	9396,0	9396,0	
Peso Unitario Compactado	(Kg/m³)	1525,5	1518,5	1531,9	1525,3
CONTENIDO DE HUMEDAD					
Peso de tara	(g)	#4	19	-	
Peso de tara + muestra humeda	(g)	€1	13		
Peso de tara + muestra seca	(g)	#8	re .		=
Contenido de humedad	(%)				
Peso Unitario Compactado	(Kg/m³)	1525,5	1518,5	1531,9	1525,3

Observaciones: Las muestras fueron proporcionadas por el solicitante.

ponsulrenda san sac

MUESTRA

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 49 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS

(NORMA MTC E 205)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) PROYECTO

Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

: M-01

CANTERA : ASFALPACA - TRES TOMAS - FERREÑAFE RESP. LAB: R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB .: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022 SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA

	DATOS DEL ENSAYO								
A	Peso Mat. Sat. Sup. Seco (en Aire) (gr)	300,0	300,0						
В	Peso Frasco + agua	662	654,3						
С	Peso Frasco + agua + A (gr)	962,0	954,3						
D	Peso del Mat. + agua en el frasco (gr)	838,6	829,6						
Ε	Vol de masa + vol de vacío = C-D (gr)	123,4	124,7						
F	Pe. De Mat. Seco en estufa (105°C) (gr)	296,4	296,10						
G	Vol de masa = E - (A - F) (gr)	119,8	120,8	PROMEDIC					
	Pe bulk (Base seca) = F/E	2,402	2,374	2,388					
	Pe bulk (Base saturada) = A/E	2,431	2,406	2,418					
	Pe aparente (Base Seca) = F/G	2,474	2,451	2,463					
	% de absorción = ((A - F)/F)*100	1,215	1,317	1,27%					

Observaciones: Las muestras fueron proporcionadas por el solicitante.

TORAY PAUSIETORIA ASE SAC

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 49 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

EQUIVALENTE DE ARENA (NORMA MTC E 114)

"ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

CANTERA : ASFALPACA - TRES TOMAS - FERREÑAFE RESP. LAB: R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB .: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE FECHA: SEPTIEMBRE 2022 RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA						
MUESTRA	: M-01					

	DATOS DEL ENSAYO						
MUESTRA	01	02	03				
HORA DE ENTRADA	10:45	10:47	10:49	di.	0.0		
HORA DE SALIDA	10:55	10:57	10:59				
HORA DE ENTRADA	10:57	10:59	11:01				
HORA DE SALIDA	11:17	11:19	11:21				
ALTURA DE NIVEL MATERIAL FINO (A)	4,1	4,2	4,5				
ALTURA DE NIVEL ARENA (B)	2,3	2,1	2,1				
EQUIVALENTE DE ARENA (B x 100/A)	56,1%	50,0%	46,7%				

EQUIVALENTE DE ARENA PROMEDIO: 50,9%

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY OF SELECTION ASPECTS

FULL OF

LIVE OF MICHAEL AND THE TRANSPORTED THE CONTROL OF THE LABORATORISTS

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 📲 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (NORMA NTP 400.015, MTC E 212)

ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFE(CCC) Y REFORZADO CON PROYECTO

FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

CANTERA : ASFALPACA - TRES TOMAS - FERREÑAFE RESP. LAB : R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB .: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

FECHA: SEPTIEMBRE 2022 SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

DATOS DEL ENSAYO							
Peso Inicial de muestra : Agregado Grueso	Pasa (3/8")	Retiene (3/4")	2000,0	gr.			
Peso Final de muestra	50		1865,0	gr.			
Porcentaje de Terrones de arcilla			7,24	%			

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY OF SULTONIA MER DIC

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo. → 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

MATERIAL QUE PASA MALLA Nº 200 (NORMA MTC E 202)

"ANALISIS MEGÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON

PROYECTO : FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO - LAMBAYEQUE

CANTERA : ASFALPACA - TRES TOMAS - FERREÑAFE RESP. LAB : R.H.B.C.
MATERIAL : ARENA GRUESA TEC. LAB.: L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

	DATOS DEL ENSAYO							
TARA	PESO INICIAL SECO GR.	PESO DESPUES DE LAVADO GR.	RESULTADO	ESPECIFICACION	CONCLUSION			
1	292,3	274,8	6,4	5,0%	NO CUMPLE			

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY CHERTONIANER EAC Luism Maria Juleo Huritaio CONSTRUCTOR OF CONSTRUCTOR

L.E.M.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ¶ 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

DETERMINACION DE CARBON Y LIGNITO (NORMA MTC E 211)

'ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE PROYECTO

: CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

CANTERA : ASFALPACA - TRES TOMAS - FERREÑAFE RESP. LAB: R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO FECHA: SEPTIEMBRE 2022 SOLICITANTE

DATOS DE LA MUESTRA MUESTRA : M-01

,400 g
125 g
653 %

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY paperuntenda ASR SAC

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🏚 Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Cerrito- Chiclayo, 📲 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ENSAYO DE MATERIA ORGANICA (NORMA NTP 400.024, MTC E 213)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON PROYECTO

FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO - LAMBAYEQUE

CANTERA : ASFALPACA - TRES TOMAS - FERREÑAFE RESP. LAB: R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB .: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE FECHA: SEPTIEMBRE 2022

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

_	DATOS DEL ENSAYO							
	N° DE ENSAYO	1	2					
-								
	HORA DE ENTRADA	08:20	08:30					
0	HORA DE SALIDA	14.20	14:30					
	PESO DE MUESTRA SECA + RECIPIENTE	78,60	85,68					
30,000	PESO DE MUESTRA SECA + RECIPIENTE DESPUÉS DE ENSAYO	78,36	85,26					
8	PESO DE RECIPIENTE	50,00	50,00					
	PESO DE MUESTRA INICIAL	28,60	35,68					
5	PESO DE MUESTRA FINAL	28,36	35,26					
3	PESO DE MATERIA ORGANICA	0,24	0,42					
	% MATERIA ORGÁNICA	0,84	1,18					

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY (A VENUTORIA AGE SAC

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 4978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

TERRONES DE ARCILLA Y PARTICULAS DELEZNABLES - MTC E 212

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON PROYECTO

FIBRA DE POLIPROPILENO(FP)* UBICACIÓN CHICLAYO- LAMBAYEQUE

CANTERA ASFALPACA - TRES TOMAS - FERREÑAFE

RESP. LAB. : R.H.B.C. MATERIAL ARENA GRUESA TEC. LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022 SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO

INALTERABILIDAD DEL AGREGADO FINO: Análisis cuantitativo.

Frac	ción	1	2	3	4	5
Tar	ata:	Gradación	Peso de la fracción	Peso Retenido	Perdida	Perdida
- l'ar	nız	Original	ensayada	después del ensayo	total	Corregida
Pasa	Retiene	(%)	(g)	(g)	(%)	(%)
3/8"	N*4	74,3	186,3	174,2	6,49	4,83
N* 4	N* 8	128,6	156,3	155,8	0,32	0,41
N* 8	N° 16	83,2	95,5	92,8	2,83	2,35
N° 16	N° 30	94,6	88,7	86,7	2,25	2,13
N° 30	N° 50	88,6	91,1	88,4	2,96	2,63
N° 50	N° 100	11,2	66,6	52,3	21,47	2,40
TO1	TAL.	480,5	684,5	650,2		14,75

INALTERABILIDAD DEL AGREGADO FINO: 14,75 %

OBSERVACIONES: Las muestras fueron proporcionadas por el solicitante.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito— Chiclayo, ♣ 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

ANÁLISIS GRANULOMÉTRICO (NORMA MTC E 204)

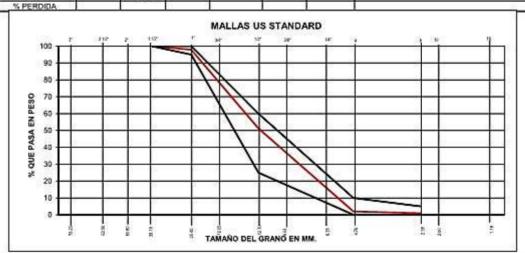
'ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : ASFALPACA - TRES TOMAS

RESP. LAB. : R.H.B.C.

MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.


ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO

FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

				DATOS DE	L ENSAY	0	
Tamices ASTM	Abertura on MM	Peso Reternido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especifi- caciones	DESCRIPCION DE LA MUESTRA
3"	76,200		8 3			HUSO 57	
2 1/2*	63,500		0 0			1 1	
Z	50,800		š			1 1	
1 1/2"	38,100				100,0	100 - 100	
1*	25,400	384,2	2,1	2,1	97,9	95 - 100	TAMAÑO MAX. 1 1/2"
3/4"	19,050	200000	3	767	1000	100000000000000000000000000000000000000	PESO TOTAL: 18269,8 gr
1/21	12,700	8526,3	46,7	48,8	51,2	25 - 60	
3/8"	9,525		8		-		
1/4"	6,350		8 - 8		ű		: Sinua di AVVIII di Biri
N* 4	4,760	9001,4	49,3	98,0	2,0	0 - 10	PESO HUMEDO: 1300,0
N* 8	2.380	188,9	1,0	99.1	0.9	0 - 5	PESO SECO: 1283,0
N° 10	2,000		S Mer 3	2500	3000		C.H.%: 1,33
N° 16	1,190	i.	8 3			1 1	
N° 20	0,840						
N° 30	0,590		1				
N° 40	0.420		6 - 8				
N° 50	0,297		1				
N° 60	0.250	8	8 8				
N° 100	0,149		8		5		
N° 200	0,074						
PAN		169,00	8 - 8			1 1	
TOTAL		18269,8	8 3				
DEBUIL	8 1						

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAY CONSULTERIAMENCIAL

LINES CONTROL VALCO HURTONO

MATERIAL

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, # 978 360 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

PROYECTO : "ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : ASFALPACA - TRES TOMAS

: PIEDRA CHANCADA TEC. LAB. : L.M.F.H.
ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

SOLICITANTE : RIVERA SEGURA MIGUEL EDUARDO

FECHA: SEPTIEMBRE 2022

RESP. LAB.: R.H.B.C.

DATOS DE LA MUESTRA					
MUESTRA	: M-01				

	-	GADO GRU			
	DATO	OS DEL ENSA	YO		
			IDENT	IFICACION	
		1	2	3	Promedio
Peso del recipiente + muestra	(Kg)	26069,0	26013,0	25994,0	
Peso del recipiente	(Kg)	12328,0	12328,0	12328,0	
Peso de la muestra	(Kg)	13741,0	13685,0	13666,0	
Volumen	(m ³)	9396,0	9396,0	9396,0	
Peso Unitario Suelto	(Kg/m³)	1462,43	1456,5	1454,4	1457,8
CONTENIDO DE HUMEDAD					
Peso de tara	(g)				
Peso de tara + muestra humeda	(g)			0	
Peso de tara + muestra seca	(g)				
Peso Agua	(g)			22	
Peso Suelo Seco	(g)			0	
Contenido de humedad	(%)				
Peso Unitario Suelto	(Kg/m ³)	1462,4	1456,5	1454,4	1457,8

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORS POSSESSION ASPERCE
Luisar Maria Valco Hurrado

CONSTRUCTOR OF TOWNSHIP CONTROL

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ♣ 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

"ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y 🛚 PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

: CHICLAYO- LAMBAYEQUE UBICACIÓN : ASFALPACA - TRES TOMAS RESP. LAB. : R.H.B.C. CANTERA : PIEDRA CHANCADA TEC. LAB. : L.M.F.H. MATERIAL

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON : RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA MUESTRA : M-01

AGREGADO GRUESO DATOS DEL ENSAYO							
*		,	IDENTIF	CACION			
	10.65	1	2	3	Promedio		
Peso del reciiente + muestra	(Kg)	27041,0	27019,0	26902,0			
Peso del recipiente	(Kg)	12328,0	12328,0	12328,0			
Peso de la muestra	(Kg)	14713,0	14691,0	14574,0			
Volumen	(m ³)	9396,0	9396,0	9396,0			
Peso Unitario Compactado	(Kg/m ³)	1565,9	1563,5	1551,1	1560,2		
CONTENIDO DE HUMEDAD							
Peso de tara	(g)	9 5 3	3.00	(* 2)			
Peso de tara + muestra humeda	(g)	51 8 .6	240	0. 0. 8 0			
Peso de tara + muestra seca	(g)	(1 4 3)	898	8#8			
Contenido de humedad	(%)			·			
Peso Unitario Compactado	(Kg/m³)	1565,9	1563,5	1551,1	1560,2		

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CHERONAUTLICOPY MICHGESTERICS

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🏚 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito− Chiclayo, 📲 978 360 036 − 993 595 300. constructora.ayr.chiclayo@gmail.com

PESO ESPECIFICO Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 206)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : ASFALPACA - TRES TOMAS

RESP. LAB. : R.H.B.C. MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022 SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

	DA	TOS DEL ENSA	YO	
Α	Peso Mat.Sat. Sup. Seca (En Aire) (gr)	1189,9	1148,3	S.A.
В	Peso Mat.Sat. Sup. Seca (En Agua) (gr)	742,6	718,6	L- 20
С	Vol. de masa + vol de vacios = A-B (gr)	447,3	429,7	
D	Peso material seco en estufa (105 °C)(gr)	1174,6	1133,4	
E	Vol. de masa = C- (A - D) (gr)	432,0	414,8	PROMEDIO
	Pe bulk (Base seca) = D/C	2,626	2,638	2,632
	Pe bulk (Base saturada) = A/C	2,660	2,672	2,666
	Pe Aparente (Base Seca) = D/E	2,719	2,732	2,726
	% de absorción = ((A - D) / D * 100)	1,303	1,315	1,31%

Observaciones: Las muestras fueron proporcionadas nor el solicitante.

MARKAPOTARIX KARTHERENE Pauld

SOLICITANTE

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 49 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

ENSAYO DE ABRASION (MAQUINA DE LOS ANGELES) (NORMA MTC E - 207)

'ANÀLISIS MECÀNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : ASFALPACA - TRES TOMAS

RESP. LAB.: R.H.B.C. TEC. LAB.: L.M.F.H.

MATERIAL : PIEDRA CHANCADA ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

RIVERA SEGURA MIGUEL EDUARDO

FECHA: SEPTIEMBRE 2022

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

		DATOS DEL ENSAYO): 	
TA	MIZ	В		
PASA	RETIENE	В		
3"	2 1/2"			
2 1/2"	2"			
2"	1 1/2"			
1 1/2"	1"			
1".	3/4"			
3/4"	1/2"	2500		
1/2"	3/8"	2500		
3/8"	1/4"			
1/4"	No 4			
PESO TOTAL		5000		
PESO RETENID	O EN TAMIZ N°12	4012		
PERDIDA DESP	PUES DEL ENSAYO	988		
N° DE ESFERAS	3	11		
PESO DE LAS E	SFERAS	4598		
% E	DE DESGASTE	19,8		

Observaciones: Las muestras fueron pronorcionadas nor el solicitante,

Autora v scantralican esc Cluss V al Maria Valeo Hurtodo tenga re macharana

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 49 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

DURABILIDAD DEL AGREGADO GRUESO (SULFATO DE MAGNESIO) (NORMA MTC E 209)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON PROYECTO

FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : ASFALPACA - TRES TOMAS MATERIAL : PIEDRA CHANCADA

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON : RIVERA SEGURA MIGUEL EDUARDO

SOLICITANTE

TEC. LAB. : L.M.F.H.

RESP. LAB.: R.H.B.C.

FECHA: SEPTIEMBRE 2022

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

FRACCION		GRADACION ORIGINAL %		Peso de	S W. S.	Perdida	Perdida	
PASA	RETIENE	Peso retenido	% retenido	fracción ensayada	Peso retenido después del ensayo	depues del ensato (gr)	depues del ensato (%)	Perdida corregida
			A	В	С	D	E	F
2 1/2"	2"				1			50.2
2"	1 1/2"						2 9	
1 1/2"	1"	384,2	2,1	774,0	724,3	49,7	6,4	0,14
1"	3/4"	111,0	0,6	301,0	281,5	19,5	6,5	0,04
3/4"	1/2"	8526,3	47,0	652,0	602,4	49,6	7,6	3,58
1/2"	3/8"	102,0	0,6	403,0	375,2	27,8	6,9	0,04
3/8"	N° 4	9001,4	49,7	613,0	532,4	80,6	13,1	6,53
	< N° 4						3	
UMA TOTAL		18124,9	100	4743		*		10,32

Observaciones: Las muestras fueron proporcionadas por el solicitante.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.

- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito—Chiclayo, 49 978 360 036 – 993 595 300.

constructora.ayr.chiclayo@gmail.com

TERRENOS DE ARCILLAS Y PARTICULAS DELEZNABLES-MTC E 212

PROYECTO : "ANÁLISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : ASFALPACA - TRES TOMAS

RESP. LAB.: R.H.B.C.

MATERIAL : PIEDRA CHANCADA

TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

FECHA: SEPTIEMBRE 2022

AGREGADO GRUESO:

SOLICITANTE

Tamaño de las particulas entre los tamices de :		Peso de la muestra antes del ensayo	Tamaño del tamiz para remover el residuo del ensayo	Peso de la muestra despues del ensayo	Peso de la perdida del material	Perdida
Pasa	Retiene	(9)		(g)	(9)	(%)
3/4" (19.0 m.m)	N° 4 (4.75 m.m)	1025,0	№ 8 (2.36 m.m)	992,4	32,60	3,18%

ESPECIFICACION MAX.	5%

OBSERVACIONES: Las muestras fueron proporcionadas por el solicitante.

Construction of Scientishamese Luisa Haria Valco Huriado CONSTRUCTOR OF CONSULTORIA

Registro de la Propiedad Industrial

Dirección de Signos Distintivos

CERTIFICADO Nº 00114014

La Dirección de Signos Distintivos del Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual – INDECOPI, certifica que por mandato de la Resolución Nº 005703-2019/DSD - INDECOPI de fecha 15 de marzo de 2019, ha quedado inscrito en el Registro de Marcas de Servicio, el siguiente signo:

Signo

La denominación AR CONSTRUCTORA & CONSULTORIA y logotipo (se

reivindica colores), conforme al modelo

Distingue

Servicio de construcción

Clase

37 de la Clasificación Internacional.

Solicitud

0782238-2019

Titular

CONSTRUCTORA Y CONSULTORIA A & R S.A.C.

Pais

Perú

Vigencia

15 de marzo de 2029

Tomo

0571

Folio

028

RAY MELONI GARCIA Director Dirección de Signos Distintivos (NDECOPI

CONSTRUCTORA & CONSULTORIA

RUC Nº 20561378313

REGISTRO NACIONAL DE PROVEEDORES

CONSTANCIA DE INSCRIPCIÓN PARA SER PARTICIPANTE, POSTOR Y CONTRATISTA

CONSTRUCTORA Y CONSULTORIA A & R SOCIEDAD ANONIMA CERRADA

Domiciliado en: CAL. JUAN PABLO II NRO. 682 URB. LAS BRISAS LAMBAYEQUE CHICLAYO CHICLAYO (Según información declarada en la SUNAT)

Se encuentra con inscripción vigente en los siguientes registros:

PROVEEDOR DE BIENES

Vigencia : Desde 28/07/2016

PROVEEDOR DE SERVICIOS

Vigencia : Desde 28/07/2016

EJECUTOR DE OBRAS

Vigencia para ser participante, postor y : Desde 01/02/2019

contratista

: 900,000.00 (NOVECIENTOS MIL Y 00/100) Capacidad Máxima de Contratación

CONSULTOR DE OBRAS

Vigencia para ser : Desde 21/06/2018

participante, postor

v contratista

Especialidades Ley : 3 - Consultoría en obras de saneamiento y afines - Categoría A 30225

4 - Consultoría en obras electromecánicas, energéticas, telecomunicaciones y

afines - Categoría A

5 - Consultoría en obras de represas , irrigaciones y afines - Categoría A

1 - Consultoría en obras urbanas edificaciones y afines - Categoría A (*)

2 - Consultoría en obras viales, puertos y afines - Categoría A

Nota:

* De acuerdo al artículo 15 del Reglamento de la Ley de Contrataciones del Estado, aprobado por D.S. № 344-2018-EF, vigente a partir del 30/01/2019, la especialidad se denomina "Consultoría de obras en edificaciones y afines".

Para mayor información la Entidad deberá verificar el estado actual de la vigencia de inscripción del proveedor en la página veb del RNP: www.rnp.gob.pe - opción Verifique su Inscripción.

Retornar

Imprimir

Anexo 7: ESPECIFICACIÓN TÉCNICA DE LA FIBRA DE POLIPROPILENO

HOJA DE DATOS DEL PRODUCTO

Sika® Fibermesh®-150

MICROFIBRA SINTÉTICA DE MONOFILAMENTO.

DESCRIPCIÓN DEL PRODUCTO

Sika* Fibermesh*-150 es una fibra de polipropileno de monofilamento (fabricada con 100% de resina de polipropileno virgen) diseñada específicamente para su uso en hormigón como refuerzo secundario, para controlar la retracción plástica y el agrietamiento por asentamiento.

USOS

Sika* Fibermesh*-150 se puede utilizar en todo tipo de concreto. Las aplicaciones típicas incluyen:

- Losas
- Aceras
- Calzadas
- Cubiertas
- Bordillos
- Elementos prefabricados
- · Revestimientos, etc.

Sika® Fibermesh®-150 actúa físicamente reforzando al concreto con una red de fibra multidimensional. Sika® Fibermesh®-150 puede disminuir el agrietamiento por retracción plástica y por secado y aumenta la resistencia al impacto. En caso de que el concreto (ya endurecido) esté expuesto al fuego, la presencia de Sika® Fibermesh®-150 reduce el desprendimiento explosivo del concreto (spalling).

No afecta químicamente el proceso de curado y no absorbe agua.

CARACTERÍSTICAS / VENTAJAS

- Manejo simple, facilidad de trabajo.
- · Reduce el agrietamiento por retracción plástica.
- · Proporciona refuerzo multidimensional.
- Mejora la resistencia al impacto, rotura y abrasión del concreto.
- Reduce la exudación.
- · Reduce el daño por ciclos hielo deshielo.
- · Excelente terminación a la vista.
- Mayor durabilidad.
- · Reducción de desprendimiento en caso de incendio.

CERTIFICADOS / NORMAS

Cumple con la norma europea EN 14889-2 fibras para concreto.

Cumple con ASTM C1116 / C1116M, concreto reforzado con fibra tipo III.

INFORMACIÓN DEL PRODUCTO

Base Química	Polipropileno		
Empaques	 Bolsas hidrosolubles de 0.6 kg, 20 bolsas por caja. Bolsas hidrosolubles de 0.75 kg, 18 bolsas por caja. 		
Apariencia / Color	Microfibra sintética monofilamento de color blanco.		
Vida Útil	Por la naturaleza del empaque (hidrosoluble) se recomienda darle uso dentro de los 5 años a partir de la fecha de fabricación.		
Condiciones de Almacenamiento	Sika® Fibermesh®-150 se debe almacenar en un ambiente seco, en su en- vase original y cerrado. Evitar contacto directo con la intemperie.		
Densidad	0.91 g/cm ³		
Dimensiones	 Longitud: Entre 12.7 mm y 19 mm Diámetro: entre 0,03 - 0,05 mm. 		
Punto de Fusión	~ 162°C		
INFORMACIÓN TÉCNICA			
Absorción de Agua	No tiene absorción.		
Specific tensile strength	165 MPa		
Módulo de Elasticidad	1.4 GPa		
Elongación de Rotura	> 250%		
Resistencia a la Alcalinidad	Alta		
INFORMACIÓN DE APLICA	ACIÓN		
Dosificación Recomendada	La dosis de Sika® Fibermesh®-150 varía según el tipo de aplicación y los re quisitos de rendimiento y desempeño. La proporción de dosis recomenda da estándar está entre 0,5 - 0,9 kg/m3 para reducir la fisuración por contracciones plásticas. Al menos 0.9kg/m3 para mejorar la resistencia al impacto y entre 1 - 2 kg/m3 para mejorar la resistencia al fuego.		
Dosificación	Se puede agregar Sika® Fibermesh®-150 en la bolsa hidrosoluble directa- mente al sistema de mezcla de concreto después de agregar el total del material al mixer y mezclar al menos 4 a 5 minutos o 70 revoluciones. La adición de Sika® Fibermesh®-150 en el rango de dosis recomendado no re- quiere ningún diseño de mezcla específico o cambios del mismo. El concre- to con fibra se puede mezclar, bombear o colocar utilizando equipos con- vencionales.		

NOTAS

Todos los datos técnicos recogidos en esta hoja técnica se basan en ensayos de laboratorio. Las medidas de los datos actuales pueden variar por circunstancias fuera de nuestro control.

ECOLOGÍA, SALUD Y SEGURIDAD

Para información y asesoría referente al transporte, manejo, almacenamiento y disposición de productos químicos, los usuarios deben consultar la Hoja de Seguridad del Material actual, la cual contiene información médica, ecológica, toxicológica y otras relacionadas con la seguridad

RESTRICCIONES LOCALES

Nótese que el desempeño del producto puede variar dependiendo de cada país. Por favor, consulte la hoja técnica local correspondiente para la exacta descripción de los campos de aplicación del producto

NOTAS LEGALES

La información y en particular las recomendaciones sobre la aplicación y el uso final de los productos Sika son proporcionadas de buena fe, en base al conocimiento y experiencia actuales en Sika respecto a sus productos, siempre y cuando éstos sean adecuadamente almacenados, manipulados y transportados; así como aplicados en condiciones normales. En la práctica, las diferencias en los materiales, sustratos y condiciones de la obra en donde se aplicarán los productos Sika son tan particulares que de esta información, de alguna recomendación escrita o de algún asesoramiento técnico, no se puede deducir ninguna garantía respecto a la comercialización o adaptabilidad del producto a una finalidad particular, así como ninguna responsabilidad contractual. Los derechos de propiedad de las terceras partes deben ser respetados. Todos los pedidos aceptados por Sika Perú S.A.C. están sujetos a Cláusulas Generales de Contratación para la Venta de Productos de Sika Perú S.A.C. Los usuarios siempre deben remitirse a la última edición de la Hojas Técnicas de los productos; cuyas copias se entregarán a solicitud del interesado o a las que pueden acceder en Internet a través de nuestra página web www.sika.com.pe. La presente edición anula y reemplaza la edición anterior, misma que deberá ser destruida.

DISEÑO DE MEZCLA CONCRETO PATRON

DISEÑO DE MEZCLA DE CONCRETO F'C: 210 Y F'C: 280

SOLICITADO POR: ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

PROYECTO: "EVALUACIÓN DE PROPIEDADES MECÁNICAS DEL CONCRETO ADICIONANDO CENIZA DE BAGAZO DE CAÑA DE AZÚCAR Y REFORZADO CON FIBRA DE POLIPROPILENO"

SEPTIEMBRE 2022

ÍNDICE

I.	INTRODUCCIÓN	. 2
II.	GENERALIDADES.	. 2
2.1	OBJETIVO	. 2
2.2	METODOLOGÍA	. 2
2.3	UBICACIÓN DEL PROYECTO	. 2
Ш.	REQUERIMIENTO DE LOS MATERIALES	. 3
IV.	RESULTADOS DE LOS DISEÑO DE CONCRETO REALIZADOS	. 4
V	CONCLUSIONES Y RECOMENDACIONES	6

INFORME TÉCNICO DISEÑO DE MEZCLA DE CONCRETO PROYECTO: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

LINTRODUCCIÓN

El concreto es un material de construcción inventado y fabricado por el hombre a partir de una combinación adecuadamente dosificada y convenientemente mezclada de cemento Portland, agua, agregado fino y grueso; mezcla a la que se puede añadir aditivos, adiciones y fibra. Las propiedades y características del concreto para cada uso particular; así como para las especificaciones requeridas por los materiales empleados en la producción deben ceñirse a la normatividad NTP y MTC. Por ello, se debe tener plena conciencia que la calidad en las diferentes etapas del proceso constructivo es imprescindible y rentable en la medida que se evitan gastos de reparación y reforzamientos de las estructuras. El proceso de minimizar defectos y fallas en las obras de concreto requiere de buena preparación técnica y de un exigente control de calidad.

II.GENERALIDADES.

2.1 OBJETIVO

El presente Informe detalla las características principales de diseños de mezcla de concreto, de resistencias f'c 210 kg/cm2 y f'c 280 kg/cm2, con agregados traídos de las siguientes canteras.

- Agregado grueso (Piedra chancada): Asfalpaca Tres Tomas Ferreñafe
- · Agregado fino (Arena gruesa): Corporación Guevara Pátapo

2.2 METODOLOGÍA

Para los diseños de mezcla de concreto se ha seguido la metodología del ACI, el cual se tiene verdadera confianza en los valores de los diseños resultantes.

2.3 UBICACIÓN DEL PROYECTO

El proyecto se desarrollará para el proyecto: Chiclayo - Lambayeque

III.REQUERIMIENTO DE LOS MATERIALES

Cuadro Nº01 Requisitos mínimos de aceptación para agregados finos

CARACTERÍSTICAS	MASA TOTAL DE LA MUESTRA
Terrones de arcillas y partículas deleznables	3% (máx.)
Material que pasa el tamiz de 75 mm (Nº200)	3% (máx.)
Cantidad de partículas livianas	0.5% (máx.)
Contenido de sulfatos, expresado como ión SO4	1.2% (máx.)
Contenido de cloruros, expresado como ión Cl	0.10% (máx.)
Carbón y lignito	0.5% (máx.)
Materia orgánica	-
Equivalente de arena	65%min ≤ 210kg/cm2
10	75%min ≥ 210kg/cm2
Durabilidad al sulfato de magnesio	15% máx.
Módulo de fineza	2.3 – 3.1

2.0 REQUERIMIENTOS GRANULOMETRICOS Tamiz Porcentaje que pasa 9.5mm (3/8") 100 4.75mm(N°4) 95 - 100 2.36mm(N°8) 80 - 100 1.18mm(N°16) 50 - 85 600um(N°30) 25 - 60 300um(N°50) 10 - 30 150um(N°100) 2 - 10

Cuadro Nº02 Requisitos mínimos de aceptación para agregados gruesos

CA	RACTER	M		TAL DE I STRA	LA		
Terrones de arc	cillas y par		3% (máx.)			
Cantidad de pa	rtículas liv		1% (máx.)			
Contenido de SO ₄	sulfatos,	\$60.00/0000 Urescond					
Contenido de cl	loruros, ex	0.10% (máx)					
Carbón y lignito		12			0.5%	(máx.)	
Abrasión		40 máx.					
Durabilidad al s	ulfato de r	magnesio		18 máx.			
2.0 REQUERIM	IENTOS (GRANUL	OMETRICO:	S	10.1111.00		
Tamiz	AG-1	AG-2	HUSO - 57	AG-4	AG-5	AG-6	AG-7
63 mm (2.5")	3595				100	120	100
50 mm (2")	(A)			100	95 - 100	100	95 - 100
37.5 mm (1 ½")	(S#8		100	95 - 100	+:	90 - 100	35 - 70
25 mm (1")	856	100	95 - 100	4	35 - 70	20 - 55	0 - 15
19 mm (3/4")	100	95 - 100		35 - 70		0 - 15	-
12.5 mm (1/2")	90 - 100	-	25- 60	14	10 - 30	343	0 - 5
9.5 mm (3/8")	40 - 70	20 - 55		10 - 30	-	0 - 5	1
4.75 mm (N°4)	0 - 15	0 - 10	0 - 10	0-5	0 - 5	10 8 63	18
2.36 mm(N°8)	0-5	0-5	0 - 5	92	22	846	32

IV.RESULTADOS DE LOS DISEÑO DE CONCRETO REALIZADOS

En los cuadros siguientes se presenta los datos usados para el diseño de concreto

Cuadro Nº03
Características físicas mecánicas de los agregados grueso y fino

DESCRIPCIÓN	UNIDAD	
A. AGREGADO FINO	-	
Material que pasa el tamiz de 75um (Nº 200)	%	1.2
Equivalente de arena	%	79.0
B. AGREGADO GRUESO		
La granulometría cumple con las especificaciones	para el tipo HU	JSO-57
Abrasión	%	19.8

Cuadro N°04 Diseño de concreto de 210 kg/cm² - Cemento Tipo I

DESCRIPCIÓN	UNIDAD	CANTIDAD	
Tamaño Máximo Nominal	pulgada	1"	
Slump	pulgada	3 - 4"	
Aire Atrapado	%	1.50	
Módulo de Fineza		2.61	
Relación a/c		0.515	
PROPORCION EN P	ESO		
Cemento		*1	
Agregado grueso	2.90		
Agregado fino		2.10	
Agua	0.50		
PROPORCION EN V	OLUMEN PIE3		
Cemento	bls	1	
Agregado grueso	pie³/bls	2.99	
Agregado fino	pie ³ /bls	1.92	
Agua	It/bls	21.3	

Cuadro N°05 Diseño de concreto de 280 kg/cm² - Cemento Tipo I

DESCRIPCIÓN	UNIDAD	CANTIDAD	
Tamaño Máximo Nominal	pulgada	1"	- 4
Slump	pulgada	3 - 4"	
Aire Atrapado	%	1.50	
Módulo de Fineza	2.61		
Relación a/c	0.438		
PROPORCION EN P	ESO		
Cemento	1		
Agregado grueso	2.50	,	
Agregado fino		1.60	
Agua	0.43		
PROPORCION EN V	OLUMEN PIE ³		
Cemento	bls	1	
Agregado grueso	pie ³ /bls	2.54	
Agregado fino	pie ³ /bls	1.51	7
Agua	It/bis	18.1	

AV. VICENTE RUSO MZ S/N LOTE N° 08 - FUNDO EL CERRITO- CHICLAYO - LAMBAYEQUE.

V. CONCLUSIONES Y RECOMENDACIONES

- Los agregados para el diseño de mezclas fueron proporcionados por las solicitantes ALEJANDRIA BUSTAMANTE YELSEN ANDERSON - RIVERA SEGURA MIGUEL EDUARDO, para luego ser llevadas a nuestro laboratorio. No se hace responsable del uso e interpretación de los datos del certificado del ensayo.
 - Los diseños fueron realizados con agregados de la cantera:
 Agregado grueso (Piedra chancada): Asfalpaca Tres Tomas Ferreñafe
 Agregado fino (Arena gruesa): Corporación Guevara Patapo
 - La arena presenta 1.2% de material pasante de la malla N°200.
 - El resultado del equivalente de arena es 79.0% lo cual cumple para concretos mayores o iguales a 210 kg/cm2, donde la norma de pide como mínimo 75% en el ensayo de equivalente de arena.
 - Las mezclas de concreto consistirán en una mezcla de agregados grueso y agregado fino, agua y cemento en la proporción del diseño.
 - La graduación de cada uno de los agregados producirá al estar bien proporcionado, una mezcla conforme a los límites de graduación del tipo especificado.
 - Se define la trabajabilidad como aquella propiedad del concreto recién mezclado que determina la facilidad y homogeneidad con lo cual este material se puede mezclar, colocar, compactar y acabar compuestos de materiales similares en sus proporciones del diseño.
 - Tener en cuenta para la dosificación del agua que este diseño se realizó para los agregados que tenían la siguiente humedad (según muestras enviadas):

Arena : 1.71% Piedra : 1.33%

 Si los agregados en obra tienen humedad diferente a las del diseño se deberá corregir la dosificación del agua a fin de no variar la relación a/c (agua/cemento)

DISEÑO DE CONCRETO F'C=210 KG/CM2

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.
- ★ Av. Vicente Ruso Mz S/N Lote N° 08 Fundo El Cerrito- Chiclayo, 978 360 036 993 595 300.

constructora.gyr.chiclayo@gmail.com DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILEND(FP)"

UBICACIÓN

CANTERA ARENA GRUESA (CORPORACION GUEVARA - PATAPO) Y PIEDRA CHANCADA (ASFALPACA - TRES TOMAS - FERREÑAFE)

MATERIAL CONCRETO

210 Kg/am2 RESP. LAB. : R.H.B.C. ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITADO FECHA: SEPTIEMBRE 2022

CONCRETO:			fo	210	Kg/cm²		
	PESO	MODULO	HUMEDAD	PORCENTAJE	PESO SECO	PESO SECO	TAMAÑO
CARACTERIST.	ESPECIFICO	DE	NATURAL	DE	SUELTO	COMPACTADO	MAXIMO
	K/M3	FINEZA	%	ABSORCION	K/M3	K/M3	NOMINA
CEMENTO	3110	お事業	150	3449	-	-	_
AGR. FINO	2748	2,61	1,71	1,05	1611	1736	
AGR, GRUESO	2726	-	1,33	1,31	1459	1560	1.
	VALORES DE DISEÑO						110
				5) RELACION DE	A/C:	0,515	
1) ASENTAMIENTO:			3°a4°	6) AGUA		193	LT.
Z) TAMAÑO MAXIMO NO	MINAL:		14	7) AIRE INCORPO	DRADO	1,50	%
3) CON AIRE INCORPOR	ADO		NO	100	-	101	
4) VOL. DE AGREG. GRU			0.689	1			
% DE ADITIVOS EN BAS		š.	NO	1			
		ä		4			
			×	<u>.</u>			
FACTOR CEMENTO:			375	k/m3			
CANTIDAD DE AGREG.	GRUESO:		1075	k/m3			
CANTIDAD DE AGREG. R	FINO :		761	k/m3			
VOLUMEN ABSOLUTO	DE CEMENTO:		0,121	m3			
VOLUMEN ABSOLUTO C	E AGUA:		0,193	m3			
VOLUMEN ABSOLUTO D	E AIRE:		0.015	m3	PASTA:	0,3286	m3
VOLUMEN ABSOLUTO DE AG. GRUESO:			0.394	m3	MORTERO:	0,6057	m3
SUMA VOLUMEN ABSOI	LUTO DE AG. :		0.723	m3		\$	(9)
SUMATORIA DE VOLUM	EN ABSOLUTO:		0,723	m3			
VOLUMEN ABSOLUTO D	DE AG. FINO :		0,277	m3			
	TOTAL		1,000				
	CANTIDAD DE MATER	ALES		•	C	DEFICIENTE DE APORTE	
CEMENTO:		375	k/m3			8,82	bol/m3c
AGUA:		193	IVm3			49,6	gtn/m3c
AGREGADO FINO:		761	k/m3			0,47	m3a/m3c
AGREGADO GRUESO:		1075	k/m3			0,74	m3p/m3c
CORRECCION POR HUM		•0000	000 000 000 000 000 000 000 000 000 00		DE LOS AGREGADOS		
FINO. HUM:	774	k/m3	AGREGADO FINO		0.66 %	5,03	t.
GRUESO HUM.:	1089	k/m3	AGREGADO GRU		0.02 %		R.
			VOLUMEN DE AC		%	5,24	t.
				ORREG. POR HUM		198	1/m3
CANTIDAD DE MATERIAI	LES CORREGIDAS POI		_		VOLUMEN APARENT	E EN PIE3	
CEMENTO: 375			k/m3		8,82		
RANGO DE AGUA: 188			10/m3		21,28		
AGREG. FINO HUMEDO: 774			k/m3		16,97		
AGREG. GRUESO HUME		1089	k/m3		26,39		
	OPORCION EN PESO		_	PROP	ORCION EN VOLUMEN		
Cemento :	1				Cemento:	1 Bolsa	3
Agua ;	0,50	1			Agua :	21,3 Mbols.	
Arena :	2,1	1			Arena :	1,92 pie/bols.	
Grava :	2.9				Grava :	2,99 pie'/bols.	

DISEÑO DE CONCRETO F'C=280 KG/CM2

FECHA: SEPTIEMBRE 2022

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceritlo- Chiclayo, 42 978 360 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

ROYECTO "ANÁLISIS MEGÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POUPROPILENO(FP)"

UBICACIÓN

CANTERA AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

MATERIAL CONCRETO

RESP. LAB. : R.H.B.C.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITADO

CONCRETO:		000000000000000000000000000000000000	Fo	280	Kg/cm²	100MH 100MH	10 1000
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO KIM3	PESO SECO COMPACTADO KM3	TAMAÑO MAXIMO NAMIMAL
CEMENTO	3110		72	1 42 1	-		
AGR. FINO	2748	2,61	1,71	1,05	1611	1736	
AGR. GRUESO	2726	.52	1,33	1,31	1458	1560	1"

CONCRETO:		We arrest to the same	fo	280	Kg/cm²	September 1999	
HEALT OF THE	PESO	MODULO	HUMEDAD	PORCENTAJE	PESO SECO	PESO SECO	TAMAÑO
CARACTERIST.	ESPECIFICO	DE	NATURAL	DE	SUELTO	COMPACTADO	MAXIMO
:819.658.580.63.0	K/M3	FINEZA	100000000000000000000000000000000000000	ABSORCION	кимз	K/M3	NOMINA
CEMENTO	3110	FINEZA	%	ABSURCION	NM3	roms	NUMINA
AGR. FINO	2748	2.61	1,71	1,05	1611	1736	- 20
	100000	2,01			1	99997	7
AGR. GRUESO	2726	<u> </u>	1,33	1,31	1458	1560	1*
	VALORES DE DISEÑO						-01
				5) RELACION DE	A/C:	0,438	
1) ASENTAMIENTO:			3'a4'	6) AGUA		193	LT.
Z) TAMAÑO MAXIMO NO	MINAL:		1	7) AIRE INCORPO	RADO	1,50	- N
3) CON AIRE INCORPOR			NO		inicio d	1950	
4) VOL. DE AGREG. GRU			0.689	+			
		20	NO.	-			
% DE ADITIVOS EN BAS	E PESO DEL CEMENT	o:	NO	1			
			26	de.			
FACTOR CEMENTO:			441	k/m3			
CANTIDAD DE AGREG.	GRUESO:		1075	k/m3			
CANTIDAD DE AGREG. I	FINO :		703	k/m3			
VOLUMEN ABSOLUTO D	DE CEMENTO:		0,142	m3			
VOLUMEN ABSOLUTO C	E AGUA:		0,193	m3			
VOLUMEN ABSOLUTO D	DE AIRE:		0,015	m3	PASTA:	0,3498	m3
VOLUMEN ABSOLUTO D	DE AG. GRUESO:		0.394	m3	MORTERO:	0,6057	m3
SUMA VOLUMEN ABSOI	LUTO DE AG. :		0,744	m3			
SUMATORIA DE VOLUM			0,744	m3			
VOLUMEN ABSOLUTO D			0,256	m3			
	TOTAL		1,000	1	11/2/2		
	CANTIDAD DE MATER		1000		CC	DEFICIENTE DE APORTE	- 10 all 30
CEMENTO:		441	k/m3			10,35	bol/m3c
AGUA: AGREGADO FINO :		193	Ibm3			49,7	glv/m3c
AGREGADO FINO:		703 1075	k/m3			0,44 0,74	m3a/m3c m3p/m3c
AGREGADO GRUESO:		1075	k/m3			0,74	
CORRECCION POR HUM	EDAD	-contact	V000545686050500		E LOS AGREGADOS	12-12-12-12-12	
FINO. HUM:	715	k/m3	AGREGADO FIN		0,66 %	4,64	it.
GRUESO HUM.:	1059	k/m3	AGREGADO GRI		0,02 %	0,21	t
			AGUA DE MEZ. O	GUA: ORREG. POR HUM.	%	4,95 188	k k/m3
CANTIDAD DE MATERIA	LES CORREGIDAS PO	R METRO CUBICO			VOLUMEN APARENTI		.10
CEMENTO:		441	k/m3		10,38		
RANGO DE AGUA:		188	lt/m3		18,13		
AGREG. FINO HUMEDO:		715	k/m3		15,67		
AGREG. GRUESO HUME	DO:	1089	k/m3		26,39		
PR	OPORCION EN PESO	10		PROP	ORCION EN VOLUMEN	PIE3	100
Cemento :					Cemento :	1 Bolsa	
Agua ;	0,43				Agua ;	18,1 Nbols.	
Arena :	1,6				Arena :	1,51 pie/bols.	
	2,5	77					

Cemento :	1	Gemento :	- 1	Bolsa	
Agua ;	0,43	Agua :	18,1	It/bols.	
Arena :	1,6	Arena :	1,51	pie'/bols.	
Grava :	2,5	Grava :	2,54	pie!/bols.	

ENSAYOS DE LABORATORIO

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 42 978 360 036 - 993 595 300.

★ constructora.ayr.chiclayo@gmail.com

ANALISIS GRANULOMETRICO (NORMA MTC E 204)

PROYECTO "ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFE(CCC) Y

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C.
MATERIAL : ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

LSEN ANDERSON FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

				DATOS DE	L ENSAY	0	
Tamices ASTM	Abertura en MM	Peso Retenido	% Retenido Parcial	% Retenido Acumulativo	% que Pasa	Especificaci ones	DESCRIPCION DE LA MUESTRA
3*	76,200						
2 1/2"	63,500						2
2*	50,800	8 -					j .
1 1/2*	38,100						
1.	25,400			9			TAMANO MAX. NOMINAL 3/8
3/4"	19,050			8			PESO TOTAL: 500,0 gr
1/2"	12,700				100.0		
3/8"	9,525	0,5	0,1	0.1	99,9	100	ŝ
1/4"	6.350	7		3		1	Ü
N° 4	4.760	12,30	2,5	2,6	97,4	95 - 100	MODULO DE FINEZA: 2,61
N° 8	2,380	52,30	10.5	13,0	87.0	80 - 100	Control of the contro
N° 10	2,000						PESO HUMEDO: 1310,0 gr
N° 16	1,190	82,90	16,6	29,6	70,4	50 - 85	PESO SECO: 1288,0 gr
N* 20	0,840	g comme		110000	190000	1000	C.H.% 1,71
N° 30	0,590	71,30	14,3	43,9	56,1	25 - 60	
N* 40	0,420	i manuan i		Ü		Land Service	à
N° 50	0.297	159,60	31,9	75,8	24,2	10 - 30	
N° 60	0.250						
N° 100	0.149	103,40	20,7	96,5	3,5	2 - 10	d-
N° 200	0,074	12,50	2,5	99,0	1,0		8
PAN		5,20	1,0	100,0	0,0		
TOTAL	98 3	į :	100	3 111.	8 - 1° - 1		8
& PERDIDA	3			0 -			8

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTION CONTRACTOR AND SEC

COLEMAN COMPANY TOWNS HOME

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ♥ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

PROYECTO

"ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

CANTERA

: CORPORACION GUEVARA - PATAPO

RESP. LAB.: R.H.B.C.

MATERIAL

: ARENA GRUESA

TEC. LAB.: L.M.F.H.

SOLICITANTE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

RIVERA SEGURA MIGUEL EDUARDO

FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA

INOTO I WOUL	MUESTRA	: M-01
--------------	---------	--------

		REGADO FIN	0.00				
		IDENTIFICACION					
		1	2	3	Promedic		
Peso del recipiente + muestra	(Kg)	7983,0	7968,0	7975,0			
Peso del recipiente	(Kg)	3438,0	3438,0	3438,0			
Peso de la muestra	(Kg)	4545,0	4530,0	4537,0			
Volumen	(m ³)	2816,0	2816,0	2816,0			
Peso Unitario Suelto	(Kg/m³)	1613,99	1608,7	1611,2	1611,3		
CONTENIDO DE HUMEDAD	- 55						
Peso de tara	(g)						
Peso de tara + muestra humeda	(g)	-					
Peso de tara + muestra seca	(g)						
Peso Agua	(g)						
Peso Suelo Seco	(g)						
Contenido de humedad	(%)						
Peso Unitario Suelto	(Kg/m³)	1614,0	1608,7	1611,2	1611,3		

Observaciones: Las muestras fueron proporcionadas por el solicitante.

соизтацитота у ферератиона иза изс Luisa Maria Juleo Hurtado TECHICO DE LABORATORIO

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ¥ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB.: R.H.B.C.

; ARENA GRUESA MATERIAL TEC. LAB. : L.M.F.H.

: ALEJANDRIA BUSTAMANTE YELSEN ANDERSON : RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE FECHA: SEPTIEMBRE 2022

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

1		AGREGADO I	12010.77				
		DATOS DEL EN					
		IDENTIFICACION					
		11	2	3	Promedio		
Peso del reciiente + muestra	(Kg)	8308,0	8316,0	8358,0			
Peso del recipiente	(Kg)	3438,0	3438,0	3438,0			
Peso de la muestra	(Kg)	4870,0	4878,0	4920,0			
Volumen	(m³)	2816,0	2816,0	2816,0			
Peso Unitario Compactado	(Kg/m³)	1729,4	1732,2	1747,2	1736,3		
CONTENIDO DE HUMEDAD							
Peso de tara	(g)	¥	2	2 2			
Peso de tara + muestra humeda	(g)	12	4:	-3			
Peso de tara + muestra seca	(g)	92	23	=			
Contenido de humedad	(%)						
Peso Unitario Compactado	(Kg/m³)	1729,4	1732,2	1747,2	1736,3		

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAL DEVISIA TOPALACE PAC

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 205)

PROYECTO "ANÁLISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE

ROYECTO : CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C.

MATERIAL : ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA : SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

DATOS DEL ENSAYO								
A	Peso Mat. Sat. Sup. Seco (en Aire) (gr)	500,6	500,8					
В	Peso Frasco + agua	659,4	661,8	0.18				
С	Peso Frasco + agua + A (gr)	1160,0	1162,6	a*5				
D	Peso del Mat. + agua en el frasco (gr)	973,3	978,2	0417				
E	Vol de masa + vol de vacio = C-D (gr)	186,7	184,4	124.07				
F	Pe. De Mat. Seco en estufa (105°C) (gr)	495,5	495,5					
G	Vol de masa = E - (A - F) (gr)	181,6	179,1	PROMEDIO				
	Pe bulk (Base seca) = F/E	2,654	2,687	2,671				
	Pe bulk (Base saturada) = A/E	2,681	2,716	2,699				
	Pe aparente (Base Seca) = F/G	2,729	2,767	2,748				
	% de absorción = ((A - F)/F)*100	1,03	1,07	1,05%				

Observaciones: Las muestras fueron proporcionadas por el solicitante.

Luist Maria Jalo Hurtado

CONSTRUCTION DANGE TOWN

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ♣ 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (NORMA NTP 400.015, MTC E 212)

"ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON PROYECTO

FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C. MATERIAL : ARENA GRUESA TEC. LAB.: L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA : SEPTIEMBRE 2022 SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

DATOS DEL ENSAYO						
Peso Inicial de muestra : Agregado Grueso	Pasa (3/8*)	Retiene (3/4*)	2000,0	gr.		
Peso Final de muestra			1998,0	gr.		
Porcentaje de Terrones de arcilla			0,10	%		

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTION V PRINCIPLE TO HAVE BUILD

R

CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, → 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

EQUIVALENTE DE ARENA (NORMA MTC E 114)

"ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y

PROYECTO : REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C.
MATERIAL : ARENA GRUESA TEC. LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

SOLICITANTE : RIVERA SEGURA MIGUEL EDUARDO FECHA : SEPTIEMBRE 2022

8		DATOS DE LA MUESTRA	
MIJESTRA	· M-01		

DATOS DEL ENSAYO						
MUESTRA	01	02	03			
HORA DE ENTRADA	08:35	08:37	08:39			
HORA DE SALIDA	08:45	08:47	08:49	*		
HORA DE ENTRADA	08:47	08:49	08:51		8	
HORA DE SALIDA	09:07	09:09	09:11			
ALTURA DE NIVEL	3,3	3,2	3,5	."		
MATERIAL FINO (A)	3,3	3,2	3,3			
ALTURA DE NIVEL	2.6	2.5	2.0	55		
ARENA (B)	2,6	2,5	2,8			
EQUIVALENTE DE	70.00/	70.40/	90.00/			
ARENA (B x 100/A)	78,8%	78,1%	80,0%			

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORAYON GRAIN SIC

Luisa Meria Paleo Hurtgolo TESMEO TE MADRATORIO Construction of the Corresponding to the Correspond

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, № 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

DETERMINACION DE CARBON Y LIGNITO (NORMA MTC E 211)

PROYECTO

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

: CHICLAYO- LAMBAYEQUE

CANTERA MATERIAL : CORPORACION GUEVARA - PATAPO

: ARENA GRUESA

SOLICITANTE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

RIVERA SEGURA MIGUEL EDUARDO

RESP. LAB.: R.H.B.C. TEC. LAB.: L.M.F.H.

FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

DATOS DEL ENSAYO					
Peso de las particulas decantadas	1,000	g			
Peso de la muestra (Malla 3/4")	2296	g			
Carbon y Lignito	0.044	%			

Observaciones:

Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORN OF SHATE CRASSES OF CONSTRUCTORS OF CONSTRUCTORS

CONSTRUCTOR HE BATES CHICAY

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, № 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

MATERIAL QUE PASA MALLA Nº 200 (NORMA MTC E 202)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON

PROYECTO : "ANALISIS MECANICO DEL CONI FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE
CANTERA : CORPORACION GUEVARA - PATAPO

CANTERA ; CORPORACION GUEVARA - PATAPO RESP. LAB. : R.H.B.C.

