

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL TESIS

Propiedades Físicas y Mecánicas de un Concreto Adicionando Fibra de Hoja de Piña

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERA CIVIL

Autora:

Bach. Rodas Alvarez Claudia Fiorella https://orcid.org/0000-0002-0500-3898

Asesor:

Mag. Chilon Muñoz Carmen https://orcid.org/0000-0002-7644-4201

Línea de Investigación

Tecnología e Innovación en el Desarrollo de la Construcción y la Industria en un Contexto de Sostenibilidad

Sublínea de Investigación Innovación y Tecnificación en Ciencia de los Materiales, Diseño e Infraestructura

> Pimentel – Perú 2023

Quien suscribe la DECLARACIÓN JURADA, soy egresada del Programa de Estudios de ingeniería civil de la Universidad Señor de Sipán S.A.C, declaro bajo juramento que soy autora del trabajo titulado:

PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA

El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firman:

Rodas Alvarez, Claudia Fiorella DNI: 73714061

Pimentel, 27 de octubre de 2022.

REPORTE DE SIMILITUD TURNITIN

Reporte de similitud

NOMBRE DEL TRABAJO

AUTOR

Propiedades Físicas y Mecánicas de un Concreto Adicionando Fibra de Hoja de Piña Claudia Fiorella Rodas Alvarez

RECUENTO DE PALABRAS

RECUENTO DE CARACTERES

18652 Words

85455 Characters

RECUENTO DE PÁGINAS

TAMAÑO DEL ARCHIVO

94 Pages

2.6MB

FECHA DE ENTREGA

FECHA DEL INFORME

Sep 22, 2023 1:00 PM GMT-5

Sep 22, 2023 1:01 PM GMT-5

23% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base o

- 21% Base de datos de Internet
- 1% Base de datos de publicaciones
- · Base de datos de Crossref
- · Base de datos de contenido publicado de Crossr
- 14% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

· Material bibliográfico

- Material citado
- Coincidencia baja (menos de 8 palabras)

PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA

Aprobación del jurad	ot
----------------------	----

MAG. VILLEGAS GRANADOS LUIS MARIANO

Presidente del Jurado de Tesis

MAG. ANACLETO SILVA HARRY ARNOLD

Secretario del Jurado de Tesis

DR. MARÍN BARDALES NOE HUMBERTO

Vocal del Jurado de Tesis

Dedicatoria

En primer lugar, agradecer a Dios por brindarme la sabiduría y valentía para poder afrontar todos los retos con perseverancia y determinación, para que hoy se conlleve sus frutos de tanto esfuerzo.

A mis padres, Maribel Alvarez Diaz y José Torres Saavedra que son el motor de todo lo que eh logrado y sin su apoyo constante a pesar de los problemas presentados durante todo el transcurso de mi carrera, jamás flaqueo su apoyo en mí, gracias a ello he concluido con una de mis grandes metas propuestas en mi vida profesional, este pequeño pero significativo pasó.

A mis hermanos Mariela Rodas Alvarez, Ivan Torres

Alvarez y Jose Manuel Torres Alvarez, quienes han

compartido muchos momentos a mi lado y a su apoyo

constante.

Claudia Fiorella Rodas Alvarez

٧

Agradecimientos

Ante todo, agradecer a Nuestro padre Dios, que dentro de su plan de vida me ha permitido que siga mi propósito de ser un profesional, para con perseverancia y determinación finiquitar esta etapa de mi vida, aún con los estragos y limitaciones que nos dejó la pandemia del COVID19.

A mis padres y hermanos, que son mi pilar y mi ejemplo a seguir, por sus enseñanzas y consejos contaste que conlleva está vida profesional y por su confianza depositada en mí.

A mis docentes, quienes me brindaron todo el conocimiento y su amistad a lo largo de toda mi carrera profesional, mis compañeros de la escuela de ingeniería Civil, con quienes tuve muchas vivencias durante todos estos años que me llevo culminar mi carrera profesional

A la prestigiosa Universidad Señor de Sipán por brindarme una formación de calidad y acogerme en todo este tipo que llevo culminarla.

Claudia Fiorella Rodas Alvarez

Índice

Dec	dicatoria	ı v
Agr	adecimi	entosvi
Índ	ice de T	ablasix
Índ	ice de F	igurasx
Índ	ice de e	cuacionesxii
Res	sumen	xiii
Abs	stract	xiv
I.	INTRO	DUCCIÓN15
	1.1.	Realidad problemática
	1.2.	Formulación del problema
	1.3.	Hipótesis23
	1.4.	Objetivos
	1.5.	Teorías relacionadas al tema
II.	MATE	RIALES Y MÉTODO36
	2.1.	Tipo y Diseño de Investigación
	2.2.	Variables, Operacionalización
	2.3.	Población de estudio, muestra, muestreo y criterios de selección 39
	2.4.	Técnicas e instrumentos de recolección de datos, validez y confiabilidad 42
	2.5.	Procedimiento de análisis de datos
	2.6.	Criterios éticos
III.	RESUI	_TADOS Y DISCUSIÓN66
	3.1.	Resultados
	3.2.	Discusión
IV.	CONC	LUSIONES Y RECOMENDACIONES 80
	4.1.	Conclusiones
	4.2.	Recomendaciones
RE	FEREN	CIAS 82
AN	EXOS	87

Índice de Acrónimos

ACI: American Concrete Institute.

ASTM: American Society for Testing and Materials.

FHP: Fibra de hoja de piña

CP: Concreto patrón.

C210: Concreto patrón f'c = 210 kg/cm^2 .

C280: Concreto patrón f'c = 280 kg/cm^2 .

Ec: Módulo de elasticidad del concreto.

MF: Módulo de finura.

MPa: Unidad de presión Megapascal.

Mr: Módulo de rotura.

NTP: Norma Técnica Peruana.

PUnitS: Peso unitario Suelto.

PUnit.C: Peso unitario Compactado.

RNE: Reglamento Nacional de Edificaciones.

TM: Tamaño nominal.

TMN: Tamaño máximo nominal.

Índice de Tablas

Tabla I Propiedades de los agregados pétreos	26
Tabla II Requisitos de tamaños pasante de material delgado	26
Tabla III Propiedades de la fibra	29
Tabla IV Composición química de la fibra	30
Tabla V Operacionalización de variable independiente	37
Tabla VI Operacionalización de variable dependiente	38
Tabla VII Cantidad de probetas para ensayos de un diseño f'c=210 kg/cm²	40
Tabla VIII Cantidad de probetas para ensayos de un diseño f'c = 280 kg/cm²	41
Tabla IX Nombre, ubicación y coordenadas de las canteras en estudio	66
Tabla X Características físicas del agregado fino	68
Tabla XI Características físicas del agregado grueso	70
Tabla XII Características físicas de la fibra de hoja de piña	71
Tabla XIII Diseño de mezcla de concreto patrón para resistencia 210 y 280 kg/cm²	72
Tabla XIV Diseño de mezcla del concreto diseño C210 y C280 con FHP	73
Tabla XV Propiedades físicas del concreto	74

Índice de Figuras

Fig. 1. F	Partes de la planta de piña. [41]	28
Fig. 2. F	ibra de piña. [42]	29
Fig. 3. S	Secuencia de producción de fibra de hoja de piña. [45]	31
Fig. 4. N	Náquina de raspado para obtención de fibra de hoja de piña. [46]	32
Fig. 5. (Cono de Abrams. [48]	33
Fig. 6. N	Náquina para resistencia a la compresión [51]	34
Fig. 7. E	nsayo a flexión [54]	35
Fig. 8. N	Nódulo de elasticidad del concreto [21]	35
Fig. 5.	Diagrama de flujo para la recolección de datos	43
Fig. 10.	Material de la cantera la Victoria.	44
Fig. 11.	Material de la cantera Pacherres.	44
Fig. 12.	Proceso de obtención para la fibra de hoja de piña	45
Fig. 13.	Tamizado de granulometría para agregado fino	46
Fig. 14.	Peso unitario del agregado grueso.	47
Fig. 15.	Pesado de la muestra seca al horno por 24 horas.	48
Fig. 16.	Peso del balde más el peso de la muestra para el ensayo de peso específico	de
material	grueso.	50
Fig. 17.	Peso de la fiola, más el agua y la arena para el ensayo de peso específico	52
Fig. 18.	Pesado de la muestra de material fino, para realizar el ensayo	53
Fig. 19.	Muestra de material grueso que se incorporará dentro de la máquina de los ángel	es.
		54
Fig. 20.	Elaboración en trompo de mezcla de concreto con incorporación de FHP	56
Fig. 21.	Procedimiento para la determinar el asentamiento del concreto.	57
Fig. 22.	Procedimiento para determinar la temperatura del concreto	57
Fig. 23.	Proceso de medición para el peso unitario del concreto.	58
Fig. 24.	Proceso para la medición de contenido de aire del concreto en estado fresco	60
Fig. 25.	Medición de ensayo de resistencia a la compresión a 28 días de curado	61
Fig. 26.	Medición de ensayo de resistencia a la tracción del concreto	62
Fig. 27.	Medición de ensayo de resistencia a la flexión.	63
Fig. 28.	Probeta con el compresometro para ser sometido al ensayo de módulo de elasticio	lad
del cond	reto	64
Fig. 29.	Análisis granulométrico de arena gruesa de canteras en estudio	67
Fig. 30.	Análisis granulométrico árido grueso.	69
Fig. 31.	Resultados de los ensayos para las propiedades en estado fresco para diseño C2	210

y C280 con adición de FHP. (a) Resultados de asentamiento, (b) Resultados para
temperatura, (c) Resultados para peso unitario - densidad, (d) Resultados para contenido de
aire74
Fig. 32. Resultados de los ensayos para las propiedades en estado endurecido para diseño
C210 con adición de FHP a 7, 14 y 28 días. (a) Resultados de resistencia a la compresión
(b) Resultados para resistencia a la tracción, (c) Resultados para resistencia a la flexión, (d)
Resultados para módulo de elasticidad76
Fig. 33. Resultados de los ensayos para las propiedades en estado endurecido para diseño
C280 con adición de FHP a 7, 14 y 28 días. (a) Resultados de resistencia a la compresión
(b) Resultados para resistencia a la tracción, (c) Resultados para resistencia a la flexión, (d)
Resultados para módulo de elasticidad77

Índice de ecuaciones

Ecuación 1. Densidad de masa	46
Ecuación 2. Densidad de masa superficialmente seca	47
Ecuación 3. Contenido de humedad	48
Ecuación 4. Peso específico de masa	49
Ecuación 5. Densidad de masa saturada superficialmente seca	49
Ecuación 6. Densidad especifica aparente	49
Ecuación 7. Absorción	49
Ecuación 8. Peso específico de masa	51
Ecuación 9. Peso específico saturado superficialmente seco	51
Ecuación 10. Peso específico aparente	51
Ecuación 11. Pasante por la malla N°200	52
Ecuación 12. Perdida por abrasión	54
Ecuación 13. Densidad de masa	59
Ecuación 14. Módulo de elasticidad	64

PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO
FIBRA DE HOJA DE PIÑA

Resumen

La sobreexplotación de los recursos naturales en los últimos años ha ido incrementando, por lo cual se busca desarrollar materiales novedosos eco amigables del concreto y mitigar los residuos orgánicos que demoran hasta 20 meses en descomponerse, en ese sentido, la presente investigación evaluó el desempeño físico y mecánico del concreto que añade fibra de hoja de piña por peso del cemento, empleando una metodología aplicada, con diseño experimental y modelo cuasiexperimental, se elaboró 400 probetas diseño de mezcla para la elaboración de concreto con porcentajes de 0.20%, 0.3%, 0.40% y 0.50% de FHP añadidos por peso del cemento, con una longitud de 2.50 cm, por ello se determinó las propiedades de asentamiento, contenido de aire y peso unitario, asimismo, sus resistencias mecánicas. Los resultados evidenciaron que el asentamiento se redujo significativamente con FHP hasta un 3 3/8", el contenido de aire se incrementó en 1.7% con 0.50%FHP. Por otro lado, la resistencia a compresión a 28 días con 0.2% FHP incrementó la resistencia en 13.36% y 4.75% para diseño f'c=210 (C210) y f'c=280 kg/cm² (C280) respectivamente en base al diseño patrón, en tracción las muestras con 0.3%FH incrementaron entre 11.96% y 16.01% con 0.4%FHP, así mismo la resistencia a flexión incremento en un 7.28% y 13.12% para 0.4%FHP, finalmente para el ensayo de módulo elástico se logró incrementos de un 15.60% y 9.19% con incorporación de 0.2%FHP. Se concluye que con la adición óptima de FHP es 0.2% incrementando significativamente las resistencias mecánicas del concreto.

Palabras Clave: Propiedades físicas, Propiedades mecánicas, Concreto, Fibra de hoja de piña

xiii

Abstract

The overexploitation of natural resources in recent years has been increasing, which

is why we seek to develop novel eco-friendly concrete materials and mitigate organic waste

that takes up to 20 months to decompose. In that sense, this research evaluated the physical

performance and concrete mechanics that adds pineapple leaf fiber by weight of cement,

using an applied methodology, with experimental design and quasi-experimental model, 400

test tubes were prepared to design a mixture for the production of concrete with percentages

of 0.20%, 0.3%, 0.40 % and 0.50% of FHP added by weight of cement, with a length of 2.50

cm, therefore the settlement properties, air content and unit weight, as well as its mechanical

resistance, were determined. The results showed that the settlement was significantly reduced

with FHP up to 3 3/8", the air content increased by 1.7% with 0.50%FHP. On the other hand,

the compressive strength at 28 days with 0.2%FHP increased the resistance by 13.36% and

4.75% for design f'c=210 (C210) and f'c=280 kg/cm² (C280) respectively based on the pattern

design, in tension the samples with 0.3%FH increased between 11.96% and 16.01% with

0.4%FHP, likewise the flexural resistance increased by 7.28% and 13.12% for 0.4%FHP,

finally for the elastic modulus test achieved increases of 15.60% and 9.19% with the

incorporation of 0.2% FHP. It is concluded that with the optimal addition of FHP is 0.2%, the

mechanical resistance of the concrete is significantly increased.

Keywords: Physical properties, Mechanical properties, Concrete, Pineapple leaf fiber

xiv

I. INTRODUCCIÓN

1.1. Realidad problemática.

Actualmente la población ha ido creciendo tan rápidamente, que ha llevado a los países a una mayor demanda de productos agrícolas. Las industrias de procesamiento de verduras y frutas representan el mayor segmento de residuos alimentarios que se producen en todo el mundo. El resultado es el vertido, la quema de estos residuos en campos abiertos [1] y el compostaje son las tecnologías de procesamiento de residuos alimentarios de primera generación. Siendo la quema in situ de residuos de cultivos la cual se practica en todo el mundo a pesar de tener efectos perjudiciales sobre el aire tanto como la salud humana. [2, 3]

La FAO ha estimado que los residuos derivados de piña representan entre el 50 y el 65 % del peso total de la fruta. Los residuos industriales derivados de este fruto son una importante fuente de contaminación, ya que importantes cantidades de residuos primarios no se procesan posteriormente. [4]. En Vietnam por año se cosechan cerca de 30 millones de toneladas de fruta de la piña para las industrias de la alimentación, junto con la liberación de una enorme cantidad de residuos de la piña Sin el tratamiento adecuado, los residuos de la piña pueden causar impactos adversos en el medio ambiente. [5] Asimismo, Indonesia es el 9º más grande productor de piña en el mundo produciendo alrededor de 1,39 millones de toneladas anualmente. Esto hace que los residuos de FHP estén disponibles en abundancia. [6]. Por otro lado, alrededor del 80% de la producción de piña de Sudáfrica se utiliza para el procesamiento, y la diferencia se comercializa en mercados locales de frutas frescas, la cantidad de desechos producidos por los desechos de hojas de piña es preocupante, con aproximadamente 20 000 a 25 000 toneladas por acre sobrantes después del proceso de cosecha. Se debe principalmente a la falta de un manejo adecuado de la fruta fresca, opciones de transporte insuficientes o almacenamiento insuficiente [7]. Recientemente, el uso de los residuos agrícolas ha recibido una atención especial en muchos campos de la ingeniería. Los residuos se han empleado en la fabricación de concreto como alternativa de

sustitución con el fin de mejorar la calidad del concreto [8].

En el rubro de ingeniería es material de mayor aplicación constructiva en el mundo, puesto que, cuenta con gran resistencia en la compresión, lo que ayuda en las estructuras [9], es relativamente barato y tiene una vida relativamente larga con pocos requisitos de mantenimiento, por otro lado, tiene falencias en cuanto al agrietamiento, baja resistencia al impacto y peso pesado, a la tracción y flexión su resistencia es debil [6, 10], por lo tanto, existe la necesidad de acrecentar las propiedades del concreto, una buena opción es la FHP, una fibra natural que puede utilizarse como material de refuerzo del concreto. El concreto elaborado con fibras de desecho agrícola muestra propiedades similares a las fibras sintéticas en términos de resistencia a la flexión, al corte, tenacidad e impacto [11, 12]. Las FHP (Ananas comosus), como subproducto de uno de los mayores sistemas productivos en el ámbito agroindustrial, aparecen como muy prometedoras para su uso en composites y para aplicaciones prospectivas en diversos campos, como la construcción y la automoción [13].

Dentro del Perú cerca del 56% de los residuos producidos son orgánicos, en lo que corresponde a la producción de Ananas comosus, el Ministerio de Agricultura en el año 2016 reportó 460.000 toneladas, teniendo en cuenta que del 10 al 13% de dicho peso es el parte de la corona del citado fruto Berru Velásquez et al. [14] gran parte de los materiales orgánicos como son las hojas, tallos y raíces, después de la cosecha son desechados sin considerar el impacto ambiental o posibles otros usos los cuales de no ser desechados correctamente causan un impacto ambiental ya que no se aprovecha la oportunidad de generar ingresos dándoles otro uso. [15] En la ciudad de Chota — Cajamarca, la piña cuando se encuentra siendo cosechada por segunda vez, el suelo se vuelve poco asequible para que se siga cosechando este fruto, es por ello que se debe realizar tareas de quema de terreno y volver a cultivar el mismo, generando así un alto impactado para el medio ambiente. [16] Asimismo, En la región Puno, se tiene una gran variedad de vegetales de los cuales se puede sacar provecho, debido a que son desechados en gran cantidad y su composición puede verse favorable dentro del concreto mecánico. [17] Con los estudios realizados hasta la actualidad

se sugiere que los concreto reforzados con fibra natural, son materiales alternativos para ser empleados dentro del proceso de fabricación del concreto, con costo reducido, las fibras vegetales proveen rigidez y también tienen la función de articular la estructura y volverla flexible ante movimientos sísmicos. [18, 19].

De acuerdo a los antecedentes de estudio, internacionalmente, tenemos a Hendrian et al. [11] dentro de su estudio plantearon como objetivo analizar el impacto en la relación de la fibra en el desempeño del concreto, de manera que, adiciono FHP y polipropileno en las siguientes proporciones 0.2%, 0.3% y 0.4% del peso del cemento, de lo cual la muestra seleccionada fue 14 testigos por ensayo de resistencia. Sus principales resultados se evidenciaron en la resistencia a comprensión un mayor incremento que se obtuvieron con la proporción 0.3%FHP obteniendo 56.28MPa a 28 días y con 0.4% de FHP se obtuvo la mayor resistencia a flexión, obteniendo 7.76MPa. Como conclusión mostraron que, la integración de FHP en la fabricación del concreto mejoró significativamente sus propiedades mecánicas, pero mientras más contenido de fibra se le incorporó mayor resistencia a la flexión se originó, pero disminuyo a la compresión.

Por su parte, Rahmi et al. [6], en su investigación, quienes plantearon como objetivo comparar la resistencia a la comprensión y tracción del concreto convencional y combinado con FHP, para ello empleó el enfoque cuantitativo, con un diseño preexperimental. Realizando muestras con proporciones de 0%, 0.5%, 1% y 1.5%, de lo cual 24 muestras en forma de cilindros con 15cm ø y una altura de 30cm de las cuales se utilizaron para los ensayos de resistencia, sus principales resultados demostraron que, el concreto incorporando FHP a una variación de 0.5% obtuvo el mayor valor de resistencia a la compresión de 31.32 MPa y a la tracción se logró con el 1% de FHP alcanzando un valor de 3.13 MPa. Como conclusión tuvieron que la inclusión de FHP evidenció un incremento en la resistencia a la tracción y compresión, pero decreció mientras más contenido de fibra se le incorporó.

En tal sentido Mathew [20], quien en su estudio planteó como objetivo analizar las propiedades mecánicas del concreto alteradas con FHP sometido elevadas temperaturas, para ello empleó el enfoque cuantitativo, con un diseño preexperimental, para lo cual se elaboró muestras de 150x150x150mm, testigos cilindros con un diámetro de 150mm y 300mm de altura y muestras de vigas de 100x100x500mm de tamaño con dosificaciones de 0.00%, 0.05%, 0.10%, 0.15%, 0.20% y 0.25% respecto al peso del cemento. Sus principales resultados demostraron que, en la resistencia máxima a la compresión se obtuvo para la mezcla de concreto con 0.10% de FHP adicionado, obteniendo los mayores incrementos respecto a la resistencia a compresión con 20% y 18%. Como conclusión tuvo que, la integración de FHP mostró una mayor resistencia a compresión, pero a como se iba incrementando el porcentaje de adición, el valor se iba reduciendo.

Asimismo, Aswani et al. [21], en su estudio quienes tuvieron como objetivo mejorar las propiedades mecánicas del concreto adicionando FHP, para ello empleó el enfoque cuantitativo, con un diseño preexperimental, para lo cual, se fabricaron muestras cubicas de 150x150x150mm, cilindros de 150x300mm y vigas de 500x100x100mm con incorporando FHP en las siguientes proporciones 0%,0.2%,0,4%,0,6%,0,8% y 1% por el peso de las materias primas utilizadas. Sus resultados mostraron que, la proporción 0,4% de FHP favoreció al aumento de las propiedades del concreto obteniendo el 55.07% de incremento del esfuerzo a compresión, un incremento del 58,80% en la flexión y 14,06% a la tracción. Como conclusión mencionaron que la FHP añadido en el concreto influyo favorablemente en las propiedades del concreto, se vieron afectadas conforme aumentaba la adición de FHP, así mismo los pequeños porcentajes de adicción de FHP logra mejorar la resistencia del concreto patrón.

Aunado a esto Abirami et al. [22], quienes en su estudio plantearon como objetivo comparar el desempeño del compuesto de FHP en diferentes proporciones de fibra en el concreto convencional, para ello empleó el enfoque cuantitativo, con un diseño

preexperimental. Adicionando FHP en las siguientes proporciones 0%, 0,5%, 0,10%, 0,15%, 0,20% con respecto al peso del cemento que usaron para los 7 y 28 días propuestos. Sus resultados demostraron que, se logró la resistencia máxima utilizando 0,10 % de FHP obteniendo incremento del 30.62% a la compresión; a la flexión un incremento de 46,858% y tracción un aumento de 14,20 % en comparación del CP. Como conclusión tuvieron que los valores son beneficiosos, pero estas se vieron afectadas cuando iba incrementando el porcentaje de adición de FHP.

En efecto Hadipramana et al. [23] quienes dentro de su estudio plantearon como objetivo analizar las características de trabajabilidad del concreto incorporando FHP, para ello empleó el enfoque cuantitativo, con un diseño preexperimental. Empleando proporciones de 0,04%, 0,09% y 0,15% de FHP por peso de cemento, de lo cual la muestra seleccionada fueron 24 muestras de concreto para cada porcentaje en forma de cubos de 15x15x15cm para tres edades de curado 7, 14 y 28 días, el instrumento que se empleó en esta investigación es la Estándar Nacional de Indonesia y la ASTM. Sus resultados evidenciaron que, se consiguió en la proporción 0.09% de FHP el mejor desempeño en la resistencia a la compresión. Concluyendo, que se logró un incremento a compresión, pero a como se incrementa la adición de FHP en el concreto, disminuyó su resistencia y afectó el asentamiento del concreto, además la presencia de FHP en el hormigón ayuda a salvar las micro fisuras del hormigón.

Además, Aboo et al. [24], dentro de su estudio presentaron como objetivo realizar una comparación del efecto de la proporción fija de FHP en diferentes longitudes sobre la resistencia a la compresión, para ello empleó el enfoque cuantitativo, con un diseño preexperimental. Su población objeto de estudio fue el concreto adicionado con FHP de longitudes de 5 mm y 15 mm en dosificaciones de 0.0% y 0.4% de acuerdo al cemento, elaborando muestras cubicas de 150x150x150 mm a 7 y 28 días de curado. Sus resultados demostraron que, la máxima resistencia a la compresión fue con la FHP con longitud de 15

mm, siendo el día 28 donde se observó un aumento de resistencia. Hubo un aumento del 6,7 % y 9,75 % en la resistencia a la compresión para muestras con FHP de 5 mm y 15 mm, respectivamente, en comparación del CP como conclusión tuvieron que, la FHP mejoró las propiedades del concreto convencional, en la cual la longitud de la fibra que se le incorporó al concreto dependió mucho en la mejora de la resistencia ya que en esta investigación el concreto obtuvo una mayor resistencia cuando se le incorporó fibra con mayor longitud.

Che Osmi et al. [8] en su estudio plantaron como objetivo evaluar el efecto de la FHP como nuevo material adicional del concreto, para ello empleó el enfoque cuantitativo, con un diseño preexperimental. Su población objeto de estudio fue la incorporación de FHP en proporciones de 0.0 %, 0.1%, 0.2% y 0.3% en concreto grado C30, de lo cual las muestras seleccionadas fueron muestras en forma cúbica de 150x150x150 mm, en forma cilíndrica de 75x300 mm y vigas de 500x100x100 mm para los ensayos de resistencia a la compresión, tracción y flexión respectivamente. Sus resultados demostraron que, la mayor resistencia tanto para compresión, tracción y flexión se logró con la incorporación de FHP en 0,3% en el concreto, como conclusión tuvieron que, la adición de FHP presento un efecto positivo en la resistencia del concreto.

Dentro del ámbito nacional tenemos a Herrera y Polo [25] quienes, en su estudio se pusieron a analizar las propiedades mecánicas del concreto al integrar fibras naturales y sintéticas. Se tuvo como población el uso de concreto alterado con fibras sintéticas y naturales de caña de azúcar y Maguey en proporciones de 0.0%, 0.10%, 0.50% y 1.0%, de lo cual se tuvo una muestra de 1426 muestras de concreto con fibras en formas de cilindros, vigas, cubos y losas haciendo usos de moldes de 150x300mm y 100x200 mm para las probetas y se tuvo como instrumento equipos de laboratorio. Se concluyó que cuando se usó fibras naturales se obtuvo las óptimas con la proporción de 0.10%. concluyendo también que la utilización de fibras naturales en la fabricación del concreto incrementa la resistencia del mismo además que es una oportunidad de ayuda en la generación de empleo en el país

debido a la riqueza natural.

Asimismo, Paredes y Sevillano [26] quienes en su estudio plantearon realizar una Evaluación de las propiedades mecánicas del concreto integrando fibras naturales y polipropileno. Siendo el concreto integrando fibras en proporciones de 0%, 2%, 4% y 6% de acuerdo al peso del cemento, obteniendo una muestra de 48 probetas tipo cilindro de 100x200 mm y 48 muestras tipo viga para los ensayos de resistencia a la compresión y flexión respectivamente. Sus resultados evidenciaron que mientras se agregué más porcentaje de fibra al concreto éste disminuye su resistencia a compresión tanto como a flexión, siendo el porcentaje 2% donde se obtuvieron los óptimos, como conclusión tuvieron que la adición de fibra no es tan beneficiosa para el concreto.

De esto modo, Paucar [27] expresa en su investigación realizada en Lima, quien se puso a evaluar la influencia de incorporación de FHP y palmera dentro de las propiedades mecánicas del concreto con un enfoque cuantitativo, teniendo una población formada por 72 testigos cilíndricos y 12 vigas con adiciones de 0%, 0.9%, 1.8% y 2.6% de acuerdo al cemento. Sus resultados demostraron que de las propiedades mecánicas se obtiene con la dosificación optima del 0.9% incrementando la resistencia a compresión en 6.8%, tracción y flexión en incrementos de 11.12% y 14.53% respectivamente, como conclusión tuvo que las propiedades físicas se disminuye la trabajabilidad en referencia al concreto patrón.

Mallaupoma [28] dentro de su estudio planteó el objetivo de evaluar el comportamiento de las propiedades físicas del concreto adicionando fibra de agave americana en dosificaciones de 0.5%, 0.75%, 1.0% de acuerdo al cemento para un concreto diseño de f'c=280kg/cm². Sus resultados evidenciaron que para las propiedades en estado fresco se consiguio el mejor comportamiento con el porcentaje de 0.5% con el cual se redujo el asentamiento hasta en un 22.22% al igual que el peso unitario se redujo en un 0.12%, caso contrario con el contenido de aire que aumento en un 13.64%. Como conclusión tuvo que, con la incorporación de Agave, el concreto no exuda.

Dentro del ámbito local, tenemos a Herencia [29] dentro de su investigación planteó como objetivo incrementar los beneficios del concreto a través de agregar fibra luffa en dosificaciones de 0.15%, 0.20% y 0.60%. Sus resultados mostraron que el valor de la resistencia a compresión incrementa al adicionar 0.15%FHP, a su vez con la incorporación de 0.60%FHP incrementa el valor de la resistencia a flexión, como conclusión tiene que adicionar esta fibra dentro del concreta mejora las propiedades mecánicas del concreto, además que maximiza la compresión y flexión.

Aunado a esto, el investigador Carlos [30] en su trabajo quien se centró en mejorar las propiedades del concreto reemplazando ceniza de cascara de arroz en un 5% y integración de fibra de palmera (FP) en dosificaciones de 0.75%, 1.50%, 2.25% y 3.0% en peso del cemento. Sus resultados evidenciaron que se obtiene con la adición del 1.50% incrementa el valor de esfuerzo a tracción, por otro lado, con adición de 0.75%FP acrecentó la resistencia a flexión.

La justificación técnica de la investigación radica en que el concreto de alta resistencia ha adquirido una importancia impresionante debido a sus aplicaciones en puentes, presas y otros edificios comerciales. La incorporación de fibras naturales reduce la explotación de los materiales tradicionales en el concreto y allana el camino para avanzar en la obtención de productos ecológicos. Siendo el consumo de energía el factor negativo al el medio ambiente son los problemas de mayor preocupación del siglo XXI, es por ello que la comunidad científica busca que las futuras investigaciones, así como las actuales estén enfocadas en la solución de los problemas mencionados, a estos problemas no es ajeno dentro del sector de la construcción, por ello la empleabilidad de fibras naturales es de interés de la comunidad investigadora por demostrar que pueden ser una alternativa a las cada vez más agotadas fuentes de petróleo o al uso de materiales que no apoyan a la preservación del planeta, sabiendo que el concreto elaborado con fibras de desecho agrícola muestra propiedades similares a las fibras sintéticas en términos de resistencia a la flexión, al corte, tenacidad e impacto. La necesidad descrita en el primer párrafo se ve satisfecha con la incorporación de

fibras naturales, al considerar que el industria de la construcción es fundamental para el desarrollo urbano de la sociedad, se debe implementar mejoras que también ayuden en disminuir el impacto ambiental pero que también ofrezcan mejor resistencia y flexibilidad en las futuras edificaciones, por ello el uso de fibras naturales se como una opción que aportaría múltiples beneficios si es que se aplica su uso. Este trabajo fue fundamental porque permitió a los investigadores a validar que el uso FHP utilizado de forma correcta con el concreto ayuda en el aumento de rigidez y flexibilidad, además de la mejora de propiedades mecánicas, y que se evidenció como una opción de aprovechamiento en comparación de las fibras sintéticas que se utilizan actualmente.

1.2. Formulación del problema

¿De qué manera influye la incorporación de la fibra de hoja de piña en las propiedades mecánicas del concreto, Lambayeque, 2022?

1.3. Hipótesis

La incorporación de fibra de hoja de piña en proporciones de 0,20 %, 0.30 %, 0.40% y 0.50% respecto al peso del cemento influye significativamente en las propiedades mecánicas del concreto.

1.4. Objetivos

Objetivo general

Evaluar el desempeño del concreto con fibra de hoja de piña como adición respecto al peso del cemento

Objetivos específicos

- Determinar las características físicas de los agregados pétreos.
- Realizar tratamiento a la fibra de hoja de piña y validar el proceso de extracción de la fibra de hoja de piña.

- Elaborar el diseño de mezclas para dos resistencias de diseño f´c=210 kg/cm² y 280 kg/cm²
- Evaluar las propiedades físicas del concreto (asentamiento, temperatura, peso unitario y contenido de aire) adicionando fibra de hoja de piña.
- Evaluar las propiedades mecánicas del concreto (resistencia a compresión, resistencia a tracción, resistencia a flexión y módulo de elasticidad) adicionando fibra de hoja de piña.

1.5. Teorías relacionadas al tema

Concreto

Se le conoce así a la combinación de cemento Portland, agua, áridos fino y grueso y agua, con aditivos si el diseño lo requiere, Reglamento Nacional de Edificaciones (RNE) [31], en algunos casos se incorporan uno a más aditivos para variar y conseguir ciertas propiedades del concreto, como la ductilidad y el tiempo de fraguado, McCormac & Brown [32].

Tipos de concreto

- a) Concreto estructural: Se considera a todo concreto que se usa con fines estructurales.
- b) Concreto armado o reforzado: Se le considera al concreto reforzado con mínima cantidad de acero.
- c) Concreto simple: Concreto que no está reforzado.
- d) Concreto estructural liviano: Se le llama al concreto sin arena y que tiene como agregado a componentes livianos.
- e) Concreto de Peso Normal: Es denominado al concreto de peso aproximado de 2,300 kg/m3
- f) Concreto Ciclópeo: Concreto simple generalmente.
- g) Concreto de Cascote: Concreto con cemento.

- h) Concreto Premezclado: Concreto producido en una planta y que se mezcla en mezcladoras y se lleva a la obra.
- i) Concreto Pre esforzado: Se le llama al concreto estructural donde se le ha manipulado con el objetivo de disminuir los esfuerzos de tracción.

Componentes del concreto

Cemento

Harmsen [33] conceptualiza que el cemento es adquirido de pulverizar el Clinker, produciendo la carbonización hasta el punto de unión de los elementos calcáreo y arcilloso, encontrándose conformado por los materiales como aluminato tricálcico, silicato tricálcico, dicálcico y aluminio-ferrito tetracálcico

El material pulverizado que de acuerdo a la dosis de agua que se le adicione con la finalidad de formar pasta aglomerante que tenga la capacidad de endurecer, de las cuales quedan excluidas las cal aéreas, así como los yesos. RNE [31]

El ASTM clasifica a los cementos en 5 tipos:

- ✓ Tipo I: Cemento que se usa en los trabajos de construcción.
- ✓ Tipo II: Cemento con modificaciones que resiste a la exposición de cloruros y sulfatos en forma moderada
- ✓ Tipo III: Cemento que produce un alto calor de hidratación, por ello genera un fraguado rápido donde en las primeras veinticuatro horas se tiene una resistencia mayor a la del cemento tipo I.
- ✓ Tipo IV: Es aquel que se solicitado para estructuras de gran tamaño que necesiten un reducido calor de hidratación.
- √ Tipo V: Mayormente es usado en cimentaciones ya que estos están expuestos directamente a altas concentraciones de sulfatos.

Agregados

Es aquel material granular como por ejemplo grava o arena, para elaborar concreto o mortero hidráulico ese se emplea con un medio cementante. RNE [31] siendo un conjunto de partículas inorgánicas, para ello sus propiedades se pueden visualizar en la Tabla I [34].

Tabla IPropiedades de los agregados pétreos.

Propiedades	Agregados		
Fropiedades	Fino	Grueso	
Finura (m²/kg)	2.61	2.66	
Tiempo de fraguado inicial	2.49	6.94	
Tiempo de fraguado final	1.69	1.38	
Consistencia estándar (%)	102.5	97.5	

Nota: Caracterización física de los agregados. [35]

El agregado fino deriva de la división de rocas, la muestra que pase el tamiz 3/8" de acuerdo a la NTP cumpliendo con los requisitos de tamaños pasantes estipulados a detalle en la Tabla II.

Tabla IIRequisitos de tamaños pasante de material delgado.

Filtro	3/8"	N° 4	N° 8	N° 16	N° 30	N° 50	N° 100
Pasante (%)	100	95-100	80-100	50-85	25-60	5-30	0-10

Nota: Porcentajes que traspasan los tamices normalizados. [36]

Los agregados generalmente ocupan la tercera parte del volumen del concreto. Por ser baratos, se utiliza la mayor cantidad posible. Generalmente se utilizan agregados como la arena que son agregados finos, así como los gruesos que son generalmente las piedras. McCormac & Brown [32]

El agregado grueso se le conoce así a la grava que pasa por un proceso de trituración, por lo general de forma angular, la dimensión de los agregados gruesos influye en la plasticidad y resistencia. [37]

Agua

El RNE E- 060 [31], nos indica que se debe trabajar en base a ciertos requerimientos, por ejemplo, el uso de agua potable, agua verificada que este libre de agentes dañinos, para que no afecte la fabricación del concreto.

Fibras para uso general

Pinzón y Peña [9] expresan que la utilización de las fibras como refuerzo del concreto no es nuevo, ya que desde hace mucho tiempo se utiliza como refuerzo del concreto, el pasto o el hilo, así como los ladrillos de barro e incluso el pelo de animales los cuales son empleados dentro de la mezcla del mortero.

Fibras naturales

Las fibras naturales tienen como origen el vegetal y que cuentan con propiedades físicas, químicas y mecánicas que les permite aportar en resistencia, flexibilidad, longitud y textura a diversos componentes o elementos a los que se les añada. CONABIO [38]

Esguerra y Forero [39] nos indica que las fibras naturales se clasifican en 2, fibras naturales orgánicas e inorgánicas, a su vez las fibras naturales orgánicas tienen la siguiente clasificación, entre fibras de semillas, por ejemplo, el algodón y la caña de aceite, la fibra de pelo de fruta, por ejemplo, en esta clasificación se tiene a la ceiba, fibra de hoja donde se tiene a la piña y al plátano, y a la fibra de tallo la cual se representa por el limo, entre otros.

Betancourt [40] nos menciona que las fibras naturales están formadas por filamentos que se hilan a través de estructuras, el mayor beneficio de las fibras parte de su elasticidad, además de su longevidad, los beneficios que se menciona se ven influenciados por su proceso de extracción y característica de la planta de donde se extrae.

Hoja de piña

Betancourt [40] nos menciona que la piña pertenece a las bromeliáceas y que su origen está en Sudamérica, la producción de su único fruto dulce es cada tres años y se le conoce por una diversidad de nombres, es una planta perenne.

Fernández y Flores [16] también nos indica que la composición a nivel químico de las

FHP es la siguiente: Hemicelulosa (70 hasta 82 por ciento), lignina (5 hasta12 por ciento) y ceniza (1.1 por ciento). Como resultado, las industrias dedicadas a su explotación obtienen una materia prima capaz que ayuda como refuerzo matricial que cuenta con diversas propiedades mecánicas, entre ellas la rigidez, flexión, torsión y resistencia.

Fig. 1. Partes de la planta de piña. [41]

Nota: Visualiza las partes de la planta de piña, desde la raíz hasta la corona.

Fibra de piña

Fernández y Flores [16] nos indican que la piña es una de las frutas que cuenta con una gran producción en el mundo pero que, al tener desechos, como en toda producción, no se respeta el ciclo de vida natural, y al no saber cómo manejarlos, se impacta de manera negativa en el medio. El contenido celular de la piña bordea el 80% el cual de ser aprovechado demostraría un mayor aporte al medio además de evidenciar que un buen uso apoya en la sociedad no solo en sectores ecológicos o relacionados al medio sino en sectores como la construcción e industriales. Las FHP contienen una gran cantidad de celulósico y en comparación con otras fibras las supera por mucho, para mayor conocimiento de su textura.

Fig. 2. Fibra de piña. [42]

Nota: Fibra de hoja de piña después del tratamiento respectivo, antes de ponerse en agua.

Propiedades

Fernández y Flores [16] aseguran que debido a que FHP se utilizan para crear tejidos y reforzar el polimérico u otros materiales, es esencial conocer las propiedades de las fibras que se extraen de la hoja de piña. Al momento de extraer la fibra, es importante recordar que será un proceso cuidadoso que requiere mucha paciencia y agresividad, ya que la fibra puede resultar dañada.

Tabla III
Propiedades de la fibra

Propiedad	Valor
Densidad (g / cm³)	1 526
Ablandamiento (° C)	104.0
Tracción (MPa)	170.0
M. elasticidad (MPa)	6 260
Rigidez (MPa)	4 070
Elongación (%)	3.0
Humedad (%)	12.0

Nota: La tabla presenta las propiedades de la fibra de hoja de piña. [43]

Composición química

Fernández y Flores [16] afirman que la calidad del suelo, el tipo de piña e incluso el clima hace que varíen las características y composición de FHP.

Esta fibra está formada por 70.0 – 82.0% de holocelulosa, un 5.0 -12.0% de lignina y un 1,1% de ceniza; sin embargo, la composición puede variar según la longevidad de la fibra y las condiciones del cultivo.

Por otro lado, la Asociación Técnica de Pulpa e Industria de Papel (TAPPI) estableció la clasificación y composición de las FHP según diversas características.

Tabla IVComposición química de la fibra

Composición (%)	FHP rechinada	FHP desengomada	FHP blanqueada
Alfa - Celulosa	70. 98	68. 72	67.75
Hemi - celulosa	15. 34	12. 7	11.35
Lignina	4. 90	4. 3	4.2
Pectinas	3	1.5	1.2
Ceniza	0.95	0.69	0.63

Nota: La tabla expone la composición química de la fibra de hoja de piña. [44]

Extracción de la FHP

La extracción de la hoja de piña se puede realizar a través de dos métodos, la primera forma sería a través del método del raspado, ya sea de forma manual o utilizando maquinaria, la segunda forma sería a través del uso de químicos, específicamente mezclas. Es decir, se da desde el crecimiento y a lo largo de todo el proceso de maduración con lo que se aprovecha al máximo su beneficio.

