

FACULTAD DE INGENIERÍA, ARQUITECTURA Y URBANISMO

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS

Propiedades Microestructurales y Mecánicas de Suelos Adicionando Cenizas de Cáscara de Arroz y Fibras de Plátano

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO(A) CIVIL

Autor (es)

Bach. Olivares Guzmán Jimmy Yampier https://orcid.org/0000-0003-0054-2961

Bach. Urbina Silva Suzetty Nicole https://orcid.org/0000-0001-5200-4327

Asesor(a)

Dr. Muñoz Pérez Sócrates Pedro https://orcid.org/0000-0003-3182-8735

Línea de Investigación Infraestructura, Tecnología y Medio Ambiente

> Pimentel – Perú 2023

PROPIEDADES MICROESTRUCTURALES Y MECÁNICA DE SUELOS ADICIONANDO CENIZAS DE CÁSCARA DE ARROZ Y FIBRAS DE PLÁTANO

_					,						
Δ	nr	∩ŀ	าล	\sim 1	റ	n	del	111	:а	М	0
$\overline{}$	P!	v	Ju	v	v		uc.	u	u	u	v

MAG. VILLEGAS GRANADOS LUIS MARIANO

Presidente del Jurado de Tesis

MAG. SALINAS VASQUEZ NESTOR RAUL

Secretario del Jurado de Tesis

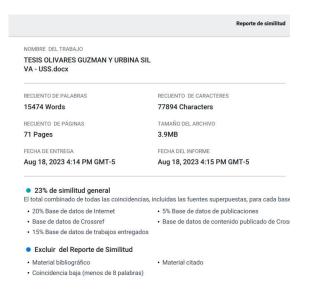
MAG. REINOSO SAMAME JORGE ANTONIO

Vocal del Jurado de Tesis

DECLARACIÓN JURADA DE ORIGINALIDAD

Quienes suscriben la DECLARACIÓN JURADA, somos egresado (s) del Programa de Estudios de la Escuela Profesional de **INGENIERIA CIVIL** de la Universidad Señor de Sipán S.A.C, declaro (amos) bajo juramento que soy (somos) autor(es) del trabajo titulado:

PROPIEDADES MICROESTRUCTURALES Y MECÁNICAS DE SUELOS ADICIONANDO CENIZAS DE CÁSCARA DE ARROZ Y FIBRAS DE PLÁTANO


El texto de mi trabajo de investigación responde y respeta lo indicado en el Código de Ética del Comité Institucional de Ética en Investigación de la Universidad Señor de Sipán, conforme a los principios y lineamientos detallados en dicho documento, en relación con las citas y referencias bibliográficas, respetando el derecho de propiedad intelectual, por lo cual informo que la investigación cumple con ser inédito, original y autentico.

En virtud de lo antes mencionado, firman:

Olivares Guzmán Jimmy Yampier	48591592	Jul (6
Urbina Silva Suzetty Nicole	72934907	Light

* Porcentaje de similitud turnitin:23%

Pimentel, 21 de Mayo de 2023.

Dedicatoria

Este trabajo está dedicado a Dios, mis padres Juan y Nelva, mis hermanos Mayra y Samyr y a todas las personas que me mostraron su apoyo incondicional a largo de mi carrera universitaria hasta lograr el título profesional.

Jimmy Yampier Olivares Guzmán

Dedicado a Dios, a mi madre Nery, mi abuela María y mi tía Violeta por ser las mujeres que me inspiraron e impulsaron, siendo los pilares que me sostuvieron en los momentos difíciles y me apoyaron en cada una de mis decisiones a lo largo de mi vida universitaria hasta alcanzar el título profesional.

Suzetty Nicole Urbina Silva

Agradecimientos

A Dios por la vida, por protegernos, guiarnos y darnos sabiduría.

A nuestras familias, por ser nuestro apoyo y sostén a lo largo de nuestra formación

profesional.

A mis docentes universitarios, por compartir sus conocimientos en las diferentes

ramas de la ingeniería durante este tiempo.

Jimmy Olivares G. y Suzetty Urbina S.

"Jehová es mi pastor; nada me faltará"

Salmos 23

Índice

Dec	dicatoria	1	4
Agr	adecim	entos	5
Índi	ice de ta	ablas, figuras y fórmulas (de ser necesario)	7
Res	sumen .		9
Abs	stract		. 10
I.	INTRO	DUCCIÓN	. 11
	1.1.	Realidad problemática	. 11
	1.2.	Formulación del problema	. 27
	1.3.	Hipótesis	. 27
	1.4.	Objetivos	. 27
	1.5.	Teorías relacionadas al tema	. 28
II.	MATE	RIALES Y MÉTODO	. 40
	2.1.	Tipo y Diseño de Investigación	. 40
	2.2.	Variables, Operacionalización	. 42
	2.3.	Población de estudio, muestra, muestreo y criterios de selección	. 45
	2.4.	Técnicas e instrumentos de recolección de datos, validez y confiabilidad.	. 46
	2.5.	Procedimiento de análisis de datos	. 49
	2.6.	Criterios éticos	. 60
III.	RESU	_TADOS Y DISCUSIÓN	. 62
	3.1.	Resultados	. 62
	3.2.	Discusión	. 75
	3.3.	Aporte de la investigación	. 77
IV.	CONC	LUSIONES Y RECOMENDACIONES	. 79
	4.1.	Conclusiones	. 79
	4.2.	Recomendaciones	. 80
REI	FEREN	CIAS	. 82
ANI	EXOS		. 91

Índice de tablas, figuras y fórmulas (de ser necesario)

Índice de tablas

Tabla I Clasificación de los suelos por el tamano de sus particulas	29
Tabla II Tamices según abertura	31
Tabla III Clasificación de los suelos según su índice de plasticidad	32
Tabla IV Categorías de sub rasante	34
Tabla V Composición química de la CCA	37
Tabla VI Matriz de Operacionalización de Variables	43
Tabla VII Cantidad de ensayos realizados por tipo	46
Tabla VIII Contenido puzolánico de CCA según temperaturas	56
Tabla IX Porcentaje de óxidos presentes por cada temperatura	64
Tabla X Propiedades físicas y mecánicas del suelo arcilloso	63
Tabla XI Concentración de las fases cristalinas en la muestra	71
Tabla XII Composición química medida por EDS en diferentes regiones	74
Índice de Figuras	
Fig. 1 Estructura del procedimiento para el desarrollo de la investigación	49
Fig. 2 Zona de extracción de muestra de suelo	50
Fig. 3 Muestra de ensayo de contenido de humedad	51
Fig. 4 Granulometría del suelo natural	52
Fig. 5 Ensayo de límite líquido y plástico	53
Fig. 6 Obtención de CCA a diferentes temperaturas	54
Fig. 7 Proceso de tamizado por la malla N°100 de la muestra de ceniza	54
Fig. 8 Diferentes rangos de temperatura de la CCA	55
Fig. 9 Tallo y Fibra de plátano (FDP)	56
Fig. 10 Longitud de fibra FPD y espesor	57
Fig. 11 Suelo natural + % CCA	57

Fig.	12 Suelo natural + % óptimo de CCA +%FDP	58
Fig.	13 Temperatura óptima de quemado de CCA	64
Fig.	14 Curva granulométrica del suelo arcilloso	62
Fig.	15 Densidad Máxima Seca por cada adición de CCA	65
Fig.	16 Contenido de Humedad Óptimo por cada adición de CCA	66
Fig.	17 CBR al 95% a 0.1" y 0.2" por cada muestra	67
Fig.	18 Densidad Máxima Seca por cada adición de FDP	68
Fig.	19 Contenido de Humedad Óptimo por cada adición de FDP	69
Fig.	20 CBR al 95% a 0.1" y 0.2" por cada muestra	70
Fig.	21 Difractograma de rayos X de la muestra junto con las fases cristalinas identificadas	71
Fig.	22 a) Micrografía de la muestra a una magnificación de 100x, b) Espectro de EDS para el área	}
total		72
Fig.	23 Micrografía de la muestra a una magnificación de 300x con regiones de interés señaladas	.73
Fig.	24 a)Espectro de EDS para región P1, b) para P2 y c) para P3	73

Resumen

El suelo arcilloso tiene un efecto desfavorable para trabajos de pavimentación en la ingeniería, como consecuencia de su baja capacidad portante y los cambios volumétricos a los que se ve afectado. La ceniza de cáscara de arroz (CCA) tiene una alta actividad puzolánica, que sumado a los aportes de las propiedades de la fibra de plátano (FDP) pueden ser una alternativa rentable y ecológica en el aumento de la resistencia de este tipo de suelo. La presente investigación, tiene como objetivo determinar las propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano, para lo cual se realizaron ensayos mecánicos de proctor modificado y california bearing ratio (CBR) a muestras de suelo natural adicionando porcentajes de 5, 10, 15 y 20% de CCA y posteriormente al óptimo porcentaje de CCA añadirle el 0.1, 0.3, 0.5 y 0.7% de FDP, obteniéndose como resultado que el suelo mejora sus propiedades mecánicas a través de la adición del 10% de CCA y 0.5% de FDP, obteniendo un incremento en su CBR de 5.03% 0.1" y 6.87% a 0.2". Los ensayos microestructurales de Difracción de Rayos X (DRX) y Microscopía electrónica de barrido (SEM) con EDS, determinaron que la muestra con 10% de CCA y 0.5% de FDP presentó en sus fases cristalinas un alto porcentaje de cuarzo, aluminosilicatos y calcita; mientras que, dentro de su composición química se encontró alta presencia de sílice y carbono proporcionados por la CCA y FDP respectivamente.

Palabras Clave: ceniza de cáscara de arroz, fibra de plátano, suelo arcilloso, CBR, ensayos microestructurales.

Abstract

Clay soil has an unfavorable effect on paving works in engineering, as a consequence

of its low bearing capacity and the volumetric changes to which it is affected. Rice husk ash

(RHA) has a high pozzolanic activity, which added to the contribution of the properties of

banana fiber (PF) can be a cost-effective and ecological alternative to increase the resistance

of this type of soil. The objective of this research is to determine the microstructural and

mechanical properties of soils by adding rice husk ashes and banana fibers, for which

mechanical tests of modified proctor and California bearing ratio (CBR) were performed on

samples of natural soil by adding percentages of 5, 10, 15 and 20% of CCA and then to the

optimum percentage of CCA add 0. 1, 0.3, 0.5 and 0.7% of FDP, obtaining as a result that the

soil improves its mechanical properties through the addition of 10% of CCA and 0.5% of FDP,

obtaining an increase in its CBR of 5.03% 0.1" and 6.87% at 0.2". The microstructural tests of

X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) with EDS, determined that

the sample with 10% CCA and 0.5% of FDP presented in its crystalline phases a high

percentage of quartz, aluminosilicates and calcite; while, within its chemical composition it was

found high presence of silica and carbon provided by the CCA and FDP respectively.

Keywords: rice husk ash, banana fiber, clay soil, CBR, microstructural tests.

10

I. INTRODUCCIÓN

1.1. Realidad problemática.

Dentro de los diversos campos de la ingeniería, [1] afirman que, uno de los más esenciales para la realización de cualquier tipo de proyecto de infraestructura es la geotecnia, desde el punto de vista de esta rama, en los últimos años se ha identificado la creciente escasez de suelos, lo que ha derivado en el aumento de los esfuerzos en recuperar suelos que anteriormente se consideraban inutilizables, esto mediante la formulación de nuevas técnicas que permitan la mejora de sus propiedades, Un ejemplo de ello se presenta en áreas con predominancia de suelos arcillosos, mismos que antiguamente, eran reemplazados por material de préstamo, debido a que tal y como señalan [2], presenta una capacidad portante baja, que provocaría un comportamiento inadecuado ante la aplicación de cualquier tipo de carga, la acción de reemplazar este material conlleva a sobrecostos por excavación y transporte. Frente a esta realidad [3] nos indican que, se adoptó las técnicas de estabilización como una alternativa más económica y que garantizaba la mejora en la reducción de deformaciones tanto laterales, verticales como los asentamientos, pudiendo realizarse con medios químicos o mecánicos, tal es caso de la cal, el cemento y las cenizas volantes; sin embargo, aunque el uso de estas tecnologías sean beneficiosas para el adecuado desarrollo de los proyectos, muchas de ellas tienen un alto impacto ambiental.

Los suelos arcillosos, tienen como principales características su baja capacidad portante y su reacción a la variación de humedad aumentando y contrayendo su volumen, estos cambios volumétricos ejercen una enorme presión en la infraestructura que se apoya en este [4]. Los asentamientos, producen según [5] daños, como grietas en el suelo, grietas en los edificios, levantamiento y formación de surcos en el pavimento, caída del revestimiento del canal, etc. Por consiguiente, en casos como los sistemas de pavimentos constituidos en este tipo de suelos [6] nos señalan que, los daños ascienden a miles de millones de dólares anualmente, por ejemplo, en países como EE.UU las pérdidas anuales ocasionadas por

daños en suelos expansivos, superan los 15.000 millones de dólares, que sumado a la inflación y el crecimiento poblacional, en un año el daño podría exceder las pérdidas combinadas de fenómenos naturales; por otra parte en países como Reino Unido, Sudáfrica y Arabia Saudita para la década de los 80 y 90, se produjeron anualmente daños que ascendían a 0.15 billones, 4 millones y 0.30 billones de dólares respectivamente.

Tomando en consideración el negativo impacto ambiental de materiales como el cemento, utilizado también en el mejoramiento de suelos, y considerando que anualmente se producen cantidades importantes de subproductos de desecho agrícola en el mundo, estos representan una alternativa con alto potencial para reutilizarse, especialmente si muestran propiedades cementantes, como el caso de las cenizas de cáscara de arroz (CCA), las cuales se componen principalmente de óxido de silicio (SiO2) que, al ser un material puzolánico, tiene el potencial de mezclarse con otros materiales como el cemento y la cal. [7]. Según [8] en China, país productor de arroz más grande del mundo, se generan aproximadamente 200 millones de toneladas de arroz, lo que representa alrededor de un tercio de la producción total de arroz del mundo, y si se quemarán todas las cáscaras de arroz se pueden producir aproximadamente 8 millones de toneladas de cenizas por año. La utilización de fibras como refuerzo también mejora las propiedades del suelo, ya que proporciona según [9] una mayor estabilidad a su masa al aumentar su relación de carga. Así mismo, otro recurso que se viene explorando como refuerzo del suelo, son las fibras naturales, debido a que son amigables con el medio ambiente, de fácil adaptación y adquisición, añadiéndose que, en comparación con los materiales a base de fibra sintética, resulta ser más económico. Entre las fibras utilizadas [10] nos mencionan que se encuentra la fibra de plátano, abundante en calcio y potasio; componentes que han demostrado mejorar la resistencia del suelo.

Según [11] la situación de la infraestructura vial del Perú aún sigue en desarrollo, en muchas provincias alejadas de las ciudades principales no existe un adecuado sistema de pavimentos que permita la conexión entre pueblos, citando un ejemplo encontramos a las

regiones de la Selva, con más del 60% de caminos sin asfaltar, mientras que, en el noreste, un 80% de las vías sin pavimentación son utilizadas para el tránsito de vehículos. Con respecto a la producción de arroz en el Perú, se estima que se producen alrededor de 3 millones de toneladas de cultivo de arroz anualmente, obteniéndose un promedio de 900 mil toneladas de cáscara de arroz y por cada tonelada de arroz molido se obtiene un 30 % de cascarilla de arroz, que al quemarse llega a producir 15 % de CCA. [12].

En la actualidad se han realizado diversas investigaciones que estudian el comportamiento del suelo a través de la adición CCA y FDP como componentes que modifican las propiedades del suelo, tal es el caso de [13] en su artículo "The Impact of rice husk ash waste addition towards landfill stability" tuvieron como objetivo conocer la influencia de la adición de cenizas de cáscara de arroz en suelos, para ello utilizaron CCA con un contenido de sílice de 67.23% obtenidas de un molino de arroz. Las pruebas realizadas en este estudio incluyen las de compactación y las pruebas de CBR en suelos adicionando 0%, 5%, 10% y 15% de CCA. Los resultados mostraron que el contenido óptimo de humedad (CHO) muestra un aumento desde el valor del suelo original de 24.55% a 29.79% y la máxima densidad seca (DMS) disminuyó de 1.451 g/cc a 1.377 g/cc conforme se incrementaba la adición hasta 15% de CCA; el valor del CBR aumentó de 11.65% a 20.39% con una adición de 5% de CCA para luego mostrar una tendencia a la baja. Llegando a la conclusión que la adición de CCA con un contenido de 5% es el valor más eficaz utilizado para aumentar la capacidad de carga del suelo.

[14] en su artículo "Stabilization of black cotton soil using rice husk ash for flexible pavement construction" tuvieron como objetivo mezclar los materiales de desecho agrícola como la ceniza de cáscara de arroz con el suelo con el fin de mejorar la subrasante. Se realizó la prueba de CHO y DMS, CBR en suelos adicionados con 0%,5%,10%,15%, 20%,25%,30%,35%,40% de CCA. Los resultados mostraron que el CHO de la muestra patrón es de 23% incrementándose progresivamente hasta 28.70% hasta la adición de 40% de CCA

y la máxima densidad seca se aumenta de 1.41 g/cc a 1.44 g/cc en un porcentaje de 10% de CCA para luego mostrar una tendencia decreciente; el valor del CBR aumentó de 3.65% a 5.23% con una adición de 10% de CCA. Llegaron a la conclusión que el suelo estabilizado con 10% de CCA muestra una mejora en las propiedades de resistencia, asimismo la reducción de la densidad seca después del nivel de reemplazo del 10 % se debe al resultado del proceso de floculación y aglomeración de partículas de suelo que al compenetrarse ocupan espacios más grandes conduciendo a una caída en el valor correspondiente a la DMS.

[15], en su artículo "Effects of basalt fibres on strength and permeability of rice husk ash-treated expansive soils" tuvieron como objetivo mejorar las capacidades de compresión y las características de permeabilidad de los suelos arcillosos tratados con cenizas de cáscara de arroz utilizando fibra de basalto, para ello utilizaron CCA quemadas a una temperatura controlada entre 650 -700 °C obteniendo un alto contenido de sílice del 91.10%. Se realizaron los ensayos de CHO y DMS en suelos adicionando el 0%,5%,10%,15% de CCA. Los resultados mostraron que el CHO en la muestra patrón es de 26 % y se incrementó a 34% con una adición de 15% de CCA; y la DMS disminuyó de 1.6 g/cc a 1.3 g/cc conforme va aumentando la adición de CCA. Llegando a la conclusión que las CCA ayuda a mejorar las propiedades mecánicas de suelo, siendo un material adecuado para la combinación contra fibras sintéticas o naturales.

[16], en su artículo "Effects of controlled burn rice husk ash on the geotechnical properties of soil", tuvieron como objetivo analizar los efectos de la quema controlada de ceniza de cáscara de arroz en las propiedades geotécnicas de suelo, para ello realizaron la quema de cáscara de arroz a una temperatura que oscilaba entre los 650°C-700°C. El suelo de estudio tuvo una gravedad específica de 2.7 g/cc, DMS de 1.696 g/cc, CHO de 17.50% y un límite líquido de 37.5%, límite plástico de 29.7%. Se realizaron una serie de pruebas de laboratorio como proctor, california bearing ratio (CBR) y pruebas de microscopía electrónica

de barrido (SEM) en suelo con adición de 0%,5%,10% y 15% de ceniza de cáscara de arroz y se prepararon tres especímenes para cada tipo de mezcla para realizar las pruebas de laboratorio. Los resultados mostraron que el CHO aumentó de 17.5% en prueba patrón a 20%,24% y 28.2% según el porcentaje adicionado, pero la DMS se redujo en 21.3% con el incremento del CCA pasando de 1,696 g/cc a 1,334 g/cc, el valor del CBR aumentó de 42.2% a 58.9% con un porcentaje óptimo de 5% y la prueba SEM permitió observar que el suelo con 5% de CCA presentaba el mejor enlace mecánico entre las partículas de suelo y CCA con reacciones puzolánicas. Llegando a la conclusión que la adición inicial de 5 % de CCA con suelo mostró la mejor mejora de las propiedades geotécnicas y que con el aumento de CCA los valores en sus ensayos tenían una tendencia decreciente.

[17], en su artículo "Study of expansive soil stabilized with agricultural waste", tuvieron como objetivo estabilizar el suelo expansivo mediante la adición de ceniza de cáscara de arroz y utilizar los deshechos agrícolas en los suelos. Se realizó los ensayos de CHO y DMS, CBR en suelos adicionados con 0%, 6%, 12%, 18%, 24% de CCA. Los resultados mostraron que el CHO aumentó de 15% a 23% y la DMS disminuyó de 1.7 g/cc a 1.4 g/cc conforme iba incrementándose el contenido de CCA; el valor del CBR a 0.1" mejoró de 1.65% a 1.85% y a 0.2" mejoró de 2.2% a 2.3% en una dosificación óptimo de 12% de CCA. Llegando a la conclusión que el suelo mejora su resistencia adicionando 12% de CCA, asimismo las partículas de sílice en CCA no solo son capaces de reemplazar el ion intercambiable que se encuentra en los minerales arcillosos, sino que también participan en la mejora de la resistencia, lo que resulta en un menor comportamiento de contracción e hinchazón para los minerales arcillosos.

[18], en su artículo "Modification of mechanical properties of expansive soil from North China by using rice husk ash", tuvieron como objetivo investigar el efecto del uso de la CCA como estabilizadores de suelos, para ello utilizaron CCA procesada obteniéndose su composición química. El suelo de estudio tuvo una gravedad específica de 2.58 g/cc, un CHO

de 13.35%, LL de 67%, LP de 36.09%. Se realizó los ensayos de CHO, DMS, y SEM en suelos adicionando el 0%, 4%,8%,12% y 16% de CCA. Los resultados mostraron que el CHO en la muestra patrón es de 27% y disminuyó a 19% con 4% de CCA para luego ir aumentando gradualmente hasta 22% con 16% de CCA; la DMS disminuyó de 1.52 g/cc a 1.49 g/cc con 16% de CCA. Llegando a la conclusión que el suelo mejora sus propiedades mecánicas adicionando 16% de CCA.

[19] en su artículo "Potentials of Cement Kiln Dust and Rice Husk Ash Blend on Strength of Tropical Soil for Sustainable Road Construction Material" tuvieron como objetivo explorar los potenciales del polvo de horno de cemento y CCA en suelos, para ello utilizaron CCA de una fábrica de arroz para luego obtener su composición química. Se realizó la prueba de CHO y DMS, CBR en suelos adicionados con 0%,3%,6%,9%, 12%,15% de CCA. Los resultados mostraron que el CHO de la muestra patrón aumenta de 12.95% a aprox. 14% con 15% de CCA, esta mejora podría atribuirse a la naturaleza hueca (porosa) de las partículas de CCA, que a cambio requerirán más agua para la lubricación perfecta de las mezclas de suelo; la DMS disminuyó de 1.83 mg/m3 a 1.78 mg/m3, esto puede acreditarse a que las CCA tiene una gravedad específica menor a comparación del suelo; el valor del CBR aumento de 5% a 8% con una adición de 15% de CCA. Llegaron a la conclusión que la resistencia del suelo aumenta a medida que se adiciona un mayor porcentaje de CCA, considerando que su última dosificación es de 15% de CCA, por lo tanto, es su valor óptimo que ayudará a mejorar el material de la subrasante en pavimentaciones o carreteras.

[20] en su artículo "Geotechnical and microstructural properties ofcement treated laterites stabilized with rice huskash and bamboo leaf ash" tuvieron como objetivo investigar las propiedades geotécnicas y microestructurales de lateritas tratadas con cemento y estabilizadas con CCA y ceniza de hoja de bambú, para ello utilizaron CCA quemadas a una temperatura de 650 °C a 800 °C para luego determinar su composición química. Se realizó la prueba de CHO y DMS, CBR en suelos adicionados con 0%,5%,10%,15%, de CCA. Los

resultados mostraron que el CHO aumentó de 15% a 20% conforme se incrementaba la dosificación hasta 15% de CCA; del mismo modo la máxima densidad seca disminuyó de 1.45 g/cc a 1.35 g/cc; el valor del CBR aumentó de 4% a 9% con un óptimo de 6% de CCA. Llegaron a la conclusión que la resistencia del suelo mejorado sus propiedades cuando se adiciona 6% de CCA.

[21], en su artículo "Strength and microfabric of expansive soil improved with rice husk ash and lime", tuvieron como objetivo determinar la resistencia del suelo mejorado con CCA y cal, para ello utilizaron CCA procesada obteniéndose su composición química. Se realizó los ensayos de CHO y la prueba SEM en suelos adicionando el 0%, 5%,10%,15% y 20% de CCA. Los resultados mostraron que el CHO aumentó de 28% a 40% y que se formaron gradualmente en el suelo silicato de calcio octahidratado, aluminato de calcio trihidratado y silicato de calcio monohidratado. Llegando a la conclusión que el suelo mejora sus propiedades mécanicas con una adición de 15% de CCA y que la razón principal del aumento de la fuerza del suelo es que por el efecto de la cristalización que llena los poros del suelo haciendo que las partículas se conecten entre sí.

[22], en su artículo "Improvement of expansive soils stabilized with rice husk ash (CCA)", tuvieron como objetivo estabilizar suelo expansivo con CCA. El suelo de estudio tuvo una gravedad específica de 2.669 g/cc, un CHO de 12.28%, un LL de 46.25%, LP de 35.18%. Se realizaron una serie de pruebas de laboratorio como proctor, CBR en suelo con adición de 0%,3%,6% y 9% de CCA. Los resultados mostraron que el CHO aumentó de 31.44% a 33.25% y la DMS se incrementó de 1.383 g/cc a 1.406 g/cc en adición de 9%, el valor del CBR de 0.1" se incrementó de 0.053% a 0.122% y el CBR de 0.2" se incrementó de 0.051% a 0.104% con una adición de 6% de CCA. Llegando a la conclusión que la adición del 6% de CCA aumenta las propiedades mecánicas del suelo y posteriormente la tendencia es decreciente.

[23], en su artículo "Comparative effect of microbial induced calcite precipitate, cement and rice husk ash on the geotechnical properties of soils", tuvieron como objetivo conocer los efectos de la adición de calcita inducido por microbios, cemento y CCA sobre las propiedades geotécnicas de los suelos. Se realizaron una serie de ensayos de laboratorio para determinar el CHO y DMS, CBR en suelos adicionando el 0%, 5%,10%,15% de CCA. Los resultados mostraron que el CHO disminuyó de 18% a 15.5% y la DMS aumentó de 1.63 a 1.79 g/cc en tratamientos de suelo de CCA de 5 a 10%, asimismo en una adición de 15% de CCA el CHO aumentó de 18 % a 19% y la DMS disminuyó de 1.63 a 1.60 g/cc; el valor del CBR disminuyó de 12.30% a 11.20% para suelos adicionados con 5 % de CCA, aumentó de 12.30% a 14.50% con 10% de CCA y disminuyó de 12.30% a 10% con 15% de CCA. Llegando a la conclusión que el suelo mejora sus propiedades geotécnicas con una adición de 10% de CCA.

[24] en su artículo "Influence of rice husk ash on sub-grade bearing strength in stabilization of expansive soils for low volume roads in Kenya" tuvieron como objetivo estudiar las variaciones en la resistencia portante de la sub rasante de la arcilla cuando se adicionan CCA, cal y cemento, para ello utilizaron CCA quemada, para luego determinar su composición química. Se realizó la prueba CBR en suelos adicionados con 0%,5%,10%,15% y 20% de CCA. Los resultados mostraron un aumento de CBR de 2% a 5% por la existencia de una formación gradual de compuestos cementosos entre la CCA y el hidróxido de calcio presentes de forma natural en el suelo. Llegando a la conclusión que se observa unas mejoras en las propiedades geotécnicas de los suelos con una adición de 20% de CCA

[25] en su artículo "Influence of Rice Husk Ash On the Swelling and Strength Characteristics of Expansive Soil" tuvieron como objetivo estudiar el efecto de la CCA en las características de expansión, contracción y resistencia del suelo. Las pruebas realizadas en este estudio incluyen el ensayo de CBR en suelos adicionados con 0%, 5%, 10% y 20% de CCA. Los resultados mostraron que el valor del CBR en muestra patrón es 1% y se incrementó a 7% con una adición de 20% de CCA, este aumento era progresivo conforme se

adicionaba mayor cantidad de CCA. Llegando a la conclusión que la adición de CCA en suelos aumenta su resistencia a la penetración existiendo un aumento considerable en el valor del CBR conforme se adiciona mayor porcentaje de CCA, en esta investigación el óptimo fue la adición de 20% de CCA.

[26], en su artículo "Compaction characteristics of Bangkok clay stabilized using rice husk ash, bottom ash, and lime" tuvieron como objetivo estudiar el potencial de las cenizas de fondo, CCA como material de reemplazo del suelo natural. El suelo de estudio tuvo una gravedad específica de 2.68 g/cc, un CHO de 79.81%, una DMS equivalente a 1.49 g/cc, un LL de 66.80% y un LP de 29.45%. Se realizaron los ensayos de CHO y DMS, en suelos adicionando el 0%,10%,20%,30%y50% de CCA. Los resultados mostraron que el CHO muestra un aumento de 22.5% de la muestra patrón a 70%, asimismo la DMS disminuye de 1.49 g/cc a 0.85 g/cc, en ambas situaciones cuando se incrementa la ceniza hasta llegar a adicionar 50% de CCA. Llegando a la conclusión que la prueba de compactación mejora conforme se incrementa la adición de CCA al suelo considerando el gran material puzolánico que contiene dicho material.

[27], en su artículo "Influence of rice husk ash source variability on road subgrade properties", tuvieron como objetivo investigar la influencia de la variabilidad de la CCA en las propiedades geotécnicas de la subrasante, para ello realizaron el análisis químico de tres muestras diferentes de cenizas de cáscara de arroz obteniendo concentraciones de sílice 84.55%, 76.30% y 70.12%. Se realizaron una serie de ensayos de laboratorio para determinar el CHO y la DMS, CBR en suelos adicionando el 0%, 5%,10%,15% y 20% de CCA. Los resultados mostraron que en la muestra de CCA con mayor contenido de sílice el CHO aumentó de 18.3% a 21.63% , siguiendo la misma tendencia para las muestras restantes 18.3% a 21.63% y 18.3% a 23.06% respectivamente; la DMS disminuyó de 1.72 g/cc a 1.28 g/cc a medida que aumentó la adición de CCA , de manera similar en las muestras restantes hubo disminuciones de 1.72 kg/m3 a 1.31 kg/m3 y 1.72 kg/m3 a 1.26 kg/m3 respectivamente;

el valor del CBR de la muestra patrón fue de 6.89% y se observó una mejora porcentual de 63.43%, 20.03% y 14.51% cuando se adicionaba 10% de CCA . Llegando a la conclusión que el suelo mejora sus propiedades mecánicas a partir de una adición de 10% de CCA, considerando que este el aporte de CCA puede depender de la composición química de la ceniza.

[28] en su artículo "Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads" tuvieron como objetivo mejorar la resistencia de suelo arcilloso prestado utilizando desechos agrícolas y ganaderos para reducir costes, para ello utilizaron CCA proveniente de un molino y quemada en un rango de temperatura de 600 a 700°C para posteriormente determinar su composición química. Las pruebas realizadas en este estudio incluyen los ensayos de compactación para determinar el CHO y la DMS, CBR en suelos adicionados en 0%, 2.5%,5%,7.5%,10% y 12.5% de CCA. Los resultados mostraron un CHO en muestra patrón de 16% el cual se incrementó gradualmente hasta llegar a 23% con adición de 12.5% de CCA, del mismo modo la DMS disminuye de 1.64 g/cc a 1.55 g/cc debido a la diferencia de gravedad específica entre ambos materiales; el valor del CBR muestra un incremento de 3% a 6.5% con una adición de 7.5% de CCA para luego disminuir su valor conforme se adiciona mayor cantidad de CCA. Llegando a la conclusión que el suelo mejora sus propiedades mecánicas con una adición de 7.5% de CCA sobre el peso del suelo debido a la creación gradual de compuestos cementosos entre las cenizas y el hidróxido de calcio contenido en el suelo.

[29] en su artículo "Performance evaluation of cement stabilized pond ash rice husk ash clay mixture as a highway construction material" tuvieron como objetivo investigar las características geotécnicas de arcilla mezclada con ceniza de estanque, CCA y cemento, para ello utilizaron ceniza de un molino de arroz local para posteriormente determinar su composición química obteniendo un contenido de sílice de 91.3%. Las pruebas realizadas incluyen la prueba de compactación proctor modificado y CBR en suelos adicionados con

0%,5%,10%,15% y 20% de CCA. Los resultados mostraron un aumento en el CHO de 16.5 % a 18.2% aproximadamente y una disminución en la DMS de 1.86 g/cc a 1.74 g/cc aprox, en función a los valores de la muestra patrón ; el valor del CBR aumentó de 1% a 14% con un contenido de CCA hasta un 10 % y esto después del aumento de CCA del 10 % al 15 % no mejora la capacidad de carga significativamente. Llegando a la conclusión que la fuerza del suelo aumenta con una adición de 10% de CCA al suelo, al poseer las cenizas un comportamiento puzolánico.

[30] en su artículo "Effect of Nano Additive on Mechanical Properties of Natural Fiber Reinforced Soil" tuvieron como objetivo investigar la fuerza y la conductividad hidráulica del limo orgánico bajo en plástico reforzado con fibra de banano y nano-sílice. Se realizaron pruebas de CHO y DMS en suelos adicionados con 0%, 0.25%, 0.5%, 0.75% y 1% de FDP. Los resultados mostraron que la DMS disminuyó de 1.68 g/cc a 1.58 g/cc con una adición de 1% de FDP en relación a la muestra patrón, asimismo el CHO se mantuvo constante en 17.5%. Llegando a la conclusión que la nano sílice presenta una influencia significativa en las fibras de plátano.

[31] , en su artículo "Influence of natural fibres in strengthening of black cotton", tuvieron como objetivo estabilizar con fibras naturales para mejorar las propiedades de ingeniería de suelo. Se realizaron los ensayos de CHO, DMS y CBR en suelos adicionados con 0.2%,0.4% y 0.6% de FDP. Los resultados mostraron que para una adición de 0.4% de FDP la DMS aumentó de 1.44 g/cc a 1.54% con un CHO de 20%; el valor del CBR a 0.1" aumentó de 11.09% a 11.69% y el CBR a 0.2" incrementó de 12.62% a 13.69%. Llegando a la conclusión que la adición 0.4% de FDP demuestra que la resistencia del suelo aumenta ligeramente por las propiedades de la fibra de plátano.

[32] en su artículo "Influence of Banana Fiber on Shear Strength of Clay Soil" tuvieron como objetivo investigar la influencia de la fibra de banano en el fortalecimiento del suelo. Se realizó la prueba de CBR en suelos adicionados con 0%,0.3% ,0.5% y 0.1% de FDP

respectivamente al peso del suelo. Los resultados mostraron que el CBR a 0.1" se incrementa de 2.5% a 7.5% con una adición de 0.50% de FDP y el CBR a 0.2" muestra un aumento de 4% a 15% con una adición de 1% de FDP. Llegando a la conclusión que la fibra de banano en suelo arcilloso podría usarse como material de refuerzo natural alternativo para aumentar la resistencia del suelo considerando un óptimo de 0.5% de FDP.

[33] en su artículo "Effect of natural fibers on the soil compaction characteristics", tuvieron como objetivo identificar el porcentaje óptimo de mezcla de fibras naturales para influir en las características de compactación. Para ello usaron fibras naturales como el banano, el kenaf y la fibra de coco como estabilizador natural del suelo con dosificaciones de 0.3%, 0.5% y 1% siendo secadas en un horno a 110 °C, y se realizaron ensayos de proctor estándar. Los resultados mostraron que los datos experimentales obtenidos de la prueba de compactación muestran que la DMS aumentaba de 1.65 g/cc a 1.78 g/cc para el 0.5% de FDP y el CHO se incrementó de 7% a 12% conforme se incrementaba la adición de FDP. Por lo tanto, la mezcla del 0,5 % con fibras de banano indicó la mejor cantidad posible de densidad seca y contenido de humedad entre otras fibras naturales.

[34] en su artículo "Soil stabilization by using banana fibre" tuvieron como objetivo la estabilización de suelo de algodón negro con fibra de plátano de manera aleatoria, para ello la fibra de banano se agrega hasta un 1,20 % al suelo expansivo a intervalos de 0,30 %. Se realizaron pruebas de CHO y DMS en suelos adicionados 0%, 0.3%, 0.6%, 0.9% y 1.2%. Los resultados mostraron que el CHO aumentó de 15% a 32.90% conforme se incrementa la adición de FDP, asimismo la DMS disminuye gradualmente de 1.50 g/cc a 1.22 g/cc

[35] en su artículo "Experimental study on improvement of soil subgrade reinforced with banana and coir fibers" tuvieron como objetivo estudiar la eficacia de las fibras naturales (fibras de coco y de plátano) en el fortalecimiento de la subrasante del suelo. Se realizaron pruebas de CBR en muestras de suelo antes y después de la adición de 0.25%,0.5%,0.75% y 1% de FDP. Los resultados mostraron la resistencia del suelo aumentó gradualmente de

5.4% a 24.9% con una adición de 1% de FDP. Llegando a la conclusión que el valor de CBR aumenta en función del incremento de la fibra en diferentes porcentajes.

[36] en su artículo "Effect of natural fiber on clayey soil" tuvieron como objetivo utilizar material de desecho natural para mejorar el suelo. Se realizó la prueba de DMS, y se midió la resistencia del suelo a través de la prueba de CBR en suelos adicionados con 0%, 0.25%, 0.5%,0.75%,1% de FDP. Los resultados mostraron que la DMS aumenta de 1.31 g/cc en muestra patrón a 1.52 g/cc con adición de 0.75% de FDP para luego disminuir en sus valores conforme se adiciona mayor porcentaje de FDP, asimismo considerado el valor óptimo de 0.75% de FDP el valor del CBR aumentó de 2% a 4.5%. Llegando a la conclusión que el suelo mejora sus propiedades adicionando 0.75% de FDP, esto debido a que la fibra, cuando se mezcla con el suelo, une las partículas del suelo mediante mecanismos entrelazados como una sola unidad.

[37], en su artículo "Stabilization of a Subgrade Composed by Low Plasticity Clay with Rice Husk Ash", tuvieron como objetivo determinar la influencia que tiene la CCA para estabilizar la subrasante de un pavimento, para ello utilizaron CCA proveniente de un molino de arroz para posteriormente obtener su composición química. Se realizaron los ensayos de CHO y DMS, CBR en suelos adicionando el 0%,10%,15% ,20% y 25% de CCA. Los resultados mostraron que el CHO en la muestra patrón es de 10.60% incrementándose a 19.80% gradualmente en función a la cantidad de ceniza adicionada y la DMS en la muestra patrón es de 1.694 g/cc disminuyendo a 1.508 g/cc conforme aumenta la adición de CCA; el valor del CBR aumentó de 4.30% a 20.70% al agregar 20% de CCA. Llegando a la conclusión que el suelo mejora sus propiedades mecánicas adicionando 20% de CCA, teniendo en cuenta que valores superiores a 20% de CBR es considerado una muy buena subrasante.