MATERIAL ; ARENA GRUESA TEC. LAB. : L.M.F.H.

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA : SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

		D.	ATOS DEL ENSAY	0	
TARA	PESO INICIAL SECO GR.	PESO DESPUES DE LAVADO GR.	RESULTADO	ESPECIFICACION	CUMPLE
1	257	254,0	1,2	3,0%	CUMPLE

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORALY CHRUSTOPIA ASSESSED

Luisa Maria Falco Hurtado

CONSTRUCTOR AND CONSTRUCTOR A

LE.M.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 49 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

ENSAYO DE MATERIA ORGANICA (NORMA NTP 400.024, MTC E 213)

ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP) PROYECTO

UBICACIÓN : CHICLAYO- LAMBAYEQUE

: CORPORACION GUEVARA - PATAPO CANTERA RESP. LAB. : R.H.B.C. MATERIAL : ARENA GRUESA

TEC. LAB.: L.M.F.H. ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

SOLICITANTE FECHA: SEPTIEMBRE 2022 RIVERA SEGURA MIGUEL EDUARDO

		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

	DATOS DEL ENSAYO			
1	N° DE ENSAYO	1	2	
38		0.00.00		
+	HORA DE ENTRADA	08:10	09:20	
+	HORA DE SALIDA	14:10	15:20	
1	PESO DE MUESTRA SECA + RECIPIENTE	91,52	80,84	
2	PESO DE MUESTRA SECA + RECIPIENTE DESPUÉS DE ENSAYO	91,28	80,68	
3	PESO DE RECIPIENTE	50,00	50,00	
4	PESO DE MUESTRA INICIAL	41,52	30,84	
5	PESO DE MUESTRA FINAL	41,28	30,68	
6	PESO DE MATERIA ORGANICA	0,24	0,16	
7	% MATERIA ORGÁNICA	0,58	0,52	
7.7	% DE MATERIA ORGÁNICA :	0,55	%	

Observaciones: Las muestras fueron proporcionadas por el solicitante.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 49 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

DURABILIDAD DEL AGREGADO FINO (SULFATO DE MAGNESIO)

MTC E 209

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO-LAMBAYEQUE

CANTERA : CORPORACION GUEVARA - PATAPO

MATERIAL : ARENA GRUESA
ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

SOLICITANTE : RIVERA SEGURA MIGUEL EDUARDO

RESP. LAB.: R.H.B.C. TEC. LAB.: L.M.F.H.

FECHA: SEPTIEMBRE 2022

INALTERABILIDAD DEL AGREGADO FINO: Análisis cuantitativo.

Fracción		1	2	3	4	- 3
Tamiz		Gradación	Peso de la fracción	Peso Retenido	Perdida	Perdida
		Original	ensayada	después del ensayo	total	Corregida
Pasa	Retiene	(%)	(g)	(g)	(%)	(%)
3/8*	N° 4	12,3	92,4	89,9	2,71	0,33
N*4	N°B	52,3	67,8	65,4	3,54	1,85
N°8	N° 16	82,9	71.2	67,8	4,78	3,96
N° 16	N* 30	71,3	63,9	63,1	1,25	0,89
N* 30	N° 50	159,6	90,2	89,8	0,44	0,71
N' 50	N* 100	103,4	87,2	86,9	0,34	0,36
T01	AL	481,8	472,7	462,9		8,10

INALTERABILIDAD DEL AGREGADO FINO: 8,10 %

OBSERVACIONE	S: Las muestras fueron proporcionadas por el solicitante

CONSTRUCTORAY OF SOUTH CHANGE ONE

- CLISCO MOYER Action Historico
TECHNOLOGIC LANGUAGORIO

CONSTRUCTOR OF THE CONSTRUCTOR O

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Late N° 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

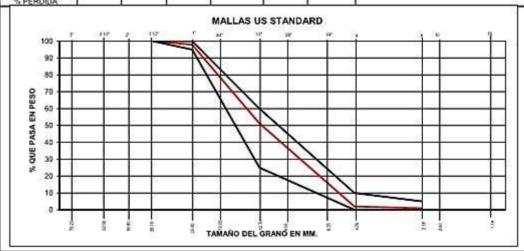
ANÁLISIS GRANULOMÉTRICO (NORMA MTC E 204)

'ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : ASFALPACA - TRES TOMAS MATERIAL : PIEDRA CHANCADA

RESP. LAB. : R.H.B.C. TEC. LAB. : L.M.F.H.


ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA

MUESTRA : M-01

				DATOS DE	L ENSAY	0	
Tamices ASTM	Abertura en MM	Peso Reternido			Especifi- caciones	DESCRIPCION DE LA MUESTRA	
3"	76,200		8 3			HUSO 57	
2.1/2*	63,500		0 3				
Z	50,800		8 3			1 1	
1 1/2"	38,100				100,0	100 - 100	
1*	25,400	384,2	2,1	2,1	97,9	95 - 100	TAMAÑO MAX. 1 1/2"
3/4"	19,050		3	480	1000		PESO TOTAL: 18269,8 gr
1/2*	12,700	8526,3	46,7	48,8	51,2	25 - 60	
3/8"	9,525	ß.	8 8				
1/4"	6,350		S - 3				: Sixua California Cal
N* 4	4,760	9001,4	49,3	98,0	2,0	0 - 10	PESO HUMEDO: 1300,0
N* 8	2,380	188,9	1,0	99.1	0,9	0 - 5	PESO SECO: 1283,0
N° 10	2,000		(Mer)	2000	2002		C.H.%: 1,33
N* 16	1,190	i.	8 3			1 1	
N° 20	0,840						
N° 30	0,590		0 8			1 1	
N° 40	0.420		8		Ti-	1	
N° 50	0,297						
N° 60	0,250	E .	8 3		1	1	-
N° 100	0,149		8		5		
N° 200	0,074						·
PAN		169,00	8 3				
TOTAL	00 E	18269,8	0 0			1	
PERDIDA	8 11 11		59 9		ė.	1 1	

Observaciones: Las muestras fueron proporcionadas por el solicitante.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ¥ 978 360 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

PESO UNITARIO SUELTO (NORMA MTC E 203)

PROYECTO : "ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE

CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE

CANTERA : ASFALPACA - TRES TOMAS

MATERIAL : PIEDRA CHANCADA

: PIEDRA CHANCADA TEC. LAB. : L.M.F.H.
ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

SOLICITANTE : RIVERA SEGURA MIGUEL EDUARDO

FECHA: SEPTIEMBRE 2022

RESP. LAB. : R.H.B.C.

e e		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

		GADO GRU			
	DATO	OS DEL ENSA			
			IDENT	IFICACION	(
		1	2	3	Promedio
Peso del recipiente + muestra	(Kg)	26069,0	26013,0	25994,0	
Peso del recipiente	(Kg)	12328,0	12328,0	12328,0	
Peso de la muestra	(Kg)	13741,0	13685,0	13666,0	
Volumen	(m³)	9396,0	9396,0	9396,0	
Peso Unitario Suelto	(Kg/m³)	1462,43	1456,5	1454,4	1457,8
CONTENIDO DE HUMEDAD				8 = 8	
Peso de tara	(g)				
Peso de tara + muestra humeda	(g)				
Peso de tara + muestra seca	(g)				
Peso Agua	(g))	8	
Peso Suelo Seco	(g)		in the second		
Contenido de humedad	(%)				
Peso Unitario Suelto	(Kg/m³)	1462,4	1456,5	1454,4	1457,8

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTORA POCHSILITORIA ASP (NO CONSTRUCTORIA POCHSILITORIA ASP (NO CONSTRUCTORIA POCHSILITORIA P

CONSTRUCTION OF THE PROPERTY O

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, ♣ 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

PESO UNITARIO COMPACTADO (NORMA MTC E 203)

"ANALISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y

PROYECTO REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

: CHICLAYO- LAMBAYEQUE UBICACIÓN : ASFALPACA - TRES TOMAS RESP. LAB. : R.H.B.C. CANTERA : PIEDRA CHANCADA TEC. LAB. : L.M.F.H. MATERIAL

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE FECHA: SEPTIEMBRE 2022

ĺ.		DATOS DE LA MUESTRA	
MUESTRA	: M-01		

		GREGADO GRI			
			IDENTIF	ICACION	
	~~	1	2	3	Promedio
Peso del reciiente + muestra	(Kg)	27041,0	27019,0	26902,0	
Peso del recipiente	(Kg)	12328,0	12328,0	12328,0	
Peso de la muestra	(Kg)	14713,0	14691,0	14574,0	
Volumen	(m³)	9396,0	9396,0	9396,0	
Peso Unitario Compactado	(Kg/m³)	1565,9	1563,5	1551,1	1560,2
CONTENIDO DE HUMEDAD	33.54				
Peso de tara	(g)	99-3	(*)	(*	
Peso de tara + muestra humeda	(g)	6 7 8	9*0	(* 8	
Peso de tara + muestra seca	(g)	293		8 # 3	
Contenido de humedad	(%)				
Peso Unitario Compactado	(Kg/m³)	1565,9	1563,5	1551,1	1560,2

Observaciones: Las muestras fueron proporcionadas por el solicitante.

CONSTRUCTIONAL POR SEC LOUIS OF THE PORT OF THE PROPERTY OF THE PORT OF THE PROPERTY OF T

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🏚 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito− Chiclayo, 📲 978 360 036 − 993 595 300. constructora.ayr.chiclayo@gmail.com

PESO ESPECIFICO Y ABSORCION DE LOS AGREGADOS (NORMA MTC E 206)

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE : ASFALPACA - TRES TOMAS CANTERA

RESP. LAB.: R.H.B.C. MATERIAL : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA: SEPTIEMBRE 2022 SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

	DATOS DEL ENSAYO									
A	Peso Mat.Sat. Sup. Seca (En Aire) (gr)	1189,9	1148,3							
В	Peso Mat.Sat. Sup. Seca (En Agua) (gr)	742,6	718,6	= 27						
С	Vol. de masa + vol de vacíos = A-B (gr)	447,3	429,7	8						
D	Peso material seco en estufa (105 °C)(gr)	1174,6	1133,4	- 6						
E	Vol. de masa = C- (A - D) (gr)	432,0	414,8	PROMEDIO						
	Pe bulk (Base seca) = D/C	2,626	2,638	2,632						
	Pe bulk (Base saturada) = A/C	2,660	2,672	2,666						
	Pe Aparente (Base Seca) = D/E	2,719	2,732	2,726						
	% de absorción = ((A - D) / D * 100)	1,303	1,315	1,31%						

Observaciones: Las muestras fueron proporcionadas nor el solicitante.

Treatment Arettellence

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, № 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

ENSAYO DE ABRASION (MAQUINA DE LOS ANGELES)

(NORMA MTC E - 207)

"ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y PROYECTO

REFORZADO CON FIBRA DE POLIPROPILENO(FP)*

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : ASFALPACA - TRES TOMAS MATERIAL

RESP. LAB. : R.H.B.C. : PIEDRA CHANCADA TEC. LAB.: L.M.F.H.

FECHA: SEPTIEMBRE 2022

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE RIVERA SEGURA MIGUEL EDUARDO

DATOS DE LA MUESTRA MUESTRA : M-01

		DATOS DEL ENSAYO	
TA	MIZ	В	
PASA	RETIENE		
3"	2 1/2"		
2 1/2"	2"		
2"	1 1/2"		
1 1/2"	1.		
15	3/4"		
3/4"	1/2"	2500	
1/2"	3/8"	2500	
3/8"	1/4"		
1/4"	No 4		
PESO TOTAL		5000	
PESO RETENID	O EN TAMIZ N°12	4012	
PERDIDA DESP	UES DEL ENSAYO	988	Î
N° DE ESFERAS	3	11	
PESO DE LAS ESFERAS		4598	
% DE DESGASTE		19,8	

Observaciones: Las muestras fueron pronorcionadas nor el solicitante.

efraction y presidente suc Study deal Marte Falco Hartodo receso de Lascriptorio

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

★ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclago, 49 978 360 036 - 993 595 300. constructora.ayr.chiclayo@gmail.com

DURABILIDAD DEL AGREGADO GRUESO (SULFATO DE MAGNESIO) (NORMA MTC E 209)

"ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON PROYECTO

FIBRA DE POLIPROPILENO(FP)

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : ASFALPACA - TRES TOMAS MATERIAL

RESP. LAB.: R.H.B.C. : PIEDRA CHANCADA TEC. LAB. : L.M.F.H.

: ALEJANDRIA BUSTAMANTE YELSEN ANDERSON : RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE FECHA: SEPTIEMBRE 2022

DATOS DE LA MUESTRA MUESTRA : M-01

			DAT	OS DEL EN	SAYO		Y	
FRAC	CION	GRADACION	ORIGINAL %			Perdida	Perdida	
PASA	RETIENE	Peso retenido	% retenido	fracción ensayada		depues del ensalo (gr)	depues del ensato (%)	Perdida corregida
			A	В	С	D	E	F
2 1/2"	2"			15.00	1	2. 1900	22. 3	N.E.
2"	1 1/2"						. 9	-
1 1/2"	1.	384,2	2,1	774,0	724,3	49,7	6,4	0,14
1"	3/4"	111,0	0,6	301,0	281,5	19,5	6,5	0,04
3/4"	1/2"	8526,3	47,0	652,0	602,4	49,6	7,6	3,58
1/2"	3/8"	102,0	0,6	403,0	375,2	27,8	6,9	0,04
3/8"	N* 4	9001,4	49,7	613,0	532,4	80,6	13,1	6,53
	< N° 4							
SUMA TOTAL		18124,9	100	4743		*		10,32

Observaciones: Las muestras fueron proporcionadas por el solicitante.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.

- Estudios Topográficos.

🏚 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito—Chiclayo, 📲 978 360 036 — 993 595 300.

constructora_ayr,chiclayo@gmail.com

TERRENOS DE ARCILLAS Y PARTICULAS DELEZNABLES-MTC E 212

PROYECTO : "ANÁLISIS MECANICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE CANTERA : ASFALPACA - TRES TOMAS

RESP. LAB.: R.H.B.C. TEC. LAB.: L.M.F.H.

MATERIAL : PIEDRA CHANCADA

FECHA: SEPTIEMBRE 2022

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

AGREGADO GRUESO:

SOLICITANTE

Tamaño de las particulas entre los tamices de :		Peso de la muestra antes del ensayo	Tamaño del tamiz para remover el residuo del ensayo	Peso de la muestra despues del ensayo	Peso de la perdida del material	Perdida
Pasa	Retiene	(9)		(g)	(9)	(%)
3/4* (19.0 m.m)	N° 4 (4.75 m.m)	1025,0	Nº 8 (2.36 m.m)	992,4	32,60	3,18%

ESPECIFICACION MAX. 5%

OBSERVACIONES: Las muestras fueron proporcionadas por el solicitante.

constructions of Steamershamers,
Luisa Maria Valce Huriado

CONSTRUCTOR OF THE CONTROL OF THE CO

Registro de la Propiedad Industrial

Dirección de Signos Distintivos

CERTIFICADO Nº 00114014

La Dirección de Signos Distintivos del Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual – INDECOPI, certifica que por mandato de la Resolución Nº 005703-2019/DSD – INDECOPI de fecha 15 de marzo de 2019, ha quedado inscrito en el Registro de Marcas de Servicio, el siguiente signo:

Signo

La denominación AR CONSTRUCTORA & CONSULTORIA y logotipo (se

reivindica colores), conforme al modelo

Distingue

Servicio de construcción

Clase

37 de la Clasificación Internacional.

Solicitud

0782238-2019

Titular

CONSTRUCTORA Y CONSULTORIA A & R.S.A.C.

Pals

Perù

Vigencia

15 do marzo de 2029

Tomo

0571

Folio

028

RAÝ MELONI GARCIA Director Dirección de Signos Distintíves INDECOPI R

CONSTRUCTORA & CONSULTORIA

REGISTRO NACIONAL DE PROVEEDORES

CONSTANCIA DE INSCRIPCIÓN PARA SER PARTICIPANTE, POSTOR Y CONTRATISTA

CONSTRUCTORA Y CONSULTORIA A & R SOCIEDAD ANONIMA CERRADA

Domiciliado en: CAL. JUAN PABLO II NRO. 682 URB. LAS BRISAS LAMBAYEQUE CHICLAYO CHICLAYO (Según información declarada en la SUNAT)

Se encuentra con inscripción vigente en los siguientes registros:

PROVEEDOR DE BIENES

Vigencia : Desde 28/07/2016

PROVEEDOR DE SERVICIOS

Vigencia : Desde 28/07/2016

EJECUTOR DE OBRAS

Vigencia para ser participante, postor y : Desde 01/02/2019

contratista

Capacidad Máxima de Contratación : 900,000.00 (NOVECIENTOS MIL Y 00/100)

CONSULTOR DE OBRAS

Vigencia para ser : Desde 21/06/2018

participante, postor

y contratista

Especialidades Ley : 3 - Consultoría en obras de saneamiento y afines - Categoría A

30225 4 - Consultoría en obras electromecánicas, energéticas, telecomunicaciones y

afines - Categoría A

5 - Consultoría en obras de represas , irrigaciones y afines - Categoría A
 1 - Consultoría en obras urbanas edificaciones y afines - Categoría A (*)

2 - Consultoría en obras viales, puertos y afines - Categoría A

Nota:

De acuerdo al artículo 15 del Reglamento de la Ley de Contrataciones del Estado, aprobado por D.S. Nº 344-2018-EF, vigente a partir del 30/01/2019, la especialidad se denomina "Consultoría de obras en edificaciones y afines".

Para mayor información la Entidad deberá verificar el estado actual de la vigencia de inscripción del proveedor en la página web del RNP: www.rnp.gob.pe - opción <u>Verifique su Inscripción.</u>

DISEÑO DE MEZCLA CONCRETO COMBINANDO CCC Y FP

FECHA: SEPTIEMBRE 2022

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Cerrito- Chiclayo, 📲 978 360 036 - 993 595 300.

constructora.ayr.chiclaya@gmail.com

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENG/FP/

UBICACIÓN

CANTERA AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE) CONCRETO ADICIONANDO 5% DE CENIZA DE CASCARILLA DE CAFE Y 1% DE FIBRA DE POLIPROPILENO

MATERIAL

RESP. LAB. : R.H.B.C.

210 Kg/cm2 ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITADO

CONCRETO:			fe	219	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO KIM3	PESO SECO COMPACTADO K/M3	TAMAÑO MAXIMO NOMINAL
CEMENTO	3110	=		÷1	32	_	
AGR. FINO	2748	2,61	1,71	1.06	1611	1736	
AGR. GRUESO	2726	-	1,33	1.31	1468	1560	12

	PESO	MODULO	HUMEDAD	PORCENTAJE	PESO SECO	PESO S	ECO	TAMAÑ		
CARACTERIST.	ESPECIFICO	DE	NATURAL	DE	SUELTO	COMPAG	TADO	MAXIM		
CARACIERIOI.	K/M3	FINEZA	MATURAL.	ABSORCION	K/M3	KW		NOMINA		
CEMENTO	3110	FINEZA	1 - 2 -	ABSUNCION	NIM3	N.W.	3	NOMINA		
								-		
AGR. FINO	2748	2,61	1,71	1.05	1611	173		23		
AGR. GRUESO	2726		1,33	1,31	1458	156	.0	1*		
	VALORES DE DISEÑO	00								
				5) RELACION DE	AC:	0),515			
1) ASENTAMIENTO:			3" a 4"	6) AGUA	303430	9	193	LT.		
Z) TAMAÑO MAXIMO NO	OMINAL:		1	7) AIRE INCORP	ORADO	- 3	1.50	18		
3) CON AIRE INCORPOR	ADD		NO	ON THE RESERVE OF THE PARTY.	DOOGSER U			100		
4) VOL. DE AGREG. GRU			0,689	4						
% DE ADITIVOS EN BAS		0.	NO.	-						
				- [5]						
				70						
FACTOR CEMENTO: CANTIDAD DE AGREG.	enurae.		375 1075	k/m3						
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			k/m3						
CANTIDAD DE AGREG.	FINO		761	k/m3						
VOLUMEN ABSOLUTO (DE CEMENTO:		0,121	m3						
VOLUMEN ABSOLUTO (DE AGUA:		0,193	m3		2		200		
VOLUMEN ABSOLUTO	DE AIRE:		8,015	m3	PASTA:		0.3286	m3		
VOLUMEN ABSOLUTO I	DE AG. GRUESO:		0,394	m3	MORTERO:		0,6057	m3		
SUMA VOLUMEN ABSO	LUTO DE AG. :		0,723	m3						
SUMATORIA DE VOLUM	IEN ABSOLUTO:		0,723	m3						
VOLUMEN ABSOLUTO (0,277	m3						
	TOTAL		1,000							
	CANTIDAD DE MATER		10000			OEFICIENTE DE A		SACRESS		
CEMENTO:		375	k/m3			1	8,82	bol/m3c		
AGUA:		193	t/m3			-	49,6	g/m/m3c		
AGREGADO FINO :		761	k/m3			-	0,47	m3a/m3c		
AGREGADO GRUESO:		1075	k/m3				0,74	т3р/т3с		
CORRECCION POR HUM		1	TO THE RESIDENCE OF THE PARTY O		DE LOS AGREGADOS			7.		
FINO. HUM:	774	k/m3	AGREGADO FIN			·	5,03	-1"		
GRUESO HUM.:	1089	k/m3	AGREGADO GR		0.02	· -	0.21	-1"		
			VOLUMEN DE A			* - F	5,24			
CANTIDAD DE MATERIA	LEG CODDEGIDAS DO	O METRO CURIO		CORREG, POR HUN	VOLUMEN APAREN	TE EN BIET	188	15/m3		
CEMENTO:	LLS SUMMEDIUMS FU	375	lk/m3		8.82	LE CHIPIES				
RANGO DE AGUA:		188	t/m3		21,28					
AGREG. FIND HUMEDO:		774	bin3 21,28 kim3 16,97							
	AGREG, GRUESO HUMEDO: 1089			kini3 26,39						
5% CENIZA DE CASCARI	-0.0000	19	k/m3		0.7725-0.5					
1% FIBRA DE POLIPROP		4	k/m3							
	OPORCION EN PESO		12002	PROP	ORCION EN VOLUME	N PIE3				
Cemento :	1	Kg	T	Litter	Cemento:		Solsa			
Agua :	0,50	t t	-1		Agua :		sbols.			
Arena ;	2.1	Kg	1		Arena :	100000	rie/loofs.			
VINNESSES CO.			-1		in management and a second		-	-		
Grava :	2,9	Кд	76		Grava :		oie?/bols.	1		

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Cerrito- Chiclayo, 📲 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENG/FP/

UBICACIÓN

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE) CANTERA CONCRETO ADICIONANDO 5% DE CENIZA DE CASCARILLA DE CAFE Y 1% DE FIBRA DE POLIPROPILENO

MATERIAL

CONCRETO:

RESP. LAB. : R.H.B.C.

280 Kg/cm2 ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITADO

00	PESO SECO	TAMAÑO		
e	COMPACTADO	MAXIMO		
	K/M3	NOMINAL		

FECHA: SEPTIEMBRE 2022

CONCRETO:			fer	289	Kg/cm*			
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SECO COMPACTAD K/M3	TAMAÑO OMIXAM O MIXAMO	
CEMENTO	3110	111125	1 - 2 -	ADJUNTUR	10002	1040	, itsimite	
AGR. FINO	2748	2,61	1.71	1.05	1611	1736		
		2,01	2300	27020		375238		
AGR. GRUESO	2726	_	1,33	1,31	1458	1560	1 5	
	VALORES DE DISEÑO	.						
			5) RELACION DE AIC:			0.515		
1) ASENTAMIENTO:			3" 5 4" 6) AGUA			193 LT.		
Z) TAMAÑO MAXIMO NOMINAL:			1	7) AIRE INCORP	ORADO	1.50	×	
3) CON AIRE INCORPOR	ADO		NO					
4) VOL. DE AGREG. GRU	JESO:		0,689	1				
% DE ADITIVOS EN BASE PESO DEL CEMENTO:			NO	1				
FACTOR CEMENTO: CANTIDAD DE AGREG.	CRUESO:		441 1075	k/m3 k/m3				
CANTIDAD DE AGREG.			703	k/m3				
CANTIDAD DE AGREG.	FINO		703	Janus				
VOLUMEN ABSOLUTO I	E CEMENTO:		0,142	m3				
VOLUMEN ABSOLUTO (DE AGUA:		0,193	m3				
VOLUMEN ABSOLUTO	DE AIRE:		8,015	m3	PASTA:	100	3498 m3	
VOLUMEN ABSOLUTO I			0,394	m3	MORTERO:		0,6057 m3	
SUMA VOLUMEN ABSO	LUTO DE AG. :		0,744	m3			200	
FULL TODIA DE MOLUM	EN ABECULTO.		0,744	l _{m3}				
SUMATORIA DE VOLUMEN ABSOLUTO: VOLUMEN ABSOLUTO DE AG. FINO :			0.256	m3				
TOTAL:			1,000	1750				
	CANTIDAD DE MATE	RIALES	1,144	_	c	OEFICIENTE DE APORT	E	
CEMENTO:		441	k/m3				10.38 bolim3c	
AGUA:		193	8/m3				49.7 g/m/m3c	
AGREGADO FINO :		703	k/m3			3	0.44 m3a/m3c	
AGREGADO GRUESO:		1075	k/m3				0.74 m3p/m3c	
CORRECCION POR HUM	EDAD	\$35 (2)	1	CONTRIBUCION	DE LOS AGREGADOS	3	= 150	
FINO. HUM:	715	k/m3	AGREGADO FIN		0.66 %		4.64 E	
GRUESO HUM.:	1089	k/m3	AGREGADO GRU		0.02		0.21	
3000355566001 III		200000	VOLUMEN DE A		5		4.85 E	
			AGUA DE MEZ.	ORREG. POR HUN			188 It/m3	
CANTIDAD DE MATERIA	LES CORREGIDAS PO	OR METRO CUBIC	0		VOLUMEN APAREN	TE EN PIE3	a table to be a second	
CEMENTO:		441	k/m3		10,38			
RANGO DE AGUA:		188	t/m3		18,13			
AGREG. FINO HUMEDO:		715	k/m3		15,67			
AGREG. GRUESO HUMEDO: 1089			k/m3 26,39					
5% GENIZA DE CASCARILLA DE CAFE 22		k/m3						
1% FIBRA DE POLIPROP	Maria Maria Company	4	k/m3					
PR	OPORCION EN PESO	lane.	44	PROP	ORCION EN VOLUMEN		7970	
Cemento ;	- 1	Kg			Cemento:	1 Bolsa	6	
Agua :	0,43	t			Agua :	18,1 It/bols.	v. 5	
Arena ;	1.6	Kg	-12		Arena :	1,51 pie 1/50	ls.	
Arena :	2,5	Kg	→		Grava :	2,54 pie ³ /too		

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Cerrito-Chiclayo, 📲 978 360 036 - 993 595 300.

constructora.ayr.chiclaya@gmail.com

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENG/FP/

UBICACIÓN

CANTERA AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

MATERIAL CONCRETO ADICIONANDO 5% DE CENIZA DE CASCARILLA DE CAFE Y 2.5% DE FIBRA DE POLIPROPILENO RESP. LAB. : R.H.B.C.

210 Kg/cm2 ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

Actionme					1277000		
CONCRETO:		_	fo	- 210	Kg/cm²		
	PESO	MODULO	HUMEDAD	PORCENTAJE	PESO SECO	PESO SECO	TAMAÑ
CARACTERIST.	ESPECIFICO	DE	NATURAL	DE	SUELTO	COMPACTADO	MAXIM
	к/мз	FINEZA	*	ABSORCION	K/M3	K/M3	NOMINA
CEMENTO	3110	-	-	3:41	76	725	
AGR, FINO	2748	2.61	1,71	1.06	1611	1736	
AGR. GRUESO	2726	(7)57.7	1,33	1,31	1468	1560	1*
AGN. GNOESO	2/20	-	1,55	1.31	1400	1100	
	VALORES DE DISEÑO)		-0.000000000000000000000000000000000000	33.00% PE		
1) ASENTAMIENTO:			3° a 4°	5) RELACION DE 6) AGUA	AC:	0,515 193	LT.
Z) TAMAÑO MAXIMO NO	MANAL.		1	7) AIRE INCORP	ODADO -	1,50	- 2
			1000	/) AIRE INCORP	CKADO L	1.50	· ·
3) CON AIRE INCORPOR			NO				
4) VOL. DE AGREG. GRU			0,689	_			
% DE ADITIVOS EN BAS	E PESO DEL CEMEN	ro;	NO	1 8			
FACTOR CEMENTO:			375	k/m3			
CANTIDAD DE AGREG.	GRUESO:		1075	k/m3			
CANTIDAD DE AGREG. I	FINO:		761	k/m3			
VOLUMEN ABSOLUTO E	E CEMENTO:		0,121	m3			
VOLUMEN ABSOLUTO D	DE AGUA:		0,193	m3		- 1	2007
VOLUMEN ABSOLUTO	DE AIRE:		8,015	m3	PASTA:	0,3286	m3
VOLUMEN ABSOLUTO	E AG. GRUESO:		0,394	m3	MORTERO:	0,6057	m3
SUMA VOLUMEN ABSO	LUTO DE AG. :		0,723	m3		A	
SUMATORIA DE VOLUM	EN ABSOLUTO:		0.723	lm3			
VOLUMEN ABSOLUTO D	E AG. FINO:		0,277	m3			
	TOTAL	Lega	1,000	1000			
	CANTIDAD DE MATE	RIALES		_	°C	COEFICIENTE DE APORTE	
CEMENTO:		375	k/m3			8,82	bol/m3c
AGUA:		193	t/m3			49,6	g/n/m3c
AGREGADO FINO:		761	k/m3			0,47	m3a/m3c
AGREGADO GRUESO:		1075	k/m3			0,74	т3р/т3с
CORRECCION POR HUM		4	1		DE LOS AGREGADOS		
FINO. HUM:	774	k/m3	AGREGADO FIN			5,03	*
GRUESO HUM.:	1089	k/m3	AGREGADO GR			6.21	*
			AGUA DE MEZ.	GUA: CORREG, POR HUN	(Lange 1971	5,24	# # /m3
CANTIDAD DE MATERIA	LES CORREGIDAS PO	OR METRO CUBIC	THE RESIDENCE OF THE PARTY OF T		VOLUMEN APAREN		- book
CEMENTO:		375	k/m3		8,82		
RANGO DE AGUA:		188	t/m3		21,28		
AGREG. FINO HUMEDO:		774	k/m3		16,97		
AGREG. GRUESO HUME		1089	k/m3		26,39		
5% CENIZA DE CASCARI		19	k/m3				
2.5% FIBRA DE POLIPRO		9	k/m3			The second secon	
PR	OPORCION EN PESO	· pro-		PROP	ORCION EN VOLUME		
Cemerdo ;	1	Kg			Cemento :	1 Bolsa	
Agua :	0,50	t .	4		Agua :	21,3 t/bols.	100
Arena :	2,1	Kg	4		Arena :	1,92 pie Vools.	- 1
Grava :	2.9	Kg	1		Grave :	2,99 pie/tools.	

R

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Cerrito- Chiclayo, 📲 978 360 036 - 993 595 300.

constructora.ayr.chiclaya@gmail.com

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO : "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARLLA DE CAFÉ(CCC) Y REFORZAFO CON FIBRA DE POLIPROPLENO(FP)"

UBICACIÓN : CHICLAYO-LAMBAYEQUE

0,43

CANTERA : AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

MATERIAL : CONCRETO ADICIONANDO 5% DE CENIZA DE CASCARILLA DE CAFE Y 2.5% DE FIBRA DE POLIPROPILENO

Te : 280 Kejom 2 RESP. LAB. : R.H.B.C.

e : 280 Kg/cm/2 RESP, LAB. : R.H.B.C.
OLICITADO : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON FECHA : SEPTIEMBRE

CONCRETO:			fe	- 280	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SECO COMPACTADO K/M3	MAMAT OMIXAM ANIMON
CEMENTO	3110	2	1	-1	72	721	
AGR. FINO	2748	2,61	1,71	1.05	1611	1736	
AGR. GRUESO	2726	-	1,33	1,31	1458	1560	1*
	VALORES DE DISEÑO	Set.					
	VACORES DE DISERO			5) RELACION DE	AIC: E	0.515	
1) ASENTAMIENTO:			3° a 4°	6) AGUA	-	193	LT
Z) TAMAÑO MAXIMO NO	MINAL .		1	7) AIRE INCORPO	DADO -	1.50	
				1) AIRE INCORP		1.00	
3) CON AIRE INCORPOR			NO	4			
4) VOL. DE AGREG. GRU % DE ADITIVOS EN BAS		2	0,589 NO	-			
				J pā			
FACTOR CEMENTO:			441	k/m3			
CANTIDAD DE AGREG.	GRUESO:		1075	k/m3			
CANTIDAD DE AGREG.			703	k/m3			
VOLUMEN ABSOLUTO D	E CEMENTO:		0,142	m3			
VOLUMEN ABSOLUTO D	E AGUA:		0,193	m3			
VOLUMEN ABSOLUTO D	DE AIRE:		0,015	ma .	PASTA:	0.3498	m3
VOLUMEN ABSOLUTO D	E AG. GRUESO:		0,394	m3	MORTERO:	0,6057	m3
SUMA VOLUMEN ABSO	LUTO DE AG. :		0,744	m3		A	
SUMATORIA DE VOLUM	EN ABSOLUTO:		0,744	m3			
VOLUMEN ABSOLUTO D	E AG. FINO :		0,256	m3			
	TOTAL	8	1,000	100			
there are supported	CANTIDAD DE MATER	IALES	water.	_	c	OEFICIENTE DE APORTE	
CEMENTO:		441	k/m3			10.38	bol/m3c
AGUA:		193	t/m3			49.7	gin/m3c
AGREGADO FINO :		703	k/m3			0.44	m3a/m3c
AGREGADO GRUESO:		1075	k/m3			0.74	т3р/т3с
ORRECCION POR HUM		-	1		E LOS AGREGADOS		
FINO. HUM:	715	k/m3	AGREGADO FIN		0.66 %		, z
GRUESO HUM.:	1089	k/m3	AGREGADO GR		0.02 %	0.21	
			VOLUMEN DE A			4.86	t at a
ANTIDAD DE MATERIA	EG CADDEGIAS DA	D METRO CURIO		CORREG. POR HUM	VOLUMEN APARENT	188	15/m3
CEMENTO:	LES CORRECIONS PO	441	k/m3		10,38	C EM FIES	
RANGO DE AGUA:		188	t/m3		18,13		
AGREG. FINO HUMEDO:		715	k/m3		15,67		
AGREG. GRUESO HUME		1089	k/m3		26,39		
% CENIZA DE CASCARI		22	*/m3		-		
5% FIBRA DE POLIPRO		11	k/m3				
the first of the second	PORCION EN PESO	- 11	- Land	pener	RCION EN VOLUMEN	PIE3	
Cemento :	1	lva.	T	PROP	Cemento:	1 Bolsa	
emiredo ;		Kg	_		Cemento:	DOSE	

18,1

tibols.

FECHA: SEPTIEMBRE 2022

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

CANTERA MATERIAL CONCRETO ADICIONANDO 5% DE CENIZA DE CASCARILLA DE CAFE Y 5% DE FIBRA DE POLIPROPILENO

210 Kg/cm2 RESP. LAB. : R.H.B.C.

210 Kgrentz ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITADO

CONCRETO:			fo	210	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SECO COMPACTADO K/M3	TAMAÑO MAXIMO NOMINAL
CEMENTO	3110	= =====================================		.]	32	_	
AGR. FINO	2748	2,61	1,71	1.05	1611	1736	
AGR. GRUESO	2726	_	1,33	1.31	1468	1560	1*

CONCRETO:			fo	210	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SECO COMPACTADO K/M3	DAKAM DAKAM ANIMON
CEMENTO	3110		-		32		
AGR. FINO	2748	2,61	1,71	1.05	1611	1736	
AGR. GRUESO	2726	-	1,33	1.31	1458	1560	1*
			1	-		1.000	
	VALORES DE DISEÑ	0		5) RELACION DE	inc E	0.515	
1) ASENTAMIENTO:			3" a 4"	6) AGUA	-	193	LT.
Z) TAMAÑO MAXIMO NO	MANAL.		1	7) AIRE INCORP	00400	1.50	
				// AIRE INCORP	L	1.00	
3) CON AIRE INCORPOR			NO				
4) VOL. DE AGREG. GRU			0,689	_			
% DE ADITIVOS EN BAS	E PESO DEL CEMEN	TO:	NO	8			
FACTOR CEMENTO:			375	k/m3			
CANTIDAD DE AGREG.	CRIIESO		1075	k/m3			
CANTIDAD DE AGREG. GROESO:			761	k/m3			
CANTIDAD DE AGREG.	FINOT		761				
VOLUMEN ABSOLUTO E	E CEMENTO:		0,121	ma ·			
VOLUMEN ABSOLUTO D			0,193	m3			
VOLUMEN ABSOLUTO D			8,015	m3	PASTA:	0,3286	m3
VOLUMEN ABSOLUTO D			0,394	m3	MORTERO:	0,6057	m3
SUMA VOLUMEN ABSO			0,723	m3			1000
SUMATORIA DE VOLUM	EN ABSOLUTO:		0.723	7 _{m3}			
VOLUMEN ABSOLUTO D	E AG. FINO :		0,277	m3			
	TOTA	Le	1,000	100			
	CANTIDAD DE MATE	RIALES		_	30	OEFICIENTE DE APORTE	
CEMENTO:		375	k/m3			8,82	bol/m3c
AGUA:		193	t/m3			49,6	gin/m3c
AGREGADO FINO:		761	k/m3			0,47	m3a/m3c
AGREGADO GRUESO:		1075	k/m3 .			0.74	т3р/т3с
CORRECCION POR HUM	EDAD	- X- - X-	Î	CONTRIBUCION	DE LOS AGREGADOS	6 8	= 100
FINO. HUM:	774	k/m3	AGREGADO FIN	0:	0,66	5,03	ž.
GRUESO HUM.:	1089	k/m3	AGREGADO GR	JESO:	0.02	0.21	
			VOLUMEN DE A	GUA:	5	5,24	ž.
			- Automorphism and the second	CORREG. POR HUN		188	16/m3
CANTIDAD DE MATERIA	LES CORREGIDAS P		CD4000		VOLUMEN APAREN	TE EN PIE3	
CEMENTO:		375	k/m3		8.82		
RANGO DE AGUA:		188	t/m3		21,28		
AGREG. FINO HUMEDO:		774	k/m3		16,97		
AGREG. GRUESO HUME		1089	k/m3		26,39		
5% CENIZA DE CASCARI SW. EIRRA DE BOLIBROR		19	*/m3				
5% FIBRA DE POLIPROP	ILENO OPORCION EN PESO	19	k/m3	ppop	ORCION EN VOLUME	N DIET	
Cemento :	OPORCION EN PESO		T	PROP	Cemento:	1 Bolsa	700
The second secon	0,50	Kg It	-1		Agua :	21,3 tibols.	-
	2,1	1,000	+		Agua :	1,92 pie/bols.	37
Andrew Company of the	2,1	Kg Kg	-		Grava :	1,92 pie/tools. 2,99 pie/tools.	
Grava :	79						

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

CANTERA AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

CONCRETO ADICIONANDO 5% DE CENIZA DE CASCARILLA DE CAFE Y 5% DE FIBRA DE POLIPROPILENO

	ALEJANDRIA BUSTAM RIVERA SEGURA MIGL					FECHA: SEPTIEMBRE:	2022
CONCRETO:			fe	- 280	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SECO COMPACTADO K/M3	TAMAÑO MAXIMO NANIMON
CEMENTO	3110	2	2	(±1)	32	20	
AGR. FINO	2748	2,61	1,71	1.05	1611	1736	
AGR. GRUESO	2726	-	1,33	1,31	1468	1560	1*
	VALORES DE DISEÑO	e.					
				5) RELACION DE	A/C:	0.515	
1) ASENTAMIENTO:			3" a 4"	6) AGUA		193	LT.
Z) TAMAÑO MAXIMO NO	MINAL:		1	7) AIRE INCORPO	RADO	1.50	1%
3) CON AIRE INCORPOR	ADO		NO	C-10-00 DEPT (00-00 00 00 00 00 00 00 00 00 00 00 00 0			
4) VOL. DE AGREG. GRU	ESO:		0,689	7			
% DE ADITIVOS EN BAS	E PESO DEL CEMENTO	D;	NO				
FACTOR CEMENTO:			441	k/m3			
CANTIDAD DE AGREG.	GRUESO:		1075	k/m3			
CANTIDAD DE AGREG. I	INO:		703	k/m3			
VOLUMEN ABSOLUTO D	E CEMENTO:		0,142	m3			
VOLUMEN ABSOLUTO D	E AGUA:		0,193	m3			-
VOLUMEN ABSOLUTO D			0,015	m3	PASTA:	0.3498	m3
VOLUMEN ABSOLUTO D			0,394	m3	MORTERO:	0,6057	m3
SUMA VOLUMEN ABSOL	LUTO DE AG. :		0,744	m3			
SUMATORIA DE VOLUM	EN ABSOLUTO:		0,744	m3			
VOLUMEN ABSOLUTO D	E AG. FINO :		0,256	m3			
	TOTAL		1,000				
	CANTIDAD DE MATER		100020			COEFICIENTE DE APORTE	- 10 (800) C
CEMENTO:		441	k/m3			10.38	bolim3c
AGUA: AGREGADO FINO :		193 703	it/m3 k/m3			49.7	gln/m3c m3a/m3c
ACRECADO CRIJERO		1075				0.24	maamac maamac

CANTIDAD DE	MATERIALES		COEFICIENTE DE APORTE	
CEMENTO:	441	k/m3	10.38	bolim3c
AGUA:	193	t/m3	49.7.	gln/m3c
AGREGADO FINO :	703	k/m3	0.44	m3a/m3c
AGREGADO GRUESO:	1075	k/m3	0.74	m3p/m3c

CORRECCION POR HUM	EDAD		CONTRIBUCIO	N DE LOS AGREGA	ADOS	-	= 1
FINO. HUM:	715	k/m3	AGREGADO FINO:	0.66	%	4.64	x
GRUESO HUM.:	1089	k/m3	AGREGADO GRUESO:	0.02	%	0.21	1
20.202000000000000000000000000000000000		2000000	VOLUMEN DE AGUA:		56	4.85	t
			AGUA DE MEZ CORREG POR H	IIM -		188	200

R METRO CUBIC	:0	VOLUMEN APARENTE EN PIE3		
441	k/m3	10,38		
188	t/m3	18,13		
715	k/m3	15,67		
1089	k/m3	26,39		
22	k/m3			
22	k/m3			
	441 188 715 1089 22	188 bim3 715 kim3 1089 kim3 22 kim3	441	441 k/m3 10,38 18,13 18,13 15,67 1089 k/m3 26,39 22 k/m3 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,38 10,

	PROPORCION EN PES	io	PROPORCION EN VOLUM	EN PIE3	
Comento ;	7 7	Kg	Cemento:	- 1	Bolsa
Agua :	0,43	t t	Agua :	18,1	ti/bols.
Arena :	1,6	Kg	Arena :	1,51	pie/bols.
Grava :	2,5	Kg	Grava :	2,54	pie³/tools.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

CANTERA MATERIAL Ce CONCRETO ADICIONANDO 10% DE CENIZA DE CASCARILLA DE CAFE Y 1% DE FIBRA DE POLIPROPILENO

RESP. LAB. : R.H.B.C.

210 Kg/cm2 ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

CONCRETO:			fo	210	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO KIM3	PESO SECO COMPACTADO K/M3	DAMAT DAMKAM DAMKAM
CEMENTO	3110	2		- 1	32	25)	
AGR. FINO	2748	2,61	1,71	1.05	1611	1736	
AGR. GRUESO	2726		1,33	1.31	1468	1560	12
	VALORES DE DISEÑO	SV.		5) RELACION DE	AC:	0,515	
1) ASENTAMIENTO:	VALORES DE DISEÑO	W.	3' 3 4'	5) RELACION DE	NC;	0,515 193	7
1) ASENTAMIENTO: 2) TAMAÑO MAXIMO N		S)	3*a4*	5) RELACION DE 6 6) AGUA 7) AIRE INCORPO	AVC;		LT.
Z) TAMAÑO MAXIMO N	DMINAL:	W.	3" a 4" 1 NO	5) RELACION DE 6 6) AGUA	AVC;	193	
	OMINAL:	90	1	5) RELACION DE 6 6) AGUA	AVC;	193	

ACTOR CEMENTO:	375	k/m3		
ANTIDAD DE AGREG. GRUESO:	1075	k/m3		
ANTIDAD DE AGREG. FINO :	761	k/m3		
OLUMEN ABSOLUTO DE CEMENTO:	0,121	m3		
OLUMEN ABSOLUTO DE AGUA:	0,193	m3		
OLUMEN ABSOLUTO DE AIRE:	0,015	m3	PASTA:	0,3286 m3
OLUMEN ABSOLUTO DE AG. GRUESO:	0,394	m3	MORTERO:	0,6057 m3
IUMA VOLUMEN ABSOLUTO DE AG. ;	0,723	m3		A- 0.00.000
UMATORIA DE VOLUMEN ABSOLUTO:	0,723	m3		
OLUMEN ABSOLUTO DE AG. FINO :	0,277	m3		
TOTAL:	1,000			
CANTIDAD DE MATERIALES		_	co	EFICIENTE DE APORTE

CANTIDAD DE	MATERIALES		COEFICIEN	TE DE APORTE	
CEMENTO:	375	k/m3		8,82	bol/m3c
AGUA:	193	it/m3		49,6	gln/m3c
AGREGADO FINO :	761	k/m3		0,47	m3a/m3c
AGREGADO GRUESO:	1075	k/m3		0.74	m3p/m3c

CORRECCION POR HUM	EDAD	- 33	CONTRIBUCIO	IN DE LOS AGREGA	ADOS		
FINO. HUM:	774	k/m3	AGREGADO FINO:	0,66	54	5,03	x
GRUESO HUM.:	1089	k/m3	AGREGADO GRUESO:	0.02	%	0.21	
			VOLUMEN DE AGUA:		56	5,24	ž.
			AGUA DE MEZ. CORREG. POR H	UM.:	- 65	188	16/m3

CANTIDAD DE MATERIALES CORREGIDAS PO	R METRO CUBIC	:0	VOLUMEN APARENTE EN PIE3	
CEMENTO:	375	k/m3	8,82	
RANGO DE AGUA:	188	t/m3	21,28	
AGREG. FINO HUMEDO:	774	k/m3	16,97	
AGREG. GRUESO HUMEDO:	1089	k/m3	26,39	
10% CENIZA DE CASCARILLA DE CAFE	38	*/m3		
1% FIBRA DE POLIPROPILENO	4	k/m3		

	PROPORCION EN PES	0	PROPORCION EN VOLUM	EN PIE3		
Cemento ;	(i	Kg	Cemento:	- 1	Bolsa	
Agua :	0,50	t t	Agua :	21,3	tibols.	1
Arena :	2,1	Kg	Arena :	1,92	pie/loofs.	1
Grava :	2,9	Kg	Grava :	2,99	pie³/tools.	1

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

CANTERA MATERIAL Fe CONCRETO ADICIONANDO 10% DE CENIZA DE CASCARILLA DE CAFE Y 1% DE FIBRA DE POLIPROPILENO

RESP. LAB. : R.H.B.C. 280 Kg/cm2

				-			
CONCRETO:			fo	- 280	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL	PORCENTAJE DE ABSORCION	PESO SECO SUELTO KIM3	PESO SECO COMPACTADO KJM3	MAKAM MIXAM ANIMON
CEMENTO	3110	1 2	-	3 4 1	72	720	
AGR. FINO	2748	2,61	1,71	1.06	1611	1736	
AGR. GRUESO	2726	(39,67.2)	1,33	1,31	1458	1560	12
ion one of		_	1,000	160	1,140		
	VALORES DE DISEÑO)					
			To.	5) RELACION DE	AIC:	0.515	
) ASENTAMIENTO:			3" a 4"	6) AGUA	000000	193	LT
ON OMIXAM DÑAMAT (S	MINAL:		1	7) AIRE INCORPO	RADO	1.50	1%
) CON AIRE INCORPOR	ADO		NO		Dr.A. Nobel		
4) VOL. DE AGREG. GRU			0,689	7			
% DE ADITIVOS EN BAS		ro:	NO				
				.(6)			
FACTOR CEMENTO:			:441	k/m3			
CANTIDAD DE AGREG. O	GRUESO:		1075	k/m3			
CANTIDAD DE AGREG. F	FINO :		703	k/m3			
VOLUMEN ABSOLUTO D	E CEMENTO:		0,142	m3			
VOLUMEN ABSOLUTO D	E AGUA:		0,193	m3			
VOLUMEN ABSOLUTO D	E AIRE:		8,015	m3	PASTA:	0,3498	m3
VOLUMEN ABSOLUTO D			0,394	m3	MORTERO:	0,6057	m3
SUMA VOLUMEN ABSOL			0,744	m3			
SUMATORIA DE VOLUM	EN ABSOLUTO:		0.744	m3			
VOLUMEN ABSOLUTO D	E AG. FINO :		0,256	m3			
	TOTAL	Les	1,000	100			
tertesta vicio del	CANTIDAD DE MATE	RIALES		_	c	OEFICIENTE DE APORTE	
CEMENTO:		441	k/m3			10.38	bol/m3c
AGUA:		193	lt/m3			49.7	gln/m3c
AGREGADO FINO :		703	k/m3			0.44	m3a/m3c
AGREGADO GRUESO:		1075	k/m3			0.74	т3р/т3с
ORRECCION POR HUMI	EDAD	<u> </u>	T	CONTRIBUCION	E LOS AGREGADOS		
FINO. HUM:	715	k/m3	AGREGADO FIN	0:	0.66 %	4.64	ž
GRUESO HUM.:	1089	k/m3	AGREGADO GR		0.02 %	0.21	2
			VOLUMEN DE A		50	4.85	t
			THE RESIDENCE OF THE PARTY OF T	CORREG. POR HUM		188	16/m3
ANTIDAD DE MATERIAI	LES CORREGIDAS PO	_	10000000		VOLUMEN APARENT	TE EN PIE3	
CEMENTO:		441	k/m3		10,38		
RANGO DE AGUA:		188	t/m3		18,13		
AGREG. FINO HUMEDO:		715	k/m3		15,67		
AGREG. GRUESO HUME		1089	k/m3		26,39		
9% CENIZA DE CASCAR			*/m3				
% FIBRA DE POLIPROPI	AND DESCRIPTION OF THE PERSON	4	k/m3	200000	and all streets	Total Control	
	PORCION EN PESO	100	7	PROPO	RCION EN VOLUMEN		
Cemento ;		Kg	1		Cemento:	1 Bolsa	

0,43

18,1

1,51

Mbols.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

CANTERA MATERIAL Fe CONCRETO ADICIONANDO 10% DE CENIZA DE CASCARILLA DE CAFE Y 2.5% DE FIBRA DE POLIPROPILENO

RESP. LAB. : R.H.B.C. 210 Kg/cm2

CONCRETO:			fo	210	Kg/cm²		
	PESO	MODULO	HUMEDAD	PORCENTAJE	PESO SECO	PESO SECO	TAMAÑO
		1215256501	1,500,000,000,000,000	V-10-10-00-10-0	News Harrison		
CARACTERIST.	ESPECIFICO	DE	NATURAL	DE	SUELTO	COMPACTADO	MAXIMO
	K/M3	FINEZA	%	ABSORCION	K/M3	K/M3	NOMINA
EMENTO	3110	- 3		-	32	-	
AGR. FINO	2748	2,61	1,71	1.05	1611	1736	
IGR. GRUESO	2726	-	1,33	1.31	1458	1560	1"
	VALORES DE DISEÑO	70					
				5) RELACION DE	A/C:	0.515	59
1) ASENTAMIENTO:			3° a 4°	6) AGUA	18210	193	LT.
Z) TAMAÑO MAXIMO NO	MINAL:		1	7) AIRE INCORPO	RADO	1.50	N .
3) CON AIRE INCORPOR			NO	an sandrandelini	oronaetë i	52000	
4) VOL. DE AGREG. GRU			0,689	1			
% DE ADITIVOS EN BAS		O:	NO				
FACTOR CEMENTO: CANTIDAD DE AGREG. I CANTIDAD DE AGREG. I	INO:		375 1075 761	kim3 kim3 kim3			
VOLUMEN ABSOLUTO E			0,121	m3			
VOLUMEN ABSOLUTO D			0,193	m3	04074	0.0000	7.
VOLUMEN ABSOLUTO (VOLUMEN ABSOLUTO (8,015 8,394	m3 m3	PASTA: MORTERO:	0,3286 0,6057	m3 m3
SUMA VOLUMEN ABSO			0,723	m3	and the contract of the contra	0,000	2000
SUMATORIA DE VOLUM	EN ABSOLUTO:		0.723	m3			
VOLUMEN ABSOLUTO (E AG. FINO :		0,277	m3			
	TOTAL	6	1,000	100			
	CANTIDAD DE MATER		→ 255250		co	EFICIENTE DE APORTE	THE STATE OF
CEMENTO:		375	k/m3			8,82	bol/m3c
AGUA:		193	It/m3			49,6	g/n/m3c
AGREGADO FINO :		761 1075	k/m3			0,47	m3a/m3c
AGREGADO GRUESO:		10/5	k/m3			0,74	т3р/т3с
ORRECCION POR HUM	EDAD	2	T	CONTRIBUCION D	E LOS AGREGADOS	3	
FINO. HUM:	774	k/m3	AGREGADO FIN	0:	0.66 %	5,03	ž.
GRUESO HUM.:	1089	k/m3	AGREGADO GR	JESO;	0.02 %	0.21	e e
			VOLUMEN DE A		%	5,24	ž
			- Annual Control of the Control of t	CORREG. POR HUM		188	16/m3
ANTIDAD DE MATERIA	LES CORREGIDAS PO		10000000		VOLUMEN APARENTS	E EN PIE3	
CEMENTO:		375	k/m3		8,82		
		400	Financia Co.		24.70		
RANGO DE AGUA: AGREG. FINO HUMEDO:		188 774	t/m3 k/m3		21,28		

KC 40	2,9	Kg	
			761
			1
			CONTRACTOR ANTONIA
			To the
			ImpoResede HI Marca Carray
			155 Pr. 15 Fr.