Fig. 3. Secuencia de producción de fibra de hoja de piña. [45]

Nota: Es muestra la secuencia de la obtención de FHP, desde que se cosecha, hasta el proceso de la fibra obtenida de la hoja de la piña.

Raspado manual o mecánico

Dado que la extracción no refleja un esfuerzo físico por parte del usuario, la extracción mecánica genera una gran comodidad para éste. El uso de maquinaria da lugar a una fabricación más rápida y un incremento de las propiedades de resistencia a la tracción en comparación con la extracción manual.

Como se muestra en la Fig. 4, la máquina se aprecia en funcionamiento; tiene tres rodillos, el primero de los cuales se conoce como rodillo de alimentación, el segundo como rodillo raspado y el tercero como rodillo dentado. Las hojas se colocan primero en la máquina, donde se les quita la capa cerosa y luego se les realiza diversos cortes con el objetivo de realizar la extracción de la fibra, ya sea la extracción química o manual.

Fig. 4. Máquina de raspado para obtención de fibra de hoja de piña. [46]

Nota: Maquina encargada de quitar la capa cerosa de la hoja, para extracción de FHP.

Como último paso se realiza el método de alcalinización con el objetivo de formar una superficie rugosa que apoye en la resistencia de las fibras y de la matriz, además que se evidencia en el proceso una mejora en la tracción y en la flexión. [40]

Selección de materiales

Estará conformada por los materiales a emplear para la realización del ensayo del concreto los cuales serán:

- Agregados
- Cemento
- Agua potable
- Fibra de la hoja de Piña.

Agregados

Son extraídos de las canteras ubicadas en el norte del Perú dentro del Departamento de Lambayeque para luego ser llevados al laboratorio.

Cemento

Se decidió emplear el cemento de tipo I.

Agua

Será extraída del laboratorio. Esta deberá cumplir con lo establecido en el Ítems 3.3 de la norma E.060 del RNE. Este insumo deberá ser de preferencia potable para nuestra preparación de concreto y su respectivo curado.

Propiedades físicas del concreto

Asentamiento

Aswed et al., [47] menciona que no permite una medición adecuada con el empleó de instrumentos, siendo el cono de Abrams, tal cual se muestra en la Figura 5, se mide el asentamiento que se encuentra entre rango de 4" – 7", siendo el permite para un concreto de alto desempeño, un asentamiento de 4", una relación a/c inadecuada afecta la calidad y desempeño de la mezcla.

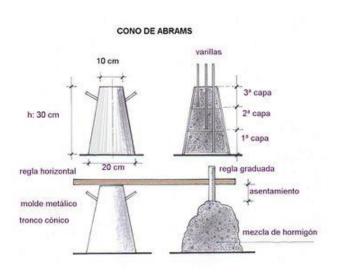


Fig. 5. Cono de Abrams. [48]

Temperatura

La temperatura se establece como parámetro dentro de las mezclas de concreto para poder corroborar la homogeneidad de la mezcla al momento del vaciado y que su proceso de fraguado no sea rápido [49] debiendo encontrase alrededor de un valor de 32°C como límite

máximo, caso contrario para la etapa de curado, el cual debe estar en un valor máximo de 10°C

Densidad

Esta propiedad permite controlar de manera rigurosa la capacidad de un concreto en estado fresco. Asimismo, Maghfirah [50] expresa que para lograr la densidad optima se debe tener muchos criterios para poder aplicar el método conveniente.

Propiedades mecánicas del concreto

Ensayo de resistencia a la compresión

Aswed et al., [47] expresan dicha resistencia está relacionada con la carga y el área determinada del material en estudio, obtenido por medio de un esfuerzo mecánico considerado como el de mayor importancia de la evaluación del concreto, pudiendo así estimar la calidad y capacidad de soporte frente a cargas progresivas.

Se le llama compresión a la medida de la capacidad que tiene el testigo de soportar las cargas a las que son sometidos, sin presentar grietas ni desviaciones, para lo cual se emplea la maquina normalizada visualizada en la figura 6. [51]

Fig. 6. Máquina para resistencia a la compresión [51]

Resistencia a la tracción

Esta propiedad mecánica no es considerada generalmente para el diseño de estructuras, esto porque los valores de tracción son reducidos en comparación de los demás, no obstante, evaluarlos es de suma importante por la tensión y limitación que provoca la disminución de temperatura o secado por agrietamiento del concreto [52]

Resistencia a la flexión

Se define como la indirecta estadística de la tracción, ya que determina el soporte a la rotura por el momento último de un puntual o baldosa de concreto simple, siendo este soporte un principio de gran relevancia dentro de la calidad de los concretos que se están diseñando. [53]

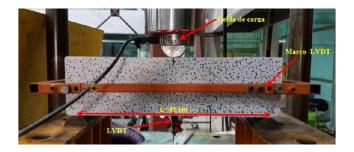


Fig. 7. Ensayo a flexión [54]

Módulo de elasticidad

Determina la rigidez, siendo este factor el cual permite determinar la deformación del concreto, permitiendo dimensionar elementos estructurales reforzados y no reforzados [21]

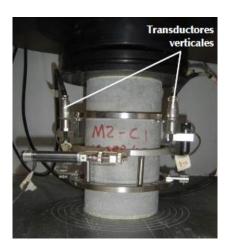


Fig. 8. Módulo de elasticidad del concreto [21]

II. MATERIALES Y MÉTODO

2.1. Tipo y Diseño de Investigación

El proyecto es de tipo aplicada y se realizó bajo un enfoque cuantitativo, y tuvo como objetivo mapear los beneficios del uso de la fibra de piña para validar la hipótesis.

Diseño de la investigación

Es de tipo experimental, dado que el objetivo fue encontrar una solución al problema planteado aplicando diversos métodos para poder validar la hipótesis. Los resultados se hallaron a través de un muestreo y validación de la mejora de las propiedades mecánica del concreto con el agregado de la FHP.

G_{exp1-5}: Grupo Experimental

X: No se le incorpora FHP.

 X_{2F-5F} : Se incorpora FHP.

O_{2F-5F}: Observación de resultados al incorporar FHP.

O: Observación de resultados sin incorporar FHP.

2.2. Variables, Operacionalización

Variable dependiente

Propiedades físicas y mecánicas del concreto.

Variable independiente

Fibra de hoja de piña.

Tabla VOperacionalización de variable independiente

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Instrumento	Valores finales	Tipo de variable	Escala de medición
	Son fibras adquiridas de la hoja de piña, mediante un riguroso y proceso para que se pueda tener esta fibra como resultado final, Rahmi et al., [6]	Estudio de	Dosificación de FHP.	0.20%*	Fichas y guías para recojo de datos de los	uías para ecojo de eos de los Ka	Numérica	De razón
				0.3%*	ensayos realizados			
				0.4%*				
Fibra de				0.5%*	laboratorio			
hoja de piña		las FHP en el concreto	Dosificación para concreto	FHP	Fichas y	Kg		
μπα		pueda ner esta ra como esultado al, Rahmi		Agregado grueso	guías para recojo de datos de los ensayos realizados	Kg		
				Agregado fino		Kg	Numérica	De razón
				Cemento	en	Kg		
				Agua	laboratorio	Lt		

^{*:} Porcentajes de incorporación de FHP para resistencia diseño 210 y 280 kg/cm².

Nota: La tabla señala la operacionalización de la VI

Tabla VIOperacionalización de variable dependiente

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Instrumento	Valores finales	Tipo de variable	Escala de medición
			Propiedades físicas	Asentamiento	Fichas y guías para	cm, pulg		
	Se conoce que el concreto			Temperatura	recojo de datos de los	°c	- Numérica - - - Numérica	
	adquiere un comportamiento cuasi frágil, viéndose afectada las propiedades cuando a su capacidad se somete a cargas por una fuerza externa,	Determinar la resistencia que obtienen las propiedades		Peso unitario	ensayos realizados en laboratorio	Kg / m³		
				Contenido de aire		%		
Propiedades mecánicas del concreto				Resistencia a la compresión	Fichas y guías para	kg / cm²		
		modificadas adicionando	Propiedades	Módulo de elasticidad	recojo de datos de los	kg / cm²		
			mecánicas	Resistencia a la tracción	ensayos realizados	kg / cm²		
	Guevara [55]			Resistencia a la flexión	en laboratorio	kg / cm²		

^{*:} Unidades de medida para los ensayos en concreto fresco y endurecido.

Nota: La tabla señala la operacionalización de la VD

2.3. Población de estudio, muestra, muestreo y criterios de selección

Población de estudio, definida para la investigación son las muestras de concreto que fueron ensayadas según las especificaciones indicadas en la N.T.P y la A.S.T.M, el ACI y el RNE. En la investigación se utilizaron muestras de concreto elaboradas con adición de FHP en su diseño.

Muestra, Está formada por 400 probetas que contempla todos los modelos de concreto a los que se añadió la FHP, así como las muestras de concreto que se elaboraron sin adición de fibra. Se estableció un grupo de control que no tuvo las fibras como aditivo en su mezcla, y un grupo experimental donde se añadió las FHP, esto para evaluar las propiedades beneficiosas de estas fibras en particular

Criterios de selección, Contó con dos diseños, C210 y C280. Los dos diseños son modelos cilíndricos siendo las medidas serán de 15x30cm de diámetro y altura para los modelos prismáticos rectangulares 20x10x10cm. Para ambos diseños, se añadieron las siglas CP y cuatro de las adiciones de FHP con 0.2%, 0.3%, 0.4% y 0.5% con FHP. Después de 24 horas de preparación en los días 7, 14 y 28, las probetas son rotadas inmediatamente, siendo 400 probetas a producir.

Los testigos que fueron empleados de acuerdo a cada propiedad mecánica se describen en la tabla V y VI respectivamente, en la fabricación del concreto para resistencias de C210 y C280.

Tabla VIICantidad de probetas para ensayos de un diseño f'c=210 kg/cm².

Forma de probeta	Nº de días de curado	Ensavos nor	Diseño Adición de FHP respecto al peso del cemento (CP210) %FHP **						Total
	en agua	. Januar	0% *	0.20%	%FH 0.30%	0.40%	0.50%		
	7		3	3	3	3	3	15	
Cilíndrica	14	Resistencia a la compresión	3	3	3	3	3	15	50
	28	compresion	4	4	4	4	4	20	
Cilíndrica	7	Resistencia a la tracción	3	3	3	3	3	15	
	14		3	3	3	3	3	15	50
	28		4	4	4	4	4	20	
	7	D : (: 1	3	3	3	3	3	15	
Prismática	14	Resistencia a la flexión	3	3	3	3	3	15	50
	28	IICXIOII	4	4	4	4	4	20	
	7	Módulo de	3	3	3	3	3	15	
Cilíndrica	14	elasticidad	3	3	3	3	3	15	50
	28	บ เลงแบนสน	4	4	4	4	4	20	
			TOTAL D	E MUESTRAS	6				200

^{*:} Probetas realizadas para un diseño 210 kg/cm² sin adición de FHP a 7, 14 y 28 días por ensayo.

Nota: La tabla señala el número total de probetas a elaborar para un diseño 210 kg/cm², conteniendo los 4 ensayos a realizar.

^{**:} Probetas realizadas para un diseño 210 kg/cm² con adición por cada porcentaje de FHP a 7, 14 y 28 días por ensayo.

Tabla VIIICantidad de probetas para ensayos de un diseño f'c = 280 kg/cm².

Forma de	Nº de días de curado	Ensayos por	Diseño (CP280)	Adición de f al	Subtotal	Total			
probeta	en agua	realizar			%FHP				
			0.00%	0.20%	0.30%	0.40%	0.50%		
	7	Resistencia a la compresión	3	3	3	3	3	15	
Cilíndrica	14		3	3	3	3	3	15	50
	28		4	4	4	4	4	20	
	7	Resistencia a la tracción	3	3	3	3	3	15	
Cilíndrica	14		3	3	3	3	3	15	50
	28		4	4	4	4	4	20	
	7		3	3	3	3	3	15	
Prismática	14	Resistencia a la	3	3	3	3	3	15	50
	28	flexión	4	4	4	4	4	20	
	7	N47 1 1 1	3	3	3	3	3	15	
Cilíndrica	14	Módulo de	3	3	3	3	3	15	50
	28	elasticidad	4	4	4	4	4	20	
			TOTAL DE N	IUESTRAS					200

^{*:} Probetas realizadas para un diseño 210 kg/cm² sin adición de FHP a 7, 14 y 28 días por ensayo.

Nota: La tabla señala el número total de probetas a elaborar para un diseño 280 kg/cm², conteniendo los 4 ensayos a realizar.

^{**:} Probetas realizadas para un diseño 210 kg/cm² con adición por cada porcentaje de FHP a 7, 14 y 28 días por ensayo.

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

Las técnicas que se emplearon en la investigación son la *observación directa*, siendo aquella que se puede apreciar que con este método se estudió el proceso por el que se añade la fibra de piña al peso del material cementoso en cuatro proporciones diferentes de 0,2%, 0.3%, 0.4% y 0.5% para los diseños CP210 y CP280 y los resultados finales, los cuales se registraron en los formatos indicados.

El análisis documental, aquel que tiene el objetivo de recopilar y realizar un correcto análisis de los datos que se recojan, se realizará una revisión de investigaciones y bibliografía relacionada con el tema, además de la revisión de normas técnicas y reglamentos de nuestro país e internacionales relacionados a la construcción y a la investigación, vale mencionar que se consideró investigaciones recientes y relacionadas al uso de la hoja de fibra de la piña, que es el material primario que es el núcleo de la investigación.

Dentro de los instrumentos de recolección de datos, tenemos la *guía de observación* para el cual dentro de esta investigación se tuvieron los formatos de cálculos desarrollados por la tesista que fueron de importancia para haber interpretado la información adquirida de los ensayos elaborados.

Por otro lado, la *guía de análisis de documentos* son las normas a las cuales se ceñirá la investigación serán la ASTM, ACI, N T P y el RNE, en las que se explicó y detallo los procedimientos a seguir en la investigación.

Para la *confiabilidad de datos*, se recopilarán los datos de manera rigurosa y estricta los datos además de cumplir con los estándares de investigación.

2.5. Procedimiento de análisis de datos

Para ello se puede visualizar el diagrama de flujo de procesos el cual se presenta en la siguiente figura, donde se evidencia a detalle la elaboración de ensayos, recolección de datos y su interpretación de donde obtendremos conclusiones.

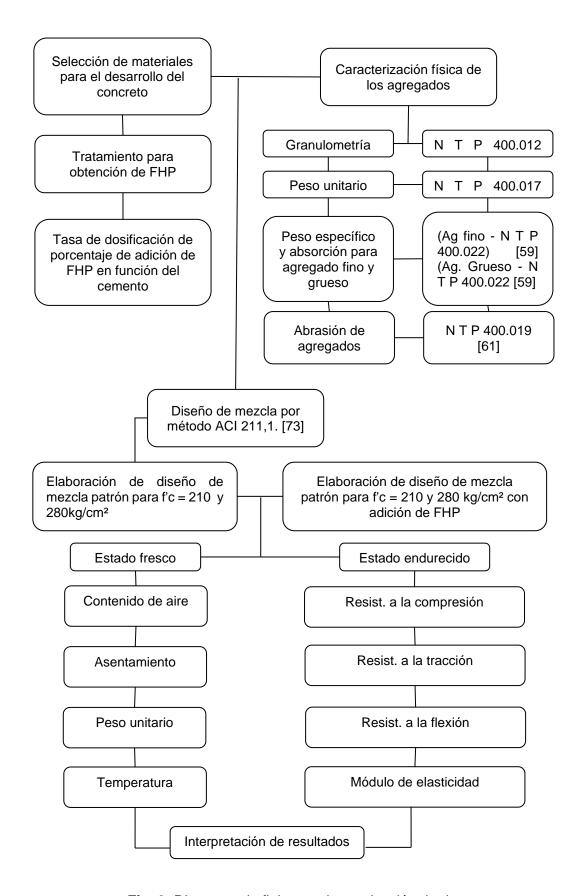


Fig. 9. Diagrama de flujo para la recolección de datos.

Detalle de procesos

Se evaluó las canteras para así poder obtener las características específicas de cada material de acuerdo a la normativa.

Fig. 10. Material de la cantera la Victoria.

Fig. 11. Material de la cantera Pacherres.

- Cemento

Para el desarrollo del estudio se empleó cemento tipo I, adquirido de la empresa d'mat ubicado en la Carretera Panamericana Norte (Chiclayo a Lambayeque) Km. 780 Lambayeque.

- Agua

Fue adquirida del laboratorio, siendo agua potable

- Fibra de hoja de piña

Fue adquirida mediante previo tratamiento, de los cuales la hoja de piña fue obtenida de una chacra ubicada en la provincia de Bagua, Amazonas, para posteriormente la hoja de piña ser lavada, la cual con ayuda de un cepillo metálico nos permitió obtener las FHP, luego

ser tratada bajo hidróxido de sodio y se pase a secado para su incorporación dentro del concreto.

Fig. 12. Proceso de obtención para la fibra de hoja de piña.

De los ensayos para agregado pétreos tenemos:

- Análisis granulométricos

El ensayo se encuentra reglamentado de acuerdo a la N T P 400.012 [56], del cual para agregado fino se determina por un MF y para el agregado grueso el T.M.N.

Implementos y maquinaria

- Balanzas con un error de 0.1 gr.
- > Tamices normalizados
- Horno industrial

Fig. 13. Tamizado de granulometría para agregado fino.

Peso unitario

Se empleó lo estipulado en la N T P 400.017 [57] , empleado para AG y AF. Implementos y maquinaria

- > Balanzas con un error de 0.1 gr.
- Varilla metálica de 5/8" Ø y 60cm long.
- Cucharilla
- Recipiente cilíndrico metálico

Valores a calcular

Densidad de masa

$$Ds = \frac{Ms - R}{Vr} \text{ o } D = (M - R) * Fr$$

Ecuación 1. Densidad de masa

Donde:

Ds = Densidad de masa en kg/m³

Ms = Muestra seca incluido el recipiente (kg)

R = Masa del recipiente (kg)

Vr = Volumen del recipiente

Fr = Factor del recipiente (1/m³)

Densidad de masa sat. superficialmente seca (DMSSS)

$$DMSSS = D\left[1 + \frac{Ch}{100}\right]$$

Ecuación 2. Densidad de masa superficialmente seca Donde:

Ch = humedad (%)

Fig. 14. Peso unitario del agregado grueso.

Contenido de humedad

Se empleó lo enunciado en la NTP 339.185 [58], empleado para ag. grueso, así como para fino, para determinar el contenido de humedad de los agregados.

Implementos y maquinaria

Balanzas con un error de 0.1 gr.

- Horno industrial
- Cucharilla
- > Recipiente cilíndrico metálico

Valores a calcular

• Contenido de humedad (%)

$$Ch = 100 * \frac{Mh - Ms}{Ms}$$

Ecuación 3. Contenido de humedad.

Donde:

Ms = Masa seca al horno (gr)

Mh = Masa en humedad natural (gr)

Fig. 15. Pesado de la muestra seca al horno por 24 horas.

Peso específico y absorción del agregado grueso

Se empleó lo estipulado en la NTP 400.022 [59].

Implementos y maquinaria

- > Balanzas con un error de 0.1 gr.
- > Horno industrial
- > Balde plástico
- Malla estandarizada N°4

Valores a calcular

Peso específico de masa (P em)

$$Pesm = \frac{A}{B-C} * 100$$

Ecuación 4. Peso específico de masa

• Densidad de masa saturada superficialmente seca (P estss)

$$Pestss = \left[\frac{B}{B-C}\right] * 100$$

Ecuación 5. Densidad de masa saturada superficialmente seca

• Densidad especifica aparente (P ea)

$$Pea = \left[\frac{A}{A-C}\right] * 100$$

Ecuación 6. Densidad especifica aparente

Absorción (Ab)

$$Ab = \left[\frac{B - A}{A}\right] * 100$$

Ecuación 7. Absorción

Donde:

A = Masa seca al aire (g)

B = Masa Sat. Sup. seca al ambiente (gr)

C = Masa saturada en el agua (gr).

Fig. 16. Peso del balde más el peso de la muestra para el ensayo de peso específico de material grueso.

Peso específico y absorción del agregado fino

Se empleó lo estipulado en la NTP 400.022 [59].

Indumentarias y equipo

- Balanzas con un error de 0.1 gr.
- Horno industrial
- Molde en forma de cono tronco de 40mmx90mmx75mm ø interior, superior y altura.
- ➤ Fiola de 500 cm³

Valores a calcular

• Peso específico de masa (P em)

$$P\ em = \frac{A}{(B+S-C)}$$

Ecuación 8. Peso específico de masa

Peso específico saturado superficialmente seca (P eSSS)

$$P \ eSSS = \frac{S}{(B+S-C)}$$

Ecuación 9. Peso específico saturado superficialmente seco

• Peso específico aparente (P ea)

$$P \ ea = \frac{A}{(B+A-C)}$$

Ecuación 10. Peso específico aparente

Donde:

A = Masa de la porción seca en horno (gr)

B = Masa de la fiola lleno de agua hasta la marca calibrada (gr)

C = Masa de la fiola lleno de arena y agua (gr)

S = Masa de la porción saturada superf. seca (gr)

S1 = Masa de la porción sat. Superf. seca (gr)



Fig. 17. Peso de la fiola, más el agua y la arena para el ensayo de peso específico.

Porcentaje de fino que pasa por la malla N200

Se empleó lo estipulado en la NTP 400.018 [60], empleado para Ag. Fino Indumentaria y equipos

- > Balanzas con un error de 0.1 gr.
- Horno industrial
- Recipientes
- Malla estandarizada N°200 de 75 μm

Valores a calcular

• Cantidad de material pasante por tamiz N°200

$$A = \left(\frac{P1 + P2}{P1}\right) * 100$$

Ecuación 11. Pasante por la malla N°200

Donde:

A = % de material más fino húmedo

P1 = Masa seca (g)

P2 = Masa seca posterior del lavado (g)

Fig. 18. Pesado de la muestra de material fino, para realizar el ensayo.

Abrasión de agregados gruesos

Se empleó lo estipulado en la NTP 400.019 [61], empleado para ag grueso, así como para fino, para encontrar la abrasión del material grueso.

Indumentaria y equipos

> Balanzas con un error de 0.1 gr.

- > Horno industrial
- Máquina de los ángeles
- Esferas de acero de 46 y 48 mm de diámetro y 390 y 445g.

Valores a calcular

• Porcentaje de pérdida por abrasión (Pa)

$$Pa = \frac{C - Y}{C} * 100$$

Ecuación 12. Perdida por abrasión

Donde:

Pa = % pérdida

C = Masa inicial (g)

Y = Masa final después de las rev. (g)

Fig. 19. Muestra de material grueso que se incorporará dentro de la máquina de los ángeles.

Procedimiento para los diseños de mezcla

- a) Selección de resistencia de diseño que se requiere
- b) Determinación del TMN del agregado grueso y MF para ag. fino
- c) Elegir de acuerdo el asentamiento la consistencia
- d) Escoger el volumen de agua para mezclado
- e) Determinar el aire atrapado (%)
- f) Definición de la relación a/c por diseño
- g) Exponer factor cemento por m³ de concreto
- h) Determinar dosificaciones de materiales gruesos y finos
- i) Ajustar la dosificación a los resultados realizados
- j) Primera prueba y corrección de asentamiento
- k) Se ensayan probetas a 7 días de curado
- I) Rectificar el f'cr
- m) Diseños finales
- n) Mezcla optima por diseño
- Realización de muestras cilíndricas y prismáticas para ser ensayadas en estado endurecido
- p) Curado de muestra en 7, 14 y 28 días de curado.

Fig. 20. Elaboración en trompo de mezcla de concreto con incorporación de FHP.

Ensayos en estado fresco

Medición del asentamiento

Se empleó lo estipulado en la NTP 339.035 [62], empleado para medir el asentamiento de la mezcla del concreto en estado fresco.

Indumentaria y equipos

- > Balanzas con un error de 0.1 gr.
- > Varilla de acero liso
- Cono de Abrams
- > Cucharilla metálica

Fig. 21. Procedimiento para la determinar el asentamiento del concreto.

Proceso de calculo

Se colocó el cono de Abrams, estando anteriormente húmedo y haciendo presión en las azas metálicas del recipiente, luego se le coloca mezcla de concreto en 3 capas, las cuales son compactadas con 25 golpes por capa de forma esférica con la varilla, posteriormente se retiró el recipiente de forma vertical para finalmente medir el asentamiento.

Medición de temperatura

Se empleó lo estipulado en la NTP 339.184 [63], empleado para medir la temperatura de la mezcla del concreto.

Indumentaria y equipos

Termómetro

Fig. 22. Procedimiento para determinar la temperatura del concreto.

Proceso de calculo

Se coloca de manera delicada el termómetro en superficie de la mezcla, luego de 5 minutos que la mezcla se encuentre a temperatura ambiente, luego de 2 minutos el termómetro se coloca y se anota la lectura del termómetro.

Medición de peso unitario

Se empleó lo estipulado en la N T P 339.046 [64], empleado para determinar el peso unitario de la mezcla del concreto en estado fresco.

Indumentaria y equipos

- Balanzas con un error de 0.1 gr.
- Varilla de acero liso
- > Recipiente metálico
- Martillo de goma

Fig. 23. Proceso de medición para el peso unitario del concreto.

Proceso de calculo

Se vació mezcla en el envase hasta un tercio de su capacidad, luego se compacta con 25 golpes, así se hace con las 3 capaz y con ayuda del mazo se golpea en los lados con el fin de eliminar las burbujas de aire retenidas. Se limpia el exceso de mezcla y se determina

la masa del molde con el volumen del mismo.

Cálculos

• Densidad de masa (D c)

$$Dc = \frac{Mc - Mr}{Vr}$$

Ecuación 13. Densidad de masa

Donde:

M c = Masa del recipiente lleno (kg)

M r = Masa de recipiente (kg)

V c = Volumen de recipiente (m³)

Medición de contenido de aire

Se empleó las especificaciones de la ASTM C 231 [65], empleado para determinar el contenido de aire de la mezcla del concreto.

Indumentaria y equipos

- Balanzas con un error de 0.1 gr.
- > Varilla de acero liso
- > Recipiente metálico
- Martillo de goma

Fig. 24. Proceso para la medición de contenido de aire del concreto en estado fresco.

Se realizó el ensayo en la olla Washington por el método de medición "B" igual al procedimiento de peso unitario, pero se tapa la olla y se procede a llenar de agua hasta donde marca la misma y luego se procede a tomar lecturas.

Ensayos en estado endurecido

Resistencia a la compresión

Se encuentra sujeto en base a la NTP 339.034 [66].

Indumentaria y equipos

- Máquina de ensayo calibrada
- Vernier
- Placas de neopreno

Fig. 25. Medición de ensayo de resistencia a la compresión a 28 días de curado.

Se procedió a medir los diámetros y longitudes de las muestras cilíndricas de concreto con el vernier, para luego colocar en las placas de neopreno y colocar dentro de la maquina en el centro aplicándole la carga a velocidades reducidas hasta que falle el testigo, luego se anota la lectura del valor y fotografiar la muestra y ver su tipo de falla.

Resistencia a tracción

El ensayo se encuentra sujeto de acuerdo a la ASTM C 496 [67] Indumentaria y equipos

- Máquina calibrada
- > Vernier
- Placas metálicas

Fig. 26. Medición de ensayo de resistencia a la tracción del concreto.

Se procedió a medir los diámetros y longitudes de las muestras cilíndricas de concreto con el vernier, para luego colocar de manera trasversal con las placas metálicas tanto arriba y debajo del testigo y colocar dentro de la maquina en el centro para que se aplique la carga a velocidades reducida hasta que falle el testigo, luego se toma lectura del valor y fotografiar la muestra y ver su tipo de falla.

Resistencia a flexión

El ensayo se encuentra sujeto de acuerdo a la N T P 339.078 [68]. Indumentaria y equipos

- Máquina de ensayo calibrada
- Vernier
- > Hechizo de acero

Fig. 27. Medición de ensayo de resistencia a la flexión.

Se procedió a medir el ancho, largo y espesor del testigo prismático, y se pide 2.5cm a partir de los apoyos. Luego se ubica el hechizo de acero y se coloca la viga dentro, se hace coincidir los apoyos en las líneas trazadas, se ensaya y se visualiza si la falla se mantiene dentro del tercio medio marcado y luego tomar lectura del valor y fotografiar la muestra y ver su tipo de falla.

Módulo de elasticidad

El ensayo se encuentra sujeto de acuerdo a la ASTM C469 [69]. Indumentaria y equipos

- > Máquina de ensayo calibrada
- Vernier
- Compresómetro con 5 millonésimas de deformación aprox.

Fig. 28. Probeta con el compresometro para ser sometido al ensayo de módulo de elasticidad del concreto.

Se efectuó la medición de los diámetros y longitudes de las muestras cilíndricos de concreto con el vernier, para luego colocar en las placas de neopreno y colocar el compresometro para luego poner dentro de la maquina en el centro para que se aplique la carga a velocidades baja que conlleve que falle la probeta, luego anotar el valor y fotografiar la muestra y ver su tipo de falla.

Cálculos

• Datos a calcular

$$Ec = \frac{S2 - S1}{\varepsilon 2 - 0.000050}$$

Ecuación 14. Módulo de elasticidad.

2.6. Criterios éticos

Dentro de la investigación, se mantuvo los siguientes criterios éticos tanto en las fases que se indica, así como en toda la investigación, garantizando de esta manera confiabilidad en los resultados.

Para ello se tiene en cuenta la ética de recolección de datos, en la cual la investigación se realizó considerando los formatos indicados para la recolección de datos además de alinearse a los estándares de investigación que se manejan en la universidad con el objetivo de garantizar la fiabilidad de resultados.

A su vez se considera la ética de la aplicación con el cual la investigación se dió a nivel local y nacional, con el compromiso de mantener los estándares, la investigación se realizó con aplicación de formato IEEE y se citará a las publicaciones revisadas.

Los criterios de rigor científico son aquellos para la realización de esta investigación se consideró los parámetros de las normativas vigentes internacionales y nacionales, además de contar con la supervisión del técnico encargado del laboratorio.

La validez del proyecto se desarrolló el procedimiento de producción de concreto y ensayos de resistencia, cumpliendo con los parámetros indicados en la normativa técnica vigente tanto internacionales como nacionales.

La fiabilidad del estudio se desarrolló será fiable ya que fue realizado haciendo uso de equipos certificados y con un adecuado funcionamiento para así desarrollar nuestros ensayos.

III. RESULTADOS Y DISCUSIÓN

3.1. Resultados

3.1.1. Características físicas de los agregados

Se observan las tablas y gráficos con los valores determinados de las características físicas del agregado, rigiéndose a las normas americanas y peruanas, para desarrollar de manera correcta y aplicada los ensayos.

Análisis de las canteras de la región en Lambayeque

Se realizó un estudió muestral de cada cantera en todo el Dep. de Lambayeque hábiles, para ello la tesista tomo en cuenta las canteras visualizadas en la tabla de agregado fino y grueso para la fabricación de concreto.

Tabla IXNombre, ubicación y coordenadas de las canteras en estudio

Nombre	Ubicación	Coordenadas UTM		
Tres Tomas	Provincia Ferreñafe, Dist. Mesones Muro	9267468 N / 644852 E		
La Victoria	Dist. de Pátapo, caserío las canteras	9257602 N / 654942 E		
Pacherres	Centro Poblado de Pacherres (km 01, sur), dist. de Pucalá	9249150 N / 662819 E		
Castro I,	Dist. de Cayaltí, Oyotún, carretera Zaña	9235139 N / 652098 E		

Nota: La tabla expresa la ubicación de cada cantera estudiada, así como sus coordenadas en el sistema UTM de las mismas.

Determinación de las características físicas de los agregados de cada cantera

a) Ensayos aplicados para agregado fino

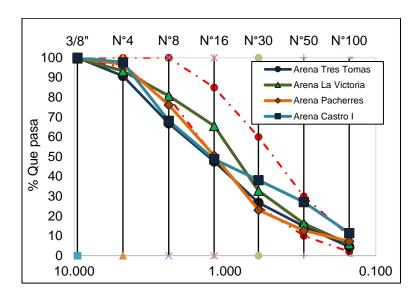


Fig. 29. Análisis granulométrico de arena gruesa de canteras en estudio.

El comportamiento de la curva de La Victoria, se mantiene dentro de los rangos propuestos de acuerdo a la norma ASTM C33 [70] obteniendo un valor de módulo de fineza (MF) de 3.06, a comparación de los valores de las demás canteras variando entre 3.09 y 3.55, manteniéndose esta cantera dentro de los rangos propuestos en la NTP 400.037 [71], siendo el menor valor 2.3 y el rango máximo 3.1, adoptando la arena de la cantera La Victoria, Pacherres y Castro I, un comportamiento aceptable, por lo cual dichos materiales fueron evaluados para la presente investigación.

Tabla XCaracterísticas físicas del agregado fino

	Descripción				Canteras				
Ensayo			Unidad	Tres Tomas	La Victoria	Pacherres	Castro I		
Granulometría	Módulo d	le fineza	-	3.55	3.06	3.34	3.09		
	PUS	Húmedo	kg/cm³	1572.31	1630.02	1696.02	1677.73		
Peso Unitario	Promedio (kg/cm³)	Seco	kg/cm³	1544.61	1624.62	1671.45	1654.44		
Suelto y Compactado	PUC	Húmedo	kg/cm³	1780.36	1765.72	1901.82	1921.67		
	Promedio (kg/cm³)	Seco	kg/cm³	1749.00	1759.87	1874.26	1895.00		
	P.e. de masa		g/cm³	2.59	2.49	2.62	2.57		
Peso específico de masa y	P.e de mas	a SSS	g/cm³	2.64	2.50	2.67	2.61		
porcentaje de	P.e aparente		g/cm³	2.14	1.11	1.15	1.13		
absorción	Porcentaje de absorción		%	1.66	0.59	1.79	1.49		
Contonido do	P.M.H		g/cm³	652.00	1000.00	785.00	900.00		
Contenido de humedad	P.M.S		g/cm³	641.43	996.86	774.38	888.23		
	humedad		%	1.79	0.33	1.47	1.41		
	Masa seca natural	muestra	gr	-	900.00	800.00	850.00		
Pasante malla N° 200		Masa seca de la muestra luego de lavado		-	853.93	693.64	752.26		
	% de mater pasante po N°200		%	-	5.12	13.30	11.50		

Nota: Se muestra los resultados de los ensayos realizados para agregado fino de cada cantera, realizando una comparación de resultados.

Los resultados adquiridos cumplen con el reglamento 400.019 [61] para lo cual los valores de peso unitario, peso específico y contenido de humedad no difieren en mucho, manteniéndose dentro de rangos aceptables y la cantera de La Victoria, Pacherres y Castro I, se estudiaron para emplear en la investigación, el descarte para ello se empleó el ensayo pasante por la malla N°200, de las cuales se obtuvo el menor porcentaje pasante de un valor de 5.12% de la cantara La Victoria, por la cual se escogió dicha cantera para la investigación en la elaboración del diseño de mezcla.

b) Ensayos aplicados para agregado grueso

Granulometría del agregado grueso

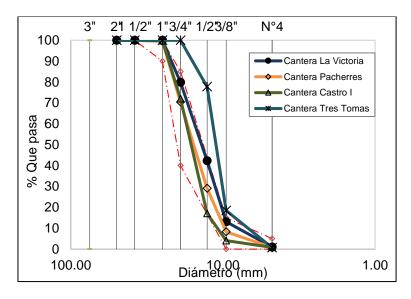


Fig. 30. Análisis granulométrico árido grueso.

Se graficó una curva, la cual se esquematiza con los límites superior e inferior empleando el reglamento la NTP 400.012 [56]. Logrando calcular el TMN del agregado recio de cada cantera en base a la norma ASTM C136 [72], obteniendo un agregado graduado con un TMN de 3/4" y 1/2", visualizando que la curva de la cantera Pacherres se mantiene centrada entre los límites, por lo cual se evaluará el material de está cantera para el desarrollo de la investigación.

Tabla XICaracterísticas físicas del agregado grueso

	Descripción			Canteras				
Ensayo			Unidad	Tres Tomas	La Victoria	Pacherres	Castro I	
Granulometría	Tamaño i nomi		pulg	1/2	3/4	3/4	3/4	
	PUS	Húmedo	kg/cm³	1452.10	1491.45	1438.32	1456.65	
Peso Unitario Suelto y	Promedio (kg/cm³)	Seco	kg/cm³	1442.21	1479.48	1432.78	1446.04	
Compactado	PUC	Húmedo	kg/cm³	1582.98	1652.10	1564.13	1587.64	
	Promedio (kg/cm³)	Seco	kg/cm³	1572.20	1638.84	1558.10	1576.06	
	P.e. de masa P.e de masa P.e de masa SSS		g/cm³	2.24	2.23	2.11	2.11	
Peso específico de masa y			g/cm³	2.28	2.29	2.19	2.19	
porcentaje de	P.e aparente		g/cm³	2.32	2.37	2.30	2.30	
absorción	Porcentaje de absorción		%	1.57	2.58	3.86	3.86	
Contonido do	P.M.H		g/cm³	750.00	900.00	800.00	700.00	
Contenido de humedad	P.M.S		g/cm³	746.12	894.22	797.61	696.21	
	humedad		%	0.69	0.81	0.39	0.73	
	Peso de la	muestra	gr	-	-	5000.00	5000.00	
Abrasión	Masa reten malla N°12	ida por la	gr	-	-	4583.67	4276.28	
Autasiuit	Masa pasante por la malla N°12		gr	-	-	416.33	723.72	
	Desgaste		%	-	-	8.33	14.47	

Nota: Se muestra los resultados de los ensayos realizados para agregado grueso de cada cantera, realizando una comparación de resultados.

Los resultados adquiridos del ensayo cumplen con el reglamento N T P 400.019 [61] lo cual la norma sugiere un desgaste máximo del 50%, en comparación con la muestra de la cantera Pacherres, se puede observar que existe un desgaste por abrasión de 8.33% y para el agregado grueso de la cantera Castro I con un desgaste por abrasión de 14.47%, siendo valores inferiores al 50%, manteniéndose debajo de los rangos establecidos en la norma. Por obtener un menor desgaste, se selecciona la cantera Pacherres, siendo dicho agregado el que se empleó para el desarrollo de la investigación, descartando las demás canteras.

3.1.2. Características físicas de la fibra de hoja de piña

Tabla XIICaracterísticas físicas de la fibra de hoja de piña.

Ensayo	Descripción	Unidad _	Material a adicionar FHP
Dimensión	Longitud	mm	250.00
Dimension	Grosor	mm	22.17
	Peso de la muestra seca al aire	gr	24.39
Absorción	Peso de la muestra saturada superficialmente seca al aire	gr	34.84
	Absorción	%	42.85
	Masa de la muestra	gr	207.24
Densidad	Volumen del recipiente	cm ³	141.37
	Densidad	gr/cm³	1.47
	Masa de la muestra inicial	gr	50.00
Contenido de humedad	Masa de la muestra seca después del horno	gr	46.56
	Contenido de humedad	%	7.39

Nota: La tabla señala un resumen de los valores de las características físicas de la FHP.

3.1.3. Diseño de mezcla por diseño

Posteriormente a los ensayos realizados a los materiales pétreos, se empieza a calcular el diseño por medio del método de ACI 211.1, del cual se adquirió el diseño de mezcla de resistencias de concreto patrón para una resistencia C210 y C280.

Diseño de mezcla de prueba a 7 días de curado

Los diseños de prueba nos permiten verificar cual es la dosificación más acercada a que cumpla con los requerimientos de diseño, el cual nos permite poder corregir el diseño ya sea aumento o corrigiendo componentes de la mezcla de concreto, previamente a realizar las mezclas definitivas, las pruebas fueron elaboradas con factor de seguridad (FS) con 0%, 50% y 100% del valor de 84 kg/cm² que se le incrementa a resistencias f'c = 210 hasta 350 kg/cm², correspondiente a una resistencia promedio f'cr: f'c + 84. En las siguientes tablas se muestra

los diseños de mezcla para concreto patrón de ambas resistencias.

Tabla XIIIDiseño de mezcla de concreto patrón para resistencia 210 y 280 kg/cm².

	Resist	encia de	diseño	Resistencia de diseño			
		C210			C280		
Descripción	Diseño	Diseño	Diseño	Diseño	Diseño	Diseño	
	1	2	3	1	2	3	
	0 - FS	50 - FS	100-FS	0 - FS	50 - FS	100-FS	
Relación a/c	0.73	0.68	0.62	0.61	0.57	0.52	
Cemento (kg/m³)	373.3	403.3	428.3	449.7	481.7	532.9	
Cemento (bls/m³)	8.8	9.5	10.1	10.6	11.3	12.5	
Agua (Its)	273.5	273.9	264.1	273.7	276.9	278.4	
Agregado fino (kg/m³)	858.1	854.8	802.0	816.1	831.5	806.4	
Agregado grueso (kg/m³)	879.0	859.0	816.6	856.5	837.8	829.3	
Elección de diseños	de mezcl	as de pru	ieba para	210 y 280) kg/cm²		
f'c a los 7 días P1 (kg/cm²)	161.69	192.91	239.16	217.1	223.86	247.17	
f'c a los 7 días P2 (kg/cm²)	162.05	204.91	255.07	215.6	231.59	256.74	
f'c a los 7 días promedio							
(kg/cm²)	161.87	198.91	247.11	216.3	227.72	251.95	
f'c (%)	77.08	94.72	117.67	77.27	81.33	89.98	

Nota: La tabla señala los valores para un diseño 210 y 280 kg/cm², de acuerdo a factor de seguridad de 0%, 50% y 100%, con dosificación para cada material y la resistencia promedio a 7 días de curado por diseño.