[38], en su artículo titulado "Strength, hydraulic, and microstructural characteristics of expansive soils incorporating marble dust and rice husk ash" tuvieron como objetivo evaluar las características de resistencia y consolidación de suelos expansivos tratados con polvo de

mármol y ceniza de cáscara de arroz. Se realizaron los ensayos de proctor y las pruebas de difracción de rayos X (DRX) y microscopía electrónica de barrido (SEM) en suelos adicionados con 4%,6%,8%,10% y 12% de MD y CCA respectivamente. Los resultados mostraron que el CHO aumentó de 19% a 25% y la DMS disminuyó de 1.69 a 1.52 g/cc para suelos tratados con CCA , la prueba de DRX obtuvo cuarzo, albita , montmorillonita y moscovita y muestra la formación de picos correspondientes a geles cementantes debido a la reacción puzolánica , las imágenes SEM muestran que las partículas de suelo sin tratar son voluminosas y menos esféricas a comparación de las partículas de suelo adicionadas con MD y CCA donde a 112 días de curado las microfisuras se minimizan significativamente teniendo una textura áspera aumentando la capacidad del suelo. Llegaron a la conclusión que los porcentajes óptimos de MD y CCA son 12% y 10% respectivamente, mientras que la prueba DRX indica que el comportamiento mineralógico y morfológico se vio afectado significativamente al adicionarse MD y CCA y mediante la micrografía SEM se pudo observar los cambios microestructurales, la carbonatación y la formación de compuestos cementosos en el suelo.

[39], en su artículo titulado "Morphology and mineralogy of rice husk ash treated soil for green and sustainable landfill liner construction" tuvieron como objetivo determinar el análisis mineralógico y la morfología del suelo tratado con CCA. Se realizaron las pruebas de DRX y SEM. Los resultados mostraron que al 2% y 4% de CHO los espectros DRX de suelo tratado con CCA indican presencia de cuarzo, caolinita y hematita, al 6% de CHO y 10% de CCA se observa la presencia de goethita, cuarzo y caolinita, mientras que mediante el SEM mostró presencia de Si al 42.86%, Fe al 19.87% y Al al 18.08% y se observa que el tamaño de los granos se vuelve más pequeño y los límites de los granos se distribuyen uniformemente después de la estabilización con CCA. Llegaron a la conclusión que el aumento de la humedad y CCA mejora la reacción de aglomeración entre la composición del material a través de la formación de un gel en forma acuosa que forma una malla de cadena de polímeros en el suelo.

[40], en su artículo titulado "Microestructural investigation and strength properties of clay stabilized with cement, rice husk ash and promoter" tuvieron como objetivo evaluar la mineralogía del suelo arcilloso y la morfología de la arcilla y los especímenes de arcillas mezclados con una composición variada de cemento y CCA. Se realizaron las pruebas microscopía electrónica de barrido con EDS. Los resultados mostraron una formación blanquecina de material cementoso al adicionar 3% de CCA sin considerar porcentaje de cemento, la prueba de difracción de rayos X mostró un alto porcentaje de sílice y alumina, y minerales como albita, montmorillonita, cuarzo en gran proporción; mientras que el EDS mostró 16.8% de carbono, 30.4% de oxígeno, 13.2% de aluminio, 24.6% de sílice, 10.8% de Hierro, 1.04% de Calcio y 1.14% de Magnesio. Llegaron a la conclusión que la resistencia de las muestras de suelo mezcladas con CCA aumentó cuatro veces, lo que indica que ésta puede sustituir al cemento significativamente.

[41], su artículo titulado "Justification of the resistance properties of microstructural changes in black cotton soil with rice husk ash and carbide lime in the presence of sodium salts", tuvo como objetivo estabilizar el suelo con CCA, CL y otros aditivos. Se realizaron las pruebas de DRX y SEM con EDS a muestras de suelo con 20% de CCA. Los resultados de DRX muestran un pico más pronunciado debido a la presencia de cuarzo como material predominante y montmorillonita en menor proporción; a su vez las imágenes SEM muestra que la adición de CCA provoca cambios estructurales en el suelo a través de la reducción de espacios vacíos. Llegaron a la conclusión que la morfología más densa con el tiempo de curado se asocia con el aumento de la resistencia.

[42], en su tesis titulada "Evaluación de la fibra de plátano en las propiedades mecánicas de la subrasante en suelos arcillosos, La Palma, Tumbes" tuvo como objetivo evaluar la influencia de la fibra de plátano en las propiedades mecánicas de la subrasante en suelos arcillosos. Se realizaron los ensayos de proctor modificado y CBR en suelos adicionados con 0.5%. 1% y 1.5% de FDP. Los resultados mostraron que el CHO incrementó

en 3.45% para una adición de 1% FDP en relación a la muestra patrón, por su parte la DMS aumentó de 1.87 g/cc a 1.94 g/cc, el valor del CBR aumentó de 3.6% a 6.8% con una adición de 0.5% de FDP, para luego ir disminuyendo su valor progresivamente. Llegaron a la conclusión que el suelo mejora su resistencia a partir de la adición de 0.5% de FDP en función al peso del suelo.

[43], en su artículo "Bearing capacity (CBR) of three clay soils incorporating banana pseudostem fiber in different percentages" tuvieron como objetivo determinar la capacidad portante de tres suelos arcillosos incorporando fibra de plátano. Se realizaron los ensayos de contenido de humedad óptimo y máxima densidad seca, en suelos adicionando el 0%,0.25%,0.50%,0.50% ,0.75% de FDP. Los resultados mostraron que el CHO disminuyó de 30% a 28.50%, 29% a 20% y 30% a 21.50% en función a la muestra patrón y 0.75% FDP; la DMS para el primer y tercer suelo aumentó de 1.336 g/cc a 1.505 g/cc y 1.41 g/cc a 1.436 g/cc respectivamente al 0.25% de FDP y en el caso del segundo suelo aumentó de 1.413 g/cc a 1.528 g/cc con 0.50%; el valor del CBR a 0.1" y 0.2" en los tres suelos se observa una aumento de la muestra patrón hacia la muestra adicionada con 0.25 de FDP pasando de 0.577 y 0.615 a 0.870 y 0.900, 0.37 y 0.465 a 1.185, 0.873 y 0.980 a 1.150 y 1.165 respectivamente. Llegando a la conclusión que la fibra de pseudotallo mejora las propiedades geotécnicas en los tres suelos estudiados con una incorporación de 0.25%, teniendo un incremento en valores de su CBR de 50.78%, 220.27% y 31.73% respectivamente.

La presente investigación parte a raíz de la presencia cada vez mayor de suelos arcillosos en áreas donde se proyectan obras de pavimentación, surgiendo la necesidad de buscar nuevas técnicas que mejoren sus propiedades mediante la utilización de agentes estabilizantes naturales y provenientes de residuos agrícolas, es por ello que resulta fundamental conocer si la adición de CCA y FDP influyen en las propiedades microestructurales y mecánicas de este tipo de suelo. Lo anterior permite ofrecer a la comunidad científica una nueva técnica de estabilización para suelos arcillosos mediante el

uso de agentes estabilizantes que a su vez ayudan a contrarrestar los efectos contaminantes de los estabilizadores más comunes utilizados, considerando que a la actualidad en nuestro país no existen investigaciones que apliquen ambos subproductos agrícolas.

1.2. Formulación del problema

¿Como influye la adición de las cenizas de cáscara de arroz y fibras de plátano en las propiedades microestructurales y mecánicas del suelo arcilloso?

1.3. Hipótesis

Ho: La adición de ceniza de cáscara de arroz, en porcentajes del 5, 10, 15 y 20% y de fibras de plátano en porcentajes de 0.1, 0.3, 0.5 y 0.7%, influyen en las propiedades microestructurales y mecánicas del suelo arcilloso.

1.4. Objetivos

1.4.1. Objetivo general

 Determinar las propiedades microestructurales y mecánicas de suelos arcillosos adicionando cenizas de cáscara de arroz y fibras de plátano.

1.4.2. Objetivos específicos

- Determinar las características mecánicas del suelo arcilloso a nivel de subrasante.
- Identificar la temperatura óptima de quemado de la ceniza de cáscara de arroz.
- Determinar las características mecánicas del suelo arcilloso adicionando cenizas de cáscara de arroz a 5, 10, 15 y 20%, a nivel de subrasante.
- Determinar las características mecánicas del suelo arcilloso con el porcentaje óptimo de ceniza de cáscara de arroz y fibra de plátano a 0.1,0.3, 0.5 y 0.7%, a nivel de subrasante.
- Determinar las características de las propiedades microestructurales del suelo arcilloso adicionando ceniza de cáscara de arroz y fibra de plátano.

1.5. Teorías relacionadas al tema

1.5.1. Suelo

El suelo es un material no consolidado que posee una capa delgada sobre la corteza terrestre de material obtenido de la desintegración físico química de las rocas. [44].

En ingeniería, el suelo está definido como la capa sobre el que se desarrollan diferentes obras, del que importan sus propiedades mecánicas para posteriormente establecer criterios de evaluación del suelo para en base a ello diseñar estructuras, pavimentaciones, terraplenes, etc. [45].

Se comprende por suelo a un conjunto de partículas sueltas que se dan en la corteza terrestre, teniendo en consideración el agua mineral, aire y microbios que al relacionarse forman varias funciones y juegan un papel muy esencial en los ecosistemas y en el campo de la construcción.

1.5.1.1. Tipos de suelo

Arenas

El suelo arenisco es liviano, tórrido, seco, ácido y con bajo valor en nutrientes. El suelo arenoso a menudo se suele denominar suelo ligero puesto que contiene mayor cantidad de arena y menos arcilla, teniendo en cuenta que la arcilla pesa presenta un valor más pesado con respecto a la arena [46]. El tamaño de las partículas de arena media tiene un rango de 2 a 0.425 mm en diámetro.

Gravas

El suelo con grava es aquel que contiene un gran porcentaje de piedras trituradas dentro su composición [47]

Limos

Es un tipo de suelo ligero y que retiene la humedad con un alto índice de fertilidad y pueden compactarse fácilmente siendo propensas a ser arrastradas por la lluvia. [48]

Arcillas

Este suelo se compone con un valor mayor de 25 % de arcilla debido a los vacíos que suelen encontrarse en la arcilla, asimismo poseen la propiedad de poder retener una gran cantidad de agua. [49]

1.5.1.2. Clasificación de los suelos

Clasificación SUCS

La clasificación SUCS permite conocer características esenciales del suelo en función a su textura y tamaño de sus partículas, según la NTP 339.134.1999, el método clasifica los suelos de la siguiente manera:

Tabla IClasificación de los suelos por el tamaño de sus partículas

Tipo de material	Tamaño de partículas
Grava	75 mm – 4.75 mm
	Arena gruesa: 4.75 mm – 2.00 mm
Arena	Arena media: 2.00 mm – 0.425 mm
	Arena fina: 0.425 mm – 0.075 mm
Material fino Limo	0.075 mm – 0.005 mm

Nota: Extraído de Ministerio de Transportes y Comunicaciones – Manual de carreteras, sección suelos y pavimentos, 2014.

1.5.1.3. Propiedades Físicas del suelo

Las propiedades físicas precisan en gran manera la capacidad del suelo para utilizarlo en muchos fines. Cualquier proyecto de ingeniería debe tener en cuenta las siguientes propiedades:

Gravedad especifica

Se define como el peso del sólido por unidad en relación por la unidad de volumen y para su determinación se utiliza un picnómetro. Su determinación ayudará a conocer la relación de vació, nivel de saturación del suelo y su valor se encuentra entre un rango de 2.20 a 3. [50]

Granulometría

La granulometría permite determinar las proporciones relativas de arcillas, limos y arenas en el suelo considerando el tamaño de sus partículas. [51].

Desde el lado geotécnico, la granulometría a través de la separación de las partículas del suelo resulta importante para entender su capacidad y eficiencia.

Análisis Granulométrico

El análisis granulométrico consiste en diferenciar la dimensión de las partículas del suelo a través de un juego de tamices, ordenados de mayor a menor abertura. La Norma ASTM D-422 relata el procedimiento para determinar cada porcentaje de partículas que pasan a través de los tamices hasta llegar a N°200. La Norma Técnica Peruana 339.128.1999, define este ensayo como la separación de partículas según su el tamaño de éstas.

Tabla IITamices según abertura

TAMICES	ABERTURA
TAMICES	(mm)
3"	75
2"	50.8
1 1/2"	38.1
1"	25.4
3/4"	19
3/8"	9.5
N°4	4.76
N°10	2
N°20	0.84
N°40	0.425
N°60	0.26
N°140	0.106
N°200	0.075

Plasticidad

La plasticidad del suelo se explica por la deformación de la capa de agua alrededor de los minerales adsorbidos, que se desplazan sobre la superficie de los minerales en forma de sustancias viscosas, la plasticidad del suelo depende en gran medida del contenido de

arcilla. [52].

La plasticidad es una peculiaridad indirecta y flexible que depende en gran medida del porcentaje de agua.

Límites de Atterberg

Un suelo capaz de ser plástico, puede encontrarse en los siguientes estados de consistencia definidos por Atterberg:

- Límite Líquido (LL), es el contenido de humedad más bajo del suelo en el que fluye como un líquido, es decir muestra comportamiento de un material plástico.
 - Según la norma [53], este ensayo permite determinar en porcentaje el contenido de humedad con respecto al peso seco del suelo.
- Límite plástico (LP), es donde el suelo muestra comportamientos plásticos.
 - Según la norma [54], en este ensayo se forman barritas de suelo de 3.2 mm de diámetro que a través del uso de la mano y en contacto con una extensión lisa buscará que no se desintegren hasta llegar a su punto de fisuración.
- Límite de contracción (LC), se da cuando el suelo se traslada de un estado semisólido a uno sólido.
- Índice de plasticidad (IP), es la diferencia entre el valor del límite líquido y el límite plástico.

Tabla IIIClasificación de los suelos según su índice de plasticidad

Índice plasticidad	de	Plasticidad	Características
IP > 20		Alta	Suelos muy arcillosos

IP ≤ 20	Media	Suelos
IP > 7	iviedia	arcillosos
		Suelos poco
IP < 7	Baja	arcillosos
		plasticidad
		Suelos
IP = 0	No plástico (NP)	exentos de
		arcilla

Nota. Adaptado de [55]

Contenido de humedad

Según la [56], el contenido de humedad es el cociente expresado en proporciones del peso del agua en una porción de cantidad de suelo al peso de los sólidos.

La humedad del suelo es importante para la ingeniería puesto que a través de la cantidad de agua que rige en ellos se determinará el comportamiento y resistencia del suelo.

[57]

1.5.1.4. Propiedades mecánicas del suelo

Las propiedades mecánicas de los suelos incluyen propiedades generales, como la fuerza cohesiva, y propiedades concertadas, como la resistencia a la penetración. Tener un conocimiento previo sobre las propiedades mecánicas del suelo ayudará a estimar valores adecuados y resolver problemas oportunos

Estas propiedades suelen obtenerse a través de pruebas de compactación y pruebas de resistencia, entre ellas tenemos:

Prueba de compactación Proctor Modificado

Según la [58], el ensayo de Proctor se utiliza en laboratorio para estimar la compactación máxima que puede alcanzar el suelo dependiendo su grado de humedad.

Prueba de resistencia CBR

El ensayo CBR, fue propuesto por la Dirección de Carreteras de California y es ampliamente reconocida en todo el mundo, siendo su propósito determinar la capacidad portante del suelo a través de un contenido de humedad óptimo y grados variables de compactación, este se usa comúnmente para evaluar la calidad relativa de suelos.

La [59], refiere que se usa para evaluar la resistencia de la subrasante, subbase y base, para luego con el valor obtenido utilizarlo para los diversos métodos para la estructura de pavimentos. Una vez definido el valor del CBR se clasificará de la siguiente manera:

Tabla IV

Categorías de sub rasante

Categorías	CBR
S0: Sub rasante	CBR < 3%
inadecuada	
S1: Sub rasante	CBR ≥ 3% a CBR < 6%
insuficiente	32 3 3 3
S2: Sub rasante	CBR ≥ 6% a CBR < 10%
regular	
S3: Sub rasante	CBR ≥ 10% a CBR < 20%
buena	
S4: Sub rasante	CBR ≥ 20% a CBR < 30%
muy buena	

S5: Sub rasante		
excelente	CBR ≥ 30%	

Nota. Ministerio de Transportes y Comunicaciones – Manual de carreteras, sección suelos y pavimentos, 2014.

1.5.2. Propiedades microestructurales

La microestructura, está definida como la distribución de poros y su conectividad que afecta principalmente al comportamiento mecánicos de los suelos compactados [60]. La interacción de la microestructura y las propiedades es el núcleo de la ciencia e ingeniería de los materiales y es la clave para diseñar materiales optimizados, a menudo multifuncionales

Las microestructuras formadas en los materiales dependen no solo de la composición y estructura química sino también de la movilidad atómica y de la presencia de gradientes de concentración durante el procesamiento. La formación de microestructuras también está fuertemente influenciada por la cantidad de energía requerida para crear nuevas interfaces. [61]

Es ingeniería es importante tener una comprensión clara del comportamiento de los materiales desde su comportamiento microestructural puesto que a través de ella obtendremos las propiedades macroscópicas de los elementos, sea su resistencia, comprensibilidad, etc.

Existen diversas técnicas para identificar tanto mineralógica como microestructural mente una muestra de suelo. Entre las más importantes tenemos:

1.5.2.1. Difracción de rayos X

La difracción de rayos X (DRX) se utiliza para la caracterización primaria de las propiedades de los materiales, como la estructura cristalina, la magnitud de los cristales y la tensión. Su uso efectivo depende de que tenga un material cristalino. [62]

Por su parte [63] refiere que la difracción de rayos X es producida al analizar una

muestra a través de electrones y su resultado será la dispersión generada por átomos, iones y moléculas; siendo una técnica no destructiva que nos brindará valiosa información sobre sistema cristalino y sus tamaños.

Ley de Bragg:

La Ley de Bragg se define como: $(1)\lambda=2d\sin\theta B$ donde λ es la longitud de onda de los rayos X, d es la separación de los planos de difracción y θB es el ángulo entre los rayos incidentes y los planos de difracción, también conocido como ángulo de Bragg.

1.5.2.2. Microscopia electrónica de barrido (SEM)

Las técnicas de microscopía electrónica de barrido (SEM) son técnicas analíticas para determinar cualitativamente las propiedades de la superficie de las muestras mediante el uso de electrones en lugar de luz para generar imágenes. Estos métodos consisten en dirigir un haz de electrones primarios a través de un filamento sobre la superficie de la muestra. Los electrones secundarios se forman como resultado de la dispersión turbulenta entre el haz de electrones incidente y los electrones de los átomos ubicado en la superficie de la muestra. La SEM explora imágenes de una superficie de muestra escaneando el espacio con un haz de electrones enfocado. [64].

1.5.3. Estabilización de suelos

Es un proceso que se realiza comúnmente para casi todos los proyectos viales. En términos generales, todos los tipos de estabilizadores de suelo se pueden estudiar en dos clases principales, a saber, estabilizadores mecánicos y estabilizadores químicos. En la estabilización mecánica se cambia la clasificación de los suelos mezclándolos con otros tipos de suelos de diferentes grados. Al hacer esto, se logra una masa de suelo compactada, por su parte, la estabilización está asociada con cambios en la estructura del suelo mediante la adición de productos químicos activos. [65].

El suelo estabilizado es un material compuesto creado combinando y optimizando las

propiedades de cada material. [66].

1.5.4. Cenizas de cáscara de arroz (CCA)

La CCA es un material ligero, de gran volumen y poroso con una densidad que oscila entre 180 a 200 kg/m3, y una densidad relativa, dependiendo de la finura, entre 2 y 2,5. Como la reactividad puzolánica de la CCA depende de su finura, las propiedades físicas y la gradación de CCA son importantes y deben controlarse para adquirir el mejor rendimiento [67].

Composición química

Tabla VComposición química de la CCA

Componente	Cenizas de cáscara
	de arroz (% en peso)
SiO ₂	88.18
AI_2O_3	31.00
Fe ₂ O ₃	4.10
CaO	0.60
MgO	0.10
K₂O	0.90
Na₂O	0.05
TiO ₂	1.63
SO ₃	0.12

Nota. Adaptado de "Propiedades de durabilidad del hormigón con humo de sílice y ceniza de cascarilla de arroz" por [67].

Incineración de cáscaras de arroz

Se encontró que la temperatura de incineración tiene una fuerte influencia en la actividad puzolánica, esto se explica ya que, al quemar cáscaras de arroz a temperaturas inferiores a 700 °C y superiores a 800 °C, se obtienen las formas amorfa y cristalina de la ceniza, respectivamente. La forma cristalina es menos reactiva, mientras que la forma amorfa presenta puzolanicidad activa en condiciones normales. Por lo tanto, la forma amorfa es más adecuada, en comparación con su contraparte cristalina [68].

1.5.5. Fibra de Plátano

La fibra de banana es una fibra celulósica dialectal, que se obtiene del pseudotallo de la planta de banano teniendo grandes propiedades de resistencia explícitas similares a las del material ordinario, similar a la fibra de vidrio [69].

Extracción de las fibras de plátano

Las fibras de plátano se pueden extraer de dos formas: manual o mecánica; en el primer caso los tallos del fruto se extraerán todas las capas de la corteza del plátano: corteza exterior, corteza intermedia y las cortezas internas para luego realizar el desvainado corresponde y realizar el corte longitudinal de las vainas. Posteriormente se colocarán en un recipiente de agua para evitar el contacto con el medio ambiente en esta natural. [70].

Según [71], los pasos para la extracción de la fibra de plátano es la siguiente:

- Se realiza el retiro de las capas de cada corteza del tallo para identificar las fibras correspondientes.
- Se realiza la extracción correspondiente de las tiras longitudinales de fibras de banano en cada capa, hasta su límite.
- Después de extraer todas las capas del tallo del banano separamos las fibras, clasificándolos en fibra dura y malla.

Los métodos químicos para la estabilización de fibras se suelen realizar con NaOH, aunque también se utilizan otros químicos (KMnO 4), cloruro de benzoílo, ácido esteárico, hidróxido de calcio, entre otros; estos procesos pueden causar problemas ambientales debido a la necesidad de tratar los residuos producidos. [72]

II. MATERIALES Y MÉTODO

2.1. Tipo y Diseño de Investigación

2.1.1. Tipo de investigación

La investigación del tipo aplicada está encargada de la resolución de problemas de forma práctica, es decir, basándose en la información obtenida bajo el planteamiento del objetivo de estudio [73]. El alcance que se presenta mayoritariamente en este tipo es el explicativo, el cual posterior a la descripción de las variables de estudio se centra en explicar las causas del fenómeno en estudio [74].

Esta investigación se considera del tipo aplicada con enfoque cuantitativo, y alcance explicativo, ya que se tomará como base las teorías, normas y conocimiento existente para explicar la relación causa-efecto de las variables, y aplicarlas en la búsqueda de proponer soluciones a la problemática identificada, medidas numéricamente y analizadas estadísticamente.

2.1.2. Diseño de investigación

El diseño experimental se centra en recabar datos y verificar hipótesis, utilizando técnicas que se basan en ciencias exactas como la estadística y la matemática, dentro de sus tipos tenemos el cuasi-experimental que, trabaja con dos grupos no aleatorizados, pudiendo manipulando la variable experimental y permite comparar las puntuaciones de inicio con las finales [75].

La investigación presenta un diseño experimental del tipo cuasi experimental, debido a que la verificación de la hipótesis se realizará mediante el estudio del efecto causal de las CCA y las FDP, en proporciones seleccionadas de 5, 10, 15 y 20% y 0.1, 0.3, 0.5, 0.7% respectivamente; esto a través de la utilización de una serie de ensayos reglamentados para cada tipo de propiedades microestructurales y mecánicas a analizar.

$$X \rightarrow Y$$

$$X_1 \rightarrow MP \rightarrow O_1$$

$$X_2 \!\! \to ME_1 \to O_2$$

$$X_3 \rightarrow ME_2 \rightarrow O_3$$

$$X_4 \rightarrow ME_3 \rightarrow O_4$$

$$X_5 {\longrightarrow} ME_4 {\longrightarrow} O_5$$

$$X_6 \rightarrow ME_5 \rightarrow O_6$$

$$X_7 \rightarrow ME_6 \rightarrow O_7$$

$$X_8 \!\! \to ME_7 \! \to O_8$$

$$X_9 \rightarrow ME_8 \rightarrow O_9$$

X₁₋₉ = Condición experimental

MP = Muestra Patrón

ME₁= Muestra Experimental, 5% de CCA

ME₂ = Muestra Experimental, 10% de CCA

ME₃ = Muestra Experimental, 15% de CCA

 ME_4 = Muestra Experimental, 20% de CCA.

ME₅ = Muestra Experimental, porcentaje óptimo de CCA y 0.1% de FDP.

ME₆ = Muestra Experimental, porcentaje óptimo de CCA y 0.3% de FDP.

ME₇ = Muestra Experimental, porcentaje óptimo de CCA y 0.5% de FDP.

ME₈ = Muestra Experimental, porcentaje óptimo de CCA y 0.7% de FDP.

O₁₋₉ = Medición de propiedades microestructurales y mecánicas del suelo

2.2. Variables, Operacionalización

- Variable dependiente: Propiedades microestructurales y mecánicas del suelo.
- Variable independiente: Cenizas de cáscara de arroz y fibras de plátano.

Tabla VIVariables Dependientes

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Ítems	Instrumento		Tipo de Escala de variable medición
distribución poros, Propiedades composició	composición	suelo adicionado con CCA y FDP en porcentajes óptimos, será obtenida mediante la	Cristales enlaces	Concentración de las fases cristalinas	%	Análisis de Laboratorio	% ——Dependi Intorval	
	estructura cristalina del material en		Caracterización de su composición	Componentes químicos	%			Donondi
Propiedades (mecánicas (Están mecánicas serán relacionadas a evaluadas propiedades mediante ensayo como la de laboratorio cohesión y la normados resistencia a la realizados a cada penetración del una de la	Las propiedades mecánicas serán las a evaluadas	Proctor Modificado Contenido de humedad óptimo CBR Capacidad portante del suelo		g/cc	Análisis de Laboratorio, Ficha de recopilación de	g/cc	ente Intervalo
		mediante ensayos de laboratorio		humedad	%		%	
		muestras en		%	información %			

Tabla VIIVariables Independientes

Variable de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Ítems	Instrumento	Valores finales	Tipo de variable	Escala de medición
	Las cáscaras de arroz serán	Actividad	Temperatura de incineración	°C	Ficha de recopilación de información	°C			
Cenizas	Material liviano obtenido del	incineradas en un horno con el fin de alcanzar la	•	Composición química	%	Análisis de Laboratorio	%		
de cáscara de arroz.	de la temperatura deseada misma		Porcentajes de adición	%	Ficha de recopilación de información	%	_		
		previamente.		Porcentaje óptimo de adición	%	Análisis de Laboratorio	%	Independiente	Intervalo
Fibras	Fibras extraídas mediante métodos manuales o	Las fibras serán obtenidas mediante extracción		Porcentajes de adición	%	Ficha de recopilación de información	%	_	
plátano me pse pla	mecánicos del pseudotallo de la planta de ta	mecánicos del pseudotallo de la planta de fallos Dosificación de plátano, para Porcentaje posteriormente óptimo de % ser curadas y adición		%	Análisis de Laboratorio	%			

2.3. Población de estudio, muestra, muestreo y criterios de selección

2.3.1. Población

La población o universo de estudio puede definirse como el conjunto de seres humanos, muestras biológicas, objetos, organizaciones, fenómenos, etc., que cumplen con una serie de características y criterios establecidos para la investigación [75].

Esta investigación comprende la evaluación de tres tipos de muestras experimentales, siendo la primera, la denominada patrón, en la cual no se considerará ningún tipo de incorporación de las variables independientes; mientras que, para las siguientes muestras, las CCA y las FDP serán utilizadas de forma porcentual tomando como base el peso del suelo, los porcentajes a utilizar comprenden valores de 5, 10,15 y 20 % y 0.1, 0.3, 0.5 y 0.7% respectivamente. Por lo tanto, la población a estudiar abarca todas las muestras experimentales.

2.3.2. Muestra

El muestro no probabilístico de juicio es en el cual, los elementos elegidos para el muestreo son decididos por el investigador según su apreciación subjetiva [76].

Se realizaron un total de 54 ensayos comprendidos entre Proctor modificado y California Bearing Ratio (CBR) los mismos que se distribuyeron según indica la Tabla 4, cabe resaltar que para el ensayo de CBR es necesario un total de 3 especímenes de moldes cilíndricos por cada ensayo, para su análisis por 56, 25 y 12 golpes.

Tabla VIIICantidad de ensayos realizados por tipo

Item	Combinación	N° de ensayos	
		Proctor	CBR
MP	Suelo	3	3
ME1	S+5%CCA	3	3
ME2	S+10%CCA	3	3
ME3	S+15%CCA	3	3
ME4	S+20%CCA	3	3
ME5	S+10%CCA+0.1%FDP	3	3
ME6	S+10%CCA+0.3%FDP	3	3
ME7	S+10%CCA+0.5%FDP	3	3
ME8	S+10%CCA+0.7%FDP	3	3
TOTAL		27	27

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

2.4.1. Técnica de recolección de datos

2.4.1.1. Observación

La observación directa es uno de las estrategias del método científico que permite, dentro de un determinado contexto, lograr identificar la representación y descripción de los procesos o fenómenos en estudio [77].

Mediante la utilización de esta técnica, se identificará el comportamiento y respuesta, tanto de los componentes como los especímenes ensayados, tomándose registro fotográfico y recopilándose los datos obtenidos en formatos estándar.

2.4.1.2. Análisis documental

El análisis documental es un tipo de investigación técnica que busca explicar y presentar documentos de manera sistemática y tiene como objetivo captar, evaluar y seleccionar los diferentes contenidos de los documentos [74].

Mediante la utilización de esta técnica, se recolectará información de artículos, libros, tesis y revistas con la finalidad de dar cumplimiento a nuestros objetivos propuestos.

2.4.2. Instrumentos de recolección de datos

Ficha de recojo de información, para esta investigación, se utilizará fichas de recojo de información para cada ensayo siguiendo los formatos proporcionados por los estándares de las siguientes NTP y el Manual de Ensayo de Materiales del MTC:

- NTP 339.127:1998 y MTC E 108, para Contenido de humedad de un suelo.
- NTP 339.128:1999 y MTC E 107, para Análisis granulométrico de suelos por tamizado.
- NTP 339.129:1999 y MTC E 110, para Límite Liquido de los suelos.
- NTP 339.129:1999 y MTC E 111, para Límite Plástico de los suelos e Índice de Plasticidad.
- NTP 339.131:1999 y MTC E 113, para Peso específico relativo de las partículas sólidas de un suelo.
- NTP 339.134:1999, para Sistema Unificado de Clasificación de Suelos (SUCS).
- NTP 339.135:1999, para Clasificación AASHTO.
- NTP 339.141:1999 y MTC E 115, para Proctor Modificado.
- NTP 339.145:1999 y MTC E 132, para CBR de suelos en laboratorio.
- ASTM STP38521S, para Técnicas sugeridas para medir la estructura de los suelos de ingeniería.

2.4.3. Validez

Es el rango en el que se utiliza una metodología o técnica para poder evidenciar con precisión lo que está en medición, hace referencia al producto alcanzado por medio de la utilización de un instrumento demostrando realmente lo que se desea medir [78].

La exploración y los resultados alcanzados en esta investigación, estarán validados y verificados bajo los estándares de las Normas vigentes utilizadas para cada ensayo.

2.4.4. Confiabilidad de datos

Es la disposición de la técnica o instrumento empleado para obtener resultados racionales, cuando se ejecuta por vez próxima en circunstancias semejantes a la inicial [78].

Por tanto, la confiabilidad en esta investigación está supeditada a los instrumentos utilizados en cada prueba experimental a ejecutarse, los que deberán estar calibrados según lo estipulado en la norma técnica correspondientes, para garantizar que los datos obtenidos sean confiables.

2.5. Procedimiento de análisis de datos

2.5.1. Diagrama de flujo de procesos

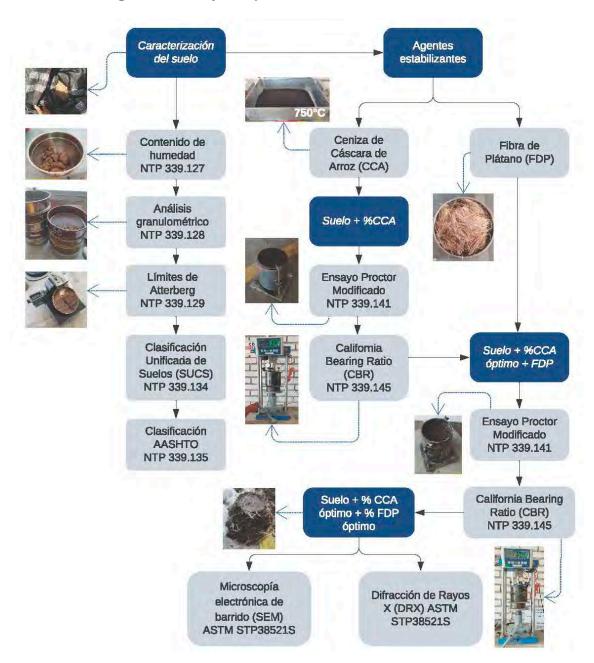


Fig. 1 Estructura del procedimiento para el desarrollo de la investigación.

2.5.2. Descripción del proceso

Se sabe que la búsqueda de información es un pilar muy importante y el primer paso del proceso de estructura de una investigación, esto se debe a que su correcto manejo garantiza obtener una base teórica confiable y que a su vez se traslade en resultados válidos.

a) Caracterización del suelo

Las muestras de suelo provienen de la Urb. Sol de la Alameda Real, perteneciente al distrito de Lambayeque, la provincia de Lambayeque. A fin de determinar sus principales características, se le realizaron ensayos físicos, tales como, contenido de humedad, análisis granulométrico, peso específico, límite líquido y plástico, los mismos que son necesarios para identificar la clasificación de nuestro suelo a estudiar, esto último conforme con la clasificación SUCS y AASHTO.

Fig. 2 Zona de extracción de muestra de suelo

Contenido de humedad/ ASTM D2216

El procedimiento de prueba de contenido de humedad, se realizó utilizando un recipiente de acero limpio y seco para seleccionar muestras entre un rango de 50 gr a 100 gr. Posterior se ingresó la muestra en un horno eléctrico a una temperatura de 110 °C para su proceso de secado durante 24 horas

Fig. 3 Muestra de ensayo de contenido de humedad

Para el desarrollo del procedimiento y cálculo respectivo se tomó en cuenta la siguiente fórmula:

$$W(\%) = \frac{(W1 - W2)}{(W1 - W3)} * 100$$

Donde:

- Peso del recipiente + suelo húmedo = W1
- Peso del recipiente + suelo seco = W2
- Peso del recipiente = W3

Análisis granulométrico por tamizado/ ASTM D422

Se tuvo en consideración la cantidad de 1500 gr de suelo seco el cual se tamizó por la malla N°4, allí se lavó con agua limpia libre de materia orgánica y usando la malla N°200, en seguida se acomodó en un depósito y se secó en el horno a una temperatura de 110°C por 24 horas requeridas. Finalmente, la muestra seca se pasó en los tamices correspondientes para determinar el porcentaje retenido acumulado en cada tamiz.

Fig. 4 Granulometría del suelo natural

Límite líquido y límite plástico / ASTM D4318

Límite líquido: Se tomaron 250 gramos de suelo natural y se seleccionó el material por cuarteo para pasarlo por el tamiz N°40, de ese material pasante se procedió con el pesado y mezclado con una cantidad mínima de agua obteniéndose un fragmento de muestra en la copa de Casagrande, luego con el uso de una espátula se colocó material a una 50 profundidad de 10 mm y utilizando un acanalador dividió la muestra con un ancho de separación de 13 mm. Posterior a ello se registró el número de golpes necesarios para cerrar la ranura, en seguida se tomó una muestra del ancho de ranura para colocarla y pesarla en un recipiente de acero , para finalmente llevarla a un horno por 24 horas.

Límite plástico: Se tomaron muestras entre 20 y 50 grs pasante por el tamiz N°40, amasado con agua destilada, con lo que se hizo pasta controlable, luego se extrajo una muestra de 3 gr de la mezcla anteriormente mencionada, para moldearla a través de la forma de una esfera y en una base de vidrio lisa no absorbente con el uso de los dedos se rodó la mezcla formando bastones hasta observar

agrietamientos en ellos, en seguida se colocó en un recipiente para realizar el pesaje de la muestra y se colocó en un horno con una temperatura constante de 110°C durante 24 horas. Finalmente, se realizó el pesado de la muestra seca para obtener el valor del índice plástico.

Fig. 5 Ensayo de límite líquido y plástico

b) Agentes estabilizantes

Como adición al suelo natural se emplean dos tipos de insumos: cenizas de cáscara de arroz (CCA) y fibras de tallo de plátano (FDP). Especificándose a continuación el lugar de obtención de cada uno de ellos.

Ceniza de Cáscara de arroz

El subproducto de cáscara de arroz fue obtenido de la empresa Comercial Molinera San Luis S.A.C, para posteriormente ser sometido a un proceso de quemado a temperaturas de 600, 650, 700 y 750 °C.

Fig. 6 Obtención de CCA a diferentes temperaturas

Fig. 7 Proceso de tamizado por la malla N°100 de la muestra de ceniza

Teniendo como resultado, por cada una de ellos, muestras de 250 g, mismas que previamente fueron molidas y tamizadas (Figura 7), con el fin de realizar un análisis mineralógico para determinar su actividad puzolánica.

Fig. 8 Diferentes rangos de temperatura de la CCA

Una vez pesadas las muestras (cuadruplicado) de 1,00g en balanza analítica, por el contenido considerable se procedió a realizar un pretratamiento por una calcinación de la muestra original a 900 °C por 1 h., mediante el cual se eliminó la mayor parte del carbón, posteriormente se procedió a disolver los componente metálicos como óxidos de la muestra con 15 ml HCl y 5 ml de HNO3 (agua regia) en un beaker de 400 ml con luna de reloj y se calentó en la plancha hasta apariencia pastosa, luego se deshidrato la sílice y se solubilizo los óxidos metálicos con 20 ml de HCl (1 +1) mediante calentamiento. Posteriormente se procedió a filtrar para separar el precipitado de la solución y se realizó los lavados con solución de HCl (1+9). El precipitado se empleó para la determinación de Sílice y las soluciones se enrazaron en una fiola de 250 ml para realizar el análisis de los óxidos metálicos requeridos mediante gravimetría y volumetría y en el caso del MgO mediante espectrofotometría de Absorción Atómica modo Flama, realizando las diluciones

correspondientes tomando las alícuotas requeridas para cada caso. Se obtuvo los siguientes resultados:

Tabla IXContenido puzolánico de CCA según temperaturas

Componente	600°C	650°C	700°C	750°C
Óxido de Silicio (SiO ₂)	72.63	73.19	68.71	73.86
Óxido de Aluminio (Al ₂ O ₃)	2.41	1.76	2.18	1.96
Óxido de Hierro (Fe ₂ O ₃)	1.67	1.39	1.84	1.23
Óxido de Calcio (CaO)	7.05	8.32	6.00	5.77
Óxido de Magnesio (MgO)	0.90	0.62	0.68	0.98
SiO ₂ +Al ₂ O ₃ +Fe ₂ O ₃	76.71	76.34	72.73	77.05

Fibra de Plátano

Las fibras de plátano se extrajeron del tallo de la misma planta, siendo estos provenientes del distrito de La Peca, provincia de Bagua. Las fibras fueron curadas en agua contenida con 5% cal por cada litro de agua y secadas durante 12 horas, para finalmente ser cortadas en longitudes de 25 mm, tal y como se puede observar en la Figura 9.

Fig. 9 Tallo y Fibra de plátano (FDP)

Fig. 10 Longitud de fibra FPD y espesor

c) Suelo natural + % CCA

Posterior a la identificación de las características físicas del suelo natural y a la preparación de la variable a incorporar, se prosiguió a elaborar en una primera etapa, la mezcla de suelo adicionado la proporción de CCA correspondiente al 5, 10,15 y 20%. La elaboración de cada espécimen de esta primera etapa, responde a los lineamientos establecidos por la Norma Técnica Peruana para cada tipo de ensayo a realizar, Proctor Modificado y CBR, siendo este último el principal indicador para identificar el porcentaje óptimo de CCA, que mejore la resistencia mecánica del suelo.