AGREG. GRUESO HUMEDO:

19% CENIZA DE CASCARILLA DE CAFE 2.5% FIBRA DE POLIPROPILENO

0,50

2,1

26,39

21,3

1,92

tibols.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISENO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE) CANTERA

MATERIAL CONCRETO ADICIONANDO 10% DE CENIZA DE CASCARILLA DE CAFE Y 2.5% DE FIBRA DE POLIPROPILENO

280 Kg/cm/2 ALEJANORIA BUSTAMANTE YELSEN ANDERSON RESP. LAB. : R.H.B.C.

CONCRETO:			fe	= 280	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO KIM3	PESO SECO COMPACTADO K/M3	TAMAÑO MAXIMO MANIMON
CEMENTO	3110	= =====================================		(4)	32	201	
AGR. FINO	2748	2,61	1,71	1.06	1611	1736	
AGR. GRUESO	2726		1,33	1,31	1468	1560	17
1) ASENTAMIENTO:	VALORES DE DISEÑO		3' 94"	5) RELACION DE 6) AGUA	A/C:	0.515 193	LT.
Z) TAMAÑO MAXIMO NO	MINAL:		1	7) AIRE INCORPO	RADO	1.50	%
3) CON AIRE INCORPOR	ADO		NO	\$ P10-000CTW00-000CT	orangese:		
4) VOL. DE AGREG. GR	JESO:		0,689	1			
	E PESO DEL CEMENTO	N:	NO	7			

0,744 0,256 1,000	m3 m3	сов	FICIENTE DE APORTE]pol/m3c
0,256	0.000	?aar		
0,256	0.000			
	0.000			
Š.				
0,744	m3			
	100000	MORTERO;	0,6057	m3
	200000			m3
	1/853			
0,142	m3			
703	ik/m3			
	k/m3			
441	k/m3			
	1075 703	1075 kim3 703 kim3 0,142 m3 0,193 m3 0,015 m3 0,394 m3	1075 xim3 703 xim3 0,142 m3 0,193 m3 0,015 m3 PASTA: 0,304 m3 MORTERO:	1075 kim3 703 kim3 0,142 m3 0,193 m3 0,015 m3 PASTA: 0,3495 0,304 m3 MORTERO: 0,6057

AGUA:		193	it/m3			49.7.	gmm3c
AGREGADO FINO:		703	k/m3			0.44	m3a/m3o
AGREGADO GRUESO:		1075	k/m3			0.74	т3р/т3с
CORRECCION POR HUM		- 02		N DE LOS AGREGA		53	= 150
FINO. HUM:	715	k/m3	AGREGADO FINO:	0.66	%	4.64	ž.
GRUESO HUM.:	1089	k/m3	AGREGADO GRUESO:	0.02	56.	0.21	*
			VOLUMEN DE AGUA:		56	4.85	t

		AGUA DE MEZ. COP	RREG. POR HUM.:	188	%/m3
CANTIDAD DE MATERIALES CORREGIDAS PO	R METRO CUBIC	0	VOLUMEN APARENTE EN PIE3		11160000
CEMENTO:	441	k/m3	10,38		
RANGO DE AGUA:	188	t/m3	18,13		
AGREG. FINO HUMEDO:	715	k/m3	15,67		
AGREG. GRUESO HUMEDO:	1089	k/m3	26,39		
10% CENIZA DE CASCARILLA DE CAFE	- 44	k/m3			
2.5% FIBRA DE POLIPROPILENO	11	k/m3			

2.5% FIBRA DE POLIP	ROPILENO	11	k/m3				
ĵi.	PROPORCION EN PES	10		PROPORCION EN VOLUM	EN PIE3		
Cemento ;	7 74	Kg		Cemento:	- 1	Bolsa	1
Agua :	0,43	t t		Agua :	18,1	tt/bols.	
Arena :	1,6	Kg		Arena :	1,51	pie Vools.	27
Grava :	2,5	Kg		Grava :	2,54	pie²/bols.	

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

CANTERA MATERIAL Fe AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

CONCRETO ADICIONANDO 10% DE CENIZA DE CASCARILLA DE CAFE Y 5% DE FIBRA DE POLIPROPILENO

RESP. LAB. : R.H.B.C. 210 Kg/cm2

CONCRETO;		_	fo	219	Kg/cm²		
	PESO	MODULO	HUMEDAD	PORCENTAJE	PESO SECO	PESO SECO	TAMAÑO
CARACTERIST.	ESPECIFICO	DE	NATURAL	DE	SUELTO	COMPACTADO	MAXIMO
20001212121	K/M3	FINEZA	*	ABSORCION	K/M3	K/M3	NOMINA
CEMENTO	3110	- 100	1 2	-			
AGR, FINO	2748	2,61	1,71	1.05	1611	1736	
IGR. GRUESO	2726	2000	1,33	1,31	1458	1560	1*
	VALORES DE DISEÑO	10					
				5) RELACION DE	A/C:	0.515	- 1
1) ASENTAMIENTO:			3° a 4°	6) AGUA	(82)(1	193	LT.
Z) TAMAÑO MAXIMO NO	MINAL:		1	7) AIRE INCORPO	RADO	1.50	- N
CON AIRE INCORPOR	ADO		NO	Character Control	Medelle 1		
O VOL. DE AGREG. GRU			0.689	1			
% DE ADITIVOS EN BAS		D:	NO.	1			
ACTOR CEMENTO: CANTIDAD DE AGREG. CANTIDAD DE AGREG.			375 1075 761	kim3 kim3 kim3			
VOLUMEN ABSOLUTO	OF OFMENTO.			-00			
			0,121	m3			
	DE AGUA:		0,193	m3			
VOLUMEN ABSOLUTO	DE AGUA: DE AIRE:		0,193 0,015	m3 m3	PASTA:	0,9286	m3
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I	DE AGUA: DE AIRE: DE AG. GRUESO;		0,193	m3 m3	PASTA: MORTERO:	0,3286 0,6057	m3 m3
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO	DE AGUA: DE AIRE: DE AG. GRUEBO: LUTO DE AG. :		0,193 0,015 0,394 0,723	m3 m3 m3 m3		THE RESERVE AND ADDRESS OF THE PARTY OF THE	0.000
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM	DE AGUA: DE AIRE: DE AG, GRUEBO: LUTO DE AG, ; IEN ABSOLUTO:		0,193 0,015 0,394 0,723	m3 m3 m3 m3		THE RESERVE AND ADDRESS OF THE PARTY OF THE	0.000
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM	DE AGUA: DE AIRE: DE AG, GRUEBO: LUTO DE AG, ; IEN ABSOLUTO:		0,193 0,015 0,394 0,723	m3 m3 m3 m3		THE RESERVE AND ADDRESS OF THE PARTY OF THE	0.000
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I	DE AGUA: DE AIRE: DE AQ. GRUESO: LUTO DE AG.; IEN ABSOLUTO: DE AG. FINO:		0,193 0,015 0,394 0,723 0,723	m3 m3 m3 m3	MORTERO:	THE RESERVE AND ADDRESS OF THE PARTY OF THE	0.000
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; IEN ABSOLUTO: DE AG. FINO: TOTAL:		0,193 0,015 0,394 0,723 0,723	m3 m3 m3 m3	MORTERO:	0,6057	0.000
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA:	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; IEN ABSOLUTO: DE AG. FINO: TOTAL:	375 193	0,193 0,015 0,394 0,723 0,723 0,277 1,000 8/m3 6/m3	m3 m3 m3 m3	MORTERO:	0,6057 REFICIENTE DE APORTE 8,82 49,6	m3 bol/m3c ghr/m3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO:	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; IEN ABSOLUTO: DE AG. FINO: TOTAL:	375 193 761	0,193 0,015 0,394 0,723 0,723 0,277 1,000 s/m3 k/m3	m3 m3 m3 m3	MORTERO:	0,6057 DEFICIENTE DE APORTE 8,82 49,6 0,47	m3 bol/m3c gln/m3c m3a/m3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO:	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; IEN ABSOLUTO: DE AG. FINO: TOTAL:	375 193	0,193 0,015 0,394 0,723 0,723 0,277 1,000 8/m3 6/m3	m3 m3 m3 m3	MORTERO:	0,6057 REFICIENTE DE APORTE 8,82 49,6	m3 bol/m3c ghr/m3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM	DE AGUA: DE AIRE: DE AG, GRUESO: LUTO DE AG, : IEN ABSOLUTO: DE AG, FINO: TOTAL: CANTIDAD DE MATER	375 193 761 1075	0,193 0,015 0,304 0,723 0,723 0,277 1,000 8im3 6im3 8im3 8im3	m3 m3 m3 m3 m3 m3	MORTERO: CO	0,6057 DEFICIENTE DE APORTE 8,82 49,6 0,47 0,74	m3 bolim3c ginim3c m3aim3c m3pim3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM:	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG. : IEN ABSOLUTO: DE AG. FINO : TOTAL: CANTIDAD DE MATER EDAD 774	375 193 761 1075	0,193 0,015 0,394 0,723 0,723 0,777 1,000 8/m3 8/m3 8/m3 AGREGADO FIN	m3 m3 m3 m3 m3 m3 contribución do:	MORTERO: CO E LOS AGREGADOS 0.66 %	0,6057 REFICIENTE DE APORTE 8,82 49,6 0,47 0,74	m3 bol/m3c gln/m3c m3a/m3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM:	DE AGUA: DE AIRE: DE AG, GRUESO: LUTO DE AG, : IEN ABSOLUTO: DE AG, FINO: TOTAL: CANTIDAD DE MATER	375 193 761 1075	0,193 0,015 0,394 0,723 0,723 0,723 1,000 8/m3 6/m3 4/m3 AGREGADO FIN AGREGADO GRI	m3 m	MORTERO: CO	0,6057 REFICIENTE DE APORTE 8,82 49,6 0,47 0,74 5,03 0,21	m3 bolim3c ginim3c m3aim3c m3pim3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM:	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG. : IEN ABSOLUTO: DE AG. FINO : TOTAL: CANTIDAD DE MATER EDAD 774	375 193 761 1075	0,193 0,015 0,304 0,723 0,723 0,777 1,000 s/m3 s/m3 s/m3 s/m3 AGREGADO FIN AGREGADO GRI VOLUMEN DE A	m3 m	MORTERO: CO E LOS AGREGADOS 0.66 %	0,6057 DEFICIENTE DE APORTE 8,82 49,6 0,47 0,74 5,03 0,21 5,24	m3 bolim3c ginim3c m3aim3c m3pim3c z t
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.:	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG .: DE AG SOLUTO: DE AG SINO : TOTAL: CANTIDAD DE MATER TOTAL: 1089	193 761 1075 1075 km3	0,193 0,015 0,304 0,723 0,723 0,277 1,000 kim3 kim3 kim3 kim3 kim3 kim3 kim3 kim	m3 m3 m3 m3 m3 contribucion doc coscociosc	CO E LOS ACREGADOS 0.66 % 0.02 %	0,6057 DEFICIENTE DE APORTE 8,82 49,6 0,47 0,74 5,03 0,21 5,24 188	m3 bolim3c ginim3c m3aim3c m3pim3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGREGADO FINO: AGREGADO FINO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.:	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG .: DE AG SOLUTO: DE AG SINO : TOTAL: CANTIDAD DE MATER TOTAL: 1089	193 761 1075 1075 1075 1075 1075 1075 1075 107	0,193 0,015 0,394 0,723 0,723 0,277 1,000 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3	m3 m3 m3 m3 m3 contribucion doc coscociosc	E LOS AGREGADOS 0.66 0.02 VOLUMEN APARENTI	0,6057 DEFICIENTE DE APORTE 8,82 49,6 0,47 0,74 5,03 0,21 5,24 188	m3 bolim3c ginim3c m3aim3c m3pim3c z t
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGREGADO FINO: AGREGADO FINO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO:	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG .: DE AG SOLUTO: DE AG SINO : TOTAL: CANTIDAD DE MATER TOTAL: 1089	193 761 1075 1075 km3	0,193 0,015 0,304 0,723 0,723 0,277 1,000 kim3 kim3 kim3 kim3 kim3 kim3 kim3 kim	m3 m3 m3 m3 m3 contribucion doc coscociosc	CO E LOS ACREGADOS 0.66 % 0.02 %	0,6057 DEFICIENTE DE APORTE 8,82 49,6 0,47 0,74 5,03 0,21 5,24 188	m3 bolim3c ginim3c m3aim3c m3pim3c z t
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO: RANGO DE AGUA:	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG.; IEN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER EDAD 774 1039	375 193 761 1075 km3 km3 R METRO CUBICC 375	0,193 0,015 0,394 0,723 0,723 0,277 1,000 8/m3 8/m3 8/m3 8/m3 8/m3 AGREGADO FIN AGREGADO GRI VOLUMEN DE A AGUA DE MEZ. 1	m3 m3 m3 m3 m3 contribucion doc coscociosc	E LOS AGREGADOS 0.66 % 0.02 % VOLUMEN APARENTI	0,6057 DEFICIENTE DE APORTE 8,82 49,6 0,47 0,74 5,03 0,21 5,24 188	m3 bolim3c ginim3c m3aim3c m3pim3c z t
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGREGADO FINO: AGREGADO FINO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO: RANGO DE AGUA: AGREG, FINO HUMEDO AGREG, FINO HUMEDO AGREG, FINO HUMEDO AGREG, FINO HUMEDO	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG.: DE AG SOLUTO: DE AG SINO: TOTAL: CANTIDAD DE MATER 1089 LES CORREGIDAS POI	ALES 375 193 761 1075 Km3 km3 Km3 R METRO CUBICC 375 188	0,193 0,015 0,304 0,723 0,723 0,777 1,000 k/m3 k/m3 k/m3 k/m3 k/m3 k/m3 k/m3 k/m	m3 m3 m3 m3 m3 contribucion doc coscociosc	E LOS AGREGADOS 0.66 0.02 VOLUMEN APARENTI 8.82 21,28	0,6057 DEFICIENTE DE APORTE 8,82 49,6 0,47 0,74 5,03 0,21 5,24 188	m3 bolimac ginimac m3aimac m3pimac x t

1639 OCHIEM DC OMOG	WHITTH OF OWE	00	Politica				
5% FIBRA DE POLIPR	OPILENO	19	k/m3				
ĵ.	PROPORCION EN PES	i0		PROPORCION EN VOLUM	EN PIE3		
Cemento ;	/ /	Kg		Cemento:	- 1	Bolsa	7
Agua :	0,50	t.		Agua :	21,3	ti/bols.	S .
Arena :	2,1	Kg		Arena	1,92	pie Vools.	-37
Grava :	2,9	Kg		Grava :	2,99	pie*/tools.	

FECHA: SEPTIEMBRE 2022

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE) CANTERA

MATERIAL CONCRETO ADICIONANDO 10% DE CENIZA DE CASCARILLA DE CAFE Y 5% DE FIBRA DE POLIPROPILENO

280 Kg/cm2 RESP. LAB. : R.H.B.C.

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITADO

CONCRETO:			fo	280	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SEGO COMPACTADO K/M3	TAMAÑO MAXAM NOMINAL
CEMENTO	3110			.]	32	-	
AGR. FINO	2748	2,61	1,71	1.06	1611	1736	
AGR. GRUESO	2726	_	1,33	1,31	1468	1560	1*

CONCRETO:			fo	280	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SEGO COMPACTADO KW3	DAMANT DMIXAM DANIMON
CEMENTO	3110	2	- 2	.]	34	2	
AGR. FINO	2748	2,61	1,71	1.05	1611	1736	
AGR. GRUESO	2726	-	1,33	1,31	1458	1560	1*
1) ASENTAMIENTO:	VALORES DE DISEÑO	31	3" a 4"	5) RELACION DE 6) AGUA	A/C:	0.515 193	П.
Z) TAMAÑO MAXIMO NO	MINAL:		1	7) AIRE INCORPO	ORADO .	1.50	×
3) CON AIRE INCORPOR	ADO		NO	C-10-000CTV00-0000	unicolorie (
4) VOL. DE AGREG. GRU	JESO:		0,689	1			
% DE ADITIVOS EN BAS	E PESO DEL CEMENT	D;	NO	100			
FACTOR CEMENTO:			441	k/m3			
CANTIDAD DE AGREG.	GRUESO:		1075	k/m3			
CANTIDAD DE AGREG.	FINO:		703	k/m3			
VOLUMEN ABSOLUTO E	DE CEMENTO:		0,142	m3			
VOLUMEN ABSOLUTO	DE AGUA:		0,193	m3		700	200
VOLUMEN ABSOLUTO			0,015	m3	PASTA:	0.3498	m3
VOLUMEN ABSOLUTO			0,394	m3	MORTERO:	0,6057	m3
SUMA VOLUMEN ABSO	LUTO DE AG. :		0,744	m3			
SUMATORIA DE VOLUM	EN ABSOLUTO:		0,744	m3			
VOLUMEN ABSOLUTO (E AG. FINO:		0,256	m3			

CEMENTO:	441	k/m2		1
CANTI	DAD DE MATERIALES			COEFICIENTE DE APORTE
	TOTAL:	1,000	= 1000	
VOLUMEN ABSOLUTO DE AG.	FINO:	0,256	m3	
SUMATORIA DE VOLUMEN AB	SOLUTO:	0,744	m3	

CANTIDAD DE	MATERIALES		COEFICIENTE DE APORTE	
CEMENTO:	441	k/m3	10.38	bolim3c
AGUA:	193	t/m3	49.7	g/m/m3c
AGREGADO FINO :	703	k/m3	0.44	m3a/m3c
AGREGADO GRUESO:	1075	k/m3	0.74	т3р/т3с

CORRECCION POR HUM	EDAD		CONTRIBUCIO	IN DE LOS AGREGA	ADOS		
FINO. HUM:	715	k/m3	AGREGADO FINO:	0.66	%	4.64	2.
GRUESO HUM.:	1089	k/m3	AGREGADO GRUESO:	0.02	%	0.21	
			VOLUMEN DE AGUA:		56	4.85	2
			AGUA DE MEZ, CORREG, POR H	IUM.:	- 63	188	16/m3

		Trivers or meet wer	The St. F. St. Fridam.	100	101110
CANTIDAD DE MATERIALES CORREGIDAS PO	R METRO CUBIC	:0	VOLUMEN APARENTE EN PIE3		III BOOKS
CEMENTO:	441	k/m3	10,38		
RANGO DE AGUA:	188	t/m3	18,13		
AGREG. FINO HUMEDO:	715	k/m3	15,67		
AGREG. GRUESO HUMEDO:	1089	k/m3	26,39		
10% CENIZA DE CASCARILLA DE CAFE	44	k/m3			
5% FIBRA DE POLIPROPILENO	22	k/m3			
AND					

	PROPORCION EN PE	io	PROPORCION EN VOLUM	EN PIE3	
Comento ;	7 /4	Kg	Cemento :	- 1	Bolsa
Agua :	0,43	t t	Agua :	18,1	tibols.
Arena :	1,6	Kg	Arena :	1,51	pie Vools.
Grava :	2,5	Kg	Grava :	2,54	pie?/bols.

FECHA: SEPTIEMBRE 2022

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE) CANTERA

MATERIAL CONCRETO ADICIONANDO 15% DE CENIZA DE CASCARILLA DE CAFE Y 1% DE FIBRA DE POLIPROPILENO

210 Kg/cm2 RESP. LAB. : R.H.B.C.

210 Kgrentz ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITADO

CONCRETO:			fo	219	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SECO COMPACTADO K/M3	OMIXAM OMIXAM
CEMENTO	3110			: + 1:	32		
AGR. FINO	2748	2,61	1,71	1.06	1611	1736	
AGR. GRUESO	2726		1,33	1.31	1468	1560	12

SEMENTO 3110 - - - - - -	CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SECO COMPACTADO K/M3	TAMAÑO DMIXAM ANIMON
VALORES DE DISERO S' RELACION DE ACC: 0.5.15	CEMENTO			_				10000000
VALORES DE DISERO S' RELACION DE ACC: 0.5.15	AGR, FINO	2748	2.61	1.71	1.05	1611	1736	
VALORES DE DISERO 3) RELACION DE AIC; 0.515 1) ASENTAMIENTO: 157 44 9) AGUA 193 LT. 7) ASENTAMIENTO: 159 150 LT. 7) COMA AIR INCORPORADO 1.50 150 150 150 150 150 150 150 150 150 1		4472005	35857.0	1000	- WWW		1560	
1) ASENTAMIENTO: 9.7 84" 6) AGUA 1993 LT. 2) TAMAÑO MAJIMO NOMINAL: 1 1 7) ARE INCORPORADO 1.50 1.50 LT. 2) TAMAÑO MAJIMO NOMINAL: 1 1 7) ARE INCORPORADO 1.50 1.50 S. 3) CON AIRE INCORPORADO NO 1.50 1.50 S. 4) VOL DE AGREG. GRUESO: 0.5899 NO 1.60 NO 1.50	NON. GROEGO	2720		1,55	1391	1400	1200	
1) ASENTAMIENTO: 2) TANARÍO MAXIMO NOMINAL: 2) TANARÍO MAXIMO NOMINAL: 3) COM AIRE INCORPORADO 4) VOL. DE AGREG. GRUESO: 5) CORDERO MATERIALES CANTIDAD DE AGREG. GRUESO: 50 J.221 M3 WOLUMEN ABSOLUTO DE AG. GRUESO: 50 J.222 M3 WOLUMEN ABSOLUTO DE AG. GRUESO: 50 J.223 M3 WOLUMEN ABSOLUTO DE AG. GRUESO: 50 J.221 M3 WOLUMEN ABSOLUTO DE AG. GRUESO: 50 J.222 M3 WOLUMEN ABSOLUTO DE AG. GRUESO: 50 J.223 M3 WOLUMEN ABSOLUTO DE AG. GRUESO: 50 J.224 M3 WOLUMEN ABSOLUTO DE AG. FINO: 50 J.227 M3 WOLUMEN DE AG. FINO: 50 J.227 M3 WO		VALORES DE DISEÑO	98(
27 TAMAÑO MAKIMO NOMINAL: 1					5) RELACION DE	A/C:	0,515	100
A	1) ASENTAMIENTO:			3" a 4"	6) AGUA		193	LT.
0,589	Z) TAMAÑO MAXIMO NO	OMINAL:		1	7) AIRE INCORPO	RADO	1.50	1%
FACTOR CEMENTO: CANTIDAD DE AGREG, GRUESO: CANTIDAD DE AGREG, FINO: VOLUMEN ABSOLUTO DE CEMENTO: VOLUMEN ABSOLUTO DE AGRE: VOLUMEN ABSOLUTO DE AGRE: VOLUMEN ABSOLUTO DE AGRE: 0,193 m3 PASTA: VOLUMEN ABSOLUTO DE AGRE: 0,304 m3 MORTERO: VOLUMEN ABSOLUTO DE AG. SUMA VOLUMEN ABSOLUTO DE AG. CANTIDAD DE MATERIALES CANTIDAD DE MATERIALES CEMENTO: 375 4m3 0,277 m3 1,000 CONTRIBUCION DE LOS AGREGADOS FINO: AGREGADO FINO: AGREGADO FINO: CONTRIBUCION DE LOS AGREGADOS FINO: CONTRIBUCION DE LOS AG	3) CON AIRE INCORPOR	RADO		NO	10-00 /27 ***********************************	27.A.490161		
FACTOR CEMENTO: CANTIDAD DE AGREG, GRUESO: CANTIDAD DE AGREG, FINO: VOLUMEN ABSOLUTO DE CEMENTO: VOLUMEN ABSOLUTO DE AGRE: VOLUMEN ABSOLUTO DE AGRE: VOLUMEN ABSOLUTO DE AGRE: 0,193 m3 PASTA: VOLUMEN ABSOLUTO DE AGRE: 0,304 m3 MORTERO: VOLUMEN ABSOLUTO DE AG. SUMA VOLUMEN ABSOLUTO DE AG. CANTIDAD DE MATERIALES CANTIDAD DE MATERIALES CEMENTO: 375 4m3 0,277 m3 1,000 CONTRIBUCION DE LOS AGREGADOS FINO: AGREGADO FINO: AGREGADO FINO: CONTRIBUCION DE LOS AGREGADOS FINO: CONTRIBUCION DE LOS AG	4) VOL. DE AGREG. GRI	UESO:		0.689	1			
FACTOR CEMENTO: CANTIDAD DE AGREC, GRUESO: CANTIDAD DE AGREC, FINO: 761 1075 1075 1075 1075 1073 VOCUMEN ABSOLUTO DE CEMENTO; VOCUMEN ABSOLUTO DE AGUA: 0,193 0,304			0:		1			
CANTIDAD DE AGREG, GRUESO: CANTIDAD DE AGREG, FINO : VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGURESO: CANTIDAD DE MATERIALES COMPICION DE AGURESO: CONTRIBUCION DE LOS AGREGADOS AGREGADO GRUESO: VOLUMEN DE AGUA: AGUA DE MEZ. CORREG, POR HUM: VOLUMEN DE AGUA: AGUA DE MEZ. CORREG, POR HUM: VOLUMEN APARENTE EN PIES COMPITION: AGREGA FINO HUMEDO: AGREGA								
CANTIDAD DE AGREG, GRUESO: CANTIDAD DE AGREG, FINO : VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGURESO: CANTIDAD DE MATERIALES COMPICION DE AGURESO: CONTRIBUCION DE LOS AGREGADOS AGREGADO GRUESO: VOLUMEN DE AGUA: AGUA DE MEZ. CORREG, POR HUM: VOLUMEN DE AGUA: AGUA DE MEZ. CORREG, POR HUM: VOLUMEN APARENTE EN PIES COMPITION: AGREGA FINO HUMEDO: AGREGA	FACTOR CEMENTO:			375	Ts/m3			
CANTIDAD DE AGREG. FINO : 761 wm3 VOLUMEN ABSOLUTO DE CEMENTO; 0,121 m3 VOLUMEN ABSOLUTO DE AGUA: 0,153 m3 VOLUMEN ABSOLUTO DE AGUA: 0,015 m3 PASTA: 0,3286 m3 VOLUMEN ABSOLUTO DE AG. GRUESO; 0,334 m3 MORTERO; 0,6057 m3 SUMA VOLUMEN ABSOLUTO DE AG.; 0,723 m3 SUMATORIA DE VOLUMEN ABSOLUTO; 0,723 m3 SUMATORIA DE VOLUMEN ABSOLUTO; 0,277 m3 TOTAL: 1,000 CANTIDAD DE MATERIALES CANTIDAD DE MATERIALES CONTRIBUCION DE LOS AGREGADOS AGREGADO GRUESO; 0,23 m3 CONTRIBUCION DE LOS AGREGADOS FINO. HUM: 774 km3 AGREGADO GRUESO; 0,02 % 0,21 % AGREGADO GRUESO; 0,02 % 0,02 % AGREGADO GRUESO; 0,02 % 0,21 % AGREGADO GRUESO; 0,02 % 0,02 % AGREGADO GRUESO; 0,02 % 0,21 % AGREGADO GRUESO; 0,02 % 0,02 % AGREGADO GRUESO; 0,02 % 0,21 % AGREGADO GRUESO; 0,02 % 0,02 % AGREGADO GRUESO; 0,02 % 0,21 % AGREGADO GRUESO; 0,02 % 0,02 % AGREGADO GRUESO; 0,02 % AG		CRITERO			- TORRES			
VOLUMEN ABSOLUTO DE CEMENTO; VOCUMEN ABSOLUTO DE AGUA: VOCUMEN ABSOLUTO DE AGUE: VOLUMEN ABSOLUTO DE AG. GRUESO: SUMA VOLUMEN ABSOLUTO DE AG. GRUESO: SUMA VOLUMEN ABSOLUTO DE AG.; SUMA VOLUMEN ABSOLUTO DE AG. FINO: CANTIDAD DE MATERIALES COMPTIDAD DE MATERIALES CONTRIBUCION DE LOS AGREGADOS FINO. HUM: 774 kim3 AGREGADO FINO: AGREGADO GRUESO: CONTRIBUCION DE LOS AGREGADOS AGREGADO GRUESO: CONTRIBUCION DE LOS AGREGADOS AGREGADO GRUESO: VOLUMEN DE AGUA: AGREGADO GRUESO: AGREGADO GRUESO: VOLUMEN DE AGUA: AGREGADO GRUESO: AGREGADO GRUESO: VOLUMEN DE AGUA: AGREGADO GRUESO: AGREGADO G								
VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AG. ORUESO: VOLUMEN ABSOLUTO DE AG. ORUESO: SUMA VOLUMEN ABSOLUTO DE AG. ORUESO: SUMA VOLUMEN ABSOLUTO DE AG.; SUMATORIA DE VOLUMEN ABSOLUTO: VOLUMEN ABSOLUTO DE AG. FINO: TOTAL: CANTIDAD DE MATERIALES CEMENTO: AGUA: 193 193 193 193 193 193 193 19	CANTIDAD DE AGREG.	FINO:		761	_kims			
VOLUMEN ABSOLUTO DE AG. GRUESO: 0,015 m3	VOLUMEN ABSOLUTO	DE CEMENTO;		0,121	m3			
VOLUMEN ABSOLUTO DE AG. GRUESO; 0,394 m3 MORTERO; 0,6057 m3 SUMATORIA DE VOLUMEN ABSOLUTO: 0,723 m3 SUMATORIA DE VOLUMEN ABSOLUTO: 0,277 m3 VOLUMEN ABSOLUTO DE AG. FINO: 0,277 m3 TOTAL: 1,000 m3 CANTIDAD DE MATERIALES CORREGIDAS POR METRO CUBICO VOLUMEN DE AGUA: 1039 km3 AGREGADO GRUESO: 0,02 % 0,21 & 0,00 & 0,	VOLUMEN ABSOLUTO	DE AGUA:		0,193	m3		100	00007
SUMA VOLUMEN ABSOLUTO DE AG. : 0,723 m3 SUMATORIA DE VOLUMEN ABSOLUTO : 0,723 m3 TOTAL: 1,000 CANTIDAD DE MATERIALES CANTIDAD DE MATERIALES CANTIDAD DE MATERIALES COMPRECCION POR HUMEDAD FINO. HUM: 774 km3 GRUESO HUM.: 1089 km3 AGREGADO GRUESO: 0,022 % 0,21 & contribudo de Materiales (VOLUMEN DE AGUA: 0,021 & contribudo de Materiales Corregidas POR METRO CUBICO CORRECCION POR HUMEDAD CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales Corregidas POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales Corregidas POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales Corregidas POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales Corregidas POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales CORREGIDAS POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales CORREGIDAS POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales (CORREGIDAS POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales (CORREGIDAS POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales (CORREGIDAS POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales (CORREGIDAS POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0,21 & contribudo de Materiales (CORREGIDAS POR METRO CUBICO CARREGADO GRUESO: 0,02 % 0	VOLUMEN ABSOLUTO	DE AIRE:		8,015	m3	PASTA:	0,3286	m3
SUMATORIA DE VOLUMEN ABSOLUTO:	VOLUMEN ABSOLUTO	DE AG. GRUESO:		0,394	m3	MORTERO:	0,6057	m3
CANTIDAD DE MATERIALES CONTRIBUCION DE LOS AGREGADOS	SUMA VOLUMEN ABSO	LUTO DE AG. :		0,723	m3			
TOTAL: 1,000 CANTIDAD DE MATERIALES COMENTO: 375 km3	SUMATORIA DE VOLUN	MEN ABSOLUTO:		0,723	m3			
CANTIDAD DE MATERIALES COEFICIENTE DE APORTE B,82 bolimac	VOLUMEN ABSOLUTO	DE AG. FINO :		0,277	m3			
Base		TOTAL	4	1,000	100			
AGREGADO FINO : 761 km3		CANTIDAD DE MATER	HALES			c	OEFICIENTE DE APORTE	
AGREGADO FINO : 761 k/m3 0,47 m3a/m3c AGREGADO GRUESO: 1075 k/m3 0,74 m3p/m3c CORRECCION POR HUMEDAD CONTRIBUCION DE LOS AGREGADOS FINO. HUM: 774 k/m3 AGREGADO FINO: 0,66 % 5,03 k AGREGADO GRUESO: 0,02 % 0,21 ¢ VOLUMEN DE AGUA: % 5,24 k AGUA DE MEZ. CORREG, POR HUM: 188 k/m3 CEMENTO: 375 k/m3 8,82 RANGO DE AGUA: 188 b/m3 21,28 AGREG. FINO HUMEDO: 1089 k/m3 16,97 AGREGADO GRUESO HUMEDO: 1089 k/m3 26,39 15% CENIZA DE CASCARILLA DE CAFE 56 k/m3 (% FIBRA DE POLIPROPILENO 4 k/m3	CEMENTO:		375	k/m3			8,82	bol/m3c
AGREGADO GRUESO: 1075 vim3 0,74 m3pim3c CORRECCION POR HUMEDAD. FINO, HUM: 774 km3 AGREGADO FINO: 0,66 % 5,03 k GRUESO HUM.: 1089 km3 AGREGADO GRUESO: 0,02 % 0,21 ¢ VOLUMEN DE AGUA: % 5,24 k AGUA DE MEZ. CORREG, POR HUM.: 188 km3 CANTIDAD DE MATERIALES CORREGIDAS POR METRO CUBICO CEMENTO: 375 km3 8,92 RANGO DE AGUA: 188 km3 21,28 AGREG, FINO HUMEDO: 774 km3 16,97 AGREGADO GRUESO: 0,02 % 0,21 ¢ VOLUMEN APARENTE EN PIE3 AGREGADO GRUESO: 0,02 % 0,21 ¢ VOLUMEN DE AGUA: 8,82 FINO HUMEDO: 188 km3 21,28 AGREGADO GRUESO: 0,02 % 0,21 ¢ VOLUMEN APARENTE EN PIE3 AGREGADO GRUESO HUMEDO: 1089 km3 26,39 15% CENIZA DE CASCARILLA DE CAFE 56 km3 (% FIBRA DE POLIPROPILENO 4 km3	AGUA:		193	tt/m3			49,6	g/n/m3c
CORRECCION POR HUMEDAD FIND. HUM: 774 km3 AGREGADO FINO: 0.66 % 5.03 x GREGADO FINO: 0.66 % 5.03 x GREGADO FINO: 0.66 % 5.03 x GREGADO FINO: 0.066 % 5.03 x GREGADO FINO: 0.002 % 0.21 x VOLUMEN DE AGUA: 0.002 % 5.24 x AGUA DE MEZ. CORREG. POR HUM.: 188 km3 CANTIDAD DE MATERIALES CORREGIDAS POR METRO CUBICO CEMENTO: 375 km3 8.82 RANGO DE AGUA: 188 km3 22,28 AGREG. FINO HUMEDO: 774 km3 10,97 AGREG. GRUESO HUMEDO: 1089 km3 26,39 195 CENIZA DE CASCARILLA DE CAFE 56 km3 105 FIBRA DE POLIPROPILENO 4 km3	AGREGADO FINO :			k/m3				m3a/m3c
AGREGADO FINO: 0.66 % 5.03 x GRUESO HUM.: 1039 km3 AGREGADO GRUESO; 0.02 % 0.21 ¢ VOLUMEN DE AGUA: 5.24 ± AGAU ADE MEZ. CORREG. POR HUM.: 188 km3 CANTIDAD DE MATERIALES CORREGIDAS POR METRO CUBICO CEMENTO: 375 km3 8.82 RANGO DE AGUA: 188 km3 21,28 AGREG. FINO HUMEDO: 774 km3 16,97 AGREG. GRUESO HUMEDO: 1089 km3 26,39 15% CENIZA DE CASCARILLA DE CAFE 56 km3 (% FIBRA DE POLIPROPILENO 4 km3	AGREGADO GRUESO:		1075	k/m3 :			0.74	т3р/т3с
AGREGADO GRUESO: 0.02 % 0.21 ¢ VOLUMEN DE AGUA: % 5.24 ± AGUA DE MEZ. CORREG, POR HUM: % 5.24 ± AGUA DE MEZ. CORREG, POR HUM: % 5.24 ± AGUA DE MEZ. CORREG, POR HUM: % 5.24 ± AGUA DE MEZ. CORREG, POR HUM: % 5.24 ± AGUA DE MEZ. CORREG, POR HUM: % 5.24 ± AGUA DE MEZ. CORREG, POR HUM: % 5.22 ± AGUA DE MEZ. CORREG, POR HUM: % 5.22 ± AGUA DE MEZ. CORREG, POR HUM: % 5.22 ± AGUA DE MEZ. CORREG, POR HUM: % 5.22 ± AGUA DE MEZ. CORREG, POR HUM: % 5.22 ± AGUA DE MEZ. CORREG, POR HUM: % 5.24 ±	ORRECCION POR HUM	IEDAD	(A)	T	CONTRIBUCION	E LOS AGREGADOS	8 8	
VOLUMEN DE AGUA: % 5,24 1	FINO. HUM:	774	k/m3	AGREGADO FIN	0:	0,66	5,03	x
AGUA DE MEZ. CORREG, POR HUM.: 188 25m3 CANTIDAD DE MATERIALES CORREGIDAS POR METRO CUBICO CEMENTO: 375 3m3 8.82 RANGO DE AGUA: 188 5m3 21,28 AGREG. FINO HUMEDO: 774 5m3 10,97 AGREG. GRUESO HUMEDO: 1099 4m3 26,39 35 CENIZA DE CASCARILLA DE CAFE 56 4m3 35 FIBRA DE POLIPROPILENO 4 5m3	GRUESO HUM.:	1089	k/m3	AGREGADO GR	UESO:	0.02 5	0.21	
CANTIDAD DE MATERIALES CORREGIDAS POR METRO CUBICO CEMENTO: 375 km3 8,92 RANGO DE AGUA: 188 km3 21,28 AGREG, FINO HUMEDO: 774 km3 10,97 AGREG, GRUESO HUMEDO: 1099 km3 26,39 15% CENIZA DE CASCARILLA DE CAFE 56 km3 (% FIBRA DE POLIPROPILENO 4 km3				VOLUMEN DE A	GUA:	5	5,24	ž.
CEMENTO: 375 km3 8.82 RANGO DE AGUA: 188 bm3 21,28 AGREG, FINO HUMEDO: 774 km3 16,97 AGREG, GRUESO HUMEDO: 1089 km3 26,39 5% CENIZA DE CASCARILLA DE CAFE 56 km3 26,39 % FIBRA DE POLIPROPILENO 4 km3 4				AGUA DE MEZ	CORREG. POR HUM		188	15/m3
RANGO DE AGUA: 188 bin3 21,28 AGREG, FINO HUMEDO: 774 bin3 16,97 AGREG, GRUESO HUMEDO: 1089 bin3 28,39 5% CENIZA DE CASCARILLA DE CAFE 56 bin3 % FIBRA DE POLIPROPILENO 4 bin3	CANTIDAD DE MATERIA	LES CORREGIDAS PO	R METRO CUBICO	<u> </u>		VOLUMEN APAREN	TE EN PIE3	
AGREG. FINO HUMEDO: 774 km3 16,97 AGREG. GRUESO HUMEDO: 1089 km3 26,39 15% CENIZA DE CASCARILLA DE CAFE 56 km3 1% FIBRA DE POLIPROPILENO 4 km3			THE RESIDENCE OF THE PERSON NAMED IN COLUMN 1	- CONTROL CO.				
AGREG, GRUESO HUMEDO: 1089 k/m3 26,39 5% CENIZA DE CASCARILLA DE CAFE 56 k/m3 % FIBRA DE POLIPROPILENO 4 k/m3			100.000	50000000		200000		
5% CENIZA DE CASCARILLA DE CAFE 56 kim3 % FIBRA DE POLIPROPILENO 4 kim3				1.25.0000				
% FIBRA DE POLIPROPILENO 4 kim3				- CONTROL		26,39		
	Action in the second contract of	NAME OF TAXABLE PARTY.	4	k/m3				
	emento:	04	Ker	1.		Cemento:	1 Bolsa	

1% FIBRA DE POLIPRO	OPILENO	4	k/m3				
P	ROPORCION EN PES	10		PROPORCION EN VOLUI	MEN PIE3		
Cemento ;	1	Kg		Cemento :	- 1	Bolsa	-
Agua :	0,50	h		Agua :	21,3	tibols.	S .
Arena :	2,1	Kg		Arena :	1,92	pie Vools.	37
Grava :	2,9	Kg		Grava :	2,99	pie²/bols.	

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

CANTERA MATERIAL AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE) CONCRETO ADICIONANDO 15% DE CENIZA DE CASCARILLA DE CAFE Y 1% DE FIBRA DE POLIPROPILENO

SOLICITADO :	RIVERA SEGURA MIGL	DEC EDUNADO					SWORE
CONCRETO:			fo	280	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SECO COMPACTADO K/M3	DAMANT DMIXAM DANIMON
CEMENTO	3110	<u> </u>	1	2 4 1	32		
AGR. FINO	2748	2,61	1,71	1.05	1611	1736	*
AGR. GRUESO	2726	-	1,33	1.31	1458	1560	l.
	VALORES DE DISEÑO	W					
				5) RELACION DE	A/C:	0.515	
1) ASENTAMIENTO:			3" a 4"	6) AGUA	1864.0	193	LT.
Z) TAMAÑO MAXIMO NO	MINAL:		10	7) AIRE INCORPO	RADO	1.50	×
3) CON AIRE INCORPOR	ADO		NO	C+1.0x80502747009758701	novere v	7024	· ·
4) VOL. DE AGREG. GRU			0,689	1			
% DE ADITIVOS EN BAS		O:	NO	1.			
OLUMEN ABSOLUTO E			Ţ.	- <u>U</u>			
VOLUMEN ABSOLUTO (VOLUMEN ABSOLUTO (DE AGUA: DE AIRE: DE AG. GRUESO;		0,142 0,193 0,015 0,394 0,744	m3 m3 m3 m3 m3	PASTA: MORTERO;	0,3498 0,6057	m3 m3
VOLUMEN ABSOLUTO (VOLUMEN ABSOLUTO (SUMA VOLUMEN ABSO	DE AGUA: DE AIRE: DE AG. GRUEBO: LUTO DE AG. :		0,193 0,015 0,394 0,744	m3 m3 m3 m3		The state of the s	0.000
VOLUMEN ABSOLUTO (VOLUMEN ABSOLUTO (SUMA VOLUMEN ABSO SUMATORIA DE VOLUM	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG. ; IEN ABSOLUTO:		0,193 0,015 0,394 0,744	m3 m3 m3 m3		The state of the s	0.000
VOLUMEN ABSOLUTO (VOLUMEN ABSOLUTO (SUMA VOLUMEN ABSO SUMATORIA DE VOLUM	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG. ; IEN ABSOLUTO:		0,193 0,015 0,394 0,744 0,744	m3 m3 m3 m3		The state of the s	0.000
VOLUMEN ABSOLUTO (VOLUMEN ABSOLUTO (SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO (DE AGUA: DE AIRE: DE AQ. GRUESO: LUTO DE AG.; IEN ABSOLUTO: DE AG. FINO:		0,193 0,015 0,394 0,744	m3 m3 m3 m3	MORTERO;	The state of the s	0.000
VOLUMEN ABSOLUTO D VOLUMEN ABSOLUTO D VOLUMEN ABSOLUTO D SUMA VOLUMEN ABSOLUTO D SUMATORIA DE VOLUM VOLUMEN ABSOLUTO D CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO:	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; IEN ABSOLUTO: DE AG. FINO: TOTAL:		0,193 0,015 0,394 0,744 0,744	m3 m3 m3 m3	MORTERO;	0,6057	0.000
VOLUMEN ABSOLUTO E VOLUMEN ABSOLUTO E SUMA VOLUMEN ABSOLUTO E SUMATORIA DE VOLUM VOLUMEN ABSOLUTO E CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO:	DE AGUA: DE AIRE: DE AG GRUESO; LUTO DE AG, ; LUTO DE AG, ; LEN ABSOLUTO; DE AG, FINO ; TOTAL: CANTIDAD DE MATER	441 193 703	0,193 0,015 0,394 0,744 0,744 0,256 1,000 k/m3 k/m3	m3 m3 m3 m3 m3	MORTERO:	0,6057 DEFICIENTE DE APORTE 10.38 48.7 0.44	m3 bolim3c ginim3c m3aim3c
VOLUMEN ABSOLUTO (VOLUMEN ABSOLUTO (SUMA VOLUMEN ABSOLUTO (SUMATORIA DE VOLUM VOLUMEN ABSOLUTO (CEMENTO: AGUA: AGREGADO FINO:	DE AGUA: DE AIRE: DE AG GRUESO; LUTO DE AG, ; LUTO DE AG, ; LEN ABSOLUTO; DE AG, FINO ; TOTAL: CANTIDAD DE MATER	441 193 703	0,193 0,015 0,394 0,744 0,744 0,256 1,000 k/m3 k/m3	m3 m3 m3 m3 m3 m3	MORTERO;	0,6057 DEFICIENTE DE APORTE 10.38 48.7 0.44	m3 bolim3c gin/m3c m3a/m3c
VOLUMEN ABSOLUTO E VOLUMEN ABSOLUTO E SUMA VOLUMEN ABSOLUTO E SUMATORIA DE VOLUM VOLUMEN ABSOLUTO E CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG, : LUTO DE AG, : DE AG, FINO : TOTAL: CANTIDAD DE MATER	441 193 703 1075	0,193 0,015 0,394 0,744 0,256 1,000 s/m3 s/m3 s/m3	m3 m3 m3 m3 m3 m3 contribucion do	MORTERO:	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74	m3 bolim3c gin/m3c m3a/m3c
VOLUMEN ABSOLUTO D VOLUMEN ABSOLUTO D SUMA VOLUMEN ABSOLUTO D SUMATORIA DE VOLUM VOLUMEN ABSOLUTO D CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM:	DE AGUA: DE AIRE: DE AG. GRUESO; LUTO DE AG.; DE AG. FINO : TOTAL: CANTIDAD DE MATER EDAD 715	193 703 1075	0,193 0,015 0,304 0,744 0,256 1,000 k/m3 k/m3 k/m3 AGREGADO FIN AGREGADO GRI VOLUMEN DE AA	m3 m	MORTERO: CC ELOS AGREGADOS O.66 O.02 S	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74	m3 bolim3c gin/m3c m3a/m3c
VOLUMEN ABSOLUTO E VOLUMEN ABSOLUTO E SUMA VOLUMEN ABSOLUTO E SUMATORIA DE VOLUM VOLUMEN ABSOLUTO E CEMENTO: AGUA: AGREGADO FINO : AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.:	DE AGUA: DE ARRE: DE AG GRUESO: LUTO DE AG.; EN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER 715 1089	193 703 1075 km3 km3	0,193 0,015 0,394 0,744 0,256 1,000 8/m3 8/m3 8/m3 8/m3 AGREGADO FINA AGREGADO GRI VOLUMEN DE AL AGUA DE MEZ. C	m3 m	E LOS AGREGADOS 0.66 % 0.02 %	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74 4.64 0.21 4.85 188	m3 bolim3c gin/m3c m3a/m3c
VOLUMEN ABSOLUTO E VOLUMEN ABSOLUTO E SUMA VOLUMEN ABSOLUTO E SUMATORIA DE VOLUM VOLUMEN ABSOLUTO E CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.:	DE AGUA: DE ARRE: DE AG GRUESO: LUTO DE AG.; EN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER 715 1089	193 703 1075 km3 km3 R METRO CUBICO	0,193 0,015 0,394 0,744 0,744 0,256 1,000 k/m3 k/m3 k/m3 k/m3 k/m3 AGREGADO FINA AGREGADO GRI VOLUMEN DE A/ AGUA DE MEZ, 0	m3 m	E LOS AGREGADOS 0.66 % 0.02 % VOLUMEN APARENT	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74 4.64 0.21 4.85 188	m3 bolim3c gin/m3c m3a/m3c m3pim3c x t
VOLUMEN ABSOLUTO E VOLUMEN ABSOLUTO E SUMA VOLUMEN ABSOLUTO E SUMATORIA DE VOLUM VOLUMEN ABSOLUTO E CEMENTO: AGREGADO FINO : AGREGADO FINO : AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO:	DE AGUA: DE ARRE: DE AG GRUESO: LUTO DE AG.; EN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER 715 1089	441 193 703 1075 km3 km3 R METRO CUBICO 441	0,193 0,015 0,394 0,744 0,256 1,000 k/m3 k/m3 k/m3 k/m3 k/m3 k/m3 k/m3 k/m3	m3 m	E LOS AGREGADOS 0.66 % 0.02 % VOLUMEN APARENT	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74 4.64 0.21 4.85 188	m3 bolim3c gin/m3c m3a/m3c m3pim3c x t
VOLUMEN ABSOLUTO E VOLUMEN ABSOLUTO E SUMA VOLUMEN ABSOLUTO E SUMATORIA DE VOLUM VOLUMEN ABSOLUTO E CEMENTO: AGREGADO FINO : AGREGADO FINO : CORRECCION POR HUM FINO. HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO: RANGO DE AGUA:	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG.; EN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER 1089 LES CORREGIDAS POI	441 193 703 1075 km3 km3 km3	0,193 0,015 0,304 0,744 0,256 1,000 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3	m3 m	ELOS AGREGADOS 0.66 % 0.02 % VOLUMEN APARENT 10,38 18,13	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74 4.64 0.21 4.85 188	m3 bolim3c gin/m3c m3a/m3c m3pim3c x t
VOLUMEN ABSOLUTO E VOLUMEN ABSOLUTO E SUMA VOLUMEN ABSOLUTO E SUMATORIA DE VOLUM VOLUMEN ABSOLUTO E CEMENTO: AGREGADO FINO : AGREGADO FINO : CORRECCION POR HUM FINO, HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO: RANGO DE AGUA: AGREG, FINO HUMEDO:	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG.; EN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER TOSA TOSA TOSA TOSA TOSA TOSA TOSA TOSA	441 193 703 1075 km3 km3 R METRO CUBICO 441 188 715	0,193 0,015 0,304 0,744 0,256 1,000 k/m3 k/m3 k/m3 AGREGADO FINA AGREGADO GRI VOLUMEN DE AI AGUA DE MEZ. 6	m3 m	#E LOS AGREGADOS	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74 4.64 0.21 4.85 188	m3 bolim3c gin/m3c m3a/m3c m3pim3c x t
VOLUMEN ABSOLUTO E VOLUMEN ABSOLUTO E SUMA VOLUMEN ABSOLUTO E SUMATORIA DE VOLUM VOLUMEN ABSOLUTO E CEMENTO: AGREGADO FINO : AGREGADO FINO : CORRECCION POR HUM FINO. HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO: RANGO DE AGUA:	DE AGUA: DE ARRE: DE AG GRUESO: LUTO DE AG. : DE AG SOLUTO: DE AG SOLUTO	441 193 703 1075 km3 km3 km3	0,193 0,015 0,304 0,744 0,256 1,000 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3	m3 m	ELOS AGREGADOS 0.66 % 0.02 % VOLUMEN APARENT 10,38 18,13	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74 4.64 0.21 4.85 188	m3 bolim3c ginim3c m3am3c m3pin3c k t