Para el presente caso de diseño de concreto C210, se escogió el primer diseño, con un f'c promedio del 77.08% siendo mayor que el 75% especificado por el reglamento RNE [31] de igual manera para el diseño C280 se escogió el diseño 1, con un f'c promedio de 77.27%. Por otro lado, en ambos casos con el diseño 2 y 3 se adquiere también un valor mayor al 75% normalizado, pero por un tema de optimizar los recursos de materiales como el cemento, reduciendo la parte económica con el primer diseño.

3.1.4. Diseño de mezcla del concreto incorporando 0.2%, 0.3%, 0.4% y 0.5% de FHP

por peso del cemento

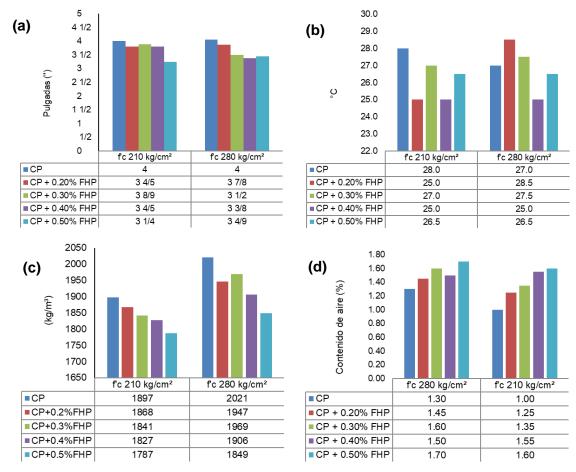
Los diseños de mezcla para el diseño C210 y C280, para dosificaciones de 0.2%, 0.3%, 0.4% y 0.5% de FHP adicionado en función del peso de cemento.

Tabla XIV

Diseño de mezcla del concreto diseño C210 y C280 con FHP.

Descripción	Diseño	Resistencia	de diseño f'c	= 210kg/cm ²	g/cm² y 280 kg/cm²		
	חופפוט	0.20%	0.30%	0.40%	0.50%		
Relación a/c	C210	0.733	0.733	0.733	0.733		
Relacion a/c	C280	0.609	0.609	0.609	0.609		
Comente (kg/m3)	C210	373	373	373	373		
Cemento (kg/m³)	C280	450	450	450	450		
Comente (blc/m3)	C210	8.8	8.8	8.8	8.8		
Cemento (bls/m³)	C280	10.6	10.6	10.6	10.6		
A gua (Ita)	C210	274	274	274	274		
Agua (Its)	C280	274	274	274	274		
Agragada fina (kg/m³)	C210	858	858	858	858		
Agregado fino (kg/m³)	C280	816	816	816	816		
Agregado grueso	C210	879	879	879	879		
(kg/m³)	C280	856	856	856	856		
Ehn (ka/m3)	C210	0.747	1.120	1.493	1.867		
Fhp (kg/m³)	C280	0.899	1.349	1.799	2.249		

Nota: En la tabla se visualizan los valores para diseño de mezcla con adiciones de FHP para diseño C210 y C280.


3.1.5. Propiedades físicas del concreto patrón y concreto incorporando fibra de hoja de piña

Se evaluaron las propiedades físicas del concreto en estado fresco como asentamiento, temperatura, peso unitario y contenido de aire, los resultados se muestran en la tabla XV.

Tabla XVPropiedades físicas del concreto.

Encovo	Disoño	Unidad		Dosificaciones / Valores					
Ensayo	Disello	Unidad	CP	0.2%FHP	0.3%FHP	0.4%FHP	0.5%FHP		
Asentamiento	C210	pula	4	3 4/5	3 8/9	3 4/5	3 1/4		
Asemannemo	C280	pulg.	4	3 7/8	3 1/2	3 3/8	3 4/9		
Temperatura	C210	°C	28	25	27	25	26.5		
Temperatura	C280	C	27	28.5	27.5	25	26.5		
Peso unitario	C210	kg/m³	1897.1	1867.9	1840.9	1827.0	1786.7		
(Densidad)	C280	kg/III°	2020.9	1946.6	1968.8	1905.8	1848.8		
Contenido de aire	C210	%	1.30	1.45	1.60	1.50	1.70		
	C280	/0	1.00	1.25	1.35	1.55	1.60		

Nota: En la tabla se muestran los valores de los ensayos de las propiedades físicas del concreto en estado fresco.

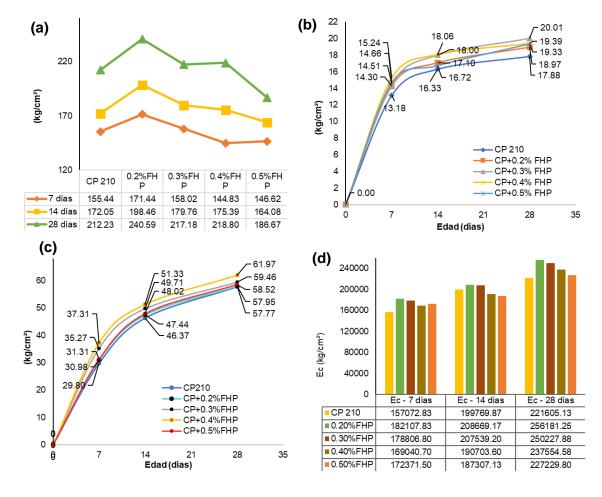
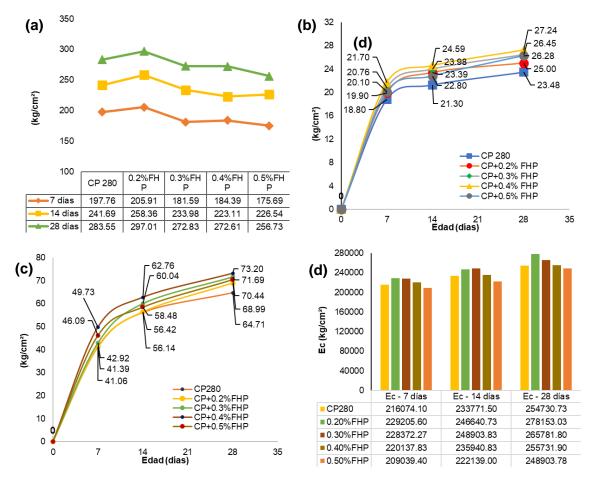


Fig. 31. Resultados de los ensayos para las propiedades en estado fresco para diseño C210 y C280 con adición de FHP. (a) Resultados de asentamiento, (b) Resultados para temperatura, (c) Resultados para peso unitario - densidad, (d) Resultados para contenido de aire.

De los ensayos evaluados, se puede visualizar que se obtiene una disminución con la adición de 0.40% de FHP para ambos diseños, lo cual disminuye la trabajabilidad de la mezcla a como incrementa la incorporación de FHP, asimismo se puede presenciar un incremento de temperatura de °C, pero manteniéndose dentro de los parámetros establecidos por la norma NTP 339.184. [63], a su vez el contenido de aire se incrementa, debido a la reacción química generada con el cemento, liberando burbujas de gas de hidrogeno. Por otro lado, el peso unitario se redujo progresivamente a como se incrementa la adición de FHP debido a que la densidad de la hoja de piña es relativamente baja.


3.1.6. Propiedades mecánicas del concreto alterado con FHP

En los siguientes gráficos se visualiza el efecto que tiene la incorporación de FHP en las 4 dosificaciones derivados de los ensayos en estado endurecido, a 7, 14 y 28 días de curado.

Fig. 32. Resultados de los ensayos para las propiedades en estado endurecido para diseño C210 con adición de FHP a 7, 14 y 28 días. (a) Resultados de resistencia a la compresión, (b) Resultados para resistencia a la tracción, (c) Resultados para resistencia a la flexión, (d) Resultados para módulo de elasticidad.

Analizando los resultados a 28 días, se obtiene que para la resistencia a compresión, con 0.2% de FHP se alcanzó un incremento considerable, superior al CP210 en un 13.36%, obteniendo valores superiores hasta la adición de 0.4% de FHP, asimismo, para la resistencia a tracción con la adición de 0.3% de FHP, se obtuvo un incremento del 11.96% respecto al CP210; para resistencia a flexión, con la adición de 0.4% de FHP se obtuvo el mayor incremento del 7.82%, obtenido todos los porcentajes de adición, valores por encima del CP, finalmente, con la adición de 0.2% de FHP se obtuvo el mayor incremento para el ensayo de módulo de elasticidad del concreto sobre el CP en un 15.60%, adoptando con esta adición un mejor comportamiento, y siendo el porcentaje idóneo de adición para el concreto.

Fig. 33. Resultados de los ensayos para las propiedades en estado endurecido para diseño C280 con adición de FHP a 7, 14 y 28 días. (a) Resultados de resistencia a la compresión, (b) Resultados para resistencia a la tracción, (c) Resultados para resistencia a la flexión, (d) Resultados para módulo de elasticidad.

Analizando los resultados a 28 días, se obtiene que para la resistencia a compresión, con 0.2% de FHP se alcanzó un incremento considerable, superior al CP280 en un 4.75%, obteniendo valores superiores hasta la adición de 0.4% de FHP, por otro lado, para la resistencia a tracción con la adición de 0.4% de FHP, se obtuvo un incremento del 16.01% respecto al CP280; de igual manera, para resistencia a flexión, con la adición de 0.4% de FHP se obtuvo el máximo valor, superando al CP en un 13.12%, finalmente, con la adición de 0.2% de FHP se obtuvo el mayor incremento para el ensayo de módulo de elasticidad del concreto sobre el CP en un 9.19%, adoptando con esta adición un mejor comportamiento, y siendo el porcentaje idóneo de adición para un concreto f'c = 280 kg/cm².

3.2. Discusión

Los resultados del estudio de canteras ubicadas en Lambayeque, indican como material idóneo el agregado fino extraído de la cantera "La Victoria" y cantera "Pacherres" para el árido grueso gracias a que estos materiales se encuentran dentro de los limites permisibles respecto a lo que estipula la norma NTP 400.012 [56], evidenciando lo bien graduado de los materiales y poder descartar el resto de cantera que no cumplan con los requerimientos estipulados a diferencia de Herencia [29]

Los resultados indican en concordancia con la investigación de Aboo et al. [24], para poder realizar la obtención de hoja de piña, para realizar el respectivo tratamiento y poder obtener la fibra de hoja de piña, empleando en ambas investigaciones un tratamiento similar para la adquisición de dicha fibra.

Se realizó diseños de mezclas de concreto tradicional para resistencias diseño de CP210 y CP280, con los cálculos obtenidos para el diseño CP210 teniendo una proporción

en volumen de 1: 2.26: 2.71 y de agua 31.1 lits/pie³. Por otro lado, para un diseño CP280 se tiene una proporción de 1: 1.78: 2.19 y 25.9 litros/pie³ de agua, todas las proporciones para estos diseños se elaboraron en base a la guía estipulada por el comité ACI 211.1 [73]

Para las propiedades físicas del concreto para diseños de CP210 y CP280 con adiciones de 0.2%, 0.3%, 0.4% y 0.5% de FHP, los resultados para asentamiento indican a diferencia de Mallaupoma [28], se ve afectada de una manera considerable, debido a que el aumento de incorporación de FHP va decreciendo la trabajabilidad del concreto, debido a que la concentración de fibra afecta ligeramente la fluidez de la mezcla de concreto. La misma condición se visualizó en la investigación, la cual se debe considerar la textura y la longitud de la fibra a incorporar. Los resultados para temperatura indican de acuerdo al RNE [31] estipula que la temperatura no debe sobrepasar los 32°C, en caso se exceda, se debe tomar las medidas necesarias para el cuidado del concreto. Lo cual cumple la investigación, ya que a como se adiciona las dosificaciones de FHP ningún valor excede los 32°C, manteniéndose en rangos bajos de 25°C - 28.5°C. Los resultados para contenido de aire obtenidos en la investigación para ambos diseños se encuentran entre 1.25% hasta 1.70%, tal como expresa el comité ACI 211.1 [73] expresa que para árido grueso con un TMN de 3/4" se debe encontrar por debajo del 2% de contenido de aire. Lo cual la investigación cumple con lo estipulado en la norma. Por otro lado, los resultados obtenidos por la investigación determinan que a como incrementa la adición de FHP en 0.2%, 0.3%, 0.4% y 0.5% va incrementando y disminuyendo sin exceder la temperatura con el porcentaje de adición mayor respecto al concreto patrón. En similitud con Mallaupoma [28] en su investigación expresa que a como adiciona FHP en 0.5%, tiene una tendencia a disminuir el peso unitario inferior al del CP.

Los resultados obtenidos para la resistencia a la compresión fueron similares con el estudio realizado por Aboo et al., [24] quienes demuestran que con la incorporación de FHP de 15 mm incrementa el valor hasta un 122%, asimismo, concuerda con la investigación realizada por Aswani et al., [21], quienes lograron incrementar la resistencia en un 55% respecto a las muestras patrón con adición de 0.4% de FHP, aunado a esto Che et al., [8]

determinaron el máximo incremento con la adición de 0.3% de FHP, alcanzando incrementos del 32% respecto a la muestra control al igual que Hendrian et al., [11] quienes determinaron que con las adiciones de 0.2%, 0.3% y 0.4% de FHP se alcanzaron aumentos de hasta un 7.92% con el 0.3%FHP asimismo, Mathew & Paul [20] al incorporar 0.1% de FHP incremento su resistencia en un 18%, con las demás adiciones hasta un 0.25% FHP, el valor incrementa hasta un 11%. No obstante, Rahmi et al., [6] al adicionar 0.5% FHP, su valor de resistencia incrementa en un 15% respecto a la muestra patrón, aunado a esto, Hadipramana et al., [23] al adicionar 0.15% de FHP, logro el mayor incremento del 6% de acuerdo a la muestra convencional. Los resultados del ensayo de resistencia a tracción muestran un mejor resultado con incorporación de FHP, así lo demuestra, Aswani et al., [21] quien al adicionar 0.4%FHP incrementó su valor en un 14% y con 1% de FHP decrementó en un 30% en comparación de la muestra tradicional, asimismo Che et al., [8] obtuvo el mayor incremento de 80.22% con su mayor adición de 0.3% de FHP, no obstante, Rahmi et al., [6] a comparación de los demás valores obtenidos, con la adición de 1.0% de FHP obtiene un incremento en su valor de resistencia a tracción de 14%. Los resultados del ensayo de resistencia a flexión muestran un mejor resultado con incorporación de FHP, dichos resultados concuerdan con lo investigación realizada por Aswani et al., [21] quienes lograron incrementar con la adición de 0.4% de FHP hasta en un 58%, de igual manera Hendrian et al., [11] en su investigación con la misma adición del 4% de FHP, obtiene el mayor incremento, del 10% en comparación de la muestra convencional, Asimismo con la investigación realizada por Che et al., [8], quienes determinaron que con la adición del 0.3% FHP, se obtiene un valor de hasta 18% superior al valor del concreto patrón.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

Se concluye de la determinación de las características físicas de los agregados de las canteras Lambayecanas, seleccionando las canteras para agregado grueso de la cantera Pacherres con un T.M.N de 3/4" y para agregado fino de la cantera la Victoria, con un MF de 3.057.

Se realizó la extracción de la hoja de piña y posteriormente se realizó el tratamiento y la obtención de la fibra de hoja de piña para su incorporación en el concreto, de manera sencilla y sin costos excesivos durante el proceso.

Se realizaron 10 diseños de mezcla en base al método ACI 211.1, en total, para un C210 con dosificación en peso de cemento, arena, piedra y agua de 1.0: 2.3: 2.4: 31.1 y para un C280 con dosificación en peso de 1.0: 1.8: 1.9: 25.9.

De los ensayos en concreto fresco frente a la adición de FHP, se tuvo que a como se incrementa la adición, la trabajabilidad y fluidez del concreto se ven afectados, y su peso unitario se reduce, volviendo más ligero el concreto, por otro lado, la temperatura y el contenido de aire, se mantiene de acuerdo a los valores establecidos normativamente, evidenciando que la reacción química causado por la FHP, no afecta considerablemente al concreto.

De las propiedades mecánicas del concreto frente a la incorporación de FHP influye considerablemente frente a la resistencia a compresión y módulo de elasticidad con incorporación de 2%FHP, adoptando un comportamiento ideal, incrementando su valor en todos los ensayos, para la resistencia a flexión y tracción influye positivamente con el mismo valor, pero su mayor incremento, se obtiene con la adición de 4%FHP, pero el porcentaje óptimo de reemplazo, es el 0.2% de FHP.

4.2. Recomendaciones

Se recomienda efectuar un estudio considerando la zona de realización, para poder así obtener las características físicas y realizar una comparación y así poder obtener el material más idóneo de acuerdo a las normas NTP, ASTM y ACI.

Considerar la dosificación recomendada de fibra de hoja de piña de acuerdo a investigaciones anteriores, ya que, al incorporar dentro del concreto en exceso, esto se vuelve perjudicial para sus propiedades mecánicas del concreto.

Llevar un riguroso control en cuanto al uso de agua a la mezcla, porque influye demasiado en la trabajabilidad y fluidez de la mezcla.

Se recomienda evaluar la adición de FHP en el concreto frente a la contracción plástica, así como evaluar las propiedades hidromecánicas del concreto y ver el comportamiento y rendimiento que adopta.

Se recomienda el empleó de aditivo plastificante para dosificaciones superiores a 0.5 de FHP para evaluar el comportamiento con la incorporación de ambos materiales. Así como analizar la incorporación de FHP en concretos armados con el propósito fundamental de evaluar su desempeño.

REFERENCIAS

- [1] S. Banerjee, V. Ranganathan, A. Patti y A. Arora, «Valorisation of pineapple wastes for food and therapeutic applications,» *Trends in Food Science and Technology,* vol. 82, pp. 60-70, 2018.
- [2] K. Ravindra, T. Singh y S. Mor, «Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions,» *Journal of Cleaner Production*, vol. 208, pp. 261-273, 2019.
- [3] K. L. Ong, G. Kaur, N. Pensupa, K. Uisan y C. S. K. Lin, «Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia, » *Bioresource Technology*, vol. 248, pp. 100-112, 2018.
- [4] W. M. Hikal, H. A. H. Said-Al Ahl, K. G. Tkachenko, A. Bratovcic, M. Szczepanek y R. M. Rodriguez, «Sustainable and environmentally friendly essential oils extracted from pineapple waste,» *Biointerface Research in Applied Chemistry*, vol. 12, p. Sustainable and environmentally friendly essential oils extracted from pineapple waste, 2022.
- [5] T. V. Tran, D. T. C. Nguyen, T. T. T. Nguyen, D. H. Nguyen, M. Alhassan, J. A.A., W. Nabgan y T. Lee, «A critical review on pineapple (Ananas comosus) wastes for water treatment, challenges and future prospects towards circular economy, » *Science of the Total Environment*, vol. 856, 2023.
- [6] K. Rahmi, T. William, H. Azhari, P. M. Agung y F. Devi, «Pineapple leaf fiber (PALF) waste as an alternative fiber in making concrete,» *Journal of Physics: Conference Series*, pp. 1-6, 2022.
- [7] B. G. Fouda-Mbanga y Z. Tywabi-Ngeva, «Application of Pineapple Waste to the Removal of Toxic Contaminants: A Review,» *Toxics*, vol. 10, no 561, pp. 1-16, 2022.
- [8] S. K. Che Osmi, M. A. Zaınuddın, S. Sojipto, H. Husen y N. A. Misnon, «Effect of Pineapple Leaf Fibre as Additional Material in Concrete Mixture,» pp. 525-537, 2022.
- [9] J. Pinzón y F. Peña, «Análisis del comportamiento mecánico del concreto adicionado con fibra de hoja de la planta de piña Oro Miel,» 2021.
- [10] K. Patrick, R. O. Onchiri y G. N. Manguriu, "Developing Suitable Proportions for the Production of Pineapple Leaf Fibers Reinforced Normal Strength Concrete," *Open Journal of Civil Engineering*, vol. 9, no 3, pp. 185-194, 2019.
- [11] H. S. A. Hendrian, Saloma, Hanafiah, M. M. Iqbal y I. Juliantina, «Physical and Mechanical Properties of Self-Compacting Concrete (SCC) with Pineapple Leaf Fibre and Polypropylene, » *Journal of Physics: Conference Series*, vol. 1783, pp. 20-21, 2021.
- [12] S. Manigandan, P. TR, A. M. Al-Mohaimeed, K. Brindhadevi y A. Pugazhendhi, «Characterization of polyurethane coating on high performance concrete reinforced with chemically treated Ananas erectifolius fiber,» vol. 150, 2021.
- [13] C. Santulli, S. Palanisamy y M. Kalimuthu, «Pineapple fibers, their composites and applications,» *Plant Fibers, their Composites, and Applications,* pp. 323 346, 2022.
- [14] B. Velásquez, J. Valverde, C. Olivera, R. Lopez, J. Nakayo y E. Benites, «The ecological paper obtained from Ananas comusus waste as an alternative for use in a circular economy,» *Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology*, vol. 2021, pp. 1-6, 2021.
- [15] E. Huallpa y A. Alcántara, «Utilización de las Hojas de Piña para Elaborar Telares,» *Instituto de Investigación FIGMMG-UNMSM*, vol. 22, nº 43, pp. 127-132, 2019.
- [16] M. Fernández y L. Flores, «Comportamiento físico mecánico en muros de albañilería de adobe con fibras de hoja de piña pseudotallo de plátano, Cajamarca 2021,» 2021.

- [17] J. R. Pacco Chuquitarqui, «Influencia de la incoporación de fibra de bagazo de caña de azúcar en la resistencia del concreto f'c=210kg/cm²,» 2019. [En línea]. Available: https://repositorio.upeu.edu.pe/bitstream/handle/20.500.12840/2728/Julio_Trabajo_Bachil ler_2019.pdf?sequence=1&isAllowed=y.
- [18] N. E. Villanueva Monteza, «INFLUENCIA DE LA ADICIÓN DE FIBRA DE COCO EN LA RESISTENCIA DEL CONCRETO,» 2016.
- [19] E. Carrasco y J. Sinti, «Diseño de un bloque de adobe compactado, utilizando fibra de la hoja de piña, para mejorar la resistencia a la compresión, Lamas 2019,» 2019.
- [20] L. Mathew, «Mechanical Properties of Pineapple Fibre Reinforced Concrete Subjected to High Temperature,» *GRD Journal for Engineering*, vol. 2, no 5, pp. 200 205, 2017.
- [21] I. Aswani , P. Saranya y H. Shafeena, «Comparative Study on Conventional Concrete & Pineapple Leaf Fiber Reinforced Concrete,» *International Journal of Scientific & Engineering Research*, vol. 10, pp. 221 227, 2019.
- [22] R. Abirami, S. Joseph, A. Albert, A. Koshy, A. John, A. Albert y V. Ds, «Experimental study on concrete properties using pineapple leaf fiber,» *International Journal of Advanced Research in Engineering and Technology (IJARET)*, vol. 11, pp. 913 920, 2020.
- [23] J. Hadipramana, F. V. Riza, T. Amirsyah, S. Mokhatar y M. Ardiansyah, «Study on Workability High Strength Concrete Containing Pineapple Leaf Fiber (PALF),» *IOP Conf. Series: Materials Science and Engineering*, pp. 1-10, 2021.
- [24] J. Aboo , J. Aiswarya , M. Anakha y F. Boniface, «Behaviour of Concrete by using Pineapple Leaf Fibre,» *INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH* & *TECHNOLOGY (IJERT)*, vol. 10, no 6, pp. 336 338, 2022.
- [25] S. Herrera y M. Polo, «Estudio de las Propiedades Mecánicas del Concreto en la Ciudad de Arequipa, Utilizando Fibras Naturales y Sintéticas, Aplicado para el Control de Fisuras por Retracción Plástica,» 2017.
- [26] A. S. Paredes Flores y J. E. Sevillano Mendoza, «Análisis comparativo del comportamiento del concreto adicionando fibras naturales y de polipropileno en la Urb. Nicolás Garatea Nuevo Chimbote-Ancash-2021,» 2021.
- [27] G. Paucar, «Evaluación de adición de fibra de hoja de piña y palmera en propiedades del concreto f'c=210kg/cm², Lima 2022,» Universidad Cesar Vallejo, 2022.
- [28] G. Mallaupoma, «Comportamiento del concreto con adición de fibras de agave americana L para la mejora de sus propiedades en estado fresco, San Carlos Huancayo 2017,» 2019.
- [29] L. Herencia Muñante, «Efectos de la fibra Luffa y fibra de Vidrio tipo E en las propiedades mecánicas del concreto f' c = 210 kg/cm², departamento de Ica-Perú 2019,» 2020.
- [30] J. Carlos, «Mejoramiento de las propiedades mecánicas del concreto con el uso de cenizas de cascara de arroz y fibras de palmera,» 2023.
- [31] Reglamento Nacional de Edificaciones, «Norma Tecnica de edificaciones E.060 CONCRETO ARMADO,» 2009. [En línea]. Available: https://cdn-web.construccion.org/normas/rne2012/rne2006/files/titulo3/02_E/RNE2009_E_060.pdf.
- [32] J. McCormac. y R. Brown, Diseño de Concreto Reforzado, Alfomega, 2017.
- [33] T. Harmsen, Diseño de estrcuturas de concreto armado, Tercera ed., Pontifica Universidad Católica del Perú, 2002.
- [34] A. Barreto, «Estudio de las propiedades del concreto de mediana a alta resistencia con cemento tipo MS(MH) y adición de sílice nacional,» Lima, 2021.
- [35] I. Channa y A. Saand, «Mechanical behavior of concrete reinforced with waste aluminium strips,» *Civil Engineering Journal (Iran)*, vol. 7, no 7, 2021.
- [36] NTP 400.037, «Agregados para concreto. Requisitos,» Lima, 2018.

- [37] S. Ibrahim, H. Zhu, W. Jian y J. Shao, «Evaluation of impact resistance properties of polyurethane-based polymer concrete for the repair of runway subjected to repeated dropweight impact test,» vol. 309, no 22, 2021.
- [38] CONABIO, «Comisión Nacional para el Conocimiento y Uso de la Biodiversidad,» 2020. [En línea]. Available: https://www.biodiversidad.gob.mx/diversidad/fibras-naturales.. [Último acceso: 25 Oct 2022].
- [39] Y. Esguerra y L. Forero, «Caracterización de propiedades mecánicas de fibras naturales para usos en concretos hidráulicos,» 2020.
- [40] S. Betancourt, Materiales para la construcción., Universidad Central Marta Abreu de La Villa, 2017.
- [41] InfoAgrónomo, «Cultivo de Piña, pquete tecnologico,» 20 Nov 2020. [En línea]. Available: https://infoagronomo.net/paquete-tecnologico-cultivo-de-pina/?fbclid=IwAR1pGDAQ0xMr_VD7-1ESSh751gaQVNIRKO9GCIKCLSbRqbs4WElrrKXsoXA.
- [42] EcoInventos, «Piñatex. Cuero vegetal hecho de fibra de piña,» [En línea]. Available: https://ecoinventos.com/pinatex-cuero-vegetal-hecho-de-fibra-de-pina/. [Último acceso: 18 Sep 2022].
- [43] A. Kasim, M. Selamat, N. Aznan, S. Sahada, A. Mohd, R. Jumaidin y S. Salleh, «Effect of pineapple leaf fiber loading on the mechanical properties of pineapple leaf fiber polypropylene composite,» *Journal Teknologi*, vol. 77, no 21, pp. 117-123, 2015.
- [44] D. Hazarika, G. Nabaneeta, J. Seiko, R. Das y G. Basu, «Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application,» *Journal of Cleaner Production*, vol. 141, no 10, pp. 580-586, 2017.
- [45] M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. Ishak y M. Enamul, «A Review on Pineapple Leaves Fibre and Its Composites,» *International Jorunal of Polymer Science*, 2015.
- [46] S. Banik, D. Nag y S. Debnath, «Utilization of pineapple leaf agro-waste for extraction of fibre and the residual biomass for vermicomposting,» *Indian Journal of Fibre & Textile Research*, vol. 36, pp. 172-177, 2011.
- [47] K. Aswed, M. Hassan y H. Al-Quraishi, «Optimisation and Prediction of Fresh Ultra-High-Performance Concrete Properties Enhanced with Nanosilica,» *Journal of Advanced Concrete Technology*, vol. 20, no 2, 2022.
- [48] CONSTRUMÁTICA, «Metaportal de Arquitectura, Ingeniería y Construcción,» [En línea]. Available: https://www.construmatica.com/construpedia/Cono_de_Abrams.
- [49] B. Dzhamuev, «Increasing the Solidity of Masonry Walls Made of Cellular Concrete Blocks of Autoclave Hardening by using Polyurethane Foam Adhesive Composition as a Masonry Solution,» *Jorunal of Physics: Conference Series*, 2020.
- [50] A. Maghfirah, A. Asmara, P. Sinuhaji y E. Marlianto, «mproving the characterization of polymer concrete based on coffee shell and pumice waste with mixture of polyester resin and polyurethane resin,» *AIP Conference Proceedings*, 2020.
- [51] A. Saleh, O. Attar, Ahmed y Mustafa, «Improving the thermal insulation and mechanical properties of concrete using Nano-SiO2,» *Results in Engineering*, vol. 12, 2021.
- [52] L. Cong, G. Guo, F. Yang y M. Ren, «The effect of hard segment content of polyurethane on the performances of polyurethane porous mixture,» *International Journal of Transportation Science and Technology*, vol. 10, no 3, 2021.
- [53] R. Sidozian, Z. Mikhaleva y A. Tkachev, «Evaluation of the efficiency of lightweight concrete modified with additives based on nanostructures,» *IOP Conference Series: Materials Science and Engineering*, 2019.
- [54] G. Araya, P. Maturana, M. Gómez, M. Carrasco, F. Antico y C. Burbano, «DESEMPEÑO

- FRACTO-MECÁNICO DE MORTEROS REFORZADOS CON FIBRAS PLÁSTICAS RECICLADAS,» de Conferencia: XIV Congreso Internacional de Patología y Recuperación de Estructuras, CINPAR 2019, Salta, 2019.
- [55] E. Guevara, «Análisis de la losa de concreto hidráulico, utilizando desechos de conchas de abanico, Av. Mariano Cornejo. José Leonardo Ortiz. Chiclayo-2019,» Chiclayo, 2019.
- [56] NTP 400.012, «Agregados. Análisis granulometrico del agregado fino, grueso y global,» May. 2001. [En línea]. Available: https://www.studocu.com/pe/document/universidad-privada-de-tacna/tecnologia-del-concreto/ntp400-norma-tecnica-peruana-granulometria-de-los-agregados/4659039.
- [57] NTP 400.017, «Agregados. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacios en los agregados,» Feb. 2011. [En línea]. Available: https://kupdf.net/download/ntp-400-017-2011-agregados-m-eacute-todo-de-ensayo-para-determinar-el-peso-unitario-del-agregado 59138d9edc0d608a32959e7e pdf.
- [58] NTP 339.185, «Agregados. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado.,» Jun. 2018. [En línea]. Available: https://pdfcoffee.com/ntp-339185-contenido-de-humedad-de-agregadospdf-5-pdf-free.html.
- [59] NTP 400.022, «Agregados. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado grueso,» Jun. 2018. [En línea]. Available: https://www.studocu.com/pe/document/universidad-alas-peruanas/concreto-armado-ii/ntp-400022-2013-revisada-el-2018/16893046.
- [60] NTP 400.018, «Agregados. Método de ensayo normalizado para determinar materiales más finos que pasan por el tamiz normalizado 75 um (N°200) por lavado en agregados,» May. 2002. [En línea]. Available: https://www.studocu.com/pe/document/universidad-catolica-santo-toribio-de-mogrovejo/tecnologia-del-concreto/ntp-400018-materiales-que-pasan-la-malla-200/13197432.
- [61] NTP 400.019, «Agregados. Método de ensayo normalizado para la determinación de la resistencia a la degradación en agregados gruesos de tamaños menores por abrasión e impacto en la máquina de Los Angeles,» Ene. 2002. [En línea]. Available: https://dokumen.tips/documents/ntp-400019-2002-abrasion-de-agregados-maquina-de-los-angeles.html?page=1.
- [62] NTP 339.035, «CONCRETO. Método de prueba estándar para medir el asentamiento del concreto de cemento Portland,» Jun. 1999. [En línea]. Available: https://pdfcoffee.com/ntp-3390352009pdf-pdf-free.html.
- [63] NTP 339.184, «Hormigón (Concreto). Método de ensayo normalizado para determinar la temperatura de mezclas de hormigón (concreto),» May. 2002. [En línea]. Available: https://dokumen.tips/documents/ntp-339184pdf.html.
- [64] NTP 339.046, «HORMIGÓN (CONCRETO). Método de ensayo para determinar la densidad (peso unitario), rendimiento y contneido de aire (método gravimétrico) del hormigón (concreto),» Sep. 2008. [En línea]. Available: https://www.coursehero.com/file/41992814/NTP-339046pdf/.
- [65] ASTM C231, «Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method,» Jun. 2022. [En línea]. Available: https://www.astm.org/catalogsearch/result/?q=ASTM+C231.
- [66] NTP 339.034, «CONCRETO. Método de ensayo estándar de hormigón para la resistencia a la compresión de probetas cilíndricas de hormigón,» Ene. 2008. [En línea]. Available: https://pdfcoffee.com/ntp-339034-metodo-de-ensayo-normalizado-para-la-determinacion-de-la-resistencia-a-la-compresion-del-concreto-en-muestras-cilindricas-2-pdf-free.html.
- [67] ASTM C496, «Standard Test Method for Dividing the Tensile Strength of Cylindrical

- Specimens of Concrete,» Nov. 2017. [En línea]. Available: https://www.astm.org/c0496_c0496m-17.html.
- [68] NTP 339.078, «CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo,» Sep. 2012. [En línea]. Available: https://1library.co/document/ydmk9l1y-ntp-339-078-ensayo-deflexion-pdf.html.
- [69] ASTM C469-02, «Standard Test Method for Determining the Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression.,» American Society for Testing and Materials.
- [70] ASTM C33, «Standard specification for aggregates for concrete.,» American Society for Testing and Materials, USA, 2016.
- [71] NTP 400.037, «AGGREGATES. Concrete Aggregates. Specifications,» Indecopi, Lima, Perú, 2018.
- [72] ASTM C136, "Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates," American Society for Testing and Materials.
- [73] ACI 211.1, «Standard Practice for selecting Proportions for Normal Hwavyweight, and Mass Concrete (AC! 211.1-91) Reapproved 1997,» 1997. [En línea]. Available: https://dokumen.tips/documents/aci-2111-91-norma.html?page=1. [Último acceso: 11 Oct 2022].

ANEXOS

ANEXO I: Análisis Granulometrico de agregado fino y grueso

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

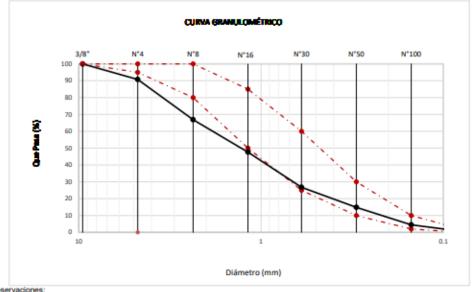
Proyecto / Obra :

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de apertura : Jueves, 13 de octubre del 2022


ENSAYO AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

NORMA N.T.P. 400.012

Muestra Arena Gruesa

Cantera Tres Tomas (Bomboncito)

	Malla	%	% Retenido	% Que Pasa	GR/	GRADACIÓN	
Pulg.	(mm.)	Retenido	Acumulado	Acumulado	"C"		
3/8"	9.520	0.00	0.00	100.00	100	-	100
Nº 4	4.750	9.22	9.22	90.78	95	-	100
Nº 8	2.360	23.89	33.11	66.89	80	-	100
Nº 16	1.180	19.27	52.38	47.62	50	-	85
No 30	0.600	20.85	73.23	26.77	25	-	60
Nº 50	0.300	11.93	85.15	14.85	10	-	30
Nº 100	0.150	10.37	95.53	4.47	2	-	10
Nº 200	0.080	3.83	99.35	0.65	2	-	0
		MÓDULO DE FINEZA 3.49					

Muestreo, identificación y ensayo realizado por el solicitante.

WILSON OLAYA AGUILAR TÉC. ENSÁYOS DE MATERIALES Y SUELOS

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

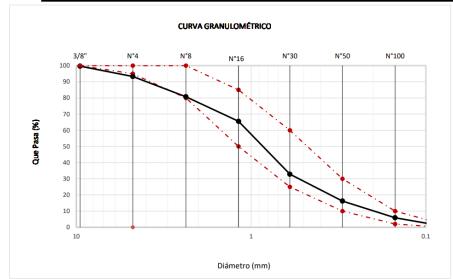
Proyecto / Obra

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación: Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de apertura : Jueves, 13 de octubre del 2022


ENSAYO: AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

NORMA : N.T.P. 400.012

Muestra Arena Gruesa

Cantera La Victoria

	Malla	%	% Retenido	% Que Pasa	GRADACIÓN		ÓN
Pulg.	(mm.)	Retenido	Acumulado	Acumulado	"C"		
3/8"	9.520	0.32	0.32	99.68	100	-	100
Nº 4	4.750	6.38	6.70	93.30	95	-	100
No 8	2.360	12.54	19.24	80.76	80	-	100
Nº 16	1.180	15.20	34.45	65.55	50	-	85
Nº 30	0.600	32.72	67.16	32.84	25	-	60
Nº 50	0.300	16.62	83.78	16.22	10	-	30
Nº 100	0.150	10.31	94.09	5.91	2	-	10
N° 200	0.080	5.18	99.27	0.73	2	-	0
	MÓDULO DE FINEZA 3.06				·		

Observaciones:

- Muestreo, identificación y ensayo realizado por el solicitante.

LEMS WSC EIRL
WILSON OLAYA AGUILAR
TEC. ENSAYOS DE MATERIALES Y SUELOS

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra :

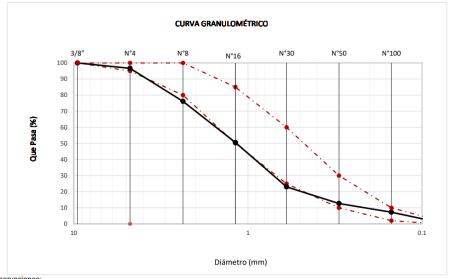
"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación: Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de apertura : Jueves, 13 de octubre del 2022

ENSAYO: AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.


NORMA : N.T.P. 400.012

Muestra Arena Gruesa

Cantera Pacherres

	Malla	%	% Retenido	% Que Pasa	GRADACIÓN		ÓN
Pulg.	(mm.)	Retenido	Acumulado	Acumulado	"C"		
3/8"	9.520	0.00	0.00	100.00	100	-	100
Nº 4	4.750	3.35	3.35	96.65	95	-	100
No 8	2.360	20.51	23.86	76.14	80	-	100
Nº 16	1.180	25.58	49.44	50.56	50	-	85
No 30	0.600	27.58	77.01	22.99	25	-	60
Nº 50	0.300	10.31	87.32	12.68	10	-	30
Nº 100	0.150	5.41	92.73	7.27	2	-	10
Nº 200	0.080	6.32	99.05	0.95	2	-	0

MÓDULO DE FINEZA 3.34

Observaciones

- Muestreo, identificación y ensayo realizado por el solicitante.

WILSON OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

Solicitante RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de apertura: Jueves, 13 de octubre del 2022

ENSAYO AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

NORMA N.T.P. 400.012

Muestra Arena Gruesa

Cantera astro I - San Nicolas

	Malla	%	% Retenido	% Que Pasa	GR/	GRADACIÓN	
Pulg.	(mm.)	Retenido	Acumulado	Acumulado		"C"	
3/8"	9.520	0.00	0.00	100.00	100	-	100
Nº 4	4.750	2.33	2.33	97.67	95	-	100
No 8	2.360	29.50	31.83	68.17	80	-	100
Nº 16	1.180	19.40	51.23	48.77	50	-	85
No 30	0.600	10.65	61.88	38.12	25	-	60
Nº 50	0.300	11.01	72.90	27.10	10	-	30
Nº 100	0.150	15.70	88.60	11.40	2	-	10
N° 200	0.080	10.82	99.42	0.58	2	-	0
	·	MÓDULO DI	FINEZA			3.09	

CURVA GRANULOMÉTRICO N°30 N°50 N°100 N°16 100 90 80 70 Que Pasa (%) 60 50 40 30 20 10 0 10 Diámetro (mm)

Observaciones:
- Muestreo, identificación y ensayo realizado por el solicitante.

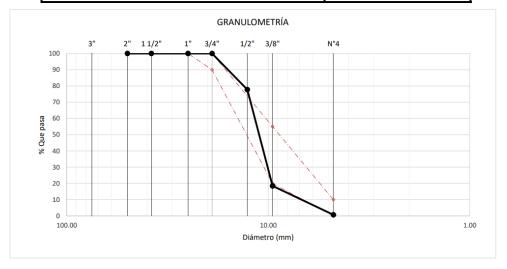
Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

Ubicación : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022


ENSAYO : AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global.