Fig. 11 Suelo natural + % CCA

d) Suelo natural + % óptimo de CCA +%FDP

En una segunda etapa se procedió a adicionar las FDP en porcentajes de 0.1, 0.3, 0.5 y 0.7% a la mezcla del suelo natural con el porcentaje óptimo de CCA obtenido en la etapa anterior. Cada espécimen elaborado será sometido a los ensayos de Proctor Modificado y CBR, siguiendo los parámetros establecidos en la Norma Técnica Peruana.

Fig. 12 Suelo natural + % óptimo de CCA +%FDP

e) Suelo natural + % óptimo de CCA +% óptimo de FDP

Finalmente se identifica el porcentaje óptimo de FDP, obteniéndose la mezcla de suelo natural y los porcentajes óptimos de cada variable. Esta muestra será sometida a los ensayos de Microscopía electrónica de barrido (SEM) y Difracción de Rayos X (DRX), necesarios para determinar la microestructura, composición química, textura y cristales enlaces del suelo con lo óptimos contenidos de CCA y FDP.

f) Difracción de rayos X (DRX)

A partir de las muestras de suelo natural adicionado con los porcentajes óptimos de CCA y FDP, se extrae 10 gr de esta mezcla para finalmente pulverizarla. La muestra pulverizada es enviada al laboratorio de la PUCP para la realización del ensayo.

El análisis de difracción de rayos X se realizó con el equipo DRX Bruker modelo D8 Discover con radiación de cobre ($Cu_{K\alpha} = 0.15418$ nm), corriente de 40 mA y voltaje de aceleración de 40 kV, con un detector Lynxeye con selectividad de energías. El análisis fue realizado en un rango de ángulos (20) desde 15° hasta 70° en pasos de 0.02° . El tiempo por paso fue 1s.

Para calcular la composición de las fases cristalinas y la parte amorfa se aplicó el método de Reference Intensity Ratio (RIR). La concentración mínima para este método es 0.1 wt%.

g) Microscopio electrónico de barrido (SEM) con EDS.

A partir de las muestras de suelo natural adicionado con los porcentajes óptimos de CCA y FDP, se extrae un fragmento de esta mezcla con un peso de 5 gr, esta muestra será enviada al laboratorio de la PUCP para su análisis,

Las medidas fueron realizadas con un microscopio electrónico de barrido (SEM) de marca FEI modelo Quanta 200, para lo cual se utilizó un voltaje de aceleración de 30 kV y un tamaño de punto de 6, tanto para las imágenes como para la composición. Se midieron áreas con magnificaciones de 100x y 300x, dependiendo de los rasgos a visualizar. Las medidas de Espectroscopía de rayos X dispersiva en energía (EDS) fueron realizadas con un detector de marca EDAX, montado en el microscopio electrónico. El procesamiento de los datos y la determinación de la composición elemental se realizaron con el software EDAX

Genesis XM 4, utilizando una corrección de matriz ZAF.

Con respecto a la preparación de la muestra, se seleccionó un fragmento con rasgos de interés, el cual fue montado sobre un poste de aluminio para microscopía electrónica con cinta adhesiva de carbono y fijado con cinta adhesiva de cobre. Las medidas fueron hechas en un régimen de bajo vacío con inyección de vapor de agua, con la finalidad de evitar la acumulación de carga superficial en las muestras y permitir medidas sin necesidad de recubrir las muestras con oro. Esto fue hecho para prevenir sesgos en las medidas de EDS.

Procesamiento de datos

Los resultados obtenidos en cada uno de los ensayos se compilarán en hojas de cálculo elaboradas en Excel, para su posterior análisis y esquematización.

2.6. Criterios éticos

De acuerdo con las normas, reglamento y dictámenes instaurados por la universidad se considerarán en la presente investigación los siguientes criterios éticos:

2.6.1. Manejo de fuentes de consulta:

Las fuentes recopiladas y citadas para la presente investigación son confiables por estar respaldadas por revistas de gran renombre internacional y normas, manuales vigentes en territorio nacional sobre el tema a tratar, a ello se le suma que se ha referenciado cada cita a través de interpretación de los investigadores.

2.6.2. Claridad en los objetivos de la investigación:

Los objetivos se encuentran alineados con el tema de investigación planteado por los autores mostrando coherencia desde la realidad problemática hasta finalizar con los resultados y conclusiones obtenidas.

2.6.3. Transparencia de los datos obtenidos:

Los resultados obtenidos a través de los diversos instrumentos usados en la

investigación se han plasmado sin manipulación alguna mostrando fiabilidad y veracidad en lo descrito.

2.6.4. Profundidad en el desarrollo del tema:

Es importante y primordial que los investigadores se encuentren en constante actualización sobre el tema a tratar para que enriquezcan sus conocimientos y por ende tengan un dominio completo sobre lo estudiado.

III. RESULTADOS Y DISCUSIÓN

3.1. Resultados

Respecto a determinar las características mecánicas del suelo arcilloso a nivel de subrasante, las muestras de suelo arcilloso provienen de la zona urbana Sol de la Alameda Real, perteneciente al distrito de Lambayeque. Con el fin de determinar sus principales características, se le realizaron ensayos físicos, tales como, análisis granulométrico (Figura 13), contenido de humedad, límite líquido y plástico, las mismas que se encuentran comprendidas en la Tabla X.

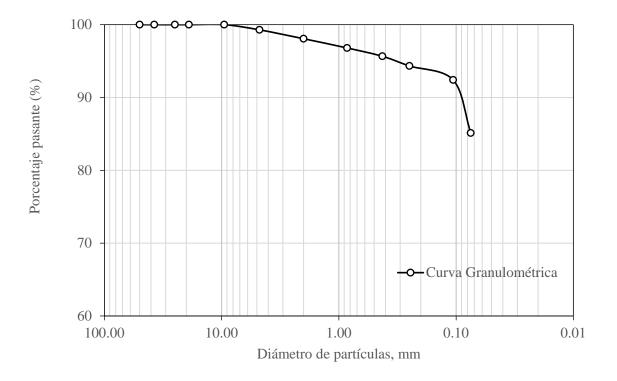


Fig. 13 Curva granulométrica del suelo arcilloso

De la Figura 13 se identifica que el tamaño de las partículas del suelo analizado se encuentra distribuidas mayoritariamente por debajo de los 0.075 mm, correspondientes según el [55] a un tipo de material fino.

Tabla XPropiedades físicas y mecánicas del suelo arcilloso

Propiedade	S	Suelo arcilloso
Clasificación SUCS	CL	
Clasificación AASH	A-6 (10)	
Límite líquido, LL (%	5)	36.24
Límite plástico, LP (%)	21.31
Índice de Plasticidad	d, IP (%)	14.93
Contenido de Hume	dad, W (%)	18.82
Peso específico, γ (g/cc)	2.634
Porcentaje de absor	ción (%)	1.64
Densidad Máxima S	eca (g/cc)	1.91
Contenido de Hume	15.14	
CBR al 95%	0.1"	5.03
	0.2"	6.47

De la tabla X se determina que, el valor del IP del suelo analizado es de 14.93%, considerándose según el [55] cómo un material de característica arcilloso y con una plasticidad de media; mientras que, según la clasificación SUCS las muestras pertenecen a la categoría CL, definidas como arcillas inorgánicas de baja plasticidad. Asimismo, para la clasificación AASTHO el suelo se identifica como arcilloso de pobre a malo.

Respecto a identificar la temperatura óptima de quemado de la ceniza de cáscara de arroz, se identifica la temperatura óptima de quemado mediante la obtención del porcentaje de puzolana dada por la sumatoria de los principales óxidos: SiO₂, Fe₂O₃ y Al₂O₃,

para temperaturas de 600,650,700 y 750°C, los porcentajes de cada componente se pueden apreciar en la Tabla XI.

Tabla XIPorcentaje de óxidos presentes por cada temperatura.

Componente	600°C	650°C	700°C	750°C
<u></u>	%	%	%	%
Óxido de Silicio (SiO ₂)	72.63	73.19	68.71	73.86
Óxido de Aluminio (Al ₂ O ₃)	2.41	1.76	2.18	1.96
Óxido de Hierro (Fe₂O₃)	1.67	1.39	1.84	1.23
SiO ₂ +Al ₂ O ₃ +Fe ₂ O ₃ (%)	76.71	76.34	72.73	77.05

De la Tabla XI se determina que, para todos los casos se obtuvo porcentajes correspondientes a la sumatoria de óxidos superiores al 70%, identificándose como la ceniza con mayor actividad puzolánica, a la quemada a 750°C, con un porcentaje equivalente a 77.05%, tal como se muestra en la Figura 14.

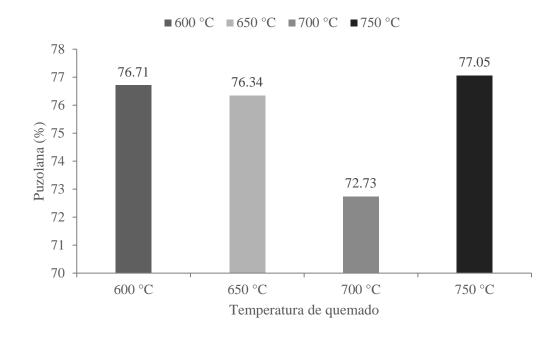


Fig. 14 Temperatura óptima de quemado de CCA

Respecto a determinar las características mecánicas del suelo arcilloso adicionando cenizas de cáscara de arroz a 5, 10, 15 y 20%, a nivel de subrasante, los especímenes comprendidos tanto para el suelo sin adición como para cada porcentaje de CCA, se les realizó el ensayo de Proctor Modificado, brindando los siguientes resultados:

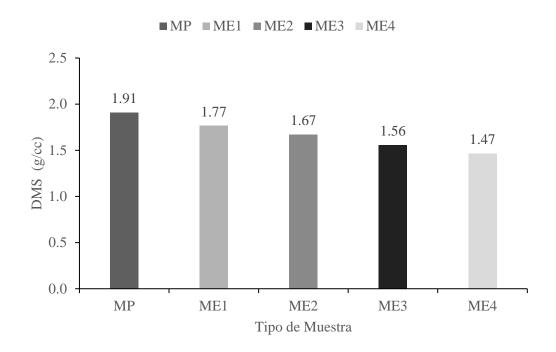


Fig. 15 Densidad Máxima Seca por cada adición de CCA

De la figura 15 se puede observar que los valores de la DMS adicionando 5, 10. 15 y 20 % de CCA son inferiores al valor de la muestra patrón; presentándose una disminución progresiva conforme se incrementa el porcentaje de CCA, alcanzando una reducción de hasta el 23.19% respecto a la MP. Dentro de los valores de DMS para las muestras con adición, se tiene que el mayor valor corresponde al de 5% de CCA (1.77 g/cc) y el menor al 20% (1.47 g/cc). La disminución de la DMS podría estar influenciado por la diferencia entre los valores de pesos específicos de los materiales de estudio, considerando que la ceniza presenta un peso específico menor al del suelo.

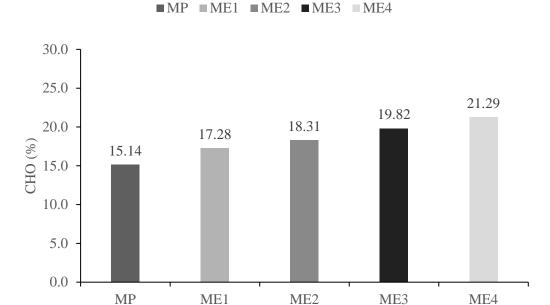


Fig. 16 Contenido de Humedad Óptimo por cada adición de CCA

Tipo de Muestra

De la figura 16 se puede observar que, los porcentajes de CHO del suelo incorporando CCA fueron superiores al obtenido en la muestra patrón, incrementándose a mayor contenido de CCA. El mayor valor está dado por la adición de 20% de CCA (21.29%) y el menor por el de 5% de CCA (17.28%), lo que corresponde a un aumento con respecto a la MP de 40.67% y 14.14% respectivamente. Este incremento puede estar influenciado por la reacción puzolánica entre el suelo y la CCA que hace que se necesite más agua para una mejor compactación del suelo.

Se realizaron los ensayos de CBR en base a los resultados del Proctor modificado, proporcionando valores de CBR al 0.1" y al 0.2", los cuales se encuentran recopilados en la siguiente figura:

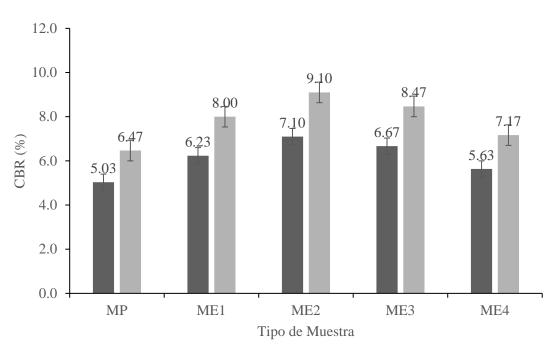


Fig. 17 CBR al 95% a 0.1" y 0.2" por cada muestra

De la figura 17 se puede observar que existe un aumento en el CBR para porcentajes de adición de 5 y 10% de CCA, siendo los valores óptimos los pertenecientes a ME2 (7.10 y 9.10%), los mismos que respecto a la MP (5.03 y 6.47%) presentan un incremento en sus valores de 41.06% y 40.72% respectivamente; sin embargo, se identifica una tendencia decreciente en los valores posteriores a la ME2, obteniéndose para ME4 (5.63 y 7.17%) una disminución del 21% respecto a los porcentajes de CBR máximos. La razón del incremento en CBR puede deberse a la formación gradual de compuestos cementosos en el suelo por la reacción entre el CCA y algunas cantidades de CaOH presentes en el suelo.

Respecto a Determinar las características mecánicas del suelo arcilloso con el porcentaje óptimo de ceniza de cáscara de arroz y fibra de plátano a 0.1,0.3, 0.5 y 0.7%, a nivel de subrasante, el ensayo a los especímenes dio como resultado los valores para la

densidad máxima seca y el contenido de humedad óptimo para cada uno de ellos, dichos resultados se encuentran comprendidos en la Figura 18 y 19 respectivamente.

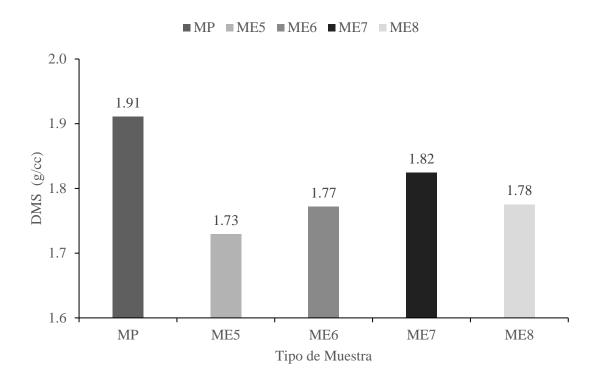


Fig. 18 Densidad Máxima Seca por cada adición de FDP

En la Figura 18 se observa que, para todas las muestras con adición de CCA + FDP los valores disminuyeron respecto a la muestra sin alterar, siendo la reducción más significativa (9.49%) para ME5 y la menor (4.50%) para ME7, sin embargo, se denota un ligero aumento de la DMS con respecto a las muestras incorporadas solo con CCA. En consecuencia, el valor de DMS para las muestras con adición aumentó a medida que el porcentaje alcanzó el 0.5% de FDP, sin embargo, después de ello comenzó a disminuir, esto se debe a que las fibras tienen un peso específico menor en comparación a los granos del suelo.

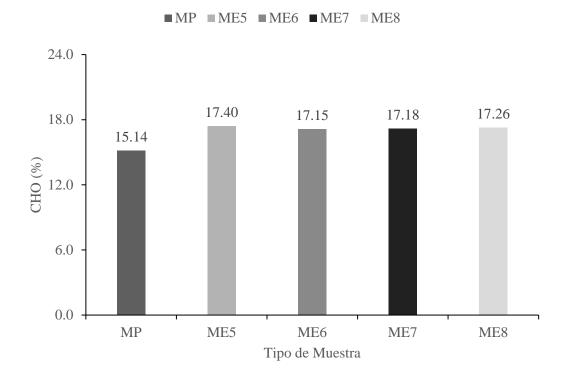


Fig. 19 Contenido de Humedad Óptimo por cada adición de FDP

De la Figura 19 se establece que, todas las muestras con adición de CCA + FDP aumentaron su CHO respecto a la muestra sin alterar, este aumento se presenta en un rango de 13.28% a 14.93%., correspondiente el mayor valor al ME5 (17.40%) y el menor a ME6 (17.15%). Observándose que no existe una variación significativa entre los valores del CHO para cada porcentaje de FDP. Por lo tanto, la incorporación de FDP produce una disminución del CHO respecto al obtenido solo con la adición de CCA, pudiéndose explicar debido al bajo porcentaje de absorción de la fibra.

Posterior a la obtención de los resultados del ensayo de Proctor, se realizó el ensayo de CBR a 0.1" y 0.2", sus resultados se muestran en la Figura 20.

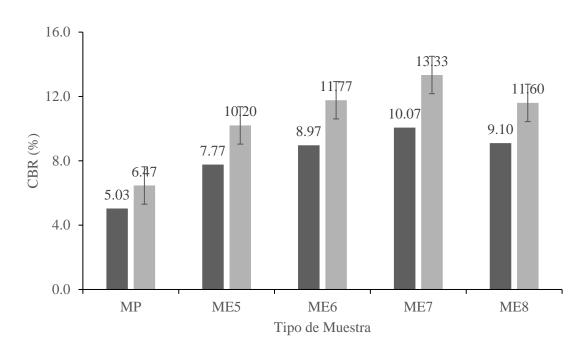


Fig. 20 CBR al 95% a 0.1" y 0.2" por cada muestra

En la Figura 20 se puede determinar que existe un aumento significativo en la resistencia del suelo para todas las muestras respecto a la MP, este incremento se presenta progresivamente a mayor incorporación de fibras, siendo el valor más alto el encontrado para ME7, el cual alcanza una diferencia del 5.03 a 0.1" y 6.87 a 0.2", lo que representa un aumento del 100% y 106.19% respectivamente. Posterior a ello se puede observar para ME8 una ligera disminución del 10% y 13%, en comparación con el obtenido en ME7.

Respecto a determinar las características de las propiedades microestructurales del suelo arcilloso adicionando ceniza de cáscara de arroz y fibra de plátano, se tiene que la muestra con 10% de CCA y 0.5% de FDP presentó en sus fases cristalinas un alto porcentaje de cuarzo, aluminosilicatos y calcita; mientras que, dentro de su composición química se encontró alta presencia de sílice y carbono proporcionados por la CCA y FDP respectivamente.

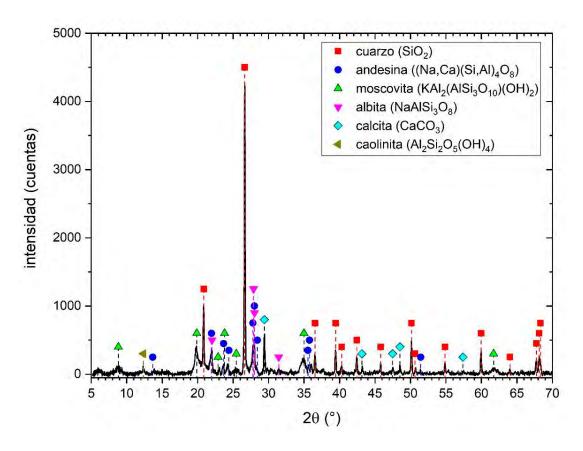


Fig. 21 Difractograma de rayos X de la muestra junto con las fases cristalinas identificadas.

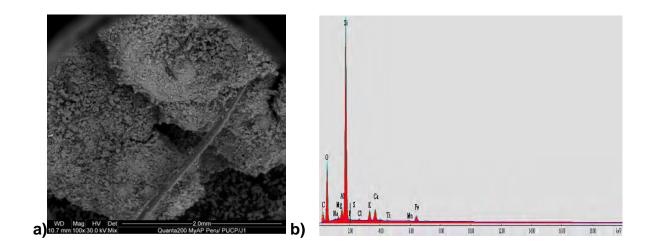
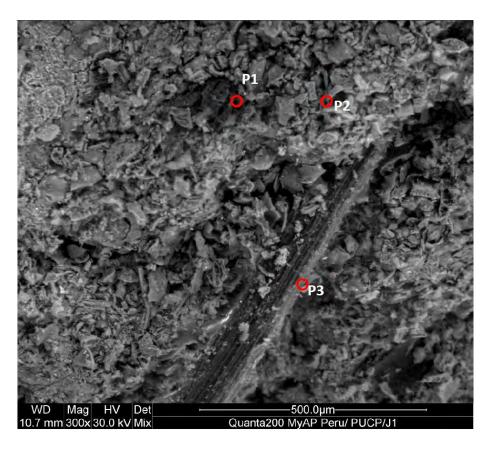

En la Figura 21 se presentan los resultados de difracción de rayos X. En la Tabla XII se resumen los resultados de la composición de fases cristalinas.

Tabla XIIConcentración de las fases cristalinas en la muestra

Fase cristalina	Fórmula	Según # de la	Concentración
		base de datos	(wt%)
Cuarzo	SiO ₂	46-1045	17.2
Andesina	(Na,Ca)(Si,Al) ₄ O ₈	79-1149	12.4
Moscovita	KAI ₂ (AISi ₃ O ₁₀) (OH) ₂	72-1503	10.7
Albita	NaAlSi ₃ O ₈	84-0752	7.7
Calcita	CaCO ₃	05-0586	4.7
Caolinita	$Al_2Si_2O_5(OH)_4$	89-6538	3.4
Amorfo			43.9


SEM-EDS

Para maximizar la información que se puede apreciar visualmente en las imágenes SEM, se ha optado por mostrar imágenes combinadas. Estas superponen las señales del detector de electrones retrodispersados con la del detector de electrones secundarios en una sola imagen. Con ello se aprecia tanto rasgos morfológicos (electrones secundarios) como composicionales (electrones retrodispersados).

Fig. 22 a) Micrografía de la muestra a una magnificación de 100x, b) Espectro de EDS para el área total.

En la Figura 22 se muestra una imagen a una magnificación de 100x, cerca de la magnificación mínima del equipo, con la finalidad de brindar una vista amplia de la muestra. Es posible observar una estructura de hojuelas en la superficie de la muestra, la cual puede deberse a la presencia de ceniza, a su vez, se puede observar una fibra de origen aparentemente vegetal, consistente con las fibras de plátano.

Fig. 23 Micrografía de la muestra a una magnificación de 300x con regiones de interés señaladas

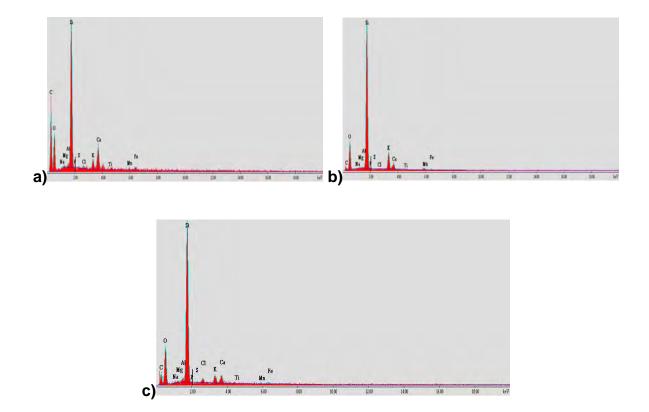


Fig. 24 a) Espectro de EDS para región P1, b) para P2 y c) para P3

En la Figura 23 se denota una imagen de mayor magnificación, de 300x, donde se amplía la región donde la fibra ingresa hacia la muestra, en esta imagen se han señalado algunas regiones de interés para el análisis elemental. Mientras que, en la Figura 24 se muestran los espectros de EDS para cada una de las regiones señaladas.

Tabla XIIIComposición química medida por EDS en diferentes regiones

Elemento	Áre	a total	ı	P1	ı	P2	ı	P3
químico	wt%	at%	wt%	at%	wt%	at%	wt%	at%
С	25.37	36.05	59.09	70.11	17.66	27.14	34.07	46.12
0	42.61	45.46	25.48	22.69	40.69	46.95	37.45	38.05
Na	0.33	0.25	0.31	0.19	0.28	0.22	0.47	0.33
Mg	0.47	0.33	0.19	0.11	0.17	0.13	0.27	0.18
Al	1.83	1.16	0.28	0.15	0.36	0.24	0.77	0.46
Si	24.13	14.67	10.59	5.37	33.37	21.94	22.77	13.18
Р	0.18	0.10			0.16	0.10		
S	0.05	0.03	0.11	0.05			0.09	0.05
CI	0.27	0.13	0.18	0.07			0.69	0.32
K	1.42	0.62	0.81	0.29	4.71	2.22	1.36	0.56
Ca	1.50	0.64	1.94	0.69	1.46	0.67	1.21	0.49
Ti	0.17	0.06	0.13	0.04			0.12	0.04
Mn	0.18	0.06	0.34	0.09	0.72	0.24	0.23	0.07
Fe	1.49	0.46	0.54	0.14	0.43	0.14	0.50	0.15

En la Tabla XIII se muestran los resultados de las medidas de EDS para estas regiones, así como el área total de la imagen. Las concentraciones de cada elemento se expresan en porcentaje por masa (wt%) y porcentaje atómico (at%). Cabe destacar que el margen de error

en EDS es típicamente del orden de ±1 at% aproximadamente, por lo cual los resultados son mayormente cualitativos para los elementos con concentraciones muy bajas.

En general, puede notarse una presencia notoria de carbono, oxígeno, silicio y diversos metales. La presencia de carbono es típica en ceniza, y el silicio y metales son comunes en muestras de origen mineral y en ceniza, posiblemente debido a especies como silicatos y aluminosilicatos, lo cual se corrobora con DRX. Dadas las distribuciones de elementos, la región P1 probablemente corresponde a una inclusión rica en carbono proveniente de ceniza. La región P2 es más representativa de las hojuelas, que podrían corresponder a los componentes inorgánicos de la ceniza, la cual suele contener compuestos de silicio, aluminio, calcio y potasio, entre otros. La región P3 corresponde a la fibra de origen vegetal, lo cual es consistente con su concentración elevada de carbono.

3.2. Discusión

Sobre determinar las características mecánicas del suelo arcilloso a nivel de subrasante , los resultados obtenidos en la presente investigación para el CHO y la DMS son de 15.14% y 1.91 g/cc, en base a ello autores como [16], [22]; identificaron para el CHO, valores por encima del resultante (17.50% y 31.44%); mientras que, para la DMS, valores inferiores al obtenido (1.383 g/cc a 1.696 g/cc), sin embargo autores como [17] tuvieron un resultado similar con el arrojado para el CHO (15%) . Se determinó un CBR al 95% de 5.03%, resultado cercano a los obtenidos por [19] y [20], siendo los mismos 5% y 4% respectivamente.

Sobre identificar la temperatura óptima de quemado de la ceniza de cáscara de arroz, los autores [15] y [5], determinaron como temperatura de incineración con mayor actividad puzolánica valores entre 600 a 750 °C, concordando con los valores obtenidos en la presente investigación, del mismo modo es importante recalcar que existen pocas investigaciones que comparen 04 temperaturas diferentes de incineración.

Sobre determinar las características mecánicas del suelo arcilloso adicionando cenizas de cáscara de arroz a 5, 10, 15 y 20% a nivel de subrasante, se obtiene que dentro de sus

características, la DMS para el suelo adicionado con CCA disminuye en 23.19%, esta reducción se asemeja a los resultados de [16] y [17], quienes obtuvieron una disminución de 21.30% y 21.43% respectivamente; sin embargo, en las investigaciones de [13], [19] la DMS disminuyó en 5.37% y 2.81% respectivamente, valores inferiores a los resultados obtenidos pero con la misma tendencia decreciente en relación a los valores de la MP, así mismo para el caso del CHO, los valores encontrados se encuentran dentro del rango porcentual de aumento obtenido de los estudios previos de [27] y [14], siendo estos 18.20% y 24.78% respectivamente; caso contrario a [37] que obtuvieron un incremento mucho mayor, llegando al 86.79%. El porcentaje óptimo de CCA obtenido mediante la comparación de los valores de CBR para cada porcentaje de adición, fue del 10% resultado que concuerda con los planteados por [27], [23] y [14] quienes concluyeron que adicionando 10% de CCA al suelo, este mejoraba su resistencia teniendo incrementos en el valor de su CBR en 63.43%, 17.89% y 43.29% respectivamente.

Sobre determinar las características mecánicas del suelo arcilloso con el porcentaje óptimo de ceniza de cáscara de arroz y fibra de plátano a 0.1, 0.3, 0.5 y 0.7% a nivel de subrasante, los resultados de la DMS obtenidos para el suelo adicionado con 10% CCA y fibra de plátano, aumentaron progresivamente hasta el 0.5% de FDP, esto concuerda con [33] quienes obtuvieron un incremento de 7.88% con el mismo porcentaje de FDP, en contraparte, [30] refieren que la DMS disminuye gradualmente conforme se incrementa la adición de FDP en 6.67%. Para los resultados correspondientes al CHO se encuentra similitudes con los obtenidos por [30] y [43], puesto que no presentan variaciones significativas entre los valores para cada porcentaje adicionado. El porcentaje óptimo de FDP resultante en la presente investigación (0.5%) concuerda con el brindado por los autores [1] y [35], quienes consiguieron un incremento del 200% y 74% para un CBR a 0.1" con el mismo porcentaje, de igual manera, la ligera reducción de los valores del CBR posteriores al 0.5%, coincide con la investigación de [43] , donde la resistencia del suelo disminuye en 61% para un CBR a 0.1".

Sobre determinar las características de las propiedades microestructurales del suelo arcilloso adicionando ceniza de cáscara de arroz y fibra de plátano, los resultados de la difracción de rayos X mostraron mayor concentración cristales como cuarzo, seguido de andesina, moscovita, albita, calcita y caolinita en menor proporción, esto concuerda con las investigaciones de [40], [41], pues encontraron la presencia de cuarzo (SiO2) como material predominante en las muestras de suelo analizadas y en menor proporción albita y moscovita, esto debido al alto contenido de sílice brindado por las CCA; en el caso de la prueba SEM con EDS los resultados de [40] mostraron la presencia 16.8% de carbono, 30.4% de oxígeno , 24.6% de sílice , 13.2% de aluminio entre otros, concordando con los elementos químicos encontrados en la presente investigación, del mismo modo la investigación de [39] destaca la presencia de Si, Fe y Al. La presencia de carbono es típica en ceniza, y el silicio y metales son comunes en muestras de origen mineral y en ceniza, posiblemente debido a especies como silicatos y aluminosilicatos, lo cual se corrobora con DRX. Por su parte, [38] pudo observar a través del SEM los cambios microestructurales, la carbonatación y la formación de compuestos cementosos en el suelo que ayudan a mejorar la resistencia del suelo, a su vez [21] refiere que la razón principal del aumento de la fuerza del suelo es por el efecto de la cristalización que llena los poros del suelo haciendo que las partículas se conecten entre sí.

Entre las limitaciones se la presente investigaciones se resalta la escasa cantidad de investigaciones sobre la utilización de la fibra de plátano en suelo arcilloso, así como estudios a nivel microestructural de las dos variables planteadas, a ello se le suma el limitado acceso que se tuvo a laboratorios en ensayos microestructurales en la región Lambayeque, optando por un laboratorio en la ciudad de Lima.

3.3. Aporte de la investigación

El principal aporte de la investigación es dar a conocer el comportamiento del suelo arcilloso a través de la adición de un material puzolánico (ceniza de cáscara de arroz) y porcentajes fibra de origen vegetal (fibra de plátano) a través de ensayos mecánicos como

Proctor modificado y CBR con el fin de aumentar la resistencia del suelo para fines de pavimentación, a ello se le suma el análisis microestructural de la muestra del suelo adicionado óptimo para conocer la cantidad de cristales, composición química y la adhesión a través de imágenes en escala. Otro aporte importante de la presente investigación es por la innovación del tema a tratar en nuestro país y ciudad.

IV. CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

- 1. El1 suelo natural utilizado está denominado CL según SUCS, como arcilloso de baja plasticidad, presentando valores para LL y LP de 36.24% y 21.31% respectivamente, así mismo para la clasificación AASTHO, este presenta características de suelo pobre a malo, correspondiéndose con el tipo de subrasante insuficiente dado por el MTC para un resultado de CBR al 95% de 5.03%.
- 2. La CCA presentó una mayor actividad puzolánica a una temperatura de quemado de 750°C, obteniéndose un contenido de óxidos de 77.05%, sin embargo, cabe recalcar que para todas las temperaturas evaluadas se encontró un porcentaje de puzolana superior al 70%, siendo un indicativo de la influencia positiva del rango de incineración utilizado.
- 3. La incorporación del 20% de CCA, produjo como resultado el valor mínimo para la DMS (1.47 g/cc) y el máximo para el CHO (21.29%). Con respecto a las características mecánicas obtenidas para las adiciones de CCA, se tuvo que la resistencia del suelo incrementó con la adición del 10% de CCA, obteniendo un aumento en su CBR a 0.1" de 41.06%, valor superior a los alcanzados para porcentajes del 5,15 y 20%, mismos que incrementaron en 23.84, 32.45 y 11.92% respecto a MP.
- 4. El ensayo Proctor Modificado, obtuvo como resultado que la reducción de DMS menos significativa se produjo al adicionar el 0.5% de FDP (4.50%) aumentando para porcentajes más elevados, mientras que el CHO no presento diferencias significativas entre cada muestra, manteniéndose en un rango de 17.15-17.40%. La incorporación de CCA más FDP al suelo natural, aumento los valores de CBR para todos los porcentajes empleados frente a la muestra sin tratar, siendo la adición de 10% de CCA + 0.5% de FDP, la obtuvo los mejores resultados en cuanto al comportamiento mecánico del suelo, logrando un incremento del 100% y 106.19% de la resistencia obtenida en la MP para

- 0.1" y 0.2" respectivamente, este incremento se traduce en la mejora de subrasante insuficiente a buena según los valores indicados por el MTC.
- 5. La microestructura de la muestra de suelo con los porcentajes óptimos de CCA y FDP, se caracteriza mayormente por fases cristalinas con alto contenido de cuarzo y diversos aluminosilicatos, correspondiéndose con su composición química mayoritariamente compuesta por carbono, oxígeno y sílice. Es así, que la mejora de la resistencia del suelo está ligada al efecto de la cristalización y carbonatación, la misma que incide en la disminución de la porosidad del suelo produciendo que las partículas se conecten entre sí.

4.2. Recomendaciones

- La presente investigación demostró la baja calidad del tipo de suelo utilizado, sin embargo, los resultados obtenidos solo son aplicables para suelos arcillosos de baja plasticidad.
- 2. Debido a que las CCA fueron sometidas a diversas temperaturas de incineración, se recomienda realizar la caracterización de las mismas mediante un ensayo de Difracción de Rayos X (DRX), con la finalidad de obtener cantidades más exactas de cada elemento perteneciente a la composición mineralógica del material.
- 3. Se recomienda la utilización de un porcentaje de 10% de CCA como estabilizante del suelo arcilloso de baja plasticidad, dado los resultados obtenidos en el valor del CBR al 95%, que demuestra un aumento significativo en la calidad y la capacidad portante del suelo.
- 4. Los investigadores recomiendan el uso del porcentaje óptimo de 10% de CCA conjuntamente con 0.5% de FDP, para la estabilización de suelos arcillosos de baja plasticidad, debido al aumento de la resistencia obtenida, que con llevo a la mejora de subrasante insuficiente a buena.

5. Se recomienda que los ensayos microestructurales realizados en esta investigación, sean aplicados antes y después de la conformación de la subrasante, esto con el fin de identificar posibles variaciones en la microestructura de la mezcla que puedan conllevar a cambios en su comportamiento mecánico.

REFERENCIAS

- [1] S. Boobalan, M. Dhanabharath, S. Dineshkumar and M. Gokuldas, "Comprehensive Review on the Influence of Natural Materials in Soil Stabilization," *Materials Research Proceedings*, vol. 23, pp. 276-283, 2022.
- [2] D. P. Kusumastuti and I. Sepriyanna, "Soft Soil Stabilization With Rice Husk Ash and Glass Powder Based on Physical Characteristics," *IOP Conference Series: Materials Science and Engineering,* vol. 650, p. 012025, 2019.
- [3] J. Jayashree and V. Jeevanantham, "Experimental Study on Strength Characteristics of Fly Ash and Rice Husk Ash added Clay Soil," *Materials Research Proceedings*, vol. 23, pp. 122-127, 2022.
- [4] M. P. S.T. Anupiya, M. Saberian, J. Zhu, J. Li and R. Roychand, "Effect of crushed glass on the mechanical and microstructural behavior of highly expansive clay subgrade," *Case Studies in Construction Materials*, vol. 17, p. e01244, 2022.
- [5] B. Pushpakumara and W. Mendis, "Suitability of Rice Husk Ash (RHA) with lime as a soil stabilizer in geotechnical applications," *International Journal of Geo-Engineering*, vol. 13, no. 1, 2022.
- [6] D. Barman and S. K. Dash, "Stabilization of expansive soils using chemical additives: A review," *Journal of Rock Mechanics and Geotechnical Engineerin*, vol. 14, no. 4, pp. 1319-1342, 2022.
- [7] A. Eisazadeh, A. Bhurtel and H. Phai, "Compaction characteristics of Bangkok clay stabilized using rice husk ash, bottom ash, and lime," *IOP Conf.* Series: Materials Science and Engineering, vol. 527, p. 012039, 2019.
- [8] X. Jiang, Z. Huang, F. Ma and X. Luo, "Analysis of Strength Development

- and Soil-Water Characteristics of Rice Husk Ash-Lime Stabilized Soft Soil," *Materials*, vol. 12, no. 23, p. 3873, 2019.
- [9] P. Ellappan, A. Vijayakumar and M. Nithya, "Influence of Natural Fibres in Strengthening of Black Cotton Soil," *IOP Conference Series: Materials Science* and Engineering, vol. 955, p. 012066, 2020.
- [10] N. Bawadi, M. AlHamidi, A. Mansor and S. Anuar, "Influence of Banana Fiber on Shear Strength of Clay Soil," *IOP Conf. Series: Materials Science and Engineering*, vol. 864, p. 012099, 2020.
- [11] S. Vizcarra, I. Lujan, M. Soto and G. Durán, "Experimental analysis of the addition of rice husk ash to the clayey subgrade of a road stabilized with lime," *IOP Conf. Series: Materials Science and Engineering*, vol. 758, p. 012090, 2020.
- [12] A. O. Owino, N. Nahar and Z. Hossa, "Effects of basalt fibres on strength and permeability of rice husk," *Journal of Agricultural Engineering*, vol. 53, no. 1, 2022.
- [13] M. Meliyana, A. Armia, Z. Muhammad and R. Cut, "The Impact of rice husk ash waste addition towards landfill stability," *Jurnal Teknik Sipil Unaya*, vol. 8, no. 1, pp. 20-26, 2022.
- [14] U. G. Hullur, S. Krishnaiah and B. Prakash, "Stabilization of Black Cotton Soil Using Rice Husk Ash for Flexible Pavement Construction," *International Journal for Research in Applied Science & Engineering Technology,* vol. 10, no. 8, pp. 1870-1874, 2022.
- [15] A. O. Owino, N. Nahar, Z. Hossain and N. Tamaki, "Effects of basalt fibres on strength and permeability of rice husk ash-treated expansive soils," *Journal of Agricultural Engineering*, vol. 53, no. 1, 2022.
- [16] N. Nahar, A. O. Owino, S. K. Khan, Z. Hossain and N. Tamaki, "Effects of controlled burn rice husk ash on the geotechnical properties of soil," *Journal of*

- Agricultural Engineering, vol. 52, no. 4, 2021.
- [17] B. Tinku, G. Rishav, R. Himanshu, K. Ashwini, P. Gaurav and Y. Kuldeep,
 "Study of expansive soil stabilized with agricultural waste," *Journal of Physics:*Conference Series, vol. 2070, no. 012237, 2021.
- [18] M. Taha, C. Pei Feng and S. Ahmed, "Modification of Mechanical Properties of Expansive Soil from North China by Using Rice Husk Ash," *Materials*, vol. 14, no. 2789, 2021.
- [19] I. Attah, R. Etim and I. Usanga, "Potentials of Cement Kiln Dust and Rice Husk Ash Blend on Strength of Tropical Soil for Sustainable Road Construction Material," *Materials Science and Engineering*, vol. 1036, no. 012072, 2021.
- [20] E. S. Nnochiri, O. M. Ogundipe and S. A. Ola, "Geotechnical and microstructural properties ofcement-treated laterites stabilized with rice huskash and bamboo leaf ash," *Acta Polytechnica*, vol. 61, no. 6, pp. 722-732, 2021.
- [21] M. Jinrong, S. Yunhe, L. Yuyi and T. Xiangling, "Strength and Microfabric of Expansive Soil Improved with Rice Husk Ash and Lime," Advances in Civil Engineering, 2020.
- [22] Daryati e M. Ramadhan, "Improvement of expansive soils stabilized with rice husk ash (RHA)," *Journal of Physics: Conference Series*, vol. 1625, p. 012006, 2020.
- [23] I. A. Oyediran and O. O. Ayeni, "Comparative effect of microbial induced calcite precipitate, cement and rice husk ash on the geotechnical properties of soils," SN Applied Sciences, no. 1157, 2020.
- [24] C. Mugai, B. Sabuni, E. Neyole and F. Mugai, "Influence of Rice Husk Ash on Sub-Grade Bearing Strength in Stabilization of Expansive Soils for Low Volume Roads in Kenya," *Civil and Environmental Research,* vol. 12, no. 11, 2020.