P	ROPORCION EN PES	0	PROPORCION EN VOLUMEN PIE	3	
Cemento ;	1	Kg	Cemento :	1	Bolsa
Agua :	0,43	lt .	Agua :	18,1	tibols.
Arena :	1,6	Kg	Arena :	1,51	pie/bols.
Grava :	2,5	Kq	Grava :	2,54	pie?/bols.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

RANGO DE AGUA:

AGREG. FINO HUMEDO:

AGREG. GRUESO HUMEDO:

15% CENIZA DE CASCARILLA DE CAFE

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

CANTERA MATERIAL I'c CONCRETO ADICIONANDO 15% DE CENIZA DE CASCARILLA DE CAFE Y 2.5% DE FIBRA DE POLIPROPILENO

RESP. LAB. : R.H.B.C. 210 Kg/cm2

CARACTERIST. ESPECIFICO DE NATURAL DE SUELTO COMPACTADO P. K.IM3 FINEZA 16 ABSORCION K.IM3 K.IM3 N CEMENTO 3110	TAMAÑO MAXIMO NOMINAI
CARACTERIST. ESPECIFICO DE NATURAL DE SUELTO COMPACTADO P. KIM3 FINEZA % ABSORCION KIM3 KIM3 N. CEMENTO 3110	MAXIMO NOMINAI
CEMENTO 3110 - - - -	
AGR. GRUESO 2726 _ 1,33 1,31 1468 1560 VALORES DE DISEÑO	
VALORES DE DISEÑO 3) RELACION DE A/C: 0,515	1*
s) RELACION DE AIC: 0,515	
1) ASENTAMIENTO: 12 AT AS ASSIA (91 LT	
TOP STATE OF THE PARTY OF THE P	T.
z) TAMAÑO MAXIMO NOMINAL: 1 7) AIRE INCORPORADO 1.50 %	ķ.
3) CON AIRE INCORPORADO NO	
4) VOL. DE AGREG. GRUESO: 0,689	
% DE ADITIVOS EN BASE PESO DEL CEMENTO: NO	
CANTIDAD DE AGREG, FINO : 751 kim3	
VOLUMEN ABSOLUTO DE CEMENTO; 0,121 m3	
VOLUMEN ABSOLUTO DE CEMENTO; 0,121 m3 VOLUMEN ABSOLUTO DE AGUA: 0,193 m3	200
VOLUMEN ABSOLUTO DE CEMENTO; 0,121 m3 VOLUMEN ABSOLUTO DE AGUA: 0,193 m3 VOLUMEN ABSOLUTO DE AIRE: 0,015 m3 PASTA: 0,3286 m3	
VOLUMEN ABSOLUTO DE CEMENTO; 0,121 m3 VOLUMEN ABSOLUTO DE AGUA: 0,193 m3	
VOLUMEN ABSOLUTO DE CEMENTO; 0,121 m3 VOLUMEN ABSOLUTO DE AGUA: 0,193 m3 VOLUMEN ABSOLUTO DE AIRE: 0,015 m3 PASTA: 0,3286 m3 VOLUMEN ABSOLUTO DE AG. GRUESO; 0,504 m3 MORTERO; 0,6057 m3	
VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: 0.193 m3 VOLUMEN ABSOLUTO DE AIRE: 0.015 m3 PASTA: 0.0286 m3 VOLUMEN ABSOLUTO DE AG. GRUESO; 0.334 m3 MORTERO; 0.6057 m3 SUMA VOLUMEN ABSOLUTO DE AG.; 0.723 m3 VOLUMEN ABSOLUTO DE AG. FINO: 0.723 m3	
VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AG. ORUESO; SUMA VOLUMEN ABSOLUTO DE AG.; 0,394 m3 MORTERO; 0,6957 m3 VOLUMEN ABSOLUTO DE AG.; 0,723 m3 VOLUMEN ABSOLUTO DE AG. FINO: 0,723 m3 VOLUMEN ABSOLUTO DE AG. FINO: 0,277 m3 TOTAL: 1,000	
VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: 0,193 m3 VOLUMEN ABSOLUTO DE AGUA: 0,015 m3 PASTA: 0,3286 m3 VOLUMEN ABSOLUTO DE AG. GRUEBO; 0,723 m3 SUMA VOLUMEN ABSOLUTO DE AG. : 0,723 m3 VOLUMEN ABSOLUTO DE AG. FINO: 107723 m3 VOLUMEN ABSOLUTO DE AG. FINO: 107723 m3 CANTIDAD DE MATERIALES COCEFICIENTE DE APORTE	n3
VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: 0,193 m3 VOLUMEN ABSOLUTO DE AGUA: 0,095 m3 PASTA: 0,3286 m3 VOLUMEN ABSOLUTO DE AG. GRUESO; SUMA VOLUMEN ABSOLUTO DE AG.; 0,723 m3 VOLUMEN ABSOLUTO DE AG.; 0,723 m3 VOLUMEN ABSOLUTO DE AG. FINO: 0,727 m3 VOLUMEN ABSOLUTO DE AG. FINO: 0,728 m3 VOLUMEN ABSOLUTO DE AG. FINO: 0,727 m3 VOLUMEN ABSOLUTO DE AG. FINO: 0,728 m3 VOLUMEN ABSOLUTO DE AG. FINO: 0,727 m3 VOLUMEN ABSOLUTO DE AG. FINO: 1,000 VOLUMEN ABSOLUTO DE AG. FINO: 0,828 b3/r VOLUMEN ABSOLUTO DE AG. FINO: 1,000	n3 olim3c
VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: 0.193 m3 VOLUMEN ABSOLUTO DE AIRE: 0.015 m3 PASTA: 0.3286 m3 VOLUMEN ABSOLUTO DE AG. CRUESO; 0.324 m3 MORTERO; 0.6057 m3 SUMA VOLUMEN ABSOLUTO DE AG. : 0.723 m3 VOLUMEN ABSOLUTO DE AG. : 0.723 m3 VOLUMEN ABSOLUTO DE AG. FINO : 0.277 m3 TOTAL: CANTIDAD DE MATERIALES COEFICIENTE DE APORTE CAMBON: 0.82 bd/m 0.92 dm3 0.92	n3 ol/m3c in/m3c
VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: USUMEN ABSOLUTO DE AIRE: USUMEN ABSOLUTO DE AIRE: USUMEN ABSOLUTO DE AIRE: USUMEN ABSOLUTO DE AG. CRUESO: USUMEN ABSOLUTO DE AG.	n3 olim3c
VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: 0,193 m3 VOLUMEN ABSOLUTO DE AGUA: 0,0015 m3 PASTA: 0,3286 m3 VOLUMEN ABSOLUTO DE AG. GRUEBO: 0,723 m3 VOLUMEN ABSOLUTO DE AG.; 1075 m3 COEFICIENTE DE APORTE COEFICIENTE DE APORTE CANTIDAD DE MATERIALES CEMENTO: AGUA: 193 bm3 49,6 gmin AGREGADO GRUESO: 1075 wim3 0,744 m3p	n3 olim3c in/m3c n3a/m3c
VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGUA: VOLUMEN ABSOLUTO DE AGU ORUEBO; SUMA VOLUMEN ABSOLUTO DE AG.; SUMA VOLUMEN ABSOLUTO DE AG.; SUMA VOLUMEN ABSOLUTO DE AG.; SUMATORIA DE VOLUMEN ABSOLUTO: VOLUMEN ABSOLUTO DE AG. FINO: TOTAL: CANTIDAD DE MATERIALES CANTIDAD DE MATERIALES COMENTO: AGUA: 193 t/m3 MORTERO: COEFICIENTE DE APORTE COMENTO: AGREGADO FINO: AGREGADO GRUESO: 1075 t/m3 CONTRIBUCION DE LOS AGREGADOS FINO. HUM: 774 k/m3 AGREGADO FINO: Q.66 % 5.03 k	n3 olim3c in/m3c n3a/m3c
VOLUMEN ABSOLUTO DE CEMENTO; VOLUMEN ABSOLUTO DE AGUA: 0.193 m3 VOLUMEN ABSOLUTO DE AIRE: 0.015 m3 PASTA: 0.3286 m3 VOLUMEN ABSOLUTO DE AIRE: 0.3286 m3 MORTERO; 0.6057 m3 SUMA VOLUMEN ABSOLUTO DE AG.: 0.723 m3 SUMATORIA DE VOLUMEN ABSOLUTO: 0.723 m3 VOLUMEN ABSOLUTO DE AG. FINO: 1075 m3 CANTIDAD DE MATERIALES CEMENTO: AGUA: 193 t/m3 AGREGADO FINO: 1075 v/m3 CONTRIBUCION DE LOS AGREGADOS CONTRIBUCION DE LOS AGREGADOS	n3 olim3c in/m3c n3a/m3c

	PROPORCION EN PES	io	PROPORCION EN VOLU	MEN PIE3		
Cemento ;	1 11	Kg	Cemento :		Bolsa	
Agua :	0,50	t t	Agua :	21,3	tibols.	1
Arena :	2,1	Kg	Arena :	1,92	pie/bols.]
Grava :	2,9	Kg	Grave :	2,99	pie?/bols.	1

774

1089

k/m3

21,28

16,97

26,39

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

2.5% FIBRA DE POLIPROPILENO

0,43

1,6

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

CANTERA MATERIAL Fe CONCRETO ADICIONANDO 15% DE CENIZA DE CASCARILLA DE CAFE Y 2.5% DE FIBRA DE POLIPROPILENO

RESP. LAB. : R.H.B.C. 280 Kg/cm2

CONCRETO:			fo	280	Kg/cm²		
CONCRETO:			_				
	PESO	MODULO	HUMEDAD	PORCENTAJE	PESO SECO	PESO SECO	TAMAÑO
CARACTERIST.	ESPECIFICO	DE	NATURAL	DE	SUELTO	COMPACTADO	MAXIMO
	K/M3	FINEZA	%	ABSORCION	K/M3	KOM3	NOMINA
CEMENTO	3110		2	: <u>+</u> 1	32	220	
AGR. FINO	2748	2,61	1,71	1.06	1611	1736	
AGR. GRUESO	2726	-	1,33	1.31	1468	1560	r.
	VALORES DE DISEÑO	W.					
				5) RELACION DE	A/C:	0.515	- 3
1) ASENTAMIENTO:			3° a 4°	6) AGUA	1820	193	LT.
Z) TAMAÑO MAXIMO NO	OMINAL:		1	7) AIRE INCORPO	RADO	1.50	75
3) CON AIRE INCORPOR			NO	14.5 (5352.4465.53.0kg)	MARKE N	1,000	
4) VOL. DE AGREG. GRI			0.689	1			
% DE ADITIVOS EN BAS		<u>.</u>	NO NO	-			
II DE ADMITOS EN DAS	E PESO DEE CEMENT	5 :	140	-8			
FACTOR CEMENTO:			441	k/m3			
CANTIDAD DE AGREG.	GRUESO:		1075	k/m3			
CANTIDAD DE AGREG.			703	k/m3			
VOLUMEN ABSOLUTO	DE CEMENTO:		0,142]m3			
			0,142 0,193	m3 m3			
VOLUMEN ABSOLUTO	DE AGUA:			-0333	PASTA:	0,3498	
VOLUMEN ABSOLUTO I	DE AGUA: DE AIRE:		0,193	m3 m3	PASTA: MORTERO:	0.3498 0.6057	m3 m3
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I	DE AGUA: DE AIRE: DE AG. GRUESO;		0,193 0,015	m3 m3			0.000
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG. :		0,193 0,015 0,394 0,744	m3 m3 m3 m3			0.000
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUN	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; IEN ABSOLUTO:		0,193 0,015 0,394 0,744	m3 m3 m3 m3			0.002
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUN	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; IEN ABSOLUTO:		0,193 0,015 0,394 0,744	m3 m3 m3 m3			0.000
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; IEN ABSOLUTO: DE AG. FINO:		0,193 0,015 0,394 0,744 0,744	m3 m3 m3 m3	MORTERO:		0.000
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; NEN ABSOLUTO: DE AG. FINO: TOTAL:		0,193 0,015 0,394 0,744 0,744	m3 m3 m3 m3	MORTERO:	0,6057	0.000
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I CEMENTO: AGUA:	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; NEN ABSOLUTO: DE AG. FINO: TOTAL:	IALES	0,193 0,015 0,394 0,744 0,744 0,256 1,000	m3 m3 m3 m3	MORTERO:	0,6057	m3
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO:	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; NEN ABSOLUTO: DE AG. FINO: TOTAL:	IALES 441	0,193 0,015 0,394 0,744 0,744 0,256 1,000	m3 m3 m3 m3	MORTERO:	0,6057 DEFICIENTE DE APORTE 10.38	m3 bol/m3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO :	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; NEN ABSOLUTO: DE AG. FINO: TOTAL:	441 193	0,193 0,015 0,394 0,744 0,256 1,000 8/m3 8/m3	m3 m3 m3 m3	MORTERO:	0,6057 REFICIENTE DE APORTE 10.38 49.7	m3 bol/m3c gln/m3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: CORRECCION POR HUM	DE AGUA: DE AIRE: DE AG, GRUESO: LUTO DE AG, : MEN ABSOLUTO: DE AG, FINO: TOTAL: CANTIDAD DE MATER	441 193 703 1075	0,193 0,015 0,394 0,744 0,256 1,000 8im3 8im3 8im3	m3 m3 m3 m3 m3 m3	MORTERO: CO	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74	m3 bol/m3c gln/m3c m3a/m3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM:	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; REN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER IEDAD 715	441 193 703 1075	0,193 0,015 0,394 0,744 0,744 0,256 1,000 8/m3 8/m3 8/m3 AGREGADO FIN	m3 m3 m3 m3 m3 m3 contribucion do	MORTERO: CO E LOS AGREGADOS O.66 %	0,6057 REFICIENTE DE APORTE 10.38 49.7 0.44 0.74	m3 bol/m3c gln/m3c m3a/m3c
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM:	DE AGUA: DE AIRE: DE AG, GRUESO: LUTO DE AG, : MEN ABSOLUTO: DE AG, FINO: TOTAL: CANTIDAD DE MATER	441 193 703 1075	0,193 0,015 0,394 0,744 0,744 0,256 1,000 8/m3 8/m3 8/m3 AGREGADO FIN	m3 m	CO E LOS AGREGADOS 0.66 0.02	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74 4.64 0.21	m3 bolim3c ginim3c m3aim3c m3pim3e #
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSO SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM:	DE AGUA: DE AIRE: DE AG. GRUESO: LUTO DE AG.; REN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER IEDAD 715	441 193 703 1075	0,193 0,015 0,304 0,744 0,256 1,000 k/m3 k/m3 k/m3 k/m3 AGREGADO FIN AGREGADO GRI VOLUMEN DE A	m3 m	MORTERO: CO E LOS AGREGADOS O.66 0.02 %	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0.44 0.74 4.64 0.21 4.86	m3 bolim3c gin/m3c m3aim3c m3pim3c z t
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO : AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.:	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG.: IEN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER PARTIDAD TOTAL: 1089	441 193 703 1075 km3 km3	0,193 0,015 0,304 0,744 0,256 1,000 kim3 kim3 kim3 kim3 kim3 kim3 kim3 kim	m3 m	CO E LOS AGREGADOS 0.66 % 0.02 %	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0,44 0,74 4.64 0.21 4.85 188	m3 bolim3c ginim3c m3aim3c m3pim3e #
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.: CANTIDAD DE MATERIA	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG.: IEN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER PARTIDAD TOTAL: 1089	441 193 703 1075 km3 km3	0,193 0,015 0,394 0,744 0,256 1,000 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3 8/m3	m3 m	E LOS AGREGADOS 0.65 0.02 VOLUMEN APARENTI	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0,44 0,74 4.64 0.21 4.85 188	m3 bolim3c ginim3c m3aim3c m3pim3c x 4
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGREGADO FINO : AGREGADO FINO : CORRECCION POR HUM FINO. HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO:	DE AGUA: DE AIRE: DE AG GRUESO: LUTO DE AG.: IEN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER PARTIDAD TOTAL: 1089	######################################	0,193 0,015 0,394 0,744 0,256 1,000 8/m3 8/m3 8/m3 8/m3 4/m3 AGREGADO FIN AGREGADO GRI VOLUMEN DE A AGUA DE MEZ. 1	m3 m	CO ELOS AGREGADOS 0.66 % 0.02 % VOLUMEN APARENTI 10.38	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0,44 0,74 4.64 0.21 4.85 188	m3 bolim3c ginim3c m3aim3c m3pim3c x 4
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGUA: AGREGADO FINO: AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO: RANGO DE AGUA:	DE AGUA: DE AIRE: DE AG, GRUESO: LUTO DE AG, : NEN ABSOLUTO; DE AG, FINO: TOTAL: CANTIDAD DE MATER 1089	######################################	0,193 0,015 0,304 0,744 0,256 1,000 k/m3 k/m3 k/m3 k/m3 K/m3	m3 m	CO LOS AGREGADOS 0.66 0.02 VOLUMEN APARENTI 10.38 18,13	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0,44 0,74 4.64 0.21 4.85 188	m3 bolim3c ginim3c m3aim3c m3pim3c x 4
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I SUMA VOLUMEN ABSOLUTO I SUMATORIA DE VOLUM VOLUMEN ABSOLUTO I CEMENTO: AGREGADO FINO : AGREGADO FINO : AGREGADO GRUESO: CORRECCION POR HUM FINO. HUM: GRUESO HUM.: CANTIDAD DE MATERIA CEMENTO:	DE AGUA: DE AIRE: DE AG GRUEBO: LUTO DE AG. : HEN ABSOLUTO: DE AG. FINO: TOTAL: CANTIDAD DE MATER TOTAL: 1089 LES CORREGIDAS POI	######################################	0,193 0,015 0,394 0,744 0,256 1,000 8/m3 8/m3 8/m3 8/m3 4/m3 AGREGADO FIN AGREGADO GRI VOLUMEN DE A AGUA DE MEZ. 1	m3 m	CO ELOS AGREGADOS 0.66 % 0.02 % VOLUMEN APARENTI 10.38	0,6057 DEFICIENTE DE APORTE 10.38 49.7 0,44 0,74 4.64 0.21 4.85 188	m3 bolim3c ginim3c m3aim3c m3pim3c z t

11

18,1

1,51

t/bols.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

CANTERA MATERIAL Fe AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

CONCRETO ADICIONANDO 15% DE CENIZA DE CASCARILLA DE CAFE Y 5% DE FIBRA DE POLIPROPILENO

210 Kg/cm2 ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RESP. LAB. : R.H.B.C.

CONCRETO:			fo	= 210	Kg/cm²		
CONCRETO		_					
	PESO	MODULO	HUMEDAD	PORCENTAJE	PESO SECO	PESO SECO	TAMAÑO
CARACTERIST.	ESPECIFICO	DE	NATURAL	DE	SUELTO	COMPACTADO	MAXIMO
	K/M3	FINEZA	76	ABSORCION	K/M3	K/M3	NOMINA
EMENTO	3110	2	-	2 4 1	12	257	
GR. FINO	2748	2,61	1,71	1.05	1611	1736	
AGR. GRUESO	2726	-	1,33	1,31	1468	1560	10
	VALORES DE DISEÑO	66					
			70	5) RELACION DE	AIC:	0,515	
1) ASENTAMIENTO:			3" a 4"	6) AGUA	000000	193	LT.
Z) TAMAÑO MAXIMO NO	MINAL:		1	7) AIRE INCORPO	ORADO .	1.50	%
) CON AIRE INCORPOR	ADO		NO				
4) VOL. DE AGREG. GRU	ESO:		0,689	1			
% DE ADITIVOS EN BAS		o:	NO				
				100			
			_	-3			
FACTOR CEMENTO:			375	k/m3			
CANTIDAD DE AGREG. (GRUESO:		1975	k/m3			
CANTIDAD DE AGREG. I	INO:		761	k/m3			
VOLUMEN ABSOLUTO D	E CEMENTO:		0,121	T _{m3}			
VOLUMEN ABSOLUTO D			0,121	m3			
VOLUMEN ABSOLUTO D			0,015	ma	PASTA:	0,3286	m3
VOLUMEN ABSOLUTO D			0,394	m3	MORTERO:	0,6057	m3
SUMA VOLUMEN ABSOL			0,723	m3	MOKIEKO,	O,uasi	
			-				
SUMATORIA DE VOLUM	EN ABSOLUTO:		0,723	m3			
VOLUMEN ABSOLUTO D	E AG. FINO :		0,277	m3			
	TOTAL		1,000	- 1000			
	CANTIDAD DE MATER		- €055200		c	OEFICIENTE DE APORTE	
CEMENTO:		375	k/m3			8,82	bol/m3c
AGUA:		193	t/m3			49,6	gin/m3c
AGREGADO FINO :		761	k/m3			0,47	m3a/m3c
AGREGADO GRUESO:		1075	k/m3			0.74	m3p/m3c
ORRECCION POR HUM	EDAD		Ť	CONTRIBUCION	DE LOS AGREGADOS		
FINO. HUM:	774	k/m3	AGREGADO FIN	0:	0,66	5,03	x
GRUESO HUM.:	1089	k/m3	AGREGADO GR	UESO:	0.02 %		2
LOOKER WEEKELE IS	- contain	- DOI:1043	VOLUMEN DE A		5	5,24	ž.
			AGUA DE MEZ	CORREG. POR HUM	<u> </u>	188	16/m3
ANTIDAD DE MATERIA	LES CORREGIDAS PO	R METRO CUBIC	- Automorphism and the same		VOLUMEN APAREN	TE EN PIE3	iii baasa
CEMENTO:		375	k/m3		8,82		
RANGO DE AGUA:		188	t/m3		21,28		
AGREG. FINO HUMEDO:		774	k/m3		16,97		
AGREG. GRUESO HUME	DO:	1089	k/m3		26,39		
5% CENIZA DE CASCAR	ILLA DE CAFE	56	k/m3				
% FIBRA DE POLIPROP	LENO	19	k/m3				
PRO	PORCION EN PESO	1200		PROPO	ORCION EN VOLUMEN	PIE3	700
emento ;	1	Kg		1	Cemento :	1 Bolsa	
Anno :	0.50	H .	-1		Acres 1	21.3 Havis	

1,92

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

📤 Av. Vicente Ruso Mz S/N Lote Nº 08 - Fundo El Ceriflo-Chiclayo, 🥞 978 360 036 - 993 595 300.

DISEÑO DE MEZCLA DE CONCRETO NORMAL CON CEMENTO PORTLAND

PROYECTO "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ/CCC) Y REFORZAFO CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN

AGREGADO FINO (PACHERRES - LA VICTORIA - PATAPO) Y AGREGADO GRUESO (ZAÑA - TRES TOMAS - FERREÑAFE)

CANTERA MATERIAL I'c CONCRETO ADICIONANDO 15% DE CENIZA DE CASCARILLA DE CAFE Y 5% DE FIBRA DE POLIPROPILENO

RESP. LAB. : R.H.B.C. 280 Kg/cm2

CONCRETO:			fe	280	Kg/cm²		
CARACTERIST.	PESO ESPECIFICO K/M3	MODULO DE FINEZA	HUMEDAD NATURAL %	PORCENTAJE DE ABSORCION	PESO SECO SUELTO K/M3	PESO SECO COMPACTADO KW3	DAMANT DMIXAM DANIMON
CEMENTO	3110	2	- 2	(±)	32	2	
AGR. FINO	2748	2,61	1,71	1.06	1611	1736	
AGR. GRUESO	2726	-	1,33	1.31	1468	1560	1*
1) ASENTAMIENTO:	VALORES DE DISEÑO	38	3* a 4*	5) RELACION DE	A/C:	0.515 193	—
Z) TAMAÑO MAXIMO NO	MINAL:		1	7) AIRE INCORPO	RADO	1.50	- N
3) CON AIRE INCORPOR			NO	12 200 200 200 200 200 200 200 200 200 2	// / / / / / / / / / / / / / / / / / /		-0.0
4) VOL. DE AGREG. GRU			0,689	1			
% DE ADITIVOS EN BAS		D:	NO				
FACTOR CEMENTO: CANTIDAD DE AGREG.	CONIESO.		441 1075	k/m3 k/m3			
CANTIDAD DE AGREG.			703	k/m3			
			<u> </u>				
VOLUMEN ABSOLUTO (0,142	m3			
VOLUMEN ABSOLUTO			0,193	im3			-
VOLUMEN ABSOLUTO I VOLUMEN ABSOLUTO I			0,015	m3 m3	PASTA: MORTERO:	0,3498 0,6057	m3
SUMA VOLUMEN ABSO			0,744	m3	MONTENO,	o'enat.	Tina.
SUMATORIA DE VOLUM VOLUMEN ABSOLUTO (C160011 10000000000000000000000000000000		0,744 0,256	m3 m3			
	TOTAL		1,000		0000		
	CANTIDAD DE MATER	IALES			co	EFICIENTE DE APORTE	

CANTIDAD DE	MATERIALES	1,000	COEFICIENTE DE APORTE	
CEMENTO:	441	k/m3	10.38	bol/m3c
AGUA:	193	t/m3	49.7	gln/m3c
AGREGADO FINO :	703	k/m3	0.44	m3a/m3o
AGREGADO GRUESO:	1075	k/m3	0.74	m3p/m3c

CORRECCION POR HUM	EDAD	- 23	CONTRIBUCIO	N DE LOS AGREGA	ADOS		
FINO. HUM:	715	k/m3	AGREGADO FINO:	0.66	54	4.64	x
GRUESO HUM.:	1089	k/m3	AGREGADO GRUESO:	0.02	%	0.21	
			VOLUMEN DE AGUA:		56	4.85	z.
			AGUA DE MEZ. CORREG. POR H	UM.:	- 63	188	15/m3

CANTIDAD DE MATERIALES CORREGIDAS PO	R METRO CUBIC	0	VOLUMEN APARENTE EN PIE3	
CEMENTO:	441	k/m3	10.38	
RANGO DE AGUA:	188	t/m3	18,13	
AGREG. FINO HUMEDO:	715	k/m3	15,67	
AGREG. GRUESO HUMEDO:	1089	k/m3	26,39	
15% CENIZA DE CASCARILLA DE CAFE	66	k/m3		
5% FIBRA DE POLIPROPILENO	22	k/m3		

	PROPORCION EN PES	io	PROPORCION EN VOLUME	N PIE3	
Comento ;	7 7	Kg	Cemento :	- 1	Bolsa
Agua :	0,43	t t	Agua :	18,1	It/bols.
Arena :	1,6	Kg	Arena :	1,51	pie Vools.
Grava :	2,5	Kg	Grava :	2,54	pie ³ /bols.

Anexo 9: RESULTADOS DE LOS ENSAYOS DE COMPRESIÓN, TRACCIÓN Y FLEXIÓN DEL CONCRETO PATRÓN

ENSAYOS DE COMPRESION, TRACCIÓN Y FLEXIÓN DE CONCRETO PATRÓN

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE UBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

: F'C = 210 Kg/cm2 ESTRUCTURA

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

CODIGO		FE	FECHA	EDAD	Fic	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
»,	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
3.00	MUESTRA PATRON 1 05/09/2022	05/09/2022	12/09/2022	7	210	15	30,1	176,72	5319,12	12120	2278,6	31140	176.2	83.9
8	MUESTRA PATRON 2 05/09/2022	05/09/2022	12/09/2022	7	210	15,01	30	176,95	5308,52	12135	2285,9	30670	173,3	82,5
е.	MUESTRA PATRON 3 05/09/2022	05/09/2022	12/09/2022	7	210	15	30,1	176,72	5319,12	12090	2272,9	30800	174,3	83,0

Concrete	Concretos normales
Edad (dias)	F'c (Kg/cm2) (%)
1	25 35
65	42-53
z	70 - KS
24	85 - 95
28	100 120

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
 Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE UBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO : F'C = 210 Kg/cm2 ESTRUCTURA SOLICITANTE

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copido	COTDICTION	FECH	A	EDAD	Fre	DIAMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENGIA
°.	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
-	MUESTRA PATRON 1 05/09/2022	05/09/2022	19/09/2022	4	210	15	30,1	176,72	5319,12	12120	2278,6	33940	192,1	91,5
N	MUESTRA PATRON 2 05/09/2022	05/09/2022	19/09/2022	4	210	15,01	30	176,95	5308,52	12190	2296,3	33840	191,2	91,1
E	MUESTRA PATRON 3 05/09/2022	05/09/2022	19/09/2022	7	210	15	30,1	176,72	5319,12	12200	2293,6	33620	190,2	90,6

permanent de Constitution de C	Transport of the state of the s				
1 100			Nic.	is	
		1	Deser-10	55	

CHICLAYO

(max)	Concretos normales	ded (diss) 1's: (kg/cm2) (%)	1 25-35	3 42-53	7 70 85	14 85-95	COC.L - VALL RC.
-------	--------------------	------------------------------	---------	---------	---------	----------	------------------

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
 Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE UBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

: F'C = 210 Kg/cm2 ESTRUCTURA

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	A GUITO I GUIDA	FECHA		EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
°,Z	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
	MUESTRA PATRON 1 05/09/2022	05/09/2022	03/10/2022	28	210	15,01	30,1	176,95	5326,22	12411	2330,2	41190	232.8	110,8
ĸ	MUESTRA PATRON 2	05/09/2022	03/10/2022	28	210	15,09	30,2	178,84	5401,03	12310	2279,2	41360	231,3	110,1
6	MUESTRA PATRON 3 05/09/2022	05/09/2022	03/10/2022	28	210	15,03	30,3	177,42	5375,90	12293	2286,7	42560	239,9	114,2

Concrete	Concretos normales
r ded (diss)	17c (kg/cm2) (%)
, A	25-35
n	42 - 53
7	55 55
14	85 - 95
7H	02L-00L

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE UBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

: F'C = 280 Kg/cm2 ESTRUCTURA

RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H.

copido	COTDIOTION	FECH	4	EDAD	Fie	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	I PESO I	DENSIDAD	CARGA	RESIST	RESISTENCIA
». N	ESTRUCTORA	MOLDEO RC	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
-	MUESTRA PATRON 1 16/09/2022	16/09/2022	23/09/2022	7	280	15	30,0	176,72	5301,45	12125	2287,1	41870	236,9	84,6
N	MUESTRA PATRON 2 16/09/2022	16/09/2022	23/09/2022		280	15,01	30,1	176,95	5326,22	12200	2290,6	41170	232,7	83,1
6	MUESTRA PATRON 3 16/09/2022	16/09/2022	23/09/2022	7	280	15	30	176,72	5301,45	12205	2302,2	41060	232,4	83,0

Concrete	Concretos normales
r dorf (clios)	1 'c (Kg/cao2) (%)
-	25 - 35
n	42 - 53
7	70 85
14	85 - 95
HC.	0CL-00L

- Elaboración de Expedientes Técnicos.
 Ejecución, Supervisión y Evaluación de Obras.
 Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 号 978 340 036 - 993 595 300. 下る Constructora.ayr.chiclayの意味の目.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

		I
PROYECTO	: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	
UBICACIÓN	: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE	
SOLICITANTE	. ALEJANDRIA BUSTAMANTE YELSEN ANDERSON TRIVERA SEGURA MIGUEL EDUARDO	200
ESTRUCTURA	: F'C = 280 Kg/cm2	63

RESP. LAB.: R.H.B.C. TEC, RESP.: L.M.F.H.

copidoo	A STATE OF THE STA)EE(CHA	EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
ż	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
(1 5 7)	MUESTRA PATRON 1	16/09/2022	30/09/2022	4	280	15,01	30,1	176,95	5326,22	12120	2275,5	45280	255,9	91,4
2N	MUESTRA PATRON 2	16/09/2022	30/09/2022	14	280	15	30	176,72	5301,45	12000	2263,5	45670	258,4	92,3
e	MUESTRA PATRON 3 16/09/2022	16/09/2022	30/09/2022	14	280	15,02	30,1	177,19	5333,32	12225	2292,2	45910	259,1	92,5

Concent	Concretos normales
Edad (dias)	F'c (Kg/cm2) (%)
1	25 35
67	42 - 53
19	AN - INS
14	85 - 95
28	100 120

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

UBICACIÓN

: F'C = 280 Kg/cm2 ESTRUCTURA

TEC, RESP.: L.M.F.H.

RESP. LAB.: R.H.B.C.

	FEC	CHA	EDAD	Fe	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
MOLDEO ROTURA DÍAS (DÍAS		•	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
MUESTRA PATRON 1 16/09/2022 14/10/2022 28	00.000	28		280	15	30,1	176,72	5319,12	12120	2278,6	51080	289,1	103,2
MUESTRA PATRON 2 16/09/2022 14/10/2022 28	14/10/2022 28	28		280	15,04	30	177,66	5329,76	12000	2251,5	52670	296,5	105,9
MUESTRA PATRON 3 18/09/2022 14/10/2022 28	00000	28	2.5	280	15,03	30,1	177,42	5340,42	12225	2289,1	53910	903,9	108,5

Elaboración de Expedientes Técnicos.
 Ejecución, Supervisión y Evaluación de Obras.
 Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lote N° 68 - Fundo El Cerrito-Chiclayo, 4 978 360 036 - 993 595 300. でのSfructora.ayr.chiclayの意味面il.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

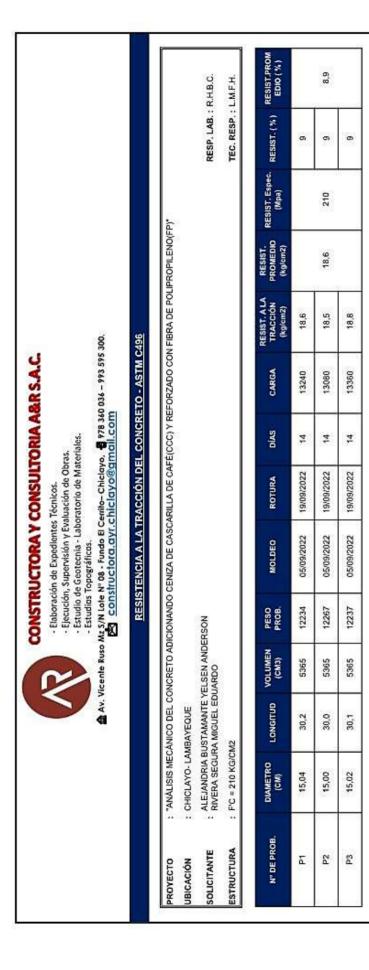
: "ANÁLISIS MEGÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

: P'C = 210 KG/CM2

ESTRUCTURA SOLICITANTE

: CHICLAYO-LAMBAYEQUE


PROYECTO UBICACIÓN RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

RESIST.PROM EDIO (%)	3 - 3/	7,6	
RESIST.(%)	8	8	8
RESIST, Espec. (Mpa)	i	210	
RESIST. PROMEDIO (kg/cm2)		16,0	
RESIST. A LA TRACCIÓN (kg/cm2)	16,0	15,9	16,1
CARGA	11400	11260	11370
piAs	7	2	7
ROTURA	12/09/2022	12/09/2022	12/09/2022
MOLDEO	05/09/2022	05/09/2022	05/03/2022
PESO PROB.	12234	12267	12237
VOLUMEN (CM3)	5337	5337	5337
LONGITUD	30,2	30,0	30,0
DIAMETRO (CM)	15,00	15,02	15,02
N" DE PROB.	Ы	P2	P3

UBICACIÓN	: CHICLAYO-LAMBAYEQUE	MBAYEQUE											
SOLICITANTE	ALEJANDRIA B RIVERA SEGU	ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO	ELSEN ANDE UARDO	RSON								RESP, LAB.: R.H.B.C.	R.H.B.C.
ESTRUCTURA	: F'C = 210 KG/CM2	M2										TEC. RESP. : L.M.F.H.	LMF.H.
N° DE PROB.	DIAMETRO (CM)	LONGITUD (CM3)	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DÍAS	CARGA	RESIST. A LA TRACCIÓN (Kglem2)	RESIST. PROMEDIO (Kafem2)	RESIST. Espec. RESIST. (%) RESIST. (%)	RESIST. (%)	RESIST. (%
Σ	15,01	30,4	6379	12311	05/09/2022	03/10/2022	28	16680	23,3			#	
P2	15,03	30,0	6379	12277	05/09/2022	03/10/2022	28	16790	23,7	23,4	210	1	11,2

: "ANÂLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

PROYECTO

SIST. (%)

Ξ

6

: ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

: FC = 280 KG/CM2

SOLICITANTE

: CHICLAYO-LAMBAYEQUE

PROYECTO UBICACIÓN

RESIST.PROMEDI O(%)	22				
RESIST.(%)	8	a o o			
RESIST, Espec. (Mpa)		280			
RESIST. PROMEDIO (kg/cm2)		21,6			
RESIST. A LA TRACCIÓN (kg/cm2)	21,6	21,6	21,7		
CARGA	15400	15260	15370		
pias	7	7	2		
ROTURA	23/09/2022	23/09/2022	23/09/2022		
MOLDEO	16/09/2022	16/09/2022	16/09/2022		
PESO PROB.	12254	12464	12350		
VOLUMEN (CM3)	5344	5344	5344		
ГОМОШЛО	30,2	30.0	30.0		
DIAMETRO (CM)	15,01	15,02	15,00		
N' DE PROB.	P1	P2	ЬЗ		

R.H.B.C. L.M.F.H.

RESP. LAB.: TEC. RESP.:

: ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)

DANTE JESUS SILVA TEJADA / JARLI ANTONI ALEJANDRIA BUSTAMANTE

: FC = 280 KG/CM2

SOLICITANTE

: CHICLAYO-LAMBAYEQUE

PROYECTO UBICACIÓN

ESIST.PROMEDI 0 (%)		6,8	
RESIST.(%) RESI	6	6	6
RESIST, Espec. R (Mpa)		280	3
RESIST. PROMEDIO (kg/cm2)	24,9		
RESIST. A LA TRACCIÓN (kg/cm2)	24,4	25,2	25,0
CARGA	17360	17820	17700
pias	14	44	4
ROTURA	30/09/2022	30/09/2022	30/09/2022
MOLDEO	16/09/2022	16/09/2022	16/09/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5351	5351	5351
СОМВІТИВ	30,2	30.0	30.0
DIAMETRO (CM)	15,02	15,00	15,02
N' DE PROB.	PI	P2	P3

R.H.B.C. L.M.F.H.

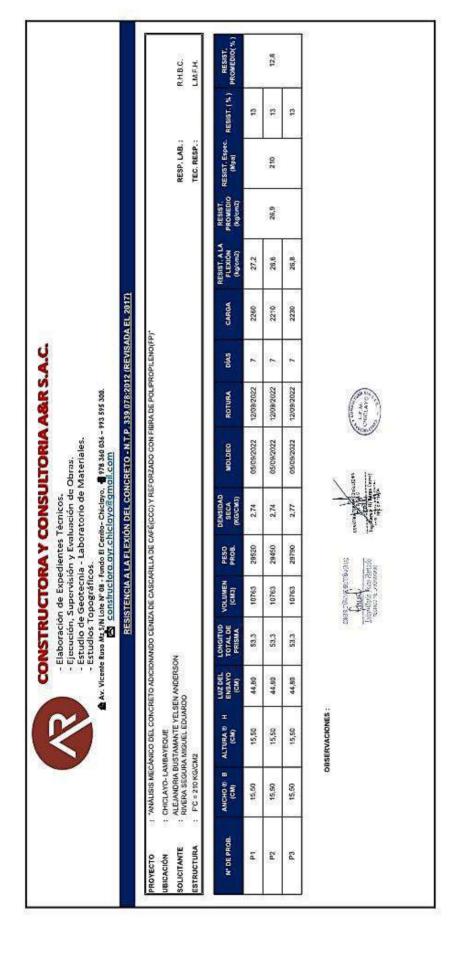
RESP. LAB.: TEC. RESP.:

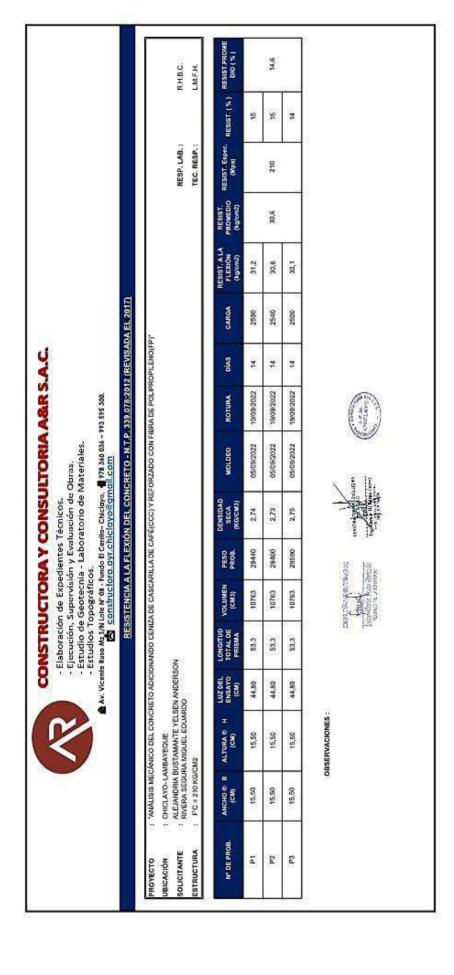
RESIST.PROMEDI O(%)	10,9		
RESIST. (%)	111	-11	11
RESIST, Espec. RESIST, (%)		280	
RESIST. PROMEDIO (kg/cm2)	30,6		
RESIST. A LA TRACCIÓN (kg/cm²)	31,7	30,1	29,9
CARGA	22580	21280	21170
DÍAS	28	28	28
ROTURA	14/10/2022	14/10/2022	14/10/2022
MOLDEO	16/09/2022	16/09/2022	16/09/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5351	5351	5351
ГОМСІТИВ	30,2	30,0	30.0
DIAMETRO (CM)	15,02	15,00	15,02
N' DE PROB.	34	Zd	Ed

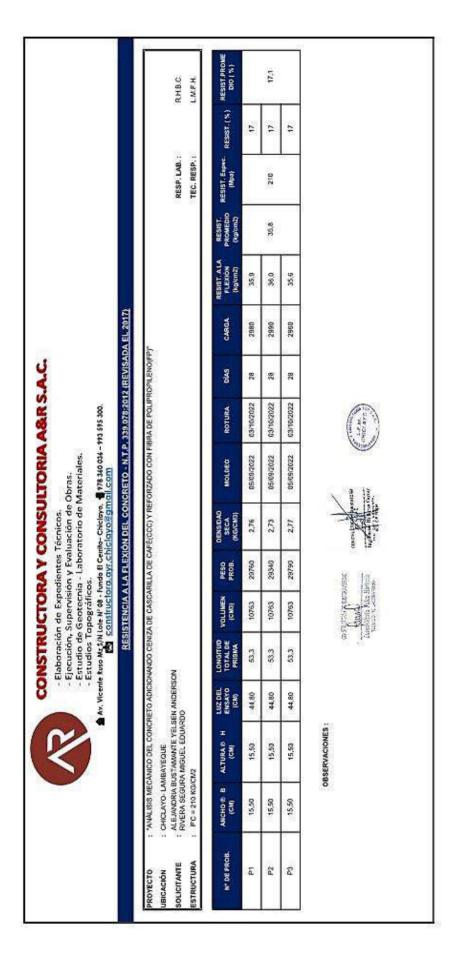
R.H.B.C. L.M.F.H.

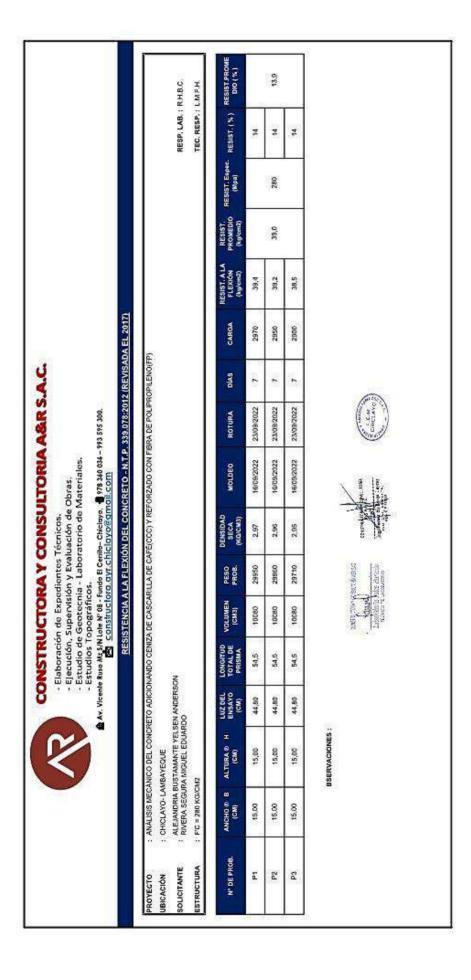
RESP. LAB.: TEC. RESP.:

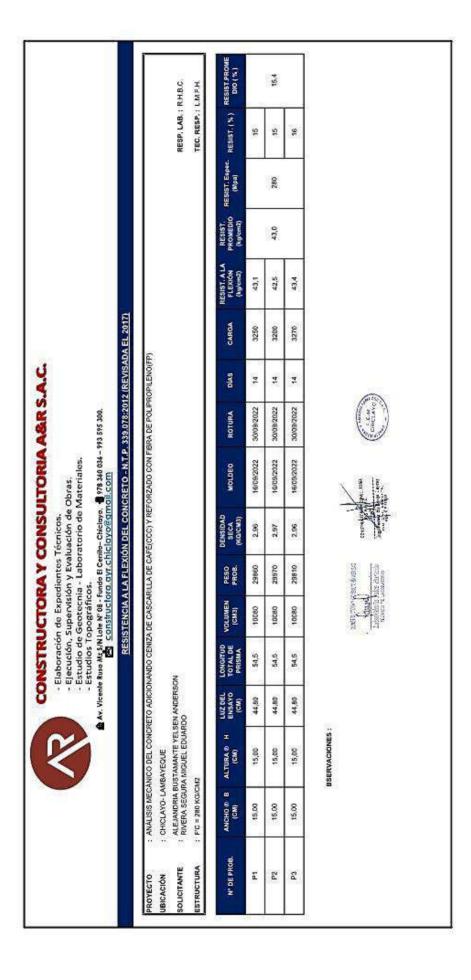
DANTE JESUS SILVA TEJADA / JARLI ANTONI ALEJANDRIA BUSTAMANTE

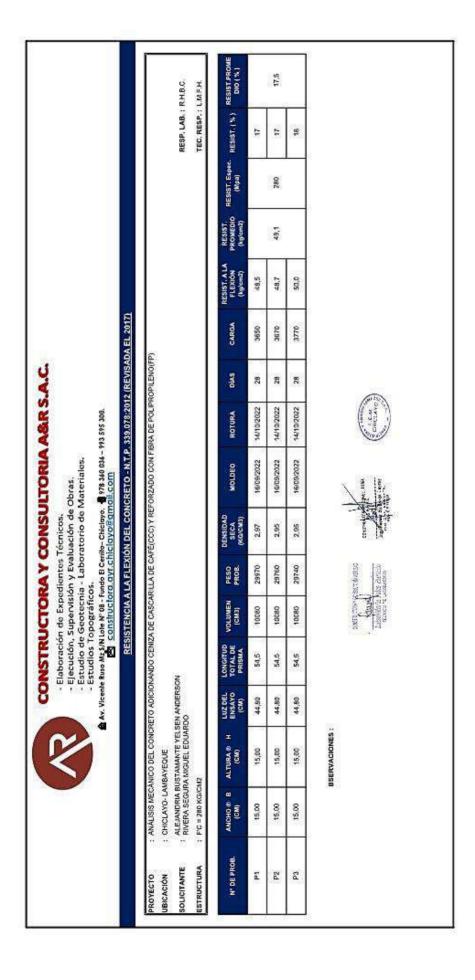

: FC = 280 KG/CM2


SOLICITANTE


: CHICLAYO-LAMBAYEQUE


JBICACIÓN





ENSAYOS DE COMPRESION DE MORTEROS DE CEMENTO HIDRÁULICO USANDO MUESTRAS CÚBICAS DE 5cm O 2pulgadas ASTM C109

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

🛕 Av. Vicente Ruso Mz_S/N Lote Nº 08 - Fundo El Cerrito- Chiclayo, 🚪 978 360 036 – 993 595 300. constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO USANDO MUESTRAS CÚBICAS DE 5 cm o 2 pulgadas ASTM C109/C109-21

"ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO PROYECTO

CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON SOLICITANTE

RIVERA SEGURA MIGUEL EDUARDO **ESTRUCTURA** TEC. RESP. : L.M.F.H. : F'c= 210 kg/cm2

Edad Resistencia Carga Áma Resistencia Promedio Fecha de Fecha **ESTRUCTURA** T°C vaciado Ensayo (Dias) Kg/cm2 94. Ka cm2 Patrón - f'c= 210 kg/cm2 01/10/2022 08/10/2022 7 4028 25,00 161,12 76.72 76.86 Patrón - f'c= 210 kg/cm2 01/10/2022 08/10/2022 7 4019 25.00 160.76 76.55 Patrón - f'c= 210 kg/cm2 162.36 01/10/2022 08/10/2022 7 4059 25.00 77,31 Patrón - f'c= 210 kg/cm2 01/10/2022 15/10/2022 14 5126 25,00 205,04 97,64 Patron - f'c= 210 kg/cm2 01/10/2022 15/10/2022 14 5139 25,00 205,56 97,89 97,69 Patrón - f'c= 210 kg/cm2 01/10/2022 15/10/2022 5121 25,00 204,84 14 97.54 Patrón - f'c= 210 kg/cm2 01/10/2022 29/10/2022 28 5428 25,00 217,12 103.39 Patrón - f'c= 210 kg/cm2 01/10/2022 29/10/2022 5433 25.00 217,32 103,49 103,39 Patrón - f'c= 210 kg/cm2 01/10/2022 29/10/2022 28 5423 25.00 216.92 103,30

Observaciones:

TORAY GENERALIZATION AND SALE

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO USANDO MUESTRAS CÚBICAS DE 5 cm o 2 pulgadas ASTM C109/C109-21

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO

CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA : F'c= 210 kg/cm2 SUSTITUYENDO CON CENIZA DE CASCARILLA DE CAFÉ A 600 °C TEC. RESP. : L.M.F.H.

ESTRUCTURA	Fecha de vaciado	Fecha Ensayo	Edad (Dias)	T'C	Carga Kg	Arca cm²	Resistencia Kg/cm2	Resistencia %	Promedic
Muestra a 600 °C	01/10/2022	08/10/2022	7	600 °C	3373	25,00	134,92	64,25	
Muestra a 600 °C	01/10/2022								
Muestra a 600 °C	01/10/2022	08/10/2022	7	600 °C	3356	25,00	134,24	63,92	
Muestra a 600 °C	01/10/2022	15/10/2022	14	600 °C	3975	25,00	159,00	75,71	
Muestra a 600 °C	01/10/2022	15/10/2022	14	600 °C	3967	25,00	158,68	75,56	75,37
Muestra a 600 °C	01/10/2022	15/10/2022	14	600 °C	3928	25,00	157,12	74,82	
Muestra a 600 °C	01/10/2022	29/10/2022	28	600 °C	4086	25,00	163,44	77,83	
Muestra a 600 °C	01/10/2022	29/10/2022	28	600 °C	4101	25,00	164,04	78,11	77,98
Muestra a 600 °C	01/10/2022	29/10/2022	28	600 °C	4095	25,00	163,80	78,00	

Observaciones:

CONSTRUCTORAY SOUSELE CHARLES CO.

Luisa Garia Palco Hurtada
TEURO DE LABORATORIO

Constitution bousiness

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 4 978 360 036 - 993 595 300.

constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO USANDO MUESTRAS CÚBICAS DE 5 cm o 2 pulgadas ASTM C109/C109-21

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO

CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA : F'c= 210 kg/cm2 SUSTITUYENDO CON CENIZA DE CASCARILLA DE CAFÉ A 650 °C TEC. RESP. : L.M.F.H.