NORMA DE REFERENCIA : N.T.P. 400.012 / ASTM C-136

Muestra: Piedra Chancada Cantera Tres Tomas (Bomboncito)

	Analis	sis Granulom	étrico por tamiz	zado			
N° Tamiz	Abertura (mm)	% Retenido	% Acumulados Retenido	% Que pasa Acumulados		HUSO 67	
2"	50.00	0.0	0.0	100.0			
1 1/2"	38.00	0.0	0.0	100.0			
1"	25.00	0.0	0.0	100.0	100		100
3/4"	19.00	0.0	0.0	100.0	90	-	100
1/2"	12.70	22.2	22.2	77.8		-	
3/8"	9.52	59.3	81.5	18.5	20	-	55
Nº4	4.75	17.8	99.3	0.7	0	-	10

TAMAÑO MÁXIMO NOMINAL 1/2"

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

WILSON OLAYA AGUILAR
TÉC. ENSAYOS DE MATERIALES Y SUELOS

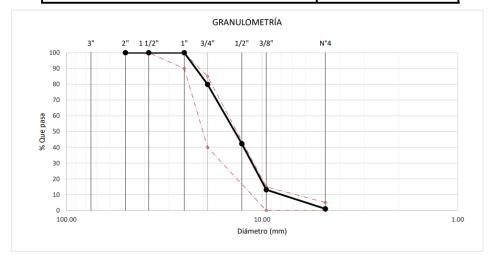
: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

Proyecto / Obra $\dot{}$ "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

Ubicación : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022


: AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global. : N.T.P. 400.012 / ASTM C-136 ENSAYO

NORMA DE REFERENCIA

Muestra: Piedra Chancada Cantera La Victoria

	Analisis Granulométrico por tamizado											
N° Tamiz	Abertura (mm)	% Retenido	% Retenido % Acumulados Retenido		HUSO 56)					
2"	50.00	0.0	0.0	100.0	100		100					
1 1/2"	38.00	0.0	0.0	100.0	100		100					
1"	25.00	0.0	0.0	100.0	90		100					
3/4"	19.00	20.1	20.1	79.9	40	-	85					
1/2"	12.70	37.6	57.7	42.3	10	-	40					
3/8"	9.52	29.2	86.9	13.1	0	-	15					
Nº4	4.75	12.1	99.0	1.0	0	-	5					

TAMAÑO MÁXIMO NOMINAL	3/4"
TAMAÑO MÁXIMO NOMINAL	3/4"

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

WILSON OLAYA AGUILAR TÉC. ENSÁYOS DE MATERIALES Y SUELOS

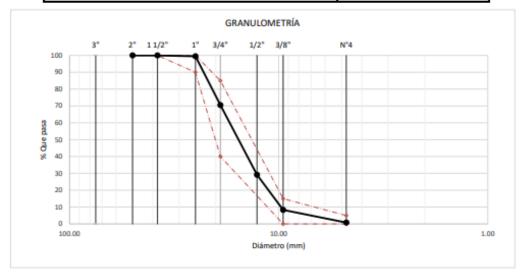
: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

: Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022


: AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global. : N.T.P. 400.012 / ASTM C-136 ENSAYO

NORMA DE REFERENCIA

Muestra: Piedra Chancada Cantera Pacherres

	Analis	is Granulom	étrico por tami:	zado			
N* Tamiz	Abertura (mm)	% Retenido	% Acumulados Retenido	% Que pasa Acumulados		HUSO 56	
2"	50.00	0.0	0.0	100.0	100		100
1 1/2"	38.00	0.0	0.0	100.0	100		100
1"	25.00	0.5	0.5	99.5	90		100
3/4"	19.00	29.0	29.5	70.5	40		85
1/2*	12.70	41.3	70.8	29.2	10		40
3/8"	9.52	20.9	91.7	8.3	0	-	15
Nº4	4.75	7.5	99.2	0.8	0		5

TAMAÑO MÁXIMO NOMINAL 3/4"

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

WILSON OLAYA AGUILAR TÉC. ENSÁYOS DE MATERIALES Y SUELOS

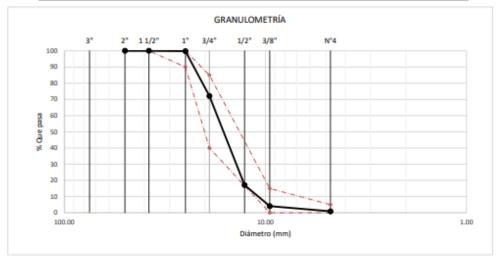
Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA*

: Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque Ubicación

: Jueves, 13 de octubre del 2022 Fecha de ensayo


: AGREGADOS. Análisis granulométrico del agregado fino. Grueso y global. : N.T.P. 400.012 / ASTM C-136 **ENSAYO**

NORMA DE REFERENCIA

Muestra: Piedra Chancada Cantera Castro I - San Nicolas

	Analisis Granulométrico por tamizado						
N° Tamiz	Abertura (mm)	% Retenido	% Acumulados Retenido	% Que pasa Acumulados		HUS0 56)
2"	50.00	0.0	0.0	100.0	100		100
1 1/2"	38.00	0.0	0.0	100.0	100		100
1"	25.00	0.2	0.2	99.8	90		100
3/4"	19.00	27.7	27.9	72.1	40		85
1/2"	12.70	55.0	82.9	17.1	10		40
3/8*	9.52	13.0	95.9	4.1	0		15
N°4	4.75	3.2	99.1	0.9	0		5

TAMAÑO MÁXIMO NOMINAL	3/4"
-----------------------	------

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

LEMS W&C EIRL

WILSON OLAYA AGUILAR

ANEXO II: Peso unitario y Contenido de Humedad de agregado fino y grueso

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

Ensayo : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado.

Referencia: NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra: Arena Gruesa Cantera: Tres Tomas - Bomboncito

Peso Unitario Suelto Humedo	(Kg/m³)	1572.31
Peso Unitario Suelto Seco	(Kg/m³)	1544.61
Contenido de Humedad	(%)	1.79

Peso Unitario Compactado Humedo	(Kg/m ³)	1780.36
Peso Unitario Compactado Seco	(Kg/m³)	1749.00
Contenido de Humedad	(%)	1.79

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

Ensayo : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado.

: NTP 400.017:2011 (revisada el 2016) NTP 339.185:2013

Muestra: Arena Gruesa Cantera: La Victoria

Peso Unitario Suelto Humedo	(Kg/m ³)	1630.02
Peso Unitario Suelto Seco	(Kg/m³)	1624.62
Contenido de Humedad	(%)	0.33

Peso Unitario Compactado Humedo	(Kg/m³)	1765.72
Peso Unitario Compactado Seco	(Kg/m³)	1759.87
Contenido de Humedad	(%)	0.33

OBSERVACIONES:

Referencia

- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

: Jueves, 13 de octubre del 2022 Fecha de ensayo

: AGREGADOS. Método de ensayo normalizado para determinar la masa por Ensayo

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado.

: NTP 400.017:2011 (revisada el 2016) NTP 339.185:2013 Referencia

Muestra: Arena Gruesa Cantera: **Pacherres**

Peso Unitario Suelto Humedo	(Kg/m³)	1696.02
Peso Unitario Suelto Seco	(Kg/m ³)	1671.45
Contenido de Humedad	(%)	1.47

Peso Unitario Compactado Humedo	(Kg/m ³)	1901.82
Peso Unitario Compactado Seco	(Kg/m³)	1874.26
Contenido de Humedad	(%)	1.47

OBSERVACIONES:

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque Ubicación

: Jueves, 13 de octubre del 2022 Fecha de ensayo

; AGREGADOS. Método de ensayo normalizado para determinar la masa por Ensayo

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)
AGREGADOS. Método de ensayo normalizado para contenido de humedad total

evaporable de agregados por secado.

: NTP 400.017:2011 (revisada el 2016) Referencia

NTP 339.185:2013

Muestra: Arena Gruesa Cantera: Castro I - San Nicolas

Peso Unitario Suelto Humedo	(Kg/m³)	1677.73
Peso Unitario Suelto Seco	(Kg/m³)	1654.44
Contenido de Humedad	(%)	1.41

Peso Unitario Compactado Humedo	(Kg/m³)	1921.67
Peso Unitario Compactado Seco	(Kg/m³)	1895.00
Contenido de Humedad	(%)	1.41

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Miguel Angel Ruiz Perales

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

Ensayo : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad

total evaporable de agregados por secado.

Referencia : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra: Piedra Chancada Cantera: Tres Tomas - Bomboncito

Peso Unitario Suelto Humedo	(Kg/m³)	1452.10
Peso Unitario Suelto Seco	(Kg/m³)	1442.21
Contenido de Humedad	(%)	0.69

Peso Unitario Compactado Humedo	(Kg/m ³)	1582.98
Peso Unitario Compactado Seco	(Kg/m ³)	1572.20
Contenido de Humedad	(%)	0.69

OBSERVACIONES

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

Ensayo : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad

total evaporable de agregados por secado.

Referencia : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra: Piedra Chancada Cantera: La Victoria

Peso Unitario Suelto Humedo	(Kg/m³)	1491.45
Peso Unitario Suelto Seco	(Kg/m ³)	1479.48
Contenido de Humedad	(%)	0.81

Peso Unitario Compactado Humedo	(Kg/m ³)	1652.10
Peso Unitario Compactado Seco	(Kg/m³)	1638.84
Contenido de Humedad	(%)	0.81

OBSERVACIONES

- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

Ensayo : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad

total evaporable de agregados por secado.

Referencia : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra: Piedra Chancada Cantera: La Victoria

Peso Unitario Suelto Humedo	(Kg/m ³)	1438.32
Peso Unitario Suelto Seco	(Kg/m ³)	1432.78
Contenido de Humedad	(%)	0.39

Peso Unitario Compactado Humedo	(Kg/m³)	1564.13
Peso Unitario Compactado Seco	(Kg/m³)	1558.10
Contenido de Humedad	(%)	0.39

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

Ensayo : AGREGADOS. Método de ensayo normalizado para determinar la masa por

unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados.

3a. Edición (Basada ASTM C 29/C29M-2009)

AGREGADOS. Método de ensayo normalizado para contenido de humedad

total evaporable de agregados por secado.

Referencia : NTP 400.017:2011 (revisada el 2016)

NTP 339.185:2013

Muestra: Piedra Chancada Cantera: La Victoria

Peso Unitario Suelto Humedo	(Kg/m ³)	1456.65
Peso Unitario Suelto Seco	(Kg/m ³)	1446.04
Contenido de Humedad	(%)	0.73

Peso Unitario Compactado Humedo	(Kg/m³)	1587.64
Peso Unitario Compactado Seco	(Kg/m³)	1576.06
Contenido de Humedad	(%)	0.73

OBSERVACIONES :

- Muestreo, identificación y ensayo realizado por el solicitante.

ANEXO III: Peso específico y absorción de agregado fino y grueso

INFORME

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

OJA DE PIÑA

Ubicación : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado fino.

REFERENCIA: N.T.P. 400.022

Muestra: Arena Gruesa Cantera: Tres Tomas - Bomboncito

1 PESO ESPECÍFICO DE MASA	(gr/cm³)	2.593
2 PORCENTAJE DE ABSORCIÓN	%	1.659

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

INFORME

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado fino.

REFERENCIA: N.T.P. 400.022

Muestra: Arena Gruesa Cantera: La Victoria

1 PESO ESPECÍFICO DE MASA	(gr/cm³)	2.489
2 PORCENTAJE DE ABSORCIÓN	%	0.594

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

INFORME

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado fino.

REFERENCIA: N.T.P. 400.022

Muestra: Arena Gruesa Cantera: Pacherres

1 PESO ESPECÍFICO DE MASA	(gr/cm³)	2.619
2 PORCENTAJE DE ABSORCIÓN	%	1.794

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

INFORME

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación : Dist. Chiclayo, Prov. Pimentel, Departamento Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

Miguel Angel Ruiz Perales

(peso específico) y absorción del agregado fino.

REFERENCIA: N.T.P. 400.022

Muestra: Arena Gruesa Cantera: Castro I - San Nicolas

1 PESO ESPECÍFICO DE MASA	(gr/cm³)	2.568
2 PORCENTAJE DE ABSORCIÓN	%	1.490

OBSERVACIONES:

INFORME

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado grueso.

REFERENCIA: N.T.P. 400.021

Muestra: Piedra Chancada Cantera: Tres Tomas - Bomboncito

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.240
2 PORCENTAJE DE ABSORCIÓN	%	1.574

OBSERVACIONES:

INFORME

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado grueso.

REFERENCIA: N.T.P. 400.021

Muestra: Piedra Chancada Cantera: La Victoria

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.229
2 PORCENTAJE DE ABSORCIÓN	%	2.582

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

INFORME

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado grueso.

REFERENCIA: N.T.P. 400.021

Muestra: Piedra Chancada Cantera: Pacherres

1 PESO ESPECIFICO DE MASA	(gr/cm³)	2.111
2 PORCENTAJE DE ABSORCIÓN	%	3.859

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

INFORME

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Óbra : "PROPIEDADES FÍSICAS Y MECÂNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Jueves, 13 de octubre del 2022

NORMA: AGREGADO. Método de ensayo normalizado para la densidad, la densidad relativa

(peso específico) y absorción del agregado grueso.

REFERENCIA: N.T.P. 400.021

Muestra: Piedra Chancad - B Cantera: Castro I - San Nicolas

1 PESO ESPECIFICO DE MASA	(gr/km²)	2.111
2 PORCENTAJE DE ABSORCIÓN	*	3.859

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

ANEXO IV: Material que pasa por la malla #200.

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Viernes, 14 de octubre del 2022

NORMA : AGREGADO. Méodo de ensayo normalizado para determinar materiales más

finos que pasan por el maiz normalizado 75 µm (N°200) por lavado en

Referencia NTP 400.018-2013/ASTM C117

Muestra: Arena Gruesa Cantera: La Victoria - Pátapo

Porcentaje del material más fino que pasa por el tamiz N°200. (%) 6.29

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- Se utilizó el procedimiento A

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Viernes, 14 de octubre del 2022

NORMA : AGREGADO. Méodo de ensayo normalizado para determinar materiales más

finos que pasan por el maiz normalizado 75 µm (N°200) por lavado en

Referencia NTP 400.018-2013/ASTM C117

Muestra: Arena Gruesa Cantera: Pacherrez

Porcentaje del material más fino que pasa por el tamiz N°200. (%)

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- Se utilizó el procedimiento A

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Viernes, 14 de octubre del 2022

NORMA : AGREGADO. Méodo de ensayo normalizado para determinar materiales más

finos que pasan por el maiz normalizado 75 µm (N°200) por lavado en

Referencia NTP 400.018-2013/ASTM C117

Muestra : Arena Gruesa Cantera: San Nicolas I

Porcentaje del material más fino que pasa por el tamiz N°200. (%)

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- Se utilizó el procedimiento A

ANEXO V: Ensayo de abrasión – Agregado grueso.

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Viernes, 14 de octubre del 2022

Ensayo : AGREGADOS. Método de ensayo normalizado para determinación de la

resistencia a la degradación en agregados grueso de tamaños menores por

abrasión e impacto en la máquina de los Ángeles.

Referencia: NTP 400.019

Muestra: Arena Gruesa Cantera: La Victoria

Porcentaje de desgaste por abrasión (%) 8.33

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- Método de ensayo a usar: Gradación "A", Nº de esferas : 12, Revoluciones: Total 500

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO

FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de ensayo : Viernes, 14 de octubre del 2022

Ensayo : AGREGADOS. Método de ensayo normalizado para determinación de la

resistencia a la degradación en agregados grueso de tamaños menores por

abrasión e impacto en la máquina de los Ángeles.

Referencia: NTP 400.019

Muestra: Arena Gruesa Cantera: Pacherres

Porcentaje de desgaste por abrasión (%) 14.47

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- Método de ensayo a usar: Gradación "A", Nº de esferas : 12, Revoluciones: Total 500

ANEXO VI: Diseño de mezcla de prueba – Concreto Patrón 210 kg/cm² y 280 kg/cm².

INFORME

Pag. 01 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF!

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : Sábado, 15 de octubre del 2022

> DISEÑO DE MEZCLA PRUEBA 1 $f'c = 210 \text{ kg/cm}^2$

CEMENTO

1.- Tipo de cemento : Tipo I - CEMEX

2.- Peso específico

AGREGADOS: Agregado fino:

: Arena Gruesa - Cantera La Victoria 1.- Peso específico de masa 2.535 gr/cm³ 2.- Peso específico de masa S.S.S. 2.563 gr/cm3 3.- Peso unitario suelto 1.532 Kg/m³ 4.- Peso unitario compactado 1.615 Kg/m³ 5.- % de absorción 1.13 % %

6.- Contenido de humedad 1.2 7.- Módulo de fineza 3.18

Fondo

OBSERVACIONES:

Granulometría: % Acumulado % Malla

7.2

Retenido que pasa 3/8" 0.1 99.9 Nº 04 8.8 91.1 No 08 14.6 76.5 Nº 16 19.9 56.7 No 30 23.6 33.1 Nº 50 15.2 17.9 Nº 100 10.7 7.2

- Muestreo, identificación y ensayo realizado por el solicitante. WILSON DE MATERIALES Y SUELOS

0.0

Agregado grueso:

: Piedra Chancada - Cantera Pacherres

1.- Peso específico de masa 2.665 gr/cm³ 2.- Peso específico de masa S.S.S. 2.693 gr/cm³ 3.- Peso unitario suelto 1.3 Kg/m³ 4.- Peso unitario compactado 1.4 Kg/m³ 5.- % de absorción 1.06 % 6.- Contenido de humedad 1.6 % 1" 7.- Tamaño máximo Pulg. 3/4" 8.- Tamaño máximo nominal Pulg.

> Malla % % Acumulado Retenido que pasa 0.0 100.0 1 1/2" 0.0 100.0 0.0 100.0 3/4" 27.5 72.5 1/2" 65.9 6.6 3/8" 5.4 1.1 Nº 04 1.1 0.0 Fondo 0.0 0.0

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF!

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

Fecha de vaciado : Sábado, 15 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1 F'c = 210 kg/cm²

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas Peso unitario del concreto fresco : 2384 Kg/m^3 Resistencia promedio a los 7 días : 161.87 Kg/cm^2 Porcentaje promedio a los 7 días : 77 % Factor cemento por M^3 de concreto : 8.8 bolsas/ m^3

Relación agua cemento de diseño : 0.733

Cantidad de materiales por metro cúbico :

 Cemento
 373
 Kg/m³
 : Tipo I - CEMEX

 Agua
 274
 L
 : Potable de la zona.

Agregado fino 858 Kg/m³ : Arena Gruesa - Cantera La Victoria Agregado grueso 879 Kg/m³ : Piedra Chancada - Cantera Pacherres

Proporción en peso : Cemento Arena Piedra Agua

1.0 2.30 2.35 31.1 Lts/pie³

Proporción en volumen : 1.0 2.26 2.71 31.1 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

INFORME

Pag. 01 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Sábado, 15 de octubre del 2022 Ubicación

Fecha de vaciado

DISEÑO DE MEZCLA PRUEBA 2 $f'c = 210 \text{ kg/cm}^2$

CEMENTO

#iREF!

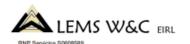
: Tipo I - CEMEX 1.- Tipo de cemento

2.- Peso específico

AGREGADOS:

Agregado fino : Agregado grueso: : Arena Gruesa - Cantera La Victoria : Piedra Chancada - Cantera Pache

. Arena Gruesa - Cantera La Victoria			. Fleura Criancada - Cantera Facrierre	5	
 Peso específico de masa 	2.535	gr/cm ³	 Peso específico de masa 	2.665	gr/cm ³
Peso específico de masa S.S.S.	2.563	gr/cm ³	Peso específico de masa S.S.S.	2.693	gr/cm ³
Peso unitario suelto	1.532	Kg/m ³	Peso unitario suelto	1.3	Kg/m ³
4 Peso unitario compactado	1.615	Kg/m ³	Peso unitario compactado	1.4	Kg/m ³
5 % de absorción	1.13	%	5 % de absorción	1.06	%
6 Contenido de humedad	1.2	%	6 Contenido de humedad	1.6	%
7 Módulo de fineza	3.18		7 Tamaño máximo	1"	Pulg.
			8 Tamaño máximo nominal	3/4"	Pulg.


Granulometría:

┅.				
	Malla	%	% Acumulado	
	Pidild	Retenido	que pasa	
	3/8"	0.1	99.9	
	Nº 04	8.8	91.1	
	No 08	14.6	76.5	
	Nº 16	19.9	56.7	
	No 30	23.6	33.1	
	Nº 50	15.2	17.9	
	Nº 100	10.7	7.2	
	Fondo	7.2	0.0	

Malla	%	% Acumulado	
	Retenido	que pasa	
2"	0.0	100.0	
1 1/2"	0.0	100.0	
1"	0.0	100.0	
3/4"	27.5	72.5	
1/2"	65.9	6.6	
3/8"	5.4	1.1	
Nº 04	1.1	0.0	
Fondo	0.0	0.0	

OBSERVACIONES:

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA

Fecha de vaciado : Sábado, 15 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 2 F'c = 210 kg/cm²

Resultados del diseño de mezcla:

Relación agua cemento de diseño : 0.679

Cantidad de materiales por metro cúbico :

Agregado fino 855 Kg/m³ : Arena Gruesa - Cantera La Victoria
Agregado grueso 859 Kg/m³ : Piedra Chancada - Cantera Pacherres

1.0

Proporción en peso : Cemento Arena Piedra Agua 1.0 2.12 2.13 28.9 Lts/pie³

Proporción en volumen :

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

Miguel Angel Ruiz Perales

2.45

28.9 Lts/pie³

2.08

INFORME

Pag. 01 de 02

2.665 gr/cm³

2.693 gr/cm³ 1.3

1.4

1.06

1.6 1"

3/4"

Kg/m³

Kg/m³

%

% Pulg.

Pulg.

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

#iREF!

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Sábado, 15 de octubre del 2022 Ubicación

Fecha de vaciado

 $f'c = 210 \text{ kg/cm}^2$ DISEÑO DE MEZCLA PRUEBA 3

CEMENTO

1.- Tipo de cemento : Tipo I - CEMEX

2.- Peso específico

AGREGADOS:

Agregado fino :

Agregado grueso: : Arena Gruesa - Cantera La Victoria : Piedra Chancada - Cantera Pacherres

1.º reso especifico de masa	2.333	gi/ciii	1.º resu especifico de masa
Peso específico de masa S.S.S.	2.563	gr/cm ³	Peso específico de masa S.S.S.
3 Peso unitario suelto	1.532	Kg/m ³	Peso unitario suelto
4 Peso unitario compactado	1.615	Kg/m ³	Peso unitario compactado
5 % de absorción	1.13	%	5 % de absorción
6 Contenido de humedad	1.2	%	6 Contenido de humedad
7 Módulo de fineza	3.18		7 Tamaño máximo
			8 Tamaño máximo nominal

Granulometría:

٠,	ia .				
	Malla	%	% Acumulado		
	Plana	Retenido	que pasa		
	3/8"	0.1	99.9		
	Nº 04	8.8	91.1		
	Nº 08	14.6	76.5		
	Nº 16	19.9	56.7		
	No 30	23.6	33.1		
	Nº 50	15.2	17.9		
	Nº 100	10.7	7.2		
	Fondo	7.2	0.0		

WILSON OLAYA AGUILAR TÉC. ENSÁYOS DE MATERIALES Y SUELOS

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES :

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF!

* "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

Fecha de vaciado : Sábado, 15 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 3 F'c = 210 kg/cm²

Resultados del diseño de mezcla:

Relación agua cemento de diseño : 0.617

Cantidad de materiales por metro cúbico :

Cemento 428 Kg/m^3 : Tipo I - CEMEX Aqua 264 L : Potable de la zona.

Agregado fino 802 Kg/m³ : Arena Gruesa - Cantera La Victoria
Agregado grueso 817 Kg/m³ : Piedra Chancada - Cantera Pacherres

Proporción en peso : Cemento Arena Piedra Agua 1.0 1.87 1.91 26.2 Lts/pie³

Proporción en volumen : $1.0 \hspace{0.5cm} 1.84 \hspace{0.5cm} 2.19 \hspace{0.5cm} 26.2 \hspace{0.5cm} Lts/pie^3$

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

INFORME

Pag. 01 de 02

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

#IREF!

* "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Martes, 18 de octubre del 2022 Ubicación

Fecha de vaciado

DISEÑO DE MEZCLA PRUEBA 1 $fc = 280 \text{ kg/cm}^2$

CEMENTO

1.- Tipo de cemento : Tipo I - CEMEX

2.- Peso específico

AGREGADOS: Agregado fino :

: Arena Gruesa - Cantera La Victoria

. Fiche didese Cuine a La Victoria		
1 Peso específico de masa	2.535	gr/cn
2 Peso específico de masa S.S.S.	2.563	gr/cn
3 Peso unitario suelto	1.532	Kg/m
4 Peso unitario compactado	1.615	Kg/m
5 % de absorción	1.13	96
6 Contenido de humedad	1.2	%
7 Módulo de fineza	3.18	

Agregado grueso:

: Piedra Chancada - Cantera Pacherr	es	
1 Peso específico de masa	2.665	gr/cm ³
2 Peso específico de masa S.S.S.	2.693	gr/cm ³
3 Peso unitario suelto	1.3	Kg/m ³
4 Peso unitario compactado	1.4	Kg/m ³
5 % de absorción	1.06	%
6 Contenido de humedad	1.6	%
7 Tamaño máximo	1"	Pulg.
8 Tamaño máximo nominal	3/4"	Pulg.

Granulometría:

% Retenido	% Acumulado que pasa
0.1	99.9
8.8	91.1
14.6	76.5
19.9	56.7
23.6	33.1
15.2	17.9
10.7	7.2
7.2	0.0
	Retenido 0.1 8.8 14.6 19.9 23.6 15.2 10.7

Malla	% Retenido	% Acumulado que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES:

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF! : __________

PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA

Fecha de vaciado : Martes, 18 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1 F'c = 280 kg/cm²

Resultados del diseño de mezcla:

 Asentamiento obtenido
 : 4
 Pulgadas

 Peso unitario del concreto fresco
 : 2396
 Kg/m³

 Resistencia promedio a los 7 días
 : 216.35
 Kg/cm²

 Porcentaje promedio a los 7 días
 : 77
 %

 Factor cemento por M³ de concreto
 : 10.6
 bolsas/m³

Relación agua cemento de diseño : 0.609

Cantidad de materiales por metro cúbico :

 Cemento
 450
 Kg/m³
 : Tipo I - CEMEX

 Agua
 274
 L
 : Potable de la zona.

Agregado fino 816 Kg/m³ : Arena Gruesa - Cantera La Victoria
Agregado grueso 856 Kg/m³ : Piedra Chancada - Cantera Pacherres

Proporción en peso : Cemento Arena Piedra Agua 1.0 1.81 1.90 25.9 Lts/pie³

Proporción en volumen :

1.0 1.78 2.19 25.9 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

INFORME

Pag. 01 de 02

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

* "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Martes, 18 de octubre del 2022 Ubicación

Fecha de vaciado

DISEÑO DE MEZCLA PRUEBA 2 $f'c = 280 \text{ kg/cm}^2$

CEMENTO

#iREF!

1.- Tipo de cemento : Tipo I - CEMEX

2.- Peso específico

AGREGADOS:

Agregado fino : Agregado grueso:

Agregado grueso .
: Piedra Chancada - Cantera Pacherres
2.665 gr/cm³ : Arena Gruesa - Cantera La Victoria 1.- Peso específico de masa 2.535 gr/cm3 gr/cm³ Kg/m³ Kg/m³ 2.- Peso específico de masa S.S.S. 2.563 2.- Peso específico de masa S.S.S. 2.693 gr/cm³ 3.- Peso unitario suelto 1.532 3.- Peso unitario suelto 1.3 4.- Peso unitario compactado 1.615 4.- Peso unitario compactado 1.4 Kg/m³ % % % % 5.- % de absorción 1.13 5.- % de absorción 1.06 6.- Contenido de humedad 6.- Contenido de humedad 1.6 1.2 7.- Módulo de fineza 3.18 7.- Tamaño máximo Pulg. 8.- Tamaño máximo nominal 3/4" Pulg.

Granulometría :

1a:	20 00 01 20	
Malla	% Retenido	% Acumulado que pasa
3/8"	0.1	99.9
Nº 04	8.8	91.1
No 08	14.6	76.5
Nº 16	19.9	56.7
No 30	23.6	33.1
Nº 50	15.2	17.9
Nº 100	10.7	7.2
Fondo	7.2	0.0

WILSON DE MATERIALES Y SUELOS

Malla	% Retenido	% Acumulado que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES :

Prolongación Bolognesi Km. 3.5
Pimentel – Lambayeque
R.U.C. 20548885974

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

Fecha de vaciado : Martes, 18 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 2 F'c = 280 kg/cm²

Resultados del diseño de mezcla:

Relación agua cemento de diseño : 0.575

Cantidad de materiales por metro cúbico :

 Cemento
 482
 Kg/m³
 : Tipo I - CEMEX

 Aqua
 277
 L
 : Potable de la zona.

Agregado fino 831 Kg/m³ : Arena Gruesa - Cantera La Victoria Agregado grueso 838 Kg/m³ : Piedra Chancada - Cantera Pacherres

Proporción en peso : Cemento Arena Piedra Agua 1.0 1.73 1.74 24.4 Lts/pie³

Proporción en volumen : 1.0 1.70 2.00 24.4 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

INFORME

Pag. 01 de 02

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

#iREF! * PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Martes, 18 de octubre del 2022 Ubicación

Fecha de vaciado

DISEÑO DE MEZCLA PRUEBA 3 $fc = 280 \text{ kg/cm}^2$

CEMENTO

: Tipo I - CEMEX 1.- Tipo de cemento

2.- Peso específico

AGREGADOS: Agregado fino :

: Arena Gruesa - Cantera La Victoria

gr/cm³ 2.535 1.- Peso específico de masa gr/cm³ 2.- Peso específico de masa S.S.S. 2.563 3.- Peso unitario suelto 1.532 Kg/m³ Kg/m³ 4.- Peso unitario compactado 1.615 5.- % de absorción 1.13 6.- Contenido de humedad 1.2 %

7.- Módulo de fineza 3.18 Agregado grueso:

: Piedra Chancada - Cantera Pacherres

1.- Peso específico de masa 2.665 gr/cm³ 2.693 gr/cm³ 2.- Peso específico de masa S.S.S. 3.- Peso unitario suelto 1.3 Kg/m³ 4.- Peso unitario compactado 1.4 Kg/m³ 5.- % de absorción 1.06 % 6.- Contenido de humedad 1.6 % 7.- Tamaño máximo Pulg. 8.- Tamaño máximo nominal 3/4" Pulg.

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.1	99.9
Nº 04	8.8	91.1
No 08	14.6	76.5
Nº 16	19.9	56.7
No 30	23.6	33.1
Nº 50	15.2	17.9
Nº 100	10.7	7.2
Fondo	7.2	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES:

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF!

* "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

Fecha de vaciado : Martes, 18 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 3 Fc = 280 kg/cm²

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas Peso unitario del concreto fresco : 2447 kg/m^3 Resistencia promedio a los 7 días : 251.95 kg/m^2 Porcentaje promedio a los 7 días : 90 kg/m^3 Factor cemento por kg/m^3 de concreto : 12.5 kg/m^3

Relación agua cemento de diseño : 0.522

Cantidad de materiales por metro cúbico :

 Cemento
 533
 Kg/m³
 : Tipo I - CEMEX

 Agua
 278
 L
 : Potable de la zona.

Agregado fino 806 Kg/m³ : Arena Gruesa - Cantera La Victoria Agregado grueso 829 Kg/m³ : Piedra Chancada - Cantera Pacherres

Proporción en peso : Cemento Arena Piedra Agua 1.0 1.51 1.56 22.2 Lts/pie³

Proporción en volumen : 1.0 1.49 1.79 22.2 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

ANEXO VII: Diseño de mezcla de prueba final – Concreto

Patrón 210 kg/cm² y 280 kg/cm²

INFORME

Pag. 01 de 02

2.665 gr/cm³

Kg/m³

%

Pulg.

Pulg.

1.3

1.4

1.06

1.6

1"

3/4"

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF!

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

Agregado grueso:

: Piedra Chancada - Cantera Pacherres

2.- Peso específico de masa S.S.S. 2.693 gr/cm³

1.- Peso específico de masa

4.- Peso unitario compactado

6.- Contenido de humedad

8.- Tamaño máximo nominal

3.- Peso unitario suelto

5.- % de absorción

7.- Tamaño máximo

DE PIÑA"

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Sábado, 15 de octubre del 2022 Ubicación

Fecha de vaciado

DISEÑO DE MEZCLA PRUEBA 1 $f'c = 210 \text{ kg/cm}^2$

CEMENTO

: Tipo I - CEMEX 1.- Tipo de cemento

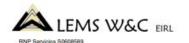
2.- Peso específico

AGREGADOS:

Agregado fino:

: Arena Gruesa - Cantera La Victoria 1.- Peso específico de masa 2.535 gr/cm3 2.- Peso específico de masa S.S.S. 2.563 gr/cm3 3.- Peso unitario suelto 1.532 Kg/m3 4.- Peso unitario compactado 1.615 Kg/m³ 5.- % de absorción 1.13 6.- Contenido de humedad 1.2 % 7.- Módulo de fineza 3.18

Granulometría:


Malla %		% Acumulado		
	Retenido	que pasa		
3/8"	0.1	99.9		
Nº 04	8.8	91.1		
No 08	14.6	76.5		
Nº 16	19.9	56.7		
No 30	23.6	33.1		
Nº 50	15.2	17.9		
Nº 100	10.7	7.2		
Fondo	7.2	0.0		

WILSON DE MATERIALES Y SUELOS

Malla	% Retenido	% Acumulado que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES:

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

COUNTY AND AND A COUNTY AND A C

* PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

Fecha de vaciado : Sábado, 15 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1 F'c = 210 kg/cm²

Resultados del diseño de mezcla:

#iREF!

Asentamiento obtenido : 4 Pulgadas Peso unitario del concreto fresco : 2384 kg/m^3 Resistencia promedio a los 7 días : 161.87 kg/cm^2 Porcentaje promedio a los 7 días : 77 % Factor cemento por M^3 de concreto : 8.8 bolsas/ m^3

Relación agua cemento de diseño : 0.733

Cantidad de materiales por metro cúbico :

 Cemento
 373
 Kg/m³
 : Tipo I - CEMEX

 Agua
 274
 L
 : Potable de la zona.

Agregado fino 858 Kg/m³ : Arena Gruesa - Cantera La Victoria
Agregado grueso 879 Kg/m³ : Piedra Chancada - Cantera Pacherres

Proporción en peso : Cemento Arena Piedra Agua 1.0 2.30 2.35 31.1 Lts/pie³

Proporción en volumen : 1.0 2.26 2.71 31.1 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

Pag. 01 de 02

INFORME

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF! : #PDODYFDADES FORCE VALUE (1997)

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. Fecha de vaciado : Martes, 18 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1 fc = 280 kg/cm²

CEMENTO

1.- Tipo de cemento : Tipo I - CEMEX

2.- Peso específico :

AGREGADOS:

Agregado fino : Agregado grueso :

: Arena Gruesa - Cantera La Victoria : Piedra Chancada - Cantera Pacherres 2.535 gr/cm³ 2.665 gr/cm³ Peso específico de masa 1.- Peso específico de masa 2.- Peso específico de masa S.S.S. gr/cm³ Kg/m³ 2.693 gr/cm³ 1.3 Kg/m³ 2.- Peso específico de masa S.S.S. 2.563 1.532 3.- Peso unitario suelto 3.- Peso unitario suelto Kg/m³ 4.- Peso unitario compactado 1.615 4.- Peso unitario compactado 1.4 Kg/m³ 5.- % de absorción 1.13 5.- % de absorción 1.06 6.- Contenido de humedad 1.2 % 6.- Contenido de humedad 1.6 7.- Módulo de fineza 3.18 7.- Tamaño máximo 1" Pulg. 3/4" Pulg. 8.- Tamaño máximo nominal

Granulometría :

Malla	%	% Acumulado
Malia	Retenido	que pasa
3/8"	0.1	99.9
Nº 04	8.8	91.1
No 08	14.6	76.5
Nº 16	19.9	56.7
No 30	23.6	33.1
Nº 50	15.2	17.9
Nº 100	10.7	7.2
Fondo	7.2	0.0

Malla	%	% Acumulado
7224050000	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES:

Muestreo, identificación y ensayo realizado por el solicitante.

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF!

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA

DE PIÑA"

Fecha de vaciado : Martes, 18 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1 F'c = 280 kg/cm²

Resultados del diseño de mezcla:

Asentamiento obtenido Pulgadas 2396 Kg/m³ Peso unitario del concreto fresco : 216.35 Kg/cm² Resistencia promedio a los 7 días 77 Porcentaje promedio a los 7 días Factor cemento por M³ de concreto 10.6 bolsas/m3

Relación agua cemento de diseño 0.609

Cantidad de materiales por metro cúbico :

450 Kg/m³ Cemento : Tipo I - CEMEX 274 L Agua : Potable de la zona.

Agregado fino 816 Kg/m³ : Arena Gruesa - Cantera La Victoria Agregado grueso 856 Kg/m³ : Piedra Chancada - Cantera Pacherres

Proporción en peso: Piedra Cemento Arena Agua Lts/pie³ 1.0 1.81 1.90 25.9

Proporción en volumen: 1.0 1.78 2.19 25.9 Lts/pie3

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

ANEXO VIII: Diseño de mezclas – CP + Adiciones de 0.2%, 0.3%, 0.4% y 0.5% de FHP.

INFORME

Pag. 01 de 02

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

#iREF!

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Sábado, 29 de octubre del 2022

Fecha de vaciado

DISEÑO DE MEZCLA PRUEBA 1+ 0.20%FHP $f'c = 210 \text{ kg/cm}^2$

CEMENTO

: Tipo I - CEMEX 1.- Tipo de cemento

2.- Peso específico

AGREGADOS:

•	vyreya	uo III	ο.		
	Arona	Cause	a - C	antora	15

era La Victoria 1.- Peso específico de masa 2.535 gr/cm³ gr/cm³ Kg/m³ 2.- Peso específico de masa S.S.S. 2.563 3.- Peso unitario suelto 1.532 Kg/m³ 4.- Peso unitario compactado 1.615 % % 5.- % de absorción 1.13

6.- Contenido de humedad 1.2 3.18 7.- Módulo de fineza

Agregado grueso:

: Piedra Chancada - Cantera Pacherres

1.- Peso específico de masa 2.665 gr/cm³ 2.- Peso específico de masa S.S.S. 2.693 gr/cm³ 3.- Peso unitario suelto Kg/m³ 4.- Peso unitario compactado 1.4 Kg/m³ 5.- % de absorción 1.06 % 6.- Contenido de humedad 1.6 1" 96 7.- Tamaño máximo Pulg. 8.- Tamaño máximo nominal 3/4" Pulg.

Granulometría:

Malla	% Retenido	% Acumulado que pasa	
3/8"	0.1	99.9	
Nº 04	8.8	91.1	
No 08	14.6	76.5	
Nº 16	19.9	56.7	
No 30	23.6	33.1	
Nº 50	15.2	17.9	
Nº 100	10.7	7.2	
Fondo	7.2	0.0	

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES :

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA"

Fecha de vaciado : Sábado, 29 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1+0.20%FHP F'c = 210 kg/cm^2

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas Peso unitario del concreto fresco : 2384 $\rm Kg/m^3$ Resistencia promedio a los 7 días : 161.87 $\rm Kg/cm^2$ Porcentaje promedio a los 7 días : 77 % Factor cemento por $\rm M^3$ de concreto : 8.8 bolsas/ $\rm m^3$

Relación agua cemento de diseño : 0.733

Cantidad de materiales por metro cúbico :

Agregado fino 858 Kg/m³ : Arena Gruesa - Cantera La Victoria
Agregado grueso 879 Kg/m³ : Piedra Chancada - Cantera Pacherres
Fibra de hoja de piña 0.75 Kg/m³ : Fibra de hoja de piña - Adición 0.2% FHP

Proporción en peso : Cemento Arena Piedra FHP Agua 1.0 2.30 2.35 0.002 31.1 Lts/pie³

Proporción en volumen : 1.0 2.26 2.71 0.002 31.1 Lts/pie³

OBSERVACIONES :

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

INFORME

Pag. 01 de 02

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

#IREF! * "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Sábado, 29 de octubre del 2022 Ubicación

Fecha de vaciado

DISEÑO DE MEZCLA PRUEBA 1+ 0.30%FHP $f'c = 210 \text{ kg/cm}^2$

CEMENTO

1.- Tipo de cemento : Tipo I - CEMEX

2.- Peso específico

AGREGADOS: Agregado fino :

Agregado grueso: : Arena Gruesa - Cantera La Victoria : Piedra Chancada - Cantera Pacherres

 Peso específico de masa 	2.535	gr/cm ³	1 Peso específico de masa	2.665	gr/cm ³
2 Peso específico de masa S.S.S.	2.563	gr/cm ³	2 Peso específico de masa S.S.S.	2.693	gr/cm3
3 Peso unitario suelto	1.532	Kg/m ³	3 Peso unitario suelto	1.3	Kg/m ³
4 Peso unitario compactado	1.615	Kg/m ³	4 Peso unitario compactado	1.4	Kg/m ³
5 % de absorción	1.13	%	5 % de absorción	1.06	%
6 Contenido de humedad	1.2	%	6 Contenido de humedad	1.6	%
7 Módulo de fineza	3.18		7 Tamaño máximo	1"	Pulg.
			8 Tamaño máximo nominal	3/4"	Pula.

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.1	99.9
Nº 04	8.8	91.1
No 08	14.6	76.5
Nº 16	19.9	56.7
No 30	23.6	33.1
Nº 50	15.2	17.9
No 100	10.7	7.2
Fondo	7.2	0.0

Malla	% Retenido	% Acumulado que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES:

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA"

Fecha de vaciado : Sábado, 29 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1+0.30%FHP F'c = 210 kg/cm²

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas Peso unitario del concreto fresco : 2384 $\,$ Kg/m³ Resistencia promedio a los 7 días : 161.87 $\,$ Kg/cm² Porcentaje promedio a los 7 días : 77 $\,$ % Factor cemento por $\,$ M³ de concreto : 8.8 bolsas/m³

Relación agua cemento de diseño : 0.733

Cantidad de materiales por metro cúbico :

 Cemento
 373
 Kg/m³
 : Tipo I - CEMEX

 Agua
 274
 L
 : Potable de la zona.