- [25] A. Jain, A. K. Choudhary and J. N. Jha, "Influence of Rice Husk Ash On the Swelling and Strength Characteristics of Expansive Soil," *Geotechnical and Geological Engineering*, pp. 2293-2302, 2020.
- [26] A. Eisazadeh, A. Bhurtel and H. Phai, "Compaction characteristics of Bangkok clay stabilized using rice husk ash, bottom ash, and lime," *Materials* Science and Engineering, vol. 527, p. 012039, 2019.
- [27] D. Ewa, G. Akeke and D. Okoi, "Influence of rice husk ash source variability on road subgrade properties," *Nigerian Journal of Technology*, vol. 37, no. 3, pp. 582-586, 2018.
- [28] K. Y. Anjani, G. Kumar, K. Roop and S. K. Suman, "Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads," *International Journal of Pavement Research and Technology*, vol. 10, no. 3, pp. 254-261, 2017.
- [29] G. Deepak e K. Arvind, "Performance evaluation of cement stabilized pond ash rice husk ash clay mixture as a highway construction material," *Journal of Rock Mechanics and Geotechnical Engineering*, vol. 9, no 1, pp. 159-169, 2017.
- [30] G. Kannan and E. R. Sujatha, "Effect of Nano Additive on Mechanical Properties of Natural Fiber Reinforced Soil," *Journal of Natural Fibers*, vol. 20, no. 1, 2023.
- [31] E. Prabakaran, A. Vijayakumar and M. Nithya, "Influence of natural fibres in strengthening of black cotton," *Materials Science and Engineering*, vol. 955, p. 012066, 2020.
- [32] N. F. Bawadi, M. A. AlHamidi, A. F. Mansor and S. A. Anuar, "Influence of Banana Fiber on Shear Strength of Clay Soil," *Materials Science and Engineering*, vol. 864, p. 012099, 2020.

- [33] N. Bawadi, N. Ahmad, A. Mansor, S. Anuar and M. Rahim, "Effect of natural fibers on the soil compaction characteristics," *2nd International Conference on Civil & Environmental Engineering*, vol. 476, 2020.
- [34] B. Ramesh, "Soil stabilization by using banana fibre," *International Journal of Scientific*, vol. 8, no. 1, 2019.
- [35] J. Finu, M. J. Elsa, M. Varghese, M. Antu and J. Megha, "Experimental study on improvement of soil subgrade reinforced with banana and coir fibers," *International Research Journal of Engineering and Technology (IRJET)*, vol. 5, no. 3, 2018.
- [36] N. B. Chandran e V. L. Vijayan, "Effect of Natural fiber on Clayey soil,"

 International Research Journal of Engineering and Technology (IRJET), vol. 4,
 nº 4, 2017.
- [37] E. Ormeño, N. Rivas, G. Durán and M. Soto, "Stabilization of a Subgrade Composed by Low Plasticity Clay with Rice Husk Ash," *Materials Science and Engineering*, vol. 758, no. 012058, 2020.
- [38] F. E. Jalal , S. Mulk, S. A. Memon, B. Jamhiri and A. Naseem, "Strength, Hydraulic, and Microstructural Characteristics of Expansive Soils Incorporating Marble Dust and Rice Husk Ash," *Advances in Civil Engineering*, 2021.
- [39] K. C. Onyelowe, I. I. Obianyo, A. P. Onwualu, M. E. Onyia and C. Moses, "Morphology and mineralogy of rice husk ash treated soil for green and sustainable landfill liner construction," *Cleaner Materials*, vol. 1, 2021.
- [40] M. M. Alhaji, M. Alhassan, T. Waheed Adejumo and A. Ibrahim Dogo, "Microestructural investigation and strength properties of clay stabilized with cement, rice husk ash and promoter," *Jurnal Teknologi*, vol. 82, no. 5, pp. 11-22, 2020.
- [41] H. N. Ramesh e B. V. Manjunatha, "Justification of the resistance

- properties of microstructural changes in black cotton soil with rice husk ash and carbide lime in the presence of sodium salts," *SN Applied Sciences*, vol. 2, nº 457, 2020.
- [42] K. Z. Sanchez del Rosario, "Evaluación de la fibra de plátano en las propiedades mecánicas de la subrasante en suelos arcillosos, La Palma, Tumbes," Universidad Cesar Vallejo, 2021.
- [43] K. Guerra e M. Mosqueira, "Bearing capacity (CBR) of three clay soils incorporating banana pseudostem fiber in different percentages," *Latin American and Caribbean Consortium of Engineering Institutions*, 2020.
- [44] C. Crespo Villalaz, Mecánica de suelos y cimentaciones, Limusa, 2005.
- [45] J. C. Guerra Torralbo, Mecánica de suelos , conceptos básicos y aplicaciones, Dextra Editorial, 2018.
- [46] G. Angella, C. Frías and R. Salgado, "Conceptos básicos de las relaciones agua, suelo y planta," INTA, 2016.
- [47] E. H. Castañeda Villanueva e W. A. Campos Ugaz, "Incorporación de suelos gravosos a la clasificación SUCS planteados por Braja das en la teoría de compactación de suelos: ensayos en suelos andinos Perú," Universidad Cesar Vallejo, 2017.
- [48] M. Scalone Echave, "Propiedades fisico quimicas de lo suelos," Instituto de Agrimensura, 2012.
- [49] L. L. Rojas Perilla, "Caracterización de suelos arcillosos desecados al occidente de la Sabana," Universidad Santo Tomás, 2014.
- [50] P. Berry e D. Reid, Mecánica de suelos, Mc Graw-Hill, 1993.
- [51] S. Arrelucé Montenegro and G. L. Solís Larrauri, "Incorporación de fibras de polipropileno como método de reforzamiento de suelos arcillosos en Palian," Universidad Peruana de Ciencias Aplicas, 2022.

- [52] G. Duque Escobar e C. E. Escobar Potes, "Mecánica de los suelos," Sede Manizales, 2002.
- [53] MTC E 110, "DETERMINACION DEL LIMITE LIQUIDO DE LOS SUELOS," em *MANUAL DE ENSAYO DE MATERIALES*, Lima, 2016, pp. 67-71.
- [54] MTC E 111, "DETERMINACION DEL LIMITE PLASTICO (L.P.) DE LOS SUELOS E INDICE DE PLASTICIDAD (I.P.)," em *MANUAL DE ENSAYO DE MATERIALES*, Lima, 2016, pp. 72-74.
- [55] Ministerio de Transportes y Comunicaciones MTC, Manual de Carreteras: "Suelos, Geología, Geotecnia y Pavimentos", Lima, 2013.
- [56] MTC E 108, "DETERMINACION DEL CONTENIDO DE HUMEDAD DE UN SUELO," em MANUAL DE ENSAYO DE MATERIALES, Lima, 2016, pp. 49-53.
- [57] F. A. Corredor e Y. J. Moreno Fonseca, "Obtención del contenido de humedad en suelos finos, usando horno microondas sin reductor de calor empleando una potencia," Universidad de la Salle, 2011.
- [58] MTC E 115, "COMPACTACION DE SUELOS EN LABORATORIO UTILIZANDO UNA ENERGIA MODIFICADA (PROCTOR MODIFICADO)," em MANUAL DE ENSAYO DE MATERIALES, Lima, 2016, pp. 105-118.
- [59] MTC E 132, "CBR DE SUELOS (LABORATORIO)," em *MANUAL DE ENSAYO DE MATERIALES*, Lima, 2016, pp. 248-256.
- [60] R. S. Mora Ortiz, "Efectos de la microestructura en el comportamiento hidromecánico de suelos compactados," Universitat Politècnica de Catalunya, 2016.
- [61] J. Mercier, G. Zambelli and W. Kurz, Introduction to Materials Science, Elsevier Science, 2003.
- [62] P. Sherwood, "Carbons and Graphites: Surface Properties of,"

- Encyclopedia of Materials: Science and Technology (Second Edition), pp. 985-995, 2001.
- [63] F. Romero Blanco, "Caracterización elemental y estructural de cementos TIPO I," Universidad Pedagógica y Tecnológica de Colombia, 2015.
- [64] C. Guillermo Smith, Smart Textile Coatings and Laminates, Woodhead Publishing, 2019.
- [65] P. Anjan, "Geotechnical Investigations and Improvement of Ground Conditions," Woodhead Publishing Series in Civil and Structural Engineering, pp. 19-27, 2019.
- [66] A. A. Firozzi, C. Guney Olgun, A. A. Firozzi and M. Shojaei Baghini, "Fundamentals of soil stabilization," *International Journal of Geo-Engineering*, vol. 26, 2017.
- [67] S. Sahoo, P. K. Parhi and B. Chandra Panda, "Durability properties of concrete with silica fume and rice husk ash," *Cleaner Engineering and Technology*, vol. 2, p. 100067, 2021.
- [68] G. Ogwang, P. W. Olupot, H. Kasedde, E. Menya, H. Storz and Y. Kiros, "Experimental evaluation of rice husk ash for applications in geopolymer mortars," *Journal of Bioresources and Bioproducts,* vol. 6, no. 2, pp. 160-167, 2021.
- [69] V. Kavitha e G. Aparna, "A Review on Banana Fiber and Its Properties,"

 Asian Journal of Pharmaceutical Research and Development, vol. 9, no 3, pp. 118-121, 2021.
- [70] L. Maldonado, "Proceso artesanal de extracción, manejo y secado de las fibras naturales de banano (Musa paradisiaca) en la Parroquia El Retiro de la Provincia de El Oro," *Yachana*, vol. 1, nº 1, 2016.
- [71] D. Armas Ruiz, S. Ruiz Galarza, M. Piován, L. Carrión Matamoros and C.

- Narváez Muñoz, "Caracterización de propiedades mecánicas de las fibras de banano de la corteza y el cuerpo del tallo," *Científica,* vol. 20, no. 1, pp. 21-31, 2016.
- [72] Z. Ortega, M. Morón, M. Monzón, P. Badalló and R. Paz, "Production of banana fiber yarns for technical textile reinforced composites," *Materials*, vol. 9, no. 5, 2016.
- [73] J. Arias and M. Covinos, Diseño y metodología de la investigación, ENFOQUES CONSULTING EIRL, 2021.
- [74] R. Hernández-Sampieri and C. Mendoza, Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta, McGRAW-HILL INTERAMERICANAEDITORES, 2018.
- [75] H. Ñaupas, M. Valdivia, J. Palacios and H. Romero, Metodología de la investigación Cuantitativa-Cualitativa y Redacción de la Tesis, 5a ed., Ediciones de la U, 2018.
- [76] E. Bologna, Métodos Estadísticos de Investigación, 1a ed., Editorial Brujas, 2018.
- [77] C. Martínez and A. González, Técnicas e instrumentos de recogida y análisis de datos., Universidad Nacional de Educación a Distancia, 2014.
- [78] H. Sánchez Carlessi, C. Reyes Romero e K. Mejía Sáenz, Manual de términos en investigación científica, tecnológica y humanística, Lima: Universidad Ricardo Palma, 2018.

ANEXOS

Anexo A. Matriz de Consistencia.

Tabla B I Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibra de plátano

FORMULACIÓN	OBJETIVOS	HIPÓTESIS	VARIABLES	POBLACIÓN Y	ENFOQUE/TIPO/DISEÑO	TÉCNICAS	3 E
DEL PROBLEMA	OBSETTVOS	THEOTESIS	VARIABLES	MUESTRA	EN OQUE, TIP O/DISENO	INSTRUMEN	NTO
	Objetivo principal:						
	Determinar las propiedades					Técnica:	
Problema general:	microestructurales y mecánicas de	H1: La adición de CCA, en		Población:		Observación	
¿Como influye la	suelos arcilloso adicionando CCA y	porcentajes del 5, 10, 15 y	VD: Propiedades	Todas las		Ensayo	de
adición de las CCA	FDP.	20% y de FDP en	microestructurales y	muestras	-	Laboratorio	
y las fibras de	Objetivos específicos:	porcentajes de 0.1, 0.3,	mecánicas	experimentales.	Enfoque: Cuantitativo		
plátano en las	Determinar las características	0.5 y 0.7%, influye en las propiedades		Muestra: 54	Tipo: Aplicada	Instrumento	os:
propiedades	mecánicas del suelo arcilloso a	microestructurales v	VI: Ceniza de Cáscara	ensayos, 27 para	Diseño: Experimental	Fichas	de
microestructurales y	nivel de subrasante.	mecánicas del suelo	de Arroz y Fibra de	CBR y 27 para	·	observación,	i
mecánicas del	Identificar la temperatura óptima	arcilloso.	plátano	Proctor		cámara	
suelo arcilloso?	de quemado de la ceniza de	arcinoso.		modificado.		fotográfica,	
	cáscara de arroz.					equipos	de
	Determinar las características					laboratorio	

mecánicas del suelo arcilloso adicionando cenizas de cáscara de arroz a 5, 10, 15 y 20% anivel de subrasante.

- Determinar las características
 mecánicas del suelo arcilloso con
 el porcentaje óptimo contenido de
 ceniza de cáscara de arroz y fibra
 de plátano a 0.1,0.3, 0.5 y 0.7%, a
 nivel de subrasante.
- Determinar las características de las propiedades microestructurales del suelo arcilloso adicionando ceniza de cáscara de arroz y fibra de plátano.

ANEXO B. FOTOGRAFÍAS DE ENSAYOS REALIZADOS

ANEXO B.1 Ensayo de Límites de Atterberg

ANEXO B.2 Contenido de humedad del suelo

ANEXO B.3 Granulometría

ANEXO B.4: CBR + 5% CCA

ANEXO B.5: CBR + 10% CCA

ANEXO B.6 CBR + 15% CCA

ANEXO B.7 CBR + 20 % CCA

ANEXO B.8 CBR + 10% CCA - MUESTRAS

ANEXO B.9 CBR + 10% CCA - MUESTRAS

ANEXO B.10 CBR + 10% CCA + 0.5% FDP

INFORME DE ENSAYO Nº 11026/22 :

CLIENTE : JIMMY YAMPIER OLIVARES GUZMAN

REFERENCIA : SUZETTY NICOLE URBINA SILVA
CENIZA DE CASCARA DE ARROZ.
MATERIAL : BOLSAS DE 250 gr por temperatura.

TIPO DE ANÁLISIS : LOTE

FECHA DE RECEPCION : 31-10-22.

FECHA DE EMISION

DE RESULTADOS : 11-11-22

N° DE PAGINAS : 01

CODIGO DE

LABORATORIO : 11 - 035 AL 038

INFORMAMOS QUE HEMOS ANALIZADO LA MUESTRA ARRIBA DETALLADA Y REPORTAMOS EL SIGUIENTE RESULTADO:

ANÁLISIS	M 35 T 600°C	M 36 T 650°C	M 37 T 700°C	M 38 T 750°C
SiO ₂ . (%)	72,63	73,19	68,71	73,86
Al ₂ O ₃ (%)	2,41	1,76	2,18	1,96
Fe2O3 (%)	1,67	1,39	1.84	1,23
CaO (%)	7,05	8,32	6,00	5,77
MgO (%)	0,90	0,62	0,68	0,98

Mg Ing. Qco. Fernando Anaya Meléndez. Gerente General CIP 39693

Muestra proporcionada por el Cliente.

Oficina: Av Oscar R. Benavides 3130 BQ F Dpto 301 – Lima Cercado. Laboratorio: Urb. Antonia Moreno de C. Mz O Lt 9 5° Sector Izq. – Ventanilla - Callao Tf 4641403 Celular 947321623

E-mail fanayamel@yahoo.com famalabsac@gmail.com

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaitos

948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

MATERIAL (**) : Arcilla inorgânica: Muestra: M-01

CODIGO DE MUESTRA (**)

COORDENADAS (**) 3-

CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 02/11/2022

FECHA DE ENSAYO: 02/11/2022

FECHA DE EMISION: 06/11/2022

AGREGADOS, Determinación de la densidad relativa (peso especifico) y absorción del agregado fino. Método de ensayo, 4a Edición NTP 400,022:2021

	DATOS DEL ENSAY	0.	
A Peso Mat.Sat. Sup. Seca (En Aire) (gr)	394.20	441.90	
B Peso Mat.Sat. Sup. Seca (En Agua) (gr)	240.50	269,80	
C Vol. de masa + vol de vacios = A-B (gr)	153.70	172.10	
D Peso material seco en estufa (105 ℃)(gr)	387.80	434.78	
E Vol. de masa = C- (A - D) (gr)	147.30	164.98	Promedio
Pe bulk (Base seca) = D/C	2.523	2.526	2.525
Pe bulk (Base saturada) = A/C	2.565	2,568	2.566
Pe Aparente (Base Seca) = D/E	2,633	2.635	2.634
% de absorción = ((A - D) / D * 100)	1.65	1.61	1.64%

Revisado y aprobado.

<sup>El informe corresponde única y exclusivamente a la muestra recibida,
Las copias de este informe no son válidas sin la autorización del laboratorio.
Este informe de ensayo es imparcial, confidencial, estando destinado unica y exclusivamente al cliente.</sup>

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

MATERIAL (**) : Cenizas de cáscara de arroz; Muestra: M-01

CODIGO DE MUESTRA (**)

COORDENADAS (**)

CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION: 02/11/2022

FECHA DE ENSAYO : 02/11/2022 FECHA DE EMISION: 06/11/2022

AGREGADOS, Determinación de la densidad relativa (peso especifico) y absorción del agregado fino. Método de ensayo, 4a Edición NTP 400,022:2021

		DATOS DEL ENSAY	0.	
A	Peso Mat.Sat. Sup. Seca (En Aire) (gr)	284.10	312.90	
В	Peso Mat.Sat. Sup. Seca (En Agua) (gr)	168.60	185.40	
C	Vol. de masa + vol de vacios = A-B (gr)	115.50	127.50	
D	Peso material seco en estufa (105 °C)(gr)	276.10	304.10	
E	Vol. de masa = C- (A - D) (gr)	107.50	118.70	Promedio
ĵ,	Pe bulk (Base seca) = D/C	2.390	2.385	2.388
1	Pe bulk (Base saturada) = A/C	2.460	2.454	2.457
	Pe Aparente (Base Seca) = D/E	2.568	2.562	2,565
Ī	% de absorción = ((A - D) / D * 100)	2.90	2.89	2.90%

<sup>El informe corresponde única y exclusivamente a la muestra recibida,
Las copias de este informe no son válidas sin la autorización del laboratorio.
Este informe de ensayo es imparcial, confidencial, estando destinado unica y exclusivamente al cliente.</sup>

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaitos

948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

MATERIAL (**) : Fibras de plátano; Muestra: M-01

CODIGO DE MUESTRA (**)

COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION: 02/11/2022

FECHA DE ENSAYO: 02/11/2022

FECHA DE EMISION: 06/11/2022

AGREGADOS, Determinación de la densidad relativa (peso especifico) y absorción del agregado fino. Método de ensayo, 4a Edición NTP 400,022:2021

		DATOS DEL ENSAY	0	
A	Peso Mat.Sat. Sup. Seca (En Aire) (gr)	181.90	242,80	
В	Peso Mat.Sat. Sup. Seca. (En Agua) (gr)	25,30	32.00	
C	Vol. de masa + vol de vacios = A-B (gr)	156.70	210.80	
D	Peso material seco en estufa (105 ℃)(gr)	179.70	239.84	
E	Vol. de masa = C- (A - D) (gr)	154.50	207.84	Promedio
	Pe bulk (Base seca) = D/C	1.147	1.138	1.142
1	Pe bulk (Base saturada) = A/C	1.161	1.152	1.156
1	Pe Aparente (Base Secu) = D/E	1.163	1.154	1.159
	% de absorción = ((A - D) / D * 100)	1.22	1.23	1.23%

<sup>El informe corresponde única y exclusivamente a la muestra recibida.
Las copias de este informe no son válidas sin la autorización del laboratorio.
Este informe de ensayo es imparcial, confidencial, estando destinado unica y exclusivamente al cliente.</sup>

^(**) Datos proporcionados por el cliente.

DE SUELOS

te Ruso Lote 1 S/N - Distrito de Chiciayo - Provincia de Chiciayo - Lan Servicios de Laboratorios Chiciayo - EMP Asfalto 948 852 622 - 954 131 475 - 998 928 250 Ermali: servicios_lab@hotmail.com. RUC: 20487357465

INFORME DE ENSAYO

; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plásaso" PROYECTO (**)

UBICACION (**) ; Chiclayo Lambayeque

CLIENTE (**) r Jimmy Yampier Oliverni Guzmên - Suzetty Nicole Urbina Silva

MATERIAL (**) . Areilta in orgánica CODIGO DE MUESTRA (**)

COORDENADAS (**) CODIGO UNICO ; CI 450

TECNICO ENCARGADO : Segundo A. Carrinca Mega FECHA DE MUESTREO (**): 02/11/2022 HORA DE MUESTREO (**): MUESTREADO POR (**): -FECHA DE RECEPCION: 02/11/2022

FECHA DE ENSAYO: 02/11/2022 FECHA DE EMISION: 06/11/2022

SUELOS. Métudo de ensayo para determinar el contenida de humedad de un suelo. NTP 339.127: 1998 (revisada el 2019)

Contenido de humedad reportado +- 1%

Numero del contenedor	1	
Masa del contenedor, g, M .	218.0	
Masa del contenedor + masa de muestra húmeda, g, M 🚎	1 002.2	
Fecha (micro de ensayo)	02/11/2022	
Hora (muro de ensay 6)	17:45:00	-
Masa del contenedor inicial + masa de muestra seca al horno, g	880.0	
Fecha (fuera del horno)	03/11/2022	
Hora (fuera del homo)	07.45.00	
Masa del contenedor secundario + masa de muestra seca al horno, g	878.0	
Hora (fuera del homo)	08:45:00	
Masa del contenedor final π masa de muestra seca al horno, ${f g}, {m M}_E$	878.0	
Hora (finera del homo)	10.45.00	
Masa de agua, g , $M_{\phi} = M_{\phi e_{\Gamma}} - M_{\phi r}$	124.2	
Masa de las particulas sólidas, g, M , M , a -M ,	660.0	
Contenido de humedad, %, $W=(M_{\infty}/M_{\gamma})*100$	18.82	
Simbolo de grupo de cianticación de suelo unificado (visual)	CT	
Tumado máximo apróximado de particula (visual)	210-4	

Conditiones imbrentales de	Temperatura	18.5 °C
ntventales de	Homedad	64.6%

	Balenze	BAL-27
Equipmento	Horno	- HOR-04

* Musatra niterada

* Exclusión de algún material * Más de un tipo de material No No * Cumple con la masa mínima requerida

[&]quot;El mísme corrageode único y exclunyamente a la musitra etculoda
"Las copas de site inferme a e son vásida un la suicerranto del laboratorio
"Res informe de niego se junique cula, confidencial; estando destando unica y exclusivamente al cliente.
("") Dance proporcionador por el cliente.

Av. Vicente Ruso Lote 1 S/N – Distrito de Chicleyo - Provincie de Chicleyo - Lamb Servicios de Laboratorios Chicleyo - EMP Asfaltos Servicios de Laboratorios Chicleyo - EMP Asfaltos 948 852 652 - 954 131 476 - 998 928 250 E-mails servicios_lab@hichanal.com. que RUC: 20487357465

INFORME DE ENSAYO

PROYECTO (**) "Propiedades nucroestructurales y mecánicas de auelos adicionando cenizas de cáscara de arroz y fibras de plátano".

UBICACION (**) Chiclayo - Lambayeque

CLIENTE (**) Jerzny Yampier Olivares Guzman - Suzetty Necole Urbina Silva MATERIAL (**) Arcilla nongánica

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO CL450

TECNICO ENCARGADO Begundo A. Carranza Mejin FECHA DE MUESTREO (**): 02/11/2072

HORA DE MUESTREO (**): -MUESTREADO POR (**):

FECHA DE RECEPCION : 02/11/2022 FECHA DE ENSAYO : 02/11/2022 FECHA DE EMISION: 06/11/2022

SUELOS. Metudo de ensayo para el analisis granulometrico.

NTP 339.128: 1999 (revisada el 2019)

Equipur	diam'r.	Balanca	EAT 51				Condicionas ambjertales de ensayo	1 or the arms	16:27
edates	DREETO	Danista	BAL 16	F			Conditions analysis of disayo	Humedad	64.6%
Código de Tamaces	Tarmos	Abertura (mm)	Masa retenida 2	Reterndo parcial, %	Retenido acumulado, %	Porcentaje que pasa, %	Decapor	m	
M-6-01	6 in.	150.000					I. Masa de material		
M-+01	4 in.	100.000					Masa micial total, g	510.2	
M-3-03	3 in.	75,000					Masa fracción fina lavada, «	210.2	
M-2-09	2 in.	50.000					2. Descripción		
M-I 1/2-09	1 1/2 in.	37.500					Tamaño máximo	3/8.m	
M-1-09	1 in.	25.000					Tamaño máximo nominal	No. 4	
M-3/4-12	3/4 in.	19.000					Bloques (>300 mm), %		
M-3/8-08	3.8 in.	9.500				1000	Bolones (75 rom - 300rom), % Grava, %	07	
M-4-15	No. 4	4.750	3.6	0.7	0.7	99.29	Arena, % Finos (%)	14.2 25 f	
M-10-09	No. 10	2.000	6.2	1.2	1.9	98.07	3. Caracteristicas	0.023	
M-20-11	No. 20	0.850	6,5	1.3	3,2	96.90	Diametro efectivo D ₈₀ (mm) Diametro efectivo D ₂₀ (mm)	0 023 0 005 0 007	
M-40-10	No. 40	0.425	5.8	1.1	4.3	95.66	Diametro efectivo D _{in} (mm) Coeficiente de uniformidad (Cu) Coeficiente de curvatura (Cc)	.11	
M 60-05	No. 60	0.250	68	1.3	5.7	94.33	Observaciones del ensayo: Muestra alterada	0.62	
M-140-01	No. 140	0.106	9.8	1.9	7.6	92.41	Cumple con la masa minima requenda:	5).	
M-200-15	No. 200 Cazoleta	0.075	372	7.3	14.9	85.12	SUCS: CL AASHTO: A-6 (10)		

El informe corresponde única y exclusivamente a la muestra recibida.
Las copias de sute niforme su con yéditas un la autorización del laboratorio.
Este informe de crisco va magnetica, confidencial, estando destinado unica y exclusivamente al cheric.
(**) Datos proporciocados por el cherice.

Aw Vicente Ruso Lote 1.\$/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios _ lab@hormail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

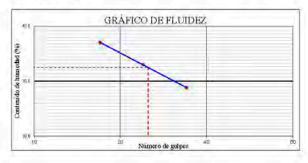
MATERIAL (**) : Arcilla inorgânica

CODIGO DE MUESTRA (**) 3. COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejía FECHA DE MUESTREO (**) : 02/11/2022 HORA DE MUESTREO (**); -MUESTREADO POR (**): -FECHA DE RECEPCION: 02/11/2022

FECHA DE ENSAYO; 02/11/2022 FECHA DE EMISION: 06/11/2022

SUELOS. Método de ensayo para determinar el limite líquido, limite plástico, e índice de plasticidad de suelos. 1º Edición NTP 339.129:1999 (revisada el 2019)


	Preparación húmeda		
Espécimen de ensayo	Mezclado en capsula y particulas de arena removidas		
	Agua destilada		

LIMITE LIQUIDO (M	ETODO MULTIP	INTO)		
Contenedor, No.	3	122	7	
Masa húmeda de suelo + Container, M1 (g)	25.51	43.56	28.15	
Masa seca de suelo + Container, M2 (g)	23.05	40.77	25.52	
Masa del container, M3 (g)	15,90	33.13	18.69	
Contenido de agua, W. (%)	34.41	36.52	38,51	
Numero de Golpes	34	24	17	

w=((MI-M2)/(M2-M3))*100

LÍMITE PLÁSTICO								
Contenedor, No.	85	73						
Masa húmeda de suelo + Container, M1 (g)	22.62	24.51						
Masa seca de suelo + Container, M2 (g)	21.09	22.68						
Masa del container, M3 (g)	13.94	14.06						
Contenido de agua, W. (%)	21.40	21,23						

w=((MI-M2)/(M2-M3))*100

	Limite líquido	Equipo manual Rolado manual		
Equipo empleada	Limite Plastico			
	Ranurador casa grande	Plástico		

	Balanza	BAL-16		
	Homo	HOR-04		
Equipamiento	Copa casa grande	CC-06		
	Ranurador	RA-01		

LÍMITES DE CONS	ISTENCIA
Limite liquido	36
Limite plástico	21
Îndice plástico	15

Observaciones del ensayo * Masa retenida (amiz Nº40 (%) : 4.3 * Humedad de recepcion : 19 * Tamaño maximo de particulas 3/8 m. * Clasificación según carta de plasficidad: CL

Revisado y aprobado.

3 59.4

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Dalos proporcionados por el cliente.

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

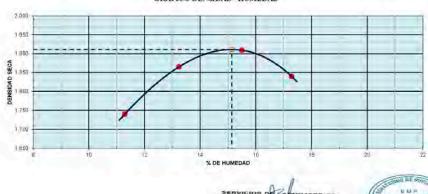
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guznain - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 02/11/2022

HORA DE MUESTREO (**): -: Arcilla inorgânica; Muestra: M-01

MATERIAL (**)


CODIGO DE MUESTRA (* *) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 02/11/2022 CÓDIGO ÚNICO : CI-450 FECHA DE ENSAYO: 02/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 06/11/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2.700 kN-m/m² (56.000 pie lb£pie²)).

NTP 339.141:1999 (revisada el 2019)

	DATOS DE	ENSAYO			
	Dendidad v	olumétrica			
Volumen del molde (cm3) 2127	PESO DEL MOLI	DE (g) :	6454	METODO	"C"
Número de ensayos	1	2	3	4	-
Peso molde + molde (g)	10574	10945	11145	11045	
Peso suelo húmedo compactado (g)	4120	4491	4691	4591	
Peso volumétrico hámedo	1.937	2.111	2.205	2.158	
	Contenido d	le humedad			
Número de recipiente	4	2	3	4	15
Peso suelo húmedo + tara (g)	541,1	342.1	415.8	405.8	
Peso suelo seco + tara (g)	486.2	302.1	360.0	346.0	-
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	54,9	40,0	55.8	59.8	
Peso de suelo seco (g)	486.2	302.1	360.0	346.0	
Contenido de agua	11.29	13.24	15.50	17.28	
Peso volumétrico seco	1.740	1:865	1.909	1.840	2.0
Densidad máxima seca: 1,911	g/cm		Hûmedad optima:	15.14	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*}El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

SERVICIOS DE LABORATORIOS DE SUELOS

FECHA DE ENSAYO: 02/11/2022

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357455

Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250
E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 02/11/2022

: Arcilla inorgânica; Muestra: M-01 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (* 2) MUESTREADO POR (**): -FECHA DE RECEPCION: 02/11/2022

COORDENADAS (**) : CI-450 CÓDIGO ÚNICO

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 06/11/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbEpie¹)). 1ª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS D	EENSAYO			
	Dendidad v	olumétrica .			
Volumen del molde (cm3)	2127 PESO DEL MOL	DE (g) :	6454	METODO	"C"
Número de ensayos	1	2	3	4	10000
Peso molde + molde (g)	10574	10945	11145	11045	
Peso suelo húmedo compactado (g)	4120	4491	4691	4591	
Peso volumétrico hámedo	1.937	2.111	2.205	2.158	
	Contenido	de humedad			
Número de recipiente	1	2	3	4	1/4
Peso suelo húmedo + tara (g)	541,1	342.1	415.8	405.8	127
Peso suelo seco + tara (g)	486.2	302.1	360.0	346.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	54,9	40,0	55.8	59.8	
Peso de suelo seco (g)	486.2	302.1	360.0	346.0	
Contenido de agua	11.29	13.24	15.50	17.28	
Peso volumétrico seco	1.740	1:865	1.909	1.840	
Densidad máxima seca:	1.911 g/cm		Hûmedad optima:	15.14	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) ¿"Propiedades microestruentrales y mecánicas de suelos adicionando cenizas de eáscara de arroz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) FECHA DE MUESTREO (**): 02/11/2022 : Jimmy Yampier Olivares Guzmān - Suzetty Nicole Urbīna Silva

: Arcilla inorgánica; Muestra: M-01 MATERIAL (**)

HORA DE MUESTREO (**): -CODIGO DE MUESTRA (**) MUESTREADO POR (**) : -2. COORDENADAS (**) FECHA DE RECEPCION: 02/11/2022 CÓDIGO ÚNICO : CL450 FECHA DE ENSAYO : 02/11/2022

FECHA DE EMISION: 06/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia

SUELOS. Método de ensuyo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad volumetrica				0			
Nº de molde	/2		4	8	10		
Nº capa			3		5		
Golpes por capa Nº		6	. 2	,	13	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + ratelo hamedo	12692	12763	12246	12384	12026	12204	
Peso de malde	8053	8053	7769	7769	7657	7657	
Peso de stelo hirmedo	4639	-5710	44'77	4615	4369	4547	
Volumen del molde	2108	2108	21.10	2110	2134	2134	
Drendsda d humedii	2.201	2.234	2.122	2.187	2.047	2.131	
to de farmetad	15.10 17.43		15:27 19:40		15.52	21/24	
Derended vecs	1.911 1.902		1341 1.832		1.772	1.758	
Contenido de humedad							
N° de tiero	11 12 2-C 11		11.33.35A02.33.		110 11 to 11	100	
Tarro + suelo hirmedo	360.5	360.5	400.0	4000	298.5	2985	
Tarro + sielo seco	313.0	307.0	347.0	335 0	258.6	246.2	
Peso de agua	47.5	53.5	53.0	65.0	40.1	52.3	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Pero del suelo serro	3,13,0	307.0	347.0	3,35 0	258,4	246.2	
1% de humedad	15.18	17.43	15 27	1940	15 52	-21.24	

Expasion											
Fesha Hora	Tiempo	Expassion			1 - A	Expanien			Expasión		
	Hora	Hr	Dul	mm	54	Dini	mm	9/6	Dial	17171	
02/11/22	14:30	0	0.0	0,0	0.0	10/0	0.0	0.0	0.0	0.0	101
03/11/22	14:30	22	87.1	2.21	1.9	102.9	261	23	124 1	3.15	2
04/11/22	14:30	42	102.6	2.61	23	121.1	3.06	27	148.2	3.76	3.
05/11/22	14:30	65	124.9	3.17	2.7	143.5	3.64	3.2	168.7	4.28	3.
06/11/22	14.30	95.	139.4	3.540	3.1	162.4	4.12	3.6	1865	4.74	44.3

				1	enetrac	ión							
Penetración	Carga	Carga Molde Nº			2 Molde N			V	48	-	Molde N		10
Penetracion	Stand	O	rga	Corre	uestri-	Coryes		Corrección		Clarge		Correction	
pulg	kg/cm2	Dial (div)	kg/cm2	kg/cm2	1/4	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/am2	kg/cm2	76
0.000		0	. 0			0	.0		ales a	.0	0		
0.025	211 2 2 2	25.6	1	15.73	1 21	18.5	9-1		121	12.1	1	tee	1 3 7
0.050		49,6	3		1 = 1	356	2			24.5	0		1 5
0.075	3310-23	68.5	3			58.5	3		100	35.6	(2)		13-
0.100	70.3	815	, V	30	7.1	77.8	4	40	5.6	57.4	13400	10	-14
0.125	181100-14	106.9	3		100	95.5	-3-	-	7000	68.5	3.0	0.00	1 -0 -
0.120		131.4	7	100	-	1923.	6		1000	B/ A	14.		
0.500	105.5	1925	10	9.8	93	145.6	7	7.4	7.0	1101	9	60	27
0.300		245.5	12	100	11111	102.8				162.9			-
0 400	7.0	285.9	13	4 3 1	1 == 1	208.5	n-n-		- 1	#85.4	y		1
0.500					1		1 - 1						-

Zde 3

<sup>El informe corresponde unica y exclusivamente a la muestra recibida.
Las copias de este informe no son válidas sin la autorización del laboratorio.
Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.
(**) Datos proporcionados por el cliente.</sup>

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C.

HORA DE MUESTREO (**): -

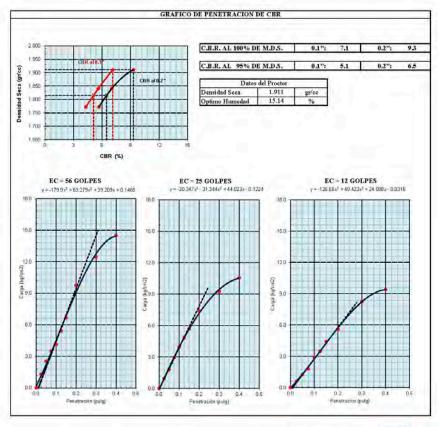
MUESTREADO POR (**): -

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

¿ "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

UBICACIÓN (**) : Chiclayo - Lambayeque


: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 02/11/2022 CLIENTE (**)

MATERIAL (**) : Arcilla inorgânica; Muestra: M-01

CODIGO DE MUESTRA (**) COORDENADAS (**)

FECHA DE RECEPCION: 02/11/2022 CÓDIGO ÚNICO : CI-450 FECHA DE ENSAYO: 02/11/2022 FECHA DE EMISION: 06/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

3 de 3

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente,

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357455

Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250
E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

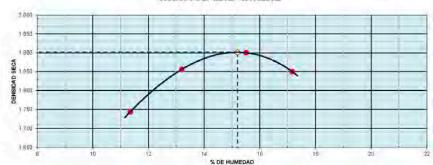
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 02/11/2022

: Arcilla inorgânica; Muestra: M-02 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (* 2) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 02/11/2022


: CI-450 CÓDIGO ÚNICO FECHA DE ENSAYO: 02/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 06/11/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbEpie¹)). 1ª Edición

NTP 339.141:1999 (revisada el 2019)

DATOS DE	ENSAYO			
Dendidad v	olumétrica			
127 PESO DEL MOLI	DE (g) :	6454	METODO	"C"
1	2	3	4	
10584	10923	11123	11065	
4130	4469	4669	4611	
1.942	2.101	2.195	2.168	
Contenido o	le himedad			
1	2	3	A .	
347.4	431.5	312.1	351.5	77
312.0	381.2	270.2	300.0	
0.0	0.0	0.0	0.0	
35.4	50.3	41.9	51.5	*
312.0	381.2	270.2	300.0	
11.35	13.20	15.51	17.17	
1.744	1:856	1.900	1.850	
	Dendidad v 27 PESO DEL MOLI 1 10584 4130 1.942 Contenido o 1 1 347.4 312.0 0.0 35.4 312.0 11.35	T 2 10584 10923 4130 4469 13942 2.101 Contenido de humedad 1 2 347.4 431.5 312.0 381.2 0.0 0.0 35.4 50.3 312.0 381.2 11.35 13.20	Dendidad volumétrica	Dendidad volumétrica

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

MUESTREADO POR (**) : -

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
1 948 825 622 - 954 131 476 - 998 928 230
E-mail: servicios | Jab@hotmail.com.