Edad Resistencia Carga Área Resistencia Promedio Fecha de Fecha **ESTRUCTURA** T C vaciado Ensavo (Dias) cm² Kg/cm2 Kg Muestra a 650 °C 01/10/2022 08/10/2022 7 650 °C 3538 25,00 141,52 67,39 66,89 Muestra a 650 °C 01/10/2022 08/10/2022 7 650 °C 25,00 140.56 66,93 3514 Muestra a 650 °C 01/10/2022 08/10/2022 7 650 °C 3483 25.00 139,32 66,34 650 °C 01/10/2022 15/10/2022 Muestra a 650 °C 14 4505 85,81 25,00 180.20 Muestra a 650 °C 01/10/2022 15/10/2022 14 650 °C 4486 25.00 179,44 85,45 85,74 01/10/2022 15/10/2022 650 °C 4513 85.96 Muestra a 650 °C 14 25,00 180,52 4603 184,12 Muestra a 650 °C 01/10/2022 29/10/2022 28 650 °C 25,00 87,68 01/10/2022 29/10/2022 650 °C 185,88 87,93 Muestra a 650 °C 28 4647 25,00 88,51 Muestra a 650 °C 01/10/2022 29/10/2022 650 °C 4599 25.00 183,96 87.60 28

Observaciones:

Constitue thay consured with suc Luisa María Valco Hurindo Constitution bousiness

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 978 360 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO USANDO MUESTRAS CÚBICAS DE 5 cm o 2 pulgadas ASTM C109/C109-21

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO

CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA : F'c= 210 kg/cm2 SUSTITUYENDO CON CENIZA DE CASCARILLA DE CAFÉ A 750 °C TEC. RESP. : L.M.F.H.

Edad Resistencia Carga Área Resistencia Promedio Fecha de Fecha **ESTRUCTURA** T C vaciado Ensavo (Dias) cm² Kg/cm2 Kg Muestra a 750 °C 01/10/2022 08/10/2022 7 750 °C 25,00 156,16 74,36 3904 73,89 Muestra a 750 °C 01/10/2022 08/10/2022 7 750 °C 3851 25,00 73,35 154.04 Muestra a 570 °C 01/10/2022 08/10/2022 7 750 °C 3882 25.00 155.28 73,94 01/10/2022 15/10/2022 750 °C Muestra a 750 °C 14 4944 94,17 25,00 197.76 Muestra a 750 °C 01/10/2022 15/10/2022 14 750 °C 4838 25.00 193,52 92,15 93,59 01/10/2022 15/10/2022 750 °C 4958 94,44 Muestra a 750 °C 14 25,00 198,32 204,72 Muestra a 750 °C 01/10/2022 29/10/2022 28 750 °C 5118 25,00 97.49 01/10/2022 29/10/2022 750 °C 97,82 Muestra a 750 °C 28 5166 25,00 206,64 98,40 Muestra a 750 °C 01/10/2022 29/10/2022 750 °C 5123 25.00 204,92 97.58 28

Observaciones:

CONSTRUCTORS Y CONSULTED HAR SIG.
Luisa María Valco Hurtado

CONSTRUCTOR DESCRIPTION A

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
- Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiclayo, 978 360 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO USANDO MUESTRAS CÚBICAS DE 5 cm o 2 pulgadas ASTM C109/C109-21

PROYECTO : "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO

CON FIBRA DE POLIPROPILENO(FP)"

UBICACIÓN : CHICLAYO- LAMBAYEQUE

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON

RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA : F'c= 210 kg/cm2 SUSTITUYENDO CON CENIZA DE CASCARILLA DE CAFÉ A 850 °C TEC. RESP. : L.M.F.H.

Edad Resistencia Carga Área Resistencia Promedio Fecha de Fecha **ESTRUCTURA** T C vaciado Ensavo (Dias) cm² Kg/cm2 Kg Muestra a 850 °C 01/10/2022 08/10/2022 7 850 °C 2620 25,00 104,80 49,90 49,52 Muestra a 850 °C 01/10/2022 08/10/2022 7 850 °C 25,00 103.08 49.09 2577 Muestra a 850 °C 01/10/2022 08/10/2022 7 850 °C 2602 25.00 104.08 49,56 Muestra a 850 °C 01/10/2022 15/10/2022 850 °C 14 3042 57,94 25,00 121,68 Muestra a 850 °C 01/10/2022 15/10/2022 14 850 °C 2988 25.00 119,52 56,91 57,63 01/10/2022 15/10/2022 850 °C 3046 58,02 Muestra a 850 °C 14 25,00 121,84 123,52 Muestra a 850 °C 01/10/2022 29/10/2022 28 850 °C 3088 25,00 58.82 01/10/2022 29/10/2022 850 °C 124,68 58,95 Muestra a 850 °C 28 3117 25,00 59,37 Muestra a 850 °C 01/10/2022 29/10/2022 850 °C 3079 25.00 123,16 58.65 28

Observaciones:

CONSTRUCTORAY CONSULTERIA RER EAC Luisa María Valco Hurtado COASTRUCTURE PROSELEDOSA

Anexo 11: RENDIMIENTO DE LA CENIZA DE CASCARILLA DE CAFÉ

Τ°	Material Inicial	Material Final	Rendimiento (kg ceniza/kg cascarilla)
600 °C	25 kg	1.89 kg	0.0756
650 °C	25 kg	1.74 kg	0.0696
750 °C	25 kg	1.72 kg	0.0688
850 °C	25 kg	1.61 kg	0.0644

ENSAYOS DE COMPRESION, TRACCIÓN Y FLEXIÓN DE CONCRETO COMBINANDO CCC Y FP

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

: F'C = 210 Kglcm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO ESTRUCTURA

SOLICITANTE

RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H.

copidoo	Adimonia	FE	FECHA	EDAD	Fre	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN PESO	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
».N	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
-	MUESTRA 1	04/11/2022	11/11/2022	7	210	15,2	30,1	181,46	5461,91	12120	2219,0	27670	152,5	72,6
R	MUESTRA 2	04/11/2022	11/11/2022		210	15,01	30	176,95	5308,52	12135	2285,9	27360	154,6	73.6
3	MUESTRA 3	04/11/2022	11/11/2022	7	210	15	30,1	176,72	5319,12	12090	2272,9	26970	152,6	72,7

Concrete	zoncretos normales
Edad (dias)	F'c (Kg/cm2) (%)
Ŧ	25 35
3	42 - 53
26	70 - 1C
374	85 - 95
38	100 120

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

: F'C = 210 Kglcm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

ESTRUCTURA SOLICITANTE

RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H.

copico	Aditolica	FECH	CHA	EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
»,N	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
3.TO	MUESTRA 1	04/11/2022	18/11/2022	14	210	15,03	30,1	177,42	5340,42	12120	2269,5	32430	182.8	0''28
N	MUESTRA 2	04/11/2022	18/11/2022	ā	210	15,01	30	176,95	5308,52	12190	2296,3	32310	182,6	6,38
6	MUESTRA 3	04/11/2022	18/11/2022	7	210	15,01	30,1	176,95	5326,22	12200	2290,6	32540	183,9	87,6

- 3	Concrete	Concretos normales.
	r ded (dies)	(%) (2000/00) 0,1
30.	-	25 - 35
Anti-	'n	42 - 53
	7	28 85
7.55	34	85 - 95
- 3	7H	021-001

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE UBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

ESTRUCTURA

: F'C = 210 Kglcm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	***************************************	FEC	CHA	EDAD	Fre	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
, N	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
	MUESTRA 1	04/11/2022	02/12/2022	28	210	15,01	30,1	176,95	5326,22	12411	2330,2	37460	211,7	100,8
8	MUESTRA 2	04/11/2022	02/12/2022	88	210	15,09	30,2	178,84	5401,03	12310	2279,2	37790	211,3	100,6
ю	MUESTRA 3	04/11/2022	02/12/2022	28	210	15,03	30,3	177,42	5375,90	12293	2286,7	37220	209,8	6'66

Concrete	Concretos normales
I ded (diss)	1 'c (Kg/coc?) (%)
1	25 - 35
'n	42-53
7	28 55
14	85 - 95
7H.	021-001

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 280 Kglcm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

RESP. LAB.: R.H.B.C.

TEC. RESP. : L.M.F.H.

copico	Action	FE	FECHA	EDAD	Fre	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
ž	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
-	MUESTRA 1	04/11/2022	11/11/2022	7	280	15	30,0	176,72	5301,45	12125	2287,1	33600	190,1	67,9
N	MUESTRA 2	04/11/2022	11/11/2022		280	15,01	30,1	176,95	5326,22	12200	2290,6	33270	188,0	67,1
8	MUESTRA 3	04/11/2022	11/11/2022	7	280	15	30	176,72	5301,45	12205	2302,2	33820	191,4	68,4

Concrete	Concretos normalas
Fried (diss)	(%) (zmm/ds) s, i
1	25 - 35
'n	42-53
7	28 05
34	85 - 95
HC.	02L-00L

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales. Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 智 978 340 034 - 993 595 300.

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE PROYECTO JBICACIÓN

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO ESTRUCTURA SOLICITANTE

: F'C = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

ENSIDAD	CARGA	RESISTENCIA	NCIA
(gricm3)	(kg)	(kg/cm2)	(%)
2275,5	40250	227,5	81,2
2263,5	40710	230,4	82,3
2292,2	39820	224,7	80,3
1	Conception	Contractor, restrictles.	
	Edad (dias)	F'c (Kg/cm2) (%)	
	1	25 35	
	ø	42 - 53	
Ċ,		A1-105	
0	14	85 - 95	

12225

5333,32

177,19

30.1

15,02

280

4

18/11/2022

04/11/2022

MUESTRA 3

m

OBSERVACIONES:

PESO

VOLUMEN

AREA

DIÁMETRO ALTURA

EDAD

FECHA

(m₀) 15,01

DÍAS (kg/cm2) F,

MOLDEO ROTURA

ESTRUCTURA

CODIGO

ż

12120

5326,22

176,95 (cm)

30,1 (cm)

280

4

18/11/2022

04/11/2022

MUESTRA 1

12000

5301,45

176,72

30

15

280

77

18/11/2022

04/11/2022

MUESTRA 2

N

RESP. LAB.: R.H.B.C. TEC, RESP.: L.M.F.H.

1 Fr (kg/cs) 3 A 42.	Cantarellos normales	ormales.
		F'c (Kg/cm2) (%)
	7	25 35
	8	42 - 53
		ZM - DV
	14	85 - 95
78 100	28	100 120

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lole N° 08 - Fundo El Cerrito-Chiclayo。 4 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" PROYECTO

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

SOLICITANTE

UBICACIÓN

: F'C = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

RESP. LAB.: R.H.B.C. TEC. RESP.: L.M.F.H.

copidoo	A MAINTAIN THE PARTY OF THE PAR	FECHA	HA	EDAD	F'e	DIAMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
N.	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
(2 <mark>.5</mark> 76)	MUESTRA 1	04/11/2022	18/11/2022	4	280	15,01	30,1	176,95	5326,22	12120	2275,5	44720	252,7	90,3
8	MUESTRA 2	04/11/2022	18/11/2022	2	280	15	30	176,72	5301,45	12000	2263,5	44320	250,8	9'68
e	MUESTRA 3	04/11/2022	18/11/2022	14	280	15,02	30,1	177,19	5333,32	12225	2292,2	44800	252,8	90,3

Edad (dias) F	
	F'c (Kg/cm2) (%)
***	25 35
8	42 - 53
100	70 - 105
14	85 - 95
28	100 120

Elaboración de Expedientes Técnicos.
 Ejecución, Supervisión y Evaluación de Obras.
 Estudio de Geotecnia - Laboratorio de Materiales.

Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 4 978 360 036 - 993 595 300. での Constructora. ayr. chiclayo @gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "ANÁLISIS MEGÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

RESIST, PROM EDIO (%)

(%)

6.9 7,0

2.0

2'0

9
PILENO
OLIPRO
Š
DE
FIBRA DE
EFI
1%
E CAFÉ Y 1
AC
RE
E CASCARILL
C)
2 %9
8
ONA
DICK
m2 A
Kg/cr
210
FIC =

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

N- DE PROB.

P3 P2 7

ESTRUCTURA SOLICITANTE

: CHICLAYO- LAMBAYEQUE

PROYECTO UBICACIÓN

2			
RESIST. Espec. (kg/cm2)		210	
RESIST. PROMEDIO (kg/cm2)	25	14.6	
RESIST. A LA TRACCIÓN (kg/cm2)	14,4	14,7	14,7
CARGA	10260	10440	10380
DIAS	7	2	7
ROTURA	11/11/2022	11/11/2022	11/11/2022
MOLDEO	04/11/2022	04/11/2022	04/11/2022
PESO PROB.	12234	12267	12237
VOLUMEN (CM3)	5337	5337	5337
LONGITUD	30,2	30,0	30,0
DIAMETRO (CM)	15,00	15,02	15,02

- Elaboración de Expedientes Técnicos. - Ejecución, Supervisión y Evaluación de Obras. - Estudio de Geotecnia - Laboratorio de Materiales. - Estudios Topográficos. - Estudios Topográficos. - Av. Vicente Ruso Mz. S/N Lote Nº 08 - Fundo El Cerrito-Chiclayo. RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 CONSTRUCTORAY CONSULTORIA A&R S.A.C.

700		
PROYECTO	: "ANÀLISIS MECÀNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	
UBICACIÓN	: CHICLAYO-LAMBAYEQUE	
SOLICITANTE	. ALEJANDRIA BUSTAMANTE YELSEN ANDERSON . RIVERA SEGURA MIGUEL EDUARDO	RESP, LAB. : F
ESTRUCTURA	: P'C = 210 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO	TEC. RESP. : L

R.H.B.C. L.M.F.H.

RESIST.PROM EDIO (%)		4,7			
RESIST. (%)	7,5	7,5	7,4		
RESIST. Espec. (kg/cm2)	210				
RESIST. PROMEDIO (Kg/cm2)	15,6				
RESIST. A LA TRACCIÓN (kg/cm2)	15.7	15,7	15,5		
CARGA	11230	11120	10980		
DÍAS	14	14	14		
ROTURA	18/11/2022	18/11/2022	18/11/2022		
MOLDEO	04/11/2022	04/11/2022	04/11/2022		
PESO PROB.	12234	12267	12237		
VOLUMEN (CM3)	5365	5365	5365		
LONGITUD	30,2	30,0	30,1		
DIAMETRO (CM)	15,04	15,00	15,02		
N° DE PROB.	Ы	P2	P3		

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

PROYECTO	: "ANÂLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	
UBICACIÓN	: CHICLAYO.LAMBAYEQUE	
SOLICITANTE	ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO	RESP. LAB.: R.H.B.C.
ESTRUCTURA	: FC = 210 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO	TEC. RESP. : L.M.F.H.
of source		
- Constitution of the Cons	DIAMETRO VOLUMEN DESO RESIST. ALA RESIST. RESIST FANA	i di

RESIST. (%)		8,8				
RESIST.(%)	8,2	8,6				
RESIST. Espec. (kg/cm2)		210				
RESIST. PROMEDIO (Kg/cm2)	17,4					
RESIST. A LA TRACCIÓN (kg/cm2)	17,2	18,0	17,0			
CARGA	12330	12740	12150			
DÍAS	28	28	28			
ROTURA	02/12/2022	02/12/2022	02/12/2022			
MOLDEO	04/11/2022	04/11/2022	04/11/2022			
PESO PROB.	12311	12277	12247			
VOLUMEN (CM3)	5379	5379	5379			
LONGITUD	30,4	30,0	30,3			
DIAMETRO (CM)	15,01	15,03	15,04			
N° DE PROB.	Ы	P2	P3			

Elaboración de Expedientes Técnicos.
 Ejecución, Supervisión y Evaluación de Obras.
 Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N tole N° 08 · Fundo El Certito-Chiclayo. 書 978 360 036 - 993 595 300. で constructora, ayr. chiclayo®gmail.com

. "ANÁLISIS MECÁNICO DEL CONORETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO/FP)" RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

TEC, RESP.: L.M.F.H.

PROYECTO	; "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"
UBICACIÓN	: CHICLAYO-LAMBAYEQUE
SOLICITANTE	ALEJANDRIA BUSTAMANTE YELSEN ANDERSON TRIVERA SEGURA MIGUEL EDUARDO
ESTRUCTURA	: FC = 289 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

RESIST,PROMEDI 0 (%)		5,2		
RESIST. (%)	5,1 5,3 5,2			
RESIST, Espec. (kg/cm2)	280			
RESIST. PROMEDIO (kg/cm2)		14,6		
RESIST. A LA TRACCIÓN (kg/cm2)	14,4	14,8	14,7	
CARGA	10230	10480	10360	
DÍAS	7	7	2	
ROTURA	11/11/2022	11/11/2022	11/11/2022	
MOLDEO	04/11/2022	04/11/2022	04/11/2022	
PESO PROB.	12254	12464	12350	
VOLUMEN (CM3)	5344	5344	5344	
LONGITUD	30,2	30,0	30.0	
DIAMETRO (CM)	15,01	15,02	15,00	
N' DE PROB.	P1	P2	P3	

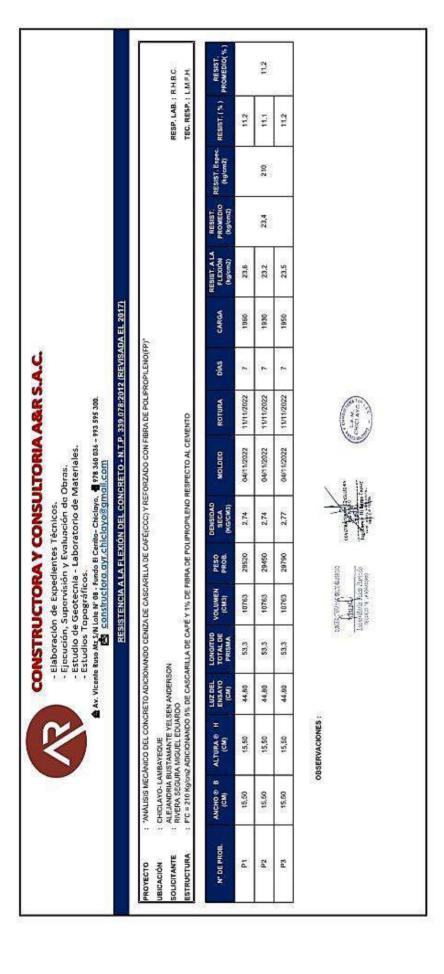
- Elaboración de Expedientes Técnicos. - Ejecución, Supervisión y Evaluación de Obras. - Estudio de Geotecnia - Laboratorio de Materiales. - Estudios Topográficos. - Estudios Topográficos. Av. Vicente Ruso Mz S/N Lole N° 08 - Fundo El Cerrito-Chicloyo. 49 778 360 036 – 793 595 300. CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

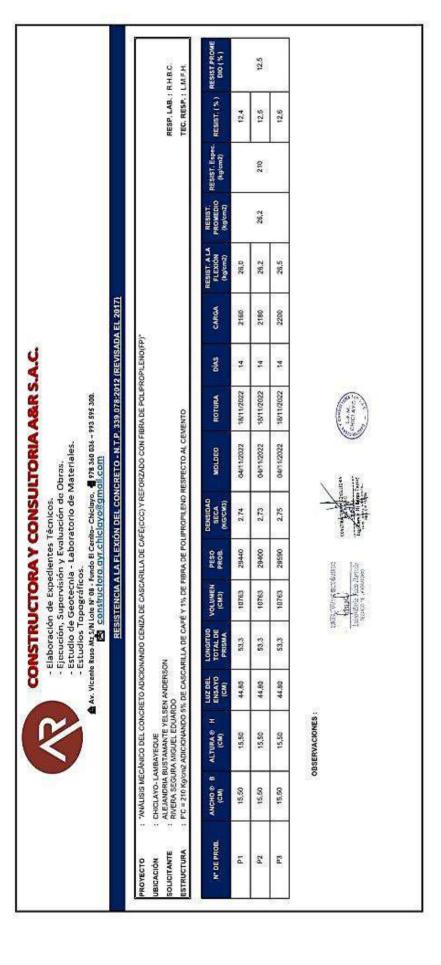
RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

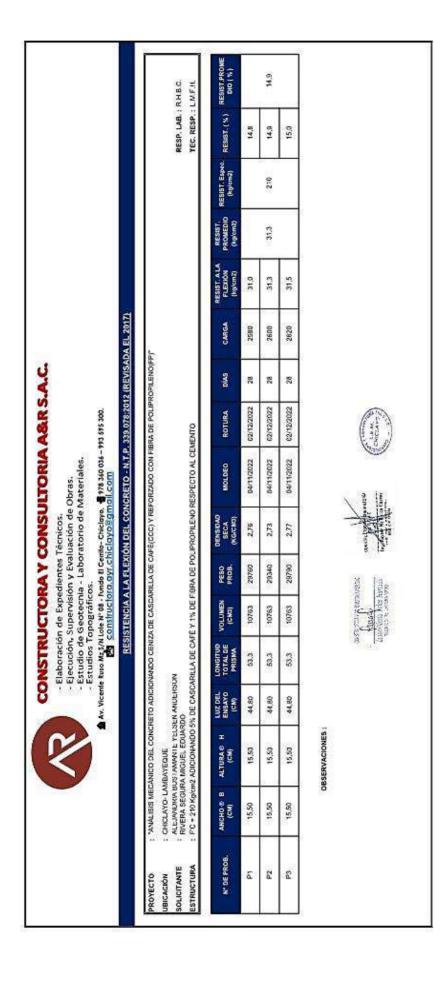
PROYECTO	: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	
UBICACIÓN	: CHICLAYO-LAMBAYEQUE	
SOLICITANTE	DANTE JESUS SILVA TEJADA / JARLI ANTONI ALEJANDRIA BUSTAMANTE	RESP. LAB.: R.H.B.C.
ESTRUCTURA	: FC = 289 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO	TEC, RESP.: L.M.F.H.

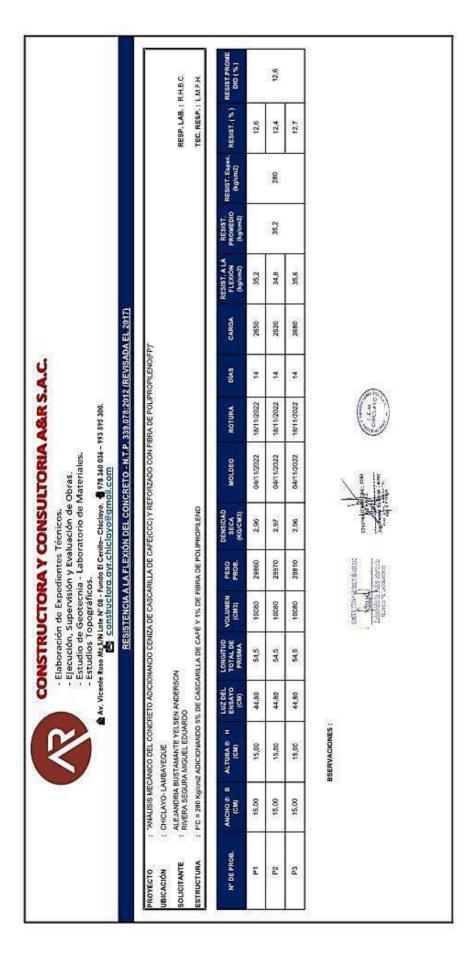
() RESIST.PROMEDI O(%)		6,4	
ssist. (%	6,8 5,5 5,5		
RESIST, Espec. RE (kg/cm2)	280		
RESIST. PROMEDIO (kg/cm2)	18,0		
RESIST. A LA TRACCIÓN (kg/cm2)	17.7	18,1	18,2
CARGA	12630	12820	12900
DÍAS	14	14	14
ROTURA	18/11/2022	18/11/2022	18/11/2022
MOLDEO	04/11/2022	04/11/2022	04/11/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5351	5351	5351
LОМВІТИВ	30,2	30,0	30,0
DIAMETRO (CM)	15,02	15,00	15,02
N' DE PROB.	P1	P2	P3

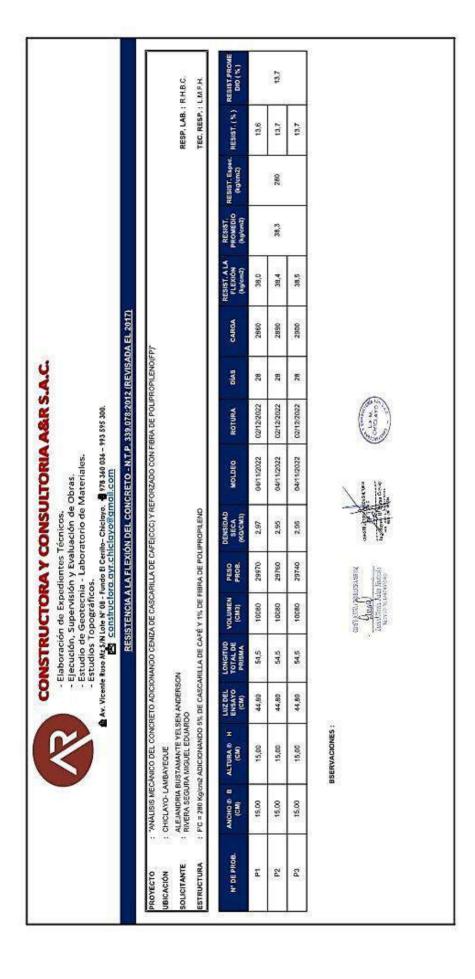
- Elaboración de Expedientes Técnicos. - Ejecución, Supervisión y Evaluación de Obras. - Estudio de Geotecnia - Laboratorio de Materiales. - Estudios Topográficos. - Estudios Topográficos. Av. Vicente Ruso Mz S/N Lole N° 08 - Fundo El Cerrito-Chicloyo. 49 778 360 036 – 793 595 300. CONSTRUCTORA Y CONSULTORIA A&R S.A.C.


RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496


PROYECTO	; "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	
UBICACIÓN	: CHICLAYO-LAMBAYEQUE	
SOLICITANTE	DANTE JESUS SILVA TEJADA / JARLI ANTONI ALEJANDRIA BUSTAMANTE	RESP. LAB. : R.H.B.C.
ESTRUCTURA	: FC = 289 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO	TEC, RESP.: L.M.F.H.


RESIST.PROMEDI O(%)		8,2	
RESIST. (%	8,2	8,1	8,2
RESIST, Espec. (kg/cm2)		280	
RESIST. PROMEDIO (kg/cm2)		22,9	
RESIST. A LA TRACCIÓN (kg/cm²)	23,0	22,7	22,8
CARGA	16420	16080	16170
Dias	28	28	28
ROTURA	02/12/2022	02/12/2022	02/12/2022
MOLDEO	04/11/2022	04/11/2022	04/11/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5351	5351	5351
ГОМВІТИВ	30,2	30.0	30.0
DIAMETRO (CM)	15,02	15,00	15,02
N' DE PROB.	PTE	P2	ьз





- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	Adironia	FECHA		EDAD	Fie	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
».	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
-	MUESTRA 1	04/11/2022	11/11/2022	7	210	15	30,1	176,72	5319,12	12120	2278,6	25430	143,9	68,5
N	MUESTRA 2	04/11/2022	11/11/2022		210	15,01	30	176,95	5308,52	12135	2285,9	25640	144,9	0'69
ь	MUESTRA 3	04/11/2022	11/11/2022	7	210	53	30,1	176,72	5319,12	12090	2272,9	25200	142,6	6,79

Concreto	Concretos normales
Edad (dias)	F'c (Kg/cm2) (%)
1	25 35
65	42-53
8	70 - IO
24	85 - 95
28	100 120

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H.

copico	Aditolica	FE(FECHA	EDAD	Fic	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
, Z	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
3.7	MUESTRA 1	04/11/2022	18/11/2022	14	210	91	30,1	176,72	5319,12	12120	2278,6	30820	174,4	83,1
N	MUESTRA 2	04/11/2022	18/11/2022	4	210	15,01	30	176,95	5308,52	12190	2296,3	29740	168,1	0'08
6	MUESTRA 3	04/11/2022	18/11/2022	*	210	15	30,1	176,72	5319,12	12200	2293,6	30230	171,1	5,18

80000000000000000000000000000000000000	Concretos normales
r dad (cliss)	17: (Kg/cm/2) (%)
, F	25-35
n	42 - 53
7	28 05
34	85 - 95
HC.	02L-00L

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE UBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

: F'C = 210 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

ESTRUCTURA SOLICITANTE

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	CETDIICTIBA	FECHA		EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
ž	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
300	MUESTRA 1	04/11/2022	02/12/2022	28	210	15,01	30,1	176,95	5326,22	12411	2330,2	35840	202,5	96,4
8	MUESTRA 2	04/11/2022	02/12/2022	28	210	15,09	30,2	178,84	5401,03	12310	2279,2	35270	197,2	93,9
6	MUESTRA 3	04/11/2022	02/12/2022	28	210	15,03	30,3	177,42	5375,90	12293	2286,7	35500	200,1	95,3

1 25-35 3 42-53 7 70 85 14 85-95	Concrete	Concretos normales
2 2 2 2	relast (cline)	1,5: (kg/com2) (%)
5. 5. 5	1	25 - 35
0.00	n	42 - 53
38	7	28 05
000	14	85 - 95
	HC.	06L-00L

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE UBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

: F'C = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

ESTRUCTURA SOLICITANTE

RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H.

copico	COTDIIOTOR	FEC	FECHA	EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
ž	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
3.7	MUESTRA 1	04/11/2022	11/11/2022	7	280	15	30,0	176,72	5301,45	12125	2287,1	36520	206,7	73,8
8	MUESTRA 2	04/11/2022	11/11/2022	7	280	15,01	30,1	176,95	5326,22	12200	2290,6	36880	208,4	74,4
3	MUESTRA 3	04/11/2022	11/11/2022	7	280	15	30	176,72	5301,45	12205	2302,2	36290	205,4	73,3

14 85-95	7 70 85	3 42-53	1 25-35	rded (diss) 17: (kg/cm2) (%)	Concretos normales
----------	---------	---------	---------	------------------------------	--------------------

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 智 978 340 034 - 993 595 300.

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

RESP. LAB.: R.H.B.C.

TEC, RESP.: L.M.F.H.

: F'C = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

PROYECTO JBICACIÓN

RESISTENCIA	m2) (%)	1,1 87,2	,5 88,4	87.8
~	(kg/cm2)	244,1	247,5	246,0
CARGA	(kg)	43200	43740	43580
DENSIDAD	(gr/cm3)	2275,5	2263,5	2292.2
PESO	(grs.)	12120	12000	12225
VOLUMEN	(cm3)	5326,22	5301,45	5333,32
AREA	(cm)	176,95	176,72	177,19
ALTURA	(cm)	30,1	30	30,1
DIÁMETRO ALTURA	(cm)	15,01	15	15,02
Fe	(kg/cm2)	280	280	280
EDAD	DÍAS	4	14	41
HA	ROTURA	18/11/2022	18/11/2022	18/11/2022
FECHA	MOLDEO	04/11/2022	04/11/2022	04/11/2022
Action	two powers	MUESTRA 1	MUESTRA 2	MUESTRA 3
copido	ž.	(1.00m)	2	e

OBSERVACIONES:

282

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia - Laboratorio de Materiales.
- Estudios Topográficos.
- Estudios Topográficos.

A Av. Vicente Ruso Mz S/N Lole N° 08 - Fundo El Centito—Chicloyo. 8 978 340 034 – 993 595 300.

		1	
		2	l
		2	ı
		7	ľ
	ŝ	ĕ	ı
	8	9	ŀ
١	Ņ	ř	ı
1		a	l
	0	F	
	Ü	z	١
ì	Í	0	ı
à	d	9	ı
1	¥	<u> </u>	ŀ
5		œ	l
1		읮	ľ
3		õ	ľ
Į	į	O	ŀ
1			l
1		8	l
3	Ġ	7	ı
i	9	-0	ı
i	8	S	ı
Ì	k	ш	ŀ
1		富	ŀ
3	a	≥	ı
ł	Š	9	ľ
Í	Ä	2	ı
		2	
4	1	4	
		4	ı
		ច	l
		Ž	
		벁	ı
		S	
		S	
		₩	
		50.	

PROYECTO	: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	
UBICACIÓN	: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE	
SOLICITANTE	. ALEJANDRIA BUSTAMANTE YELSEN ANDERSON . RIVERA SEGURA MIGUEL EDUARDO	RESP, LAB.: R.H.B.C.
ESTRUCTURA	: F'C = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO	TEC, RESP.: L.M.F.H.

copidoo	Adutonates	FE	FECHA	EDAD	F'c	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
N.	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gn/cm3)	(kg)	(kg/cm2)	(%)
(8 5 78)	MUESTRA 1	04/11/2022	18/11/2022	4	280	15,01	30,1	176,95	5326,22	12120	2275,5	47280	267,2	95,4
N	MUESTRA 2	04/11/2022	18/11/2022	14	280	15	30	176,72	5301,45	12000	2263,5	47670	269,8	6,38
e	MUESTRA 3	04/11/2022	18/11/2022	41	280	15,02	30,1	177,19	5333,32	12225	2292.2	47910	270,4	96,6

- Elaboración de Expedientes Técnicos. - Ejecución, Supervisión y Evaluación de Obras. - Estudio de Gootecnia - Laboratorio de Materiales. - Estudios Topográficos. - Estudios Topográficos. Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito- Chiciayo, 4978 360 036 - 993 595 300. CONSTRUCTORAY CONSULTORIA A&R S.A.C.

PROYECTO	: "EVALUACIÓN DE PROPIEDADES MECÁNICAS DEL CONCRETO ADICIONANDO CASCARILLA DE CAFÉ Y REFORZADO CON FIBRA DE POLIPROPILENO"	
UBICACIÓN	; CHICLAYO. LAMBAYEQUE	
SOLICITANTE	ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO	RESP. LAB. : R.H.B.C.
ESTRUCTURA	: Frc = 210 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO	TEC. RESP.: L.M.F.H.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

RESIST.PROM EDIO (%)		6.2		
RESIST. (%)	6,2	6,4	6.2	
RESIST. Espec. R (kg/cm2)		210	171	
RESIST, PROMEDIO (Kg/cm2)		13,1	,,,	
RESIST. A LA TRACCIÓN (Kg/cm2)	13,0	13,4	12,9	
CARGA	9250	9490	9160	
DIAS	7	7	7	
ROTURA	11/11/2022 11/11/2022 11/11/2022			
MOLDEO	04/11/2022 04/11/2022 04/11/2022			
PESO PROB.	12234	12267	12237	
VOLUMEN (CM3)	5337	5337	5337	
LONGITUD	30,2	30,0	30'0	
DIAMETRO (CM)	15,00	15,02	15,02	
N° DE PROB.	P1	P2	P3	

会 Av. Vicente Ruso Mz 5/N Lote N" 08 - Fundo El Cerrito-Chiclayo, 者 978 360 036 - 993 595 300. です constructora.ayr.chiclayo@gmail.com CONSTRUCTORA Y CONSULTORIA A&R S.A.C. Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Elaboración de Expedientes Técnicos. Estudios Topográficos.

: "EVALUACIÓN DE PROPIEDADES MECÂNICAS DEL CONCRETO ADICIONANDO CASCARILLA DE CAFÉ Y REFORZADO CON FIBRA DE POLIPROPILENO" RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: FC = 210 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

SOLICITANTE

: CHICLAYO-LAMBAYEQUE

PROYECTO

RESP. LAB.: R.H.B.C. TEC. RESP.: L.M.F.H.

RESIST,PROM EDIO (%)		7,2		
ESIST. (%)	7,2	7.3	7.2	
RESIST, Espec. R (kg/cm2)		210	2 12	
RESIST. PROMEDIO (kg/cm2)		15,1		
RESIST. A LA TRACCIÓN (kg/cm2)	15,2	14,9	15,2	
CARGA	10860	10530	10770	
DÍAS	14	14	41	
ROTURA	18/11/2022	18/11/2022	18/11/2022	
MOLDEO	04/11/2022			
PESO PROB.	12234	12267	12237	
VOLUMEN (CM3)	5365	5365	5365	
LONGITUD	30,2	30,0	30,1	
DIAMETRO (CM)	15,04	15,00	15,02	
" DE PROB.	Ы	P2	P3	

会 Av. Vicente Ruso Mz 5/N Lote N" 08 - Fundo El Cerrito-Chiclayo, 者 978 360 036 - 993 595 300. です constructora.ayr.chiclayo@gmail.com RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 CONSTRUCTORA Y CONSULTORIA A&R S.A.C. Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Elaboración de Expedientes Técnicos. Estudios Topográficos.

RESIST.	
RESIST. (%)	
RESIST. Espec. (kg/cm2)	
RESIST. PROMEDIO (kg/cm2)	
RESIST, A LA TRACCIÓN (kg/cm2)	
CARGA	
DIAS	
ROTURA	
MOLDEO	
PESO PROB.	
VOLUMEN (CM3)	
LONGITUD	
DIAMETRO (CM)	
N" DE PROB.	
	DIAMETRO LONGITUD VOLUMEN PESO MOLDEO ROTURA DÍAS CARGA TRACCIÓN PROMEDIO (19,5m2) (19,5m2) (19,5m2)

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

SOLICITANTE

PROYECTO UBICACIÓN

: CHICLAYO- LAMBAYEQUE

: "EVALUACIÓN DE PROPIEDADES MECÁNICAS DEL CONCRETO ADICIONANDO CASCARILLA DE CAFÉ Y REFORZADO CON FIBRA DE POLIPROPILENO"

RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H.

RESIST. (%)		8,0	201	
RESIST.(%) RESIST.(%)	0'8	8,0	6'2	
RESIST. Espec. (kg/cm2)		210	111	
RESIST. PROMEDIO (kg/cm2)		16,7		
RESIST, A LA TRACCIÓN (kg/cm2)	16,8	16,9	16,5	
CARGA	12030	11950	11830	Solve L.F. M. CHICLAYO
DÍAS	28	28	28	
ROTURA	02/12/2022	02/12/2022	02/12/2022	To the second se
MOLDEO	04/11/2022	04/11/2022	04/11/2022	a 14
PESO PROB.	12311	12277	12247	COSTRETION WARRENGE AND THE CONTROL ALCO MINISTER ALCO MINISTER AND THE CONTROL ALCO MINISTER AND THE CONTROL ALCO MINISTER ALCO MINISTER AND THE CONTROL ALCO MINISTER AND THE CONTROL AND TH
VOLUMEN (CM3)	5379	5379	5379	SICO .
LONGITUD	30,4	30,0	30,3	
DIAMETRO (CM)	15,01	15,03	15,04	
N" DE PROB.	F	P2	P3	

CONSTRUCTORA Y CONSULTORIA A&R S.A.C. - Elaboración de Expedientes Técnicos.

Ejecución, Supervisión y Evaluación de Obras.
 Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

🛖 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Centlo-Chiclayo, 📲 978 360 036 - 993 595 300.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

; "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" PROYECTO

: PC = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

> ESTRUCTURA SOLICITANTE

: CHICLAYO- LAMBAYEQUE

JBICACIÓN

TEC. RESP.: L.M.F.H.

RESIST.PROMEDI O(%)		6,3	
RESIST.(%)	P'9	6,3	1'9
RESIST, Espec. (kg/cm2)		280	
RESIST. PROMEDIO (kg/cm2)		17,6	
RESIST. A LA TRACCIÓN (kg/cm2)	17,8	17.71	17,2
CARGA	12680	12540	12170
DÍAS	7.	2	2
ROTURA	11/11/2022		
MOLDEO	04/11/2022		
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5344		
гоматир	30,2	30.0	30.0
DIAMETRO (CM)	15,01	15,02	15,00
N' DE PROB.	PI	P2	P3

- Elaboración de Expedientes Técnicos.

Ejecución, Supervisión y Evaluación de Obras.
 Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 360 036 - 993 595 300. で constructora, ayr.chiclayo®gmail.com

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : CHICLAYO-LAMBAYEQUE PROYECTO JBICACIÓN

: PC = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO

DANTE JESUS SILVA TEJADA / JARLI ANTONI ALEJANDRIA BUSTAMANTE

ESTRUCTURA SOLICITANTE

RESP. LAB.: R.H.B.C. TEC, RESP.: L.M.F.H.

RESIST,PROMEDI O (%)		8,2	
RESIST.(%)	8,2	8,2	8,2
RESIST, Espec. (kg/cm2)		280	
RESIST. PROMEDIO (kg/cm2)		23,0	
RESIST. A LA TRACCIÓN (kg/cm2)	23,1	22,9	23,0
CARGA	16430	16180	16300
pias	14	14	4
ROTURA	18/11/2022	18/11/2022	18/11/2022
MOLDEO	04/11/2022		
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5351	5351	5351
СОМВІТИВ	30,2	30,0	30.0
DIAMETRO (CM)	15,02	15,00	15,02
N' DE PROB.	P1	P2	РЗ

Elaboración de Expedientes Técnicos.

Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

*ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" PROYECTO

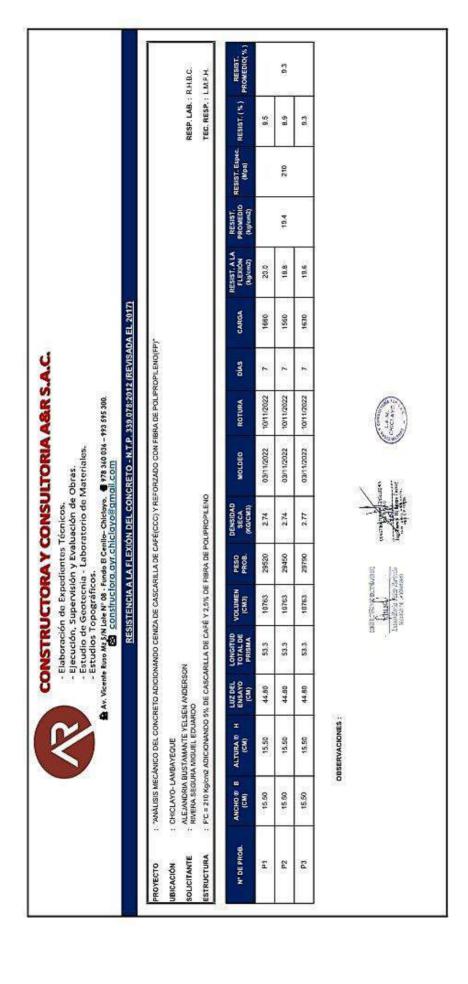
: PC = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO

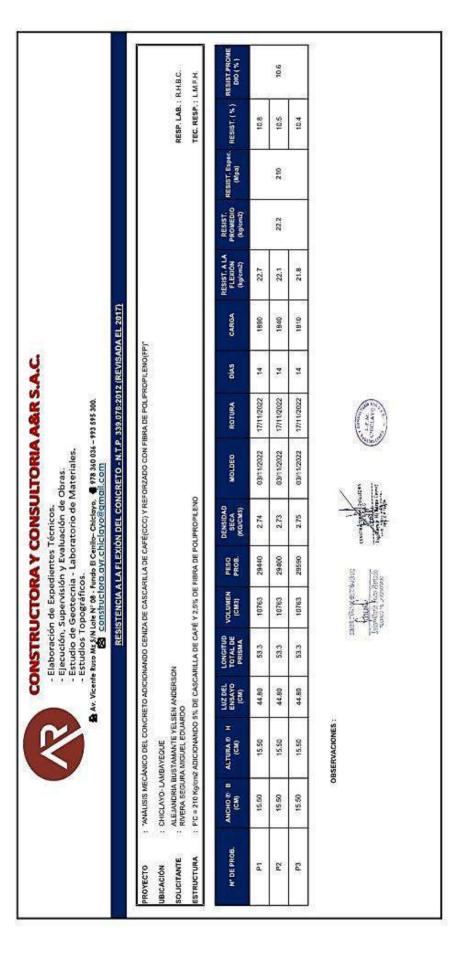
DANTE JESUS SILVA TEJADA / JARLI ANTONI ALEJANDRIA BUSTAMANTE

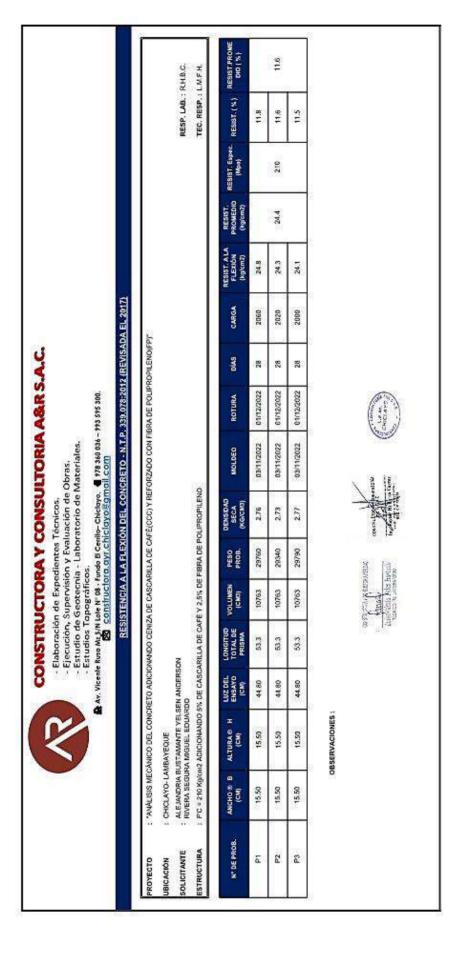
ESTRUCTURA SOLICITANTE

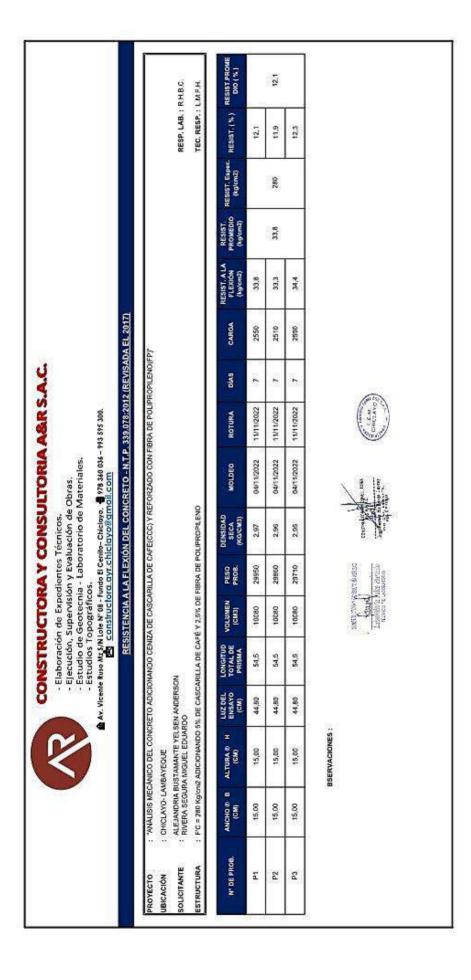
: CHICLAYO-LAMBAYEQUE

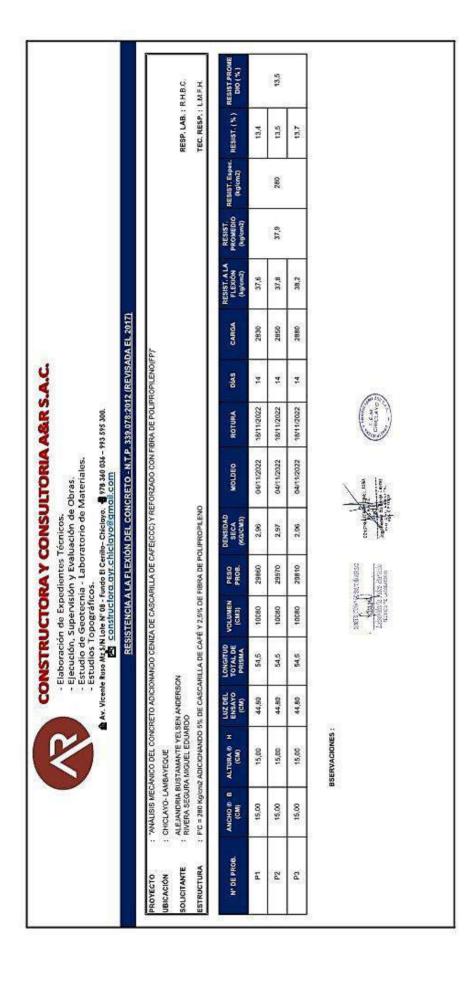
JBICACIÓN

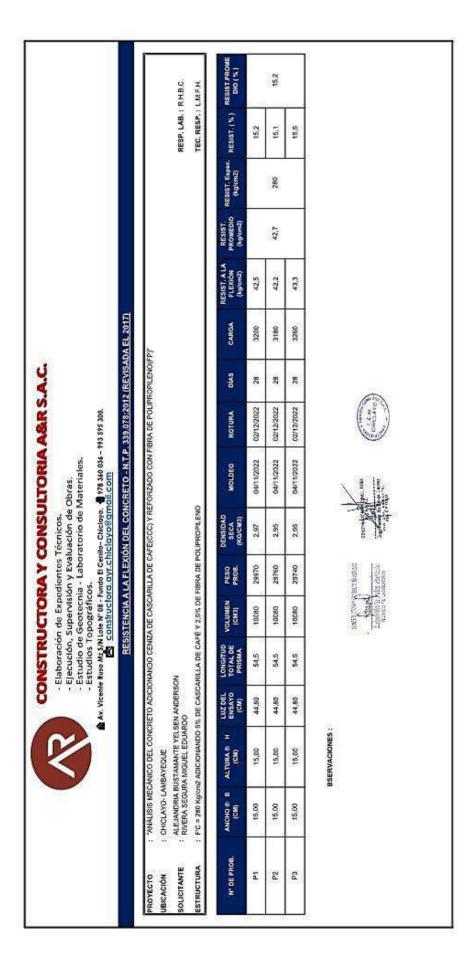

TEC. RESP.: L.M.F.H.


RESP. LAB.: R.H.B.C.


RESIST.PROMEDI O (%) 8,3 RESIST, Espec. RESIST, (%) (kg/cm2) 9,3 9,3 9,2 280 RESIST. PROMEDIO (Kg/cm2) 26,0 RESIST. A LA TRACCIÓN (kg/cm²) 26,1 25,7 26,2 18470 CARGA 18650 18200 DIAS 28 28 28 02/12/2022 02/12/2022 02/12/2022 ROTURA 04/11/2022 04/11/2022 04/11/2022 MOLDEO 12464 12350 PESO PROB. 12254 VOLUMEN (CM3) 5351 5351 5351 LONGITUD 30.0 30.0 30,2 DIAMETRO (CM) 15,02 15,00 15,02 N. DE PROB 2 2 ī







- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

: F'C = 210 Kglcm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO

Fie

EDAD

FECHA

CODIGO

ESTRUCTURA

RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H.

RESISTENCIA

CARGA

DIÁMETRO ALTURA AREA VOLUMEN PESO DENSIDAD

(%)	63.1	63,7	62,4							
(kg/cm2)	132,5	133,9	131,0	Concretos normales	F'c (Kg/cm2) (%)	25 35	42-53	A0 - 165	85 - 95	- Tob. 130/
(kg)	23420	23720	23180	Concretor	Edad (dias)	Ť	3	7.	14	200
(gr/cm3)	2344,4	2298,0	2326,2	L						
(grs.)	12470	12215	12390				110	10		

			2	8		911	ŭ			9
	(kg)	23420	23720	23180		Concretos no	Edad (dias)	Ĩ	3	z
	(gr/cm3)	2344,4	2298,0	2326,2	į			- A		
	(grs.)	12470	12215	12390					1	
	(cm3)	5319,12	5315,60	5326,22				COMSUL	TOT LEM OF	HICLAYOS
	(cm)	176,72	177,19	176,95				1	101	0
	(cm)	30,1	30	30,1			85. 85	7	Vieo racing	The Court
	(cm)	15	15,02	15,01					ON STREET	
	DIAS (kg/cm2)	210	210	210				010000	ALL CONTROL OF	Salad Dustrale
2000	DIAS	7		7				1000	2000	
		11/11/2022	11/11/2022	11/11/2022				Control of the Contro		TOTAL STATE
	MOLDEO ROTURA	04/11/2022	04/11/2022	04/11/2022	OBSERVACIONES:					
ESTRUCTURA		MUESTRA 1	MUESTRA 2	MUESTRA 3	OBSER					
	ž	3 4 78	8	£						

Concretos normales	F'c (Kg/cm2) (%)	25 35	42 - 53	70 - 165	85 - 95	100 120
Concreto	Edad (dias)	Ŧ	ø	z	3.4	28
		M.		-		

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.

Estudios Topográficos.

金 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 4 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE PROYECTO JBICACIÓN

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON 'RIVERA SEGURA MIGUEL EDUARDO

: F'C = 210 Kglcm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO

RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H.