Agregado fino 858 Kg/m^3 : Arena Gruesa - Cantera La Victoria Agregado grueso 879 Kg/m^3 : Piedra Chancada - Cantera Pacherres Fibra de hoja de piña 1.12 Kg/m^3 : Fibra de hoja de piña - Adición 0.3% FHP

Proporción en peso : Cemento Arena Piedra FHP Agua

1.0 2.30 2.35 0.003 31.1 Lts/pie³

Proporción en volumen : 1.0 2.26 2.71 0.003 31.1 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

INFORME

Pag. 01 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA"

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : Sábado, 29 de octubre del 2022

> $f'c = 210 \text{ kg/cm}^2$ DISEÑO DE MEZCLA PRUEBA 1+ 0.40%FHP

CEMENTO

#iREF!

: Tipo I - CEMEX 1.- Tipo de cemento

2.- Peso específico

AGREGADOS:

Agregado fino:

: Arena Gruesa - Cantera La Victoria 2.535 gr/cm³ Peso específico de masa gr/cm³ Kg/m³ Peso específico de masa S.S.S. 2.563 3.- Peso unitario suelto 1.532 Kg/m³ 4.- Peso unitario compactado 1.615 % % 5.- % de absorción 1.13 6.- Contenido de humedad

1.2 3.18 7.- Módulo de fineza

Agregado grueso:

: Piedra Chancada - Cantera Pacherres 2.665 gr/cm³ Peso específico de masa Peso específico de masa S.S.S. 2.693 gr/cm³ 1.3 Kg/m³ 3.- Peso unitario suelto Kg/m³ 4.- Peso unitario compactado 1.4 5.- % de absorción 1.06 % % 1.6 1" 6.- Contenido de humedad Pulg. 7.- Tamaño máximo

3/4" Pulg. 8.- Tamaño máximo nominal

Granulometría:

WILSON OLAYA AGUILAR

Malla	%	% Acumulado	
	Retenido	que pasa	
2"	0.0	100.0	
1 1/2"	0.0	100.0	
1"	0.0	100.0	
3/4"	27.5	72.5	
1/2"	65.9	6.6	
3/8"	5.4	1.1	
Nº 04	1.1	0.0	
Fondo	0.0	0.0	

OBSERVACIONES :

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF!

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA'

Fecha de vaciado : Sábado, 29 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1+ 0.40%FHP F'c = 210 kg/cm^2

Resultados del diseño de mezcla:

Relación agua cemento de diseño : 0.733

Cantidad de materiales por metro cúbico:

 Cemento
 373
 Kg/m³
 : Tipo I - CEMEX

 Agua
 274
 L
 : Potable de la zona.

Agregado fino 858 Kg/m³ : Arena Gruesa - Cantera La Victoria
Agregado grueso 879 Kg/m³ : Piedra Chancada - Cantera Pacherres
Fibra de hoja de piña 1.49 Kg/m³ : Fibra de hoja de piña - Adición 0.4% FHP
Proporción en peso : Cemento Arena Piedra FHP Agua

 $1.0 \qquad 2.30 \qquad 2.35 \qquad 0.004 \qquad 31.1 \quad \text{Lts/pie}^3$ Proporción en volumen :

1.0 2.26 2.71 0.004 31.1 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

Email: 50

INFORME

Pag. 01 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#IREF! : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA"

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : Sábado, 29 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1+0.50%FHP f'c = 210 kg/cm²

CEMENTO

1.- Tipo de cemento : Tipo I - CEMEX

2.- Peso específico

AGREGADOS :

Agregado fino : Agregado grueso :

: Arena Gruesa - Cantera La Victoria : Piedra Chancada - Cantera Pacherres 1.- Peso específico de masa 2.535 gr/cm3 1.- Peso específico de masa 2.665 gr/cm³ gr/cm³ 2.- Peso específico de masa S.S.S. 2.563 2.- Peso específico de masa S.S.S. 2.693 gr/cm³ 3.- Peso unitario suelto 1.532 Kg/m³ 3.- Peso unitario suelto 1.3 Kg/m³ 4.- Peso unitario compactado 1.615 Kg/m³ 4.- Peso unitario compactado 1.4 Kg/m³ 1.13 5.- % de absorción 1.06 5.- % de absorción % % % % 6.- Contenido de humedad 1.2 6.- Contenido de humedad 1.6 7.- Módulo de fineza 3.18 7.- Tamaño máximo 1" Pulg. 8.- Tamaño máximo nominal 3/4" Pulg.

Granulometr<u>ía</u>

%	% Acumulado
Retenido	que pasa
0.1	99.9
8.8	91.1
14.6	76.5
19.9	56.7
23.6	33.1
15.2	17.9
10.7	7.2
7.2	0.0
	Retenido 0.1 8.8 14.6 19.9 23.6 15.2 10.7

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES :

- Muestreo, identificación y ensayo realizado por el solicitante.

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

Fecha de vaciado : Sábado, 29 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1+ 0.50%FHP $F'c = 210 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

#iREF!

Asentamiento obtenido Pulgadas : 2384 Kg/m3 Peso unitario del concreto fresco Resistencia promedio a los 7 días : 161.87 Kg/cm² 77 Porcentaje promedio a los 7 días % 8.8

Factor cemento por M3 de concreto bolsas/m3

. 0.733 Relación agua cemento de diseño

Cantidad de materiales por metro cúbico :

Cemento 373 Kg/m³ : Tipo I - CEMEX 274 L : Potable de la zona.

858 Kg/m³ Agregado fino : Arena Gruesa - Cantera La Victoria 879 Kg/m³ Agregado grueso : Piedra Chancada - Cantera Pacherres Fibra de hoja de piña 1.87 Kg/m3 : Fibra de hoja de piña - Adición 0.5% FHP

Proporción en peso: Cemento Arena Piedra FHP Agua 1.0 2.30 2.35

31.1 Lts/pie3 0.01 Proporción en volumen :

1.0

2.26

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

2.71 0.01 31.1 Lts/pie³

INFORME

Pag. 01 de 02

2.665 gr/cm³

Kg/m³

Kg/m³

%

Pulg.

Pulg.

1.3

1.06 %

1.4

1.6

3/4"

1"

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

#iREF! : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

: Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Lunes. 31 de octubre del 2022 Ubicación

Fecha de vaciado

 $f'c = 280 \text{ kg/cm}^2$ DISEÑO DE MEZCLA PRUEBA 1 + 0.20% FHP

Agregado grueso:

8.- Tamaño máximo nominal

CEMENTO

: Tipo I - CEMEX 1.- Tipo de cemento

2.- Peso específico

AGREGADOS:

Agregado fino :

: Arena Gruesa - Cantera La Victoria : Piedra Chancada - Cantera Pacherres 2.535 gr/cm³ Peso específico de masa 1.- Peso específico de masa 2.- Peso específico de masa S.S.S. 2.563 gr/cm³ Peso específico de masa S.S.S.
 2.693 gr/cm³ 3.- Peso unitario suelto 1.532 Kg/m³ 3.- Peso unitario suelto 1.615 Kg/m³ 4.- Peso unitario compactado 4.- Peso unitario compactado 5.- % de absorción 1.13 % 5.- % de absorción 6.- Contenido de humedad % 6.- Contenido de humedad 1.2 3.18 7.- Módulo de fineza 7.- Tamaño máximo

Granulometría:

ild .		
Malla	%	% Acumulado
Malia	Retenido	que pasa
3/8"	0.1	99.9
Nº 04	8.8	91.1
No 08	14.6	76.5
Nº 16	19.9	56.7
No 30	23.6	33.1
Nº 50	15.2	17.9
Nº 100	10.7	7.2
Fondo	7.2	0.0

LEMS WAL EIRL

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES :

- Muestreo, identificación y ensayo realizado por el solicitante.

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF! : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA"

Fecha de vaciado : Lunes. 31 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1 + 0.20% FHP F'c = 280 kg/cm^2

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas Peso unitario del concreto fresco : 2396 kg/m^3 Resistencia promedio a los 7 días : 216.35 kg/cm^2 Porcentaje promedio a los 7 días : 77 % Factor cemento por M^3 de concreto : 10.6 $bolsas/m^3$

Relación agua cemento de diseño : 0.609

Cantidad de materiales por metro cúbico :

Agregado fino 816 Kg/m^3 : Arena Gruesa - Cantera La Victoria Agregado grueso 856 Kg/m^3 : Piedra Chancada - Cantera Pacherres Fibra de hoja de piña 0.90 Kg/m^3 : Fibra de hoja de piña - Adición 0.2% FHP

Proporción en peso : Cemento Arena Piedra FHP Agua

1.0 1.81 1.90 0.002 25.9 Lts/pie³

Proporción en volumen :

1.0 1.78 2.19 0.002 25.9 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

Miguél Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

INFORME

Pag. 01 de 02

2.665 gr/cm³

1.3

1.4

1.06

1.6 %

3/4"

Kg/m³

Kg/m³

Pulg.

Pulg.

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

#iREF! : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Lunes. 31 de octubre del 2022

Fecha de vaciado

DISEÑO DE MEZCLA PRUEBA 1 + 0.30% FHP $f'c = 280 \text{ kg/cm}^2$

Agregado grueso:

CEMENTO

: Tipo I - CEMEX 1.- Tipo de cemento

2.- Peso específico

AGREGADOS:

Agregado fino:

: Arena Gruesa - Cantera La Victoria 1.- Peso específico de masa : Piedra Chancada - Cantera Pacherres gr/cm³ gr/cm³ Kg/m³ 2.535 Peso específico de masa 2.- Peso específico de masa S.S.S. 2.693 gr/cm³ 2.- Peso específico de masa S.S.S. 2,563 3.- Peso unitario suelto 1.532 3.- Peso unitario suelto 4.- Peso unitario compactado 1.615 Kg/m³ 4.- Peso unitario compactado 5.- % de absorción 1.13 5.- % de absorción 6.- Contenido de humedad 1.2 6.- Contenido de humedad 7.- Módulo de fineza 3.18 7.- Tamaño máximo 8.- Tamaño máximo nominal

Granulometría:

tri	a:		
-	Malla	%	% Acumulado
ı	Malia	Retenido	que pasa
	3/8"	0.1	99.9
[Nº 04	8.8	91.1
	No 08	14.6	76.5
I	Nº 16	19.9	56.7
-	No 30	23.6	33.1
	Nº 50	15.2	17.9
1	Nº 100	10.7	7.2
1	Fondo	7.2	0.0

LEMS WSC EIRL

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20548885974

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA'

Fecha de vaciado : Lunes. 31 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1 + 0.30% FHP $F'c = 280 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas Peso unitario del concreto fresco : 2396 kg/m^3 Resistencia promedio a los 7 días : 216.35 kg/cm^2 Porcentaje promedio a los 7 días : 77 % Factor cemento por M^3 de concreto : 10.6 bolsas/ m^3

Relación agua cemento de diseño : 0.609

Cantidad de materiales por metro cúbico :

Proporción en peso : Cemento Arena Piedra FHP Agua 1.0 1.81 1.90 0.003 25.9 Lts/pie³

Proporción en volumen : 1.0 1.78 2.19 0.003 25.9 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

Miguel Angel Ruiz Perales

INFORME

Pag. 01 de 02

2.665 gr/cm³

2.693 gr/cm³

1.06 %

1.6 1"

3/4"

Kg/m³

Kg/m³

%

Pulg.

Pulg.

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

#iREF!

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque.

Fecha de vaciado : Lunes. 31 de octubre del 2022

> $f'c = 280 \text{ kg/cm}^2$ DISEÑO DE MEZCLA PRUEBA 1 + 0.40% FHP

> > Agregado grueso:

1.- Peso específico de masa

4.- Peso unitario compactado

6.- Contenido de humedad

8.- Tamaño máximo nominal

3.- Peso unitario suelto

5.- % de absorción

7.- Tamaño máximo

2.- Peso específico de masa S.S.S.

: Piedra Chancada - Cantera Pacherres

CEMENTO

1.- Tipo de cemento : Tipo I - CEMEX

2.- Peso específico

AGREGADOS:

Agregado fino : : Arena Gruesa - Cantera La Victoria

1.- Peso específico de masa 2.535 gr/cm³ 2.- Peso específico de masa S.S.S. 2.563 gr/cm³ Kg/m³ 3.- Peso unitario suelto 1.532 4.- Peso unitario compactado 1.615 Kg/m³ 5.- % de absorción 1.13 % 6.- Contenido de humedad %

1.2 3.18 7.- Módulo de fineza

Granulometría : % % Acumulado Retenido que pasa

3/8" 0.1 99.9 Nº 04 8.8 91.1 No 08 14.6 76.5 Nº 16 19.9 56.7 No 30 23.6 33.1 Nº 50 15.2 17.9 Nº 100 10.7 7.2

0.0

Fondo OBSERVACIONES :

7.2

Malla % % Acumulado Retenido que pasa 0.0 100.0 1 1/2" 0.0 100.0 0.0 100.0 3/4" 27.5 72.5 65.9 1/2 6.6 3/8' 5.4 1.1 Nº 04 1.1 0.0 0.0 Fondo

⁻ Muestreo, identificación y ensayo realizado por el solicitante.

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#IREF! : IDDODTEDADES FÍSICAS VANSGÁNISA

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA"

Fecha de vaciado : Lunes. 31 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1 + 0.40% FHP F'c = 280 kg/cm^2

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas Peso unitario del concreto fresco : 2396 $\, \text{Kg/m}^3$ Resistencia promedio a los 7 días : 216.35 $\, \text{Kg/cm}^2$ Porcentaje promedio a los 7 días : 77 $\, \text{Kg-m}^2$ Factor cemento por $\, \text{M}^3$ de concreto : 10.6 $\, \text{bolsas/m}^3$

Relación agua cemento de diseño : 0.609

Cantidad de materiales por metro cúbico :

 Agregado fino
 816
 Kg/m^3 : Arena Gruesa - Cantera La Victoria

 Agregado grueso
 856
 Kg/m^3 : Piedra Chancada - Cantera Pacherres

 Fibra de hoja de piña
 1.80
 Kg/m^3 : Fibra de hoja de piña - Adición 0.4% FHP

Proporción en peso : Cemento Arena Piedra FHP Agua 1.0 1.81 1.90 0.004 25.9 Lts/pie³

Proporción en volumen :

1.0 1.78 2.19 0.004 25.9 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

Miguél Angel Ruiz Perales

INFORME

Pag. 01 de 02

2.665 gr/cm³

Kg/m³

Kg/m³

Pulg.

Pulg.

1.3

1.4

1.6 %

3/4"

1.06 %

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

#iREF! : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

Ubicación : Dist. Pimentel, Prov. Chiclayo, Depart. Lambayeque. : Lunes. 31 de octubre del 2022

Fecha de vaciado

DISEÑO DE MEZCLA PRUEBA 1 + 0.50% FHP $f'c = 280 \text{ kg/cm}^2$

Agregado grueso:

8.- Tamaño máximo nominal

CEMENTO

1.- Tipo de cemento : Tipo I - CEMEX

2.- Peso específico

AGREGADOS:

Agregado fino: : Arena Gruesa - Cantera La Victoria

: Piedra Chancada - Cantera Pacherres gr/cm³ 2.535 1.- Peso específico de masa Peso específico de masa 2.- Peso específico de masa S.S.S. 2.693 gr/cm³ gr/cm³ 2.- Peso específico de masa S.S.S. 2.563 3.- Peso unitario suelto 1.532 Kg/m³ 3.- Peso unitario suelto Kg/m³ 4.- Peso unitario compactado 1.615 4.- Peso unitario compactado 5.- % de absorción 1.13 % 5.- % de absorción 6.- Contenido de humedad 1.2 % 6.- Contenido de humedad 7.- Módulo de fineza 3.18 7.- Tamaño máximo

Granulometría:

ч.	ia .		
	Malla	%	% Acumulado
	Malia	Retenido	que pasa
	3/8"	0.1	99.9
	Nº 04	8.8	91.1
	No 08	14.6	76.5
	Nº 16	19.9	56.7
	No 30	23.6	33.1
	Nº 50	15.2	17.9
	Nº 100	10.7	7.2
	Fondo	7.2	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	27.5	72.5
1/2"	65.9	6.6
3/8"	5.4	1.1
Nº 04	1.1	0.0
Fondo	0.0	0.0

OBSERVACIONES :

- Muestreo, identificación y ensayo realizado por el solicitante.

INFORME

Pag. 02 de 02

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA"

Fecha de vaciado : Lunes. 31 de octubre del 2022

DISEÑO DE MEZCLA PRUEBA 1 + 0.50% FHP F'c = 280 kg/cm²

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas Peso unitario del concreto fresco : 2396 $\,^{\circ}$ Kg/m³ Resistencia promedio a los 7 días : 216.35 $\,^{\circ}$ Kg/cm² Porcentaje promedio a los 7 días : 77 $\,^{\circ}$ Factor cemento por $\,^{\circ}$ M³ de concreto : 10.6 $\,^{\circ}$ bolsas/m³

Relación agua cemento de diseño : 0.609

Cantidad de materiales por metro cúbico :

Agregado fino 816 Kg/m^3 : Arena Gruesa - Cantera La Victoria Agregado grueso 856 Kg/m^3 : Piedra Chancada - Cantera Pacherres Fibra de hoja de piña 2.25 Kg/m^3 : Fibra de hoja de piña - Adición 0.5% FHP

Proporción en peso : Cemento Arena Piedra FHP Agua $1.0 1.81 1.90 0.005 25.9 \ \mathrm{Lts/pie^3}$

Proporción en volumen : 1.0 1.78 2.19 0.005 25.9 Lts/pie³

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

- En obra corregir por humedad.

ANEXO IX: Ensayos de concreto fresco: Slump, temperatura, contenido de aire y peso unitario.

INFORME DE ENSAYO N° 3895

(Pág. 01 de 01)

: RODAS ALVAREZ CLAUDIA FIORELLA Tesista : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto

UNIVERSIDAD SEÑOR DE SIPÁN. Atención

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque Lugar

: Chiclayo, 27 de octubre del 2022. Fecha de emisión

HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del concreto de cemento ENSAYO

: N.T.P. 339.035:2009

REFERENCIA

Diseño

DM-01

DM-02

DM-03

DM-04

DM-05

IDENTIFICACIÓN	Diseño	Fecha de vaciado	٧	Asentamiento	
	fc (kg/cm²)	(Dias)	Diseño (pulg)	Obtenido (pulg)	Obtenido (cm)
CP 210	210	22/10/2022	3" - 4"	4	10.16
CP + 0.20% FMP	210	29/10/2022	3" - 4"	3 4/5	9.65
CP + 0.30% FHP	210	29/10/2022	3" - 4"	3 8/9	9.91
CP + 0.40% FHP	210	29/10/2022	3" - 4"	3 4/5	9.65
CP + 0.50% FHP	210	29/10/2022	3" - 4"	3 8/9	9.91

INFORME DE ENSAYO N° 3895

(Pág. 01 de 01)

: RODAS ALVAREZ CLAUDIA FIORELLA Tesista "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto

: UNIVERSIDAD SEÑOR DE SIPÁN. Atención

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Lugar

: Chiclayo, 27 de octubre del 2022. Fecha de emisión : HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del concreto de cemento

Portland.

ENSAYO

: N.T.P. 339.035:2009 REFERENCIA

Disaño	NOISVOIELLEGI	Diseño	Fecha de vaciado	A	Asentamiento	
		f'c (kg/cm²)	(Días)	Diseño (pulg)	Obtenido (pulg)	Obtenido (cm)
DM-01	CP 210	280	27/10/2022	3"-4"	4	10.32
DM-02	CP + 0.20% FHP	280	31/10/2022	3" - 4"	3 7/8	9.84
DM-03	CP + 0.30% FHP	280	31/10/2022	3" - 4"	3 1/2	8.89
DM-04	CP + 0.40% FHP	280	31/10/2022	3* - 4*	3 3/8	8.57
DM-05	CP + 0.50% FHP	280	31/10/2022	3" - 4"	3 4/9	8.73

INFORME DE ENSAYO N° 3895.

(Pág. 01 de 01)

: RODAS ALVAREZ CLAUDIA FIORELLA

Tesistas

PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA Proyecto

: UNIVERSIDAD SEÑOR DE SIPÁN. Atención : Dist. Chiclayo. Prov. Chiclayo. Depart. Lambayeque

: Chiclayo, 27 de octubre del 2022. Fecha de emisión

Ensayo

Lugar

: CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del concreto. 2º Edición

N.T.P. 339.046 : 2008 (revisada el 2018) Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Masa	Masa del	Volumen	DENSIDAD
No		fe	(Dias)	(kg)		Recipiente	(Kg/m²)
10	CP 210	210	27/10/2022	16.493	2.404	0.0074	1897
02	CP + 0.20% FHP	210	29/10/2022	16.276	2.404	0.0074	1868
80	CP + 0.30% FHP	210	29/10/2022	16.075	2.404	0.0074	1841
04	CP + 0.40% FHP	210	29/10/2022	15.972	2.404	0.0074	1827
90	CP + 0.50% FHP	210	29/10/2022	15.673	2.404	0.0074	1787

OBSERVACIONES:

Muestreo, identificación y ensayo realizado por el solicitante,

INFORME DE ENSAYO N° 3895

(Pág. 01 de 01)

: RODAS ALVAREZ CLAUDIA FIORELLA Tesistas "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto

UNIVERSIDAD SEÑOR DE SIPÁN.

Atención

Lugar

Dist. Chiclayo. Prov. Chiclayo. Depart. Lambayeque

: Chiclayo, 27 de mayo del 2022. Fecha de emisión

CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método Ensayo

gravimétrico) del concreto. 2ª Edición

N.T.P. 339.046 : 2008 (revisada el 2018) Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Masa	Masa del recipiente	Volumen del	DENSIDAD
No		fc	(Dias)	(kg)	(kg)	Recipiente	(ngm)
10	CP 280	280	27/10/2022	17.383	2.404	0.0074	2021
02	CP + 0.20% FHP	280	31/10/2022	16.831	2.404	0.0074	1947
80	GP + 0.30% FHP	280	31/10/2022	16.996	2.404	0.0074	1969
104	CP + 0.40% FHP	280	31/10/2022	16.528	2.404	0.0074	1906
05	GP + 0.50% FHP	280	31/10/2022	16.105	2.404	0.0074	1849

OBSERVACIONES:

Muestreo, identificación y ensayo realizado por el solicitante,

INFORME DE ENSAYO Nº 3895

(Pág. 01 de 01)

: RODAS ALVAREZ CLAUDIA FIORELLA

Tesistas

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE Proyecto

UNIVERSIDAD SEÑOR DE SIPÁN. Atención

Lugar

Dist. Chiclayo. Prov. Chiclayo, Reg. Lambayeque Fecha de emisión

Chiclayo, 27 de octubre del 2022. HORMIGON (CONCRETO). Método por presión para la determinación del contenido de aire en ENSAYO

mezclas frescas.

REFERENCIA

. NTP 339.080 . Medidor "B" METODO

Diseño	IDENTIFICACIÓN	Diseño Fc (kg/cm²)	Fecha de vaciado (Dias)	Contenido	Contenido de aire (%)	
DM-01	CP 210	210	27/10/2022	Medido "B"	1,00	e
DM-02	dH3 %02:0 + dD	210	29/10/2022	_g_oppew	971	23 22
DM-03	dH4 %08:0 + dO	210	29/10/2022	"B" obbeM	1.35	
DM-04	CP + 0,40% FHP	210	29/10/2022	"B" obbeM	1.55	
50-MG	dH4 %05'0 + dO	210	29/10/2022	Meddo 'B'	09'1	

INFORME DE ENSAYO N° 3895

(Pág. 01 de 01)

: RODAS ALVAREZ CLAUDIA FIORELLA

Tesistas

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE Proyecto

: UNIVERSIDAD SEÑOR DE SIPÁN.

Atención

Lugar

: Dist. Chiclayo. Prov. Chiclayo, Reg. Lambayeque

: Chiclayo, 27 de octubre del 2022. Fecha de emisión

HORMIGON (CONCRETO). Método por presión para la determinación del contenido de aire en

mezclas frescas.

: NTP 339.080 REFERENCIA

ENSAYO

: Medidor "B" METODO

Diseño	IDENTIFICACIÓN	Diseño Fc (kg/cm²)	Fecha de vaciado (Dias)	Contenido	Contenido de aire (%)
DM-01	CP 280	280	27/10/2022	Medido "B"	130
DM-02	CP + 0.20% FHP	280	31/10/2022	"B" (Medido "B"	1.45
DM-03	CP + 0.30% FHP	280	31/10/2022	"B" opppw	1.60
DM-04	CP + 0.40% FHP	280	31/10/2022	"B" (Medido "B"	1.50
DM-05	CP + 0.50% FHP	280	31/10/2022	Medido "B"	1.70

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: servicios@lemswycseirl.com

Tesistas : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO

ADICIONANDO FIBRA DE HOJA DE PIÑA"

Atención : UNIVERSIDAD SEÑOR DE SIPÁN.

Lugar : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de emisión : Chiclayo, 27 de octubre del 2022.

ENSAYO : HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar

la temperatura de mezcla de hormigón.

REFERENCIA: N.T.P. 339.184

Diseño	IDENTIFICACIÓN	Diseño f´c (kg/cm²)	Fecha de vaciado (Días)	Temperatura (C°)
DM-01	CP 210	210	27/10/2022	28.0
DM-02	CP + 0.20% FHP	210	29/10/2022	25.0
DM-03	CP + 0.30% FHP	210	29/10/2022	27.0
DM-04	CP + 0.40% FHP	210	29/10/2022	25.0
DM-05	CP + 0.50% FHP	210	29/10/2022	26.5

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

Prolongación Bolognesi Km. 3.5 Pimentel – Lambayeque R.U.C. 20480781334

Email: servicios@lemswycseirl.com

Tesistas : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO

ADICIONANDO FIBRA DE HOJA DE PIÑA"

Atención : UNIVERSIDAD SEÑOR DE SIPÁN.

Lugar : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de emisión : Chiclayo, 27 de octubre del 2022.

ENSAYO : HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar

la temperatura de mezcla de hormigón.

REFERENCIA: N.T.P. 339.184

Diseño	IDENTIFICACIÓN	Diseño f'c (kg/cm²)	Fecha de vaciado (Días)	Temperatura (C°)
DM-01	CP 280	210	27/10/2022	27.0
DM-02	CP + 0.20% FHP	210	31/10/2022	28.5
DM-03	CP + 0.30% FHP	210	31/10/2022	27.5
DM-04	CP + 0.40% FHP	210	31/10/2022	25.0
DM-05	CP + 0.50% FHP	210	31/10/2022	26.5

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

ANEXO X: Ensayos de Resistencia a la Compresión – Elección de Diseño de prueba de Concreto Patrón.

R.U.C. 20480781334 Email: servicios@lemswyceirl.com Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque

> RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque Ubicación 15 de octubre del 2022 Fecha de vaciado

CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras cilíndricas.

N.T.P. 339.034:2015 Referencia

Ensayo

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Edad Carga Diámetro	Área	fc	Γc	f'e promedio
N°		f'c	(Dias)	(Dias)	(Dias)	(Kgf)	(Cm)	(cm²)	(Kg/Cm²)	(%)	(%)
01	Testigo 1 - CP	210	05/10/2022 12/10/2022	12/10/2022	7	28918	15.09	179	162	77	92
02	Testigo 2 - CP	210	210 05/10/2022 12/10/2022 7 30028	12/10/2022	7	30028	15.36	185	162	22	11.08
03	Testigo 3 - CP	210	210 05/10/2022 12/10/2022	12/10/2022	7	7 35189	15.24	182	193	92	25.50
04	Testigo 4 - CP	210	05/10/2022 12/10/2022	12/10/2022	7	36987	15.16	181	205	98	24.72
90	Testigo 5 - CP	210	05/10/2022 12/10/2022	12/10/2022	7	44720	15.43	187	239	114	27211
90	Testigo 6 - CP	210	210 05/10/2022 12/10/2022	12/10/2022	7	47081	15.33	185	255	121	/8/11

Chiclayo – Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com Prolongación Bolognesi Km. 3.5

> RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque 18 de octubre del 2022 Fecha de vaciado

Ubicación

CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras cilíndricas.

N.T.P. 339.034:2015

Referencia

Ensayo

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Carga Diámetro	Área	fc	re	re promedio
N°		f'c	(Dias)	(Dias)	(Dias)	(Kgf)	(Cm)	(cm²)	(Kg/Cm²)	(%)	(%)
01	Testigo 1 - CP	280	18/10/2022 25/10/2022	25/10/2022	7	40021	15.32	184	217	78	1
02	Testigo 2 - CP	280	18/10/2022 25/10/2022	25/10/2022	7	38660	15.11	179	216	11	17.11
03	Testigo 3 - CP	280	18/10/2022 25/10/2022	25/10/2022	7	41644	15.39	186	224	80	01 11
04	Testigo 4 - CP	280	18/10/2022 25/10/2022	25/10/2022	7	42134	15.22	182	232	83	66.18
05	Testigo 5 - CP	280	18/10/2022 25/10/2022	25/10/2022	7	47061	15.57	190	247	88	00 00
90	Testigo 6 - CP	280	18/10/2022 25/10/2022	25/10/2022	7	49261	15.63	192	257	92	05:50

OBSERVACIONES:

Muestreo, ensayo e identificación realizados por el solicitante.

NEXO XI: Ensayos de Resistencia a la Compresión – Concreto Patrón.

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque Ubicación

Fecha de vaciado : 27 de octubre del 2022

CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras cilíndricas.

N.T.P. 339.034:2015

Muestra Nº	IDENTIFICACIÓN	Diseño f'c	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	Carga (Kgf)	Diámetro (Cm)	Área (cm²)	f'c (Kg/Cm²)	f'c (%)	f'e promedio (kg/cm²)
01	Testigo 1 - CP	210	27/10/2022	03/11/2022	7	29308	15.20	181	162	77	
02	Testigo 2 - CP	210	27/10/2022	03/11/2022	7	27671	15.25	183	151	72	155.44
03	Testigo 3 - CP	210	27/10/2022	03/11/2022	7	28299	15.33	185	153	73	
04	Testigo 4 - CP	210	27/10/2022	10/11/2022	14	32052	15.34	185	174	83	
05	Testigo 5 - CP	210	27/10/2022	10/11/2022	14	30461	15.45	187	162	77	172.05
06	Testigo 6 - CP	210	27/10/2022	10/11/2022	14	33080	15.29	184	180	86	
07	Testigo 7 - CP	210	27/10/2022	24/11/2022	28	39396	15.27	183	215	102	
08	Testigo 8 - CP	210	27/10/2022	24/11/2022	28	37859	15.19	181	209	99	
09	Testigo 9 - CP	210	27/10/2022	24/11/2022	28	40577	15.38	186	218	104	212.23
10	Testigo 10 - CP	210	27/10/2022	24/11/2022	28	37563	15.22	182	206	98	1

RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque : 27 de octubre del 2022 Ubicación

Fecha de vaciado

: CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la

compresión del concreto en muestras cilíndricas. N.T.P. 339.034:2015

Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	f'c	Гe	Гс promedio (kg/cm²)
Nº		f′c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)	(%)	
01	Testigo 1 - CP 280	280	27/10/2022	03/11/2022	7	34918	15.47	188	186	66	
02	Testigo 2 - CP 280	280	27/10/2022	03/11/2022	7	38758	15.44	187	207	74	197.76
03	Testigo 3 - CP 280	280	27/10/2022	03/11/2022	7	37001	15.33	184	201	72	
04	Testigo 4 - CP 280	280	27/10/2022	10/11/2022	14	44201	15.35	185	239	85	
05	Testigo 5 - CP 280	280	27/10/2022	10/11/2022	14	44732	15.35	185	242	86	241.69
06	Testigo 6 - CP 280	280	27/10/2022	10/11/2022	14	45114	15.33	184	245	87	
07	Testigo 7 - CP 280	280	27/10/2022	24/11/2022	28	53757	15.45	188	287	102	
80	Testigo 8 - CP 280	280	27/10/2022	24/11/2022	28	54322	15.31	184	295	105	283.55
09	Testigo 9 - CP 280	280	27/10/2022	24/11/2022	28	51886	15.39	186	279	100	263.33
10	Testigo 10 - CP 280	280	27/10/2022	24/11/2022	28	51942	15.55	190	274	98]

OBSERVACIONES:
- Muestreo, ensayo e identificación realizados por el solicitante.

LEMS WSC EIRL

ANEXO XII: Ensayos de Resistencia a la Compresión – CP + 0.2%, 0.3%, 0.4% y 0.5% de FHP.

RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque 29 de Octubre del 2022 Ubicación

Fecha de vaciado

 CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras cilindricas.
 N.T.P. 339.034:2015 Ensayo

Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	fc	Гe	f'c promedio
N°		f'c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)	(%)	(kg/cm²)
01	Testigo 1 - 0.20%	210	29/10/2022	05/11/2022	7	32299	15.20	181	178	85	
02	Testigo 2 - 0.20%	210	29/10/2022	05/11/2022	7	30328	15.20	181	167	80	171.44
03	Testigo 3 - 0.20%	210	29/10/2022	05/11/2022	7	30942	15.26	183	169	81	
04	Testigo 4 - 0.20%	210	29/10/2022	12/11/2022	14	37572	15.30	184	204	97	
05	Testigo 5 - 0.20%	210	29/10/2022	12/11/2022	14	36614	15.24	182	201	96	198.46
06	Testigo 6 - 0.20%	210	29/10/2022	12/11/2022	14	34291	15.15	180	190	91	
07	Testigo 7 - 0.20%	210	29/10/2022	26/11/2022	28	44090	15.27	183	241	115	
08	Testigo 8 - 0.20%	210	29/10/2022	26/11/2022	28	43289	15.41	187	232	111	240.59
09	Testigo 9 - 0.20%	210	29/10/2022	26/11/2022	28	43975	15.32	184	239	114	240.39
10	Testigo 10 - 0.20%	210	29/10/2022	26/11/2022	28	46077	15.29	184	251	119]

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

Proyecto / Obra "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA"

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque : 29 de octubre del 2022 Ubicación

Fecha de vaciado

: CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la

compresión del concreto en muestras cilíndricas. N.T.P. 339.034:2015

Referencia

Muestra Nº	IDENTIFICACIÓN	Diseño f'c	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	Carga (Kgf)	Diámetro (Cm)	Área (cm²)	f'c (Kg/Cm²)	f'c (%)	f'c promedio (kg/cm²)
01	Testigo 1 - 0.30%	210	29/10/2022	05/11/2022	7	28711	15.30	184	156	74	
02	Testigo 2 - 0.30%	210	29/10/2022	05/11/2022	7	29681	15.15	180	165	78	158.02
03	Testigo 3 - 0.30%	210	29/10/2022	05/11/2022	7	27881	15.22	182	153	73	
04	Testigo 4 - 0.30%	210	29/10/2022	12/11/2022	14	33478	15.34	185	181	86	
05	Testigo 5 - 0.30%	210	29/10/2022	12/11/2022	14	32006	15.33	185	173	83	179.76
06	Testigo 6 - 0.30%	210	29/10/2022	12/11/2022	14	33296	15.15	180	185	88	
07	Testigo 7 - 0.30%	210	29/10/2022	26/11/2022	28	40219	15.44	187	215	102	
08	Testigo 8 - 0.30%	210	29/10/2022	26/11/2022	28	42311	15.26	183	231	110	217.18
09	Testigo 9 - 0.30%	210	29/10/2022	26/11/2022	28	39414	15.24	182	216	103	217.18
10	Testigo 10 - 0.30%	210	29/10/2022	26/11/2022	28	38112	15.33	185	206	98	

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

: Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque : 29 de octubre del 2022 Ubicación

Fecha de vaciado

: CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la

compresión del concreto en muestras cilíndricas.

N.T.P. 339.034:2015

Referencia

Muestra Nº	IDENTIFICACIÓN	Diseño f'c	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	Carga (Kgf)	Diámetro (Cm)	Área (cm²)	f'c (Kg/Cm²)	Гс (%)	f'c promedio (kg/cm²)
01	Testigo 1 - 0.40%	210	29/10/2022	05/11/2022	7	27079	15.40	186	145	69	
02	Testigo 2 - 0.40%	210	29/10/2022	05/11/2022	7	24073	15.30	184	131	62	144.83
03	Testigo 3 - 0.40%	210	29/10/2022	05/11/2022	7	29308	15.36	185	158	75	
04	Testigo 4 - 0.40%	210	29/10/2022	12/11/2022	14	32152	15.33	184	174	83	
05	Testigo 5 - 0.40%	210	29/10/2022	12/11/2022	14	33944	15.25	183	186	88	175.39
06	Testigo 6 - 0.40%	210	29/10/2022	12/11/2022	14	29931	15.15	180	166	79	
07	Testigo 7 - 0.40%	210	29/10/2022	26/11/2022	28	38078	15.24	182	209	99	
08	Testigo 8 - 0.40%	210	29/10/2022	26/11/2022	28	38742	15.22	182	213	101	210.00
09	Testigo 9 - 0.40%	210	29/10/2022	26/11/2022	28	39211	15.09	179	219	104	218.80
10	Testigo 10 - 0.40%	210	29/10/2022	26/11/2022	28	42395	15.18	181	234	112	

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON OLAYA AGUILAR TEC. ENDAYOS DE MATERIALES Y SUELOS

RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de vaciado 29 de diciembre del 2022

 CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras cilíndricas.
 N.T.P. 339.034:2015 Ensayo

Referencia

Muestra Nº	IDENTIFICACIÓN	Diseño f'c	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	Carga (Kgf)	Diámetro (Cm)	Área (cm²)	fc (Kg/Cm²)	f'e (%)	f'c promedio (kg/cm²)
01	Testigo 1 - 0.50%	210	29/10/2022	05/11/2022	7	27895	15.30	184	152	72	
02	Testigo 2 - 0.50%	210	29/10/2022	05/11/2022	7	25909	15.40	186	139	66	146.62
03	Testigo 3 - 0.50%	210	29/10/2022	05/11/2022	7	27473	15.32	184	149	71	
04	Testigo 4 - 0.50%	210	29/10/2022	12/11/2022	14	28481	15.35	185	154	73	
05	Testigo 5 - 0.50%	210	29/10/2022	12/11/2022	14	31904	15.31	184	173	83	164.08
06	Testigo 6 - 0.50%	210	29/10/2022	12/11/2022	14	29727	15.15	180	165	79	
07	Testigo 7 - 0.50%	210	29/10/2022	26/11/2022	28	34611	15.36	185	187	89	
08	Testigo 8 - 0.50%	210	29/10/2022	26/11/2022	28	37213	15.43	187	199	95	100.07
09	Testigo 9 - 0.50%	210	29/10/2022	26/11/2022	28	32888	15.28	183	179	85	186.67
10	Testigo 10 - 0.50%	210	29/10/2022	26/11/2022	28	33422	15.31	184	182	86]

OBSERVACIONES:
- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON OLAYA AGUILAR TEC. ENSAYOS DE MATERIALES Y SUELOS

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Ubicación Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

31 de octubre del 2022 Fecha de vaciado

 CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras cilindricas.
 N.T.P. 339.034:2015 Ensayo

Referencia

Muestra Nº	IDENTIFICACIÓN	Diseño f'c	Fecha de vaciado (Días)	Fecha de ensayo (Dias)	Edad (Días)	Carga (Kgf)	Diámetro (Cm)	Área (cm²)	f'c (Kg/Cm²)	f'c (%)	f'c promedio (kg/cm²)
01	Testigo 1 - 0.2%FHP	280	31/10/2022	,,	7	38176	15.64	192	199	71	
02	Testigo 2 - 0.2%FHP	280	31/10/2022	07/11/2022	7	39586	15.34	185	214	77	205.91
03	Testigo 3 - 0.2%FHP	280	31/10/2022	07/11/2022	7	38665	15.50	189	205	73	1
04	Testigo 4 - 0.2%FHP	280	31/10/2022	14/11/2022	14	48144	15.39	186	259	92	258.36
05	Testigo 5 - 0.2%FHP	280	31/10/2022	14/11/2022	14	47774	15.57	190	251	90	
06	Testigo 6 - 0.2%FHP	280	31/10/2022	14/11/2022	14	50326	15.54	190	265	95	
07	Testigo 7 - 0.2%FHP	280	31/10/2022	28/11/2022	28	59122	15.66	193	307	110	
08	Testigo 8 - 0.2%FHP	280	31/10/2022	28/11/2022	28	50521	15.35	185	273	97	297.01
09	Testigo 9 - 0.2%FHP	280	31/10/2022	28/11/2022	28	56713	15.48	188	302	108	297.01
10	Testigo 10 - 0.2%FHP	280	31/10/2022	28/11/2022	28	57901	15.50	189	307	110	

OBSERVACIONES:

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

Proyecto / Obra "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de vaciado 31 de octubre del 2022

CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras cilíndricas.

N.T.P. 339.034:2015 Ensayo

Referencia

Muestra N°	IDENTIFICACIÓN	Diseño f'c	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	Carga (Kgf)	Diámetro (Cm)	Área (cm²)	f'c (Kg/Cm²)	f'c (%)	f'c promedio (kg/cm²)
01	Testigo 1 - 0.3%FHP	280	31/10/2022	07/11/2022	7	33201	15.52	189	175	63	181.59
02	Testigo 2 - 0.3%FHP	280	31/10/2022	07/11/2022	7	36346	15.66	193	189	67	
03	Testigo 3 - 0.3%FHP	280	31/10/2022	07/11/2022	7	34957	15.70	193	181	65	
04	Testigo 4 - 0.3%FHP	280	31/10/2022	14/11/2022	14	42493	15.21	182	234	84	233.98
05	Testigo 5 - 0.3%FHP	280	31/10/2022	14/11/2022	14	45590	15.23	182	250	89	
06	Testigo 6 - 0.3%FHP	280	31/10/2022	14/11/2022	14	41163	15.51	189	218	78	
07	Testigo 7 - 0.3%FHP	280	31/10/2022	28/11/2022	28	50478	15.48	188	268	96	
08	Testigo 8 - 0.3%FHP	280	31/10/2022	28/11/2022	28	51091	15.42	187	274	98	272.83
09	Testigo 9 - 0.3%FHP	280	31/10/2022	28/11/2022	28	52975	15.43	187	283	101	
10	Testigo 10 - 0.3%FHP	280	31/10/2022	28/11/2022	28	51718	15.73	194	266	95	

OBSERVACIONES:
- Muestreo, ensayo e identificación realizados por el solicitante.