INFORME DE ENSAYO

 ϵ "Propiedades múcroestruentrales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

: Chiclayo - Lambayeque UBICACIÓN (**)

: Jimmy Yampier Olivares Guzmān - Suzetty Nicole Urbīna Silva FECHA DE MUESTREO (**) : 02/11/2022 CLIENTE (**) MATERIAL (**) : Arcilla inorgânica; Muestra: M-02 HORA DE MUESTREO (**) : -

CODIGO DE MUESTRA (**) 2.4

COORDENADAS (**) FECHA DE RECEPCION: 02/11/2022 t F FECHA DE ENSAYO: 02/11/2022 CÓDIGO ÚNICO : CI-450 FECHA DE EMISION: 06/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de cuelos compuctados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad volumetrica			7				
Nº de molde	5	0.	30	5.	2	1	
Nº capa		5	3				
Golges per capa Nº	5	6	. 2	,	T	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde + raielo hamedo	12402	12460	12306	12423	12126	12345	
Peso de malde	7769	77.69	7807	7807	7834	7834	
Peso de stelo himedo	4633	4691	4499	4616	42.92	4511	
Volumen del molde	2510	2110	2121	2 21	2115	2315	
Drendsda d Normedia	2 396	2.223	2 121	2.176	2.029	2.133	
to de trumetad	15.43	17:41	15.78	1941	15.12	21.62	
Derendad reca	1 902	1 893	1.832	1.822	1763	1.754	
Contenido de humedad							
N° de terro	10 Police Police	2	11.22.23.02.22.1	3	12		
Taπo + stelo himedo	417.1	412.1	457.8	457.8	346.5	346.5	
Tarro + sielo seco	357:0	351.0	395.4	383.4	301.0	284.9	
Peso de agua	55.1	61,1	62.4	74.4	45.5	61.6	
Peso de tarro	0.0	0.0	0.0	00	0.0	0.0	
Peso del suelo serro	357.0	351.0	395,4	383.4	0,10	294.9	
fo de hamedad	15/49	1241	1578	1941	1512	21.62	

					Expasion	b						
Fesha	Hora	Tiempo		Expasión	34.7		Empassión			Expasión		
Pesta	ricia	Hr	Dul	mm	5%	Dini	tran	9/4	Dial	17171		
02/11/22	14:30	-0	0.0	a.a	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
03/11/22	14:30	22	91.4	2.32	2.0	104.0	2.66	2.3	1181	3.00	21	
04/11/22	14:30	42	106.5	2.71	23	123-4	3.13	2.7	345.4	3.69	30	
06/11/22	14:30	65	125.4	3.19	2.9	145.9	3.71	3.2	170.4	4,33	3.1	
06/11/22	14.30	95.	143.6	3.65	3.2	364.4	4.18	3.6	184.8	4.69	44.	

				4	cuerraci	UA1							
Penetración	Carga		Molde Nº		50		Molde No	V	.16		Molde Nº		24
2 enemation	Stand	Ch	rga	Corre	oción	C	rga	Corre	ocsón.	róts Cargo		Correction	
pulg	kg/cm2	Dial (dip)	kg/cm2	kg/cm2	-56	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/cm2	kg/cm2	770
0.000		0	.0			.0	0			0	0		
0.025	5 : 1 1: 100 11	21.8	- 1	11:32:1	1 21	14.5	1	-22	12.5	85	.0	1	1 1
0.000		35,8	2		1 55 1	26.5	1			18,9	1		
0.075	7.14 . 72.1	48.9	2	민~리.	1. 55	39.2	7		32	27.5	1	1.5-	13
0.100	70.3	86.B	3	30	7.1	85.4	de la	9.7	5.1	38.8	g :	10	-40
0.125	1011-0	89.5	3	1	8-09-4	89.5	4	-7	1000	54.5	3.4	4	1
0.126		125.1	6	0.001	1	84.5	- 5			66.5	DI.		1.7
0.300	10.5.5	176.2	0.00	9.5	9.2	129,6	7.7	73	6.9	99.5	2	39	3)
0.300		239.6	12		1	17.4.5	Ð		-	135.1	7		
0.400	7.0	296.6	13		1 == 1	206.2	10		- 1	1569	3-		
0.500		10000			1-00-1		1 2	110000		-			12

<sup>El informe corresponde unica y exclusivamente a la muestra recibida.
Las copias de este informe no son válidas sin la autorización del laboratorio.
Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

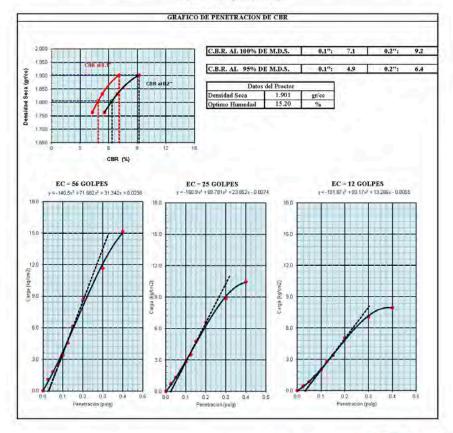
UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 02/11/2022 CLIENTE (**)

: Arcilla inorgánica; Muestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**)

COORDENADAS (**) CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO : Segundo A. Carranza Mejia

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 02/11/2022 FECHA DE ENSAYO: 02/11/2022

FECHA DE EMISION: 06/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

FECHA DE ENSAYO: 02/11/2022

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357455

Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250
E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

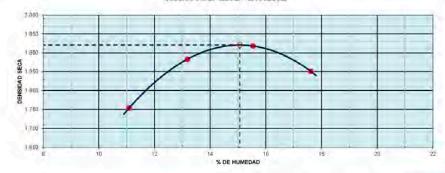
UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 02/11/2022

: Arcílla inorgânica; Muestra: M-03 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (* 2) MUESTREADO POR (**): -FECHA DE RECEPCION: 02/11/2022

COORDENADAS (**) : CI-450 CÓDIGO ÚNICO


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE EMISION: 06/11/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lb£pie²)). 1ª Edición

NTP 339.141:1999 (revisada el 2019)

		DATOS DE	ENSAYO			
		Dendidad ve	dumétrica			
Volumen del molde (cm3)	2127	PESO DEL MOLI)E (g) :	6454	METODO	"C"
Número de ensayos		1	2	3	4	1000
Peso molde + molde (g)		10598	10987	11168	11084	
Peso suelo húmedo compactado (g)		4144	4533	4714	4630	
Peso volumétrico húmedo		1.948	2.131	2.216	2.177	
		Contenido d	e humedad			
Número de recipiente		1 - 1 -	2	3	4	100
Peso suelo húmedo + tara (g)		299,5	401.8	364.5	320.5	127
Peso suelo seco + tara (g)		269.6	355.0	332.8	272.5	
Peso de la tara (g)		0.0	0.0	0.0	0.0	
Peso de agua (g)		29.9	46.8	51.7	48.0	
Peso de suelo seco (g)		269.6	355.0	332.8	272.5	
Contenido de agua		11.69	13.18	15.53	17.61	
Peso volumétrico seco		1.754	1.883	1.918	1.851	1 11
Densidad máxima seca:	1.920	g/cm		Hûmedad optima:	15.07	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

LABORATORIOS DE SUELOS AVIMENTOS S.A.C. SERVICIOS DE

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

¿"Propiedades múcroestruentrales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina

Silva : Arcilla inorgânica; Muestra: M-03 MATERIAL (**) CODIGO DE MUESTRA (**)

14 COORDENADAS (**) CÓDIGO ÚNICO : CL450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**) : -

FECHA DE RECEPCION: 02/11/2022 FECHA DE ENSAYO : 02/11/2022 FECHA DE EMISION: 06/11/2022

SUELOS. Método de ensuyo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			_
Dendidad volumetrica				3		
N* de molde	- 1	9	3	3		
Nº capa		· ·	3		- 5	
Golges per capa Nº		6	. 2	9	T	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturad
Peso molde + ratelo hamedo	12099	12161	12056	12181	12295	12492
Peso de malde	7371	7371	7532	7532	7931	7931
Peso de stelo hirmedo	4728	4790	4524	4649	4364	4561
Volumen del molde	2134	2134	2113	2113	2123	2123
Drendsda d homedii	2.216	2.245	2 141	2.700	2.035	2.148
to de fametad	1528	17.47	15.61	1941	15.38	21.41
Denoidad (eca	1 922	1.911	1.892	1.842	1782	1.769
Contenido de humedad						
N° de tiero	THE PARTY I		TELESCOPE CO.		this microscope	- B
Tarro + suelo himedo	278.4	2784	381.5	381.5	360.0	3000
Tarro + sielo seco	241.5	237.0	330.0	319.5	260.0	247/1
Peso de agua	36.9	41.4	51.5	62.0	40.0	52.9
Peso de tarro	0.0	0.0	0.0	00	0.0	0.0
Pero del suelo serro	241.5	237.0	330,0	319.5	260.0	247.1
% de humedad	15 28	12.47	15:61	1941	15.38	-21.41

	Expasion														
Tooks:	Fecha Hora	Tiempo		Expassión		Expassión			Expasión						
Pesta	Hora	Hr	Dul	mm	59.5	Dini	mm	9/6	Dinl	17171					
02/11/22	14:30	0	0.0	a.a	0.0	10:00	0.0	0.0	0.0	0.0	10				
03/11/22	14:30	22	94.5	2.40	2.1	110.5	281	24	1324	3.36	2				
04/11/22	14.30	42	112.1	2,85	2.5	124,6	3.16	2.7	153.9	3.91	3				
06/11/22	14:30	65	129.6	3.29	2.9	146.2	3.71	3.2	1769	4.49	3.5				
06/11/22	14.30	95.	142.4	3.62	3.1	168 #	4.29	37	191.4	4.66	+47				

				1	enetrac	ión							
Penetración	Carya		Molde No		19		Molde No	V	33	-	Molde N		8
Petietracion	Stand	Ca	rga	Corre	ucsón -	Ct	irgii	Corre	omóra.	O	rgs	Corre	minn
pulg	kg/cm2	Dial (div)	kg/an2	kg/cm2	35	Dial (div)	kg/cm2	kg/cm2	96	Dial (div)	kg/am2	kg/cm2	70
0.000		. 0	. 0			0	. 0			0	0		
0.025	1111111111	23.4	- 3	11/32/1	11 21	19.6	9-1		-	13.6	1	1	1 3
0.0050		34.5	2		TEL	36'9	2			26.9	1		1.5
0.075	11:00	62.4	13		1.75	59.5	3		1000	36.9	12		139
0.100	70.3	76.9	, V	301	.706	78.8	4	40.	5.7	58.8	40	10	-14
0.125	10	106.7	3		0.1	96.9	3 -	17	Sim I	70.8	4	J	1 -0
0.136		1285	7			189.4	6			1219	3		1.77
0.300	105.5	190.5	10	10.1	316	146.8	7	7.5	71	1125	9	60	27
0.300		347.6	13	1	1	103.8	. 5		-	154.2			1
0.400	7.0	291.5	13	4 3 1	1 == 1	210.1	n-ti-		-	1911	10	-2-	1 7
0.500					11-00-0	11		1					100

<sup>El informe corresponde unien y exclusivamente a la muestra recibida.
Las copias de este informe no son válidas sin la autorización del laboratorio.
Este informe de ensayo es impareial, confidencial; estando destinado unica y exclusivamente al cliente.
(**) Datos proporcionados por el cliente.</sup>

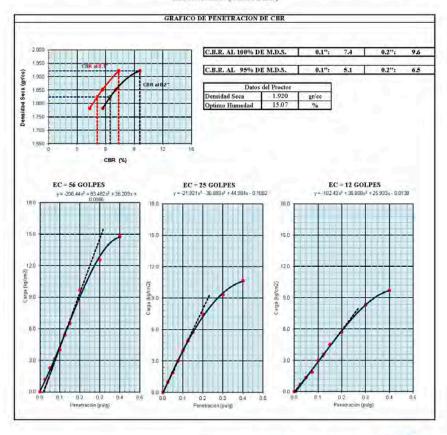
HORA DE MUESTREO (**): -

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

UBICACIÓN (**) : Chiclayo - Lambayeque


: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 02/11/2022 CLIENTE (**)

: Arcilla inorgánica; Muestra: M-03 MATERIAL (**)

CODIGO DE MUESTRA (**)

MUESTREADO POR (**): -FECHA DE RECEPCION: 02/11/2022 COORDENADAS (**) CÓDIGO ÚNICO FECHA DE ENSAYO: 02/11/2022 : CI-450 FECHA DE EMISION: 06/11/2022 TECNICO ENCARGADO : Segundo A. Carranza Mejia

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ª Edición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 14/11/2022

: Arcilla inorgânica + 5% cenizas de câscara de arroz; Muestra: M-01 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -

COORDENADAS (**) FECHA DE RECEPCION: 14/11/2022 ; CI-450 FECHA DE ENSAYO: 14/11/2022 CÓDIGO ÚNICO TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 18/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN·m/m² (56 000 pie lbf/pie²)). 1º

NTP 339.141:1999 (revisada el 2019)

		DATOS	DEENSAYO			100
		Dendid	ad volumétrica			
Volumen del molde (cm3)	2127	PESO DEL MOLI	DE (g) :	6454	METODO	"C"
Número de ensayos		1	2	3	4	
Peso molde + molde (g)		10345	10698	10881	10798	
Peso suelo húmedo compactado (g)		3891	4244	4427	4344	
Peso volumétrico húmedo		1.829	1.995	2.081	2.042	
		Conteni	do de himedad			
Número de recipiente		LEXIT THE	2	3	4	
Peso suelo húmedo + tara (g)		351,4	405,4	398.0	402,5	1101 ==
Peso suelo seco + tara (g)		308.9	351.0	338.0	337.5	101 ===
Peso de la tara (g)		0.0	0.0	0.0	0.0	101
Peso de agua (g)		42,5	54.4	60.0	65.0	
Peso de suelo seço (g)		308.9	351.0	338.0	337.5	:11:
Contenido de agua		13.76	15.50	17.75	19.26	
Peso volumétrico seco		1.608	1.728	1.768	1.712	
Densidad máxima seca:	1,771	g/cm³		Húmedad optima:	17.26	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.
 Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

: Arcilla inorgânica + 5% cenizas de cáscara de arroz, Muestra: M-01 MATERIAL (**)

CODIGO DE MUESTRA (**) 20

COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**) : 14/11/2022

HORA DE MUESTREO (**) : -MUESTREADO POR (%*): -

FECHA DE RECEPCION: 14/11/2022 FECHA DE ENSAYO : 14/11/2022 FECHA DE EMISION: 18/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			
Dendidad yokumétrica	W				Maria Transport	
N" de molde		3	3	5		
10° capa			2	1	9	
Golpes por capa Nº	<\$1	6	- 2	5	17	2
Condición de la maiestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso moide + puelo frimedo	12482	12526	11750	11880	11608	11794
Peso de molde	7829	7829	7532	7532	7678	7678
Peso de suelo humedo	4653	4697	421B	4348	3930	4116
Volumen del molde	2232	2232	2113	2113	2054	2054
Densidad hümeda	2.085	2.100	1.996	2.058	1.913	2.004
V₄ de humedad	17.72	19.46	17/28	21 52	17.23	23.71
Denoted secu	1.771	1.761	1.702	1 694	1.632	1.620
Contenido de humedad						
Nº de Lara	1111-040-01	DAC	11:25 SAC: 11	1046 11		13.
Tarro + suelo húmedo	445.0	445.0	319.0	3190	432.0	432.0
Tarro + suelo pesto	378.0	372.5	272.0	262.5	368.5	349.2
Peso de agua	67.0	725	47.0	565	63.5	82.8
Peso de tarro	0.0	0.0	0.0	0.0	0,0	0.0
Peso del suelo seco	378,0	372.5	272.0	262.5	3.69.5	349.2
% de hamedad.	17.72	19.46	17.28	21.52	17.23	24.71

Espasion													
Fechs	Hors	Tiempo	12.00	Expanion			Expasión			Expasión			
Teschia	mora	Hr	Dul	tren	. 14	Dal	mm	9/6	Dul	TIMET	9.0		
14/11/22	14:30	D	0.0	0.0	0.0	0.0	0.0	0.0	10,0	0.0	0.		
15/11/22	14.30	22	78.4	1.99	17	100.9	2.56	2.2	1154	2.93	- 2.		
16/11/22	14:30	-42	94,5	2.40	2,1	1181	3.00	2.6	141.9	3.60	3		
17/11/22	14:30	65	115.4	2.93	2.5	139.6	3:55	3.)	156.4	3.97	3.		
13/11/22	14:30	95	732.1	3.36	2.4	151.4	3.85	3.3	171.4	4.35	3		

						Penetrac	ion							
	Penetrioión	. Carga	12.	Molde No		1.3		Molde Nº		35		Molde No	-	1-
	renearization	Stand	Ch	rgs	Corre	nocon	Car	rgei	Corre	nción	(3)	rga	Corre	icesón.
	pulg	log/on/2	Dal (dry)	kg/cm2	kg/cm2	35	Dial (dre)	kg/cm2	log/cm2	26	Dial (div)	kg/m/2	kg/cm2	3%
	0.000		. 0	- 0			0	0			. B.	.0		
	0.023	- 1 11 22 1	10.2	1 1	22	# 21	12.5	1		1 3 1	8.4	(8)	100	:= *
	0.050		23.7	1			214	1			15.7	0.1		
	0.075		43,0	2	100		45.5	2	7	1.35	31.9	31: 3		
	0.100	70%	89.6	- 4	63	88	67.5	3	45	64	60.5	2.5	3.7	33
	0125		587	- 31	1000	-	68.4	140		1000	521.4	3-	1000	- 6
	0.130		1388	. 7	10000	-	1524	16.			B14	4		
	0 200	105.5	1848	- K	IL8 -	11.2	145.4		8.8	8.3	119.5	6	71	6.2
	0.300		267.5	34.	-		210.4	16			164.7	14.		-
-	c and		3230	310		-	248.5	- 13		1	191.9	10	- 1	-20
	EL500			-						1 - 1	11	-		

Revisado y aprobado.

7.de3

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado muica y exclusivamente al eliente.

(**) Datos proporcionados por el eliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: serviclos lab@hotmail.com.

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

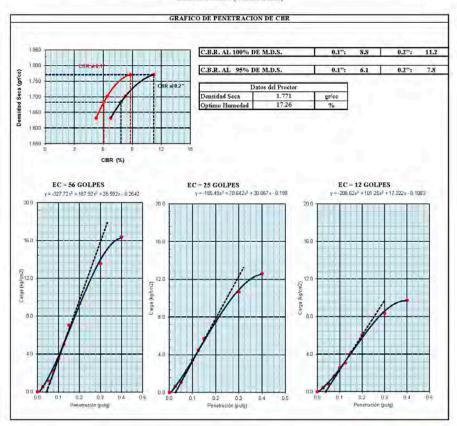
UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva MATERIAL (**) : Areilla inorgânica + 5% cenizas de cáscara de arroz; Muestra: M-01

CODIGO DE MUESTRA (**)

COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia


FECHA DE MUESTREO (**): 14/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 14/11/2022 FECHA DE ENSAYO: 14/11/2022

FECHA DE EMISION: 18/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ª Edición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

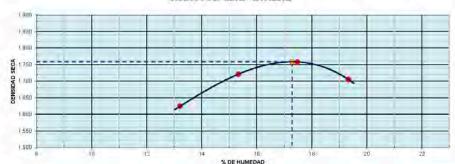
INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 14/11/2022

: Arcilla inorgânica + 5% cenizas de câscara de arroz; Muestra: M-02 HORA DE MUESTREO (**): -MATERIAL (**) CODIGO DE MUESTRA (**) MUESTREADO POR (**): -


COORDENADAS (**) FECHA DE RECEPCION : 14/11/2022 ; CI-450 FECHA DE ENSAYO: 14/11/2022 CÓDIGO ÚNICO TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 18/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN·m/m² (56 000 pie lbf/pie²)). 1º

NTP 339.141:1999 (revisada el 2019)

DATOS	DEENSAYO			
Dendick	ad volumétrica			
127 PESO DEL MOLI	DE (g) :	6454	METODO	"C"
1	2	3	4	
10365	10675	10847	10781	
3911	4221	4393	4327	
1.839	1.984	2.065	2.034	
Conteni	do de himedad			
	2	3	4	
401.9	545,4	345.4	310,5	
355.0	472.9	294.0	260,2	0 ===
0.0	0.0	0.0	0.0	
46.9	72.5	51.4	50.3	
355.0	472.9	294.0	260.2	
13,21	15.33	17.48	19.33	
1.624	1.721	1.758	1.705	
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	Dendick 27 PESO DEL MOLI 1 10365 3911 1.839 Conteni 1 401.9 355.0 0.0 46.9 3355.0 13.21	1 2 10365 10675 3911 4221 1.839 1984 Contenido de humedad 1 2 401.9 545.4 335.0 472.9 0.0 0.0 46.9 72.5 3355.0 472.9 13.21 15.33	Dendidad volumétrica 27 PESO DEL MOLDE (g) : 6454 1	Dendidad volumétrica

GRAFICO DENSIDAD - HUMEDAD

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

: Arcilla inorgânica + 5% cenizas de cáscara de arroz, Muestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**) 3.0 COORDENADAS (**)

CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Curranza Mejia FECHA DE MUESTREO (**): 14/11/2022

HORA DE MUESTREO (**) : -MUESTREADO POR (**): -

FECHA DE RECEPCION: 14/11/2022 FECHA DE ENSAYO : 14/11/2022 FECHA DE EMISION : 18/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºE dición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			
Dendidad yolumétrica	W. Tarabara				Maria Taran	
N" de molde		5	.2	6	3	
10º capa			3	-	- 5	
Golpes por capa Nº	<\$1	6	2	5	17	2
Condición de la maiestra	No saturado	Saturado	No satumdo	Saturado	No saturado	Saturado
Peso moide + suelo frimedo	11964	12012	11445	11569	11545	11707
Peso de molde	7576	7576	7239	7239	7532	7532
Peso de suelo humedo	4386	4436	4206	-4330	4013	4175
Volumen del molde	2123	2123	2123	2123	2113	2113
Densidad hümeda	2.067	2,089	1.981	2,040	1,899	1,976
Va de humedad	17.60	19.45	17:43	21 63	17.42	25 13
Devoted secu	1.758	1.749	1.687	1 677	1.617	1,605
Contenido de humedad						
N° de Larra		346	11.21.2546			- 3
Tarro + suelo húmedo	371.5	371.5	400.9	400.9	326.9	326.9
Tarro + suelo peso	315.9	311.0	341.4	329.6	279.4	265.5
Peso de agua	55.6	60.5	59.5	71.3	48.5	61.4
Peso de tarro	0.0	0.0	0.0	0.0	0.0	au
Peso del suelo seco	315.9	3110	341,4	329,6	279.4	2/5.5
% de hannedad.	17 60	19.45	17-43	21/63	17.42	25.13

					Exp asion	1					
Fechs Hors	Tiempo		Expanion		Expanón			Expasión			
Techn		Dul	mm	M	Dul	mm	9/6	Dul	737877	96	
14/11/22	14:30	D	0.0	0.0	0.0	0.0	DD	0.0	0,0	0.0	0.0
15/11/22	14.30	2.2	719	1.83	16	943	2.40	2.1	116.1	3.00	2.
16/11/22	14:30	-42	65.4	2.17	1,9	112.1	2.65	2,5	135.3	3.44	3.
17/11/22	14:30	65	102.1	2.59	2.2	125.6	3.19	2.8	152.4	3,87	34
13/11/22	14:30	95	1184	3.01	2.6	145.4	3.69	3.2	168.9	4.29	3

					Penetrac	ion							
Penetración	. Carga		Molde No		15		Molde No		26		Molde №		39
S-energon)	Stand	Stand Corps		Corre	Corrección		rgs	Corrección		Carga		Comección	
pulg	log/on2	Dul (dry)	kg/cm2	kg/cm2	3%	Dial (dir)	kg/cm2	log/cm2	96	Dial (div)	kg/m/2	kg/cm2	94
0.000			0			.0	9			0	. 0		
0.023		13.2	1 1	士士	*	10.5	1	-	1 11	92	- 80		
0.050		24.5	1	7 - 7		10.5	1			16.5	- O.		
0.075		44.5	2	700		43.5	2		Carl.	32.8			
0.100	70%	310	- 4	64	91	68.0	3	47	6.7	624	. 2	3.7	- 52
0125	=1	202	- 6	official		65.1	3			529	3-	1	
0.130		(39.5	7	100000		1/4.1	- 0			112.6	4		
0 200	105.5	192.6	:10	12.1	11.5	151.2		9.1	5.6	121.1	6	7.2	61
0.300		260.8	34.			2162	-14-			105.9	4.		
ri ahri		334 1	37			251.1	13			192.9	10	- F	
U.500		7	5.5-6.1			1000			1	11	-		

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al eliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

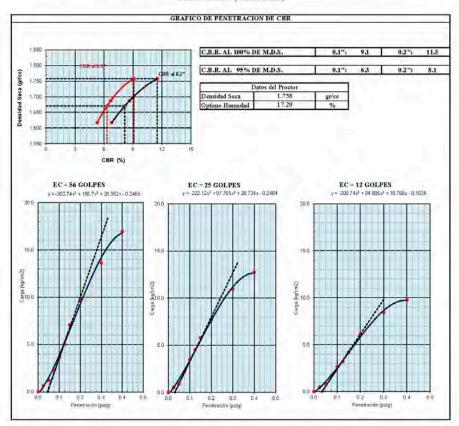
: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva MATERIAL (**) : Arcilla inorgánica + 5% cenizas de cáscara de arroz; Muestra: M-02

CODIGO DE MUESTRA (**) 4.

COORDENADAS (**) 14 CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 14/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 14/11/2022 FECHA DE ENSAYO: 14/11/2022

FECHA DE EMISION: 18/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y ex clusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

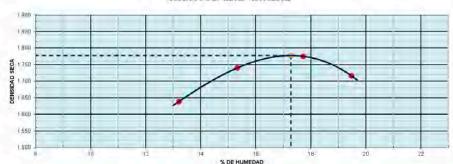
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 14/11/2022

: Arcilla inorgânica + 5% cenizas de câscara de arroz; Muestra: M-03 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION : 14/11/2022


; CI-450 FECHA DE ENSAYO: 14/11/2022 CÓDIGO ÚNICO TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 18/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN·m/m² (56 000 pie lbf/pie²)). 1º

NTP 339.141:1999 (revisada el 2019)

	DATO	OS DE ENSAYO			
	Dend	idad volumétrica			
Volumen del molde (cm3)	2127 PESO DEL MOI	LDE (g) :	6454	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10398	10723	10898	10816	
Peso suelo húmedo compactado (g)	3944	4269	4444	4362	
Peso volumétrico húmedo	1.854	2.007	2.089	2.051	
	Conte	nido de humedad			
Número de recipiente	1 1	2	3	4	
Peso suelo húmedo + tara (g)	384.9	504.7	289,6	391,9	1
Peso suelo seco + tara (g)	340.0	437.6	246.0	328.0	U ===
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	44.9	67.1	43.6	63.9	
Peso de suelo seço (g)	340.0	437,6	246.0	328.0	
Contenido de agua	13,21	15.33	17.72	19.48	
Peso volumétrico seco	1.638	1.740	1.775	1.716	
Densidad máxima seca:	1.777 g/cm ³		Hûmedad optima	17.28	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio,

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

: Arcilla inorgânica + 5% cenizas de cáscara de arroz, Muestra: M-03 MATERIAL (**)

CODIGO DE MUESTRA (**) 20 COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Curranza Mejia FECHA DE MUESTREO (**): 14/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (%*): -

FECHA DE RECEPCION: 14/11/2022 FECHA DE ENSAYO : 14/11/2022 FECHA DE EMISION : 18/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			_
endidad volumetrica	- 0.0				M. Total	
N" de molde		1		6	27	
Nº capa			2	1	5	
Golpes por capa Nº	<.50	6	2	5	12	2
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso moide + suelo filimedo	12744	12810	12066	12182	11571	11762
Peso de molde	8299	8299	7807	7307	7521	7521
Peso de suelo humedo	4445	4511	4259	4375	4050	4241
Volumen del molde	2134	2134	2121	2121	2107	23.07
Densidad hümeda	2.083	2.114	2,008	2.063	1.923	2.013
1/4 de humedad	17.21	19.60	17:52	21 44	17.21	25.43
Denoted secu	1.777	1.768	1.709	1.699	1 640	1.632
ontenido de humedad		· ·				A 000
Nº de laro	1 1 340	346	tion seems in	1		
Tarro + suelo húmedo	457.7	457.7	520.5	520.5	349.7	348.7
Tarro + suelo paso	390,5	382.7	442.9	4296	297.5	282.5
Peso de agua	67.2	75,0	77.6	919	51.2	66.2
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0
Peso del suelo seco	390,5	382.7	442.9	428.6	297.5	282.5
to de hanedad.	17.21	19:60	17:52	21.44	17.21	29.49

		7			Exp asion	1					
Fechs Hors	Tiempo	Expanón			Expasión			Expasión			
Techn	Hota	Hr	Dul	HTM	24	Dul	mm	9/6	Dul	TIMET	96
14/11/22	14:30	D	0.0	0.0	0.0	0.0	DD	0.0	0.0	0.0	0.0
15/11/22	14.30	22	91.4	2.32	2.0	105.6	2 60	2.3	115.1	2.92	- 2.
16/11/22	14:30	-42	102.3	2.60	2.2	124 1	3.15	2.7	142.3	3.61	3
17/11/22	14:30	65	115.1	2.92	2.5	1383	3.51	3.0	159.9	4.06	3.
18/11/22	14:30	95	124.4	3.16	2.1	1524	3.87	3.4	172.4	4.38	3

					Penetrac	ion				_			
Penetración	. Carga		Molde Nº		- 11		Molde Nº		16		Molde Nº	-	27
a energy of	Stand	Cirgo		Corre	Сотворов		rgs	Corrección		Chrgs		Correcció	
pulg	log/an2	Dal (dry)	kg/cm2	kg/cm2	3%	Dial (die)	kg/cm2	log/cm2	26	Dial (div)	kg/m/2	kg/cm2	96
0.000			. 0			.0	9						
0.033		17.8	1	7.7	물 물	9.8	0		* 11	8.2	- 80	128-1	: =
0.050		20.5	1			17.5	i			15.4	- 0.		
0.075		42.5	7	1000		413	2		of get I	28.9	1		
0.100	70%	708	- 4	61	8.7	66.0	3	47	6.7	60.3	- 3	39	-54
0 125	-1111-11	585	- 6	0,000		68.9	3			53.2	3	(0.000)	
0.130		1387	7.	100000		152.1	16-			10.5	4		
0 200	105.5	183.2	- W.	ILS .	11.2	148.4	1	9,1	5.6	123.5	6	73	7.1
0.300		269.2	.14			2132	11			165.9	14.		-
c and		3219	- 10	7.7		253.9	- 13		2 7	194.8	10		-
EL560					-				1		-		

Revisado y aprobado.

7.de3

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado muica y exclusivamente al eliente.

(**) Datos proporcionados por el eliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

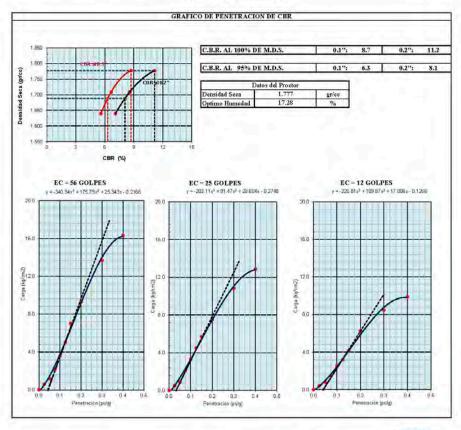
UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva MATERIAL (**) : Arcilla inorgánica + 5% cenizas de cáscara de arroz; Muestra: M-03

CODIGO DE MUESTRA (**) 1-COORDENADAS (**) 26

CÓDIGO ÚNICO : CI-450 TECNICO ENCARGADO

: Segundo A. Carranza Mejia


FECHA DE MUESTREO (**): 14/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 14/11/2022 FECHA DE ENSAYO: 14/11/2022

FECHA DE EMISION: 18/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

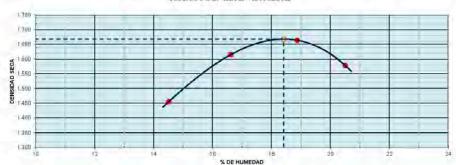
PROYECTO (**) a "Propiedades microestructurales y mecânicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 15/11/2022

: Arcilla inorgânica + 10% cenizas de cáscara de arroz; Muestra: M-01 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -


COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 CÓDIGO ÚNICO FECHA DE ENSAYO : 15/11/2022 ; CI-450 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 19/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN·m/m² (56 000 pie lbf/pie²)). 18

NTP 339.141:1999 (revisada el 2019)

		DATOS	DE ENSAYO			
		Dendick	ad volumétrica			
Volumen del molde (cm3)	2127	PESO DEL MOLI	DE (g) :	6454	METODO	,,C,,
Número de ensayos		1	2	3	4.	
Peso molde + molde (g)		9998	10459	10661	10498	
Peso suelo húmedo compactado (g)		3544	4005	4207	4044	
Peso volumétrico húmedo		1.666	1.883	1.978	1.901	
		Conteni	do de himedad			
Número de recipiente		1 = 1	2	3	4	
Peso suelo húmedo + tara (g)		484.4	431.5	398,0	321,5	1.01 ==
Peso suelo seco + tara (g)		423.0	370.0	334.8	266.8	till s
Peso de la tara (g)		0.0	0.0	0.0	0.0	1013
Peso de agua (g)		61.4	61.5	63.2	54.7	
Peso de suelo seço (g)		423.0	370.0	334.8	266.8	tillt =
Contenido de agua		14.52	16.62	18.88	20.50	
Peso volumétrico seco		1.455	1.615	1.664	1.578	1111
Densidad máxima seca:	1,668	g/cm ³		Hûmedad optima:	18.42	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

: Arcilla inorgânica + 10% cenizas de cáscara de arroz; Muestra: M-01 MATERIAL (**)

CODIGO DE MUESTRA (**) 20 COORDENADAS (**)

CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Curranza Mejia FECHA DE MUESTREO (**): 15/11/2022

HORA DE MUESTREO (**); -MUESTREADO POR (**): -

FECHA DE RECEPCION: 15/11/2022 FECHA DE ENSAYO: 15/11/2022 FECHA DE EMISION : 19/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			
Dendidad yokumétrica	W. The second				M	
N" de molde	2	2		9	4	
Nº capa				1	- 5	
Golpes por capa Nº	-3	6	-2	5	17	2
Condición de la maiestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso moide + puelo himedo	11722	11774	11989	12100	12432	12588
Peso de molde	7530	7530	7982	7982	8577	3577
Peso de suelo humedo	4192	4244	4007	4118	385.5	4011
Volumen del molde	2121	2121	2123	2123	2128	2128
Densidad hümeda	1.976	2.001	1.087	1.900	1.812	1.805
Vi de humedad	18:54	20.74	18/25	22.23	18 64	24 76
Denoted secu	1 667	1.657	1.596	1.587	1.527	1517
Contenido de humedad					Carte to make	
Nº de larro	1111-040-01	340	11.25 346	1-20-6	L = 2 = 1	13
Tarro + suelo húmedo	422.0	422.0	460.0	460.0	420.0	420 0
Tarro + suelo pato	356.0	3495	389.0	3762	354.0	338.0
Peso de agua	66.0	72.5	71.0	83,8	66.0	82.0
Pesa de tarro	0.0	0.0	0.0	0.0	0,0	0.u
Peso del suelo seco	356,0	349.5	389.0	376.2	354.0	338.0
to de hannedad.	18.54	20.74	18.25	22.28	1864	24.26

		-2-			Exp asion	1					
Fechs Hora	Tiempo	14.0	Expanion	Table I	Expanión			Expasión			
Techn	Hota	Hr	Dul	tren	14	Dul	mm	9/4	Dul	777277	36
15/11/22	14:30	D	0.0	0.0	0.0	0.0	DD	0.0	0.0	0.0	0.0
16/11/22	14.30	22	68.9	1.75	1.5	88.7	2.25	20	106.9	277	2.
17/11/22	14:30	-42	82.7	2.10	3,6	102.3	2.60	2.2	128,3	7.26	2
19/11/22	14:30	65	97.2	2.47	2.1	122.4	3.11	2.7	146.7	3.73	3.3
19/11/22	14:30	95	115.4	2.93	2.5	142.1	3.61	3.1	160.4	4.07	3

					Penetrac	ion							
Penetration	- Carga		Molde No	0.00	22		Molda Nº		19		Molde No		44
a-energonon	Stand	Ch	CES .	Copre	nocon	Cargo		Conv	ación	Cargo		Come	inción -
pulg	log/an2	Dal (dry)	kg/cm2	kg/cm2	35	Dial (die)	kg/cm2	log/cm2	26	Dial (div)	kg/m/2	kg/cmZ	94
0.000			0				9				.0		
0.023	- 1 11 21	39.8	2	200	-	23.4	1		1 201	17.1	1	12.2	: = -
0.050		76,0	4			40.0	2			312	2		
0.075	1 Laci	105.0	. 2		5.75	71.5	4	9		51.A	3		
0.100	76%	136.7	- 1	7.4	10.5	105.2	5.	33	7.5	71.4	34	38	516
B125		1785	0	color)		126.4	6		3-66-81	915	3	Sec. 1	
0.130		7105	- 11			154.5	8			110.5	6		
0 200	105.5	281.5		143	13.5	192.8	10.	10.2	9,7	139.9	7	7.4	7.0
0.300		396.2		-		266.5	13			100.0	10		-
c and		398.8	20.			295.9	13	1 1		198.5	10		1000
U.500		1000							1	1000	7		

El informe corresponde única y exclusivamente a la muestra recibida.
 Las copias de este informe no son válidas sin la autorización del laboratorio.
 Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al elíente.
 (**) Datos proporcionados por el eliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

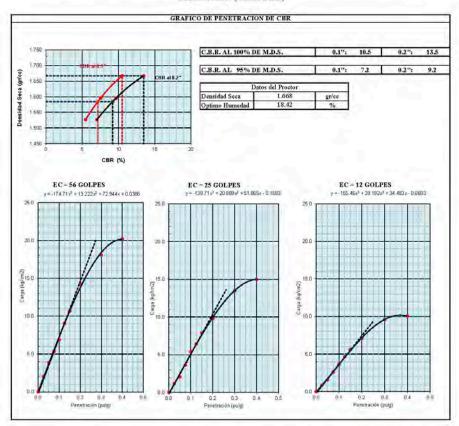
: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva : Arcilla inorgánica + 10% cenizas de cáscara de arroz; Muestra: M-01 MATERIAL (**)

CODIGO DE MUESTRA (**) 4.