6'94 8 77.7 78,7 RESISTENCIA (kg/cm2) 161,5 165,4 63,1 CARGA 28540 29220 28860 (kg) DENSIDAD

2293,6

12200

5319,12

176,72

30,1

13

210

4

18/11/2022

04/11/2022

MUESTRA 3

6

OBSERVACIONES:

2296,3

12190

5308,52

176,95

30

15,01

210

7

18/11/2022

04/11/2022

MUESTRA 2

5319,12 (cm3)

176,72

30,1

5

210

7

18/11/2022

04/11/2022

MUESTRA 1

(gr/cm3) 2278,6

(BLS:) 12120

PESO

VOLUMEN

AREA (cm)

DIÁMETRO ALTURA

Fle

EDAD

(cm)

(cm)

DÍAS (kg/cm2)

MOLDEO ROTURA FECHA

ESTRUCTURA

CODIGO

ž

ESTRUCTURA SOLICITANTE

CONSUL	F.M	CLAY
1	101	SUM TEMPS
/	Alto Local	Today.

alk han

Concrete	Concretos normales
r ded (diss)	1.'c (kg/cm2) (%)
F	25 - 35
n	42-53
7	28 85
34	85 - 95
HC.	021-001

- Elaboración de Expedientes Técnicos.
- Estudio de Geotecnia Laboratorio de Materiales. - Ejecución, Supervisión y Evaluación de Obras.

Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE PROYECTO JBICACIÓN

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

: F'C = 210 Kglom2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO

VOLUMEN PESO

AREA

DIÁMETRO ALTURA

Fle

EDAD

FECHA

ESTRUCTURA

CODIGO

ż

ESTRUCTURA SOLICITANTE

RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H.

8 83,1 83.9 RESISTENCIA (kg/cm2) 176,7 174,5 176,1 CARGA 31270 30960 31500 (kg) DENSIDAD

	2		50	A CONTRACTOR OF THE CONTRACTOR
(gr/cm3)	2330,2	2279,2	2286,7	2000 200 200 200 200
(grs.)	12411	12310	12293	
(cm3)	5326,22	5401,03	5375,90	COMSULTERN.
(cm)	176,95	178,84	177,42	* OTDUN SWE
(cm)	30,1	30,2	30,3	Committee Committee
(cm)	15,01	15,09	15,03	orange of the state of the stat
DÍAS (kg/cm2)	210	210	210	Constitution of the consti
DÍAS	28	58	28	Ming Color (Metrophasa Attual Scientifica Jebs Hindon Teams on Legisleron
	02/12/2022	02/12/2022	02/12/2022	To the state of th
MOLDEO ROTURA	04/11/2022	04/11/2022	04/11/2022 02/12/2022	OBSERVACIONES :
ea noce on the	MUESTRA 1	MUESTRA 2	MUESTRA 3	OBSE

Tolsel (clies)	
	1.1c (kg/coo) (%)
-	25 - 35
n	42 - 53
7	28 55
14	85 - 95
7H	0CL-00L

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

: F'C = 280 Kglcm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

> ESTRUCTURA SOLICITANTE

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

CODIGO	Actionica	FECHA		EDAD	Fie	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
ž	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
- T	MUESTRA 1	04/11/2022	11/11/2022	7	280	15	30,0	176,72	5301,45	12125	2287,1	30750	174,0	62.1
N	MUESTRA 2	04/11/2022	11/11/2022	. Po	280	15,01	30,1	176,95	5326,22	12200	2290,6	30520	172,5	61.6
3	MUESTRA 3	04/11/2022	11/11/2022	7	280	15	30	176,72	5301,45	12205	2302,2	30140	170,6	6'09

Concrete	Concretos normales
r doed (clios)	(%) (zoo/ds) s, i
1	25-33
n	42 - 53
7	28 85
14	85 - 95
7H.	061-001

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

PROYECTO UBICACIÓN RESP. LAB.: R.H.B.C.

TEC, RESP.: L.M.F.H.

: F'C = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

copico	Adiltoligae	FEC	FECHA	EDAD	F'e	DIAMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
÷k	ESTRUCTURES.	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
(1 <mark>5</mark> 7)	MUESTRA 1	04/11/2022	18/11/2022	4	280	15,01	30,1	176,95	5326,22	12120	2275,5	37540	212,1	75,8
N	MUESTRA 2	04/11/2022	18/11/2022	14	280	15	30	176,72	5301,45	12000	2263,5	37670	213,2	76,1
e	MUESTRA 3	04/11/2022	18/11/2022	41	280	15,02	30,1	177,19	5333,32	12225	2292.2	37910	214,0	76,4

### Pro (kg/cm2) (%) 1 25 35 3 40-53 (71-185 14 85-95 28 100 120	Contonelle	Concretos normales.
	Edad (dias)	F'c (Kg/cm2) (%)
X 8 8	1	25 35
	er .	42 - 53
	9	ZH-185
	14	85 - 95
	28	100 120

Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos.

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE PROYECTO UBICACIÓN

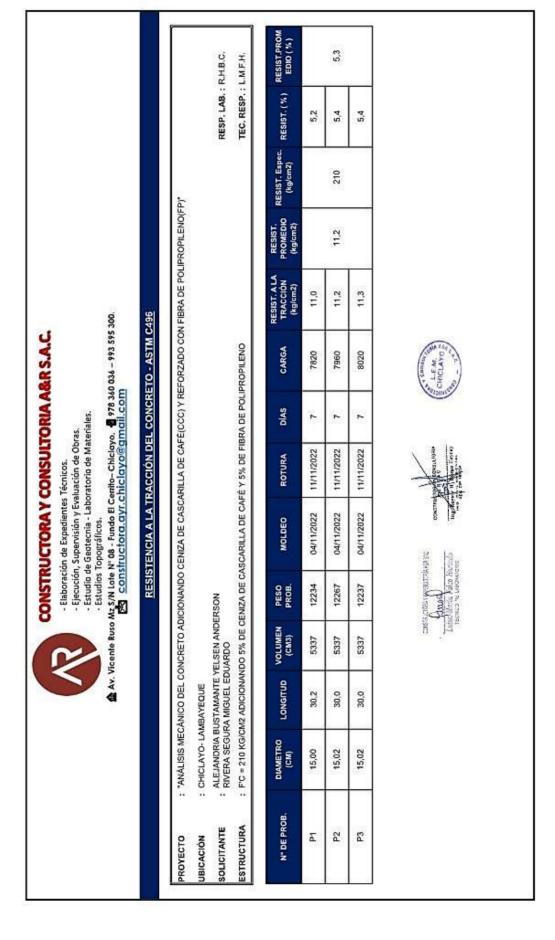
ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

ESTRUCTURA

: F'C = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

TEC, RESP.: L.M.F.H.

RESP. LAB.: R.H.B.C.


copico	Adutonates	EE	CHA	EDAD	F'c	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO 1	DENSIDAD	CARGA	RESISTENCIA	ENCIA
N.	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
85 8	MUESTRA 1	04/11/2022	18/11/2022	4	280	15,01	30,1	176,95	5326,22	12120	2275,5	40320	227,9	81,4
2	MUESTRA 2	04/11/2022	18/11/2022	44	280	15	30	176,72	5301,45	12000	2263,5	40870	231,3	82,6
n	MUESTRA 3	04/11/2022	18/11/2022	41	280	15,02	30,1	177,19	5333,32	12225	2292,2	41050	231,7	82,7

Contract	Concretos normales.
Edad (dias)	F'c (Kg/cm2) (%)
1	25 35
8	42 - 53
	AU-185
14	85 - 95
328	100 120

RESIST.PROM EDIO (%) 8,8 RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H. RESIST. (%) 6'9 8,8 8,8 RESIST, Espec. (kg/cm2) 210 : "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESIST. PROMEDIO (kg/cm2) 14,3 RESIST, A LA TRACCIÓN (kg/cm2) 14,5 14,2 14,2 会 Av. Vicente Ruso Mz S/N Late N° 68 - Fundo El Cerrito-Chiclayo, 者 978 340 034 - 993 595 300. で Constructora. ayr. chiclayの意味面引.com RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 CONSTRUCTORAY CONSULTORIA A&R S.A.C. : F'C = 210 KG/CM2 ADICIONANDO 5% DE CENIZA DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO CARGA 10320 10050 10110 DIAS 4 4 14 Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. 18/11/2022 18/11/2022 18/11/2022 ROTURA Elaboración de Expedientes Técnicos. 04/11/2022 04/11/2022 04/11/2022 Estudios Topográficos. MOLDEO 12234 PESO PROB. 12267 12237 ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO VOLUMEN (CM3) 5365 5365 5365 LONGITUD : CHICLAYO-LAMBAYEQUE 30,1 30,2 30,0 DIAMETRO (CM) 15,02 15,04 15,00 N" DE PROB ESTRUCTURA SOLICITANTE 33 P2 Σ PROYECTO UBICACIÓN

会 Av. Vicente Ruso Mz S/N Late N° 08 - Fundo El Cerrito-Chiclayo, 唱 978 360 036 – 993 595 300. 図 constructora.ayr.chiclayo@gmail.com RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 CONSTRUCTORA Y CONSULTORIA A&R S.A.C. Elaboración de Expedientes Técnicos. Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos,

CHICLAYO- LAMBAYEQUE	
ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO	RESP. LAB.: R.H.B.C.
: F'C = 210 KG/CM2 ADICIONANDO 5% DE CENIZA DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO	TEC. RESP.: L.M.F.H.
GUEL EDUARDO DICIONANDO 5% DE	: CENIZA DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

RESIST.(%) RESIST.(%)		9'2	
	7,5	7,8	7.5
RESIST, Espec. (kg/cm2)		210	
RESIST. PROMEDIO (kg/cm2)		16,0	
RESIST. A LA TRACCIÓN (kg/cm2)	16,7	16,4	15,8
CARGA	11250	11630	11300
DIAS	28	28	28
ROTURA	2202/21/20	02/12/2022	02/12/2022
MOLDEO	04/11/2022	04/11/2022	04/11/2022
PESO PROB.	12311	12277	12247
VOLUMEN (CM3)	5379	5379	6289
LONGITUD	30,4	30,0	30,3
DIAMETRO (CM)	15,01	15,03	15,04
N" DE PROB.	Ь	P2	P3

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 PROYECTO

: FC = 280 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

SOLICITANTE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

: CHICLAYO- LAMBAYEQUE

JBICACIÓN

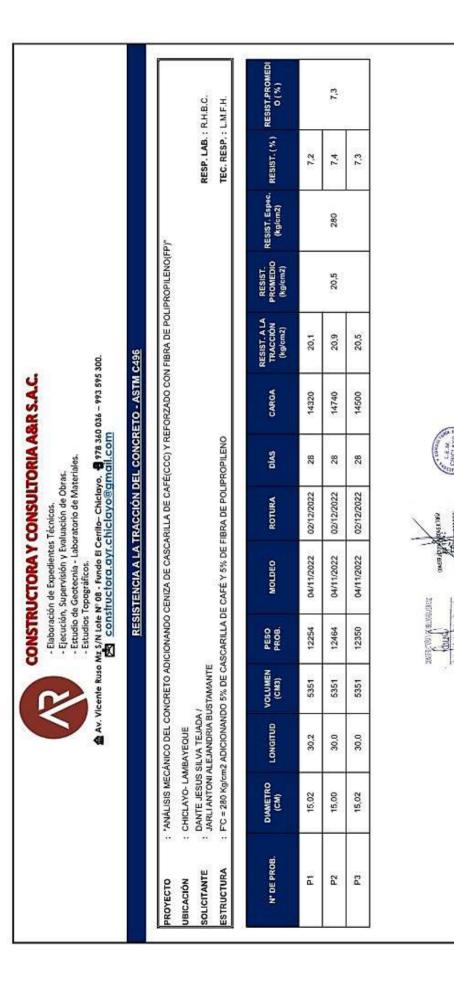
🛖 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Centlo-Chiclayo, 📲 978 360 036 - 993 595 300.

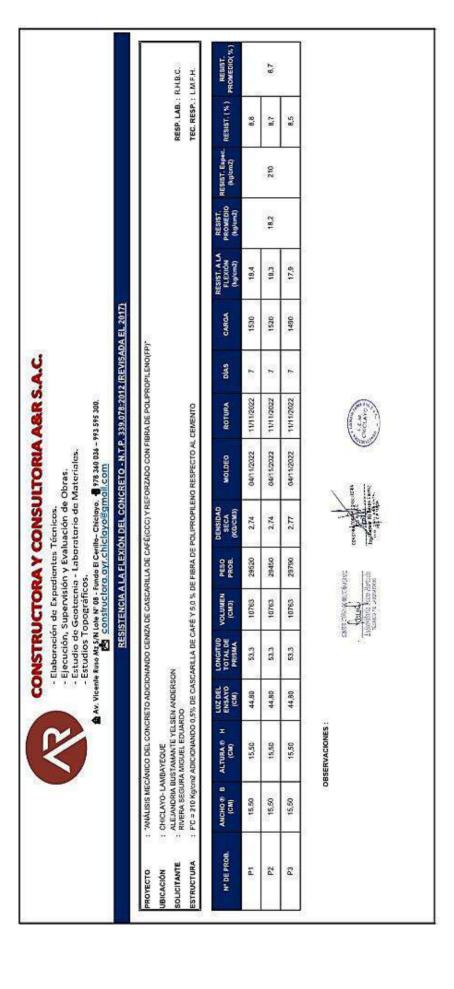
TEC. RESP.: L.M.F.H.

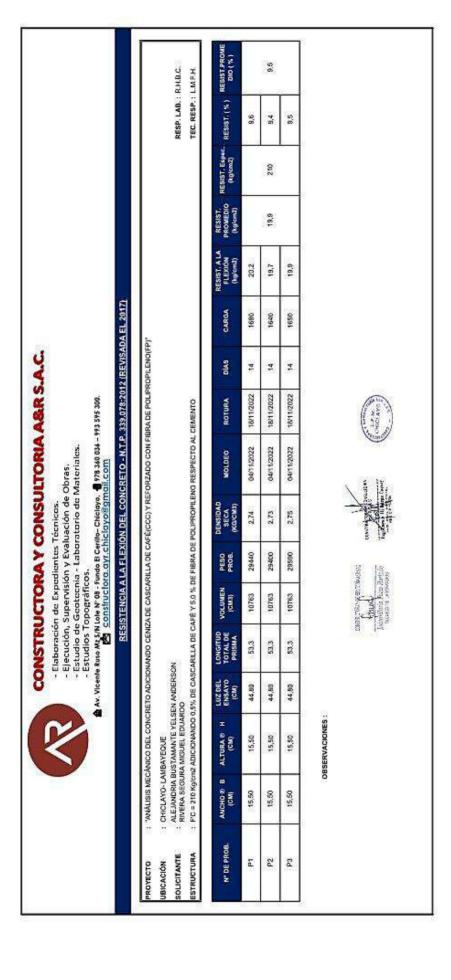
RESP. LAB. : R.H.B.C.

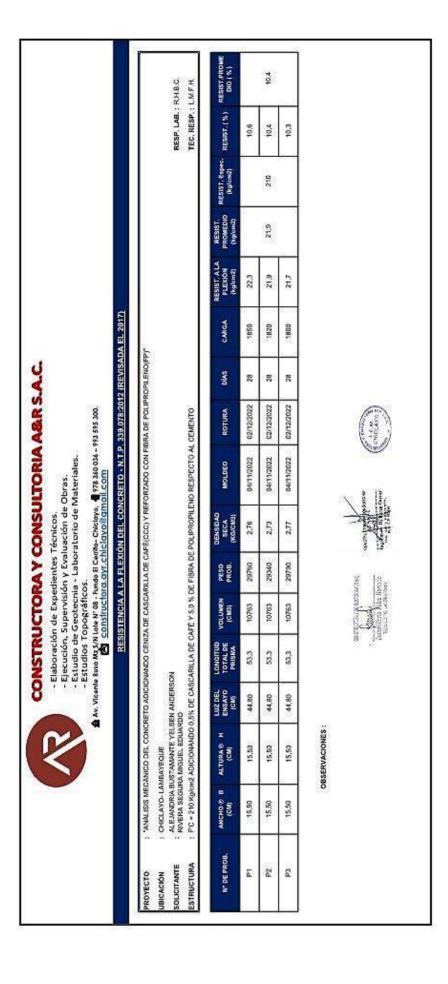
RESIST.PROMED O(%)		4,4	
RESIST.(%)	4,3	4,5	4,5
RESIST. Espec. (kg/cm2)		280	
RESIST. PROMEDIO (kg/cm2)		12,4	
RESIST. A LA TRACCIÓN (kg/cm2)	12,1	12,5	12,7
CARGA	8620	8850	8970
pias	7	2	7
ROTURA	11/11/2022	11/11/2022	11/11/2022
MOLDEO	04/11/2022	04/11/2022	04/11/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5344	5344	5344
СОМВІТИВ	30,2	30,0	30.0
DIAMETRO (CM)	15,01	15,02	15,00
N' DE PROB.	PT	P2	РЗ

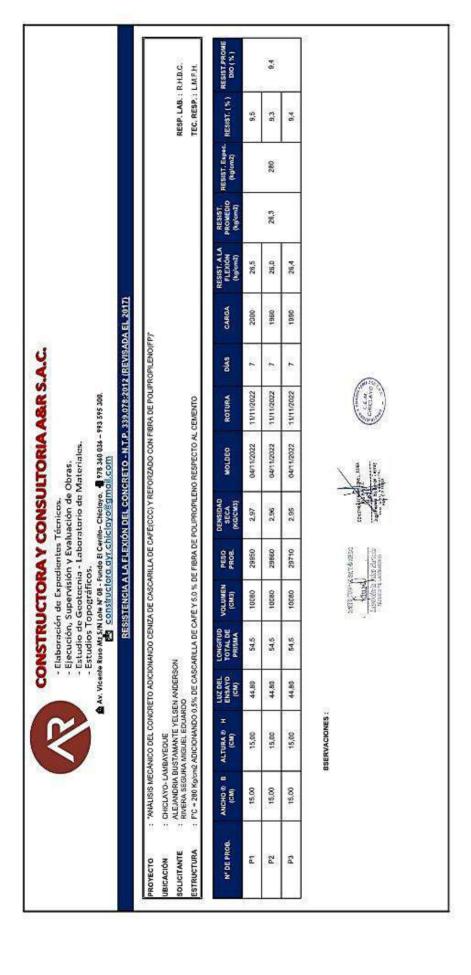
- Elaboración de Expedientes Técnicos. - Ejecución, Supervisión y Evaluación de Obras. - Estudio de Geotecnia - Laboratorio de Materiales. - Estudios Topográficos. - Estudios Topográficos. Av. Vicente Ruso Mz S/N Lole N° 08 - Fundo El Cerrillo-Chiclayo, 4978 360 036 - 1993 595 300. CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

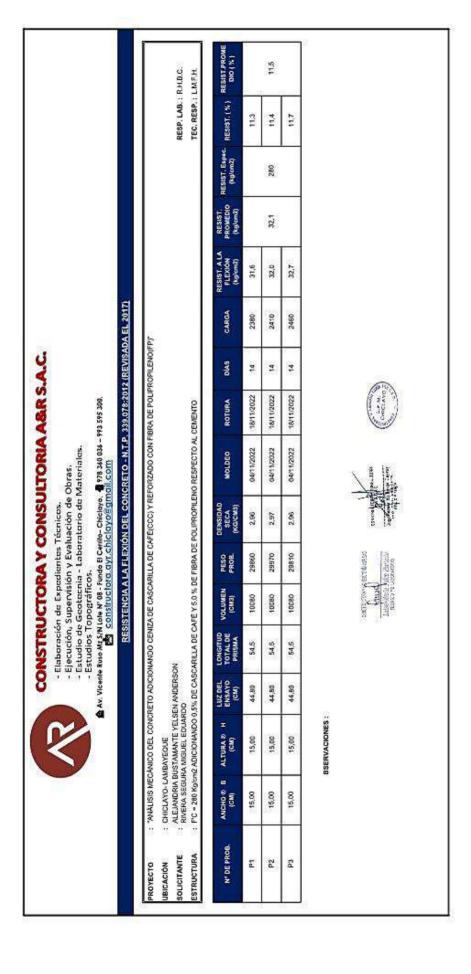

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

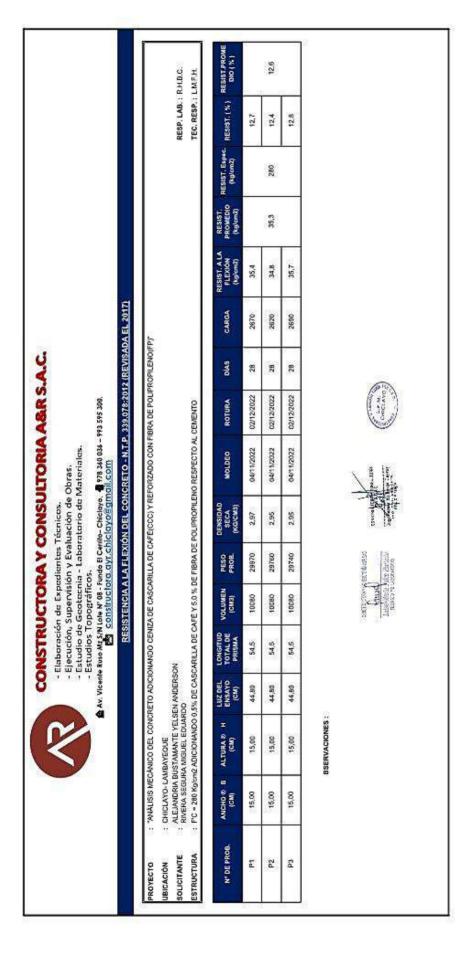

PROYECTO	; "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	
UBICACIÓN	: CHICLAYO-LAMBAYEQUE	
SOLICITANTE	DANTE JESUS SILVA TEJADA / 1 JARLI ANTONI ALEJANDRIA BUSTAMANTE	RESP. LAB. : R.H.B.C.
ESTRUCTURA	; FC = 289 Kg/cm2 ADICIONANDO 5% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO	TEC. RESP.: L.M.F.H.


RESIST.PROMEDI 0 (%)		5,3	
RESIST. (%)	5,4	5,3	5,2
RESIST, Espec. RE (kg/cm2)		280	
RESIST. PROMEDIO (kg/cm2)		14,9	
RESIST. A LA TRACCIÓN (kg/cm2)	15,2	14.9	14,5
CARGA	10860	10550	10270
DIAS	14	*	‡
ROTURA	18/11/2022	18/11/2022	18/11/2022
MOLDEO	04/11/2022	04/11/2022	04/11/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5351	5351	5351
ГОМВІТИВ	30,2	30.0	30.0
DIAMETRO (CM)	15,02	15,00	15,02
N' DE PROB.	P1	P2	P3









- Ejecución, Supervisión y Evaluación de Obras.

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.

Estudio de Geotecnia - Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

: F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y1 % DE FIBRA DE POLIPROPILENO ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

> ESTRUCTURA SOLICITANTE

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

	COTOLICTION	FECHA		EDAD	F'c	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
»,	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
	MUESTRA 1	05/11/2022	12/11/2022	7	210	15,01	30,1	176,95	5326,22	12220	2294,3	27740	156,8	7.4.7
N	MUESTRA 2	05/11/2022	12/11/2022		210	15	30	176,72	5301,45	12230	2306,9	27830	157,5	75,0
8	MUESTRA 3	05/11/2022	12/11/2022	7	210	15,02	30,1	177,19	5333,32	12290	2304,4	27560	155,5	74,1

Concrete	Concretos normales
Edad (dias)	F'c (Kg/cm2) (%)
Ť	25 35
3	42 - 53
20	70 - 1C
34	85 - 95
38	100 120

- Ejecución, Supervisión y Evaluación de Obras.

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.

- Estudio de Geotecnia - Laboratorio de Materiales.

Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300. Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE UBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

: F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y1 % DE FIBRA DE POLIPROPILENO

copico

ESTRUCTURA SOLICITANTE

TEC. RESP. : L.M.F.H.

RESP. LAB. : R.H.B.C.

(%) 90.0 RESISTENCIA DIÁMETRO ALTURA AREA VOLUMEN PESO DENSIDAD CARGA

	AGITATION													
ž	was rapidled	MOLDEO ROTURA		DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	202000
: 4	MUESTRA 1	05/11/2022	19/11/2022	4	210	51	30,1	176,72	5319,12	12120	2278,6	33410	189,1	
8	MUESTRA 2	05/11/2022	19/11/2022	ā	210	15,01	30	176,95	5308,52	12190	2296,3	33280	188,1	245523
3	MUESTRA 3	05/11/2022	19/11/2022	*	210	15	30,1	176,72	5319,12	12200	2293,6	33520	190,2	575.5765
	OBSERVA	RVACIONES	2004								2	Concrete	Concretos normales	
							:8 :83					r ded (diss)	(%) (z00/da) a, i	6
					20/25	45(1)	7)	CONSE		.53.	-	25 - 35	
			2000000	がない	は、日本のでは、日本には、日本のでは、日本のでは、日本には、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、	22.	3	1	1		- in	10000		

90'8

9.68

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM	
r ded (dies)	17c (Kg/cocc) (%)
1	25 - 35
n	42 - 53
7	28 05
14	85 - 95
NZ.	02L-00L

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" JBICACIÓN PROYECTO

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

ESTRUCTURA

: F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y1 % DE FIBRA DE POLIPROPILENO

RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H.

copico	* di la ci i da ci d	FEC	CHA	EDAD	Fic	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
».	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
-	MUESTRA 1	05/11/2022	03/12/2022	28	210	15,01	30,1	176,95	5326,22	12411	2330,2	36320	205,3	7,78
8	MUESTRA 2	05/11/2022	03/12/2022	28	210	15,09	30,2	178,84	5401,03	12310	2279,2	36820	205,9	98,0
ю	MUESTRA 3	05/11/2022	03/12/2022	28	210	15,03	30,3	177,42	5375,90	12293	2286,7	36700	206,9	98,5

25-35
9 11 4 K

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" UBICACIÓN PROYECTO

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE SOLICITANTE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA

: F'C = 280 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H. 20,2

copidoo	COTDICTION	FECHA	HA	EDAD	F'c	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIS	RESISTENCIA
».	ESTRUCTURA	MOLDEO	DEO ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	%)
- 	MUESTRA 1	05/11/2022	12/11/2022	7	280	15	30,0	176,72	5301,45	12125	2287,1	34740	196,6	70,
N	MUESTRA 2	05/11/2022	12/11/2022	. Po	280	15,01	30,1	176,95	5326,22	12200	2290,6	35020	197,9	70,
6	MUESTRA 3	05/11/2022	12/11/2022	7	280	15	30	176,72	5301,45	12205	2302,2	35630	201,6	72,
				1										

Concrete	Concretos normales
r ded (diss)	1.'c (kg/cm2) (%)
1	25 - 35
n	42 - 53
7	70 85
14	85 - 95
HC.	06L-00L

- Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" PROYECTO

SOLICITANTE

ESTRUCTURA

UBICACIÓN

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

: F'C = 280 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

TEC, RESP.: L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	Aditoliates)EE(CHA	EDAD	F'c	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
N.	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
(8.0%)	MUESTRA 1	05/11/2022	19/11/2022	4	280	15,01	30,1	176,95	5326,22	12120	2275,5	42360	239,4	85,5
N	MUESTRA 2	05/11/2022	19/11/2022	4	280	15	30	176,72	5301,45	12000	2263,5	42070	238,1	0'58
e	MUESTRA 3	05/11/2022	19/11/2022	41	280	15,02	30,1	177,19	5333,32	12225	2292,2	42680	240,9	96,0

Connected	Conceptos normales
Edad (dias)	F'c (Kg/cm2) (%)
7	25 35
8	42 - 53
8	AN - NS
14	85 - 95
328	100 120

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 - Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 智 978 340 034 - 993 595 300.

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

JBICACIÓN

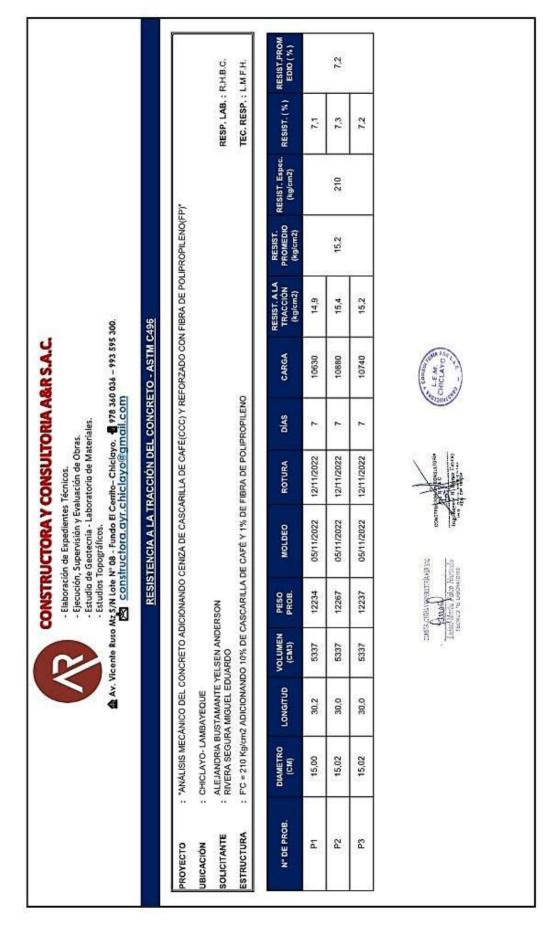
RESP. LAB.: R.H.B.C. TEC. RESP.: L.M.F.H.

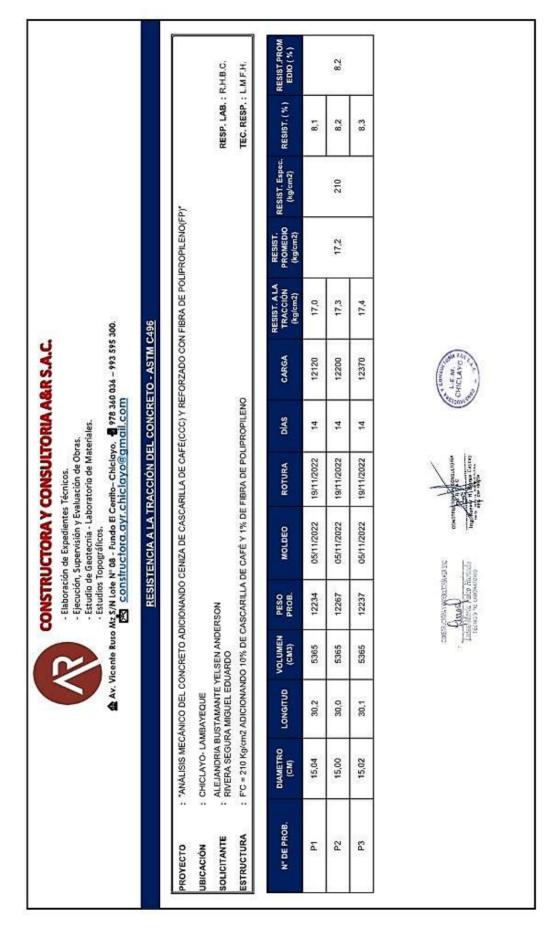
> : F'C = 280 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO ESTRUCTURA

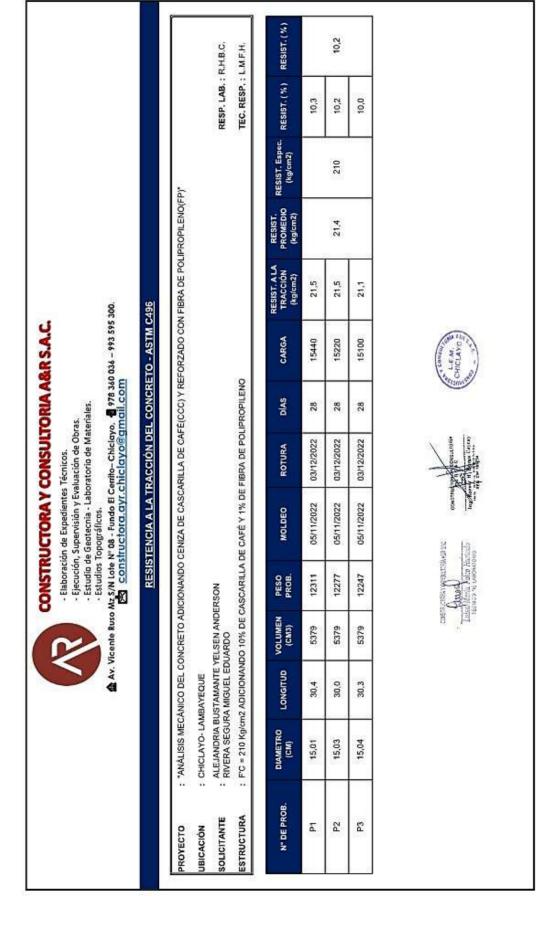
ż

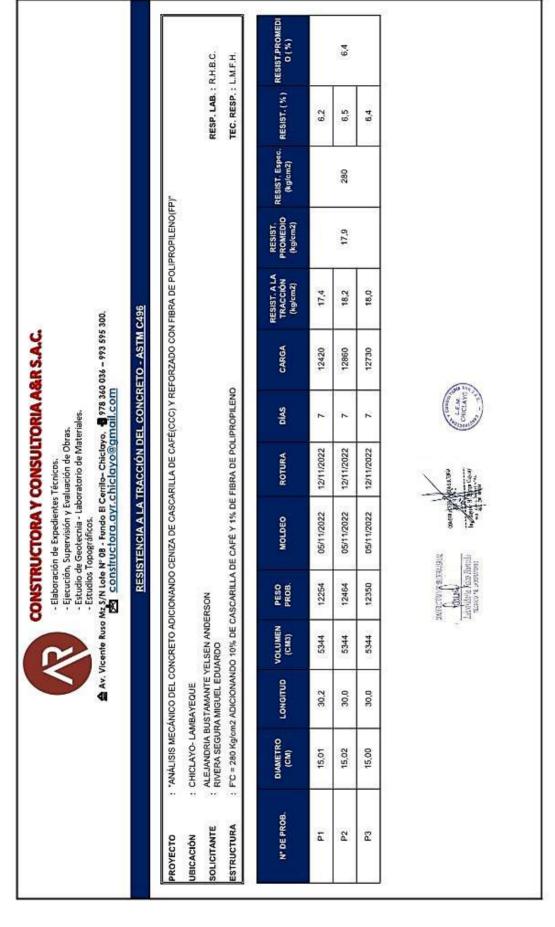
N

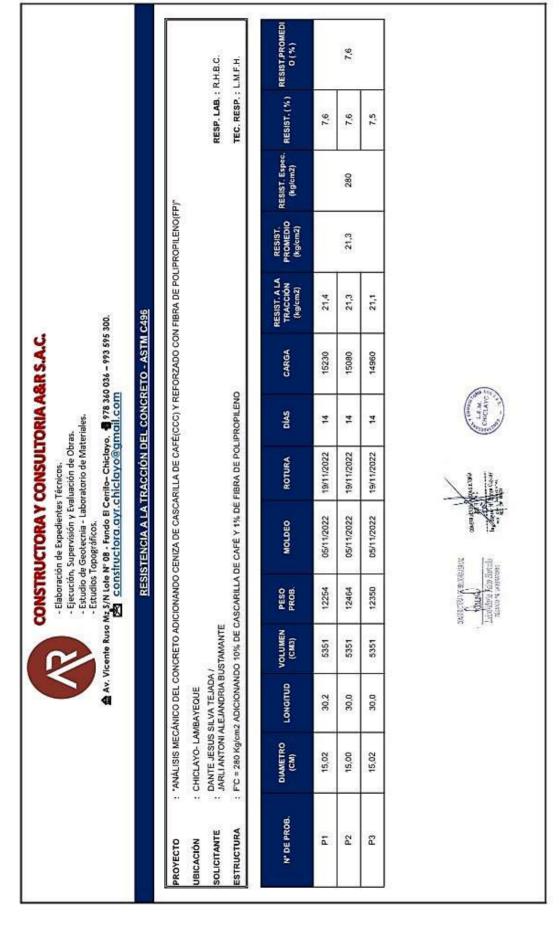
0

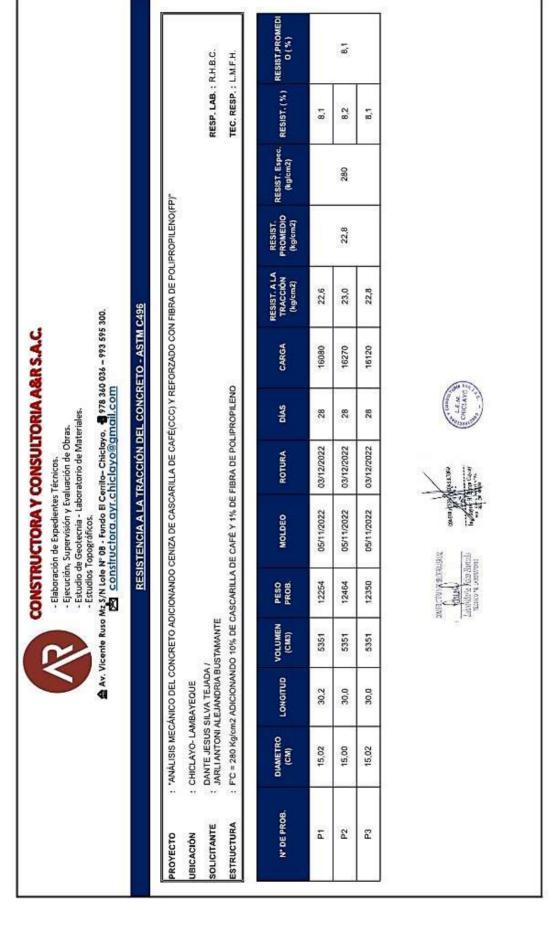

100,6 100,8 (%) 100,1 RESISTENCIA (kg/cm2) 281,5 280,2 282,2 CARGA 50010 49820 49520 (kg) DENSIDAD (gr/cm3) 2263,5 2292,2 2275,5 PESO 12120 12000 12225 (grs.) VOLUMEN 5326,22 5333,32 5301,45 (cm3) 176,72 177,19 AREA 176,95 (cm) DIÁMETRO ALTURA (cm) 30,1 30.1 30 15,02 (CIII) 15,01 15 DÍAS (kg/cm2) F, 280 280 280 EDAD 28 28 28 03/12/2022 03/12/2022 03/12/2022 MOLDEO ROTURA FECHA 05/11/2022 05/11/2022 05/11/2022 ESTRUCTURA MUESTRA 1 MUESTRA 2 MUESTRA 3 CODIGO

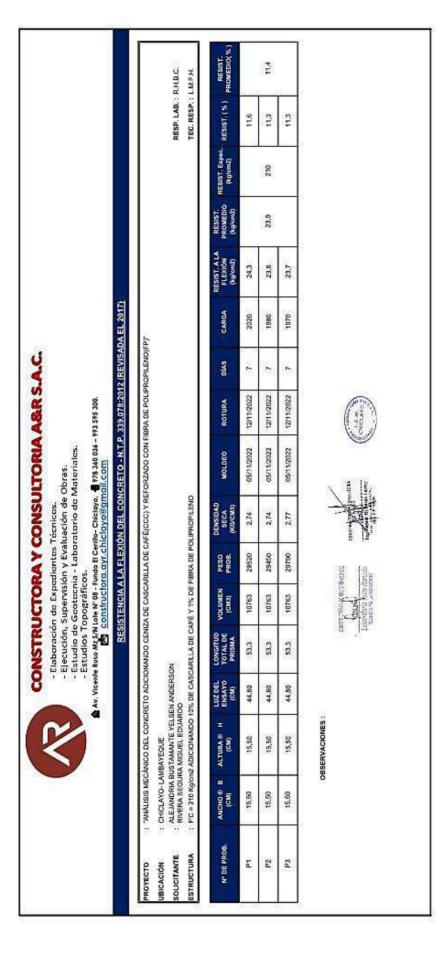


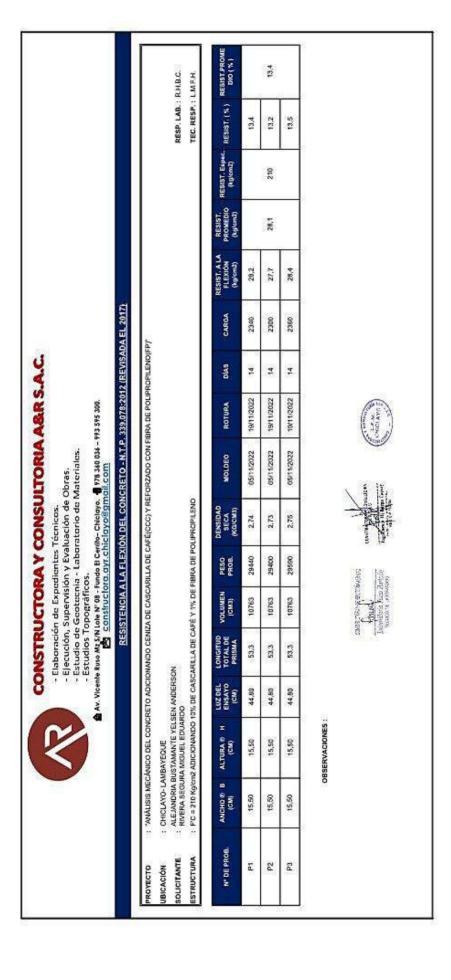


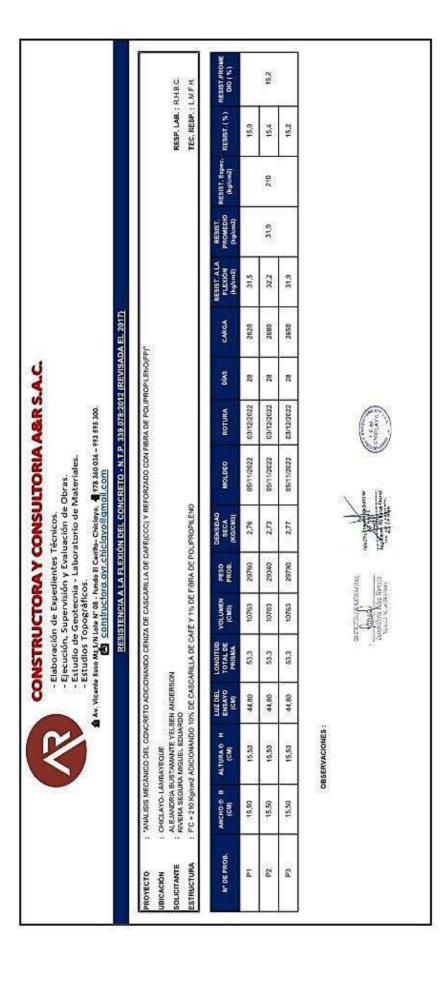


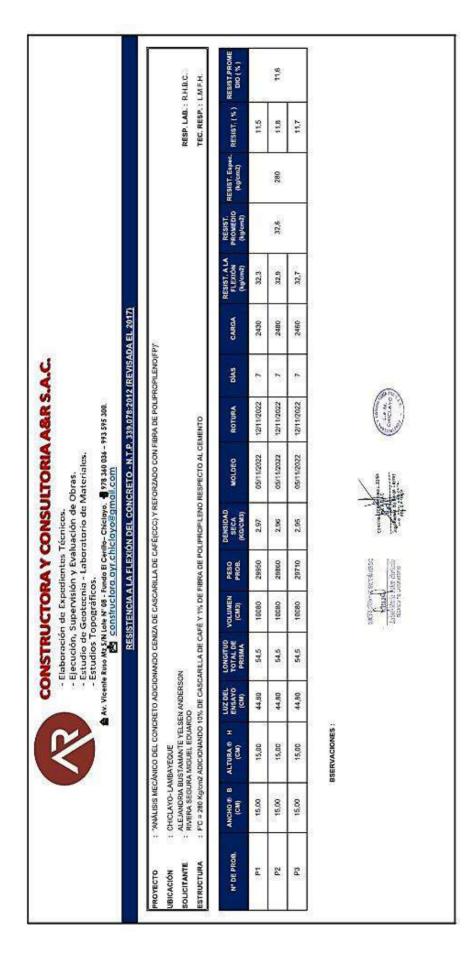


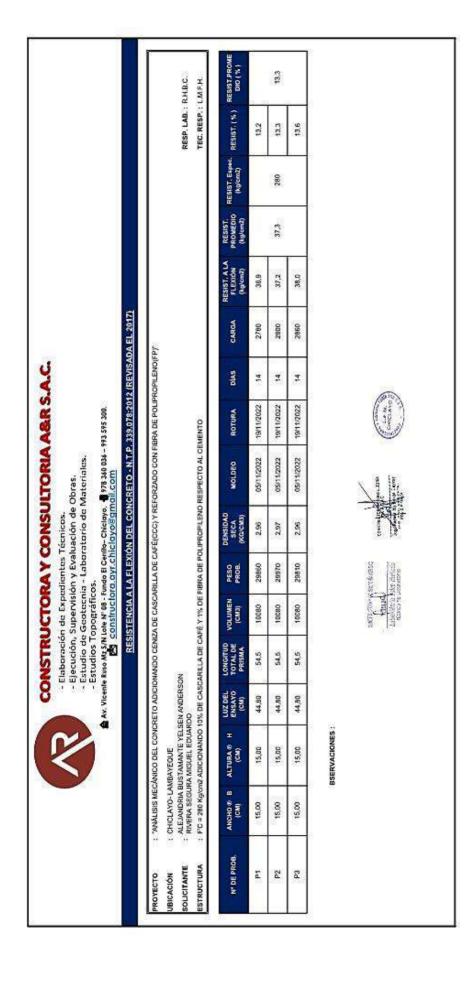


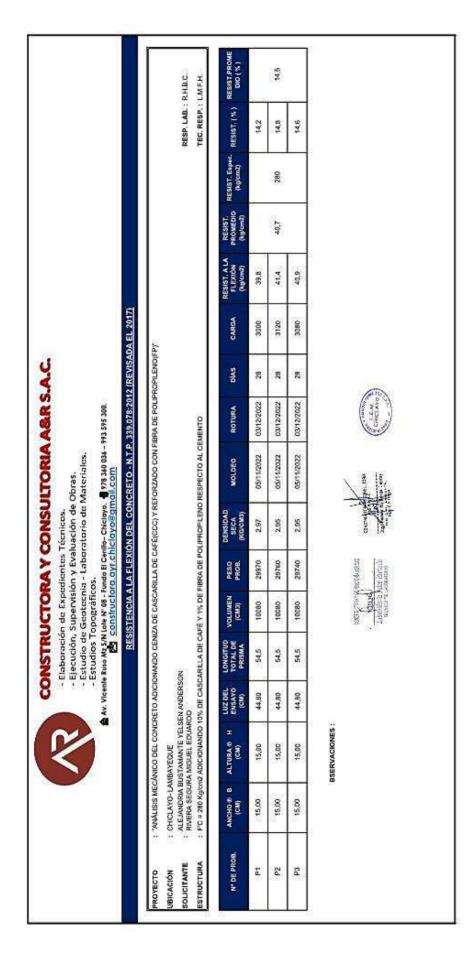












- Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales,
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE UBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

CODIGO	Adimonia	FE	FECHA	EDAD	Fre	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
»,	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
350	MUESTRA 1	05/11/2022	12/11/2022	7	210	15,03	30,1	177,42	5340,42	12210	2286,3	27320	154,0	73,3
R	MUESTRA 2	05/11/2022	12/11/2022		210	15	30	176,72	5301,45	12300	2320,1	27080	153,2	73,0
3	MUESTRA 3	05/11/2022	12/11/2022	7	210	15	30,1	176,72	5319,12	12290	2310,5	27260	154,3	73,5

Concrete	Concretos normales
Edad (dias)	F'e (Kg/cm2) (%)
a	25 35
м	42 - 53
z	70 - IS
34	85 - 95
38	100 120

- Ejecución, Supervisión y Evaluación de Obras. - Elaboración de Expedientes Técnicos.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	Aditoriora	FE	FECHA	EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
°,	earnor over	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
350	MUESTRA 1	05/11/2022	19/11/2022	14	210	15	30,1	176,72	5319,12	12120	2278,6	31420	177,8	84,7
N	MUESTRA 2	05/11/2022	19/11/2022	4	210	15,01	30	176,95	5308,52	12190	2296,3	31820	179,8	85.6
3	MUESTRA 3	05/11/2022	19/11/2022	*	210	15	30,1	176,72	5319,12	12200	2293,6	31120	1,971	83,9

Concrete	Concretos normales
Tribul (cline)	1,0 (66/0005) (85)
-	25 - 35
n	42 - 53
7	28 85
14	85 - 95
78	061-001

- Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	AGIIVIIOA	FECHA		EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
».	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
- T	MUESTRA 1	05/11/2022	03/12/2022	28	210	15,01	30,1	176,95	5326,22	12411	2330,2	34200	193,3	92.0
N	MUESTRA 2	05/11/2022	03/12/2022	58	210	15,09	30,2	178,84	5401,03	12310	2279,2	34490	192,9	91,8
ю	MUESTRA 3	05/11/2022	03/12/2022	28	210	15,03	30,3	177,42	5375,90	12293	2286,7	34080	192,1	5,16

Concreto	Concretos normales
r ded (diss)	17c (kg/coc2) (%)
, F	25 - 35
n	42 - 33
7	28 55
34	85 - 95
¥,	06L-00L

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 286 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	Adiitoliates	FEC	CHA	EDAD	F'c	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
ž	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
·*	MUESTRA 1	05/11/2022	12/11/2022	7	280	15	30,0	176,72	5301,45	12125	2287,1	37420	211,8	75,6
8	MUESTRA 2	05/11/2022	12/11/2022	7	280	15,01	30,1	176,95	5326,22	12200	2290,6	37830	213,8	76,4
e,	MUESTRA 3	05/11/2022	12/11/2022	7	280	15	30	176,72	5301,45	12205	2302,2	37190	210,5	75,2

Concreto	Concretos normales
r dad (diss)	(%) (com/da) a, i
-	25 - 35
n	42 - 53
7	28 55
14	85 - 95
24	02L-00L

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.