WILSON OLAYA AGUILAR YEC, ENSAYOS DE MATERIALES Y SUELOS

RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque Ubicación

Fecha de vaciado 31 de octubre del 2022

CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la compresión del concreto en muestras cilíndricas.

Referencia N.T.P. 339.034:2015

Muestra Nº	IDENTIFICACIÓN	Diseño f´c	Fecha de vaciado (Días)	Fecha de ensayo (Días)	Edad (Días)	Carga (Kgf)	Diámetro (Cm)	Área (cm²)	f'c (Kg/Cm²)	f с (%)	f'c promedio (kg/cm²)
01	Testigo 1 - 0.4%FHP	280	31/10/2022	07/11/2022	7	35325	15.53	190	186	67	184.39
02	Testigo 2 - 0.4%FHP	280	31/10/2022	07/11/2022	7	33609	15.29	184	183	65	
03	Testigo 3 - 0.4%FHP	280	31/10/2022	07/11/2022	7	34656	15.49	189	184	66	
04	Testigo 4 - 0.4%FHP	280	31/10/2022	14/11/2022	14	44303	15.59	191	232	83	223.11
05	Testigo 5 - 0.4%FHP	280	31/10/2022	14/11/2022	14	41673	15.59	191	218	78	
06	Testigo 6 - 0.4%FHP	280	31/10/2022	14/11/2022	14	40117	15.27	183	219	78	
07	Testigo 7 - 0.4%FHP	280	31/10/2022	28/11/2022	28	51956	15.27	183	284	101	272.61
08	Testigo 8 - 0.4%FHP	280	31/10/2022	28/11/2022	28	49480	15.46	188	263	94	
09	Testigo 9 - 0.4%FHP	280	31/10/2022	28/11/2022	28	52733	15.58	191	276	99	
10	Testigo 10 - 0.4%FHP	280	31/10/2022	28/11/2022	28	50319	15.50	189	267	95	

OBSERVACIONES:
- Muestreo, ensayo e identificación realizados por el solicitante.

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra : "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE

PIÑA"

Ubicación : Dist. Chiclayo. Prov. Pimentel. Depart. Lambayeque

Fecha de vaciado : 31 de octubre del 2022

Ensayo : CONCRETO. Método de ensayo normalizado para la dterminación de la resistencia a la

compresión del concreto en muestras cilíndricas. N.T.P. 339.034:2015

Referencia : N.T.P. 339.034:2015

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	Carga	Diámetro	Área	f'c	f'c	f'c promedio (kg/cm²)
N°		f′c	(Días)	(Días)	(Días)	(Kgf)	(Cm)	(cm²)	(Kg/Cm ²)	(%)	()
01	Testigo 1 - 0.5%FHP	280	31/10/2022	07/11/2022	7	32298	15.47	188	172	61	175.69
02	Testigo 2 - 0.5%FHP	280	31/10/2022	07/11/2022	7	31520	15.45	188	168	60	
03	Testigo 3 - 0.5%FHP	280	31/10/2022	07/11/2022	7	35510	15.54	190	187	67	
04	Testigo 4 - 0.5%FHP	280	31/10/2022	14/11/2022	14	43563	15.23	182	239	85	226.54
05	Testigo 5 - 0.5%FHP	280	31/10/2022	14/11/2022	14	41918	15.54	190	221	79	
06	Testigo 6 - 0.5%FHP	280	31/10/2022	14/11/2022	14	40526	15.34	185	219	78	
07	Testigo 7 - 0.5%FHP	280	31/10/2022	28/11/2022	28	44701	15.23	182	246	88	256.73
08	Testigo 8 - 0.5%FHP	280	31/10/2022	28/11/2022	28	47257	15.33	185	256	91	
09	Testigo 9 - 0.5%FHP	280	31/10/2022	28/11/2022	28	51475	15.36	185	278	99	
10	Testigo 10 - 0.5%FHP	280	31/10/2022	28/11/2022	28	48107	15.73	194	248	88	

OBSERVACIONES:

- Muestreo, ensayo e identificación realizados por el solicitante.

LEMS WSC EIRL
WILSON DIAYA AGUILAR
TEC. ENSAYOS DE MATERIALES Y SUELOS

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

ANEXO XIII: Ensayos de Resistencia a la Tracción –

Concreto Patrón.

LEMS W&C EIRL
RNP Servicios 50608589

Prolongación Bolognesi Km. 3.5 Chidayo – Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Ubicación : Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.

Fecha de vaciado : 27 de octubre 2022

: CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión Ensayo

diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 20102 (revisada el 2017)

									Ī	
Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	carga	d diámetro	l longitud	Т	T promedio
N°		f'c (kg/cm²)	(Días)	(Días)	(Días)	(N)	(mm)	(mm)	(MPa)	(MPa)
10	Testigo 1 - CP 210	210	27/10/2022	03/11/2022	7	47260	100.26	205.2	1.46	
02	Testigo 2 - CP 210	210	27/10/2022	03/11/2022	7	41770	100.18	205.4	1.29	1.292
03	Testigo 3 - CP 210	210	27/10/2022	03/11/2022	7	36820	100.35	208.3	1.12	
04	Testigo 4 - CP 210	210	27/10/2022	10/11/2022	14	51750	100.18	206.1	1.60	
90	Testigo 5 - CP 210	210	27/10/2022	10/11/2022	14	60530	100.30	208.4	1.84	1.602
90	Testigo 6 - CP 210	210	27/10/2022	10/11/2022	14	44140	100.21	205.3	1.37	
20	Testigo 7 - CP 210	210	27/10/2022	24/11/2022	28	51320	100.31	203.4	1.60	
80	Testigo 8 - CP 210	210	27/10/2022	24/11/2022	28	61370	100.26	204.6	1.90	4 769
60	Testigo 9 - CP 210	210	27/10/2022	24/11/2022	28	49430	100.13	201.9	1.56	2
10	Testigo 10 - CP 210	210	27/10/2022	24/11/2022	28	63160	100.27	205.7	1.95	
		İ								

OBSERVACIONES:

Email: servicios@lemswyceirl.com Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334

> RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

: Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque. : 27 de octubre del 2022 Ubicación

Fecha de vaciado

CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión Ensayo

diametral de una probeta cilíndrica.

N.T.P 339.084: 20102 (revisada el 2017) Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	egueo d	d diámetro	l longitud	1	T promedio
°N		f'c (kg/cm²)	(Días)	(Días)	(Días)	(N)	(mm)	(mm)	(MPa)	(MPa)
10	Testigo 1 - CP 280	280	27/10/2022	03/11/2022	4	06629	100.08	202.3	1.82	
02	Testigo 2 - CP 280	280	27/10/2022	03/11/2022	4	61060	100.17	206.6	1.88	1.844
03	Testigo 3 - CP 280	280	27/10/2022	03/11/2022	4	02869	100.31	206.0	1.83	
04	Testigo 4 - CP 280	280	27/10/2022	10/11/2022	14	66340	100.22	205.2	2.05	
90	Testigo 5 - CP 280	280	27/10/2022	10/11/2022	14	71490	100.40	202.4	2.24	2.089
90	Testigo 6 - CP 280	280	27/10/2022	10/11/2022	14	08969	100.12	205.1	1.97	
20	Testigo 7 - CP 280	280	27/10/2022	24/11/2022	28	82360	100.41	206.6	2.53	
80	Testigo 8 - CP 280	280	27/10/2022	24/11/2022	28	76480	100.33	207.4	2.34	0 300
60	Testigo 9 - CP 280	280	27/10/2022	24/11/2022	28	01969	100.35	204.6	2.16	2.302
10	Testigo 10 - CP 280	280	27/10/2022	24/11/2022	82	71090	100.04	207.2	2.18	

OBSERVACIONES:

ANEXO XIV: Ensayos de Resistencia a la Tracción – CP + 0.2%, 0.3%, 0.4% y 0.5% de FHP.

Email: servicios@lemswyceirl.com Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334

> : RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

: Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque. : 29 de octubre del 2022 Ubicación

Fecha de vaciado

CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión Ensayo

diametral de una probeta cilíndrica.

N.T.P 339.084: 20102 (revisada el 2017) Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	P carga	d diámetro	l longitud	T	T promedio
å		f'c (kg/cm²)	(Días)	(Días)	(Días)	(N)	(mm)	(mm)	(MPa)	(MPa)
10	Testigo 1 - 0.2%FHP	210	29/10/2022	05/11/2022	2	42660	101.09	208.6	1.29	
02	Testigo 2 - 0.2%FHP	210	29/10/2022	05/11/2022	2	43870	100.36	203.5	1.37	1.402
03	Testigo 3 - 0.2%FHP	210	29/10/2022	05/11/2022	7	50920	100.44	208.1	1.55	
04	Testigo 4 - 0.2%FHP	210	29/10/2022	12/11/2022	14	58450	100.18	206.4	1.80	
90	Testigo 5 - 0.2%FHP	210	29/10/2022	12/11/2022	14	51140	100.64	202.3	1.60	1.676
90	Testigo 6 - 0.2%FHP	210	29/10/2022	12/11/2022	14	53530	100.23	208.5	1.63	
20	Testigo 7 - 0.2%FHP	210	29/10/2022	26/11/2022	28	59710	100.25	203.6	1.86	
80	Testigo 8 - 0.2%FHP	210	29/10/2022	26/11/2022	28	62160	100.83	207.2	1.89	4 060
60	Testigo 9 - 0.2%FHP	210	29/10/2022	26/11/2022	28	56740	101.06	204.1	1.75	000
10	Testigo 10 - 0.2%FHP	210	29/10/2022	26/11/2022	28	62430	100.14	205.3	1.93	
0000										

OBSERVACIONES:

Muestreo, identificación y ensayo realizado por el eelicitante.

LEMS WAC EIRL

WILSON OLAYA AGUILAR

TIC. ENSANOS DE MARRIADES Y SULLOS

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Ubicación : Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.

Fecha de vaciado : 29 de octubre del 2022

: CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión Ensayo

diametral de una probeta cilindrica.

: N.T.P 339.084: 20102 (revisada el 2017)

T promedio	(MPa)		1.423			1.765			4 063	208:	
_	(MPa)	1.50	1.46	1.30	1.87	1.62	1.81	1.85	2.09	1.92	1.99
Program	(mm)	210.1	206.4	210.2	208.3	210.1	206.4	204.6	203.4	202.8	204.3
d diámetro	(mm)	100.62	100.24	100.46	100.32	100.18	100.27	100.23	100.43	100.39	100.55
Сагда	(N)	49830	47610	43240	61360	53470	58830	59710	67130	61360	64090
Edad	(Días)	7	7	7	14	14	14	28	28	28	28
Fecha de ensayo	(Días)	05/11/2022	05/11/2022	05/11/2022	12/11/2022	12/11/2022	12/11/2022	26/11/2022	26/11/2022	26/11/2022	26/11/2022
Fecha de vaciado	(Días)	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022
Diseño	f'c (kg/cm²)	210	210	210	210	210	210	210	210	210	210
IDENTIFICACIÓN		Testigo 1 - 0.3%FHP	Testigo 2 - 0.3%FHP	Testigo 3 - 0.3%FHP	Testigo 4 - 0.3%FHP	Testigo 5 - 0.3%FHP	Testigo 6 - 0.3%FHP	Testigo 7 - 0.3%FHP	Testigo 8 - 0.3%FHP	Testigo 9 - 0.3%FHP	Testigo 10 - 0.3%FHP
Muestra	ů	10	02	60	0.4	90	90	20	80	60	10

OBSERVACIONES:
- Muestreo, identificación y ensayo realizado por-el solicitante.

Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque

R.U.C. 20480781334 Email: servicios@lemswyceirl.com

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

: "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

: Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque. Ubicación

: 29 de octubre del 2022 Fecha de vaciado

: CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión Ensayo

diametral de una probeta cilíndrica. : N.T.P 339.084: 20102 (revisada el 2017)


Referencia

T promedio	(MPa)		1,495			1.771			•	96.	
Τ	(MPa)	1.48	1.40	1.61	1.66	1.80	1.86	1.96	1.72	1.80	2.12
l I	(mm)	206.3	210.6	203.4	206.1	204.6	206.4	204.2	201.5	204.6	202.7
d diámetro	(mm)	100.48	101.02	100.32	100.11	100.72	100.22	100.43	100.24	100.67	100.46
P	(N)	48240	46630	51530	93850	58290	09809	02120	54560	58220	05629
Edad	(Dias)	4	7	7	14	14	14	28	28	28	28
Fecha de ensayo	(Dias)	05/11/2022	05/11/2022	05/11/2022	12/11/2022	12/11/2022	12/11/2022	26/11/2022	26/11/2022	26/11/2022	26/11/2022
Fecha de vaciado	(Días)	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022	29/10/2022
Diseño	f'c (kg/cm²)	210	210	210	210	210	210	210	210	210	210
IDENTIFICACIÓN		Testigo 1 - 0.4%FHP	Testigo 2 - 0.4%FHP	Testigo 3 - 0.4%FHP	Testigo 4 - 0.4%FHP	Testigo 5 - 0.4%FHP	Testigo 6 - 0.4%FHP	Testigo 7 - 0.4%FHP	Testigo 8 - 0.4%FHP	Testigo 9 - 0.4%FHP	Testigo 10 - 0.4%FHP
Muestra	No	10	02	03	04	90	90	20	80	60	10

OBSERVACIONES:

Email: servicios@lemswyceirl.com Prolongación Bolognesi Km. 3.5 Chiclayo - Lambayeque R.U.C. 20480781334

> RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÂNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque. Ubicación

29 de octubre del 2022 Fecha de vaciado

CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión Ensayo

diametral de una probeta cilíndrica.

N.T.P 339.084: 20102 (revisada el 2017) Referencia

Muestra	NOCACION	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	P	d diámetro	pngguoj I	T	T promedio
°N		fc (kg/cm²)	(Días)	(Días)	(Dias)	(N)	(mm)	(mm)	(MPa)	(MPa)
10	Testigo 1 - 0.4%FHP	210	29/10/2022	05/11/2022	4	47180	100.24	205.2	1.46	
02	Testigo 2 - 0.4%FHP	210	29/10/2022	05/11/2022	4	43970	100.67	206.2	1.35	1.438
03	Testigo 3 - 0.4%FHP	210	29/10/2022	05/11/2022	2	48340	100.16	204.1	1.51	
04	Testigo 4 - 0.4%FHP	210	29/10/2022	12/11/2022	14	56760	100.57	205.6	1.75	
90	Testigo 5 - 0.4%FHP	210	29/10/2022	12/11/2022	14	53210	100.42	208.1	1.64	1.640
90	Testigo 6 - 0.4%FHP	210	29/10/2022	12/11/2022	14	49430	100.37	204.3	1.53	
20	Testigo 7 - 0.4%FHP	210	29/10/2022	26/11/2022	28	63290	100.29	208.4	1.93	
80	Testigo 8 - 0.4%FHP	210	29/10/2022	26/11/2022	28	56080	100.41	204.6	1.74	908
60	Testigo 9 - 0.4%FHP	210	29/10/2022	26/11/2022	28	67390	100.37	203.5	2.10	060
10	Testigo 10 - 0.4%FHP	210	29/10/2022	26/11/2022	28	59480	100.08	208.3	1.82	

OBSERVACIONES:

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÂNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Ubicación : Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.

Fecha de vaciado : 31 de octubre del 2022

CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión Ensayo

diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 20102 (revisada el 2017)

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	P carga	diámetro	l longitud	Т	T promedio
°N		f'c (kg/cm²)	(Dias)	(Dias)	(Días)	(N)	(mm)	(mm)	(MPa)	(MPa)
10	Testigo 1 - 0.2%FHP	280	31/10/2022	07/11/2022	4	67250	100.34	203.2	2.10	
70	Testigo 2 - 0.2%FHP	280	31/10/2022	07/11/2022	7	59910	100.16	203.4	1.87	1.951
80	Testigo 3 - 0.2%FHP	280	31/10/2022	07/11/2022	7	61230	100.13	206.8	1.88	
PO	Testigo 4 - 0.2%FHP	280	31/10/2022	14/11/2022	14	82060	100.18	204.9	2.54	
90	Testigo 5 - 0.2%FHP	280	31/10/2022	14/11/2022	14	65790	100.05	204.0	2.05	2.294
90	Testigo 6 - 0.2%FHP	280	31/10/2022	14/11/2022	14	73260	100.19	203.9	2.28	
20	Testigo 7 - 0.2%FHP	280	31/10/2022	28/11/2022	28	81380	100.42	207.5	2.49	
80	Testigo 8 - 0.2%FHP	280	31/10/2022	28/11/2022	28	76560	100.24	206.1	2.36	0.450
60	Testigo 9 - 0.2%FHP	280	31/10/2022	28/11/2022	28	75290	100.28	206.8	2.31	204.7
10	Testigo 10 - 0.2%FHP	280	31/10/2022	28/11/2022	28	84470	100.33	202.2	2.65	
CLCCC	COLUMN TO STATE OF THE STATE OF									

OBSERVACIONES:

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334

Email: servicios@lemswyceirl.com

: RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

· "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

: Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque. Ubicación

31 de octubre del 2022 Fecha de vaciado

CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión Ensayo

diametral de una probeta cilíndrica. : N.T.P 339.084: 20102 (revisada el 2017) Referencia

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	egueo d	d diámetro	Prajbuoj I	T	T promedio
ů		f'c (kg/cm²)	(Días)	(Días)	(Días)	(N)	(mm)	(mm)	(MPa)	(MPa)
10	Testigo 1 - 0.3%FHP	280	31/10/2022	07/11/2022		64710	100.03	205.1	2.01	
02	Testigo 2 - 0.3%FHP	280	31/10/2022	07/11/2022		62340	100.28	205.7	1.92	2.036
03	Testigo 3 - 0.3%FHP	280	31/10/2022	07/11/2022	4	70310	100.17	205.3	2.18	
04	Testigo 4 - 0.3%FHP	280	31/10/2022	14/11/2022	14	06969	100.27	207.6	2.13	
90	Testigo 5 - 0.3%FHP	280	31/10/2022	14/11/2022	14	82260	100.35	202.2	2.58	2.352
90	Testigo 6 - 0.3%FHP	280	31/10/2022	14/11/2022	14	76150	100.14	206.2	2.35	
20	Testigo 7 - 0.3%FHP	280	31/10/2022	28/11/2022	28	82670	100.19	203.8	2.58	
80	Testigo 8 - 0.3%FHP	280	31/10/2022	28/11/2022	28	02962	100.29	202.6	2.50	2 504
60	Testigo 9 - 0.3%FHP	280	31/10/2022	28/11/2022	28	87450	100.35	203.9	2.72	100.7
10	Testigo 10 - 0.3%FHP	280	31/10/2022	28/11/2022	28	84510	100.38	207.6	2.58	

OBSERVACIONES:
- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA

· "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Ubicación : Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.

Fecha de vaciado : 31 de octubre del 2022

: CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión Ensayo

diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 20102 (revisada el 2017)

Muestra	IDENTIFICACIÓN	Diseño	Fecha de vaciado	Fecha de ensayo	Edad	P carga	d diámetro	l longitud	T	T promedio
°N		f'c (kg/cm²)	(Días)	(Días)	(Días)	(N)	(mm)	(mm)	(MPa)	(MPa)
10	Testigo 1 - 0.4%FHP	280	31/10/2022	07/11/2022	7	68220	100.06	207.4	2.09	
02	Testigo 2 - 0.4%FHP	280	31/10/2022	07/11/2022	7	69210	100.16	206.9	2.13	2.128
03	Testigo 3 - 0.4%FHP	280	31/10/2022	07/11/2022	7	70580	100.26	207.1	2.16	
04	Testigo 4 - 0.4%FHP	280	31/10/2022	14/11/2022	14	77370	100.41	202.6	2.42	
90	Testigo 5 - 0.4%FHP	280	31/10/2022	14/11/2022	14	68790	100.10	202.6	2.16	2.411
90	Testigo 6 - 0.4%FHP	280	31/10/2022	14/11/2022	14	84370	100.04	202.5	2.65	
20	Testigo 7 - 0.4%FHP	280	31/10/2022	28/11/2022	28	89330	100.31	202.3	2.80	
80	Testigo 8 - 0.4%FHP	280	31/10/2022	28/11/2022	28	83720	100.39	208.0	2.55	2 674
60	Testigo 9 - 0.4%FHP	280	31/10/2022	28/11/2022	28	88260	100.15	206.3	2.72	70.7
10	Testigo 10 - 0.4%FHP	280	31/10/2022	28/11/2022	28	84920	100.08	207.1	2.61	
0000		İ								

OBSERVACIONES:

LEMS W&C EIRL
RNP Servicios 50608589

Prolongación Bolognesi Km. 3.5 Chiclayo – Lambayeque R.U.C. 20480781334 Email: servicios@lemswyceirl.com

Solicitante : RODAS ALVAREZ CLAUDIA FIORELLA Proyecto / Obra : "BOODIEDADE e cierza e valezáanizas

"a "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

Ubicación : Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.

Fecha de vaciado : 31 de octubre del 2022

: CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión Ensayo

diametral de una probeta cilíndrica.

Referencia : N.T.P 339.084: 20102 (revisada el 2017)

T promedio	(MPa)		1.971			2.236			2 677	7.07	
Ţ	(MPa)	2.12	1.82	1.97	2.13	2.25	2.33	2.52	2.39	2.47	2.94
l longitud	(mm)	205.2	207.3	203.2	207.0	207.9	205.5	205.5	205.6	206.7	205.5
d diámetro	(mm)	100.30	100.33	100.05	100.29	100.03	100.38	100.34	100.15	100.20	100.21
Р сагда	(N)	68460	59430	63070	09569	73380	75430	81530	77220	80290	94930
Edad	(Días)	4	7	7	14	14	14	28	28	28	28
Fecha de ensayo	(Días)	07/11/2022	07/11/2022	07/11/2022	14/11/2022	14/11/2022	14/11/2022	28/11/2022	28/11/2022	28/11/2022	28/11/2022
Fecha de vaciado	(Días)	31/10/2022	31/10/2022	31/10/2022	31/10/2022	31/10/2022	31/10/2022	31/10/2022	31/10/2022	31/10/2022	31/10/2022
Diseño	f'c (kg/cm²)	280	280	280	280	280	280	280	280	280	280
IDENTIFICACIÓN		Testigo 1 - 0.5%FHP	Testigo 2 - 0.5%FHP	Testigo 3 - 0.5%FHP	Testigo 4 - 0.5%FHP	Testigo 5 - 0.5%FHP	Testigo 6 - 0.5%FHP	Testigo 7 - 0.5%FHP	Testigo 8 - 0.5%FHP	Testigo 9 - 0.5%FHP	Testigo 10 - 0.5%FHP
Muestra	°	10	02	60	04	90	90	20	80	60	10

OBSERVACIONES:

ANEXO XV: Ensayos de Resistencia a la Flexión –

Concreto Patrón.

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE Proyecto / Obra

HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque. : 29 de octubre del 2022 Ubicación

Fecha de vaciado

Ensayo : CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en

vigas simplemente apoyadas con cargas a los tercios del tramo.

: N.T.P. 339.078:2012 Referencia

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	M,	M,
N°		(Dias)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Mpa)
01	Testigo 1 - CP 210	29/10/2022	05/11/2022	7	6840	421	102	103	0	2.69	
02	Testigo 2 - CP 210	29/10/2022	05/11/2022	7	7390	418	101	101	0	2.99	2.92
03	Testigo 3 - CP 210	29/10/2022	05/11/2022	7	7610	434	101	103	0	3.09	
04	Testigo 4 - CP 210	29/10/2022	12/11/2022	14	10200	433	102	103	0	4.08	
05	Testigo 5 - CP 210	29/10/2022	12/11/2022	14	12980	417	101	103	0	5.03	4.55
06	Testigo 6 - CP 210	29/10/2022	12/11/2022	14	11710	408	101	102	0	4.53	
07	Testigo 7 - CP 210	29/10/2022	26/11/2022	28	15320	419	103	105	0	5.65	
08	Testigo 8 - CP 210	29/10/2022	26/11/2022	28	15960	408	103	104	0	5.90	5.66
09	Testigo 9 - CP 210	29/10/2022	26/11/2022	28	14670	433	106	103	0	5.68	3.00
10	Testigo 10 - CP 210	29/10/2022	26/11/2022	28	15040	421	103	106	0	5.43	

OBSERVACIONES:
- Muestreo, identificación y ensayo realizado por el solicitante.

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

: Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque. : 27 de octubre del 2022 Ubicación

CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.

: N.T.P. 339.078:2012 Referencia

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	M,	M,
N°		(Días)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Mpa)
01	Testigo 1 - CP 280	27/10/2022	03/11/2022	7	9730	414.00	101	100	0	3.99	
02	Testigo 2 - CP 280	27/10/2022	03/11/2022	7	9260	419.00	101	100	0	3.83	4.03
03	Testigo 3 - CP 280	27/10/2022	03/11/2022	7	10320	425.00	101	101	0	4.26	
04	Testigo 4 - CP 280	27/10/2022	10/11/2022	14	11430	412.00	101	101	0	4.60	
05	Testigo 5 - CP 280	27/10/2022	10/11/2022	14	14880	415.00	100	101	0	6.00	5.51
06	Testigo 6 - CP 280	27/10/2022	10/11/2022	14	14870	405.00	101	101	0	5.91	
07	Testigo 7 - CP 280	27/10/2022	24/11/2022	28	15880	405.00	101	101	0	6.23	
08	Testigo 8 - CP 280	27/10/2022	24/11/2022	28	16250	421.00	101	101	0	6.68	6.35
09	Testigo 9 - CP 280	27/10/2022	24/11/2022	28	15900	411.00	100	100	0	6.49	0.33
10	Testigo 10 - CP 280	27/10/2022	24/11/2022	28	14530	425.00	101	101	0	5.98	

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

ANEXO XVI: Ensayos de Resistencia a la Flexión – CP + 0.2%, 0.3%, 0.4% y 0.5% de FHP.

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.

Fecha de vaciado 29 de octubre del 2022

CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.

: N.T.P. 339.078:2012 Referencia

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	M,	M,
N°		(Días)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Mpa)
01	Testigo 1 - 0.20%FHP	29/10/2022	05/11/2022	7	7660	427	101	103	0	3.06	
02	Testigo 2 - 0.20%FHP	29/10/2022	05/11/2022	7	6970	417	102	103	0	2.72	3.04
03	Testigo 3 - 0.20%FHP	29/10/2022	05/11/2022	7	8750	409	100	103	0	3.33	
04	Testigo 4 - 0.20%FHP	29/10/2022	12/11/2022	14	11670	422	103	104	0	4.43	
05	Testigo 5 - 0.20%FHP	29/10/2022	12/11/2022	14	11480	431	102	102	0	4.61	4.65
06	Testigo 6 - 0.20%FHP	29/10/2022	12/11/2022	14	12790	413	101	103	0	4.92	
07	Testigo 7 - 0.20%FHP	29/10/2022	26/11/2022	28	14490	429	102	103	0	5.74	
08	Testigo 8 - 0.20%FHP	29/10/2022	26/11/2022	28	15210	416	105	107	0	5.29	5.68
09	Testigo 9 - 0.20%FHP	29/10/2022	26/11/2022	28	14830	412	102	102	0	5.74	5.00
10	Testigo 10 - 0.20%FHP	29/10/2022	26/11/2022	28	15340	422	104	102	0	5.96	

OBSERVACIONES:
- Muestreo, identificación y ensayo realizado por el solicitante.

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

 Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.
 29 de octubre del 2022 Ubicación

Fecha de vaciado

 CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
 N.T.P. 339.078:2012 Ensayo

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	а	M,	M,
N°		(Días)	(Días)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Mpa)
01	Testigo 1 - 0.30%FHP	29/10/2022	05/11/2022	7	9560	422	104	100	0	3.87	
02	Testigo 2 - 0.30%FHP	29/10/2022	05/11/2022	7	8630	424	100	101	0	3.57	3.46
03	Testigo 3 - 0.30%FHP	29/10/2022	05/11/2022	7	7900	406	101	104	0	2.94	
04	Testigo 4 - 0.30%FHP	29/10/2022	12/11/2022	14	12430	406	104	101	0	4.75	
05	Testigo 5 - 0.30%FHP	29/10/2022	12/11/2022	14	11380	420	101	103	0	4.53	4.87
06	Testigo 6 - 0.30%FHP	29/10/2022	12/11/2022	14	13240	413	102	100	0	5.34	
07	Testigo 7 - 0.30%FHP	29/10/2022	26/11/2022	28	16120	402	103	105	0	5.71	
08	Testigo 8 - 0.30%FHP	29/10/2022	26/11/2022	28	15670	414	102	104	0	5.84	5.83
09	Testigo 9 - 0.30%FHP	29/10/2022	26/11/2022	28	15480	422	101	105	0	5.79	5.03
10	Testigo 10 - 0.30%FHP	29/10/2022	26/11/2022	28	16340	421	105	104	0	5.99	

OBSERVACIONES:
- Muestreo, identificación y ensayo realizado por el solicitante.

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

: Dist. Chiclayo, Prov. Pin : 29 de octubre del 2022 Ubicación Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.

Fecha de vaciado

CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
 N.T.P. 339.078:2012

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	M,	M,
N°		(Días)	(Días)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Mpa)
01	Testigo 1 - 0.40%FHP	29/10/2022	05/11/2022	7	9630	411	103	102	0	3.70	
02	Testigo 2 - 0.40%FHP	29/10/2022	05/11/2022	7	9470	428	103	104	0	3.65	3.66
03	Testigo 3 - 0.40%FHP	29/10/2022	05/11/2022	7	9200	428	103	103	0	3.62	
04	Testigo 4 - 0.40%FHP	29/10/2022	12/11/2022	14	11970	427	103	104	0	4.60	
05	Testigo 5 - 0.40%FHP	29/10/2022	12/11/2022	14	12940	421	101	102	0	5.18	5.03
06	Testigo 6 - 0.40%FHP	29/10/2022	12/11/2022	14	13590	420	102	103	0	5.32	
07	Testigo 7 - 0.40%FHP	29/10/2022	26/11/2022	28	16090	417	106	106	0	5.70	
80	Testigo 8 - 0.40%FHP	29/10/2022	26/11/2022	28	16950	418	101	101	0	6.82	6.08
09	Testigo 9 - 0.40%FHP	29/10/2022	26/11/2022	28	15480	428	102	107	0	5.68	0.00
10	Testigo 10 - 0.40%FHP	29/10/2022	26/11/2022	28	15310	416	101	101	0	6.11	

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

: Dist. Chiclayo, Prov. Pir : 29 de octubre del 2022 Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque. Ubicación

Fecha de vaciado

 CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
 N.T.P. 339.078:2012 Ensayo

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	M,	М,
N°		(Dias)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Mpa)
01	Testigo 1 - 0.50%FHP	29/10/2022	05/11/2022	7	7640	415	103	102	0	2.96	
02	Testigo 2 - 0.50%FHP	29/10/2022	05/11/2022	7	8190	404	103	103	0	3.03	3.07
03	Testigo 3 - 0.50%FHP	29/10/2022	05/11/2022	7	7820	429	101	102	0	3.22	
04	Testigo 4 - 0.50%FHP	29/10/2022	12/11/2022	14	12180	406	100	103	0	4.62	
05	Testigo 5 - 0.50%FHP	29/10/2022	12/11/2022	14	10410	409	102	104	0	3.90	4.71
06	Testigo 6 - 0.50%FHP	29/10/2022	12/11/2022	14	13920	417	103	100	0	5.60	
07	Testigo 7 - 0.50%FHP	29/10/2022	26/11/2022	28	15180	427	102	106	0	5.68	
08	Testigo 8 - 0.50%FHP	29/10/2022	26/11/2022	28	15030	408	104	105	0	5.35	5.74
09	Testigo 9 - 0.50%FHP	29/10/2022	26/11/2022	28	16470	413	105	104	0	6.03	5.74
10	Testigo 10 - 0.50%FHP	29/10/2022	26/11/2022	28	14990	408	102	101	0	5.89	

OBSERVACIONES:

- Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.

31 de octubre del 2022

CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo. Ensayo

Referencia N.T.P. 339.078:2012

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	M,	M,
N°		(Días)	(Días)	(Días)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Mpa)
01	Testigo 1 - 0.20%FHP	31/10/2022	07/11/2022	7	9580	401.00	101	100	0	3.78	
02	Testigo 2 - 0.20%FHP	31/10/2022	07/11/2022	7	10420	421.00	100	101	0	4.31	4.06
03	Testigo 3 - 0.20%FHP	31/10/2022	07/11/2022	7	9910	422.00	100	101	0	4.08	
04	Testigo 4 - 0.20%FHP	31/10/2022	14/11/2022	14	13210	421.00	100	100	0	5.49	
05	Testigo 5 - 0.20%FHP	31/10/2022	14/11/2022	14	13770	417.00	100	101	0	5.58	5.53
06	Testigo 6 - 0.20%FHP	31/10/2022	14/11/2022	14	13840	406.00	100	101	0	5.52	
07	Testigo 7 - 0.20%FHP	31/10/2022	28/11/2022	28	17300	410.00	101	100	0	6.95	
08	Testigo 8 - 0.20%FHP	31/10/2022	28/11/2022	28	15570	425.00	100	101	0	6.48	6.77
09	Testigo 9 - 0.20%FHP	31/10/2022	28/11/2022	28	15210	416.00	100	101	0	6.24	0.77
10	Testigo 10 - 0.20%FHP	31/10/2022	28/11/2022	28	17890	424.00	101	101	0	7.38	

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

Muestreo, identificación y ensayo realizado por el solicitante.

Solicitante RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto / Obra "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE

Ubicación Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.

: 31 de octubre del 2022

CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
 N.T.P. 339.078:2012

Referencia

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	М,	M,
N°		(Días)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Mpa)
01	Testigo 1 - 0.20%FHP	31/10/2022	07/11/2022	7	10120	407.00	100	100	0	4.10	
02	Testigo 2 - 0.20%FHP	31/10/2022	07/11/2022	7	10370	421.00	101	101	0	4.25	4.21
03	Testigo 3 - 0.20%FHP	31/10/2022	07/11/2022	7	10830	402.00	100	101	0	4.28	
04	Testigo 4 - 0.20%FHP	31/10/2022	14/11/2022	14	14330	406.00	100	101	0	5.67	
05	Testigo 5 - 0.20%FHP	31/10/2022	14/11/2022	14	15470	412.00	100	101	0	6.20	5.89
06	Testigo 6 - 0.20%FHP	31/10/2022	14/11/2022	14	14230	411.00	101	100	0	5.79	
07	Testigo 7 - 0.20%FHP	31/10/2022	28/11/2022	28	18440	401.00	101	100	0	7.28	
08	Testigo 8 - 0.20%FHP	31/10/2022	28/11/2022	28	18350	419.00	101	101	0	7.47	7.03
09	Testigo 9 - 0.20%FHP	31/10/2022	28/11/2022	28	16770	404.00	100	101	0	6.70	7.03
10	Testigo 10 - 0.20%FHP	31/10/2022	28/11/2022	28	16660	410.00	100	101	0	6.68	

LEMS WSC EIRL
WILSON OLAYA AGUILAR
TEC. ENSKYOS DE MATERIALES Y SUELOS

OBSERVACIONES:
- Muestreo, identificación y ensayo realizado por el solicitante.

RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

: Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque. : 31 de octubre del 2022 Ubicación

Fecha de vaciado

 CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
 N.T.P. 339.078:2012 Ensayo

Referencia

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	M,	M,
N°		(Días)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Mpa)
01	Testigo 1 - 0.20%FHP	31/10/2022	07/11/2022	7	12940	413.00	101	100	0	5.28	
02	Testigo 2 - 0.20%FHP	31/10/2022	07/11/2022	7	11750	420.00	101	101	0	4.84	4.88
03	Testigo 3 - 0.20%FHP	31/10/2022	07/11/2022	7	11430	403.00	101	101	0	4.51	
04	Testigo 4 - 0.20%FHP	31/10/2022	14/11/2022	14	14860	421.00	101	101	0	6.08	
05	Testigo 5 - 0.20%FHP	31/10/2022	14/11/2022	14	15350	424.00	100	101	0	6.37	6.15
06	Testigo 6 - 0.20%FHP	31/10/2022	14/11/2022	14	15140	408.00	101	101	0	6.02	
07	Testigo 7 - 0.20%FHP	31/10/2022	28/11/2022	28	17630	405.00	101	100	0	7.08	
08	Testigo 8 - 0.20%FHP	31/10/2022	28/11/2022	28	17910	417.00	101	100	0	7.35	7.18
09	Testigo 9 - 0.20%FHP	31/10/2022	28/11/2022	28	18760	407.00	101	101	0	7.48	7.10
10	Testigo 10 - 0.20%FHP	31/10/2022	28/11/2022	28	17230	402.00	101	100	0	6.81	

WILSON DLAYA AGUILAR
TEC. ENSONO DE MATERIALES Y SUELOS

OBSERVACIONES:
- Muestreo, identificación y ensayo realizado por el solicitante.

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

RODAS ALVAREZ CLAUDIA FIORELLA Solicitante

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA" Proyecto / Obra

: Dist. Chiclayo, Prov. Pir : 31 de octubre del 2022 Dist. Chiclayo, Prov. Pimentel, Depart. Lambayeque.

Fecha de vaciado

CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo.
 N.T.P. 339.078:2012

Muestra	IDENTIFICACIÓN	Fecha de vaciado	Fecha de ensayo	Edad	Р	L	b	h	a	М,	M,
N°		(Dias)	(Dias)	(Dias)	(N)	(mm)	(mm)	(mm)	(mm)	(Mpa)	(Mpa)
01	Testigo 1 - 0.20%FHP	31/10/2022	07/11/2022	7	11160	411.00	101	100	0	4.52	
02	Testigo 2 - 0.20%FHP	31/10/2022	07/11/2022	7	11630	406.00	100	100	0	4.68	4.52
03	Testigo 3 - 0.20%FHP	31/10/2022	07/11/2022	7	10560	417.00	100	100	0	4.36	
04	Testigo 4 - 0.20%FHP	31/10/2022	14/11/2022	14	13810	420.00	101	100	0	5.72	
05	Testigo 5 - 0.20%FHP	31/10/2022	14/11/2022	14	14040	401.00	100	101	0	5.47	5.73
06	Testigo 6 - 0.20%FHP	31/10/2022	14/11/2022	14	14770	417.00	100	101	0	6.01	
07	Testigo 7 - 0.20%FHP	31/10/2022	28/11/2022	28	17380	425.00	101	101	0	7.16	
08	Testigo 8 - 0.20%FHP	31/10/2022	28/11/2022	28	17340	408.00	101	101	0	6.87	6.91
09	Testigo 9 - 0.20%FHP	31/10/2022	28/11/2022	28	17670	404.00	100	100	0	7.06	0.91
10	Testigo 10 - 0.20%FHP	31/10/2022	28/11/2022	28	16070	411.00	101	100	0	6.54	

OBSERVACIONES:
- Muestreo, identificación y ensayo realizado por el solicitante.

ANEXO XVII: Ensayos de Módulo de Elasticidad –

Concreto Patrón.

RODAS ALVAREZ CLAUDIA FIORELLA

Atención

Proyecto "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Chiclayo, Reg. Lambayeque.

Lugar Fecha de emisión : Chiclayo, 27 de octubre del 2022

> STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión).
> ASTM C-469 Ensayo

Referencia

MUESTRA	IDENTIFICACIÓN	Fecha de	5	Edad	σ _u	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
01	IDENTIFICACION	vaciado	Fecha Ensayo	(Días)	(Kg/cm²)	(40%a _u) Kg/cm ²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm²	Kg/cm²
01	CONCRETO PATRON - f'c= 210 kg/cm2	27/10/2022	03/11/2022	7	209.15	84	15.876600	0.0001899	154202.70	
02	CONCRETO PATRON - f'c= 210 kg/cm2	27/10/2022	03/11/2022	7	226.55	91	17.981600	0.0001683	154308.70	157072.83
03	CONCRETO PATRON - f'c= 210 kg/cm2	27/10/2022	03/11/2022	7	226.92	91	17.443800	0.0001905	162707.10	
04	CONCRETO PATRON - f'c= 210 kg/cm2	27/10/2022	10/11/2022	14	284.90	114	19.206300	0.0002242	204902.90	
05	CONCRETO PATRON - f'c= 210 kg/cm2	27/10/2022	10/11/2022	14	292.78	117	19.139000	0.0002229	208903.20	199769.87
06	CONCRETO PATRON - f'c= 210 kg/cm2	27/10/2022	10/11/2022	14	285.34	114	20.742600	0.0002243	185503.50	
07	CONCRETO PATRON - f'c= 210 kg/cm2	27/10/2022	24/11/2022	28	356.66	143	24.401400	0.0002582	210409.50	
08	CONCRETO PATRON - f'c= 210 kg/cm2	27/10/2022	24/11/2022	28	367.02	147	26.088300	0.0002747	227102.30	221605.13
09	CONCRETO PATRON - f'c= 210 kg/cm2	27/10/2022	24/11/2022	28	353.57	141	24.345100	0.0002783	235706.40	221005.13
10	CONCRETO PATRON - f'c= 210 kg/cm2	27/10/2022	24/11/2022	28	377.98	151	27.831700	0.0002589	213202.30	

- Muestreo, identificación y ensayo realizado por el solicitante. LEMS WAC EIRL

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

RODAS ALVAREZ CLAUDIA FIORELLA

Atención Proyecto

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Chiclayo, Reg. Lambayeque.