COORDENADAS (**) 24 CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 15/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

> FECHA DE RECEPCION: 15/11/2022 FECHA DE ENSAYO : 15/11/2022

FECHA DE EMISION: 19/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) a "Propiedades microestructurales y mecânicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

; Chiclayo - Lambayeque UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 15/11/2022

: Arcilla inorgânica + 10% cenizas de cáscara de arroz; Muestra: M-02 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -

COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 ; CI-450 CÓDIGO ÚNICO FECHA DE ENSAYO : 15/11/2022 TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 19/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie lbf/pie')). 18

NTP 339.141:1999 (revisada el 2019)

		DEENSAYO			
	Dendida	id volumétrica			
Volumen del molde (cm3) 2	127 PESO DEL MOLE	E (g) :	6454	METODO	,,C.,
Número de ensayos	1	2	3	4.	
Peso molde + molde (g)	10123	10494	10687	10545	
Peso suelo húmedo compactado (g)	3669	4040	4233	4091	
Peso volumétrico húmedo	1.725	1.899	1.990	1.923	
	Conteni	do de himedad			
Número de recipiente	- I - I - I	2	3	4	
Peso suelo húmedo + tara (g)	313,2	409.5	326.5	474.4	1401
Peso suelo seco + tara (g)	274.1	352.0	275.3	394.6	101 :
Peso de la tara (g)	0.0	0.0	0.0	0.0	10
Peso de agua (g)	39.1	57.5	51,2	79.8	
Peso de suelo seço (g)	274.1	352.0	275.3	394.6	101
Contenido de agua	14,26	16,34	18.60	20.22	
Peso volumétrico seco	1.510	1.633	1.678	1.600	14 (1 =
Densidad máxima seca: 1.	681 g/cm ³		Hûmedad optima:	18.19	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son válidas sin la autorización del laboratorio.
 Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

: Arcilla inorgânica + 10% cenizas de cáscara de arroz; Muestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**) 20 COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Curranza Mejia FECHA DE MUESTREO (**): 15/11/2022

HORA DE MUESTREO (**); -MUESTREADO POR (**): -

FECHA DE RECEPCION: 15/11/2022 FECHA DE ENSAYO : 15/11/2022 FECHA DE EMISION : 19/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad yokumétrica	W. Committee				M. Total		
N" de molde			3	9	21		
10° capa		-	2		9		
Golpes por capa Nº	< 5	5.	-2	5	17	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso moide + puelo frimedo	11378	11423	11572	11690	11541	11710	
Peso de molde	7145	7145	7532	7532	7711	7711	
Peso de suelo humedo	4233	427B	4040	4158	3830	3999	
Volumen del molde	2123	2123	2113	2113	2099	2099	
Densidad hümeda	1,994	2.015	1.912	1.968	1.025	1,975	
Va de humedad	1848	20.44	18 48	22 66	1836	24.32	
Denoted secu	1 683	1 673	1.614	1.604	(1.542	1 332	
Contenido de humedad						1 180	
Nº de Laro	1111-08	346 = 1	11.01.0340	1	1 = 8 = 1	13.	
Tarro + suelo húmedo	361.2	364.2	329 6	329.€	405.4	405.4	
Tarro + suelo pieto	307.4	302.4	278.2	268.7	342.5	326.1	
Peso de agua	56.8	61,8	51.4	60.9	62.9	793	
Peso de tarro	0.0	0.0	0.0	0.0	0,0	0.0	
Peso del suelo seco	307.4	302.4	278.2	2687	342.5	326.1	
% de hapredad.	18-48	20 44	18.48	22.66	1836	24 32	

		2			Exp asion	1					
Fechs Hora	Tiempo	Expanion			Expanion			Expasión			
Lecte		Dul	tren	24	Dell	mm	9/4	Dul	THEN	36	
15/11/22	14:30	D	0.0	0.0	0.0	0.0	D.D	0.0	0,0	0.0	.0.
16/11/22	14.30	22	62.4	1.50	1.4	817	2.06	18	104.1	2.64	- 2
17/11/22	14:30	-42	74.6	1.89	3,6	106.5	2.71	2.3	124.4	3.16	2
19/11/22	14:30	65	92.4	2.35	2.0	121.1	3:09	2.7	148.2	3.76	3.
19/11/22	14:30	95	115.4	2.93	2.5	144.4	3.67	3.2	162.5	4.13	3

					Penetrac	ion							
The security of the	. Carga	Molde No			9.		Molde Nº		39		Molde №		2.1
Penetratrion	Stand	Cargo Co		Corre	Corrección Ca		rgs	gi Correcció		Ch	rgu	Come	inción.
pule	log/an2	Day (qia)	kg/cm2	kg/cm2	35	Dial (die)	kg/cm2	log/cm2	%	Dial (div)	kg/mz	kg/cm2	96
0.000		.0	0			.0	9			0	.0		
0.023	_ # # # ±= 1	35,6	2.	2.2	# # 1	24.6	1		1 = 1	18.5	1	120	1 1
0.050		70.5	- 4			42,2	2			32.5	2		
0.075	1 1 1 20 1	110.1				72B	4	190		52,E	3		
0.100	763	138.6	- 3	7.5	10.6	108.5	6	33	76	729	4	38	35
0 125	-1	181.5	0	0000		128.2			3-957	926	3	10000	- 4
0.130		2524	- 11	100000		156.5	8			112.4	6		
E 200	1105.5	283.5	14	143	13.5	1935	10.	10.2	9.7	141.7	7	7.4	7.0
0.300		356.9	.78	-		209,5	14		1	196.2	10	-	
c and		399.8	20.	12.2		301.1	- 13			201.2	10	- 1	
0.500		1							4				

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al eliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

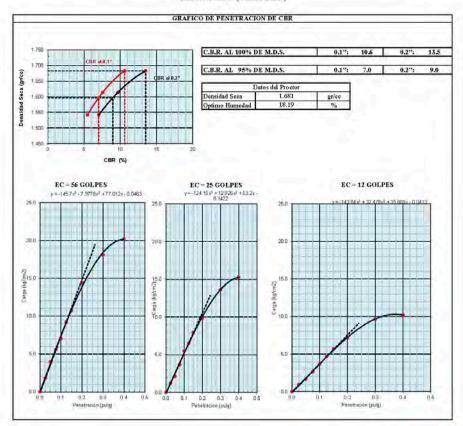
UBICACIÓN (**) : Chielayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**) ; Arcilla inorgánica + 10% cenizas de cáscara de arroz; Muestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**) 1-

COORDENADAS (**) 2 -CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 15/11/2022


HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 15/11/2022

FECHA DE ENSAYO: 15/11/2022

FECHA DE EMISION: 19/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

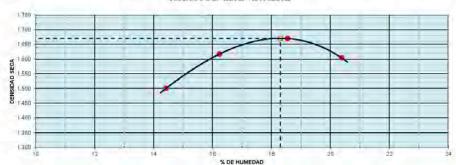
PROYECTO (**) a "Propiedades microestructurales y mecânicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 15/11/2022

: Arcilla inorgânica + 10% cenizas de cáscara de arroz; Muestra: M-03 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -


COORDENADAS (**) FECHA DE RECEPCION: 15/11/2022 ; CI-450 FECHA DE ENSAYO : 15/11/2022 CÓDIGO ÚNICO TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 19/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie lbf/pie')). 18

NTP 339.141:1999 (revisada el 2019)

DATOS	DE ENSAYO			
Dendick	ad volumétrica			
127 PESO DEL MOLI	DE (g) :	6454	METODO	"С"
1	2	3	4	
10108	10451	10664	10562	
3654	3997	4210	4108	
1.718	1.879	1.979	1.931	
Conteni	do de himedad			
	2	3	4	
624.8	321.4	431.5	510.9	1,01 ==
546.0	276.5	364.0	424.4	tip' ====
0.0	0.0	0.0	0.0	101
78,8	44.9	67.5	86.5	
546.0	276.5	364.0	424.4	:Ut =
14.43	16.24	18,54	20.38	
1,501	1.617	1,670	1.604	
	Dendict 1 10108 3654 1.718 Conteni 624.8 546.0 0.0 78.8 546.0 14.43	1 2 10108 10.451 3654 3997 1.718 1.879 Contenido de humedad 1 2 624.8 321.4 546.0 276.5 0.0 0.0 78.8 44.9 546.0 276.5 14.43 16.24	Dendidad volumètrica	Dendidad volumétrica

GRAFICO DENSIDAD - HUMEDAD

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

: Arcilla inorgânica + 10% cenizas de cáscara de arroz; Muestra: M-03 MATERIAL (**)

CODIGO DE MUESTRA (**) 20 COORDENADAS (**) CÓDIGO ÚNICO

TECNICO ENCARGADO : Segundo A. Curranza Mejia

: CI-450

FECHA DE MUESTREO (**) : 15/11/2022

HORA DE MUESTREO (**) : -MUESTREADO POR (**): -

FECHA DE RECEPCION: 15/11/2022 FECHA DE ENSAYO : 15/11/2022 FECHA DE EMISION: 19/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Jendidad volumetrica	- 100				M. T.		
N" demolde		3	2	2	60		
10° capa		-		-	- 5	-	
Golpes por capa Nº	<\$1	5.	2	5	17	2	
Condición de la masestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso moide + puelo frimedo	11874	11.924	.11568	11680	11718	11878	
Peso de molde	7690	7690	7510	7510	7891	7891	
Peso de suelo humedo	4164	4234	4056	4170	3827	3987	
Volumen del molde	2116	2116	2125	2125	2110	2110	
I) ensidad hümeda	1.977	2.001	1.910	1,962	1,314	1.890	
Vi de humedad	18.30	20:57	18 43	22.48	1848	24 25	
Denoted secu	1671	1.660	1.613	1.602	(1.531	13/22	
Contenido de humedad					Calle		
Nº de larro	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3AC	time makes to	1	1 = 2 = 1		
Tarro + suelo húmedo	451.9	4519	365 6	365.6	390.4	390.4	
Tarro + suelo pesto	382.0	374.8	300.7	298.5	329.5	314.2	
Peso de agua	69.9	77.1	56.9	67.1	60.9	76.2	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	g a	
Peso del suelo seco	382,0	374.8	308.7	298,5	329.5	314.2	
% de hannedad.	18.30	20 57	18-43	22.48	1848	24.25	

					Exp asion						
Fechs	Hora	Tiempo	Expanion				Expanón		1	Expasión:	
4,654.6	Hr	Deal	HORTE	All	Dul	LIBIT	9/6	Dul	mm	36	
15/11/22	14:30	D	0.0	0.0	0.0	0.0	DD	0.0	10,0	0.0	0.0
16/11/22	14.30	22	68.9	1.75	1.5	94 1	2.39	2.1	112.1	2.85	- 2
17/11/22	14:30	-42	81.4	2.07	3,6	1024	2.60	2.3	132.4	3.36	2
19/11/22	14:30	65	98.8	2.51	2.2	119.2	3:03	2.6	146.2	3.71	3.
19/11/22	14:30	95	1154	2.93	2.5	140.8	3.58	3.1	163.5	4.15	3

					Penetrac	ion		-					
Penetración	. Carga	Carga Molde Nº Stand Clarge			13		Molde Nº		22		Molde Nº	-	60
a energon	Stand			Сортавосной		Cargo		Corrección		Cargo		Corre	iceséri .
pulg	log/on/2	Dul (dry)	kg/cm2	kg/cm2	35	Dial (dw)	kg/cm2	log/cm2	%	Dial (div)	kg/m/2	kg/cm2	96
0,000			. 00			0	9			0.	. 0		
0.035	1111 11 11	37.5	2	100	2 1	23.2	1		1 7	15.4	1		1 1 1
0.050		704	4			25.4	2			28.4	- 00		
0.075		102.4	. 2	7	- 30	70.5	4	70	2.11	48.2	510.0	7	
0.100	763	141.1	- 3	7.8	That.	104,1	5.	3.5	7.2	70.6	34	4.1	5.9
B 125		178.4	0	-		131.2			1-90	935	- 00	1,000	
0.130		205.6	30			180.5	8			115.4	6	- 5	
0 200	105.5	291.4	= -33 _C	149	114.2	1966	10	10.6	10,0	143.5	7	0.3	7.6
0.300		362.5				275.5	[4		1 7	194.5	10	1	_
c and		416.5	21			316.9	10		2 0	215.7	11.		
0.500		7							7				

<sup>El informe corresponde única y exclusivamente a la muestra recibida.
Las copias de este informe no son válidas sin la autorización del laboratorio.
Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al eliente.
(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

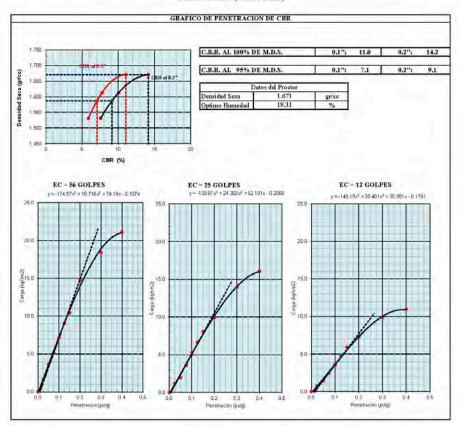
: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

UBICACIÓN (22) : Chielayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva ; Arcilla inorgánica + 10% cenizas de cáscara de arroz; Muestra: M-03 MATERIAL (**)

CODIGO DE MUESTRA (**) 1-

COORDENADAS (**) 26 CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 15/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

> FECHA DE RECEPCION: 15/11/2022 FECHA DE ENSAYO: 15/11/2022

FECHA DE EMISION: 19/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

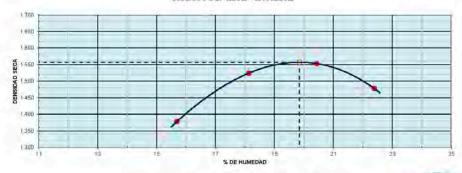
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 19/11/2022

: Arcilla inorgânica + 15% cenizas de cáscara de arroz; Muestra: M-01 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION: 19/11/2022


; CI-450 FECHA DE ENSAYO : 19/11/2022 CÓDIGO ÚNICO TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 23/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN·m/m² (56 000 pie-lbf/pie²)). 1*

NTP 339.141:1999 (revisada el 2019)

Dendick PESO DEL MOLE	nd volumétrica DE (g) :	6454	A PERMISSION OF	_
PESO DEL MOLI	E (g) :	6454	A STUTION O	
4		0.45%	METODO	,''C''
	2	3	4.	
9845	10284	10431	10302	
3391	3830	3977	3848	
1.594	1.801	1.870	1.809	
Conteni	do de himedad			
	2	3	4	
516.0	498,5	445,0	369.6	
446.0	422.0	369.5	302.0	101 :
0.0	0.0	0.0	0.0	
70,0	76.5	75.5	67.6	
446.0	422.0	369.5	302.0	
15.70	18.13	20.43	22.38	
1.378	1.524	1.553	1.478	
	3391 1.594 Conteni 1 516.0 446.0 0.0 70.0 446.0 15.70	3391 3830 1.594 1.801 Contenido de humedad 1 2 516.0 498.5 446.0 422.0 0.0 0.0 70.0 76.5 446.0 422.0 15.70 18.13 1.378 1.524	3391 3630 3977 1.594 1.801 1.870 Contenido de humedad 1 2 3 516.0 498.5 445.0 446.0 422.0 369.5 0.0 0.0 0.0 70.0 76.5 75.5 446.0 422.0 369.5 13.70 18.13 20.43 1.378 1.524 1.553	3391 3830 3977 3848 1.394 1.801 1.870 1.809 Contenido de humedad 1 2 3 4 516.0 498.5 445.0 369.6 446.0 422.0 369.5 302.0 0.0 0.0 0.0 0.0 70.0 76.5 75.5 67.6 446.0 422.0 369.5 302.0 15.70 18.13 20.43 22.38 1.378 1.524 1.553 1.478

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio,

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

: Arcilla inorgânica + 15% cenizas de cáscara de arroz; Muestra: M-01 MATERIAL (**)

CODIGO DE MUESTRA (**) 20 COORDENADAS (**) CÓDIGO ÚNICO : CI-450

: Segundo A. Curanza Mejia TECNICO ENCARGADO

FECHA DE MUESTREO (**) : 19/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 19/11/2022 FECHA DE ENSAYO: 19/11/2022 FECHA DE EMISION : 23/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad yokumétrica	- W				M		
N" de molde		1	.6	8	88		
N* capa					5		
Golpes por capa Nº	-:50	5.	-2	5	17	2	
Condición de la maiestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso moide + puelo frimedo	11449	11474	.11288	11378	11052	11199	
Peso de molde	7490	7490	7532	7532	7475	7475	
Peso de suelo humedo	7959	3984	3756	3546	3577	3723	
Volumen del molde	2124	2124	2113	2113	2109	2309	
Densidad hümeda	1,564	1.676	1/778	1.620	1.696	1.765	
Vi de humedad	13.73	21 32	19.56	23 44	1961	25,36	
Denoted secu	1557	1046	1.487	1/47/4	(1418	1.408	
Contenido de humedad					Tartha a. man	1 200	
Nº de larro	1 1 make and		11:21 345 1:	1	11 10 20 1	- 3	
Tarro + suelo húmedo	284.0	294.0	-593 0	593.0	430.6	480 6	
Tarro + suelo pesto	237.2	234 1	496.0	480.4	360.0	343.5	
Peso de agua	46.8	49,9	97.0	112.6	70.6	87.1	
Pesa de tarro	0.0	0.0	0.0	0.0	0.0	g u	
Peso del suelo seco	237,Z	234.1	496,0	480,4	360.0	343.5	
% de hamedad.	19.73	21 32	19.56	23:44	19.61	25 36	

					Expasion	1					
Fechs Hors	Tiempo	Ехрапоп				Expasión		1	Expasión:		
ACTIVITIES.	Hr	Dul	HORTE	AN	Dul	LIMIT	9/4	Dul	mm	36	
19/11/22	14:30	D	0.0	0.0	0.0	0.0	DD	0.0	0,0	0.0	0.
20/11/22	14.30	22	61.3	1.56	1.3	77'9	1.98	1.7	97 A	2.48	2
21/11/22	14:30	-42	15.4	1.92	1.7	91-4	2.32	2.0	112.1	2.65	2
22/11/22	14:30	65	88.9	2.26	2.0	103.2	2.62	2.3	125.4	3.19	2.0
23/11/22	14:30	95	105.4	2.68	2.3	118.4	3.01	26	144.4	3.67	3.

					Penetrac	ion							
Penetración	Carga				18: Molde Nº				68		Molde Nº		88
Penentalia	Stand			recede Carga		Convención		Olinga		Come	inción.		
pulg	log/on2	Dul (dry)	kg/cm2	kg/cm2	35	Dial (div)	kg/cm2	log/cm2	26	Dial (div)	kg/m/2	kg/cmZ	96
0,000			. 0				0				. 0		
0.023	1 11 11 11 1	15.5	1	22	# 21	12.8	1		121	8.5	(0)	West.	1 1 1
0.000		27.4	1			215	- i			16.5	-3		
0.075		56.2	3			38.5	2		1 20	29,6			
0.100	70%	81/1	14	66	9.4	62.4	3	47	6.7	5172	3.5	3.7	33
B125		1203	de	1000	-	64.5	- 060		-600	58.4	3	1000	- 4
0.130		154.5	8		-	102.9	3			195	5		
0 200	:105.5	2068	:10	12.3	13.2	152.5	- 8	9,0	5.6	115.5	. 6	7.3	-62
0.300		300.0	1,5			204.2	10	1	1 1	171.1	26		
c and		3477	- 31			246.5	13		3 73	215.5	11.	-	-
0.500			0.0-401			1 - 1			1	11-1-1	-		

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al eliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

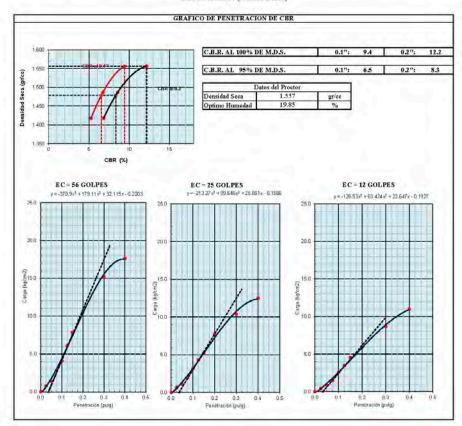
: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

UBICACIÓN (**) : Chielayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**) MATERIAL (**) : Arcilla inorgánica + 15% cenizas de cáscara de arroz; Muestra: M-01

CODIGO DE MUESTRA (**) .

COORDENADAS (**) 4. CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 19/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**) : -

FECHA DE RECEPCION: 19/11/2022 FECHA DE ENSAYO: 19/11/2022

FECHA DE EMISION: 23/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ª Edición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 19/11/2022

: Arcilla inorgânica + 15% cenizas de cáscara de arroz; Muestra: M-02 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -

COORDENADAS (**) FECHA DE RECEPCION: 19/11/2022 ; CI-450 FECHA DE ENSAYO : 19/11/2022 CÓDIGO ÚNICO TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 23/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN·m/m² (56 000 pie-lbf/pie²)). 1*

NTP 339.141:1999 (revisada el 2019)

	DATO	S DE ENSAYO			
	Dendic	lad volumétrica			
Volumen del molde (cm3)	2127 PESO DEL MOL	DE (g) :	6454	METODO	,"C"
Número de ensayos	1	2	3	4.	
Peso molde + molde (g)	9868	10224	10433	10326	
Peso suelo húmedo compactado (g)	3414	3770	3979	3872	
Peso volumétrico húmedo	1.605	1.772	1.871	1.820	
	Conten	ido de humedad			
Número de recipiente	1	2	3	4	14
Peso suelo húmedo + tara (g)	347.4	399.2	306.5	474.4	1.01 ::-
Peso suelo seco + tara (g)	298,9	338.6	255.0	389.0	101 s-
Peso de la tara (g)	0.0	0.0	0.0	0.0	101
Peso de agua (g)	48,5	60.6	51.5	85.4	
Peso de suelo seco (g)	298.9	338.6	255.0	389.0	: Ut
Contenido de agua	16.23	17.90	20,20	21.95	
Peso volumétrico seco	1.381	1.503	1.556	1.493	1411
Densidad máxima seca:	1.557 g/cm ³		Hûmedad optima:	19.88	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

: Arcilla inorgânica + 15% cenizas de cáscara de arroz; Muestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**) 20 COORDENADAS (**) CÓDIGO ÚNICO

: Segundo A. Curranza Mejia TECNICO ENCARGADO

: CI-450

FECHA DE MUESTREO (**): 19/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 19/11/2022 FECHA DE ENSAYO: 19/11/2022 FECHA DE EMISION: 23/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO				
endidad volumētrica	- 100				Maria San	(Comments)	
N" de molde			5	9	36		
14º capa			2	-	- 5		
Golpes por capa Nº	<\$1	6	2	5	12	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso moide + prelo filimedo	11890	11926	.11288	11366	11122	11252	
Peso de molde	7931	7931	7532	7532	7532	7532	
Peso de suelo humedo	3959	3995	3756	3834	3590	3720	
Volumen del molde	2123	2123	2113	2113	2113	2113	
Densidad hümeda	1.865	1.882	1/778	7.814	1,699	1761	
1/4 de humedad	19.69	21.67	19.52	23.55	1968	25,59	
Denoted secu	1.558	1.547	1.488	1.468	(1.417)	1.402	
ontenido de humedad							
Nº de Larro	1 1 1 1 1 1 1	DAG 300.1	that we are			13	
Tarro + suelo himedo	352.1	352.1	347.8	347.8	292.5	202.5	
Tarro + suelo paso	294.2	289.4	291.0	281.5	244:0	232.9	
Peso de agua	57.9	62.7	56.8	66,3	48.5	59.6	
Peso de tarro	0.0	0.0	0.0	0.0	0.0	0.0	
Peso del suelo seco	294,2	289.4	291,0	281.5	244,0	232.9	
% de harredad.	19.69	21.67	19.52	23.55	19.68	9€ 50	

					Exp asion		_	_	_		
Fechs	Hors	Tiempo	1.6.	Expanion			Expanón			Expassión	
A COLUMN	Links	Hr D	Dell	tren	. 14	Dul	mm	9/6	Dul	TIMIT	36
19/11/22	14:30	D	0.0	0.0	0.0	0.0	DD	0.0	10,0	0.0	0
20/11/22	14.30	22	39.2	1.50	1.3	75.4	1.92	1.7	100.1	2.54	2
21/11/22	14:30	-42	68.9	1.75	1.5	911	2.31	2.0	115.4	2.93	2
22/11/22	14:30	65	88.7	2.25	2.0	104.9	2.66	2.3	126.9	3.22	2.
23/11/22	14:30	95	1065	2.71	2.3	118.4	3.01	2.6	147.8	3.75	3

					Penetrac	ion							
Penetración	- Carga		Molde No	-			Molde Nº		59		Molde No	-	36
S-ethernous)	Stand	Clarge Correc		noon	oceón Cargo		Convección		Chrga		Come	inción.	
pulg	log/om2	Dul (dry)	kg/cm2	kg/cm2	35	Dial (dry)	kg/cm2	log/cm2	%	Dial (diy)	kg/m/2	kg/cmZ	96
0.000			. 0				9			0	. 0		
0.025	1 1 21	169	1	100	22-1	13.4	1		1 12 1	9.1	(8)		1 1 1
0.050		20.5	1			225	1			17.4	0.		
0.675		589	3	100	5.75	40.9	2		4 19	31.5	510.0		
0.100	763	785	16	EA.	91	636	3	48	62	626	3	3.7	33
B 125		124.1	de	odleto		65.9	4.0	-	1-60	59 E	40	1000	-4
0.130		148.4	8	10000		100.5	5			91.5	5		
0 200	105.5	203.5	- 300	123	3139	154.4	8	9.1	5.6	119.5	. 6	73	-69
0.300		305.1		100000	- 1	200.9	10			175.6	16-		-
c and		351.8	18		-	25%.1	13		200	221.1	11.		-
0.500		7	-			111-0-03			No.		-	-	

Revisado y aprobado.

7.de3

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al eliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

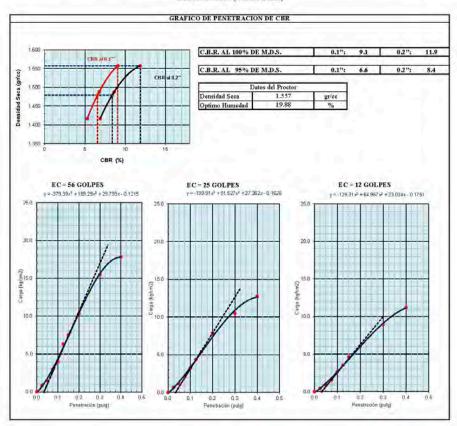
: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

UBICACIÓN (**) : Chielayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**) MATERIAL (**) : Arcilla inorgánica + 15% cenizas de cáscara de arroz; Muestra: M-02

CODIGO DE MUESTRA (**) .

COORDENADAS (**) 4. CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 19/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**) : -

FECHA DE RECEPCION: 19/11/2022 FECHA DE ENSAYO: 19/11/2022

FECHA DE EMISION: 23/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

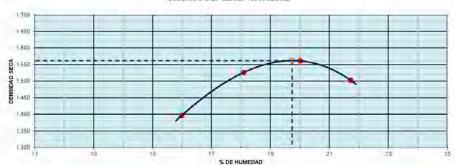
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 19/11/2022

; Arcilla inorgânica + 15% cenizas de cáscara de arroz; Muestra: M-03 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -


COORDENADAS (**) FECHA DE RECEPCION: 19/11/2022 ; CI-450 FECHA DE ENSAYO : 19/11/2022 CÓDIGO ÚNICO TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 23/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN·m/m² (56 000 pie-lbf/pie²)). 1*

NTP 339.141:1999 (revisada el 2019)

W C. I				
Dendid	ad volumétrica			
7 PESO DEL MOLI	DE (g) :	6454	METODO	,.C.,
1	2	3	4.	
9898	10287	10438	10345	
3444	3833	3984	3891	
1.619	1.802	1.873	1.829	
Conteni	do de himedad			
1 1	2	3	4	1411
375.8	401.5	294.5	326.2	1/1/2
324.0	340.0	245.4	268.0	till a
0.0	0.0	0.0	0.0	
51,8	61.5	49.1	58.2	
324.0	340.0	245.4	268.0	111
15.99	18.09	20,01	21.72	
1.396	1.526	1.561	1.503	1111
	1 9898 3444 1.619 Content 1 375,8 324,0 0.0 51,8 324,0 15,99	1 2 9898 10287 3444 3833 1.619 1.802 Contenido de humedad 1 2 375.8 401.5 324.0 340.0 0.0 0.0 51.8 61.5 324.0 340.0 15.99 18.09 1.396 1.526	1 2 3 9898 10287 10438 3444 3853 3984 1.619 1.802 1.873 Contenido de humedad 1 2 3 375.8 401.5 294.5 324.0 340.0 245.4 0.0 0.0 0.0 51.8 61.5 49.1 324.0 340.0 245.4 15.99 18.09 20.01 1.396 1.526 1.561	1 2 3 4 9898 10287 10438 10345 3444 3833 3984 3891 1.619 1.802 1.873 1.829 Contenido de himedad 1 2 3 4 375.8 401.5 294.5 326.2 324.0 340.0 245.4 268.0 0.0 0.0 0.0 0.0 0.0 51.8 61.5 49.1 58.2 324.0 340.0 245.4 268.0 15.99 18.09 20.01 21.72 1.396 1.526 1.561 1.503

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

LABORATORIOS DE SUELOS EVIMENTOS S.A.C. SERVICIOS DE

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

: Arcilla inorgânica + 15% cenizas de cáscara de arroz; Muestra: M-03 MATERIAL (**)

CODIGO DE MUESTRA (**) 20 COORDENADAS (**)

CÓDIGO ÚNICO : CI-450 TECNICO ENCARGADO

: Segundo A. Curranza Mejia

FECHA DE MUESTREO (**) : 19/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 19/11/2022 FECHA DE ENSAYO: 19/11/2022 FECHA DE EMISION : 23/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad volumetrica	- M				M		
N" de molde	21	9.	1	4	53		
10º capa				-	5		
Golpes por capa Nº		6	2	5	10	2	
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso moide + suelo frimedo	12022	12062	11497	11599	11134	11277	
Peso de molde	8076	8076	7704	7704	7532	7532	
Peso de suelo humedo	7946	3986	3793	3895	3602	3745	
Volumen del molde	2110	2110	2130	2130	2113	2113	
I)ensidad hümeda	1.670	1.889	1/781	1.629	1.705	1.772	
Vi de humedad	13.62	21:62	19.38	23 44	1974	25,20	
Devoted secu	1563	1 553	1/492	1.482	(1.424)	1.433	
Contenido de humedad							
Nº de Larro	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	346	than in the later of the later	10 TO ACTUS	h == 20 == 1		
Tarro + suelo húmedo	467.9	407.9	362.9	362.9	381.6	381 6	
Tarro + suelo peso	34).0	335.4	304.0	294.0	319.7	304.8	
Peso de agua	66.9	725	58.9	68.9	62.9	76.8	
Peso de tarro	0.0	0.0	0.0	0.0	0,0	a a	
Peso del suelo seco	347,0	335.4	304.0	294/0	319.7	304.8	
% de harredad.	19.62	21 62	19 38	23.44	19.74	25 20	

		7			Exp asion	1					
Fechs Hors I	Tiempo	Ехрапоп			Expasión			Expasión			
Techs	Hota	Hr Dul	Dul	HTETT	24	Dell	mm	9/6	Dul	20,000	3/
19/11/22	14:30	D	0.0	0.0	0.0	0.0	D.D	0.0	10,0	0.0	0.0
20/11/22	14.30	22	35.6	141	12	84 1	2.14	1.8	94.3	2.40	- 2
21/11/22	14:30	-42	64.1	2.34	3,8	94.5	2.40	2.1	112.1	2.95	20
22/11/22	14:30	65	94.5	240	2.1	102.1	2.59	2.2	1264	3.21	2.
23/11/22	14:30	95	1084	2.75	2.4	1185	3.01	26	142.5	3.62	3.

				-	Penetrac	ion							
Penetratrion	. Carga		Molde No		79		Molde No		- 14		Molde No		-53
S-energon)	Stand	Ch	rgs .	Corre	Corrección		rgs	Conv	sición	(2)	Carga		eción -
pulg	log/an2	Dul (dry)	kg/cm2	kg/cm2	35	Dial (dre)	kg/cm2	log/cm2	96	Dial (div)	kg/m/2	kg/cm2	3%
0.000		. 10	. 0				9				. 0		
0.033	- 11 11 21	18.2	1	22		11.9	1		1 -	8.5	. 80	170	: = -
0.050		39.5	1			211	1			16.5	- 3		
0.675		54.5			- dec	38.5	2			28.9	10.0		
0.100	70%	775	1.4	6.6	9.4	625	3	5.0	7.0	406	3	3.9	36
0 125	-1	1119.5	d.	1980	1	96.9	4.		1 44 1	71.5	-40	-	-
0.130		151.4	- 8			107.4	- 0			92.6	5		
E 200	105.5	206.5	- 310	129	123	158.5		9.4	8,9	121.1	6	7.3	73
0.300		3069	16			211.1	16			101.1	16		
c and		354.1	18	-		253.5	13	4.		223 6	- 11.		
El 500		2	100			1	10.0		1	10000	-		

<sup>El informe corresponde única y exclusivamente a la muestra recibida.
Las copias de este informe no son válidas sin la autorización del laboratorio.
Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al elíente.
(**) Datos proporcionados por el eliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

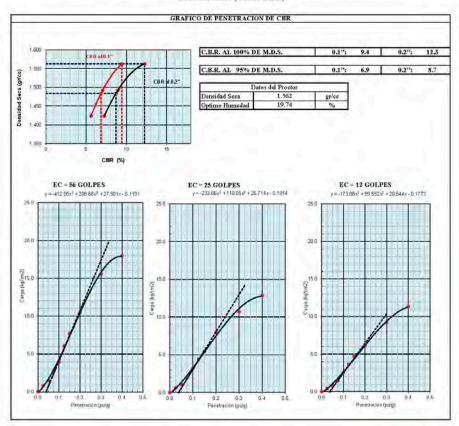
: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva : Arcilla inorgánica + 15% cenizas de cáscara de arroz; Muestra: M-03 MATERIAL (**)

CODIGO DE MUESTRA (**) 1-

COORDENADAS (**) 2 -CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 19/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): .

FECHA DE RECEPCION: 19/11/2022 FECHA DE ENSAYO: 19/11/2022

FECHA DE EMISION: 23/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

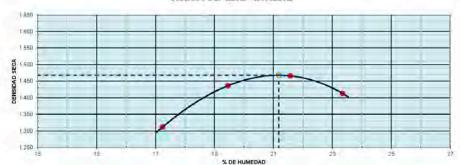
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 21/11/2022

: Arcilla inorgânica + 20% cenizas de cáscara de arroz; Muestra: M-01 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**) FECHA DE RECEPCION : 21/11/2022


; CI-450 FECHA DE ENSAYO : 21/11/2022 CÓDIGO ÚNICO TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 25/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN·m/m² (56 000 pie-lbf/pie²)). 18

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendick	ad volumétrica			
Volumen del molde (cm3)	PESO DEL MOLI	DE (g) :	6454	METODO	,,C.,
Número de ensayos	1	2	3	4	1000
Peso molde + molde (g)	9724	10102	10245	10162	
Peso suelo húmedo compactado (g)	3270	3648	3791	3708	
Peso volumétrico húmedo	1.537	1.715	1.782	1.743	
	Conteni	do de himedad			
Número de recipiente	1	2	3	4	
Peso suelo húmedo + tara (g)	309.5	562.5	509.0	416,9	
Peso suelo seco + tara (g)	264.0	470.9	418.7	338.0	U =
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	45.5	91.6	90.3	78.9	
Peso de suelo seço (g)	264.0	470.9	418.7	338.0	
Contenido de agua	17.23	19.45	21.57	23.34	-
Peso volumétrico seco	1.311	1.436	1.466	1.413	
Densidad máxima seca:	.468 g/cm ³		Húmedad optima	: 21.18	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

LABORATORIOS DE SUELOS EVIMENTOS S.A.C. SERVICIOS DE

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

: Arcilla inorgânica + 20% cenizas de cáscara de arroz; Muestra: M-01 MATERIAL (**)

CODIGO DE MUESTRA (**) 20 COORDENADAS (**) CÓDIGO ÚNICO : CI-450

: Segundo A. Curanza Mejia TECNICO ENCARGADO

FECHA DE MUESTREO (**) : 21/11/2022

HORA DE MUESTREO (**) : -MUESTREADO POR (**): -

FECHA DE RECEPCION: 21/11/2022 FECHA DE ENSAYO : 21/11/2022 FECHA DE EMISION: 25/11/2022

SUELOS. Método de ensuyo de CBR (Relación de Soporte de California) de suelos compuctados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			
Dendidad yokumétrica	W. Tarabara				M. T.	
N" de molde			3	0	21	10
N* capa		-			- 5	-
Golpes por capa Nº	< 54	5.	2	5	17	2
Condición de la maiestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso moide + puelo frimedo	.11890	11990	11488	11578	10474	10602
Peso de molde	8125	8125	7910	7910	7071	7071
Peso de suelo humedo	3765	3805	3576	3668	3403	3531
Volumen del molde	2114	21)4	2109	2109	2106	23.06
Densidad hümeda	1 791	1.800	1,697	1.739	1.616	1,677
V₄ de humedad	21 35	23.47	21 42	25.32	21/69	27,37
Dentidad secu	1460	1 (158	1/398	1 388	1.328	1.317
Contenido de humedad					Carrier and select	
Nº de Lara	1 1 1 1 1 1 1	340	ti ar. ske		L == 2x -= 1	131
Tarro + suelo húmedo	310.9	3109	457.4	457.4	297.4	297.4
Tarro + suelo pesto	256,2	251.8	376.7	365.0	244.4	233.5
Peso de agua	54.7	59,1	80.7	92.4	53.0	63.9
Peso de tarro	0.0	0.0	0.0	0.0	0,0	0.0
Peso del suelo seco	256.2	251.8	376.7	365,0	244,4	233.5
to de hamedad.	21.35	23.47	21.42	25 32	21.69	27:37

					Expasion	1					
Fechs	Hora	Tiempo		Expanion		Expanion			Expasión		
200,000	1304.0	Hr	Deal	inn	. 44	Dul	LIKE	9/6	Dul	TIMIT	3.0
21/11/22	14:30	D	0.0	0.0	0.0	0.0	DD	0.0	0,0	0.0	0.0
22/11/22	14.30	22	42.1	1.07	0.9	54.2	1.38	1.2	84.1	2 14	-1.5
23/11/22	14:30	-42	34.7	1.39	32	78.9	2.00	1.7	98,4	2.50	2
24/11/22	14:30	65	66.9	1.70	1.5	91.4	2.32	2.0	112.1	2.95	2.5
25/11/22	14:30	95	87.4	2.72	0.9	105.4	2.68	23	124.5	3.46	2

				-	Penetrac	ion							
Penetración	. Carga		Molde No		5		Molde Nº		30		Molde №		20
S-energonal	Stand	Ch	Cleps		Сотевроби		rgei	Corrección		Cargo		Corre	icesén .
pulg	log/on2	Dal (dry)	kg/cm2	kg/cm2	3/4	Dial (dry)	kg/cm2	log/cm2	26	Dial (div)	kg/m/2	kg/cm2	94.
0.000		.0.	. 0			.0	0				.0		
0.025		(0.1	1	100	W.5.	8.4	(0)		1 1	65	180	120-2	
0.050		10.5	1			245	1			13.4	0.1		
0.075		35.6	2	1997		42.4	2		t c.	28.4	10	1200	
0.100	703	E24	1	13	73	62.0	3	4.0	56	425	- 2	3.3	4.7
9125		92.1	- 8	Chicago,	-	64.1	4.0		1-661	52.4	3	100000	
0.130		115.1	- 6			100 8	5			B14	4		
6 200	105.5	154.5	0 (B)	10.1	5/ 5	133.9	2	7.6	7.2	102.9	3	63	60
0.300		340.5	- 32			178.4	. 9	1	1	144.5	77		-
c and		303.1	37		-	212.1	- 11:		1 7	176.6	3	- 1	
0.500		1-1-1	0.0						1				

Revisado y aprobado.