会 Av. Vicente Ruso Mz S/N Lote N® 08 - Fundo El Cerrito-Chiclayo, 4 978 340 034 - 993 595 300. Constructora.ayr.chiclayo®gmail.com Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

PROYECTO	: "ANÂLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"
UBICACIÓN	: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

: F'C = 280 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE ESTRUCTURA

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	Aditorion	FEC	HA	EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
N	ESINOCIONA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
(2 <mark>87</mark> 8)	MUESTRA 1	05/11/2022	19/11/2022	4	280	15,01	30,1	176,95	5326,22	12120	2275,5	44120	249,3	0'68
N.	MUESTRA 2	05/11/2022	19/11/2022	14	280	15	30	176,72	5301,45	12000	2263,5	44630	252,6	90,2
e	MUESTRA 3	05/11/2022	19/11/2022	4	280	15,02	30,1	177,19	5333,32	12225	2292.2	44200	249,5	1,68

normales	F'c (Kg/cm2) (%)	25 35	42 - 53	AU - NS	85 - 95	100 120
Conceetos normales	Edad (dias)	7	8	19	14	82

- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE PROYECTO UBICACIÓN

: F'C = 280 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

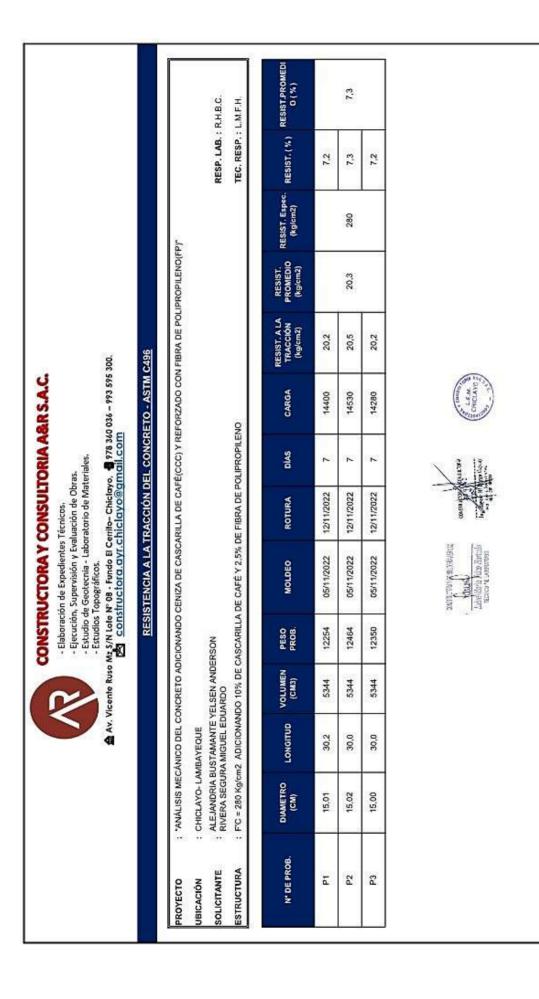
ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

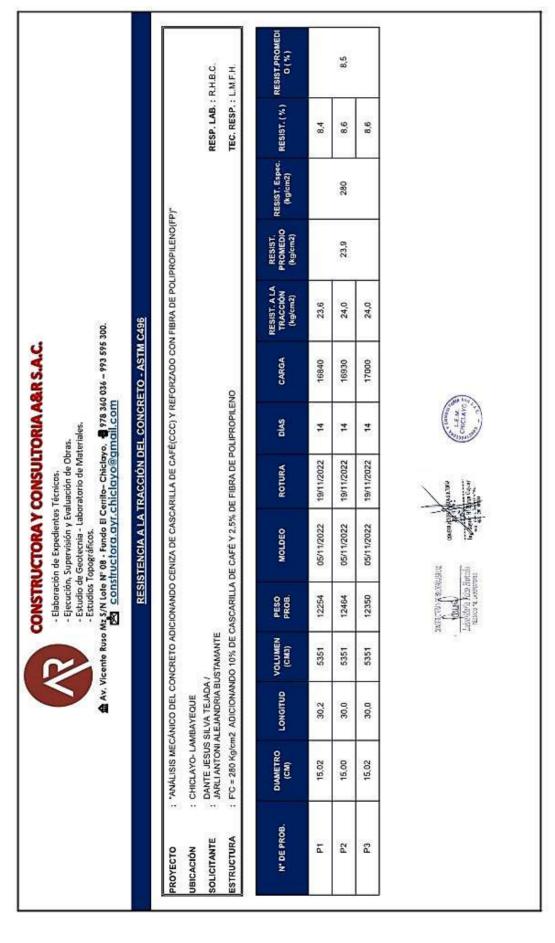
ESTRUCTURA SOLICITANTE

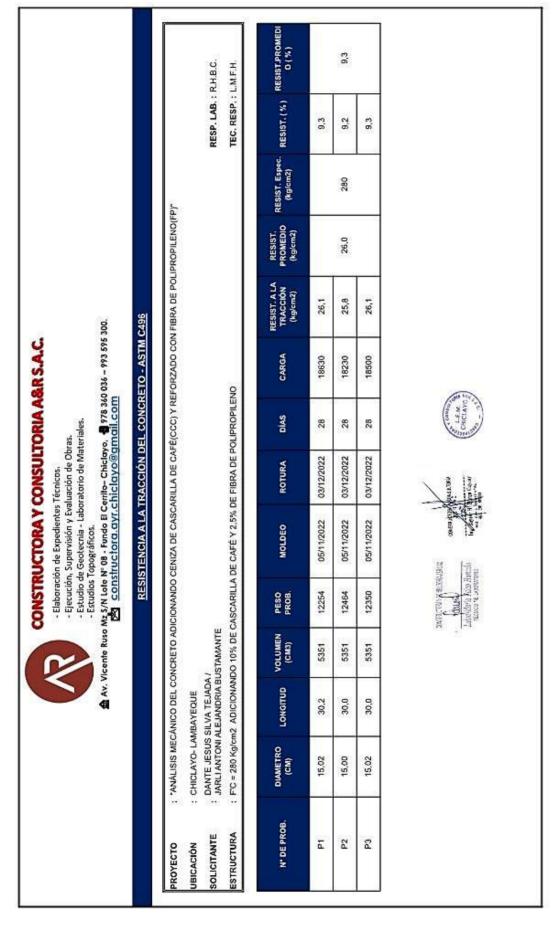
TEC, RESP.: L.M.F.H.

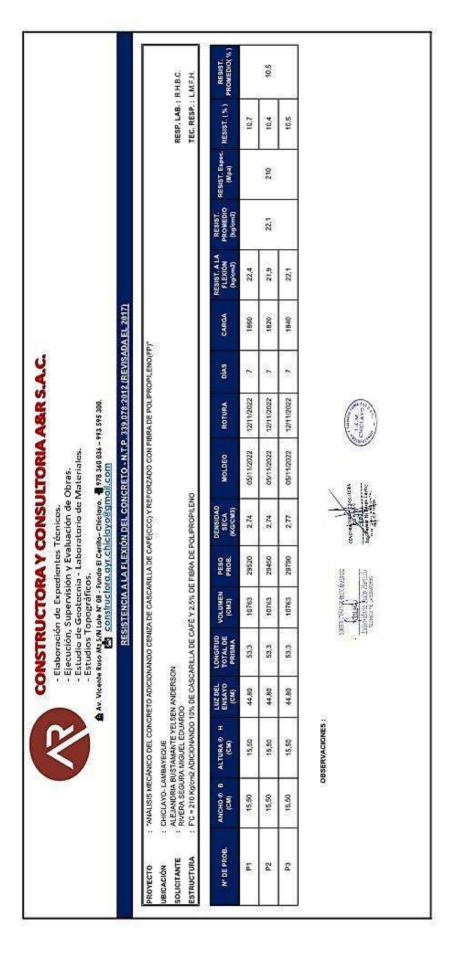
RESP. LAB.: R.H.B.C.

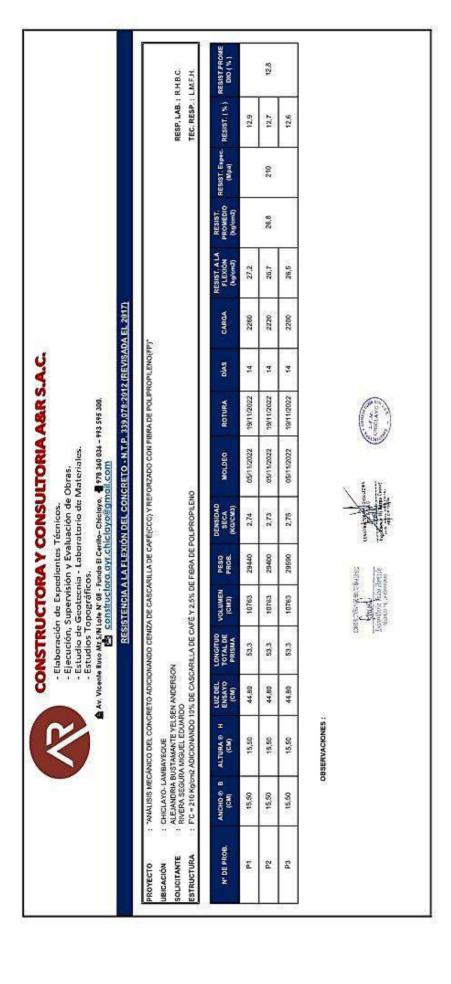
RESISTENCIA	(%)	102.2	101,5	100,9
RESIS	(kg/cm2)	286,1	284,2	282,6
CARGA	(kg)	50630	50230	50080
DENSIDAD	(gr/cm3)	2275,5	2263,5	2292,2
PESO	(grs.)	12120	12000	12225
VOLUMEN	(cm3)	5326,22	5301,45	5333,32
AREA	(cm)	176,95	176,72	177,19
ALTURA	(cm)	30,1	30	30,1
DIÁMETRO ALTURA	(cm)	15,01	15	15,02
Fe	(kg/cm2)	280	280	280
EDAD	DÍAS	28	28	28
ECHA	ROTURA	03/12/2022	03/12/2022	03/12/2022
FEC	MOLDEO	05/11/2022	05/11/2022	05/11/2022
Adirector	באר הסעורהם השלו הסעורהם	MUESTRA 1	MUESTRA 2	MUESTRA 3
CODIGO	÷.	(4 00)	N	e

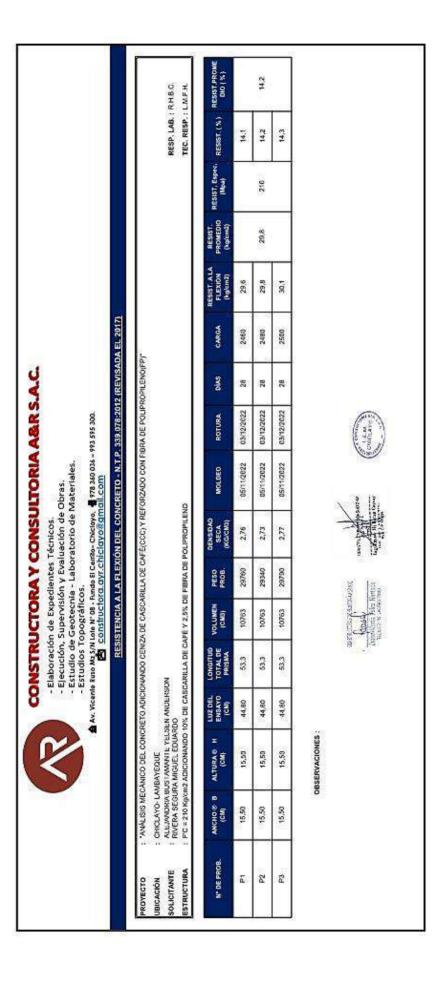

Contempt	Concretos normales
Edad (dias)	F'c (Kg/cm2) (%)
1	25 35
8	42 - 53
	ZN - DV
14	85 - 95
28	100 120

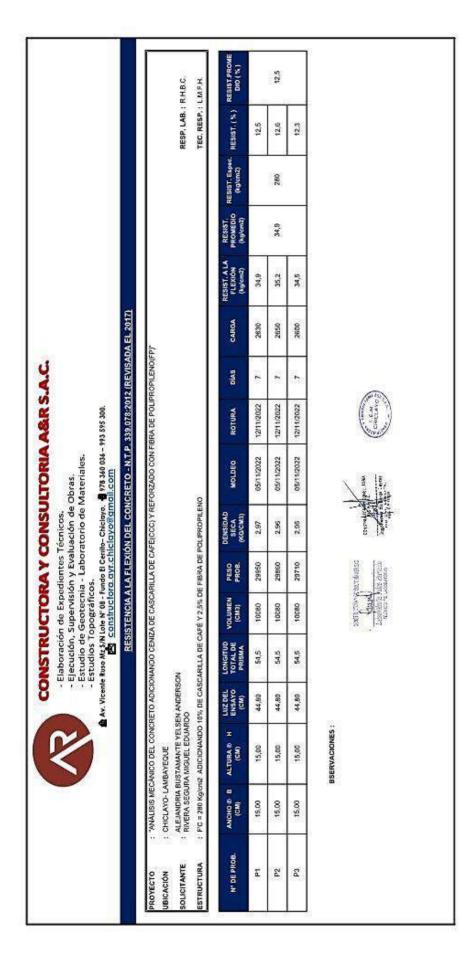


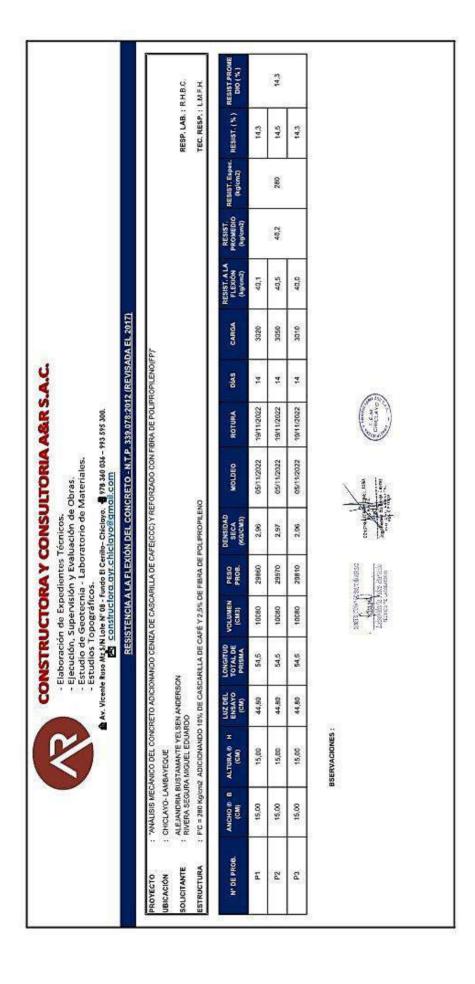

RESIST.PROM EDIO (%) 7 RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H. RESIST. (%) 7.2 7. 6,9 RESIST, Espec. (kg/cm2) 210 : "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESIST. PROMEDIO (kg/cm2) 14,9 RESIST, A LA TRACCIÓN (kg/cm2) : F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO 14,9 14,6 15,1 RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito—Chiclayo。 者 978 360 036 – 993 595 300. 図 constructora.ayr.chiclayの母知可にcom CONSTRUCTORAY CONSULTORIA A&R S.A.C. CARGA 10760 10580 10330 DIAS Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. 12/11/2022 12/11/2022 12/11/2022 ROTURA Elaboración de Expedientes Técnicos. 05/11/2022 05/11/2022 05/11/2022 Estudios Topográficos. MOLDEO 12234 PESO PROB. 12267 12237 ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO VOLUMEN (CM3) 5337 5337 5337 LONGITUD : CHICLAYO-LAMBAYEQUE 30.0 30,2 30,0 DIAMETRO (CM) 15,00 15,02 15,02 N" DE PROB ESTRUCTURA SOLICITANTE 33 P2 Σ PROYECTO UBICACIÓN

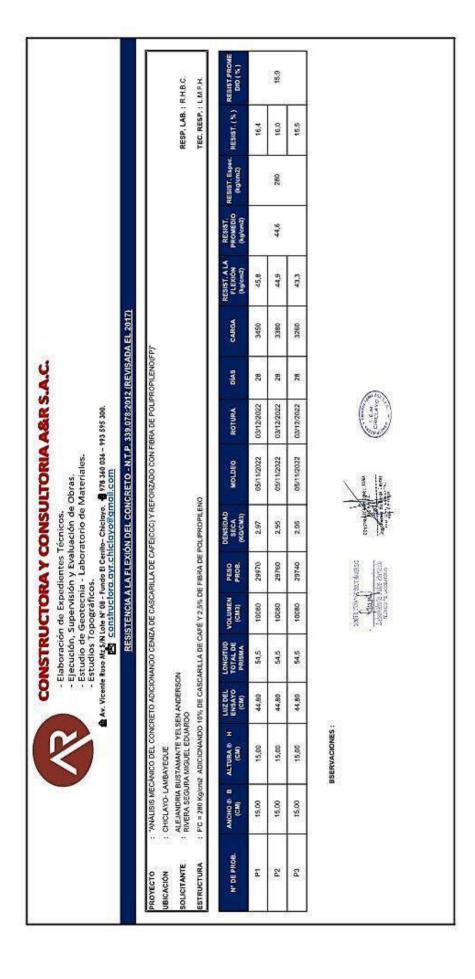

RESIST.PROM EDIO (%) 2,8 RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H. RESIST. (%) 4.9 7.8 7,8 RESIST, Espec. (kg/cm2) 210 : "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESIST. PROMEDIO (kg/cm2) 16,5 RESIST, A LA TRACCIÓN (kg/cm2) : F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO 16,6 16,3 16,5 会 Av. Vicente Ruso Mz S/N Late N° 68 - Fundo El Cerrito-Chiclayo, 個 978 360 036 - 993 595 300. でのSfructora. ayr.chiclayo@gmail.com RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 CONSTRUCTORAY CONSULTORIA A&R S.A.C. CARGA 11850 11530 11700 DIAS 4 4 14 Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. 19/11/2022 19/11/2022 19/11/2022 ROTURA Elaboración de Expedientes Técnicos. 05/11/2022 05/11/2022 05/11/2022 Estudios Topográficos. MOLDEO 12234 PESO PROB. 12267 12237 ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO VOLUMEN (CM3) 5365 5365 5365 LONGITUD : CHICLAYO-LAMBAYEQUE 30,1 30,2 30,0 DIAMETRO (CM) 15,02 15,04 15,00 N" DE PROB ESTRUCTURA SOLICITANTE 33 P2 Σ PROYECTO UBICACIÓN


RESIST. (%) 8,4 RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H. RESIST. (%) 8,3 8,3 8,5 RESIST, Espec. (kg/cm2) 210 : "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESIST. PROMEDIO (kg/cm2) 17,6 RESIST, A LA TRACCIÓN (kg/cm2) : F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO 17,4 17,5 17,8 RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito—Chiclayo。 者 978 360 036 – 993 595 300. 図 constructora.ayr.chiclayの母知可にcom CONSTRUCTORAY CONSULTORIA A&R S.A.C. CARGA 12720 12500 12360 DIAS 28 28 28 Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. 03/12/2022 03/12/2022 03/12/2022 ROTURA Elaboración de Expedientes Técnicos. 05/11/2022 05/11/2022 05/11/2022 Estudios Topográficos. MOLDEO 12311 PESO PROB. 12277 12247 ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO VOLUMEN (CM3) 5379 5379 5379 LONGITUD : CHICLAYO-LAMBAYEQUE 30,3 30,4 30,0 DIAMETRO (CM) 15,04 15,01 15,03 N" DE PROB ESTRUCTURA SOLICITANTE 33 P2 Σ PROYECTO UBICACIÓN









- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 - Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 号 978 340 036 - 993 595 300. 本の Constructora. Gyr. chiclay の密明 mail. com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

PROYECTO	: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"
UBICACIÓN	SEDISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

RESP. LAB.: R.H.B.C. TEC. RESP.: L.M.F.H.

: F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

CODIGO

ž

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

SOLICITANTE

(%) 70,3 71,1 69,4 RESISTENCIA (kg/cm2) 147,6 145,7 149,4 CARGA 25080 26430 (kg) DENSIDAD (gr/cm3) 2285,9 2272,9 PESO 12090 (BLS:) 12120 12135 VOLUMEN 5319,12 5308,52 5319,12 (cm3) 176,72 176,72 176,95 AREA (cm) DIÁMETRO ALTURA (cm) 30,1 30,1 30 (cm) 15,01 5 13 DÍAS (kg/cm2) 210 Fle 210 210 EDAD 05/11/2022 12/11/2022 12/11/2022 12/11/2022 MOLDEO ROTURA FECHA 05/11/2022 05/11/2022 ESTRUCTURA MUESTRA 2 MUESTRA 3 MUESTRA 1

OBSERVACIONES:

6

CHICLAYO E

Concrete	Concretos normales
Edad (dias)	F'c (Kg/cm2) (%)
40	25 35
65	42-53
z	70 - KS
24	85 - 95
38	100 120

- Estudio de Geotecnia - Laboratorio de Materiales.

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 4 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE PROYECTO JBICACIÓN

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

CODIGO

ž

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H.

(%) 81,6 82,0 6,08 RESISTENCIA (kg/cm2) 171,3 172,1 170,0 CARGA 30270 30080 (kg) DENSIDAD (gr/cm3) 2293,6 2296,3 PESO 12200 12120 12190 (grs.) VOLUMEN 5319,12 5319,12 (cm3) 5308,52 176,72 176,72 176,95 AREA (cm) DIÁMETRO ALTURA (cm) 30,1 30,1 33 (cm) 15,01 5 13 DÍAS (kg/cm2) 210 Fle 210 210 EDAD 4 7 7 05/11/2022 19/11/2022 19/11/2022 19/11/2022 MOLDEO ROTURA FECHA 05/11/2022 05/11/2022 ESTRUCTURA MUESTRA 2 MUESTRA 3 MUESTRA 1

OBSERVACIONES:

6

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

金 Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 号 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

RESP. LAB. : R.H.B.C.

TEC. RESP. : L.M.F.H.

copigo	Adirenta	FECHA		DAD	EDAD F'c	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
»,	Estractions	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
350	MUESTRA 1	05/11/2022	03/12/2022	28	210	15,01	30,1	176,95	5326,22	12411	2330,2	33660	190,2	90'06
2	MUESTRA 2	05/11/2022	03/12/2022	88	210	15,09	30,2	178,84	5401,03	12310	2279,2	33270	186,0	9.88
3	MUESTRA 3	05/11/2022	03/12/2022	28	210	15,03	30,3	177,42	5375,90	12293	2286,7	33950	191,4	1,16

CHICLAYO

- Elaboración de Expedientes Técnicos.
- Estudio de Geotecnia Laboratorio de Materiales. - Ejecución, Supervisión y Evaluación de Obras.

Estudios Topográficos.

♣ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, ♣ 978 340 036 - 993 595 300. ♠ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE PROYECTO JBICACIÓN

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON 'RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

: F'C = 280 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

VOLUMEN

AREA

DIÁMETRO ALTURA

Fle

EDAD

(cm3)

(cm)

(cm) 30,0

(cm)

DÍAS (kg/cm2)

MOLDEO ROTURA FECHA

ESTRUCTURA

CODIGO

ž

ESTRUCTURA

RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H.

RESISTENCIA	(%)	72.2	71,6	72,4			(%)		-	m	- 1
RESIST	(kg/cm2)	202,2	200,5	202,7		Concretos normales	(%) (zmo/da) a, i	25-33	42 - 53	8	85 - 95
CARGA	(kg)	35740	35480	35820		Concrete	I dead (clion)	н	n	7	14
ENSIDAD	(gr/cm3)	2287,1	2290,6	2302,2	-			500	-n		- 130

12200

5326,22

176,95

30,1

15,01

280

12/11/2022

05/11/2022

MUESTRA 2

5301,45

176,72

5

280

12/11/2022

05/11/2022

MUESTRA 1

12205

5301,45

176,72

30

13

280

12/11/2022

05/11/2022

MUESTRA 3

6

OBSERVACIONES:

Star percentages to communication of the communicat	A Securiosis	THE MARKET CONTRACTOR
2 P 8 8	Ameso Constitution of the	califfering Anton Hentado

34 th 140	1 (deat) (dises)	25 - 35 70 - 83
7.5	14	85 - 95
	X.	021-001

CHICLAYO

Elaboración de Expedientes Técnicos. Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos.

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Centito-Chiclayo, 者 978 340 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

PROYECTO	: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"
UBICACIÓN	: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE
SOLICITANTE	. ALEJANDRIA BUSTAMANTE YELSEN ANDERSON TRIVERA SEGURA MIGUEL EDUARDO
ESTRUCTURA	: F'C = 280 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

RESP. LAB.: R.H.B.C. TEC, RESP.: L.M.F.H.

copico	Aditolidas	FE	FECHA	EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
N.	TWO LOOK IS	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
(250)	MUESTRA 1	05/11/2022	19/11/2022	4	280	15,01	30,1	176,95	5326,22	12120	2275,5	41250	233,1	83,3
. 80	MUESTRA 2	05/11/2022	19/11/2022	14	280	15	30	176,72	5301,45	12000	2263,5	41680	235,9	84,2

sucremelles	F'c (Kg/cm2) (%)	25 35	42 - 53	70-NS	85 - 95
Concreto	Edad (dias)	7	8	*	14
	13 24	CONSUL	CONSTRUCTION OF THE PARTY OF THE W. P.	THE CHICLAND ST	Con Contract of the contract o
		And the control of the control and the control of t	Charles of the state of the sta	Zassz Zerz Hartzee	TECHCO 12 LABORATORS
OBSERVACIONES:					

82,6

231,3

40980

2292,2

12225

5333,32

177,19

30,1

15,02

280

4

19/11/2022

05/11/2022

MUESTRA 3

0

Establish presentation to community of presentations of the first presentation of the	Concentry recrimistry. [dias] Fo (Kg/cm2) (%)	25 35	42 - 53	/U-185	85 - 95	100 120
Control of the particular of t	Edad (dias)	7	ø	39	4	87
Single Report at the Comment of the	22	4 CONSU	Segue 1109 ik	CLAYC	Con Control of the Co)
		The state of the s	Charles Age of the Control of the Co		ų.	

Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos.

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

PROYECTO JBICACIÓN RESP. LAB.: R.H.B.C.

: F'C = 280 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO ESTRUCTURA SOLICITANTE

TEC, RESP.: L.M.F.H.

copidoo	Aditoligae	FEC	HA	EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
. N	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
e <mark>str</mark> e	MUESTRA 1	05/11/2022	19/11/2022	28	280	15,01	30,1	176,95	5326,22	12120	2275,5	46140	260,8	93,1
8	MUESTRA 2	05/11/2022	19/11/2022	28	280	15	30	176,72	5301,45	12000	2263,5	46380	262,5	93,7
e	MUESTRA 3	05/11/2022	19/11/2022	28	280	15,02	30,1	177,19	5333,32	12225	27357	45830	258,7	92,4

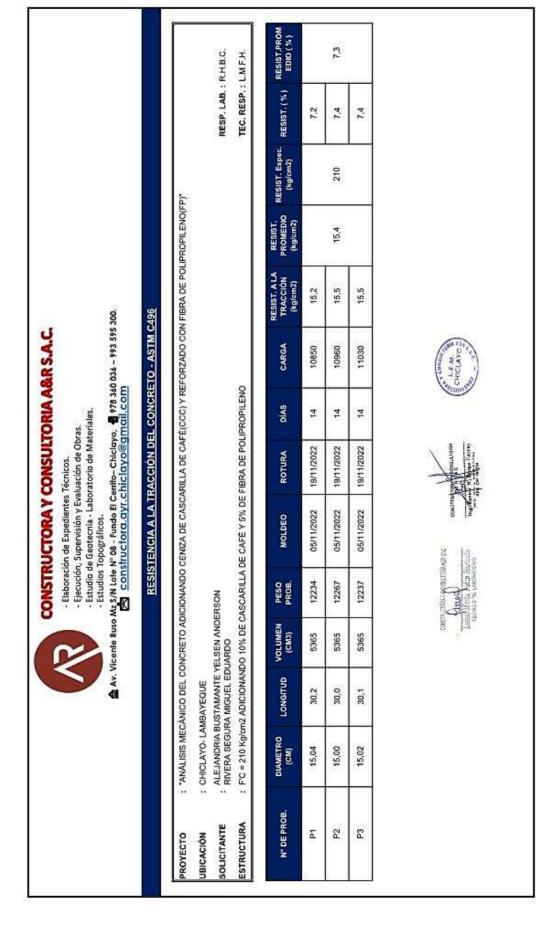
Concept	Control of the Contro
Edad (dias)	F'c (Kg/cm2) (%)
7	25 35
8	42 - 53
(9)	ZH - DZ
14	85 - 95
78	100 120

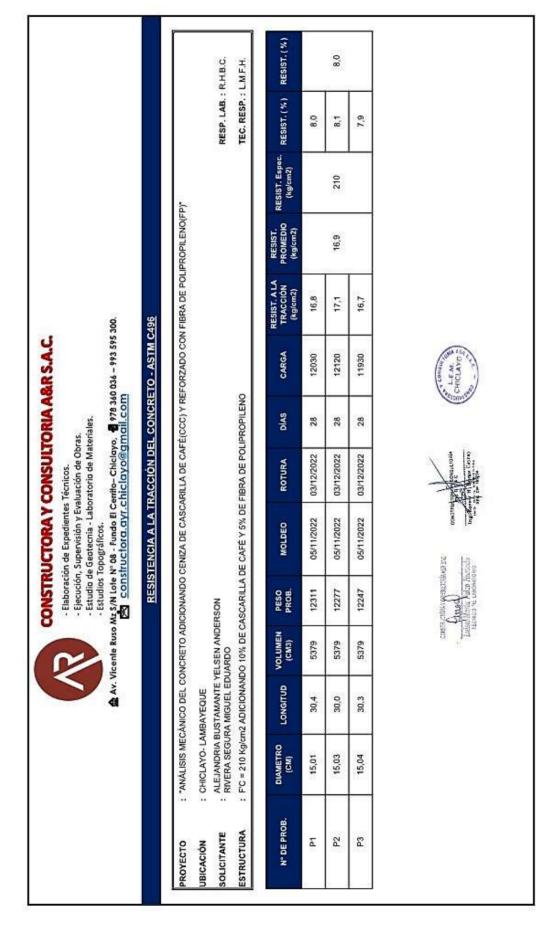
RESP. LAB. : R.H.B.C. : "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 : FIC = 210 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO : CHICLAYO-LAMBAYEQUE ESTRUCTURA SOLICITANTE PROYECTO UBICACIÓN

TEC. RESP. : L.M.F.H.

ROB. MOLDEO ROTURA		MOLDEO
2234 04/11/2022 11/11/2022	12	04/11/2022 11/
11/11/2022 11/11/2022	Ŧ	04/11/2022 11
12237 04/11/2022 11/11/202	12237 04/11/2022 11/11	11/11

2 P3


Σ


N. DE P

9	۱
=	ı
~	ı
v	ŀ
o	ľ
	ı
R	ı
	ı
-	ı
70	ı
**	ı
◂	ı
70	ı
	ı
0	ı
y	ı
F	ı
m	I.
-	I.
L CONCRETO - ASTM C496	ľ
75	ı
~	١
	ı
~	ı
v	ı
O	ı
u	ı
	ı
	ı
•	ı
0	ı
-	ı
ı	ı
	ı
o	ı
	ı
6	ı
ч	ı
О	ı
7	ı
TRACCIÓN DEI	۱
œ	ı
_	ı
-	ı
ď	١
	ı
A LA TRA	ľ
	ı
AA	ľ
	ı
	ı
_	ı
ջ	ı
	ľ
-	ı
Ш	ľ
	ı
	ı
2	ı.
I	١
ഗ	ı
m	ı
=	ı
œ	п

PROYECTO	; "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	
UBICACIÓN	: CHICLAYO-LAMBAYEQUE	
SOLICITANTE	ALEJANDRIA BUSTAMANTE YELSEN ANDERSON TRIVERA SEGURA MIGUEL EDUARDO	RESP. LAB. : R.H.B.C.
ESTRUCTURA	: FC = 289 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO	TEC. RESP.: L.M.F.H.

RESIST.PROMEDI O(%)		9'9		
RESIST. (%)	6,5	6,7	9'9	
RESIST. Espec. RES		280		
RESIST, PROMEDIO (kg/cm2)		18,4		
RESIST. A LA TRACCIÓN (kg/cm2)	18,1	18,6	18,5	
CARGA	12860	13180	13050	
DÍAS	12	7	2	
ROTURA	12/11/2022	12/11/2022	12/11/2022	
MOLDEO	05/11/2022	05/11/2022	05/11/2022	
PESO PROB,	12254	12464	12350	
VOLUMEN (CM3)	5344	5344	5344	
гоментир	30,2	30,0	30,0	
DIAMETRO (CM)	15,01	15,02	15,00	
N' DE PROB.	P1	P2	P3	

CONSTRUCTORAY CONSULTORIA A&R S.A.C. Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos. - Elaboración de Expedientes Técnicos.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

会 Av. Vicente Ruso Mz S/N tole N° 08 · Fundo El Certito-Chiclayo. 書 978 360 036 - 993 595 300. で constructora, ayr. chiclayo®gmail.com : *ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : FC = 280 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO DANTE JESUS SILVA TEJADA / JARLI ANTONI ALEJANDRIA BUSTAMANTE : CHICLAYO- LAMBAYEQUE ESTRUCTURA SOLICITANTE PROYECTO JBICACIÓN

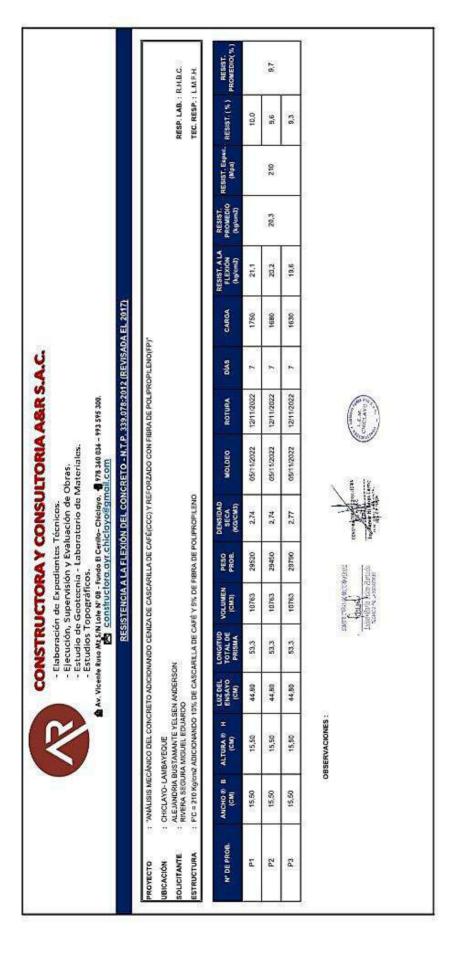
RESP. LAB.: R.H.B.C. TEC. RESP.: L.M.F.H.

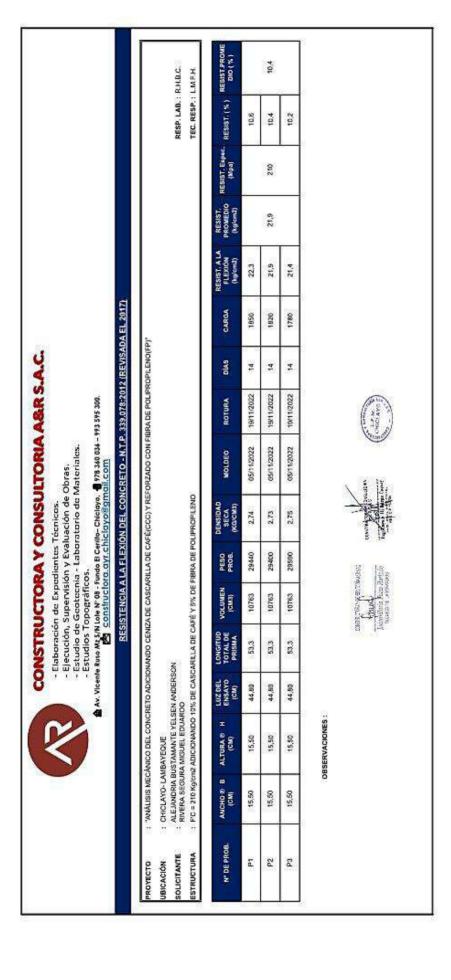
-					
RESIST.PROMED O(%)		0'8			
RESIST.(%)	6,7	8,1	8,1		
RESIST, Espec. RE:		280			
RESIST. PROMEDIO (kg/cm2)		22,5			
RESIST. A LA TRACCIÓN (kg/cm2)	22,2	22,6	22,6		
CARGA	15800	15960	16020		
DIAS	14	14	\$		
ROTURA	19/11/2022	19/11/2022	19/11/2022		
MOLDEO	05/11/2022	05/11/2022	05/11/2022		
PESO PROB,	12254	12464	12350		
VOLUMEN (CM3)	5351	5351	5351		
LONGITUD	30,2	30,0	30,0		
DIAMETRO (CM)	15,02	15,00	15,02		
N' DE PROB.	P1	P2	P3		

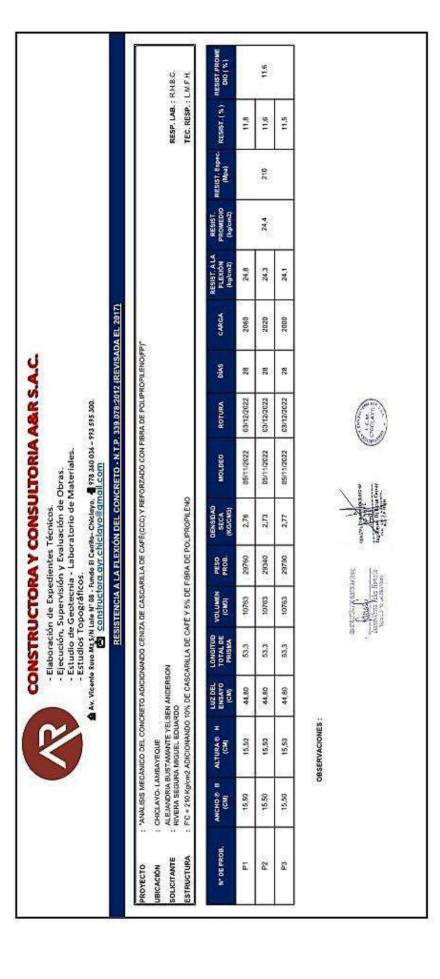
. "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

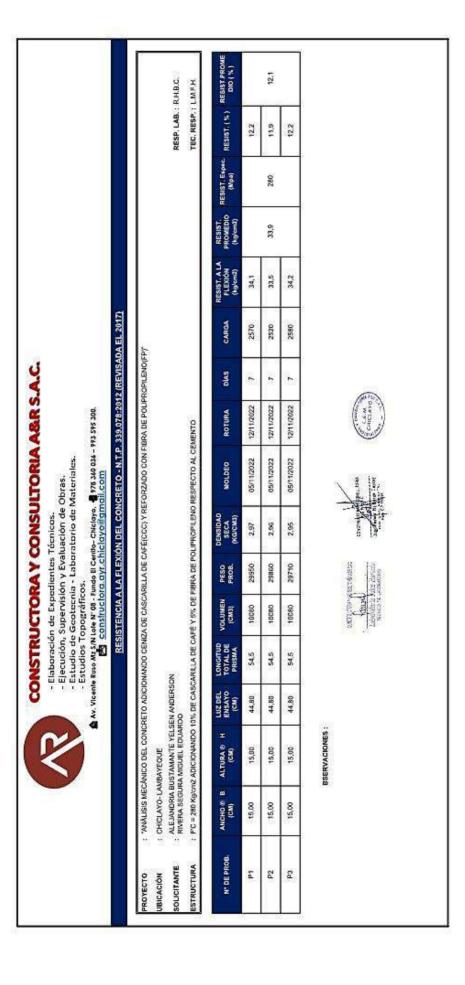
: FC = 280 Kg/cm2 ADICIONANDO 10% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

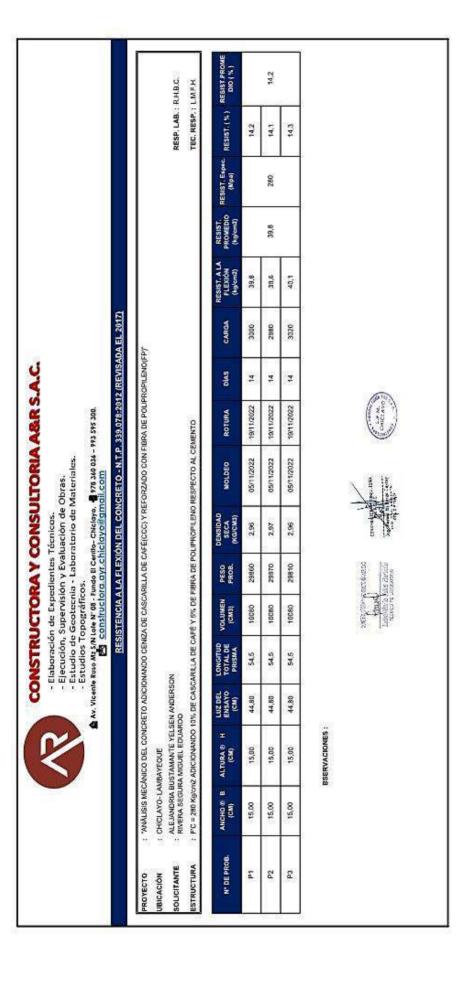
DANTE JESUS SILVA TEJADA / JARLI ANTONI ALEJANDRIA BUSTAMANTE

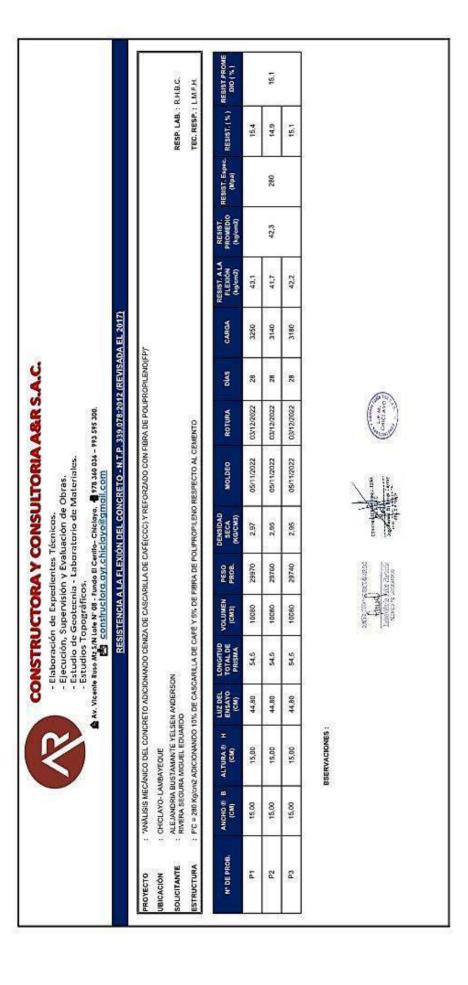

SOLICITANTE


: CHICLAYO- LAMBAYEQUE


PROYECTO


RESIST.PROMEDI O(%)		8,8	
RESIST. (%)	8,6	8,8	8'8
RESIST, Espec. 1 (Mpa)		280	
RESIST. PROMEDIO (Kg/cm2)		24,5	
RESIST. A LA TRACCIÓN (kg/cm2)	24,2	24,8	24,7
CARGA	17230	17500	17490
DÍAS	28	28	28
ROTURA	03/12/2022	03/12/2022	03/12/2022
MOLDEO	2202/11/50	05/11/2022	05/11/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	1389	5351	5351
ГОМСІТИВ	30,2	30,0	30,0
DIAMETRO (CM)	15,02	15,00	15,02
N' DE PROB.	ъ	P2	P3





- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copidoo	Aditolidas	FE	FECHA	EDAD	F'c	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
N.	ESTRUCTORA	MOLDEO ROTURA	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
350	MUESTRA 1	06/11/2022	13/11/2022	7	210	15	30,1	176,72	5319,12	12120	2278,6	24320	137,6	65,5
N	MUESTRA 2	06/11/2022	13/11/2022		210	15,01	30	176,95	5308,52	12135	2285,9	24750	139,9	9.99
6	MUESTRA 3	06/11/2022	13/11/2022	7	210	15	30,1	176,72	5319,12	12090	2272,9	25020	141,6	67,4

OBSERVACIONES:

CHICLAYO

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO ESTRUCTURA

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	COTDICTION	FECHA		EDAD	Fre	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
N.	ESTRUCTORA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
-	MUESTRA 1	06/11/2022	20/11/2022	14	210	15	30,1	176,72	5319,12	12120	2278,6	30630	173,3	82,5
N	MUESTRA 2	06/11/2022	20/11/2022	4	210	15,01	30	176,95	5308,52	12190	2296,3	31080	175,6	83.6
ŝ	MUESTRA 3	06/11/2022	20/11/2022	14	210	15	30,1	176,72	5319,12	12200	2293,6	30140	170,6	81,2

Concrete	Concretos normales
relast (cline)	1,0 (66/0002) (80)
1	25 - 35
n	42 - 53
7	28 85
14	85 - 95
HC.	02L-00L

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales. Estudios Topográficos.

♣ Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Centho-Chiclayo. 4 978 340 036 - 993 595 300.
○ Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE ALEJANDRIA BUSTAMANTE YELSEN ANDERSON 'RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE JBICACIÓN

: F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H.

8 92,3 91,0 90,5 RESISTENCIA (kg/cm2) 193,9 190,0 191,1 CARGA 34180 34400 33620 (kg) DENSIDAD (gr/cm3) 2286,7 2330,2 2279,2 PESO 12310 12293 (BLS:) 12411 VOLUMEN 5401,03 5375,90 5326,22 (cm3) 177,42

176,95

30,1

210

04/12/2022

06/11/2022

MUESTRA 1

AREA

DIÁMETRO ALTURA

Fle

EDAD

(cm)

(cm)

(cm) 15,01

DÍAS (kg/cm2)

MOLDEO ROTURA FECHA

ESTRUCTURA

CODIGO

ž

ESTRUCTURA

PROYECTO

178,84

30,2

15,09

210

28

04/12/2022

06/11/2022

MUESTRA 2

30,3

15,03

210

28

04/12/2022

06/11/2022

MUESTRA 3

6

1 1.5 (**Part (************************************		Concret	schonnales
-		r ded (diss)	17c (Kg/cm2) (%)
2 L 24		F	25-35
7 24 4	n eta	n	42 - 53
3.6	-	7	28 55
38. 		34	85 - 95
		, K	061-001

diegraphics.	Costs Costs
On-company to the	H design of
Contraction programmes are	Lussel Meric Anko Hartado

CONSUL	TOUR NEW OF	W CHICLAYON	N. S. W.	
7	construction of the construction of	The state of the Control	1000 at 100 ans	
666	34000 236	Hartrole	(COC)	

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

: F'C = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

ESTRUCTURA SOLICITANTE

RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H. CIA (%)

62,9

86.8

66,4

	Concret	osnonnalas
	r dad (diss)	1.5 (Kg/cm2) (%)
	н	25 - 35
in.	n	42 - 53
	7	70 85
132	14	85 - 95
	Ж.	02L-00L

copico	A COTTO I COTTO	FECHA		EDAD	EDAD F'c	DIAMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENC
ž	ESTRUCTURA	MOLDEO ROTURA		DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)
	MUESTRA 1	06/11/2022	13/11/2022	7	280	15	30,0	176,72	5301,45	12125	2287,1	32620	184,6
N	MUESTRA 2	06/11/2022	13/11/2022	7	280	15,01	30,1	176,95	5326,22	12200	2290,6	33080	186,9
9	MUESTRA 3	06/11/2022	13/11/2022	7	280	15	30	176,72	5301,45	12205	2302,2	32840	185,8

CONSTRUCTORAY CONSULTORIA A&R S.A.C. - Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE PROYECTO JBICACIÓN

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

ESTRUCTURA

: F'C = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

TEC, RESP.: L.M.F.H.

RESP. LAB.: R.H.B.C.

Total Control	FE	FECHA	EDAD	Fie	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
מאחויטויטוני:	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
MUESTRA 1	06/11/2022	20/11/2022	4	280	15,01	30,1	176,95	5326,22	12120	2275,5	38740	218,9	78,2
MUESTRA 2	06/11/2022	20/11/2022	14	280	15	30	176,72	5301,45	12000	2263,5	38340	217,0	77,5
MUESTRA 3	06/11/2022	20/11/2022	14	280	15,02	30,1	177,19	5333,32	12225	2,292,2	38200	215,6	0'11

-	Contonelle	Concretos normales
	Edad (dias)	F'c (Kg/cm2) (%)
:-	1	25 35
	8	42 - 53
e,	19	AU-185
c.	14	85 - 95
	28	100 120

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" PROYECTO JBICACIÓN

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA

CODIGO

ż

ESTRUCTURA SOLICITANTE

MUESTRA 1

MUESTRA 2

MUESTRA 3

m

: F'C = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

TEC, RESP.: L.M.F.H.

RESP. LAB.: R.H.B.C.

MOLDEO ROTURA DÍAS (kg/cm²) (cm) (cm) (cm) (cm3) (grs.) (gricm3) (kg) (kg/cm²) (%) (%) (kg/cm²) (%) (%) (gricm3) (gricm3) (gricm3) (kg/cm²) (%) (%) (gricm3) (gri	4	2	FECHA	EDAD	F.	DIAMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA	
04/12/2022 28 280 15.01 30.1 176.95 5326,22 12120 2275,5 41860 236,6 04/12/2022 28 280 15 30 176,72 5301,45 12000 2263,5 41370 234,1 04/12/2022 28 280 15,02 30,1 177,19 5333,32 12225 2292,2 40080 226,2	5	MOLDEO		DÍAS	(kg/cm2)		(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)	
04/12/2022 28 280 15 30 176,72 5301,45 12000 2263,5 41370 234,1 04/12/2022 28 280 15,02 30,1 177,19 5333,32 12225 2292,2 40080 226,2	70 00 7	06/11/2022			280	15,01	30,1	176,95	5326,22	12120	2275,5	41860	236,6	84,5	
04/12/2022 28 280 15,02 30,1 177,19 5333,32 12225 2292,2 40080 226,2	i Ni	06/11/2022	10.00.115		280	15		176,72	5301,45	12000	2263,5	41370	234,1	83,6	
	ത	06/11/2022			280	15,02		177,19	5333,32	12225	2292,2	40080	226,2	80,8	100
	OBS	ERVACIONES	900												1000

### ##################################	Canada	Concretos normales.
	Edad (dias)	F'c (Kg/cm2) (%)
	1	25 35
	8	42 - 53
0	8	AL-185
	14	85 - 95
	238	100 120

RESIST.PROM EDIO (%) 5.8 RESP. LAB. : R.H.B.C. TEC. RESP.: L.M.F.H. RESIST. (%) 5,5 5.8 6,0 RESIST, Espec. (kg/cm2) 210 : "ANÁLISIS MEGÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESIST. PROMEDIO (kg/cm2) 12,1 RESIST, A LA TRACCIÓN (kg/cm2) 11,5 12,2 12.7 曲 Av. Vicente Ruso Mz S/N Lote N" 08 - Fundo El Cerrito-Chiclayo, 増 978 360 036 - 993 595 300. 図 constructora.ayr.chiclayo@gmail.com RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 CONSTRUCTORA Y CONSULTORIA A&R S.A.C. CARGA 8630 8970 8200 : P'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÈ Y 1% DE FIBRA DE POLIPROPILENO DIAS Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. 13/11/2022 13/11/2022 13/11/2022 ROTURA - Elaboración de Expedientes Técnicos. 06/11/2022 06/11/2022 06/11/2022 MOLDEO Estudios Topográficos. 12234 12267 12237 PESO PROB. ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO VOLUMEN (CM3) 5337 5337 5337 LONGITUD : CHICLAYO-LAMBAYEQUE 30,0 30,0 30,2 DIAMETRO (CM) 15,02 15,00 15,02 N° DE PROB. ESTRUCTURA SOLICITANTE 53 F P2 UBICACIÓN PROYECTO

会 Av. Vicente Ruso Mz 5/N Lote N" 08 - Fundo El Cerrito-Chiclayo, 者 978 360 036 - 993 595 300. CONSTRUCTORA Y CONSULTORIA A&R S.A.C. Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Elaboración de Expedientes Técnicos. Estudios Topográficos.

: "ANÁLISIS MEGÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 : F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO : CHICLAYO-LAMBAYEQUE ESTRUCTURA SOLICITANTE PROYECTO UBICACIÓN

RESIST.PROM EDIO (%)		7,3	3-1
RESIST. (%)	7,0	7,4	7,4
RESIST. Espec. (kg/cm2)		210	
RESIST, PROMEDIO (kg/cm2)		15,3	
RESIST, A LA TRACCIÓN (kg/cm2)	14,8	15,5	15,5
CARGA	10530	10960	11020
DIAS	14	14	14
ROTURA	20/11/2022	20/11/2022	20/11/2022
MOLDEO	06/11/2022	06/11/2022	06/11/2022
PESO PROB.	12234	12267	12237
VOLUMEN (CM3)	5365	5365	5365
LONGITUD	30,2	30,0	30,1
DIAMETRO (CM)	15,04	15,00	15,02
N° DE PROB.	P1	P2	P3

会 Av. Vicente Ruso Mz 5/N Lote N" 08 - Fundo El Cerrito-Chiclayo, 者 978 360 036 - 993 595 300. RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 CONSTRUCTORA Y CONSULTORIA A&R S.A.C. Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Elaboración de Expedientes Técnicos. Estudios Topográficos.

: "ANÁLISIS MEGÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

: P'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

SOLICITANTE

: CHICLAYO-LAMBAYEQUE

PROYECTO UBICACIÓN

RESIST. (%)	e 16	8,2	
RESIST. (%)	8,0	8,4	8,2
RESIST. Espec. R (kg/cm2)		210	111
RESIST. PROMEDIO (kg/cm2)		17,2	
RESIST, A LA TRACCIÓN (kg/cm2)	16,8	17,6	17.2
CARGA	12030	12460	12280
DÍAS	28	28	28
ROTURA	04/12/2022	04/12/2022	04/12/2022
MOLDEO	06/11/2022	06/11/2022	06/11/2022
PESO PROB.	12311	12277	12247
VOLUMEN (CM3)	5379	5379	6329
LONGITUD	30,4	30.0	8'08
DIAMETRO (CM)	15,01	15,03	15,04
N° DE PROB.	М	P2	P3

CONSTRUCTORA Y CONSULTORIA A&R S.A.C. Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos. - Elaboración de Expedientes Técnicos.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

会 Av. Vicente Ruso Mz S/N Lote N° 08 · Fundo El Cerrito—Chiclayo. 号 978 360 036 − 993 595 300. で Chiclayo®gmail.com

; "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : CHICLAYO- LAMBAYEQUE PROYECTO JBICACIÓN

: FC = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

SOLICITANTE

RESIST.PROMEDI 0 (%)		4,3	
ESIST.(%)	4,3	4.4	4,3
i. RESIST, Espec. Ri 2) (kg/cm2)		280	
RESIST PROMEC (Kg/cm)		12,2	
RESIST. A LA TRACCIÓN (kg/cm2)	12,1	12,3	12,1
CARGA	8600	8720	8560
pias	7	2	7
ROTURA	13/11/2022	13/11/2022	13/11/2022
MOLDEO	06/11/2022	06/11/2022	06/11/2022
PESO PROB.	12254	12464	12350
(CM3)	5344	5344	5344
ГОМОПЛО	30,2	30,0	30.0
DIAMETRO (CM)	10'91	15,02	15,00
N' DE PROB.	P1	P2	P3

- Elaboración de Expedientes Técnicos. - Ejecución, Supervisión y Evaluación de Obras. - Estudio de Geotecnia - Laboratorio de Materiales. - Estudios Topográficos. - Estudios Topográficos. Av. Vicente Ruso Mz S/N Lole N° 08 - Fundo El Cerrillo-Chiclayo, 4978 360 036 - 1993 595 300. CONSTRUCTORA Y CONSULTORIA A&R S.A.C.