Fecha de emisión : Chiclayo, 27 de Octubre del 2022

: STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del

concreto sometido a compresión). : ASTM C-469 Referencia

Esfuerzo S2 Esfuerzo S1 € unitaria Edad Promedio E MUESTRA Fecha de IDENTIFICACIÓN Fecha Ensayo 01 (40%σ_u) (0.000050) (Días) (Kg/cm²) Kg/cm² Kg/cm² Kg/cm² Kg/cm² 01 27/10/2022 03/11/2022 7 382.67 26.577400 0.0002306 211104.00 153 02 CONCRETO PATRON - f'c= 280 kg/cm2 27/10/2022 03/11/2022 7 396.61 159 26.694900 0.0002495 220209.90 216074.10 03 CONCRETO PATRON - f'c= 280 kg/cm2 27/10/2022 03/11/2022 396.51 29.523900 0.0002637 216908.40 159 04 CONCRETO PATRON - f'c= 280 kg/cm2 27/10/2022 10/11/2022 14 454.99 182 31.409300 0.0002943 236203.20 CONCRETO PATRON - f'c= 280 kg/cm2 27/10/2022 10/11/2022 31.671900 0.0003154 239305.70 05 14 454.16 182 06 CONCRETO PATRON - f'c= 280 kg/cm2 27/10/2022 10/11/2022 14 455.84 31.415900 0.0002867 225805.60 CONCRETO PATRON - f'c= 280 kg/cm2 07 27/10/2022 24/11/2022 28 501.07 33.857400 0.0003440 249409.30 200 CONCRETO PATRON - f'c= 280 kg/cm2 27/10/2022 24/11/2022 496.59 34.777700 0.0003433 265306.80 254730.73 09 CONCRETO PATRON - f'c= 280 kg/cm2 27/10/2022 24/11/2022 28 492.20 197 35.299000 0.0003385 250504.60 10 CONCRETO PATRON - f'c= 280 kg/cm2 27/10/2022 24/11/2022 522.44 33.034600 0.0003532 253702.20

- Muestreo, identificación y ensayo realizado por el solicitante. LEMS W&C EIRL

WILSON OLIVA AGUILAR

THE. ENSYTOS DE MARRALES Y SULENS

ANEXO XVIII: Ensayos de Módulo de elasticidad – CP + 0.2%, 0.3%, 0.4% y 0.5% de FHP.

RODAS ALVAREZ CLAUDIA FIORELLA Atención

Proyecto "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Chiclayo, Reg. Lambayeque.

Lugar Fecha de emisión : Chiclayo, 29 de octubre del 2022

> STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión).
> ASTM C-469 Ensayo

Referencia

MUESTRA	IDENTIFICACIÓN	Fecha de	Fecha Ensayo	Edad	σ _u	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
01	IDENTIFICACION	vaciado	recha Ensayo	(Días)	(Kg/cm²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm²
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.20% FHP	29/10/2022	05/11/2022	7	221.48	89	16.6107	0.0002151	178408.9	
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.20% FHP	29/10/2022	05/11/2022	7	248.72	99	18.9082	0.0002087	178208.1	182107.83
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.20% FHP	29/10/2022	05/11/2022	7	251.86	101	18.8618	0.0001984	189706.5	
04	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.20% FHP	29/10/2022	12/11/2022	14	314.38	126	23.2596	0.0002387	225402.2	
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.20% FHP	29/10/2022	12/11/2022	14	313.17	125	21.6265	0.0002443	201502.9	208669.17
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.20% FHP	29/10/2022	12/11/2022	14	307.64	123	22.869	0.0002626	199102.4	
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.20% FHP	29/10/2022	26/11/2022	28	394.47	158	30.9559	0.0002865	248506.9	
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.20% FHP	29/10/2022	26/11/2022	28	397.43	159	27.4019	0.0002746	265200.9	256181.25
09	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.20% FHP	29/10/2022	26/11/2022	28	399.51	160	29.4232	0.0002793	263709.9	230181.25
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.20% FHP	29/10/2022	26/11/2022	28	389.83	156	26.8824	0.0002888	247307.3	

Observaciones:

Atención Proyecto RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÂNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Chiclayo, Reg. Lambayeque. Lugar

Fecha de emisión : Chiclayo, 29 de octubre del 2022

: STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión).

: ASTM C-469

Referencia

MUESTRA 01	IDENTIFICACIÓN	Fecha de vaciado	Fecha Ensayo	Edad (Días)	σ _u (Kg/cm ²)	Esfuerzo S2	(0.000050)	€ unitaria € ₂ (S ₂)	E _c	Promedio I
01	CONCRETO PATRON - Fc= 210 kg/cm2 + 0.30% FHP	29/10/2022	05/11/2022	7	221.48	Kg/cm ² 89	Kg/cm ² 18.1677	0.0001864	197005.9	
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.30% FHP	29/10/2022	05/11/2022	7	249.14	100	16.7598	0.0001907	166607.6	178806.80
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.30% FHP	29/10/2022	05/11/2022	7	243.49	97	18.3984	0.0001921	172806.9	
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.30% FHP	29/10/2022	12/11/2022	14	309.92	124	21.9718	0.0002485	190702.6	
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.30% FHP	29/10/2022	12/11/2022	14	307.8	123	20.2337	0.0002542	205907.8	207539.20
06	CONCRETO PATRON - Fc= 210 kg/cm2 + 0.30% FHP	29/10/2022	12/11/2022	14	312.7	125	22.9814	0.0002495	226007.2	
	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.30% FHP	29/10/2022	26/11/2022	28	393.05	157	26.903	0.0002853	264802.1	
	CONCRETO PATRON - Fc= 210 kg/cm2 + 0.30% FHP	29/10/2022	26/11/2022	28	401.79	161	26.5361	0.000277	236701.4	
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.30% FHP	29/10/2022	26/11/2022	28	375.09	150	25.8699	0.0002753	260902.7	250227.88
	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.30% FHP	29/10/2022	26/11/2022	28	403.74	161	26.0506	0.0002757	238505.3	

Observaciones:

- Muestreo, identificación y ensayo realizado por el solicitante LEMS WSC EIRL
WILSON OLAYA AGUILAR
TEC ENSAYOS DE MATERIALES Y SUELOS

Atención Proyecto RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Chiclayo, Reg. Lambayeque. : Chiclayo, 29 de octubre del 2022 Lugar Fecha de emisión

 STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión).
 ASTM C-469 Ensayo

Referencia

MUESTRA	IDENTIFICACIÓN	Fecha de	Fecha Ensavo	Edad	σ _u	Esfuerzo S2	Esfuerzo \$1	€ unitaria	E _c	Promedio E _c
01	IDENTIFICACION	vaciado	recha Ensayo	(Días)	(Kg/cm²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm ²
01	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.40% FHP	29/10/2022	05/11/2022	7	221.48	89	16.8279	0.0002085	169007.1	
02	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.40% FHP	29/10/2022	05/11/2022	7	246.86	99	17.5551	0.0001934	169805.5	169040.70
03	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.40% FHP	29/10/2022	05/11/2022	7	248.9	100	18.9802	0.0001973	168309.5	
04	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.40% FHP	29/10/2022	12/11/2022	14	305.26	122	22.7363	0.0002523	195404.2	
05	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.40% FHP	29/10/2022	12/11/2022	14	298.4	119	20.8819	0.0002459	190206.4	190703.60
06	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.40% FHP	29/10/2022	12/11/2022	14	304.94	122	22.443	0.0002561	186500.2	
07	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.40% FHP	29/10/2022	26/11/2022	28	395.7	158	26.219	0.0002771	248300.3	
08	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.40% FHP	29/10/2022	26/11/2022	28	390.82	156	28.5016	0.0002741	232108.1	237554.58
09	CONCRETO PATRON - I'c= 210 kg/cm2 + 0.40% FHP	29/10/2022	26/11/2022	28	382.09	153	26.5994	0.0002698	234602.9	23/334.38
10	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.40% FHP	29/10/2022	26/11/2022	28	378.41	151	24.7289	0.0002635	235207	

Observaciones:

- Muestreo, identificación y ensayo realizado por el solicitante

210

Atención Proyecto RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Chiclayo, Reg. Lambayeque.

Lugar Fecha de emisión : Chiclayo, 29 de octubre del 2022

: STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión).

ASTM C-469

Referencia

MUESTRA	IDENTIFICACIÓN	Fecha de vaciado	Fecha Ensayo	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
01				(Días)	(Kg/cm²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm²	Kg/cm ²
	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.50% FHP	29/10/2022	05/11/2022	7	221.48	89	16.4194	0.0002085	161708.7	
02	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.50% FHP	29/10/2022	05/11/2022	7	236.47	95	15.9245	0.0002071	170602.8	172371.50
	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.50% FHP	29/10/2022	05/11/2022	7	239.77	96	16.8439	0.0001765	184803	
	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.50% FHP	29/10/2022	12/11/2022	14	294.08	118	21.3669	0.0002566	187304.9	
	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.50% FHP	29/10/2022	12/11/2022	14	301.05	120	19.1548	0.0002346	204308.5	187307.13
	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.50% FHP	29/10/2022	12/11/2022	14	300.18	120	19.7395	0.0002531	170308	1
	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.50% FHP	29/10/2022	26/11/2022	28	385.25	154	25.8411	0.0002636	221100.8	
	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.50% FHP	29/10/2022	26/11/2022	28	383.78	154	23.342	0.0002668	229806.2	227229.80
	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.50% FHP	29/10/2022	26/11/2022	28	364.1	146	24.6124	0.0002536	238805.1	22/229.80
10	CONCRETO PATRON - f'c= 210 kg/cm2 + 0.50% FHP	29/10/2022	26/11/2022	28	372.31	149	23.1597	0.0002559	219207.1	

Observaciones:

- Muestreo, identificación y ensayo realizado por el solizitante.

LEMS WSC EIRL

WILSON OLAYA AGUILAR

TEC. ENSAYO DE MATERIALES Y SUELOS

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

Atención Proyecto RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Chiclayo, Reg. Lambayeque. : Chiclayo, 31 de octubre del 2022

Lugar Fecha de emisión

 STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión).
 ASTM C-469 Ensayo

Referencia

MUESTRA 01	IDENTIFICACIÓN	Fecha de vaciado	Fecha Ensayo	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
				(Días)	(Kg/cm²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm²
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.20% FHP	31/10/2022	07/11/2022	7	382.67	153	29.6036	0.0002703	228905.3	
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.20% FHP	31/10/2022	07/11/2022	7	412.82	165	30.9251	0.0002776	226905	229205.60
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.20% FHP	31/10/2022	07/11/2022	7	402.56	161	30.8338	0.000261	231806.5	
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.20% FHP	31/10/2022	14/11/2022	14	463.95	186	38.9369	0.0003043	244009.9	
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.20% FHP	31/10/2022	14/11/2022	14	469.19	188	37.829	0.0003275	249606.7	246640.73
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.20% FHP	31/10/2022	14/11/2022	14	467.53	187	38.8381	0.0003173	246305.6	
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.20% FHP	31/10/2022	28/11/2022	28	524.06	210	44.5189	0.000406	286704.2	
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.20% FHP	31/10/2022	28/11/2022	28	554.23	222	45.8701	0.000364	275701.2	
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.20% FHP	31/10/2022	28/11/2022	28	527.2	211	40.2391	0.0003866	263603.5	278153.03
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.20% FHP	31/10/2022	28/11/2022	28	554.96	222	42.4872	0.0003966	286603.2	

Observaciones:

- Muestreo, identificación y ensayo realizado por el solicitante. WILSON OLAYA AGUILAR
TEC. ENAVOS DE MATERIALES Y SUELOS

Atención Proyecto RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Chiclayo, Reg. Lambayeque. : Chiclayo, 31 de octubre del 2022 Lugar Fecha de emisión

STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión).
 ASTM C-469

Referencia

	ı				ı					
MUESTRA	IDENTIFICACIÓN	Fecha de vaciado	Fecha Ensayo	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	Ec	Promedio E _c
01				(Días)	(Kg/cm²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm ²	Kg/cm ²
01	CONCRETO PATRON - I'c= 280 kg/cm2 + 0.30% FHP	31/10/2022	07/11/2022	7	382.67	153	32.1363	0.0002591	217608.3	
	CONCRETO PATRON - I'c= 280 kg/cm2 + 0.30% FHP	31/10/2022	07/11/2022	7	408.82	164	32.1177	0.000236	228208.4	228372.27
03	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.30% FHP	31/10/2022	07/11/2022	7	408.6	163	28.1193	0.0002492	239300.1	
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.30% FHP	31/10/2022	14/11/2022	14	471.24	188	36.3962	0.0002932	246307.5	
05	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.30% FHP	31/10/2022	14/11/2022	14	465.39	186	34.8834	0.0003428	245902.6	248903.83
06	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.30% FHP	31/10/2022	14/11/2022	14	456.05	182	35.7405	0.0003492	254501.4	
07	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.30% FHP	31/10/2022	28/11/2022	28	508.97	204	40.8984	0.0003752	261709.2	
	CONCRETO PATRON - I'c= 280 kg/cm2 + 0.30% FHP	31/10/2022	28/11/2022	28	518.42	207	39.4666	0.0003874	279006.8	265781.80
	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.30% FHP	31/10/2022	28/11/2022	28	539.68	216	40.7959	0.0003691	261405.3	203781.00
10	CONCRETO PATRON - I'c= 280 kg/cm2 + 0.30% FHP	31/10/2022	28/11/2022	28	501.76	201	41.3034	0.0003643	261005.9	

Observaciones:

RODAS ALVAREZ CLAUDIA FIORELLA

Proyecto "PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Chiclayo, Reg. Lambayeque.

Lugar Fecha de emisión : Chiclayo, 31 de octubre del 2022

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión).

: ASTM C-469

Referencia

MUESTRA 01	IDENTIFICACIÓN	Fecha de vaciado	Fecha Ensayo	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
				(Días)	(Kg/cm²)	(40%σ _u) Kg/cm²	(0.000050) Kg/cm ²	€ ₂ (S ₂)	Kg/cm²	Kg/cm ²
01	CONCRETO PATRON - I'c= 280 kg/cm2 + 0.40% FHP	31/10/2022	07/11/2022	7	382.67	153	30.2789	0.0002349	206703.2	
02	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.40% FHP	31/10/2022	07/11/2022	7	396.98	159	27.7145	0.0002618	228709.2	220137.83
03	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.40% FHP	31/10/2022	07/11/2022	7	399.01	160	27.6428	0.0002298	225001.1	
04	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.40% FHP	31/10/2022	14/11/2022	14	453.79	182	34.2108	0.0003226	231807.4	
05	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.40% FHP	31/10/2022	14/11/2022	14	459.07	184	33.9198	0.000312	237908.6	235940.83
06	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.40% FHP	31/10/2022	14/11/2022	14	462.94	185	33.9374	0.000292	238106.5	
07	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.40% FHP	31/10/2022	28/11/2022	28	492.18	197	38.7698	0.0003477	265908.3	
08	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.40% FHP	31/10/2022	28/11/2022	28	527.81	211	39.3514	0.0003385	253804	255731.90
	CONCRETO PATRON - I'c= 280 kg/cm2 + 0.40% FHP	31/10/2022	28/11/2022	28	496.53	199	36.2105	0.0003381	247709.3	255/31.90
10	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.40% FHP	31/10/2022	28/11/2022	28	507.02	203	38.9432	0.0003465	255506	

Observaciones:

- Muestreo, identificación y ensayo realizado por el solicitante.

LEMS WSC EIRL

WILSON OLAYA AGUILAR

TEC. ENSAYOS DE MATERIALES Y SUELOS

Miguél Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246994

Atención Proyecto RODAS ALVAREZ CLAUDIA FIORELLA

"PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA"

: Dist. Chiclayo, Prov. Chiclayo, Reg. Lambayeque. Lugar Fecha de emisión

: Chiclayo, 31 de octubre del 2022

: STANDARD TEST METHOD FOR STATIC MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE IN

COMPRESSION (Método estándar para la determinación del módulo de elasticidad estático y de la relación de Poisson del concreto sometido a compresión).

: ASTM C-469

Referencia

MUESTRA 01	IDENTIFICACIÓN	Fecha de vaciado	Fecha Ensayo	Edad	$\sigma_{\rm u}$	Esfuerzo S2	Esfuerzo S1	€ unitaria	E _c	Promedio E _c
				(Días)	(Kg/cm²)	(40%σ _u) Kg/cm ²	(0.000050) Kg/cm ²	ϵ_2 (S ₂)	Kg/cm ²	Kg/cm ²
01	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.50% FHP	31/10/2022	07/11/2022	7	382.67	153	24.7597	0.0002490	208206.6	
02	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.50% FHP	31/10/2022	07/11/2022	7	397.43	159	26.6442	0.0002589	208504.5	209039.40
03	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.50% FHP	31/10/2022	07/11/2022	7	397.11	159	27.6366	0.0002469	210407.1	
04	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.50% FHP	31/10/2022	14/11/2022	14	451.17	180	31.2748	0.0002791	212703.2	
05	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.50% FHP	31/10/2022	14/11/2022	14	461.45	185	31.5184	0.0003075	224504.1	222139.00
06	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.50% FHP	31/10/2022	14/11/2022	14	457.93	183	30.8725	0.0002967	229209.7	
07	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.50% FHP	31/10/2022	28/11/2022	28	497	199	33.7287	0.0003541	243008.9	
08	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.50% FHP	31/10/2022	28/11/2022	28	491.81	197	34.7282	0.0003292	248000.3	248903.78
09	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.50% FHP	31/10/2022	28/11/2022	28	506.01	202	34.8718	0.0003368	252902.3	246903.78
10	CONCRETO PATRON - f'c= 280 kg/cm2 + 0.50% FHP	31/10/2022	28/11/2022	28	490.92	196	34.7792	0.0003576	251703.6	

Observaciones:

- Muestreo, identificación y ensayo realizado por el solicitante. LEMS W&C EIRL
WILSON OLAYA AGUILAR
TÉC. ENSAYOS DE MATERIALES Y SUELOS

Miguel Angel Ruiz Perales
INGENIERO CIVIL
CIP. 246904

Anexo XIX: Ficha técnica del Cemento Cemex - Portland
Tipo I

USO ESTRUCTURAL Tipo I

Características Técnicas Cemento Portland CEM I 52.5 N, cumple con: Normativa Técnica: EN 197-1:2011 Norma Técnica Peruana: NTP 334.009 Norma Técnica Americana: ASTM C-150

Cemento Portland de altas resistencias, permite construir estructuras de gran calidad y fortaleza.

Propiedades Físicas	Unidad	Uso Estructural Tipo I	Requisitos: NTP 334.009 / ASTM C150
Contenido de aire	%	6.0	Máximo 12
Expansión autoclave			Máximo 0.80
Densidad	g/ml	3.13	No especifica

Tiempo de fraguado Vicat	Unidad	Uso Estructural Tipo I	Requisitos: NTP 334.009 / ASTM C150
Fraguado inicial	min	140	Minimo 45
Fraguado final	min	190	Máximo 375

PROPIEDADES

- Cemento de altas resistencias iniciales y finales
- Rápido desencofrado
- Tiempo de fraguado óptimo
- Excelente manejabilidad y estabilidad
- Reduce el calor de hidratación y a tendencia a la fisuración en grandes estructuras
- Concreto óptimo y rentable por su mayor rendimiento
- Evita la segregación de la mezcla y ayuda a minimizar la exudación, por lo que el concreto pueden ser manejado y colocado con mayor facilidad.

USOS Y APLICACIONES

- Ideal para edificaciones y sistemas industrializados
- Para un rápido desencofrado
- Ideal para la producción de prefabricados de concreto
- Ahorros significativos en el consumo de cemento por metro cúbico de concreto
- Para una rápida puesta en uso de estructuras y vías de concreto
- Para obras de infraestructura como vigas, losas, muros y cimentaciones en diversos tipos de edificaciones

La información en el cuadro adjunto corresponde al promedio de los datos obtenidos en el periodo de ensayos de Julio 2021 a Setiembre 2021. Los despachos individuales pueden tener variaciones. Los resultados donde los limites no son especificados por norma se reportan solo como infon

ANEXO XX: Validación

Certificados De Calibración

CALIBRATEC S.A.C.

CALIBRACIÓN DE EQUIPOS É INSTRUMENTOS

RUC: 20606479680

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA - LM - 033 - 2022

1. Expediente 0117-2022

2. Solicitante LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W&C E.I.R.L.

3. Dirección CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO -

LAMBAYEQUE

4. Equipo de medición BALANZA ELECTRÓNICA

Capacidad Máxima 2000 g

División de escala (d) 0.01 g

Div. de verificación (e) 0.1 g

Clase de exactitud III

Marca AMPUT

Modelo 457

Número de Serie NO INDICA

Capacidad mínima 0.2 g

Procedencia NO INDICA

Identificación NO INDICA

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

5. Fecha de Calibración 2022-01-21

Fecha de Emisión

Jefe del Laboratorio de Metrolog

2022-01-22

Alu

MANUEL ALEJANDRO ALIAGA TORRES

CALIBRATEC SAC

ello

LABORATORIO PERU

977 997 385 - 913 028 621

913 028 622 - 913 028 623

913 028 624

O Av. Chillon Lote 50 B - Comas - Lima - Lima

o comercial@calibratec.com.pe

RUC: 20606479680

O.

Laboratorio de Masas

CALIBRATIC SA CALIBRATE CSA BRAILC AL CALIBRA CERTIFICADO DE CALIBRACIÓN CA - LM - 033 - 2022

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de Funcionamiento No Automático Clase III y Clase IIII" del SNM- INACAL VACAL

7. Lugar de calibración SAC MEC STEE ALBRIEC ALE CALLERACE ALERANCE En las instalaciones del cliente.
CALLE LA FE NRO 0167 CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE CALIBRATI TROSA

LIBRATE CALLS A

8. Condiciones Ambientales ATEC SA IBRATE CA

TEC MILE OC. TEC WILL	Inicial	Final
Temperatura	26.5 °C	26.5 °C
Humedad Relativa	53%	55%

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

	Trazabilidad	Patrón utilizado	Certificado de calibración
Observaciones Company of the Company	METROIL		M-0689-2021
- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.	The Contract of the	autoadhesiva con la indicación de CALIB	RADO.

10. Observaciones

977 997 385 - 913 028 621

913 028 622 -913 028 623

Av. Chillon Lote 50 B - Comas - Lima - Lima

comercial@calibratec.com.pe

RUC: 20606479680

Área de Metrología Laboratorio de Masas

CALIBRATI CERTIFICADO DE CALIBRACIÓN

CA - LNA COM CA - LM - 033 - 2022

Calified Hospic

CALBRATEC

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	TIENE	CURSOR	NO TIENE
710 C. Sp. Tr.	0. 16. 9	NIVELACIÓN	TIENE	La Con D.	The Bridge

ENSAYO DE REPETIBILIDAD

Final 26.4 °C

Medición	Carga L1 =	1,000	0.99	Carga L2 =	2,000	A 95
No o	1(g)	ΔL (mg)	E(mg)	1(g)	ΔL (mg)	E (mg)
(1 1 m	1000.00	5.5	by 00	2000.00	5 P	P. 0
2 0	1000.00	O 4 c.	JO 1, 88	2000.01	8 29	37 0
3	1000.01	CM 8 M	7 9	2000.00	S 325	0 2
840	1000.00	65 JE	0.00	2000.00	6 6	A -1 N
5	1000.00	60,00	- BP-1	2000.00	25	- 3
6	1000.01	9 1	6	2000.00	5 5	P. 0
7,00	1000.00	o 4	010	2000.00	8 C4 26	J. 6
8	1000.00	5	0 9	2000.00	S. 625	of at
90	1000.00	6 41/6	0.40	2000.01	8 20	2 7 pm
10	1000.00	8 4 G	BP1	2000.00	6	C
C. Chi	Diference	ia Máxima	8	Diferenci	a Máxima	8
	Error Máxin	no Permisible	200	Error Máxim	no Permisible	300

ENSAYO DE EXCENTRICIDAD

Posición de las cargas

Temperatura

Inicial Final 26.4 °C 26.4 °C

Posición	Dete	rminación de	el Error en Ce	ero Eo	6 - 6 B	Determina	ción del Erro	or Corregido E	co at
de la Carga	Carga Minima*	l (g)	ΔL (mg)	Eo (mg)	Carga L(g)	1 (g)	AL(mg)	E(mg)	Ec (mg)
6.1,0	7/10, 0.	0.10	5 K5 JP	0.00	J. C. Y.	1000.00	5.00	0 D	P. 000
2	or show	0.119	8 T 8	87	Co. Bar	1000.00	4 0	1 1 C	6-6
30.	0.10	0.10	6	PLI -1 C	1000.00	1000.00	6	JA 6 1 081	Chi Oh
4 8	5. 00	0.10	ິ່ . 5 ີ ເ.	000 OF	C. 60 3	1000.00	J 5 0	40 O.B. O	TE O THE
5 5	P. april	0.10	OF 6	P 4 5	Oby Ch	1000.01	C 8 8	7,9	8 6
* Valor	entre 0 v 1	0e	J. 180 J.	C. XO.	D. 10. 16	Error máxi	mo permisib	le de de	200

- 977 997 385 913 028 621
- 913 028 622 -913 028 623
- 913 028 624

SAC

- Av. Chillon Lote 50 B Comas Lima Lima
- o comercial@calibratec.com.pe A.
- CALIBRATEC SAC

SAC

RUC: 20606479680

Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA - LM - 033 - 2022

ENSAYO DE PESAJE

Temperatura

Final 26.4°C

Carga	all ac	CREC	IENTES	P all	Par Par S	DECRE	CIENTES	P. OPT OF	GF 08
L(g)	1(9)	AL(mg)	E(mg)	- S C.	CO. 18	Co. 160 .	0 0	S 0. 19	e.m.p *
0.10	0.10	6	GP-108	Ec (mg)	(g) 3	$\Delta L(mg)$	E(mg)	Ec (mg)	(± mg
0.20	0.20	J. 50 - 1	0 00	10 10 10 TO	0.20	5 5	0 P	S 10 5	100
10.00	10.00	6 8	-15	0,0	10.00	58° -	0 6	c. 103	100
100.00	100.00	20 7 J	2-2	15° -10° C	100.00	04 8	28 10 V	F 2 0	100
500.00	500.00	6.60	10 of 10	1000	500.00	0 5 3	00 %	WE 10. K	200
800.00	800.00	5 0	5 Och	Or ar al	800.00	6 OF	S. 12	Cr SO RE	200
1000.00	1000.00	M 60. 7	C REAL OF	(O)	1000.00	7 8	P-2 -0	The All P	200
1200.00	1200.00	6 6	. 19	000	1200.00	0° 28° c	3 8	c. 40° s	200
1500.00	1500.00	4	JE 1 CH	2	1500.00	039	art 2cm	23 CM	9 200
1800.00	1800.01	0.80	\$ 7 6	180	1800.00	3	2 2	10 30 N	200
2000.00	2000.01	8	S 725	8 2	2000.01	8 C	S 75	C 8 8 8 8 7 1	300

^{*} error máximo permisible

L: Carga aplicada a la balanza.

I: Indicación de la balanza.

ΔL: Carga adicional.

Eo: Error en cero.

E: Error encontrado

Ec: Error corregido.

Incertidumbre expandida de medición

 $U = 2 \times \sqrt{(0.000028)}$

Lectura corregida

R CORREGIDA

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

- 977 997 385 913 028 621
- 913 028 622 -913 028 623
- 913 028 624

- Av. Chillon Lote 50 B Comas Lima Lima
- comercial@calibratec.com.pe
 CALIBRATEC SAC JIP AC LIFE

RUC: 20606479680

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA - LM - 032 - 2022

1. Expediente

2. Solicitante LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W&C E.I.R.L.

CALLE LA FE NRO 0167 UPIS SEÑOR DE Internacional de Unidades (SI). 3. Dirección

LAMBAYEQUE

4. Equipo de medición BALANZA ELECTRÓNICA

Capacidad Máxima 30000 g

División de escala (d)

Div. de verificación (e)

Clase de exactitud

Marca OHAUS

Modelo R31P30

Número de Serie

Capacidad mínima

Procedencia

Identificación NO INDICA Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que

Fecha de Emisión

MANUEL ALEJANDRO ALIAGA TORRES

977 997 385 - 913 028 621

913 028 622 -913 028 623

913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima

comercial@calibratec.com.pe

RUC: 20606479680

Area de Metrología Laboratorio de Masas

EC S AC

CERTIFICADO DE CALIBRACIÓN CA - LM - 032 - 2022

6. Método de Calibración

La calibración se realizó según el método descrito en el PC-001: "Procedimiento de Calibración de Balanzas de CALIBR Funcionamiento No Automático Clase III y Clase IIII" del SNM-INACAL

7. Lugar de calibración

ATECSAC MIDATE SA DE C. CHUSA ALIBRA Las instalaciones del cliente. CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE CAL

8. Condiciones Ambientales

STATE OF ACT OF	O Inicial	Final
Temperatura	26.4 °C	26.4 °C
Humedad Relativa	51%	51%

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Co ZO TI	razabilidad	Patrón utilizado	Certificado de calibración
Tigby C. LE	METROIL	JUEGO DE PESAS 10 kg (Clase de Exactitud: M1)	M-0687-2021
CALIBRAC	METROIL	JUEGO DE PESAS 20 kg (Clase de Exactitud: M1)	M-0688-2021
PATE CALL	METROIL	JUEGO DE PESAS 1 kg a 5 kg (Clase de Exactitud: F1)	M-0726-2021
SALBRATE	METROIL	JUEGO DE PESAS 1 mg a 1 kg (Clase de Exactitud: F1)	M-0689-2021
CT CS. S	METROIL O	TERMOHIGROMETRO DIGITAL BOECO	T-1774-2021

- Se adjunta una etiqueta autoadhesiva con la indicación de CALIBRADO.
 - (**) Código indicada en una etiqueta adherido al equipo.

Av. Chillon Lote 50 B - Comas - Lima - Lima

o comercial@calibratec.com.pe P.C. YEC

CALIBRATEC SAC

• 913 028 622 - 913 028 623 • 913 028 622 - 913 028 623

ALIBRATEC S.A.C. EQUI MBRATECS

Allegate 5 AC

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Area de Metrología Laboratorio de Masas

CALIBRATE SAC

Chilledoffic S.A.C.

CERTIFICADO DE CALIBRACIÓN CA - LM - 032 - 2022

CALIFRANCE S.A.C.

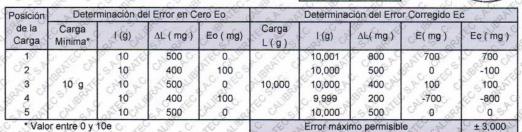
11. Resultados de Medición

S.A.C. BRATEL CAL

INSPECCIÓN VISUAL

C B C	10 18 C. 10 .	8 C. 1	MADE ECCION AND	SUAL CO	Ja C. 16 3	J. O. 460
ATT CHE SA	AJUSTE DE CERO	STIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
C. TEC WIE	OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	NO TIENE	CURSOR	NO TIENE
C. C.	0, 8h, 0, 2, 8h	0.00	NIVELACIÓN	TIENE	O B	C. (C. (B)
Mr. 20. 46.	with the allegation of	3. The Sh	- by Pilo Cha - b.	Dr. Charles	THE CALL	ART OPE OF
22 chr.	0, 2, 8, 0, 2,	82	ENSAYO DE REPET	IDII IDAD	Branco.	B C. C.
The other	The all are the cal	7. 20. Ve	ENSATO DE REPETI	IBILIDAD	A RIV OF	P. P. C
. O. 22. 06	2 0. 3, 82, 0	2, 1863 -	Inicial F	inal	C 18 C .	Co Br C.
O. The Min	Co. Les Philip Co. Le	Tempera		4°C	CH - P. CO	CA A S
L'EL O. C	of the Co. S. Wh.	dempera	itura 20.4 C 26.	4 6	CS USE	C. C. BIL
10 0. 30	N 10-10-10-10-10-10-10-10-10-10-10-10-10-1	100	15.000	AV 2 - 00 - 00	2 000	1 1 10 10 10 10 10 10 10 10 10 10 10 10

ENSAYO DE REPETIBILIDAD


MEC CHIEF.	CRATE Te	mperatura	26.4 °C	26.4 °C	BRATE CA	SA. BRE
Medición	Carga L1 =	15,000	g	Carga L2 =	30,000	or gal
⊗ Nº	1(g)	ΔL (mg)	E(mg)	1(g)	ΔL (mg)	E(mg)
5/1 08	15,000	600	-100	30,000	200 9	300
2	15,000	500	1 0°C.	30,000	500	0 0
3.9	15,001	700	800	30,000	500	C 00°
4 8	15,000	500	0	29,999	200	-700
6 5	15,000	600	G-100	30,000	500	×0 ×
5 6 as	15,000	500	0	30,001	700	800
C 70	15,000	500	WILLOW.	30,000	500	0 5
0.8 8	15,000	200	300	30,000	800	-300
9	14,999	300	-800	29,999	300	-800
® 10	15,000	500	0.00	30,000	500	0
MET OF	Diferenc	ia Máxima	1,600	Diferenc	ia Máxima	1,600
40 mg	Error Máxin	no Permisible	± 3,000	Error Máxin	no Permisible	± 3,000

ENSAYO DE EXCENTRICIDAD

Posición de las cargas

Temperatura

Inicial Final 26.4 °C 26 4 °C

- 977 997 385 913 028 621
- 913 028 622 -913 028 623
- 913 028 624

CALIBRI

- Av. Chillon Lote 50 B Comas Lima Lima
- o comercial@calibratec.com.pe SA PATEC
- CALIBRATEC SAC

ALIBRATEC S.A.C.

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Area de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA - LM - 032 - 2022

Final 26.4 °C

Inicial 26.4 °C

Temperatura

Carga	Sep. C	CRECIENTES				DECRECIENTES					
L(g)	I (g)	ΔL(mg)	E(mg)	Ec (mg)	O was	EN Charles	- EX. C	20,20	e.m.p **		
10	0100	500	8 0	Ec (mg)] (g)	ΔL(mg)	E(mg)	Ec (mg)	(±mg)		
20	20	400	3100	100	20	500	-50 pt	05 6	1,000		
100	0 100	500	0 0	100 m	100	500	000	CO BUTTO	1,000		
500	500	400	100	100	500	400	100	100 0	2,000		
1,000	1,000	500	0 8	6.0 Q	1,000	500	000	CF 0.50	2,000		
5,000	5,000	400	100	100	5,000	4000	100	100 0	3,000		
10,000	10,000	600	-100	-100	10,000	500	50 0	O 05 8	3,000		
15,000	15,000	500	0 0	160 m	15,000	500	000	1. 260 mg	3,000		
20,000	20,000	600	-100	-100	20,000	600	-100	-100	3,000		
25,000	25,000	500	0	0.0	25,000	500	00	SP OF	3,000		
30,000	30,000	600	-100	-100	30,000	600	9-100	-100	3,000		

error máximo permisible

Leyenda: L: Carga aplicada a la balanza.

ΔL: Carga adicional.

Eo: Error en cero.

l: Indicación de la balanza.

E: Error encontrado

Ec: Error corregido.

Incertidumbre expandida de medición

Lectura corregida

0.0000032 R

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo

Fin del documento

977 997 385 - 913 028 621

6 913 028 622 - 913 028 623 °

913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima

o comercial@calibratec.com.pe

RUC: 20606479680

CERTIFICADO DE CALIBRACIÓN CA - LT - 012 - 2022

Área de Metrología Laboratorio de Temperatura

1. Expediente

2. Solicitante LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W&C E.I.R.L.

3. Direction CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

4. Equipo

Modelo NO INDICA

Número de Serie NO INDICA

Procedencia NO INDICA

Identificación LT-012

Ubicación NO INDICA

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

Descripción	Controlador / Selector	Instrumento de medición
Alcance	30 °C a 300 °C	30 °C a 300 °C
División de escala / Resolución	ALE CO. 1 °C ALE	0.1°C
Tipo	TERMOSTATO	TERMÓMETRO DIGITAL

5. Fecha de Calibración

2022-01-21

Fecha de Emisión 2022-01-22

Jefe del Laboratorio de Metrología

MANUEL ALEJANDRO ALIAGA TORRES

- 977 997 385 913 028 621
- 913 028 622 -913 028 623

- Av. Chillon Lote 50 B Comas Lima Lima
- comercial@calibratec.com.pe
- CALIBRATEC SAC

RUC: 20606479680

Área de Metrología Laboratorio de Temperatura

MEC SAC.

ERT' DO P. ALLBRANE SA MBRATEC SA CERTIFICADO DE CALIBRACIÓN CA - LT - 012 - 2022

6. Método de Calibración

La calibración se efectuó por comparación directa con termómetros patrones calibrados que tienen trazabilidad a la Escala Internacional de Temperatura de 1990 (EIT 90), se considerá ser la Calibración de Temperatura de 1990 (EIT 90). Procedimiento para la Calibración de Medios Isotérmicos con aire como Medio Termostatico PC-018; 2da edición; Junio 2009, del SNM-INDECOPI. CMERNIE SAC.

J. BRATEC S.A.C.

امر بن Junio 2009, د 7. Lugar de calibración Las inst⁻¹ JB Ball C S A C ECSA.O. ics A.C. Las instalaciones del cliente.

CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales 8. Condiciones Ambientales CAMBRANEC CULIE

C51.821.	Co. Her C.	C BE
CALSALBRA	Inicial	Final
atura	26.3°C	26.3°C
Luia	The second secon	

ndiciones rone-ALIBRA 9. Patrones de referencia

Temperat Humedad Re	Contract of the Contract of th	26.3°C 64 %	26.3°C 64 %	Bant on Shippe on
Patrones de referencia	ALIBRATE	CALIBRAC BUILDING	C. ALEC SALER	RESOLUTE SHIP ACTURE SHIP AC
Trazabilidad	Je s	Patrón utiliza	ido o de	Certificado y/o Informe de calibración
MSG - LABORATORIO ACREDITADO REGISTRO: LC-038	0 P C	NÓMETRO DE IN DIGITAL DE 10 CA OPARES TIPO T -	NALES	LTT21-0008
METROIL - LABORATORIO ACREDITADO REGISTRO: LC-001	10 20	MOHIGROMETR OECO MODELO:	CV	T-1774-2021

Se colocó una etiqueta autoadhesiva con la indicación de **CALIBRADO**.
La periodicidad de la calibración depende del uso, mantenimiento v commedición. La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición. of Ballo Sho.

© 913 028 622 -913 028 623 © 913 028 624

913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima CHIBRAT

comercial@calibratec.com.pe

LIBRATEC S.A.C. FO LABORATORIO DE METROLOGIA

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Área de Metrología Laboratorio de Temperatura CERTY Alecsac CERTIFICADO DE CALIBRACIÓN CA - LT - 012 - 2022

CALIBRATE SAC

Temperatura ambiental promedio 26.1 °C
Tiempo de calentamiento y estabilización del Tiempo de calentamiento y estabilización del equipo
El controlador se seteo en 110

PARA LA TEMPERATURA DE 110 °C

Tiempo	Termómetro	7.8	TEMPERATURAS EN LAS POSICIONES DE MEDICIÓN (°C)								2) (5	1/0 6	100
S. C.	del equipo	NIVEL SUPERIOR NIVEL INFERIOR					03	Tprom	Tmax-Tmi				
(min)	(°C)	10	2	3	4	50	6	7	08	6 9 N	10	(°C)	(°C)
00	110.0	110.5	110.0	110.1	108.6	109.1	108.7	112.0	112.8	110.6	112.2	110.5	9 4.2
02	110.0	110.3	111.8	110.0	108.5	109.1	108.4	112.2	112.0	111.3	112.4	110.6	4.0
04	110.0	109.3	111.1	109.3	108.8	109.0	108.1	112.6	112.4	111.7	112.5	110.5	4.59
06	110.0	109.0	111.3	109.1	108.8	109.4	107.4	112.1	112.5		112.5	110.3	5.1
08	110.0	109.3	110.8	108.3	108.4	109.1	107.7	112.7	112.3	111.6	112.8	110.3	5.1
10	110.0	109.0	110.5	108.8	108.2	109.4	107.3	112.3	112.5	111.3	P P	110.1	5.2
S 12 0	110.0	108.5	110.7	109.1	108.5	109.1	107.5	112.4	112.5	111.4	112.4	110.2	5.0
14	110.0	109.2	110.4	109.3	108.4	109.2	107.3	112.7	112.0	111.6	112.4	110.2	5.4
16	110.0	109.2	110.3	109.4	108.3	109.3	107.1	112.3	112.4	111.5	112.2	110.2	5.3
18	110.0	109.1	110.1	109.6	108.7	109.1	107.4	112.1	112.3	110.8	112.3	110.1	4.9
20 0	110.0	109.3	110.4	109.3	108.7	109.1	107.3	112.4	112.2	110.6	111.8	110.1	5.1
22	110.0	109.2	110.4	109.2	108.4	109.0	107.5	112.2	112.8	111.2	111.7	110.2	5.3
24	110.0	109.0	110.7	109.5	108.2	109.4	107.1	112.7	112.4	110.9	112.4	110.2	5.6
26	110.0	109.1	110.8	109.5	108.5	109.5	107.2	100	112.0	110.7	112.3	110.2	5.1
28	110.0	109.3	110.4	109.4	108.2	109.6	107.4	112.1	112.0	110.4	112.4	110.1	5.0
30	110.0	109.1	110.5	109.4	108.5	109.1	107.5	112.4	112.3	110.7	112.2	110.2	4.9
32	110.0	109.1	110.3	109.3	108.8	109.4	107.1	112.8	112.3	110.7	112.4	110.2	5.7
34	110.0	108.9	110.4	109.2	108.5	109.1	107.4	112.2	112.4	110.8	112.7	110.2	5.3
36	110.0	109.4	110.1	109.5	108.3	109.4	107.7	112.3	112.4	110.4	112.5	110.2	4.8
38	110.0	109.2	110.4	109.6	108.6	109.3	107.7	112.4	112.3	110.6	112.4	110.2	4.7
40 %	110.0	109.1	110.4	109.2	108.4	109.4	107.4	112.1	112.0	110.8	112.4	110.1	5.0
42	110.0	109.4	110.5	109.3	108.8	109.1	107.2	112.0	112.4	110.4	112.8	110.2	5.6
44	110.0	109.1	110.5	109.5	108.3	109.4	107.4	112.8	112.1	110.5	112.4	110.2	5.4
46	110.0	109.1	110.7	109.7	108.4	109.2	107.5	112.4	112.3	110.3	112.3	110.2	4.9
48	110.0	109.2	110.2	109.4	108.2	109.1	107.1	112.4	112.2	110.1	112.2	110.0	5.3
50	110.0	108.9	110.5	109.4	108.4	109.1	107.3	112.6	112.3	110.5	112.7	110.2	5.4
52	110.0	109.1	110.5	109.2	108.2	109.5	107.3	112.2	112.8	110.7	112,1	110.2	5.5
54	110.0	109.0	110.3	109.7	108.1	109.1	107.5	112.3	112.7	110.1	111.9	110.1	5.2
56	110.0	109.3	110.5	109.4	108.1	109.5	107.5	112.6	112.6	110.4	112.2	110.2	5.1
58	110.0	109.1	110.3	109.2	108.0	109.3	107.6	112.3	112.1	110.5	112.4	110.1	4.8
60	110.0	109.0	110.3	109.6	108.4	109.2	107.4	112.7	112.5	110,7	112.4	110.2	5.3
T.PROM	110.0	109.2	110.5	109.4	108.4	109.2	107.5	112.4	112.3	110.8	112.3	110.2	0/08
T.MAX	110.0	110.5	111.8	110.1	108.8	109.6	108.7	112.8	112.8	111.7	112.8	10 -	(29)

977 997 385 - 913 028 621

110.0

108.5 110.0 108.3 108.0

913 028 622 -913 028 623

913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima e A Transcond

comercial@calibratec.com.pe

CALIBRATEC SAC

109.0

CALIBRA

RUC: 20606479680

Área de Metrología

Laboratorio de Temperatura

DO ATE SAC ALBRANEC S.A. CERTIFICADO DE CALIBRACIÓN CA - LT - 012 - 2022

PARÁMETRO	VALOR (°C)	INCERTIDUMBRE EXPANDIDA (°C)
Máxima Temperatura Medida	112.8	18.1
Mínima Temperatura Medida	107.1	50.10
Desviación de Temperatura en el Tiempo	2.0	0.1
Desviación de Temperatura en el Espacio	4.9	19.9
Estabilidad Medida (±)	1.0	0.04
Uniformidad Medida	5.7	G 8 20.0 G

: Promedio de la temperatura en una posición de medición durante el tiempo de calibración.
: Promedio de las temperaturas en la discrezión.