<sup>El informe corresponde única y exclusivamente a la muestra recibida.
Las copias de este informe no son válidas sin la autorización del laboratorio.
Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al elíente.
(**) Datos proporcionados por el eliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

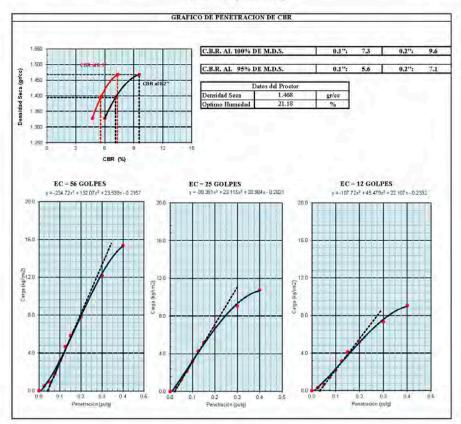
: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva ; Arcilla inorgánica + 20% cenizas de cáscara de arroz; Muestra: M-01 MATERIAL (**)

CODIGO DE MUESTRA (**) 1-

COORDENADAS (**) 2 4 CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 21/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 21/11/2022 FECHA DE ENSAYO: 21/11/2022

FECHA DE EMISION: 25/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ª Edición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

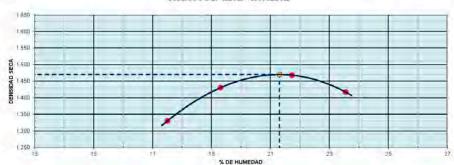
INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 21/11/2022

: Arcilla inorgânica + 20% cenizas de cáscara de arroz; Muestra: M-02 HORA DE MUESTREO (**): -MATERIAL (**) CODIGO DE MUESTRA (**) MUESTREADO POR (**): -


COORDENADAS (**) FECHA DE RECEPCION: 21/11/2022 ; CI-450 FECHA DE ENSAYO : 21/11/2022 CÓDIGO ÚNICO TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 25/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 18

NTP 339.141:1999 (revisada el 2019)

		DATOS	DE ENSAYO			100
		Dendid	ad volumétrica			
Volumen del molde (cm3)	2127	PESO DEL MOLI	DE (g) :	6454	METODO	"C"
Número de ensayos		1	2	3	4	
Peso molde + molde (g)		9778	10084	10256	10178	
Peso suelo húmedo compactado (g)		3324	3630	3802	3724	
Peso volumétrico húmedo		1.563	1.707	1.787	1.751	1111
		Conteni	do de himedad			
Nûmero de recipiente		1	2	3	4	1,01
Peso suelo húmedo + tara (g)		419.5	390,6	348.4	500.0	1,01 ==
Peso suelo seco + tara (g)		357.0	327.4	286.2	404.7	til)' :
Peso de la tara (g)		0.0	0.0	0.0	0.0	101
Peso de agua (g)		62.5	63.2	62.2	95.3	
Peso de suelo seço (g)		357.0	327,4	286.2	404.7	1111
Contenido de agua		17.51	19.30	21.73	23.55	101
Peso volumétrico seco		1.330	1.430	1.468	1.417	
Densidad máxima seca:	1.470	g/cm ³	1	Hûmedad optima:	21.31	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

: Arcilla inorgânica + 20% cenizas de cáscara de arroz; Muestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**) 20 COORDENADAS (**) CÓDIGO ÚNICO

TECNICO ENCARGADO : Segundo A. Curranza Mejia

: CI-450

FECHA DE MUESTREO (**): 21/11/2022

HORA DE MUESTREO (**); -MUESTREADO POR (\$0): -

FECHA DE RECEPCION: 21/11/2022 FECHA DE ENSAYO : 21/11/2022 FECHA DE EMISION: 25/11/2022

SUELOS. Método de ensuyo de CBR (Relación de Soporte de California) de suelos compuctados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Jendidad yolumétrica	- W				M. Towns		
N" de molde	and the same of	0			5		
14º capa				1	- 5		
Golpes por capa Nº	-:54	6	-2	5	17	2	
Condición de la maiestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso moide + puelo frimedo	11378	11426	11530	11614	11090	11201	
Peso de molde	7615	7615	7912	7912	7648	7648	
Peso de suelo humedo	3763	3811	3618	3702	3442	3553	
Volumen del molde	2109	2109	2124	2124	2124	2124	
I)ensidad hümeda	1.784	1.507	1/703	1.743	1.621	1,673	
Vi de humedad	21.27	23.78	21 43	25.39	21 (9	27,37	
Deredal secu	1.471	1 460	1,402	1390	1 332	1 313	
Contenido de humedad							
Nº de laro	1 1	340	than to see		h == 2x == 1)	3	
Tarro + suelo húmedo	477.8	477.8	381.4	3814	297.4	297.4	
Tarro + suelo pesto	394.0	3860	314.1	304.2	244.4	233.5	
Peso de agua	83,8	91.8	67.3	77.2	53.0	63.9	
Pesa de tarro	0.0	0.0	0.0	0.0	0,0	0.0	
Peso del suelo seco	394,0	386.0	314.1	304.2	244,4	233.5	
% de hannedad.	21 29	23.78	21 43	25.38	21.69	27.37	

					Exp asion	1					
Fèchs	Hora	Tiempo	14.0	Ехрапоп	3431	Expanión			Expasión		
Fection .	Hota	Hr	Dul	tren	84	Dal	mm	9/6	Dul	TIMIT	96
21/11/22	14:30	D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.00
22/11/22	14.30	22	42.0	1.07	0.9	587	1.49	1.3	1.18	2:06	- 13
23/11/22	14:30	-42	34.4	1.36	32	72-4	1.84	1,6	94.8	2-41	2
24/11/22	14:30	65	68.5	1.74	1.5	84.5	2.15	1.9	112:1	2.85	2.5
25/11/22	14:30	95	81.4	2.07	1.6	105.4	2.68	23	125.4	3.19	23

					Penetrac	ion							
Penetración	. Carga		Molde Nº		40		Molde Nº		- 6	1	Molde No		-53
P-energyon)	Stand	Cargo Correo		menosin Carga		Conv	Convención		Chrgs		eción.		
pulg	log/an2	Dal (dry)	kg/cm2	kg/cm2	35	Dai (die)	kg/cm2	log/cm2	%	Dial (div)	kg/m/2	kg/cm2	3%
0.000			- 0				0			0.	. 0		
0.023	- 1111 -21	123	1	12.2	Mar I	91	(0)		1 21	7.1	- 10	100-1	: =
0.050		19.5	1			256	i			14.5	3		
0.075		36.9	2	100		44,8	2		H E.	29.E			
0.100	70%	64.2	- 1	13	73	630	3	4.0	36	43.5	7.	34	-48
0125		93.5	- 6	diagit	-	655	4.		3-601	53.5	3-	3440	-
0.130		1165	6			105.4	5			112.0	4		
E 200	105.5	156,8	a (Page)	10.1	9.6	135.4	9	7.5	7.2	106.4	3.	6.5	6.1
0.300		342.5	32			151.1	3			145.5	17		-
n ann		3092	10	7		216.9	(1)	h h		181.15	3		-5
0.500		1.00				11000			1	F	1000		

7.de3

El informe corresponde única y exclusivamente a la muestra recibida.
 Las copias de este informe no son válidas sin la autorización del laboratorio.
 Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al elíente.
 (**) Datos proporcionados por el eliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

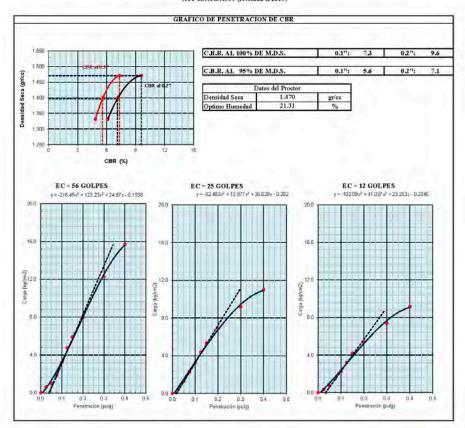
UBICACIÓN (**) t Chielayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**) MATERIAL (**) : Arcilla inorgánica + 20% cenizas de cáscara de arroz; Muestra: M-02

CODIGO DE MUESTRA (**) .. COORDENADAS (**) 3 .

CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 21/11/2022


HORA DE MUESTREO (**): -

MUESTREADO POR (**) : -FECHA DE RECEPCION: 21/11/2022

FECHA DE ENSAYO: 21/11/2022

FECHA DE EMISION: 25/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaitos 948 852 622 - 954 131 476 - 998 928 250

E-mail: servicios_lab@hotmail.com.

INFORME DE ENSAYO

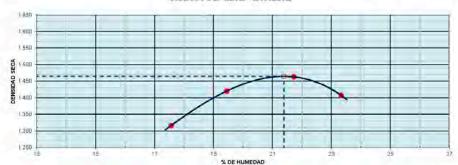
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) ; Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva FECHA DE MUESTREO (**): 21/11/2022

: Arcilla inorgânica + 20% cenizas de cáscara de arroz; Muestra: M-03 HORA DE MUESTREO (**): -MATERIAL (**)

CODIGO DE MUESTRA (**) MUESTREADO POR (**): -COORDENADAS (**)


FECHA DE RECEPCION: 21/11/2022 ; CI-450 FECHA DE ENSAYO : 21/11/2022 CÓDIGO ÚNICO TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE EMISION: 25/11/2022

SUELOS. Método de ensavo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbf/pie²)). 18

NTP 339.141:1999 (revisada el 2019)

Dendick PESO DEL MOLE 1 9745 3291 1.547	2 10061 3607	6454 3 10242 3788	METODO 4 10145 3691	"C"
1 9745 3291	2 10061 3607	3 10242	4. 10145	"C"
9745 3291	10061 3607	10242	10145	
3291	3607			
		3788	3691	
1.547	1.000			
	1.696	1.781	1.735	
Conteni	do de himedad			
- i	2	3	4	
405.6	362,4	416.9	351,5	
345.0	303.4	342.5	285.0	W ===
0.0	0.0	0.0	0.0	
60.6	59.0	74.4	66.5	
345.0	303.4	342.5	285.0	
17:57	19.45	21.72	23.33	
1.316	1.420	1.463	1.407	
	1 405.6 345.0 0.0 60.6 345.0 17.57	405.6 362.4 345.0 303.4 0.0 0.0 60.6 59.0 345.0 303.4 17.57 19.45 1.316 1.420	1 2 3 405.6 362.4 416.9 343.0 303.4 342.5 0.0 0.0 0.0 60.6 59.0 74.4 345.0 303.4 342.5 17.57 19.45 21.72 1.316 1.420 1.463	1 2 3 4 405.6 362.4 416.9 351.5 345.0 303.4 342.5 285.0 0.0 0.0 0.0 0.0 60.6 59.0 74.4 66.5 345.0 303.4 342.5 285.0 17.57 19.45 21.72 23.33 1.316 1.420 1.463 1.407

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

^(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC; 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

; Chiclayo - Lambayeque UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

: Arcilla inorgânica + 20% cenizas de cáscara de arroz; Muestra: M-03 MATERIAL (**)

CODIGO DE MUESTRA (**) 20 COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Curranza Mejia FECHA DE MUESTREO (**) : 21/11/2022

HORA DE MUESTREO (**); -MUESTREADO POR (**): -

FECHA DE RECEPCION: 21/11/2022 FECHA DE ENSAYO : 21/11/2022 FECHA DE EMISION : 25/11/2022

SUELOS. Método de ensuyo de CBR (Relación de Soporte de California) de suelos compuctados en el laboratorio. L'Edición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			
Jendidad yolumétrica	W				M	
N" de molde		2	.6	0	1	7
10º capa		-	2	1	- 5	
Golpes por capa Nº		5.	. 2	5	17	2
Condición de la maiestra	No saturado	Saturado	No satumdo	Saturado	No saturado	Saturado
Peso moide + puelo frimedo	11601	11630	11252	11349	11462	11590
Peso de molde	7908	7808	7648	7648	8053	3053
Peso de suelo humedo	3793	3922	3604	3701	3409	3537
Volumen del molde	2121	2121	2124	2124	2108	2108
Densidad hümeda	1.791	1.802	1.697	1,742	1,617	1,678
1/4 de humedad	21.70	23.51	21 38	25.65	2171	27/22
Dentidad secu	1469	1 (03)	1/398	1.386	1.329	1.319
Contenido de humedad						a sele
Nº de larro		3AC	11.252.346	T		13.
Tarro + suelo húmedo	380 0	300.0	289.5	289.5	354.3	354.3
Tarro + suelo pesto	246,5	242.9	.230.5	230.4	291.1	278.5
Peso de agua	59.5	57.1	51.0	59.1	63.2	75.8
Pesa de tarro	0.0	0.0	0.0	0.0	0,0	0.0
Peso del suelo seco	246,5	242.9	238,5	230.4	2911	278.5
% de hannedad.	21.70	23.51	21 38	25 65	21.71	27.22

					Exp asion	1					
Fechs	Hora	Tiempo	100	Expanion	Take I	Expanôn			Expasión		
Techni	Hota	Hr	Dul	unen .	24	Dal	mm	9/6	Dul	TIMET	9.6
21/11/22	14:30	D	0.0	0.0	0.0	0.0	D.D	0.0	0.0	0.0	0.0
22/11/22	14.30	22	36.2	1.43	12	724	1.84	16	754	1 92	- 13
23/11/22	14:30	-42	62.4	1.58	14	64.1	2.14	1.8	90,8	2 31	2.0
24/11/22	14:30	65	81.4	2.07	1.9	93.4	2.37	2.1	104.4	2.65	2.3
25/11/22	14:30	95	903	2.40	2.1	105.4	2.68	23	119.2	3.03	2.6

					Penetrac	ion							
Penetración	Carga		Molde No		12		Molde Nº		60		Molde Nº		17
s-enemonon	Stand	Ch	rigo.	Copre	ecoón .	Ca	rgei	Conve	ectón	(2)	rgu	Come	innión.
pulg	log/an2	Dal (dry)	kg/cm2	kg/cm2	25	Dai (dv)	kg/cm2	log/cm2	%	Dial (div)	kg/m/2	kg/cm2	94
0.000		.0	. 0			. 0	0				. 0		
0.025	1 1 21	10.8	1	22	#=:1	8.5	(0)		1 7	7.5	- 80		17 1
0.050		10.4	1			21.5	1			12.4	0.		
0.675		35.5	2			41.8	2	32.	1 11	26.6	11		198
0.100	763	6170	1	3.0	73	58.0	3	41	3.2	10.5	3	3.6	3.1
0125		917	- 6	-		MM B	3		1000	59 E	3	700000	2.4
0.130		114.0	6	-		100.5	5			111.5	4		
0 200	105.5	152.1	- (F)	10.1	9.5	134.8	2	7.9	3.5	106,9	3.	57	63
0.300		245.2	.12			186.4	9	-	1 1	145.9	77		
ci anci		312.5	:10		-	221.1	- (1):-		1 31	165.5	3	-	
EI 300		F							1	11			

Zde 3

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al eliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

: "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano" PROYECTO (**)

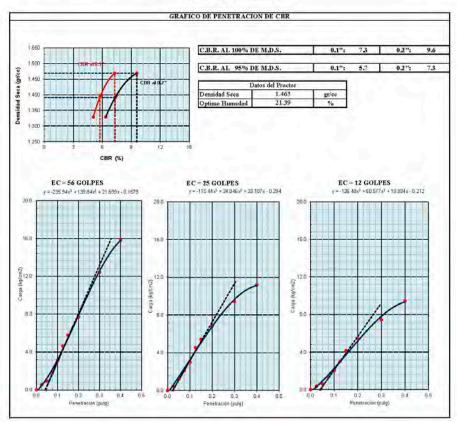
: Chiclayo - Lambayeque UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva : Arcilla inorgânica + 20% cenizas de cáscara de arroz; Muestra: M-03 MATERIAL (**)

CODIGO DE MUESTRA (**) :-COORDENADAS (**) .

CÓDIGO ÚNICO : CI-450 TECNICO ENCARGADO

: Segundo A. Carranza Mejia


FECHA DE MUESTREO (**): 21/11/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 21/11/2022 FECHA DE ENSAYO: 21/11/2022

FECHA DE EMISION: 25/11/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1ºEdición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,1% fibras de

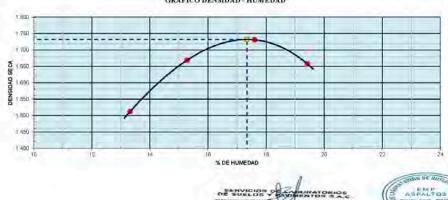
MATERIAL (**) plátano; Muestra; M-01

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : C1-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 26/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -


FECHA DE RECEPCION: 26/11/2022 FECHA DE ENSAYO: 26/11/2022 FECHA DE EMISION: 30/11/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendida	d volumétrics			
Volumen del molde (cm3) 212	PESO DEL MOLD	E (g):	6454	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10098	10546	10784	10662	
Peso suelo húmedo compactado (g)	3644	4092	4330	4208	
Peso volumétrico húmedo	1.713	1.924	2.036	1.978	
	Contenie	lo de humedad			A
Número de recipiente	1	2	3	4	
Peso suelo húmedo = tara (g)	491.8	374.9	453.0	401.5	
Peso suelo seco + tara (g)	434.0	325.2	385.2	336.2	
Peso de la tara (2)	0.0	0.0	0.0	0.0	
Peso de agua (g)	57.8	49.7	67,8	65.3	
Peso de suelo seco (g)	434.0	325.2	385.2	336.2	
Contenido de agua	13.32	15.28	17.60	19.42	
Peso volumétrico seco	1,512	1.669	1.731	1.657	
Densidad máxima seca: 1.73	2 g/cm²		Húmedad optima:	17.34	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado

unding Brant Fernández

- * El informe corresponde única y exclusivamente a la muestra recibida.
- * Las copias de este informe no son válidas sin la autorización del laboratorio.
- * Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

 (***) Datos proporcionados por el cliente.

DE LABORATORIOS DE SUELOS PAVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465
Servicios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 988 928 250
Establishe and Experience

INFORME DE ENSAYO

2 "Propredades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,1% fibras 2 de plátano; Muestra: M-01 MATERIAL (**)

CODIGO DE MUESTRA (**) 22

COORDENADAS (**) 20 CÓDIGO ÚNICO + CI-450

: Segundo A. Carranza Mejin TECNICO ENCARGADO

FECHA DE MUESTREO (**): 26/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION; 26/11/2022 FECHA DE ENSAYO : 26/11/2022 FECHA DE EMISION: 30/11/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145: 1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad volumetrica					0		
Nº de mol de		9		3	1		
pp cabs			1				
Gelpes por tapa IV	5	5.	3	5	1	0.0	
Condición de la muestra	No saturado	Saturado	Dosaturado	Saturado	No saturado	Saturado	
Peso molde + melo húmedo	11822	11870	11960	12084	11054	11224	
Peso de molde	7515	7519	7839	7839	7101	7101	
Pero de suelo húmedo	4303	4351	4121	4245	3953	4125	
Volumen del molde	2114	2114	2111	2111	2113	2113	
Denorded humoda	2.035	2,058	1,952	2.011	1,871	1951	
% de hunwdad	17:56	19.60	17.49	2172	17.60	23.41	
Denia dad seca	1.731	17721	1.661	1.652	1,591	1.581	
'antenido de hamedad					Y - 2		
IN de tarre						1.00	
Tarro v suelo hitmedo	290.5	290.5	324.5	134.5	300.0	300 0	
Tarro + suelo seco	247.1	242.9	276.2	266.6	255.1	243.1	
Pesto de agua	43.4	47.6	48.3	579.	44.9	36.9	
Pero de tany	0.0	0.0	0.0	0.0	0.0	0.0	
Pero del aurlo groo	247.5	2429	2762	266.6	255.1	243.1	
% de firm edad	17.56	19.60	17.49	21.72	17.60	25 41	

					Expanion						
Fecha	Hora	Tiempo		Епран би	to cost	Expande			Ettpasión.		
2 600.0	Hota	Hr.	Link	mm	98	Dial	mitn	%	Dial	mm	99
26/11/22	14.30	0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	D,
27/11/22	14 30	22	35.2	1.40	1/2	77.3	1.96	1.7	101.1	2.57	2
28/11/22	14,30	42	66.5	169	1.5	92.8	2.36	2.0	119.9	3.05	- 2
29/11/22	14.30	65	34.4	2.14	1,9	112.1	2,85	25	131.B	3,35	- 2
30/11/22	14 30	95	102 I	2.59	22	334.4	3:16	27	151.4	3.85	3

					LEMBIT #C	IUII.							_
Penetramon	Cage		Ma) de Nº		18		Molde N		43		Molde No		- 5
renewation	Stand	Ca	rga	Core	ecido	Ca	arga Com		cción	Ch	iga	Correction	
pulg	kg/cm3	Dial (div)	kg/tm2	ltg/em2	%	Deal (div)	kg/em2	kg/cm2	95	Dial (div)	kg/cm2	kg/cm2	-0/3
0.000		0	0	1,000		0	0			0	0		
0.025		79.5	T			7879	_T_	12		12.5	0		1
0.056		48.5	2	100	100	34.8	1	FP 90	-	19.E	11		16
0.002		77.4	4		- 10-	54.5	- 1			29.6	4		
0.100	70.1	108,2	5	0.9	13.2	76.6	- 4	3.9	2.4	42,5	. 2	4.6	ú
0.120		162.9	8		45	102.2	_ 5	1	100	71.2	4	1	
0.130		2117	- 11		-	136.9	7	100		94.5	3		
0.300	103.3	276.2	14	16.7	13.6	192.5	10	1110	13.0	130.6	9	9.0	- 3
0.300		406,6	.21	100	1	268.5	137	1000	-	210,5	41		
0.400		521/1	25			366.1	18			261.2	13		1
0.000			1 1	100	-90-	14 14	1-29	h-1		Harman Co.		400	

<sup>Blinforme corresponde unica y exclusivamente a la muestra recibida.
Las copias de este informe no son validas sur la autorización del laboratorio.
Biste informe de ensayo es imparcial, confidencial; estando desfundo unica y exclusivamente al eliente.

(**) Datos proporcionados por d'eliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_jab@hotmail.com.

INFORME DE ENSAYO

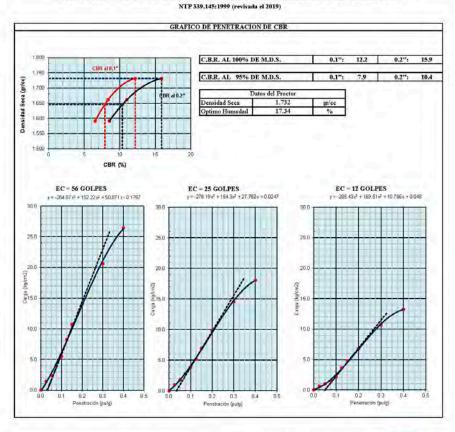
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,1% fibras de plátano; Muestra: M-01

MATERIAL (**) CODIGO DE MUESTRA (**)


COORDENADAS (**) ... CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 26/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 26/11/2022 FECHA DE ENSAYO: 26/11/2022 FECHA DE EMISION: 30/11/2022

SUELOS. Método de ensavo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el diente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arvoz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,1% fibras de

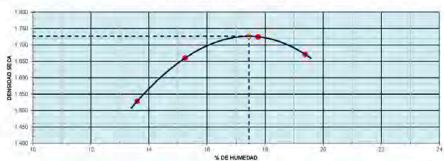
MATERIAL (**) plátano; Muestra: M-02

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 26/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -


FECHA DE RECEPCION: 26/11/2022 FECHA DE ENSAYO: 26/11/2022 FECHA DE EMISION: 30/11/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendida	d volumétrica			
Volumen del molde (cm3) 2127	PESO DEL MOLD	E (g):	6454	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10145	10524	10774	10698	
Peso suelo húmedo compactado (g)	3691	4070	4320	4244	
Peso volumétrico húmedo	1.735	1.913	2.031	1.995	100
	Contenie	lo de humedad			*
Número de recipiente	1	2	3	4	
Peso suelo húmedo = tara (g)	290,8	474.8	591.5	347.4	
Peso suelo seco + tara (g)	256.0	412.0	502.3	291.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	34.8	62.8	89.2	56.4	
Peso de suelo seco (g)	256.0	412.0	502.3	291.0	
Contenido de agua	13.59	15.24	17.76	19.38	
Peso volumétrico seco	1.528	1.660	1.725	1.671	
Densidad máxima seca: 1.726	g/cm³		Húmedad optima:	17.44	96

GRAFICO DENSIDAD - HUMEDAD

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(***) Datos proporcionados por el cliente.

DE LABORATORIOS DE SUELOS PAVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 988 928 250

Servicios de Laboratorios Chiclayo - EMP Asfaltos

958 852 622 - 954 131 476 - 988 928 250

INFORME DE ENSAYO

PROYECTO (**) 2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,1% fibras 4 de plátano; Muestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**) 22

COORDENADAS (**) 20 CÓDIGO ÚNICO + CI-450

: Segundo A. Carranza Mejia TECNICO ENCARGADO

FECHA DE MUESTREO (**): 26/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION; 26/11/2022 FECHA DE ENSAYO : 26/11/2022 FECHA DE EMISION: 30/11/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145: 1999 (revisada el 2019)

		DATOS DE E	NSAYO			
Dendidad volumetrica					0	
Nº de mol de	7.	3	3	4	2	-
br capa					3	
Golpes por tapa IV	5/	9	3	5	1	
Condición de la muestra	No saturado	Saturado	Nosaturado	Saturado	No saturado	Saturado
Peso molde * melo húmedo	12296	12342	11804	11919	11951	12129
Peto de molde	7910	7910	7694	7594	7584	7934
Pero de suelo húmedo	4396	4432	4110	4225	3967	4145
Volumen del modde	-2165	2165	2113	2113	2128	2128
Denot dad hüm oda	2.026	2,047	1.945	2.000	1,864	1.948
% de humwdad	1731	19.25	17.41	2140	17.46	23 49
Denadad seca	1.727	1:716	1.657	1.647	1,587	1.577
ontenido de humedad						
M' de tarre		76				
Tarro v suelo hilmedo	366.0	366.0	310.9	310.9	351:2	357:2
Tarro + suelo seco	312.0	306.9	264.8	256,1	299.0	284-4
Pesto de agua	54.0	59.)	46 1	34.8	5212	66.8
Pero de tany	0.0	0.0	0.0	0.0	0.0	0.0
Pero del aurlo arco	312.0	306.9	264.8	256.1	299:0	284.4
% de firm edad	17.31	19 26	17.41	2140	17.46	23 49

					Expanion						
Fecha	Hora	Tiempo	to one or	Expan ón	le out	Victor of	Expande		Ettpasión.		
2 600.0	Hota	Hr.	Lind	mm	3/6	Diwl	mitn	%	Dial	mm	95
26/11/22	14.30	0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	D,
27/11/22	14 30	22	52.4	1.58	14	24.1	2,14	1.8	98,2	2.49	2
28/11/22	14,30	42	74.1	128	16	96.5	2,45	2.1	115.4	293	- 2
29/11/22	14.30	65	89.8	2.28	2,0	115.4	2,93	25	142.1	3,61	3.
30/11/22	14 30	95	1054	2.68	23	128.5	3.26	2.8	154.4	3.92	3.

	1 2 2		56 - 1 - 57			_	4.4 10 100		100	_	5 A STR.		-
Penetratrion	Cargo		Ma) de Nº		.23	and the second	Molde N	-	34		Molde No		- 5
a direction of	Stand	Ce	rga	Corre	ecido	Ca	rga	Corre	Corrección		rga .	Carrecció	
pulg	kg/cm3	Dini (div)	kg/tm2	Jog/emi2	%	Dial (div)	lig/mm2	kg/cm2	95	Dial (div)	kg/cm2	kg/cmi2	-0/
0.000		0	- a			0	0	200		.0.	0		
0.025		30 6	2	1.3.4	1384	21.6	T			1314	_0	1.00	
0.050		56 A	3		N ST	36.9	1	1000	-	21.5	1.1	y 8 1	
0.002		81.4	4	1 2 1		56.5	3		-	34.5	4		
0.100	70.1	T24.9	ě	9.2	11.7	81.6	4	5.9	21	58.9	.0	4.4	- 6
@ 125		172,8	9	1		108.4	. 5	7.00		728	4	7	11
0.130		2139	11			141.1	7			98.5	3		-
0.20	165.3	281,5	14	16.3	13.5	1949	10	1114	10.8	134.B	9	2.7	- 8
0.100		116.1	21		10000	JB1.5	14			216,9	31		
0.400		531 B	27			385.1	18			288.7	15		1
0.00				1	90-	146		\$	999-			Alternative Control	

<sup>Blinforme corresponde unica y exclusivamente a la muestra recibida.
Las copias de este informe no son validas sur la autorización del laboratorio.
Biste informe de ensayo es imparcial, confidencial; estando desfinado unica y exclusivamente al eliente.
(**) Datos proporcionados por d'eliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_jab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

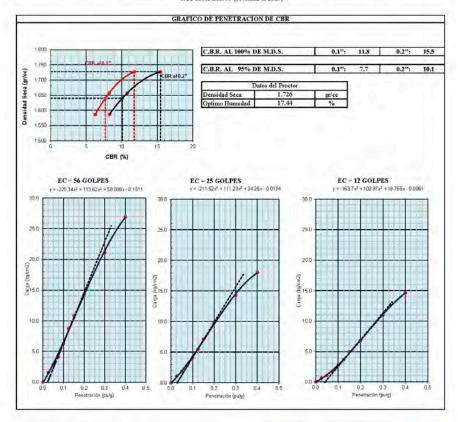
UBICACIÓN (**) : Chiclayo - Lambayeque

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,1% fibras de plátano; Muestra: M-02

MATERIAL (**) CODIGO DE MUESTRA (**) COORDENADAS (**) ...

CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 26/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 26/11/2022

FECHA DE ENSAYO: 26/11/2022 FECHA DE EMISION: 30/11/2022

SUELOS. Método de ensavo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el diente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,1% fibras de

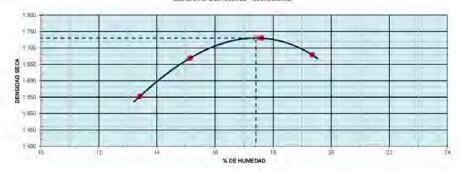
MATERIAL (**) plátano; Muestra; M-03

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : C1-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 26/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 26/11/2022 FECHA DE ENSAYO: 26/11/2022


FECHA DE EMISION: 30/11/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendida	d volumétrica			
Volumen del moide (cm3) 2127	PESO DEL MOLD	E (g):	6454	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10198	10542	10781	10716	
Peso suelo húmedo compactado (g)	3744	4088	4327	4262	
Peso volumétrico húmedo	1.760	1.922	2.034	2.004	
	Contenie	lo de humedad			4
Número de recipiente	1	2	3	4	
Peso suelo húmedo = tara (g)	361.1	324.7	351.5	541.1	
Peso suelo seco + tara (g)	318.4	282.0	298.9	453.4	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	42.7	42.7	52.6	87.7	
Peso de suelo seco (g)	318.4	282.0	298.9	453.4	
Contenido de agua	13.41	15.14	17.60	19.34	
Peso volumétrico seco	1.552	1.669	1.730	1.679	
Densidad máxima seca: 1.730	g/cm³		Húmedad optima:	17.41	96

GRAFICO DENSIDAD - HUMEDAD

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(***) Datos proporcionados por el cliente.

ABORATORIOS DE SUELOS SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 988 928 250

Servicios de Laboratorios Chiclayo - EMP Asfaltos

958 852 622 - 954 131 476 - 988 928 250

INFORME DE ENSAYO

PROYECTO (**) 2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,1% fibras 2 de plátano; Muestra: M-03

MATERIAL (**)

CODIGO DE MUESTRA (**) 22 COORDENADAS (**) 20 CÓDIGO ÚNICO + CI-450

: Segundo A. Carranza Mejin TECNICO ENCARGADO

FECHA DE MUESTREO (**): 26/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION; 26/11/2022 FECHA DE ENSAYO : 26/11/2022 FECHA DE EMISION: 30/11/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145: 1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad volumetrica					0		
Nº de molde	1	2	3	0	30	1	
No capa			3				
Golpes por tapa IV	5	9	3	5	12		
Condición de la muestra	Blo daturado	Saturado	No saturado	Saturado	No saturado	Saturade	
Peso molde * melo hamedo	12123	12171	12032	12133	11867	12045	
Peto de molde	7908	7808	7910	7910	7894	7854	
Pero de suelo húmedo	4315	4363	4122	4223	3975	4151	
Volumen del mol de	2121	2121	2109	2109	2128	2128	
Denot dad hūmoda	2.034	2,057	1.954	2.002	1,867	1,951	
% de humwdad	17.53	19.47	17.56	2135	17.34	23 43	
Dena dad seca	1,731	17722	1.662	1.650	1,591	1.581	
Contenido de humedad							
M de tarro							
Tarro v suela hûmedo	412.4	418-6	376.2	176.2	500.0	500.0	
Tarro + suelo seco	356.0	350.2	320.0	310.0	426.1	405.1	
Pero de agua	624	68.3	56.2	662	73.9	94.0	
Pero de tamo	0.0	0.0	0.0	0.0	0.0	0.0	
Pero del melo sevo	356.0	350.2	320.0	310:0	4361	405.1	
% de hum edad	17.53	19.47	17.56	21,35	17,34	23 43	

					Expanior							
Fecha Hora	Head	Tiempo		Expan ón	to might	Vision of	Expande			Empanión.		
1 ecua	Hota	Hr.	Link	mm	3/6	Direl	mitn	%	Dial	mm	98	
26/11/22	14.30	0	0.0	0.0	0.0	no	0.0	0,0	0.0	0.0	D,	
27/11/22	14 30	22	329	1.34	1.2	6119	1.75	15	98.5	2.50	2	
28/11/22	14,30	42	72.5	184	16	84.5	2.15	1.9	115.4	293	- 2	
29/11/22	14.30	65	31.4	2.07	1,8	102.6	2,61	2.3	132.2	3,36	- 2	
30/11/22	14 30	95	945	240	3.0	112#	3.01	2.6	149 5	3.80	3	

					cement etc	TO AL							
Penetranion	Cage	(- i	Ma) de Nº		12		Molde N	5	30		Molde No	V	-50
renevation	Stand	Ca	rga	Corre	erido	Ca	rga	Corrección		Ch	iga .	Correction	
pulg	kg/cm3	Dini (div)	kg/em2	Jog/emi2	%	Deal (day)	lig/em2	kg/cm2	98	Dial (div)	kg/cm2	kg/cm2	-6/8
0.000		0	.0	1000		0	0			.0.	0		13
0.025		32.6	2	13.4		21.4	T	1 = 1		14.6	0		
0.050		58.9	3	11 1	N. Hilly	34.6	1 1	FP 90	-	24.E	1.1	7 6	1
0.002		82,5	4	1 3 1	9-1	58,8	1			36.9	4	2.5	1
0.100	70.1	126,9	ě	1.3	11.8	829	4	5.9	21	54.8	.0	4.5	ů:
0.120		175.4	9	1		332.1	ñ	1		75.0	4	7.33	11.7
0.130		216.2	-11			1426	7			99.1	3		-
0.300	1033	284.5	14	16.4	13.5	1949	10	113	10.8	136.9	2	8.8	- 83
0.300		421.1	21	1 -1	-	784.1	14	1000		221.1	11		1
0.400		521.4	26	1		361.1	18			/291,5	15		-
0.000			1	1 30	90-	1.1	14	100		1			

<sup>Blinforme corresponde unica y exclusivamente a la muestra recibida.
Las copias de este informe no son validas sur la autorización del laboratorio.
Biste informe de ensayo es imparcial, confidencial; estando desfinado unica y exclusivamente al eliente.
(**) Datos proporcionados por d'eliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_jab@hotmail.com.

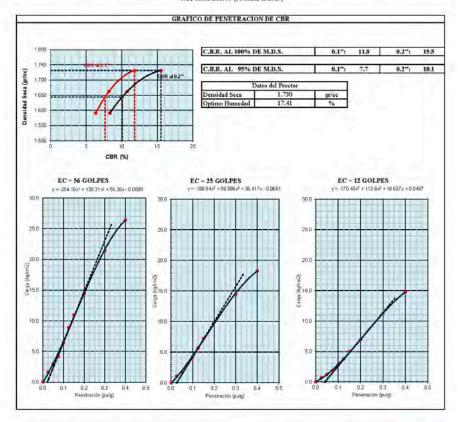
INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,1% fibras de plátano; Muestra: M-03

MATERIAL (**)


CODIGO DE MUESTRA (**) COORDENADAS (**) ... CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 26/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 26/11/2022 FECHA DE ENSAYO: 26/11/2022 FECHA DE EMISION: 30/11/2022

SUELOS. Método de ensavo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el diente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arvoz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgánica + 10% cenizas de cascara de arroz + 0,3% fibras de

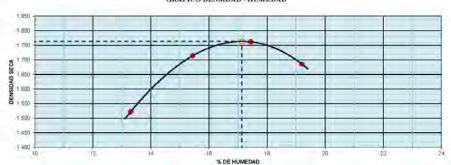
MATERIAL (**) plátano; Muestra; M-01

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 28/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -


FECHA DE RECEPCION: 28/11/2022 FECHA DE ENSAYO: 28/11/2022 FECHA DE EMISION: 02/12/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendida	d volumétrica			
Volumen del molde (cm3) 2127	PESO DEL MOLD	E (g):	6454	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10123	10662	10856	10726	
Peso suelo húmedo compactado (g)	3669	4208	4402	4272	
Peso volumétrico húmedo	1.725	1.978	2.070	2.008	-
	Contenie	lo de humedad			4
Número de recipiente	1	2	3	4	
Peso suelo húmedo = tara (g)	548.4	417.9	312.5	462.5	
Peso suelo seco + tara (g)	-184.0	362.0	266.1	388.0	
Peso de la tara (2)	0.0	0.0	0.0	0.0	
Peso de agua (g)	64.4	55.9	46.4	74.5	
Peso de suelo seco (g)	484.0	362.0	266.1	388.0	
Contenido de agua	13.31	15.44	17.44	19.20	
Peso volumétrico seco	1.522	1.714	1.762	1.685	
Densidad máxima seca: 1.764	g/cm³		Húmedad optima:	17.13	96

GRAFICO DENSIDAD - HUMEDAD

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es impurcial, confidencial; estundo desfinado unica y exclusivamente al cliente.

(**) Daios proporcionados por el cliente.