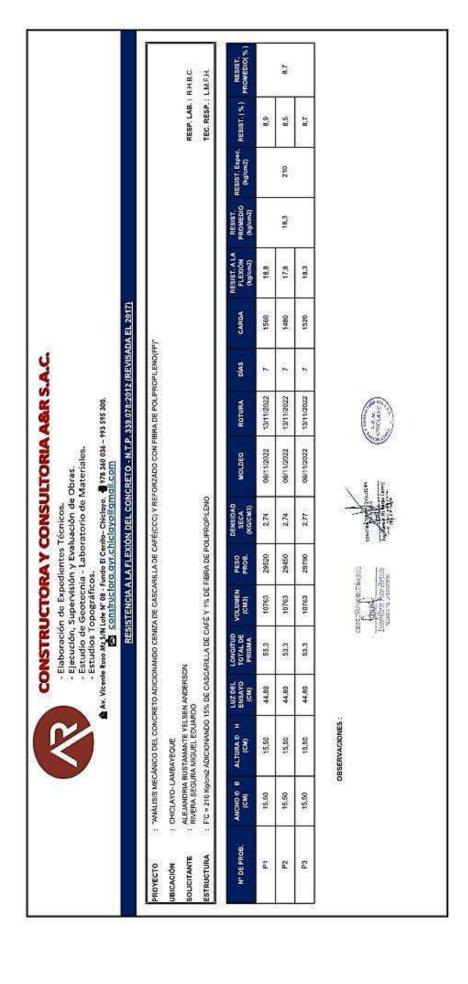
RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

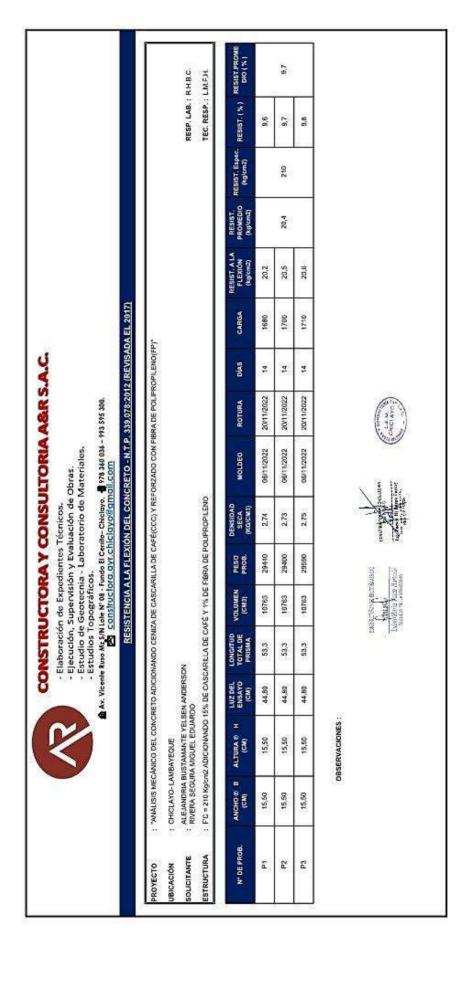
ROYECTO	; "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	
JBICACIÓN	: CHICLAYO-LAMBAYEQUE	
SOLICITANTE	DANTE JESUS SILVA TEJADA / JARLI ANTONI ALEJANDRIA BUSTAMANTE	RESP. LAB. : R.H.B.C.
STRUCTURA	: FC = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO	TEC. RESP.: L.M.F.H.

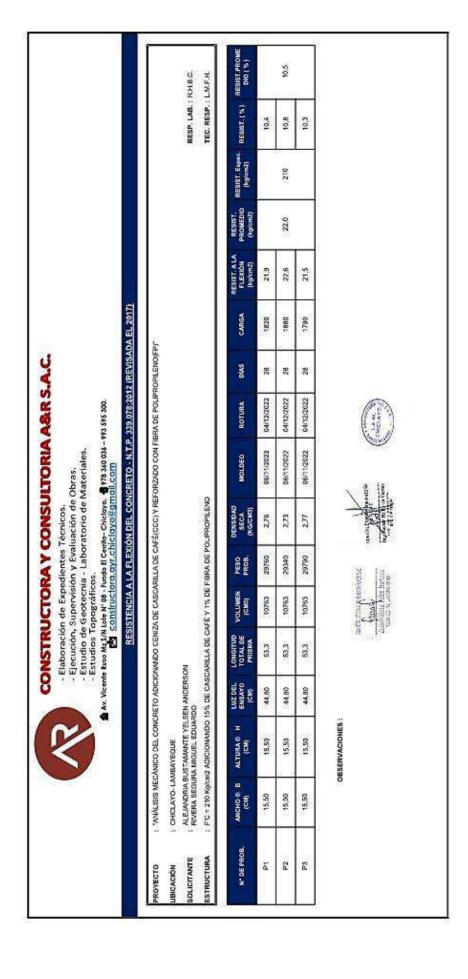
RESIST.PROMEDI O (%)		6,3	
RESIST.(%)	6,2	6,4	6.3
RESIST. Espec. F (kg/cm2)		280	
RESIST. PROMEDIO (kg/cm2)		17,71	
RESIST. A LA TRACCIÓN (kg/cm2)	17,5	18,1	17,6
CARGA	12450	12760	12430
ojas	14	14	14
ROTURA	20/11/2022	20/11/2022	20/11/2022
MOLDEO	06/11/2022	06/11/2022	06/11/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5351	5351	5351
LОМВІТИВ	30,2	30,0	30,0
DIAMETRO (CM)	15,02	15,00	15,02
N' DE PROB.	PI	P2	Рз

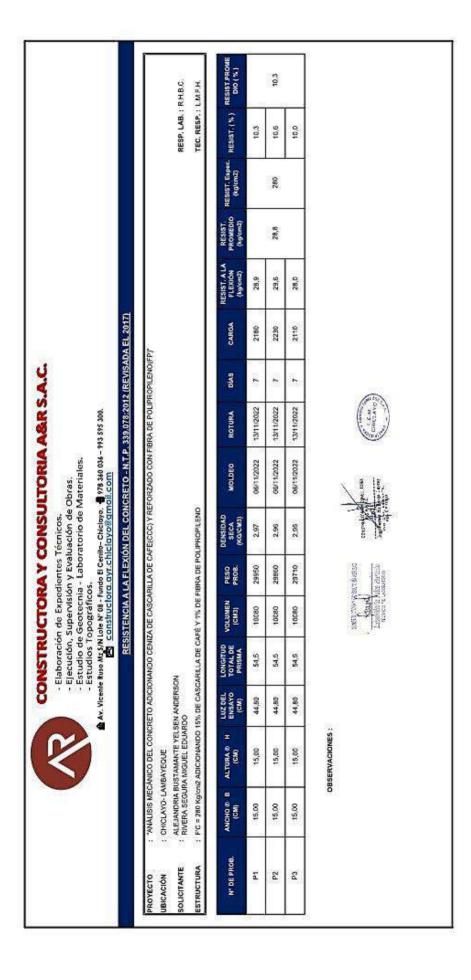
- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia - Laboratorio de Materiales.
- Estudios Topográficos.
- Estudios Topográficos.

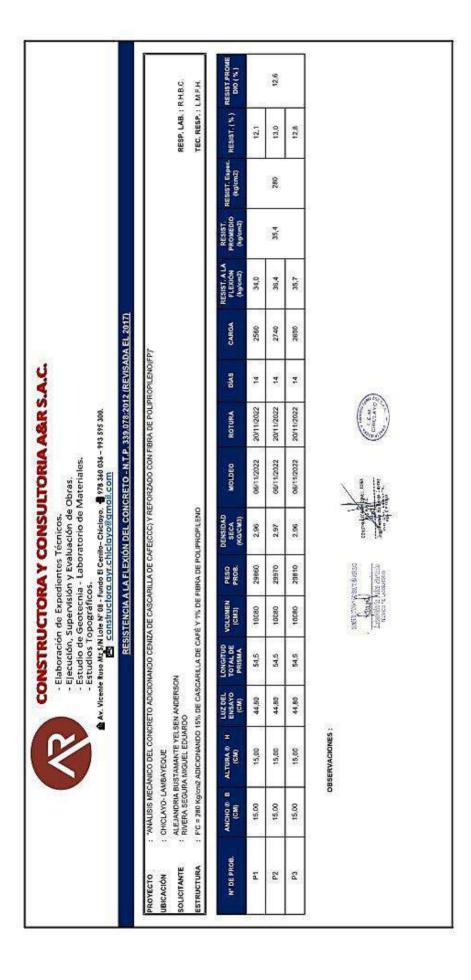
Av. Vicente Ruso Mz S/N Lole N° 08 - Fundo El Cerrito-Chicloyo. 49 778 360 036 – 793 595 300.

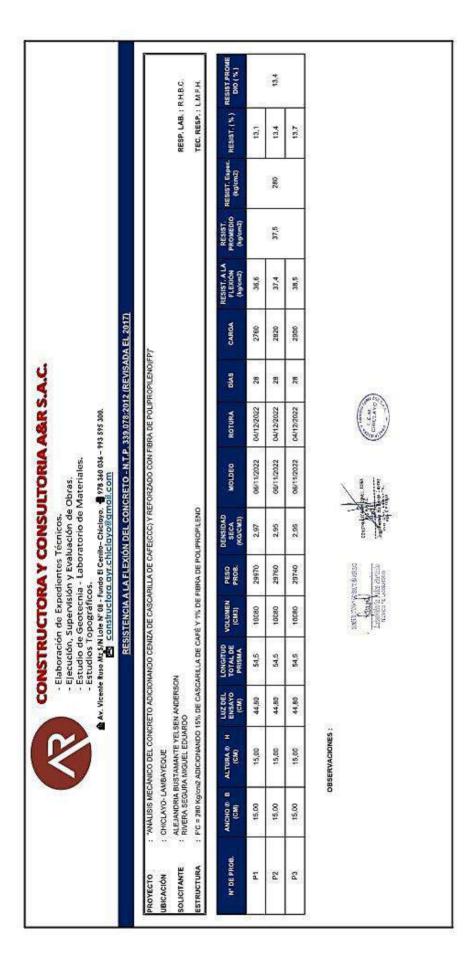

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496


PROYECTO	; "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	
UBICACIÓN	: CHICLAYO-LAMBAYEQUE	
SOLICITANTE	DANTE JESUS SILVA TEJADA / . JARLI ANTONI ALEJANDRIA BUSTAMANTE	RESP. LAB.: R.H.B.C.
ESTRUCTURA	: FC = 289 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 1% DE FIBRA DE POLIPROPILENO	TEC, RESP.: L.M.F.H.


RESIST.PROMEDI		7,8	
RESIST.(%)	7,8	7.7	7.8
RESIST. Espec. RESIST. (%) (kg/cm2)		280	
RESIST. PROMEDIO (kg/cm2)		21,7	
RESIST. A LA TRACCIÓN (kg/cm²)	21,8	21,5	21,9
CARGA	15500	15230	15470
pias	28	28	28
ROTURA	04/12/2022	04/12/2022	04/12/2022
MOLDEO	06/11/2022	06/11/2022	06/11/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5351	5351	5351
ГОМВІТИВ	30,2	30.0	30,0
DIAMETRO (CM)	15,02	15,00	15,02
N' DE PROB.	P1	P2	P3







- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

: F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

> ESTRUCTURA SOLICITANTE

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	Aditoriates	FECHA		EDAD	Fic	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
»,	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
	MUESTRA 1	06/11/2022	13/11/2022	7	210	15	30,1	176,72	5319,12	12120	2278,6	23620	133,7	63,6
N	MUESTRA 2	06/11/2022	13/11/2022		210	15,01	30	176,95	5308,52	12135	2285,9	24250	137,0	65,3
3	MUESTRA 3	06/11/2022	13/11/2022	7	210	15	30,1	176,72	5319,12	12090	2272,9	24030	136,0	64,8

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" JBICACIÓN PROYECTO

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	a de la contracta	FEC	HA	EDAD	Flo	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENGIA
ν,	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
	MUESTRA 1	06/11/2022	20/11/2022	14	210	15	30,1	176,72	5319,12	12120	2278,6	29530	1,781	79,6
8	MUESTRA 2	06/11/2022	20/11/2022	4	210	15,01	30	176,95	5308,52	12190	2296,3	29840	168,6	80.3
е	MUESTRA 3	06/11/2022	20/11/2022	2	210	15	30,1	176,72	5319,12	12200	2293,6	29200	165,2	7.87

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

: F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

ESTRUCTURA

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copido	a di ancienta de	FECHA		EDAD	Fie	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
	MUESTRA 1	06/11/2022	04/12/2022	28	210	15,01	30,1	176,95	5326,22	12411	2330,2	31980	180,7	1,98
	MUESTRA 2	06/11/2022	04/12/2022	58	210	15,09	30,2	178,84	5401,03	12310	2279.2	32170	179,9	85,7
	MUESTRA 3	06/11/2022	04/12/2022	28	210	15,03	30,3	177,42	5375,90	12293	2286,7	32060	180,7	86,0

Concrete	Concretos normales
r dad (diss)	(%) (zoo/da) a, i
-	25 - 35
n	42-53
4	28 55
14	85 - 95
7H	021-001

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" JBICACIÓN PROYECTO

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

SOLICITANTE

: F'C = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO ESTRUCTURA

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

RESISTENCIA	(%)	69,2	70,4	68,7
RESIS	(kg/cm2)	193,9	197,1	192,4
CARGA	(kg)	34260	34880	34000
DENSIDAD	(Bulcm3)	2287,1	2290,6	2302,2
I PESO I	(grs.)	12125	12200	12205
VOLUMEN	(cm3)	5301,45	5326,22	5301,45
AREA	(cm)	176,72	176,95	176,72
ALTURA	(cm)	30,0	30,1	30
DIÁMETRO ALTURA	(cm)	72	15,01	15
EDAD F'c	(kg/cm2)	280	280	280
EDAD	DÍAS	7	7	7
HA	ROTURA	13/11/2022	13/11/2022	13/11/2022
FECHA	MOLDEO	06/11/2022	06/11/2022	06/11/2022
COTDICTION	eal room real	MUESTRA 1	MUESTRA 2	MUESTRA 3
copido	Š.	-	2	3

CHICLAYO

Concrete	Concretos normales.
I ded (diss)	17c (kg/coc2) (%)
-	25 - 35
'n	42 - 53
7	28 05
14	85 - 95
28	021-001

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

: DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

PROYECTO JBICACIÓN : F'C = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

RESP. LAB.: R.H.B.C.

TEC, RESP.: L.M.F.H.

copico	o de la constancia)BB	FECHA	EDAD	F'c	DIÁMETRO	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
N.	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
(8.57)) (8.57)	MUESTRA 1	06/11/2022	20/11/2022	44	280	15,01	1'06	176,95	5326,22	12120	2275,5	40820	230,7	82,4
2	MUESTRA 2	06/11/2022	20/11/2022	14	280	15	30	176,72	5301,45	12000	2263,5	40560	229,5	82,0
e	MUESTRA 3	06/11/2022	20/11/2022	41	280	15,02	30,1	61,771	5333,32	12225	2292,2	41030	231,6	82,7

(36)

Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos.

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO PROYECTO JBICACIÓN

: F'C = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

ESTRUCTURA SOLICITANTE

TEC, RESP.: L.M.F.H.

RESP. LAB.: R.H.B.C.

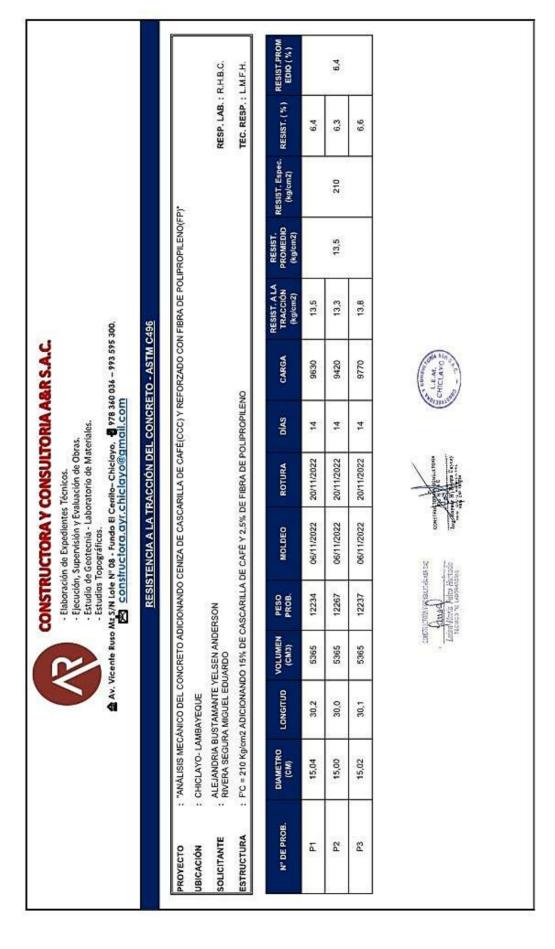
	FECHA	EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
MOLDEO ROTURA DÍAS	DÍAS	100	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gricm3)	(kg)	(kg/cm2)	(%)
06/11/2022 04/11/2022 28	A COUNTY OF		280	15,01	30,1	176,95	5326,22	12120	2275,5	44120	249,3	0,68
06/11/2022 04/11/2022 28			280	15	30	176,72	5301,45	12000	2263,5	43860	248,2	9'88
06/11/2022 04/11/2022 2	60	28	280	15,02	30,1	177,19	5333,32	12225	2292,2	43500	245,5	7,78

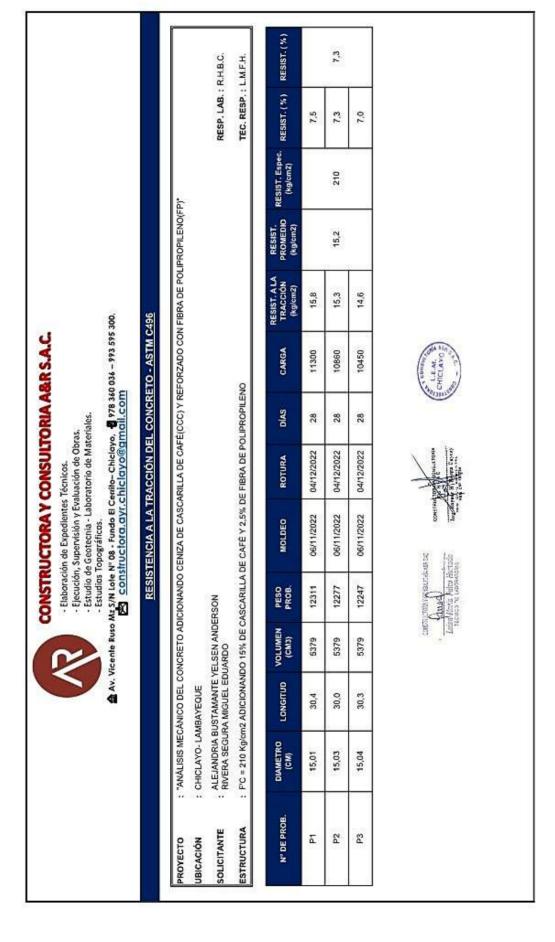
OBSERVACIONES:

CHICLAYO

会 Av. Vicente Ruso Mz 5/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 4 978 360 036 - 993 595 300. (本) Constructora. ayr. chiclayo@gmail.com CONSTRUCTORA Y CONSULTORIA A&R S.A.C. Elaboración de Expedientes Técnicos. Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos.

RESISTENCIA A LA TRACCION DEL CONCRETO - ASTM C496	: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	: CHICLAYO-LAMBAYEQUE	ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO	: PC = 210 Kg/km2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO


SOLICITANTE


PROYECTO UBICACIÓN

RESIST.PROM EDIO (%)	2/	5,4	
RESIST. (%)	£,2	5,4	5,3
RESIST, Espec. (kg/cm2)		210	
RESIST. PROMEDIO (Kg/cm2)		11,2	
RESIST. A LA TRACCIÓN (kg/cm2)	11,4	11,2	11,1
CARGA	8120	0962	7850
DIAS	7	2	7
ROTURA	13/11/2022	13/11/2022	13/11/2022
MOLDEO	06/11/2022	06/11/2022	06/11/2022
PESO PROB.	12234	12267	12237
VOLUMEN (CM3)	5337	5337	5337
ГОМВПИВ	30,2	30,0	30,0
DIAMETRO (CM)	15,00	15,02	15,02
N" DE PROB.	ŀd	P2	P3

会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 自 978 360 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com CONSTRUCTORAY CONSULTORIA A&R S.A.C. Elecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos. Elaboración de Expedientes Técnicos.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

: "ANALISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" ROYECTO

: FC = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO ESTRUCTURA

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

SOLICITANTE UBICACIÓN

: CHICLAYO-LAMBAYEQUE

RESIST PROMEDI		5,2	
RESIST. (%	5,3	5,2	5,3
RESIST, Espec. (kg/cm2)		280	
RESIST. PROMEDIO (kg/cm2)		14,7	
RESIST, A LA TRACCIÓN (kg/cm²)	14,8	14,6	14,7
CARGA	10520	10320	10400
DÍAS	2	1	7
ROTURA	13/11/2022	13/11/2022	13/11/2022
MOLDEO	06/11/2022	06/11/2022	06/11/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5344	5344	5344
LONGITUD	30,2	30,0	30.0
DIAMETRO (CM)	15,01	15,02	15,00
N' DE PROB.	P1	P2	P3

会 Av. Vicente Ruso Mz S/N Lote N° 08 · Fundo El Cerrito-Chiclayo, 自 978 360 036 - 993 595 300. で constructora.ayr.chiclayo®gmail.com CONSTRUCTORAY CONSULTORIA A&R S.A.C. Elecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos. Elaboración de Expedientes Técnicos.

RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496

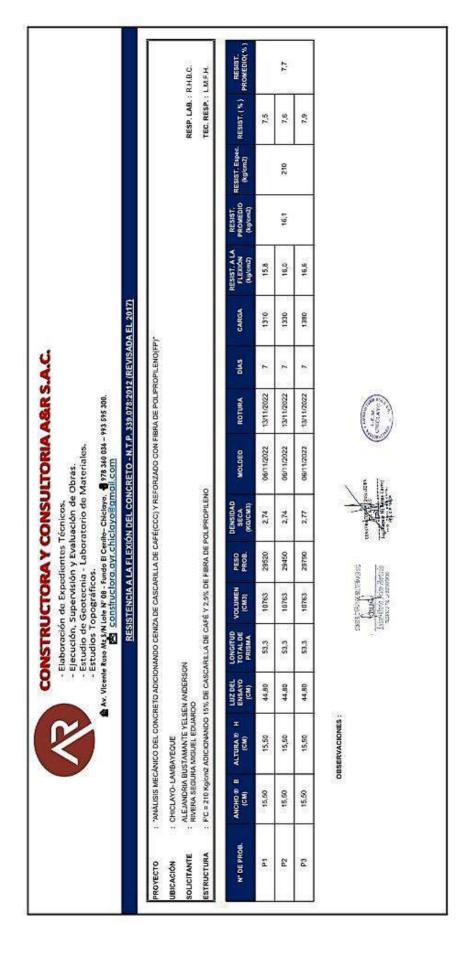
: "ANALISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"

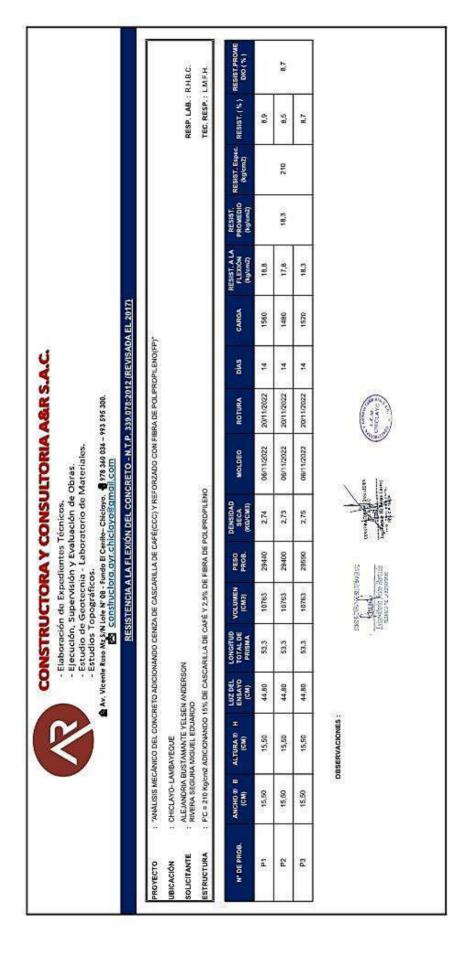
: FC = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO

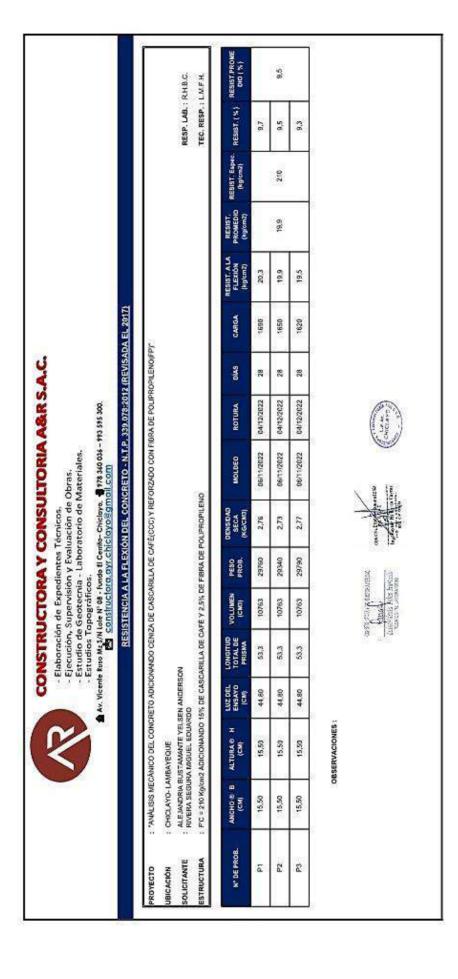
DANTE JESUS SILVA TEJADA /
JARLI ANTONI ALEJANDRIA BUSTAMANTE

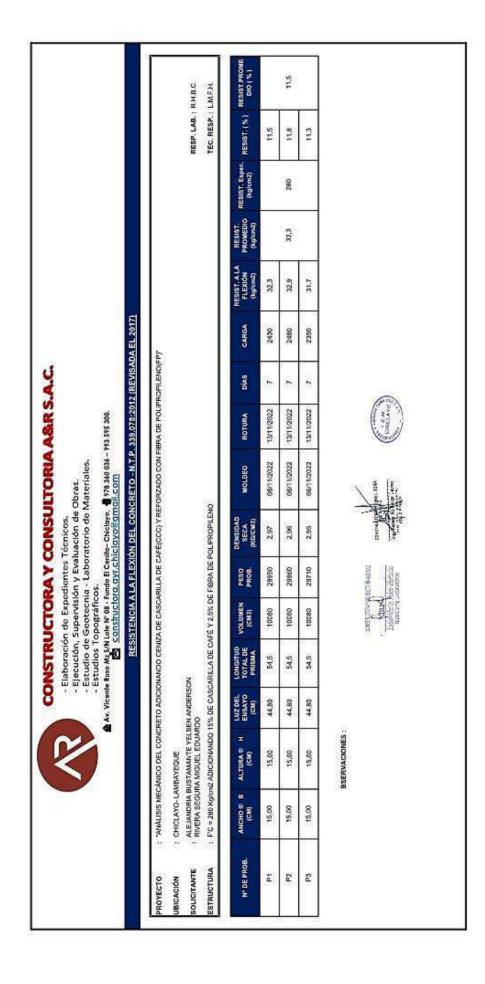
ESTRUCTURA SOLICITANTE JBICACIÓN PROYECTO

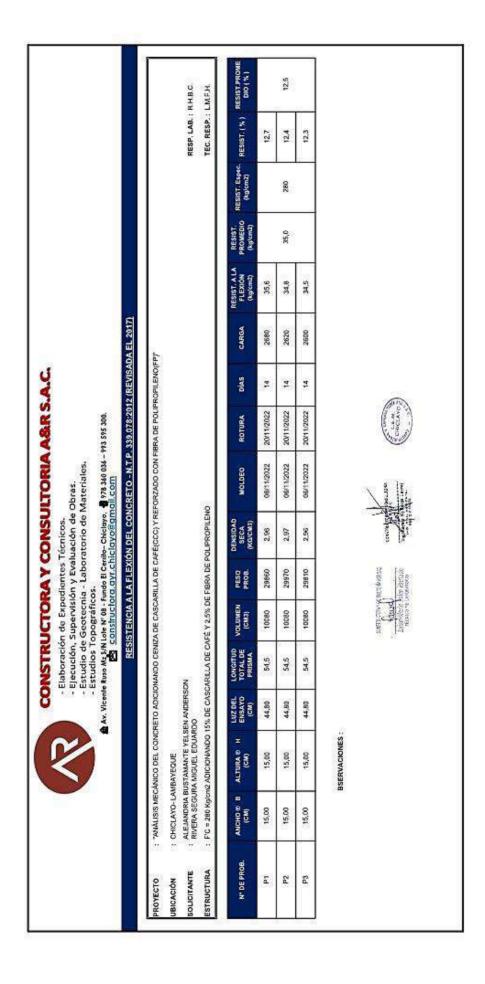
: CHICLAYO-LAMBAYEQUE

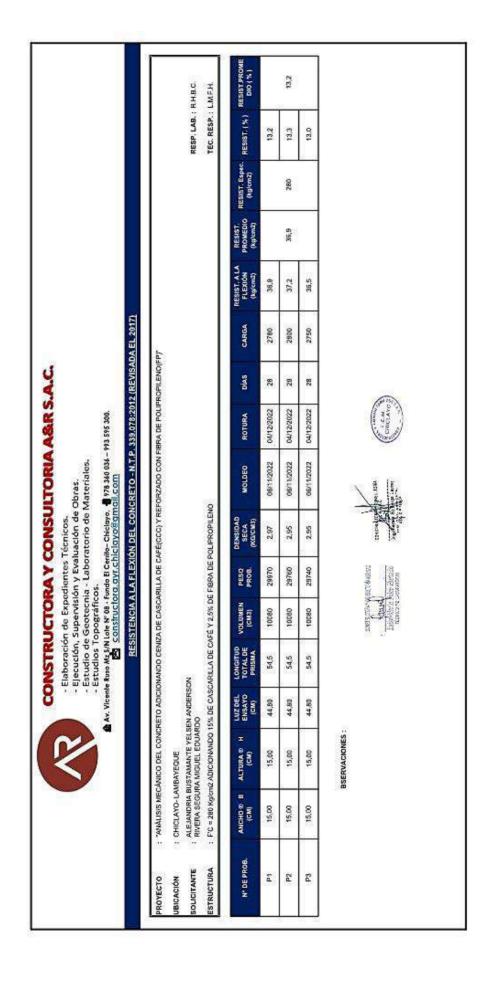

RESIST.PROMED O(%)		7,3	
ŒSIST. (%)	1,7	7,5	7.4
RESIST, Espac. ((kg/cm2)		280	
RESIST. PROMEDIO (kg/cm2)		20,6	
RESIST, A LA TRACCIÓN (kg/cm2)	20,0	21,0	20,8
CARGA	14230	14820	14710
DiAS	14	14	14
ROTURA	13/11/2022	13/11/2022	13/11/2022
MOLDEO	06/11/2022	06/11/2022	06/11/2022
PESO PROB.	12254	12464	12350
VOLUMEN (CM3)	5351	5351	5351
ГОМВІТИВ	30,2	30,0	30,0
DIAMETRO (CM)	15,02	15,00	15,02
N' DE PROB.	Pf	P2	P3








RESIST PROMEDI (%)0 8,3 RESP. LAB.: R.H.B.C. TEC. RESP.: L.M.F.H. RESIST. Espec. RESIST. (%) (kg/cm2) 8,5 8,2 8,4 280 : "ANALISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESIST. PROMEDIO (kg/cm2) 23,3 RESIST. A LA TRACCIÓN (kg/cm²) 22,9 23,7 23,4 RESISTENCIA A LA TRACCIÓN DEL CONGRETO - ASTM C496 会 Av. Vicente Ruso Mz.S/N Late N° 08 - Fundo El Cerrito-Chiclayo, 4 978 360 036 - 993 595 300. で Constructora. ayr.chiclayo®gmail.com CONSTRUCTORAY CONSULTORIA A&R S.A.C. CARGA 16740 16320 16550 : FC = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 2,5% DE FIBRA DE POLIPROPILENO DIAS Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos. 28 28 28 04/12/2022 04/12/2022 04/12/2022 ROTURA Elaboración de Expedientes Técnicos. 06/11/2022 06/11/2022 06/11/2022 MOLDEO 12464 12350 PESO PROB. 12254 DANTE JESUS SILVA TEJADA / JARLI ANTONI ALEJANDRIA BUSTAMANTE VOLUMEN (CM3) 5351 5351 5351 LONGITUD : CHICLAYO- LAMBAYEQUE 30,0 30,2 30,0 DIAMETRO (CM) 15,02 15,00 15,02 N. DE PROB SOLICITANTE ESTRUCTURA 53 ā 22 ROYECTO JBICACIÓN



- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copico	a di sacri inacca	FECHA	SHA	EDAD	Fre	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESIST	RESISTENCIA
, X	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
	MUESTRA 1	06/11/2022	13/11/2022	7	210	15	30,1	176,72	5319,12	12120	2278,6	22650	128,2	61,0
N	MUESTRA 2	06/11/2022	13/11/2022		210	15,01	30	176,95	5308,52	12135	2285,9	22980	129,9	61,8
£	MUESTRA 3	06/11/2022	13/11/2022	7	210	15	30,1	176,72	5319,12	12090	2272,9	22300	126,2	60,1

Concrete	Concretos normales.
Edad (dias)	F'c (Kg/cm2) (%)
T	25 35
81	42-53
8	70 - 165
976	85 - 95
28	100 120

- Estudio de Geotecnia - Laboratorio de Materiales.

CONSTRUCTORAY CONSULTORIA A&R S.A.C.

- Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

: F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H. RESISTENCIA CARGA

AREA VOLUMEN PESO DENSIDAD

DIÁMETRO ALTURA

EDAD

DÍAS (kg/cm2) Fle

MOLDEO ROTURA FECHA

ESTRUCTURA

CODIGO

ž

ESTRUCTURA SOLICITANTE

7

06/11/2022 20/11/2022

MUESTRA 1

RESP. LAB. : R.H.B.C.

	6		2						
(%)	72,4	73.6	73,0		2		-		
(kg/cm2)	151,9	154,5	153,2	Concretos normales	(%) (zmr/da) a, i	25 - 35	42-53	70 85	85 - 95
(kg)	26850	27340	27080	Concrete	I ded (dise)	-	n	7	14
(gr/cm3)	2278,6	2296,3	2293,6			50.	-in		
(grs.)	12120	12190	12200				1		
(cm3)	5319,12	5308,52	5319,12			COMSHI	TORN U	S CHICLAYO S	" 0
(cm)	176,72	176,95	176,72)	10	20%	15%
(cm)	30,1	30	30,1		.S	7	DECLEROUS DE	Marca Carry	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(cm)	15	15,01	15				CONGRESSION		437 ann

210

4

20/11/2022

06/11/2022

MUESTRA 3

6

OBSERVACIONES:

20/11/2022

06/11/2022

MUESTRA 2

TORK	ASA A	1

Concrete	Concretos normales
r ded (dies)	170 (100/0002) (%)
-	25 - 35
n	42-53
7	55 28
14	85 - 95
24	02L-00L

- Elaboración de Expedientes Técnicos.
- Ejecución, Supervisión y Evaluación de Obras.
- Estudio de Geotecnia Laboratorio de Materiales,
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE JBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA SOLICITANTE

: F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

TEC. RESP. : L.M.F.H.

RESP. LAB.: R.H.B.C.

copido	e di aboli daboli	FE	FECHA	EDAD	Fre	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
°,	ESTRUCTURA	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
	MUESTRA 1	06/11/2022	04/12/2022	28	210	15,01	30,1	176,95	5326,22	12411	2330,2	29520	166,8	79,4
R	MUESTRA 2	06/11/2022	04/12/2022	28	210	15,09	30,2	178,84	5401,03	12310	2279,2	29030	162,3	77.3
3	MUESTRA 3	06/11/2022	04/12/2022	28	210	15,03	30,3	177,42	5375,90	12293	2286,7	28640	161,4	76,9

CHICLAYO

Concrete	Concretos normales
r ded (dies)	170 (100/0002) (%)
, F	25 - 35
n	42 - 33
7	28 55
14	85 - 95
W.	021-001

CONSTRUCTORAY CONSULTORIA A&R S.A.C. - Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

★ Av. Vicente Ruso Mz.S/N Lote N° 08 - Fundo El Cerrito-Chiclayo. 4 978 340 036 - 993 595 300.
Constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339.034 (2021)

: "ANÁLISIS MECÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE UBICACIÓN PROYECTO

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

: F'C = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

AREA VOLUMEN PESO DENSIDA

DIÁMETRO ALTURA

Fie

EDAD

FECHA

CODIGO

ESTRUCTURA

RESP. LAB. : R.H.B.C. TEC. RESP. : L.M.F.H.

AD	CARGA	RESISTENCIA	AIS.
3	(kg)	(kg/cm2)	(%)
-	32050	181,4	64,8
20	32630	184,4	659
- 04	31850	180,2	64,4
1			
	Concrete	Concretos normales	
	r ded (clies)	1.5c (Kg/com2) (%)	920
30.	H	25 - 35	
-n	n	42 - 53	-
	4	70 85	
130	14	85 - 95	-

	A CHILL STREET												
ž	ESTRUCTURA	MOLDEO	MOLDEO ROTURA	DÍAS	DÍAS (kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cı
-	MUESTRA 1	06/11/2022	13/11/2022	7	280	5	30,0	176,72	5301,45	12125	2287,1	32050	181
N	MUESTRA 2	06/11/2022	13/11/2022		280	15,01	30,1	176,95	5326,22	12200	2290,6	32630	184
е.	MUESTRA 3	06/11/2022	13/11/2022	7	280	15	30	176,72	5301,45	12205	2302,2	31850	180
	1900	. SENOIDANES	200										
	Jego Jego	ERVACIONES .									200	Concretos nome	s norms
							88					Frdad (disse)	170 (00
					A Marie		7)	CONST		293	-	e Me
			CLASSISSING	-	SECOND SE	OCKETTLE (10)	WEST TOPIN	100	TORI	1	-m	n	200
			1	- Compa		3		201	HICLAYO	k #.		7	
			TESSET,	DESTRUCTOR PROCESSIONS OF THE CONTROL OF THE CONTRO	TERRETA PARTO PARTORS TERRETA PARTO PARTORS	100	10 mm and 100 mm		15mg			12	
									1		Ļ		

7 70 85 14 85-95 15 85-95 16 85-95 17 85-95 18 85-95 28 70 85	Concre	Concretos normales
	Febru (cline)	1'c (Kg/coo?) (%)
	, F	25 - 35
	n	42-53
188 - 29 - 5	7	28 05
383	34	85 - 95
	HC.	06L-00L

- Elaboración de Expedientes Técnicos.

- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

会 Av. Vicente Ruso Mz S/N Lole N® 08 - Fundo El Centito-Chiclayo, 智 978 340 034 - 993 595 300. 文 constructora.ayr.chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE PROYECTO JBICACIÓN

ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO SOLICITANTE

ESTRUCTURA

: F'C = 280 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

TEC, RESP.: L.M.F.H.

RESP. LAB.: R.H.B.C.

opido	Fetteriox	FEC	FECHA	EDAD	F'e	DIÁMETRO ALTURA	ALTURA	AREA	VOLUMEN	PESO	DENSIDAD	CARGA	RESISTENCIA	ENCIA
N.	באוראסאורא	MOLDEO	ROTURA	DÍAS	(kg/cm2)	(cm)	(cm)	(cm)	(cm3)	(grs.)	(gr/cm3)	(kg)	(kg/cm2)	(%)
(8.87)	MUESTRA 1	06/11/2022	20/11/2022	4	280	15,01	30,1	176,95	5326,22	12120	2275,5	36320	205,3	73,3
8	MUESTRA 2	06/11/2022	20/11/2022	4	280	15	30	176,72	5301,45	12000	2263,5	36720	207,8	74,2
6	MUESTRA 3	06/11/2022	20/11/2022	14	280	15,02	30,1	177,19	5333,32	12225	2292,2	36220	204,4	73,0

Concords	Congretos normales
Edad (dias)	F'c (Kg/cm2) (%)
7	25 35
8	42 - 53
8	AN - INS
14	85 - 95
78	100 120

- Ejecución, Supervisión y Evaluación de Obras.

Estudio de Geotecnia - Laboratorio de Materiales.
 Estudios Topográficos.

Av. Vicente Ruso Mz S/N Lole N° 08 - Fundo El Cerrito-Chiclayo, 19 978 340 036 - 993 595 300.

Seg Constructora. ayr. chiclayo@gmail.com

RESISTENCIA A LA COMPRESIÓN DEL CONCRETO - N.T.P. 339,034 (2021)

: "ANÁLISIS MECÁNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" : DISTRITO DE CHICLAYO, PROVINCIA CHICLAYO, REGIÓN LAMBAYEQUE PROYECTO JBICACIÓN

SOLICITANTE : ALEJANDRIA BUSTAMANTE YELSEN ANDERSON : RIVERA SEGURA MIGUEL EDUARDO

ESTRUCTURA

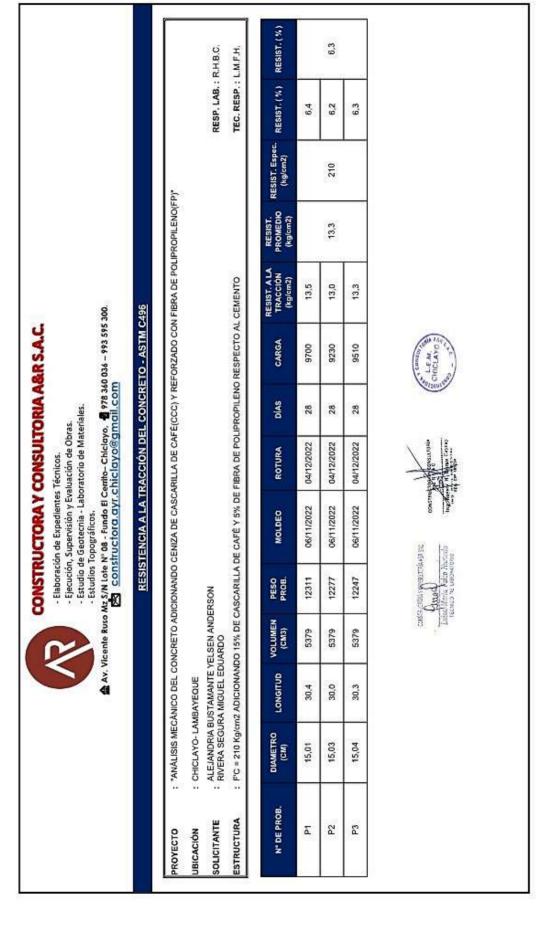
. RIVERA SEGURA MIGUEL EDUARDO : F'C = 280 Kg/cm2 ADICIONANDO 15% DE CÁSCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO

TEC, RESP.: L.M.F.H.

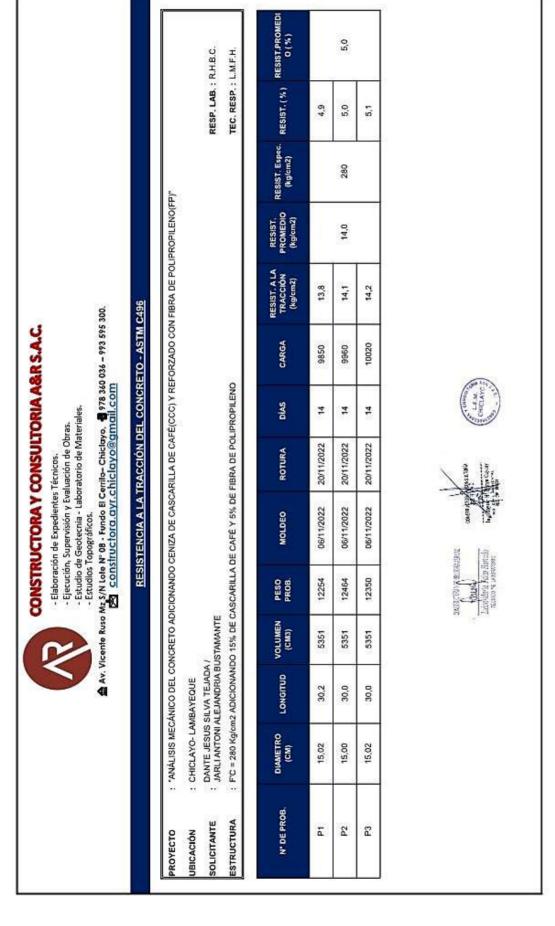
RESP. LAB.: R.H.B.C.

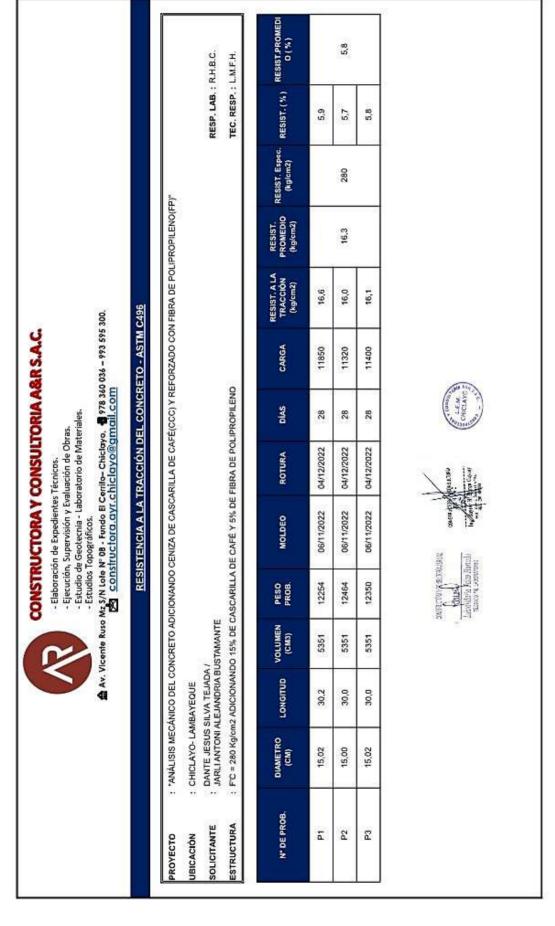
RESISTENCIA	(%)	79,6	80,5	78,1
RESIST	(kg/cm2)	6'222	225,3	218,8
CARGA	(kg)	39450	39820	38760
DENSIDAD	(gr/cm3)	2275,5	2263,5	2,292,2
PESO	(grs.)	12120	12000	12225
VOLUMEN	(cm3)	5326,22	5301,45	5333,32
AREA	(cm)	176,95	176,72	61,771
ALTURA	(cm)	30,1	30	30,1
DIÁMETRO ALTURA	(cm)	15,01	15	15,02
Fe	(kg/cm2)	280	280	280
EDAD	DÍAS	28	28	28
ECHA	ROTURA	04/12/2022	04/12/2022	04/12/2022
033	MOLDEO	06/11/2022	06/11/2022	06/11/2022
Aditoligae	בפועמכומשע	MUESTRA 1	MUESTRA 2	MUESTRA 3
copido	ž	(8.00)	N	e

Cantonelle	Concretos normales.
Edad (dias)	F'c (Kg/cm2) (%)
1	25.35
8	42 - 53
(8)	A11-185
14	85 - 95
28	100 120


RESIST.PROM EDIO (%) 4,9 RESP. LAB.: R.H.B.C. TEC. RESP. : L.M.F.H. RESIST. (%) 2,0 6,4 4,8 RESIST. Espec. (kg/cm2) 210 . "ANÁLISIS MEGÂNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)" RESIST. PROMEDIO (kg/cm2) 10,2 RESIST. A LA TRACCIÓN (kg/cm2) : FC = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO 10,5 10,2 10,0 会 Av. Vicente Ruso Mz S/N Lote № 08 - Fundo El Centito-Chiclayo, 自 978 340 034 - 993 595 300. RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 CONSTRUCTORA Y CONSULTORIA A&R S.A.C. CARGA 7450 7230 7100 DIAS Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos. 13/11/2022 13/11/2022 13/11/2022 ROTURA Elaboración de Expedientes Técnicos. 06/11/2022 06/11/2022 06/11/2022 MOLDEO 12234 12267 PESO PROB. 12237 ALEJANDRIA BUSTAMANTE YELSEN ANDERSON RIVERA SEGURA MIGUEL EDUARDO VOLUMEN (CM3) 5337 5337 5337 LONGITUD : CHICLAYO-LAMBAYEQUE 30,2 30,0 30,0 DIAMETRO (CM) 15,00 15,02 15,02 N° DE PROB. SOLICITANTE ESTRUCTURA P3 δ 2 UBICACIÓN PROYECTO


会 Av. Vicente Ruso Mz S/N Lote N° 08 - Fundo El Cerrito-Chiclayo, 自 978 340 034 - 993 595 300. で Constructora.ayr.chiclayの例の本面にの RESISTENCIA A LA TRACCIÓN DEL CONCRETO - ASTM C496 CONSTRUCTORA Y CONSULTORIA A&R S.A.C. Ejecución, Supervisión y Evaluación de Obras. Estudio de Geotecnia - Laboratorio de Materiales. Estudios Topográficos. - Elaboración de Expedientes Técnicos.


PROYECTO	: "ANÀLISIS MECÀNICO DEL CONCRETO ADICIONANDO CENIZA DE CASCARILLA DE CAFÉ(CCC) Y REFORZADO CON FIBRA DE POLIPROPILENO(FP)"	CÁNICO DEL CO	ONCRETO AD	CIONANDO	CENIZA DE CASC	SARILLA DE CAF	É(CCC) Y RE	FORZADO CO	IN FIBRA DE POL	IPROPILENO()	FP)*		
UBICACIÓN	: CHICLAYO- LAMBAYEQUE	MBAYEQUE											
SOLICITANTE	ALEJANDRIA BUSTAMANTE YELSEN RIVERA SEGURA MIGUEL EDUARDIC	ALEJANDRIA BUSTAMANTE YELSE! RIVERA SEGURA MIGUEL EDUARD!	YELSEN ANDERSON	RSON								RESP. LAB.: R.H.B.C.	R.H.B.C.
ESTRUCTURA	: F'C = 210 Kg/cm2 ADICIONANDO 15% DE CASCARILLA DE CAFÉ Y 5% DE FIBRA DE POLIPROPILENO RESPECTO AL CEMENTO	m2 ADICIONAN	DO 15% DE C.	ASCARILLA I	DE CAFÉ Y 5% DI	E FIBRA DE POL	IPROPILENC	RESPECTOA	L CEMENTO			TEC. RESP. : L.M.F.H.	L.M.F.H.
							ı						
N° DE PROB.	DIAMETRO (CM)	LONGITUD	VOLUMEN (CM3)	PESO PROB.	MOLDEO	ROTURA	DIAS	CARGA	RESIST. A LA TRACCIÓN (kg/cm2)	RESIST. PROMEDIO (kg/cm2)	RESIST. Espec. (kg/cm2)	RESIST. (%)	RESIST.P EDIO (*
Σ	15,04	30,2	5365	12234	06/11/2022	20/11/2022	14	8360	11,7			5,6	3 1
P2	15,00	30,0	5365	12267	06/11/2022	20/11/2022	14	8270	11,7	12,0	210	5,6	5,7
P3	15,02	30.1	5365	12237	06/11/2022	20/11/2022	14	8840	12,4			6,5	


PROM