: Promedio de las temperaturas en la diez posiciones de medición para un instante dado.

: Temperatura máxima. : Temperatura mínima. T.MIN

: Desviación de Temperatura en el Tiempo.

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

Incertidumbre expandida de las indicaciones del termómetro propio del Medio Isotermo : 0.06 °C

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

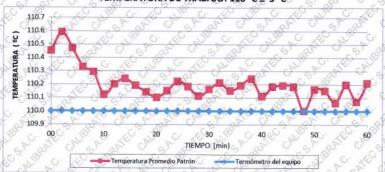
La Estabilidad es considerada igual a ± 1/2 DTT.

Durante la calibración y bajo las condiciones en que ésta ha sido hecha, el medio isotermo SI CUMPLE con los límites especificados de temperatura.

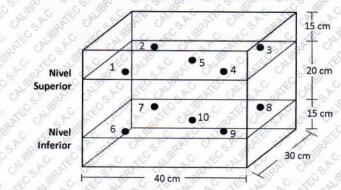
- © 913 028 622 913 028 623

- Av. Chillon Lote 50 B Comas Lima Lima
- o comercial@calibratec.com.pe
 CALIBRATEC SAC Jn.p€

RUC: 20606479680


Área de Metrología Laboratorio de Temperatura

CALBERTEC S.A.C.


CALBRATEC

TEC S.A.C. CERTIFICADO DE CALIBRACIÓN CA - LT - 012 - 2022

DISTRIBUCIÓN DE TEMPERATURAS EN EL EQUIPO TEMPERATURA DE TRABAJO: 110 °C ± 5 °C

DISTRIBUCIÓN DE LOS TERMOPARES

Los sensores **5** y **10** están ubicados en el centro de sus respectivos niveles.

Los sensores del 1 al 4 y del 6 al 9 se colocaron a 8 cm de las paredes laterales y a 8 cm del fondo y frente del equipo a calibrar.

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre catalogo de multipli confianza de aproximadamente 95%. CHIEF AC PROPER de multiplicar la incertidumbre estandar por el factor de cobertura k=2, el cual proporciona un nivel de un Ecsh.c. S.A.C.

- 977 997 385 913 028 621
- 913 028 622 -913 028 623
- 913 028 624

- HALLEST THE CON Av. Chillon Lote 50 B - Comas - Lima - Lima
- um.pe o comercial@calibratec.com.pe
- CALIBRATEC SAC

9 83

RUC: 20606479680

Área de Metrología

Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN CA - LF - 024 - 2022

agina 1 de 3

1. Expediente 0117-2022

2. Solicitante LABORATORIO DE ENSAYOS DE MATERIALES Y SUELOS W&C E.I.R.L.

3. Dirección CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS

MILAGROS - CHICLAYO - LAMBAYEQUE

4. Equipo PRENSA DE CONCRETO

Capacidad 2000 kN

Marca AyA INSTRUMENT

Modelo STYE-2000B

Número de Serie 131214

Procedencia CHINA

Identificación NO INDICA

Indicación DIGITAL Marca MC

 Modelo
 STYE-2000B

 Número de Serie
 131214

 Resolución
 0.01 / 0.1 kN (**)

Ubicación NO INDICA

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

5. Fecha de Calibración 2022-01-21

Fecha de Emisión

Jefe del Laboratorio de Metrología

Sello

2022-01-22

MANUEL ALEJANDRO ALIAGA TORRES

LABORATOR

977 997 385 - 913 028 621

913 028 622 -913 028 623

913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima

o comercial@calibratec.com.pe

RUC: 20606479680

· Área de Metrología

Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN CA - LF - 024 - 2022

6. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones del LEDI-PLICP tomado como cafe calibrados. las instalaciones del LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1
"Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de Máquinas de Ensayo Uniaxiales Estáticos. tracción/compresión. Verificación y calibración del sistema de medida de fuerza. " - Julio 2006.

7. Lugar de calibración

En las instalaciones del cliente. CALLE LA FE NRO 0167 UPIS SEÑOR DE LOS MILAGROS - CHICLAYO - LAMBAYEQUE

8. Condiciones Ambientales

5, 80 C. 2, 80	Inicial	Final
Temperatura	26.0°C	26.0 °C
Humedad Relativa	62 % HR	62 % HR

de alle sag 9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibradas en PUCP - Laboratorio de estructuras antísismicas	Celda de Carga Código: PF-001 Capacidad: 150,000 kg.f	INF-LE 038-21A
Safer of the Country	TERMOHIGROMETRO DIGITAL	OF ST ST OF ST ST ST ST ST

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de ensayo uniaxiales de clase de 2.0 según la norma UNE-EN ISO 7500-1.
- **977 997 385 913 028 621**
- 6 913 028 622 913 028 623 6 913 028 624
 - 913 028 624

- CALIBRATIC OF Av. Chillon Lote 50 B - Comas - Lima - Lima
- o comercial@calibratec.com.pe PC. 180
- CALIBRATEC SAC

LABORATORIO DE METROLOGIA of Callet affe 5 dC of Chillentic Sac E SAL BURELOS AND CAN SAC CALIBRATES ALL CALIBRATE C.S.A. United S.A.C. Chil

S.A.C. CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

But C. Aller Control of Certific Saller Control of Certific Saller Certific Sa CERTIFICADO DE CALIBRACIÓN CA - LF - 024 - 2000

BRATECSAC

BRATECSAC

STABLE CLOST	IBRATIC CHEST	PAR CI SIMBRI	C. C. S. IBBA	C. LCS, TIBER	or the Tiber of		
OP S. P. BATT C	S.A. S.A. CAL	SARATE CATE	A. GEDTIE	Sty. Ch. S.W.	Ster Ch. St. St.		
TEC ALIB AC Y	to who we will	CALIFO A.C. ATEC	CERTIF	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	CALIBRACIÓ		
rea de Metrologi	a. John Ser C.	LC3 MBC C.	160, 7180, C. V	CA -	LF - 024 - 20		
aboratorio de Fuerzo	PART OF SA	apir chi sin al	AL CHERRY	Ch Sh RA	Ch. S. B. Bay, Ch.		
The C. Yes	The C. Ho VIII	C. The Wife	of the country	S. WEG CHIN P.C.	Página		
1. Resultados de N	Medición	5. 18 C. 105	JAPA C. CC S	Br C. AC N	Br C. HC. JIBY		
AT ON S. P. OA	OF SP SAIL	CAL ST. COLL	Pr S. P. WILL OF	SI DAY CA	SP SP CH SP		
O C Indi	cación	Real of	Indicación de Fi	uerza (Ascenso)	Children St. St. St.		
dell	Equipo	B. O. 2, Asy	Patrón de Referencia				
% W	$F_i(kN)$	$F_1(kN)$	F2 (kN)	F3 (kN)	F _{Promedio} (kN)		
O (10 O	100	100.0	99.0	100.0	99.8		
20 20	200	199.0	5 200.5	201.3	200.2		
0. 430	300	298.8	300.4	299.3	299.7		
40 0	400	397.4	399.4	398.8	398.6		
50	500	495.8	501.8	502.4	500.5		
60	600	597.1	597.4	597.9	597.7		
5 0 70 05	700	696.1	696.7	695.7	696.6		
0 (80)	800	798.9	799.1	799.5	799.1		
90 9	900	898.6	900.1	896.6	898.5		
3, O: 10, 3	1000	1001.0	1002.9	1000.5	1001.3		
100		0.0	0.00	0.00	20 0		

Indicación del Equipo	Exactitud	Repetibilidad	Reversibilidad	Resol. Relativa	Incertidumb
F(kN)	q (%)	b (%)	v (%)	a (%)	(%)
100	0.21	1.00	G1.30	0 0.10	0.81
200	-0.08	6 1.15	9 0.25	9 0.05	0.75
300	0.12	0.53	0.07	0,03	0.63
400	0.34	0.50	0.10	0.03	0.61
500	-0.11	1.31	-0.06	0.02	0.85
600	0.39	0.13	-0.18	0.02	0.58
700	0.49	0.14	6 -0.14	9 0.01	0.59
800	0.11	0.07	0.02	0.01	0.58
900 5	0.175	0.38	0.16	0.01	0.60
1000	-0.13	0.25	0.20	0.01	0.58

BRAILCSAC

12. Incertidumbre
La incertidum
me-a medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculado o factores do 150.

factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo. on de va E. CALIBRAT largo plazo. CSA.C.

- 917 997 385 913 028 621 913 028 622 -913 028 623 913 028 624

 - **913 028 624**
- CALIFERNIES Av. Chillon Lote 50 B - Comas - Lima - Lima
- o comercial@calibratec.com.pe

CALIBRATE

SAC

· SPC.

SAC

Anexo XX1: Panel Fotográfico

I. Visita a las Canteras

a) Cantera Pátapo - "La Victoria"

Ilustración 1: Visita cantera "La Victoria"

Ilustración 2: Obtención de muestras de Agregado fino

Ilustración 3: Obtención de muestras de Agregado grueso

b) Cantera Pacherrez

Ilustración 4: Visita cantera "Pacherrez"

Ilustración 5: Obtención de muestras de Agregado grueso

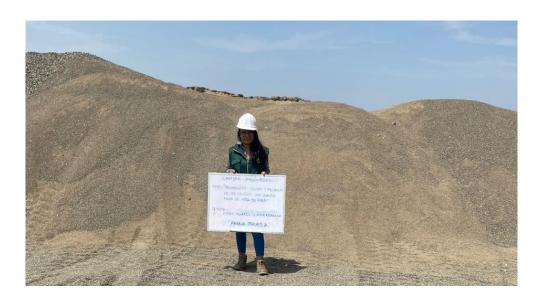


Ilustración 6: Obtención de muestras de Agregado fino

c) Cantera Tres Tomas – Bomboncito

Ilustración 7: Visita cantera "Tres Tomas"

Ilustración 8: Obtención de muestras de Agregado grueso

Ilustración 9: Obtención de muestras de Agregado fino

II. Materiales

Ilustración 10: Cemento Cemex - Tipo I

Ilustración 11: Agua

Ilustración 12: de hoja de piña

III. Extracción de la fibra de hoja de piña

Ilustración 13: Obtención de las hojas de piña

Ilustración 14: Limpieza y reposo de las hojas de piña

Ilustración 15: Extracción de la fibra de las hojas de piña

Ilustración 16: Lavado y secado de la fibra

Ilustración 17: Fibra de hoja de piña seca por 2 semanas

Ilustración 18: Curado de la fibra de hoja de piña

IV. Ensayos de Agregado

Ilustración 19: Muestras de agregado

1. Agregado Grueso

Ilustración 20: Granulometría de agregado grueso

Ilustración 21: Granulometría de agregado grueso

Ilustración 22: Ensayo de Peso Específico y Absorción del agregado grueso

Ilustración 23: Ensayo de peso unitario suelto y compactado del agregado grueso

Ilustración 24: Peso unitario compactado del agregado grueso.

1. Agregado Fino

Ilustración 25: Granulometría de agregado fino

Ilustración 26: Granulometría de agregado fino

Ilustración 27: Ensayo de Peso Específico y Absorción del agregado fino

lustración 28: Ensayo de Peso Específico y Absorción del agregado fino

Ilustración 29: Ensayo de peso unitario suelto y compactado del agregado fino

V. Ensayos de concreto fresco

Ilustración 30: Engrasado de moldes para probetas y vigas.

a) Concreto Patrón

Ilustración 31: Realización de mezcla de Concreto Patrón

Ilustración 32: Ensayo de concreto fresco del concreto patrón.

b) Concreto adicionado con fibra de hoja de piña

Ilustración 33: Mezcla de concreto adicionando fibra de hoja de piña.

Ilustración 34: Matriz de concreto adicionando fibra de hoja de piña.

Ilustración 35: Ensayo de concreto fresco adicionando fibra de hoja de piña.

Ilustración 36: Curado de las muestras.

VI. Ensayos realizados al concreto endurecido

Ilustración 37: Medidas de las muestras.

Ilustración 37: de resistencia a compresión y módulo de elasticidad.

Ilustración 37: de resistencia a la tracción

Ilustración 37: de resistencia a la flexión

Anexo XXII: Presupuesto de la investigación.

Gasto de materiales que serán empleados para la investigación							
Detalle	Cantidad	Unidad	Valor S/.	Total S/.			
Cemento	23.00	m³/bols a	28.50	655.50			
Agregado fino	1.00	m³	35.50	35.50			
Agregado grueso	1.00	m³	40.00	40.00			
Agua	1.00	glb	30.00	30.00			
gasolina	3.00	gl	19.00	57.00			
baldes	15.00	und.	2.00	30.00			
Hoja de piña (Recolección)	1.00	Saco.	50.00	50.00			
Pasaje de transporte hacia el cultivo de piñas	2.00		22.00	44.00			
Hoja de piña (Flete)	1.00	und.	20.00	20.00			
Cepillo con dientes de metal	2.00	und.	12.00	24.00			
Cal para tratamiento de FHP	1.00	Bls	15.5	15.50			
Sub total	•			1001.50			

Gastos especificados de ensayos empleados durante la investigación							
Detalle	Cantidad	Unidad	Valor S/.	SubTotal S/.			
Para el agregado fino							
Granulometría por tamizado del agregado fino	4.00	und	10.00	40.00			
Peso unitario suelto del agregado fino	4.00	und	15.00	60.00			
Peso unitario compactado del agregado fino	4.00	und	15.00	60.00			
Peso especifico y absorción del agregado fino	4.00	und	15.00	60.00			
Contenido de humedad del agregado fino	4.00	und	5.00	20.00			
Pasante malla 200 del agregado fino	3.00	und	30.00	90.00			
Para el agregado grueso							
Granulometría por tamizado del ag. Grueso	4.00	und	10.00	40.00			
Peso unitario suelto del agregado grueso	4.00	und	15.00	60.00			

Moldes cilindricos plástico de 4" x 8"	25.00	und	8.00	200.00
Moldes cilindricos plástico de 6" x 12"	25.00	und	16.34	408.50
Moldes de vigas de madera	25.00	und	20.00	500.00
Alquiler de trompo	7.00	días	45.00	315.00
0.6m Para elaboración de concreto	1.00	3710		
1.0m Refrigeradoras viejas de 3.20m x 1.0m x	1.00	und	280.00 40.00	280.00 40.00
Para el curado del concreto Contenedores metalicos de 2.0m x 2.0m x		und	290.00	200.00
Módulo de elasticidad	100.00	und	15.00	1,500.00
Resistencia a la flexión	100.00	und	10.00	1,000.00
Resistencia a la tracción	100.00	und	10.00	1,000.00
Resistencia a la compresión Axial	100.00	und	10.00	1,000.00
Para el concreto en estado endurecido	-			
Contenido de aire	16.00	und	10.00	160.00
Peso unitario	16.00	und	10.00	160.00
Temperatura	16.00	und	10.00	160.00
Slump	16.00	und	10.00	160.00
Para el concreto en estado fresco				
Para elaboración de concreto Diseño de mezcla	16.00	und	150.00	2,400.00
grueso	2.00	und	80.00	160.00
Contenido de humedad del agregado grueso Abrasión de los angeles para agregado	4.00	und	5.00	20.00
Peso específico y absorción del agregado grueso	4.00	und	15.00	60.00
Peso unitario compactado del agregado grueso	4.00	und	15.00	60.00

Gastos comparativos de materiales para diseño de mezclas de concreto sin alterar vs con adición de FHP						
Detalle	Cantidad	Unidad	Valor S/.	Total S/.		
Cemento	23.00	m³/bolsa	28.50	655.50		
Agregado fino	1.00	m³	35.50	35.50		
Agregado grueso	1.00	m³	40.00	40.00		
Agua	1.00	glb	30.00	30.00		
gasolina	3.00	gl	19.00	57.00		
baldes	15.00	und.	2.00	30.00		
Sub total				848.00		

Detalle	Cantidad	Unidad	Valor S/.	Total S/.
Cemento	23.00	m³/bolsa	28.50	655.50
Agregado fino	1.00	m³	35.50	35.50
Agregado grueso	1.00	m³	40.00	40.00
Agua	1.00	glb	30.00	30.00
gasolina	3.00	gl	19.00	57.00
baldes	15.00	und.	2.00	30.00
Hoja de piña (Recolección)	1.00	Saco.	50.00	50.00
Pasaje de transporte hacia el cultivo de piñas	2.00		22.00	44.00
Hoja de piña (Flete)	1.00	und.	20.00	20.00
Cepillo con dientes de metal	2.00	und.	12.00	24.00
Cal para tratamiento de FHP	1.00	Bls	15.5	15.50
Sub total				1001.50

Anexo XXIII: Cronograma de la investigación.

- Cronograma de la investigación

DEFINICIÓN	FECHA
Extraer las hojas de piña	30 de Octubre de 2022
Limpiar y dejar reposando en agua las hojas de piña	5 de Octubre de 2022
Proceso de conversión a fibra	12 de Octubre de 2022
Secado de la fibra	26 de Octubre de 2022
Curado de la fibra	27 de Octubre de 2022
Visita a canteras	11 de Octubre de 2022 12 de Octubre de 2022
Ensayos (PU, PE, GR)	13 de Octubre de 2022
Ensayos (%Humedad, Abasión, Pasante Malla #200)	14 de Octubre de 2022
Diseño prueba 210	15 de Octubre de 2022
Diseño de prueba 280	18 de Octubre de 2022
Rotura diseños de prueba 210	25 de Octubre de 2022
Rotura diseños de prueba 280	25 de Octubre de 2022
Diseños 210 y 280 finales	27 de Octubre de 2022
CP210 + Adiciones de FHP	29 de Octubre de 2022
CP 280 + Adiciones de FHP	31 de Octubre de 2022
Rotura patrón 7	3 de Noviembre de 2022
Rotura 210 - 7 días	5 de Noviembre de 2022
Rotura 280 - 7 días	7 de Noviembre de 2022
Rotura patrón 14	10 de Noviembre de 2022
Rotura 210 - 14 días	12 de Noviembre de 2022
Rotura 280 - 14 días	14 de Noviembre de 2022
Rotura patrón 28	24 de Noviembre de 2022
Rotura 210 - 28 días	26 de Noviembre de 2022
Rotura 280 - 28 días	28 de Noviembre de 2022

Anexo XXIV: Estadística de Confiabilidad de los Resultados: Validez y confiabilidad del instrumento Alfa de Cronbach.

VALIDEZ Y CONFIABILIDAD DEL INSTRUMENTO SOBRE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA

Estadísticas de fiabilidad

925	.977	81
Alfa de Cronbach	Alfa de Cronbach basada en elementos estandarizado S	N de elementos

Estadísticas de total de elemento

	Media de escala si el elemento se ha suprimido	Varianza de escala si el elemento se ha suprimido	Correlación total de elementos corregida	Correlación múltiple al cuadrado	Alfa de Cronbach si el elemento se ha suprimido
COMPRESION_210_7D1	4489031.3160	43007310775	.600		.925
COMPRESION_210_7D2	4489039.3160	43005281408	.785		.925
COMPRESION_210_7D3	4489033.5160	43008048023	.739		.925
COMPRESION_210_14D1	4489012.5160	43003729839	.897		.925
COMPRESION_210_14D2	4489010.9160	43006316869	.661		.925
COMPRESION_210_14D3	4489012.7160	43006656600	.805		.925
COMPRESION_210_28D1	4488976.5160	43003798398	.829		.925
COMPRESION_210_28D2	4488973.1160	43004554232	.984		.925
COMPRESION_210_28D3	4488975.7160	43003577587	.758		.925
COMPRESION_210_28D4	4488974.1160	43002708759	.690		.925
COMPRESION_280_7D1	4489002.7160	43007035686	.833		.925
COMPRESION_280_7D2	4488996.7160	43005772694	.611	2	.925
COMPRESION_280_7D3	4488994.9160	43008715298	.530	2	.925
COMPRESION_280_14D1	4488967.9160	43000983013	.678		.925
COMPRESION_280_14D2	4488972.5160	43009724305	.055		.925
COMPRESION_280_14D3	4488969.7160	43008131956	.156		.925
COMPRESION_280_28D1	4488947.7160	43009055438	.058		.925
COMPRESION_280_28D2	4488970.1160	43004252329	.246		.925
COMPRESION_280_28D3	4488962.5160	43001818313	.355		.925
COMPRESION_280_28D4	4488967.5160	42996796090	.500	+	.925
TRACCION_210_7D1	4489188.4780	43010397111	.570		.925
TRACCION_210_7D2	4489188.5420	43010401717	.590		.925
TRACCION_210_7D3	4489188.4980	43010402706	.170		.925
TRACCION_210_14D1	4489188.1800	43010386325	.687		.925
TRACCION_210_14D2	4489188.2160	43010373919	.934		.925
TRACCION_210_14D3	4489188.2760	43010376535	.485		.925
TRACCION_210_28D1	4489188.0760	43010408377	.148		.925
TRACCION_210_28D2	4489188.0480	43010379341	.610		.925
TRACCION_210_28D3	4489188.0900	43010365342	.621	•	.925
TRACCION_210_28D4	4489187.9540	43010406268	.240		.925

TD1001011 000 TD1			***		
TRACCION_280_7D1	4489187.8880	43010405243	.231		.925
TRACCION_280_7D2	4489187.9920	43010385280	.636		.925
TRACCION_280_7D3	4489187.9120	43010404812	.185		.925
TRACCION_280_14D1	4489187.6620	43010365931	.578		.925
TRACCION_280_14D2	4489187.6600	43010411123	.072		.925
TRACCION_280_14D3	4489187.6000	43010402611	.144		.925
TRACCION_280_28D1	4489187.3320	43010385988	.599		.925
TRACCION_280_28D2	4489187.4880	43010411856	.137		.925
TRACCION_280_28D3	4489187.4400	43010398878	.177		.925
TRACCION_280_28D4	4489187.3240	43010362879	.481		.925
FLEXION_210_7D1	4489186.6600	43010324629	.441		.925
FLEXION_210_7D2	4489186.7240	43010369552	.286		.925
FLEXION_210_7D3	4489186.6760	43010352149	.608		.925
FLEXION_210_14D1	4489185.4200	43010388177	.269		.925
FLEXION_210_14D2	4489185.2660	43010392556	.118		.925
FLEXION_210_14D3	4489184.7740	43010329250	.505		.925
FLEXION_210_28D1	4489184.2200	43010404987	.867		.925
FLEXION_210_28D2	4489184.0760	43010226443	.749		.925
FLEXION_210_28D3	4489184.1320	43010375343	.694		.925
FLEXION_210_28D4	4489184.0400	43010369901	.435	2	.925
FLEXION_280_7D1	4489185.5820	43010276854	.569		.925
FLEXION_280_7D2	4489185.5340	43010322388	.577		.925
FLEXION_280_7D3	4489185.6780	43010384387	.761		.925
FLEXION_280_14D1	4489184.7460	43010309232	.495	*	.925
FLEXION_280_14D2	4489183.9920	43010314696	.634		.925
FLEXION_280_14D3	4489184.0660	43010386848	.353	2	.925
FLEXION_280_28D1	4489182.9760	43010359987	.332		.925
FLEXION_280_28D2	4489182.9460	43010345295	.405		.925
FLEXION_280_28D3	4489183.1220	43010308813	.536		.925
FLEXION_280_28D4	4489183.2380	43010261057	.746		.925
MODULO_ELASTICO_210 _7D1	4317123.9160	37706835233	.782	2	.920
MODULO_ELASTICO_210 _7D2	4321283.9160	41177436432	.497	*	.923
MODULO_ELASTICO_210 _7D3	4311523.7160	42126662379	.214	¥	.926
MODULO_ELASTICO_210 _14D1	4288447.1160	39622274128	.518		.924
MODULO_ELASTICO_210 _14D2	4287024.7160	40816133027	.736	*	.922
MODULO_ELASTICO_210 _14D3	4295705.9160	36535346228	.758		.922
MODULO_ELASTICO_210 _28D1	4250566.5160	36111349801	.757		.923
MODULO_ELASTICO_210 _28D2	4251006.5160	37956983709	.796	•	.920
MODULO_ELASTICO_210 _28D3	4242445.1160	37753950118	.908	1.	.919
MODULO_ELASTICO_210 _28D4	4258504.3160	37894451691	.896		.919

MODULO_ELASTICO_280 _7D1	4274684.7160	39801775271	.864		.920
MODULO_ELASTICO_280 _7D2	4266682.7160	40456472661	.722		.922
MODULO_ELASTICO_280 _7D3	4264505.5160	38786330324	.904		.919
MODULO_ELASTICO_280 _14D1	4254984.1160	38581036867	.810		.920
MODULO_ELASTICO_280 _14D2	4249744.9160	39524794811	.887		.920
MODULO_ELASTICO_280 _14D3	4250404.7160	38744773683	.882	ř	.919
MODULO_ELASTICO_280 _28D1	4227842.3160	37166482285	.853	*	.919
MODULO_ELASTICO_280 _28D2	4224826.5160	38438860438	.833		.920
MODULO_ELASTICO_280 _28D3	4233965.3160	40624793853	.836	٠	.921
MODULO_ELASTICO_280 _28D4	4227486.1160	38180077820	.825		.920

ANOVA

		Suma de cuadrados	gl	Media cuadrática	F	Sig
Inter sujetos		2150520853,4	4	537630213,36		
Intra sujetos	Entre elementos	3,854E+12	79	48788569821	1213.737	<.001
	Residuo	12702246314	316	40196982.007		
	Total	3,867E+12	395	9789871549,8		
Total		3,869E+12	399	9697117250,7		

Media global = 56114.8740

En las tablas se observa que, el instrumento es válido (correlaciones de Pearson superan el valor de 0.30 y el valor de la prueba de análisis de varianza es altamente significativo p < 0.01 y confiable (el valor de consistencia Alfa de Cronbach es mayor a 0.80)

Anexo XXV: Estadística de Confiabilidad de los

Resultados: Validez y confiabilidad del instrumento Aiken.

Validez y Confiabilidad Del Instrumento Sobre Las Propiedades Físicas Y Mecánicas De Un Concreto Adicionando Fibra De Hoja De Piña

Claridad

ž.	F'c=210 kg/cm ²					F'c=28	0 kg/cm²	
	Compresion	Flexion	Traccion	Modulo de Elasticidad	Compresion	Flexion	Traccion	Modulo de Elasticidad
JUEZ 01	1	0	1	1	1	0	1	1
JUEZ 02	1	1	1	1	1	1	1	1
JUEZ 03	1	0	1	1	1	0	1	1
JUEZ 04	1	1	1	1	1	1	1	1
JUEZ 05	1	1	1	1	1	1	1	1

$$V = \frac{\mathcal{S}}{n \ (c-1)} \qquad \begin{array}{l} \text{S = Suma de valoración de todos los expertos por items.} \\ \text{n = Numero de expertos que participaron en el estudio.} \\ \text{c = Numero de niveles de la escala de valorización utilizada.} \end{array}$$

	Compresion	Flexion	Traccion	Modulo de Elasticidad	Compresion	Flexion	Traccion	Modulo de Elasticidad
(S)	5	3	5	5	5	3	5	5
(N)	5							
(C)	2							
V de Aiken	1	0.6	1	1	1	0.6	1	1

	Claridad
V de Aiken por criterio	0.9

Contexto

	F'c=210 kg/cm ²				F'c=280 kg/cm ²			
	Compresion	Flexion	Traccion	Modulo de Elasticidad	Compresion	Flexion	Traccion	Modulo de Elasticidad
JUEZ 01	1	1	1	1	1	1	1	1
JUEZ 02	1	1	1	1	1	1	1	1
JUEZ 03	1	1	1	1	1	1	1	0
JUEZ 04	1	1	1	1	1	1	1	0
JUEZ 05	1	1	1	1	1	1	1	1

	Compresion	Flexion	Traccion	Modulo de Elasticidad	Compresion	Flexion	Traccion	Modulo de Elasticidad
(S)	5	5	5	5	5	5	5	3
(N)	5							
(C)	2							
V de Aiken	1	1	1	1	1	1	1	0.6

 V de Aiken por criterio
 Contexto

 0.95

Congruencia

·	F'c=210 kg/cm ²				F'c=280 kg/cm ²			
	Compresion	Flexion	Traccion	Modulo de Elasticidad	Compresion	Flexion	Traccion	Modulo de Elasticidad
JUEZ 01	1	1	1	1	1	1	1	1
JUEZ 02	1	1	1	1	1	1	1	1
JUEZ 03	1	1	1	1	1	1	1	1
JUEZ 04	1	1	1	1	1	1	1	1
JUEZ 05	1	1	1	1	1	1	1	1

	Compresion	Flexion	Traccion	Modulo de Elasticidad	Compresion	Flexion	Traccion	Modulo de Elasticidad
(S)	5	5	5	5	5	5	5	5
(N)	5							
(C)	2							
V de Aiken	1	1	1	1	1	1	1	1

100	Congruencia
V de Aiken por criterio	1

Dominio del constructo

		F'c=210 kg/cm ²					F'c=280 kg/cm²			
	Compresion	Flexion	Traccion	Modulo de Elasticidad	Compresion	Flexion	Traccion	Modulo de Elasticidad		
JUEZ 01	1	1	1	1	1	1	1	1		
JUEZ 02	1	1	1	1	1	1	1	1		
JUEZ 03	1	1	1	1	1	1	1	1		
JUEZ 04	1	1	1	1	1	1	1	1		
JUEZ 05	1	1	1	1	1	1	1	1		

	Compresion	Flexion	Traccion	Modulo de Elasticidad	Compresion	Flexion	Traccion	Modulo de Elasticidad
(S)	5	5	5	5	5	5	5	
(N)	5							
(C)	2							
V de Aiken	1	1	1	1	1	1	1	

	Dominio del constru
V de Aiken por criterio	1
	=======================================
V de Aiken del cuesti	onario 0.963

En las Tablas se observa que el instrumento utilizado para la investigacion sobre "Propiedades Físicas Y Mecánicas De Un Concreto Adicionando Fibra De Hoja De Piña" es válido (este coeficiente puede obtener valores de 0 a 1, a medida que va aumentando el valor de computado, el item tendrá una mayor validez de contenido)

DR. EDUCACIÓN COESPE 262 **Anexo XXVI:** Fichas de Validación de Aiken por 5 jurados expertos.

Ficha de validación según AIKEN

i. Datos generales

Datos generales		22	SX P
Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Bobadilla Guadalupe Pedro	Supervisor de Obra	Prueba de resistencia: - Compresión - Flexión - Tracción - Modulo Elástico	Rodas Alvarez Claudia Fiorella
Título de la Investiga Propiedades Físicas Y Piña	a ción: Y Mecánicas De Un C	oncreto Adicionando	Fibra De Hoja De

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
Compresión	A	Correcto
Flexión	А	Correcto
Tracción	A	Correcto
Modulo Elástico	A	Correcto

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte ms	Clari	idad	Con	texto	Con	gruen		iinio de structo
	F'c=210kg/cm ²	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		X	
2	Flexión		X	X		X		X	
3	Tracción	Х		Х		X		Х	
4	Modulo Elástico	X		X	00 00	X		X	
	F'c=280kg/cm²	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		Х	
2	Flexión		X	X		X		X	3
3	Tracción	X		X	700	X		Х	
4	Modulo Elástico	X		X		X		X	+

Observaciones (precisar si hay suficiencia):

Si presenta suficiencia

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Bobadilla Guadalupe Pedro.

Especialidad: Ingeniero Civil

Juez Experto

edro Bobadilla Guadalupe INGENIERO CIVIL REG. CIP. Nº 217784

Ficha de validación según AIKEN

i. Datos generales

Apellidos y nombres del informante	donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Huaman Muñoz Elvis	Gerente de infraestructura de la Municipalidad Distrital de Aramango	Prueba de resistencia: - Compresión - Flexión - Tracción - Modulo Elástico	Rodas Alvarez Claudia Fiorella

Propiedades Físicas Y Mecánicas De Un Concreto Adicionando Fibra De Hoja De Piña

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
Compresión	А	Correcto
Flexión	А	Correcto
Tracción	A	Correcto
Modulo Elástico	А	Correcto

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte	Clari	idad	Con	texto	Con	gruen	22.000.000	inio de structo
	F'c=210kg/cm ²	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		X	
2	Flexión	X		X		X		Х	
3	Tracción	Х		X		X		Х	
4	Modulo Elástico	X		X		X		Х	
	F'c=280kg/cm²	Si	No	Si	No	Si	No	Si	No
1	Compresión	Х	8	X		X		Х	
2	Flexión	X		X		X		X	
3	Tracción	X	1/	X		X		X	
4	Modulo Elástico	X		X		X		X	

Observaciones (precisar si hay suficiencia):

Si presenta suficiencia

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir ()

No aplicable () Apellidos y nombres del juez validador: Huaman Muñoz Elvis

Especialidad: Ingeniero Civil

Elvis Huaman Muñoz INGENIERO CIVIL

CIP. N° 227756

Juez Experto

Ficha de validación según AIKEN

Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Colunche Nuñes Wilinton Felipe	Inspector de obra	Prueba de resistencia: - Compresión - Flexión - Tracción - Modulo Elástico	Rodas Alvarez Claudia Fiorella

Título de la Investigación:

Propiedades Físicas Y Mecánicas De Un Concreto Adicionando Fibra De Hoja De Piña

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
Compresión	Α	Correcto
Flexión	Α	Correcto
Tracción	Α	Correcto
Modulo Elástico	A	Correcto

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte	Clari	idad	Con	texto	Con	gruen	22.000.000	ninio del structo
	F'c=210kg/cm ²	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		X	
2	Flexión		X	X		X		Х	
3	Tracción	X		Х		X		Х	
4	Modulo Elástico	X		X		X		X	
	F'c=280kg/cm²	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		Х	
2	Flexión		X	X		X		Х	
3	Tracción	X	//	X		X		Х	
4	Modulo Elástico	X			X	X		X	

Observaciones (precisar si hay suficiencia):

Si presenta suficiencia

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No aplicable () Apellidos y nombres del juez validador: Colunche Nuñes Wilinton

Felipe

Especialidad: Ingeniero Civil

Wilinton F. Colunche Nuñes INGENIERO CIVIL CIP. N° 239344

> Juez Experto

Ficha de validación según AIKEN

Datos generales

	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Flores Jauregui Jhonatan Alexander	Ingeniero Civil	Prueba de resistencia: - Compresión - Flexión - Tracción - Modulo Elástico	Rodas Alvarez Claudia Fiorella
Título de la Invest Propiedades Física		In Concreto Adicionar	ndo Fibra De Hoja

De Piña

Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
Compresión	A	Correcto
Flexión	A	Correcto
Tracción	A	Correcto
Modulo Elástico	A	Correcto

Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte	Clar	idad	Con	texto	Con	gruen	77.5	ninio de structo
	F'c=210kg/cm ²	Si	No	Si	No	Si	No	Si	No
1	Compresión	Х		X		X		Х	
2	Flexión	Х		Х		X		Х	
3	Tracción	Х		Х		X		Х	
4	Modulo Elástico	X		Х		X		Х	
	F'c=280kg/cm²	Si	No	Si	No	Si	No	Si	No
1	Compresión	Х		Х		X		Х	
2	Flexión	X		X		X		X	
3	Tracción	X		X		X		X	
4	Modulo Elástico	X			X	X		Х	
		1						1	

Observaciones (precisar si hay suficiencia):

Si presenta suficiencia

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No

aplicable () Apellidos y nombres del juez validador: Flores Jauregui

Jhonatan Alexander

Especialidad: Ingeniero Civil

Jhonatan A. Flbres Jauregui INGENIERO CIVIL CIP. N° 260502

> Juez Experto

Ficha de validación según AIKEN

i. Datos generales

Apellidos y nombres del informante	Cargo o Institución donde labora	Nombre del instrumento de evaluación	Autor del Instrumento
Ramos Cobeñas Erwin Hassan	Ingeniero Civil	Prueba de resistencia: - Compresión - Flexión - Tracción - Modulo Elástico	Rodas Alvarez Claudia Fiorella

Propiedades Físicas Y Mecánicas De Un Concreto Adicionando Fibra De Hoja De Piña

II. Aspectos de validación de cada Item

Estimado complete la siguiente tabla después de haber observado y evaluado el instrumento adjunto. Escriba (A) acuerdo o (D) desacuerdo en la segunda columna. Asimismo, si tiene alguna opción o propuesta de modificación, escriba en la columna correspondiente.

ITEMS	ACUERDO O DESACUERDO	MODIFICACIÓN Y OPINIÓN
Compresión	Α	Correcto
Flexión	Α	Correcto
Tracción	A	Correcto
Modulo Elástico	A	Correcto

III. Opinión de aplicabilidad del instrumento certificado de validez de contenido del instrumento

	Dimensiones/Íte ms	Claridad		Contexto		Congruen cia		Dominio del constructo	
	F'c=210kg/cm ²	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		X		X		Х	
2	Flexión	Х		Х		X		Х	
3	Tracción	Х		Х	1	X		X	
4	Modulo Elástico	X		Х	1	X		X	
	F'c=280kg/cm²	Si	No	Si	No	Si	No	Si	No
1	Compresión	X		Х	1	X		X	
2	Flexión	X		X		X		X	
3	Tracción	X		X		X		X	
4	Modulo Elástico	X		X		X		Х	

Observaciones (precisar si hay suficiencia):

Si presenta suficiencia

Opinión de aplicabilidad: Aplicable (X) Aplicable después de corregir () No

aplicable () Apellidos y nombres del juez validador: Ramos Cobeñas

Erwin Hassan

Especialidad: Ingeniero Civil

Erwin H. Ramos Cobeñas INGENIERO CIVIL CIP. Nº 236062 Juez

Experto

MODELO DE CARTA DE AUTORIZACIÓN PARA EL RECOLECCIÓN DE LA

INFORMACIÓN

Pimentel, 15 de septiembre de 2022

Quien suscribe:

Sr. Wilson Olaya Aguilar

Representante Legal – Empresa Laboratorio de suelos y materiales LEMS W&C

AUTORIZA: Permiso para recojo de información pertinente en función

del proyecto de investigación, denominado PROPIEDADES FÍSICAS Y

MECÁNICAS DE UN CONCRETO ADICIONANDO FIBRA DE HOJA DE PIÑA

Por el presente, el que suscribe, Wilson Olaya Aguilar representante legal de la empresa

Laboratorios de suelos y materiales LEMS W&C AUTORIZO a la estudiante

Claudia identificado con DNI N° 73714061, estudiante del Programa de Estudios

de Ingeniería Civil y autor del trabajo de investigación denominado Propiedades físicas

y mecánicas de un concreto adicionando fibra de hoja de piña al uso de dicha

información que conforma el expediente técnico así como hojas de memorias, cálculos

entre otros como planos para efectos exclusivamente académicos de la elaboración de

tesis, enunciada líneas arriba de quien solicita se garantice la absoluta confidencialidad

de la información solicitada.

Atentamente.

WILSON CLAYA AGUILAR

Nombre y Apellidos: Wilson Olaya Aguilar

Cargo de la empresa: Tec. Ensayos de materiales y suelos

DNI: 41437114

277