DE LABORATORIOS DE SUELOS PAVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

PROYECTO (**) 2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0.3% fibras $^{\pm}$ de plátano; Muestra: M-01 MATERIAL (**)

CODIGO DE MUESTRA (**) 22 COORDENADAS (**) 20 CÓDIGO ÚNICO + CI-450

: Segundo A. Carranza Mejia TECNICO ENCARGADO

FECHA DE MUESTREO (**): 28/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION; 28/11/2022 FECHA DE ENSAYO : 28/11/2022 FECHA DE EMISION: 02/12/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145: 1999 (revisada el 2019)

E STATE OF SECTION AND ADDRESS OF SECTION		DATOS DE E	NSAYO			
Dendidad volumetrica					0	
Nº de mol de	1,	3	3	6	12	
br capa						
Golpes por tapa IV	5/	6	3	5	13	0_6 =
Condición de la muestra	No saturado	Saturado-	Nosaturado	Saturado	No saturado	Saturado
Peso molde * melo humedo	12446	12505	11662	11796	12032	12203
Peto de molde	7829	7829	7475	747.5	7971	7971
Pero de suelo húmedo	4617	4676	4193	4311	4061	4232
Volumen del medde	2232	2232	2109	2109	2127	2127
Denotal homeda	2.069	2,095	1.988	2.044	1,909	1990
% de formedad	1736	19.48	17.43	2142	17.63	23 40
Denadad seca	1.763	1759	1.693	1.683	1,623	1.613
ontenido de humedad						
In de tarre		The state of				
Tarro v suelo hilmedo	364.4	364.6	421.7	431.1	581:1	SB1:1
Tarro + suelo seco	310.5	305.0	358.6	346.8	494.0	470.9
Pesto de agua	58.9	59.4	62.5	743	871	1102
Pero de tarry	0.0	0.0	0.0	0.0	0.0	0.0
Pero del aurlo groo	310.5	305.0	358.6	146.8	494.0	420.9
% de finmedad	17.36	19.48	17.43	2142	17.63	23 40

					Expanior							
Fecha	Hora	Tiempo		Expan ón	e sol	Propose ad	Expando			Empasión.		
1 ecua	Hota	Hr.	Link	mm	39	Dial	min	%	Dial	mm	95	
28/11/22	14.30	0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	D,	
29/11/22	14 30	22	319	1.32	-1,1	78.4	1.99	1.7	98.6	2.50	2.	
30/11/22	14,30	42	64.5	1 64	14	92.6	2.35	2.0	112.1	285	- 2	
01/12/22	14.30	65	78.4	1,99	1.7	105.6	2.68	2.3	125.B	3,20	2.	
02/12/22	14 30	95	985	2.50	22	112#	3.01	26	142.4	3.62	3	

					Penetraci	un							
Penetration:	Cage	4	Ma) de Nº		13		Molde N	1	88		Molde 17		18
renewation.	Stand	Stand Carg		ga Corre		Ca	rga	Corrección		Ch	ga	Currection	
pulg	kg/cm3	Dini (div)	kg/tm2	Jog/emi2	%	Loai (div)	lig/m2	kg/cm2	95	Dial (div)	kg/cm2	kg/cm2	-0/2
0.000		0	.0		1.00	0	0			.0	0		1.5
0.025		35.9	2	13.4		24.5	T	12		14.6	_ Di		
0.056	وعدانات	748	4		Pa Silva	46.5	1	F = 01	-	24E	1(1)	y 6	
0.002		121.1	- 6	1 2 1	100	65.9		1 1 1 1	1	34.8	4		
0.100	70.1	181.1	9	9.7	13.8	94.2	2	6.9	9,9	58.1	.0	3.1	7.3
0.120		222.9	11.	1	100	131.1	7			84.9	4	-	
0.130		C270 8	14		. 1 2	166.2	. 3	100		116.4	. 6		1
0.300	165.3	355,2	13	39.3	18.1	232.4	12	13/4	12.7	151.5	3	10.3	96
0.300	- 1	500,1	25		35.46.	324.5	19.			248,8	11		
0.400		600.1	30			404 B	21			342.4	17		-
0.300				1	je	10.00	100	2-0				-	1

<sup>Blinforme corresponde única y exclusivamente a la muestra recibida.
Las copias de este informe no son validas sur la autorización del laboratorio.
Bliefundo de ensayo es imparcial, confidencial; estando desfinado unica y exclusivamente al cliente.

(**) Datos proporcionados por di cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_jab@hotmail.com.

INFORME DE ENSAYO

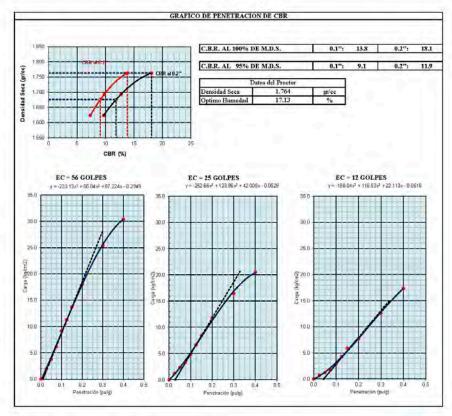
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,3% fibras de plátano; Muestra: M-01

MATERIAL (**)

CODIGO DE MUESTRA (**) COORDENADAS (**) ... CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 28/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 28/11/2022 FECHA DE ENSAYO: 28/11/2022

FECHA DE EMISION: 02/12/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.
Las copias de este informe no son validas sin la autorización del laboratorio.
Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.
(**) Datos proporcionados por el diente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,3% fibras de

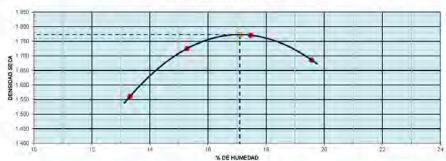
MATERIAL (**) plátano; Muestra; M-02

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : C1-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 28/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -


FECHA DE RECEPCION: 28/11/2022 FECHA DE ENSAYO: 28/11/2022 FECHA DE EMISION: 02/12/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendida	id volumétrica			
Volumen del molde (cm3) 211	PESO DEL MOLE)E (g) :	6454	METODO	"C"
Número de ensayos	1	1	3	4	
Peso molde + molde (g)	10216	10684	10878	10742	
Peso suelo húmedo compactado (g)	3762	4230	4424	4288	
Peso volumétrico húmedo	1.769	1.989	2.080	2.016	
	Contenie	do de humedad			B 4000
Número de recipiente	1	2	3	4	
Peso suelo húmedo = tara (g)	368.5	516.2	244.8	325.2	
Peso suelo seco + tara (g)	325.2	447.8	208.4	272.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	43.3	68.4	36.4	53.2	
Peso de suelo seco (g)	325.2	447.8	208.4	272.0	
Contenido de agua	13.31	15.27	17.47	19,56	
Peso volumétrico seco	1,561	1.725	1,771	1.686	
Densidad máxima seca: 1.7	73 g/cm³		Húmedad optima:	17.09	96

GRAFICO DENSIDAD - HUMEDAD

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(***) Daios proporcionados por el cliente.

DE LABORATORIOS DE SUELOS PAVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 988 928 250

Servicios de Laboratorios Chiclayo - EMP Asfaltos

958 852 622 - 954 131 476 - 988 928 250

INFORME DE ENSAYO

PROYECTO (**) 2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0.3% fibras $^{\pm}$ de plátano; Muestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**) 22

COORDENADAS (**) 20 CÓDIGO ÚNICO + CI-450

: Segundo A. Carranza Mejia TECNICO ENCARGADO

FECHA DE MUESTREO (**): 28/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION; 28/11/2022 FECHA DE ENSAYO : 28/11/2022 FECHA DE EMISION: 02/12/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145: 1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad volumetrica							
Nº de molde		5	3	9	29		
No capa			3				
Golpes por tapa 19"	5	ĝ .	3	5	12		
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado	
Peso molde * melo humedo	11992	12039	12194	12310	12135	12316	
Peto de molde	7576	7576	7894	7894	3076	8076	
Pero de suelo húmedo	4416	4463	4300	4416	4059	4240	
Volumen del molde	2123	2123	2150	2150	2110	2110	
Denordad homeda	2.080	2,102	2.000	2.054	1.924	2,009	
% de humedad	1729	19.43	17.40	2130	17.75	23 44	
Denadad seca	1.773	1:760	1.704	1 693	1,634	1.628	
Contenido de lamedad			See a				
In detare		70			12 9 21		
Tarro v sueja hitmedo	384.7	384.7	401.5	401.5	5240	524.0	
Tarro + suelo seco	328.0	322.1	3420	351.0	445.0	4265	
Pesto de agua	567	62.6	59.5	70.5	79 ()	49.5	
Pero de tamy	0.0	0.0	0.0	0.0	0.0	0.11	
Pero del aurlo seco	336.0	322.1	342.0	131.0	445.0	424.5	
% de hum edad	17.29	19.43	17.40	21.30	17.75	25 44	

				300000000000000000000000000000000000000	Expanior		-				
Fecha	Hora	Tiempo		Expanón	e out	Expande			Empanión.		
2 600.0	Hota	Fir	Link	mm	3/6	Dial	min	%	Dial	mm	95
28/11/22	14.30	0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	DJ
29/11/22	14 30	22	311	1.30	-1,1	78.4	1.99	1.7	98.4	250	23
30/11/22	14,30	42	66.3	1.68	1.5	94.5	2.40	21	112.1	285	23
01/12/22	14.30	65-	80.9	2.05	1,8	106.5	2,71	2.3	126.9	3.22	2.3
02/12/22	14 30	95	965	2.45	3.0	118.8	3.02	2.6	142.5	3.62	31

					Lenent ac	IUII.							
Penetranion	Cage	200	Ma) de Nº		15		Molde No	1	39		Molde 17		25
renetranion	Stand	Ca	rga	Corre	scido	Ca	rga	Corrección		Ch	rga	Currection	
pulg	kg/cm3	Dial (div)	kg/tm2	log/emi2	%	Deal (div)	lig/em2	kg/cm2	98	Dial (div)	kg/cm2	kg/cm2	-6/1
0.000		0.	.0	1		0	0			.0.	0		
0.025		37 B	2		120	25.6	T	12		16.5	0.0		
0.056		75.5	4	11	551	46.9	1 1	FF 10	- 10	25.6	1.1		
0.002		123.6	6		100	66.9	1			36.5	4	2.0	
0.100	70.1	184.4	9	9.3	13.2	95.6	2	6.0	9.7	60.2	.0	5.2	7
0.125		218.9	14.			134,0	7	177		05.5	4		
0.130		384 B	13		3.00	168.9	9			1.18.5	. 6		
0.300	1033	350,6	13	13.3	19.5	252.5	12	13/4	12.7	154.5	- 3	10.3	- 93
0.00		520.1	26			331.4	17	1.00		251,5	13		
0.400		B12.2	31			Hist	21			355.2	15		-
0.300		1	1000	1 30	90-	10-11	1000	1-0		100	1 4	100	1

<sup>El informe corresponde única y exclusivamente a la muestra resibida.

Las copias de este informe no son validas sur la autorización del laboratorio.

Este informe de emayo es imparcial, confidencial; estando desfinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_jab@hotmail.com.

INFORME DE ENSAYO

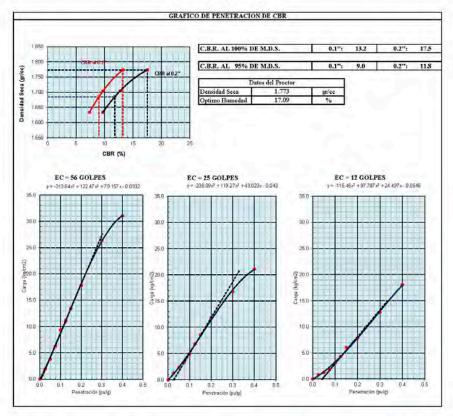
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,3% fibras de plátano; Muestra: M-02

MATERIAL (**)

CODIGO DE MUESTRA (**) COORDENADAS (**) ... CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 28/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 28/11/2022

FECHA DE ENSAYO : 28/11/2022 FECHA DE EMISION: 02/12/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado.

<sup>El informe corresponde única y exclusivamente a la muestra recibida.
Las copias de este informe no son válidas sin la autorización del laboratorio.
Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.
(**) Datos proporcionados por el diente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,3% fibras de

MATERIAL (**) plátano; Muestra; M-03

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 28/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION: 28/11/2022 FECHA DE ENSAYO: 28/11/2022 FECHA DE EMISION: 02/12/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendida	id volumétrica			
Volumen del molde (cm3) 2127	PESO DEL MOLI)E (g) :	6454	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10245	10678	10896	10765	
Peso suelo húmedo compactado (g)	3791	4224	4442	4311	
Peso volumétrico húmedo	1.782	1.986	2.088	2.027	100
	Conteni	do de humedad		A. Trans	* * -
Número de recipiente	1	2	3	4	
Peso suelo húmedo = tara (g)	445.2	477.4	300.0	418.4	
Peso suelo seco + tara (g)	392.0	413.8	254.8	351.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	53.2	63.6	45.2	67.4	
Peso de suelo seco (g)	392.0	413.8	2.54.8	351.0	
Contenido de agua	13.57	15.37	17.74	19.20	
Peso volumétrico seco	1.569	1.721	1.774	1.700	
Densidad máxima seca: 1.779	g/cm³		Húmedad optima:	17.22	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

* El informe corresponde única y exclusivamente a la muestra recibida. * Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es impurcial, confidencial; estundo desfinado unica y exclusivamente al cliente.

(**) Daios proporcionados por el cliente,

DE LABORATORIOS DE SUELOS PAVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 988 928 250

Servicios de Laboratorios Chiclayo - EMP Asfaltos

958 852 622 - 954 131 476 - 988 928 250

INFORME DE ENSAYO

PROYECTO (**) 2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0.3% fibras $^{\pm}$ de plátano; Muestra: M-03

MATERIAL (**)

CODIGO DE MUESTRA (**) 22 COORDENADAS (**) 20

CÓDIGO ÚNICO

: Segundo A. Carranza Mejia TECNICO ENCARGADO

+ CI-450

FECHA DE MUESTREO (**): 28/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION; 28/11/2022 FECHA DE ENSAYO : 28/11/2022 FECHA DE EMISION: 02/12/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145:1999 (revisada el 2019)

3 - Long S. L		DATOS DE E	NSAYO			
endidad volumetrica		- 10-11-17			0	
Nº de mol de			1	1	7	C+
No capa					3	
Golpes por tapa Nº	5	6	3	5	13	E -
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	\$aturado
Peso molde + melo hamedo	11576	11632	12590	12700	11656	11845
Peto de molde	7149	7145	8299	8299	7603	7603
Pero de suelo húmedo	4433	4487	:4291	4403	4053	4242
Volumen del modde	2123	2123	2134	2134	2107	2107
Denoted homoda	2.088	2.114	2.011	2.082	1.924	2013
% de hunwdad	17.38	19.63	17.66	21,62	17.40	23.57
Denadad seca	1.779	1:767	1.709	1.695	1,639	1 629
ontenido de humedad						
M' de tarre		7-			98	
Tarro v suelo húmedo	474.8	474.8	578.9	578.9	5101	5101
Tarro + suelo seco	904.5	396.9	4920	476,0	434.5	4128
Pero de agua	70(3)	77.9	86.9	102.9	756	97.8
Pero de tany	0.0	0.0	0.0	0.0	0.0	0.0
Pero del aurlo arco	404.5	396.9	492.0	476.0	434.5	4128
% de firm edad	17.38	19.63	17.66	21.62	17.40	25 57

		27.7			Expanior						
Fecha	Hora	Tiempo		Expan on	to cost	Expande			Епрапоп.		
r ecna	Hota	Hr.	Lyal	mm	3/6	Dial	mtn	99	Dial	mm	98
28/11/22	14.30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	D.
29/11/22	14 30	22	34.1	1.37	1.2	62.4	1.58	134	94:1	239	2
30/11/22	14,30	42	62.5	1.59	14	78.9	2.00	1.7	112.1	285	2
01/12/22	14.30	65	724	1,84	1.6	102.1	2,59	2.2	124.4	3.16	2
02/12/22	14 30	95	35.9	218	1.9	T17.4	392	2.6	138.5	3.52	3

					reneuraci			_		_		_	_
Penetranion	Cage		Ma) de Nº	-	9	50	Molde N	S. Saratha	11	-	Molde No	V	- 2
reneuramon	Stand	Ca	rgx	Corre	sción	Ca	rga	Corre	cción	Ch	rga	Carte	critis
pulg	kg/cm3	Dini (div)	kg/tm2	Jog/emi2	%	Dial (div)	lig/em2	kg/cm2	98	Dial (div)	kg/cm2	kg/cm2	- 9/3
0.000		0	a.			0	0		-	.0	0		
0.025		30.8	2			26.9	T	122		18.4	0.0		
0.056		768	4	1	Pa Para	47.8	1 1	10.00	-	26.9	1.1		
0.075		125,6	- 6		40-1	67.8	1			38.8	4	2.00	
0.000	70.1	184.4	9	9.4	19.4	96.5	2	6.6	9.4	62.5	.0	5.2	7
0.120		221,5	14.		100	136,9	7			06.5	4		
0.130		288.5	14			171.5	9			121.1	. 6		
0.300	165.3	368,2	13	18.8	19.8	226,2	- 11	13.1	12.4	157:4	- 3	10.3	- 9
0.300		530.7	-27		A	342.5	17			256,5	12		
0.400		6421	35			421.4	21			361.5	15		1
0.000		12. 21	1	1	-	1000	1000	100	_		4	-	II.

<sup>El informe corresponde única y exclusivamente a la muestra resibida.

Las copias de este informe no son validas sur la autorización del laboratorio.

Este informe de emayo es imparcial, confidencial; estando desfinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

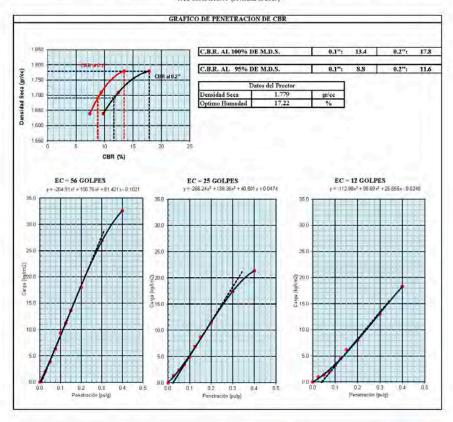
Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_jab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,3% fibras de plátano; Muestra: M-03


MATERIAL (**) CODIGO DE MUESTRA (**) COORDENADAS (**) ...

CÓDIGO ÚNICO : CI-450 TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 28/11/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 28/11/2022 FECHA DE ENSAYO: 28/11/2022 FECHA DE EMISION: 02/12/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el diente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arvoz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgánica + 10% cenizas de cascara de arroz + 0,5% fibras de

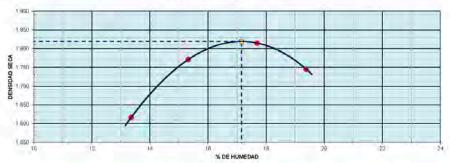
MATERIAL (**) plátano; Muestra; M-01

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -


FECHA DE RECEPCION: 02/12/2022 FECHA DE ENSAYO: 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendida	d volumétrica			W
Volumen del moide (cm3) 2127	PESO DEL MOLD	E (g):	6454	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10350	10798	10998	10884	
Peso suelo húmedo compactado (g)	3896	4344	4544	4430	
Peso volumétrico húmedo	1.832	2.042	2.136	2.083	
	Contenio	lo de humedad			4
Número de recipiente	1	2	3	4	
Peso suelo húmedo = tara (g)	401.5	394.4	478.4	521.1	
Peso suelo seco + tara (g)	354.2	342.0	406.5	436.5	
Peso de la tara (2)	0.0	0.0	0.0	0.0	
Peso de agua (g)	47,3	52.4	71.9	84.6	
Peso de suelo seco (g)	354.2	342.0	406.5	436.5	
Contenido de agua	13.35	15.32	17.69	19.38	
Peso volumétrico seco	1.616	1.771	1.815	1.745	
Densidad máxima seca: 1.819	g/cm²		Húmedad optima:	17.15	96

GRAFICO DENSIDAD - HUMEDAD

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estundo destinado unica y exclusivamente al cliente.
 (**) Datos proporcionados por el cliente.

PAVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

INFORME DE ENSAYO

2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0.5% fibras 2 de plátano; Muestra: M-01 MATERIAL (**)

CODIGO DE MUESTRA (**) 22 COORDENADAS (**) 20 CÓDIGO ÚNICO + CI-450

: Segundo A. Carranza Mejia TECNICO ENCARGADO

FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION ; 02/12/2022 FECHA DE ENSAYO : 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145: 1999 (revisada el 2019)

		DATOS DE E	NSAYO			
endidad volumetrica						
Nº de mol de	4-	(0	1)
No capa						
Golpes por tapa Nº	5/	5	3	5	A	2 == ==
Condición de la muestra	No saturado	Saturado	No saturado	Saturado	No saturado	Saturado
Peso molde + melo hamedo	12036	12098	12376	12505	11109	11290
Peto de molde	7532	7532	8086	9086	6538	6938
Pero de suelo húmedo	4504	4566	4290	4419	4171	4352
Volumen del mod de	2113	2113	2086	2086	2117	2117
Denotad humoda	2.132	2161	2.057	2.118	1,970	2 056
% de hunwdad	1722	19:53	17.62	21.82	17.40	23.30
Denadad seca	1 819	1,008	1.749	1.739	1.678	1.667
antenido de humedad						
Nº de tarre		1 To 1				
Tarro v suejo hilmedo	388.0	0 888	341.1	341 1	649.2	649.2
Tarro + suelo seco	331.0	324.6	290.0	280.0	553.0	526,5
Pesto de agua	570	63.4	21.1	61.1	962	122.7
Proo de tany	0.0	0.0	0.0	0.0	0.0	0.11
Pero del aurio ereo	331.0	324.6	290.0	280.0	553.0	526.5
% de hum edad	17.22	19.53	17.62	21.82	17.40	23 3h

					Expanion						
Fecha	Hora	Tiempo		Expan ón	le out	Expande			Епрацібо.		
r ecan	Hota	Hr.	Loal	mm	196	Direl	mitn	%	Dial	mm	90
02/12/22	14.30	0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	D,
03/12/22	14 30	22	489	1.24	0.1	53.6	1.36	12	80.9	2.05	1
04/12/22	14,30	42	54.4	138	1.2	75.8	1.93	1.7	94.6	240	. 2
05/12/22	14.30	65-	65.5	1.66	1,4	94.4	2,40	2.1	112.1	2.85	- 2
06/12/22	14 30	95	37.8	2.23	1.9	106.9	2.72	24	128.5	326	- 2

		_		_	enetraci			_		_			_
Penetration	Cage		Ma) de Nº		44	a silver and the	Molde N		68		Molde No		10
a cheaman.	Stand	Ce	rgx	Corre	ecido	Ca	rga	Corre	cción	Ch	rga .	Correction	
pulg	kg/cm3	Dini (div)	kg/em2	Jcg/emi2	%	Deal (day)	lig/m2	kg/cm?	95	Dial (div)	kg/cm2	kg/cm2	- 6/3
0.000.		0	.0	1000		0	0			.0.	0		
0.025		41.5	2	12.		25.6	T			16.5	0.		
0.056		69.8	4		Pu Pitra	58.1	3	17 m		45.5	1	. 6	
0.002		106,5	*			88.9		1 - 2	7 7 7	72:1	-4		
0.000	70.1	158.4	2	10,4	347	1185	ď	7.7	10,9	102.5	.5	6.3	. 2
0.120		201.1	10		The state of	157,6	8	1		126.4	7	100	
0.130		3656	13			186.2	9			1624	- 8		
0.300	165.3	354.B	13	207.3	19.4	268.4	14	152	14.4	221.4	-01	12.4	11
0.100		525.4	-27		Marian.	405.4	21	1000	-	325,9	17		1
0.400		684.4	35	1		515.9	26			401.5	20		
0.00		1 1	1	1	90-	1 1 1 1	100	4		the second			1

<sup>El informe corresponde única y exclusivamente a la muestra resibida.

Las copias de este informe no son validas sur la autorización del laboratorio.

Este informe de emayo es imparcial, confidencial; estando desfinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

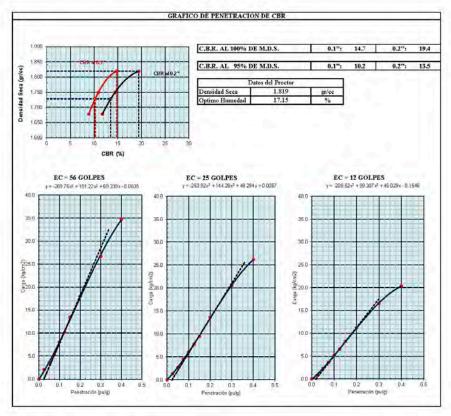
Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_jab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,5% fibras de plátano; Muestra: M-01 MATERIAL (**)


CODIGO DE MUESTRA (**) COORDENADAS (**) ... CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 02/12/2022 FECHA DE ENSAYO: 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

Revisado y aprobado.

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el diente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgânica + 10% cenizas de cáscara de arroz + 0,5% fibras de 2 plátano; Muestra; M-02

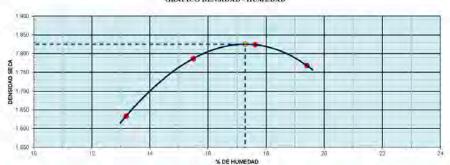
MATERIAL (**)

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : C1-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -


FECHA DE RECEPCION: 02/12/2022 FECHA DE ENSAYO: 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendida	d volumétrics			
Volumen del molde (cm3) 2127	PESO DEL MOLD	E (g):	6454	METODO	"C"
Número de ensayos	1	1	3	4	
Peso molde + molde (g)	10384	10845	11018	10945	
Peso suelo húmedo compactado (g)	3930	4391	4564	4491	
Peso volumétrico húmedo	1.848	2.064	2.146	2.111	100
	Contenie	lo de humedad		A	# A
Número de recipiente	1	2	3	4	
Peso suelo húmedo = tara (g)	316.9	584.4	341.1	474.4	
Peso suelo seco + tara (g)	280.0	506.0	290.0	397.3	1
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	36.9	78.4	51.1	77.1	
Peso de suelo seco (g)	280.0	506.0	290.0	397.3	
Contenido de agua	13.18	15.49	17.62	19.41	
Peso volumétrico seco	1.633	1.787	1.824	1.768	1 200
Densidad máxima seca: 1.825	g/cm³		Húmedad optima:	17.28	96

GRAFICO DENSIDAD - HUMEDAD

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente. (**) Daios proporcionados por el cliente.

DE LABORATORIOS DE SUELOS PAVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 988 928 250

Servicios de Laboratorios Chiclayo - EMP Asfaltos

958 852 622 - 954 131 476 - 988 928 250

INFORME DE ENSAYO

2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0.5% fibras 2 de plátano; Muestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**) 22 COORDENADAS (**) 20

CÓDIGO ÚNICO + CI-450

: Segundo A. Carranza Mejia TECNICO ENCARGADO

FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION ; 02/12/2022 FECHA DE ENSAYO : 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145: 1999 (revisada el 2019)

3 - Long S. L		DATOS DE E	NSAYO				
endidad volumetrica					0		
Nº de mol de	10	6	3	1	6		
b? caps							
Golpes por tapa Nº	5/	5	3	5	1	2	
Condición de la muestra	Bio saturado	Saturado	Nosaurado	Saturado	No raturado	Saturado	
Peso molde + melo hamedo	12354	12398	12036	12174	12194	12382	
Peto de molde	7907	7807	7711	7711	7581	7981	
Pero de suelo húmedo	4547	4591	4325	4463	4215	4401	
Volumen del modde	2121	2121	2099	2099	2128	2128	
Denoted homoda	2.144	2,165	2.061	2.126	1,980	2.088	
% de hunwdad	17.56	19.40	17:39	2175	17.54	23 47	
Denadad seca	1.824	1,012	1.756	1.746	1,685	1.675	
antenido de humedad							
M' de tarre		7-1				F	
Tarro v suejo hilmedo	471.4	471.4	3K74	322.4	3914	3914	
Tarro + suelo seco	401.0	394.5	330.0	318.2	333.0	317.0	
Pero de agua	704	76.9	57.4	69.2	38.4	74.4	
Pero de tany	0.0	0.0	0.0	0.0	0.0	0.0	
Pero del suelo arco	401.0	394.5	330.0	118.2	333.0	717.0	
% de firm edad	17.56	19 49	17.39	2175	17/54	25 47	

					Expanion						
Fecha	Hora	Tiempo		Expan ón	to cost	Expande			Etpasido.		
1 ecu 2	Hota	Hr.	Loal	mm	%	Dink	min	%	Dial	mm	90
02/12/22	14.30	0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0
03/12/22	14 30	22	42.4	1.08	0.9	52.4	1.58	1.4	91.1	2.31	1.2
04/12/22	14,30	42	57.4	1:46	1.3	78.9	2.00	1.7	102.1	259	- 2
05/12/22	14.30	65-	62.5	1,59	1.4	98.5	2.50	2.2	118.8	3.02	2
06/12/22	14 30	95	37.4	222	1.9	114.5	2.91	25	135.6	3.44	3

					ceneurac	10.11				_			_
Penetration:	Carre		Ma) de Nº		16	and the same	Molde N	100000	21		Molde No		- 60
renewation	Stand	Ca	rgx	Corre	prido	Ca	rga	Corrección		Ch	rga .	Correction	
pulg	kg/cm3	Dini (div)	kg/em2	Jcg/cmi2	%	Deal (day)	lig/em2	kg/cm2	95	Dial (div)	kg/cm2	kg/cm2	- 9/3
0.000		0	.0	1,000		0	0			.0.	0		13
0.025		40.5	2	13.		56.9	T	122		18.5	0		
0.050		668	3	1 10	PL STOY	48.9	1 1	19 00	-	46.8	1	. 6	
0.002		101,1	3.		90-1	915				73.5	- 4		
9.100	70.1	162.2	B	10.5	15.0	121.1	ď	7.7	1).0:	100.5	- 6	6.1	9
0.125		200,6	16.		100	154.5	8			131.5	7	100	
0.130		(251.4	13			189.5				186.5	9		
0.300	165.3	361.5	13	20.6	19.6	271.4	14	153	14.5	224.5	-01	12,6	- 11
0.100		517.1	26	1	10.000	408.1	21	1980	1000	342.1	17		1
0.400		691.)	35			521.1	26			416.6	21		
0.300				1	90-	1-11	1000	5-5-50		100	-	-	

Revisado y aprobado.

<sup>El informe corresponde única y exclusivamente a la muestra resibida.

Las copias de este informe no son validas sur la autorización del laboratorio.

Este informe de emayo es imparcial, confidencial; estando desfinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_jab@hotmail.com.

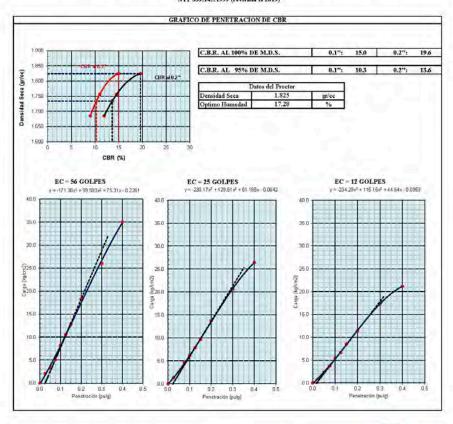
INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,5% fibras de plátano; Muestra: M-02

MATERIAL (**)


CODIGO DE MUESTRA (**) COORDENADAS (**) ... CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 02/12/2022 FECHA DE ENSAYO: 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el diente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arvoz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgânica + 10% cenizas de cáscara de arroz + 0,5% fibras de plátano; Muestra: M-03

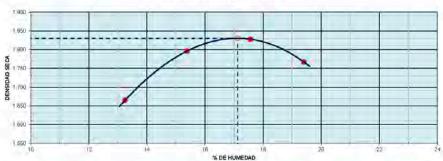
MATERIAL (**)

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : C1-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -


FECHA DE RECEPCION: 02/12/2022 FECHA DE ENSAYO: 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendida	d volumétrica			3.0
Volumen del molde (cm3) 212	PESO DEL MOLD	E (g):	6454	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10465	10862	11026	10942	
Peso suelo húmedo compactado (g)	4011	4408	4572	4488	
Peso volumétrico húmedo	1.886	2.072	2.150	2.110	
	Contenie	lo de humedad			
Número de recipiente	1	2	3	4	
Peso suelo húmedo = tara (g)	345,4	324.2	361.5	400.0	
Peso suelo seco + tara (g)	305.0	281.0	307.5	335.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	40.4	43.2	54.0	65.0	
Peso de suelo seco (g)	305.0	281.0	307.5	335.0	
Contenido de agua	13.25	15.37	17.56	19.40	
Peso volumétrico seco	1.665	1.796	1.828	1.767	
Densidad máxima seca: 1.83	0 g/cm³		Húmedad optima :	17.12	96

GRAFICO DENSIDAD - HUMEDAD

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(***) Daios proporcionados por el cliente.

LABORATORIOS DE SUELOS AVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 988 928 250

Servicios de Laboratorios Chiclayo - EMP Asfaltos

958 852 622 - 954 131 476 - 988 928 250

INFORME DE ENSAYO

PROYECTO (**) 2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,5% fibras de plótano; Moestra: M-03

MATERIAL (**)

CODIGO DE MUESTRA (**) 2-COORDENADAS (**) 2-CÓDIGO ÚNICO + CI-450

: Segundo A. Carranza Mejin TECNICO ENCARGADO

FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION; 02/12/2022 FECHA DE ENSAYO : 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145:1999 (revisada el 2019)

D 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		DATOS DE E	NSAYO				
endidad volumetrica							
Nº de molde	8		3	0	4	-	
ЪТ сара					3		
Golpes por tapa PV	56	â	3	5	1		
Condición de la muestra	No saturado	Saturado-	Nosaturado	Saturado	No saturado	Saturado	
Peso molde + melo húmedo	12498	12554	11422	11562	12120	12310	
Peto de molde	7931	7931	7871	7071	7894	7894	
Pero de suelo húmedo	4567	4623	4351	4491	4226	4416	
Volumen del modde	-2127	2123	2106	2106	2128	2128	
Denoted humoda	2.451	2,178	2.056	2.132	1,986	2075	
% de hunwdad	17.33	19:56	17 18	2157	17.36	23.35	
Denadad seca	1 833	1.022	1.763	1.754	1,692	1.682	
antenido de humedad							
M' de tarre		70-					
Tarro v suejo hilmedo	320.9	320.9	401.8	8.101	298,5	299.5	
Tarro + suelo seco	273.5	268.4	3429	330.5	254.3	242.0	
Pesto de agua	474	52.5	58.9	713	44.2	36.5	
Proo de tany	0.0	0.0	0.0	0.0	0.0	0.0	
Pero del suelo arco	273.5	3684	342.9	130.5	254.3	242.0	
% de firm edad	17.33	19.56	17.18	21.57	17.38	25 35	

					Expanion						
Fecha	Hora	Tiempo		Екрап оп	h mak	No.	Expande		Ettpasión.		
1 ecu 2	Hota	Hr.	Lyal	mm	96	Direl	min	%	Dial	mm	90
02/12/22	14.30	0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	D,
03/12/22	14 30	22	61.5	1.56	14	78.1	1.98	1.7	91.9	233	2
04/12/22	14,30	42	75.4	192	17	98.5	2.50	2.2	112.1	285	- 2
05/12/22	14.30	65	38.9	2,26	2,0	112.1	2,85	25	121.4	3.03	-2
06/12/22	14 30	95	105.2	2.67	2.3	124.4	3.16	27	138 4	3.52	3

					Penetraci	-		_		_			_
Penetramon	Caga		Ma) de Nº		.8.		Molde N	S. Santa	20	-	Molde No		41
a ched an or	Stand	Ce	rga	Corre	scido	Ca	rga	Cerre	cción	Ch	iga	Correction	
pulg	kg/cm3	Dini (div)	kg/em2	log/emi2	%	Deal (day)	kg/m2	kg/cm2	98	Dial (div)	kg/cm2	kg/cmi2	-0/8
0.000		0	0			0	0	100		.0.	0		13
0.025		30.9	2	1	100	28.6	T			19.2	0		
0.056		66.8	3.1	1 2 1	8.50	52.4	3 1	FP 97		48.4	1	7	1
0.002		106.4	3.			92.6		177		74.5	-4	100	
9.100	70.1	1642	8	10.5	14.0	124.5	ď	7.4	10.5	102.1	.5	5.9	2
0.120		513/1	14.		400	156,3	8	12.00	-	1325	7	1	
0.130		384.9	13		3.2	192.5	10			181.4	- 8		-
0.300	1653	368.6	13	20.6	19.6	265.4	13.	146	13.9	216.5	-01	11.8	11.
0.100		524.E	- 27		30.500	400.1	20			329,5	17		
0.400		686.1	35			512.1	26			4251	21		1
0.00		Property and its		1	90-	100	10 - 11	1000		1.0		-	

<sup>Blinforme corresponde unica y exclusivamente a la muestra recibida.
Las copias de este informe no son validas sur la autorización del laboratorio.
Biste informe de ensayo es imparcial, confidencial; estando desfundo unica y exclusivamente al eliente.

(**) Datos proporcionados por d'eliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios_jab@hotmail.com.

INFORME DE ENSAYO

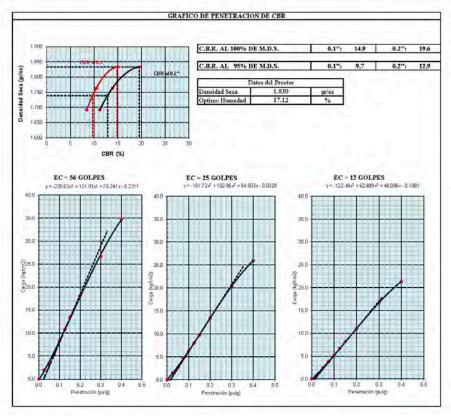
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,5% fibras de plátano; Muestra: M-03 MATERIAL (**)

CODIGO DE MUESTRA (**) :-COORDENADAS (**) 1. CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 02/12/2022 FECHA DE ENSAYO: 02/12/2022

FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son validas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el diente.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arvoz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0.7% fibras de

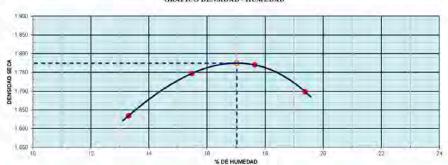
MATERIAL (**) plátano; Muestra; M-01

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -


FECHA DE RECEPCION: 02/12/2022 FECHA DE ENSAYO: 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

		DE ENSAYO			
	Dendida	id volumétrica			
Volumen del moide (cm3) 2:	PESO DEL MOLE	E (g) :	6454	METODO	"C"
Número de ensayos	1	1	3	4	
Peso molde + molde (g)	10391	10745	10884	10765	
Peso suelo húmedo compactado (g)	3937	4291	4430	4311	
Peso volumétrico húmedo	1.851	2,017	2.083	2.027	8-7
	Contenie	do de humedad		The Control	
Número de recipiente	1 1	2	3	4	
Peso suelo húmedo = tara (g)	319.5	411.1	294.1	346.2	
Peso suelo seco + tara (g)	282.0	356.0	250.0	290.0	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	37,5	55.1	44.1	56.2	
Peso de suelo seco (g)	282.0	356.0	250.0	290.0	
Contenido de agua	13.30	15.48	17.64	19.38	
Peso volumétrico seco	1.634	1.747	1,770	1.698	
Densidad máxima seca: 1.	775 g/cm		Húmedad optima:	17.02	26

GRAFICO DENSIDAD - HUMEDAD

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(***) Daios proporcionados por el cliente.

LABORATORIOS DE SUELOS AVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 988 928 250

Servicios de Laboratorios Chiclayo - EMP Asfaltos

958 852 622 - 954 131 476 - 988 928 250

INFORME DE ENSAYO

2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0.7% fibras 4 de plátano; Muestra: M-01 MATERIAL (**)

CODIGO DE MUESTRA (**) 22

COORDENADAS (**) 20 CÓDIGO ÚNICO + CI-450

: Segundo A. Carranza Mejin TECNICO ENCARGADO

FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION ; 02/12/2022 FECHA DE ENSAYO : 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145: 1999 (revisada el 2019)

		DATOS DE E	NSAYO				
Dendidad volumetrica					0		
Nº de mol de	2	2	1	9	1		
be capa							
Golpes por tapa IV	5	6	3	5	13		
Condición de la muestra	No saturado	Saturado	Nosaturado	Saturado	No saturado	Saturado	
Peso molde * melo húmedo	11943	12012	12232	12356	11623	11793	
Peto de molde	7530	7530	7982	7982	7678	7678	
Pero de suelo húmedo	4413	4483	4250	4374	3945	4120	
Volumen del medde	2121	2121	2123	2123	2054	2054	
Denot dad homeda	2.081	2,113	2.002	2.050	1.921	3,000	
% de humedad	1726	19.78	17.35	2152	17.42	23 42	
Denadad seca	1.775	1764	1.706	1 695	1,636	1.625	
ontenido de humedad							
M' de tarre		72					
Tarro v suelo hamedo	311.9	311.9	407.2	407.2	349.9	3499	
Tarro + suelo seco	266 D	260.4	347.0	535 1	298.0	283,5	
Pesto de agua	45.9	51.5	60.2	721	519	66.4	
Pero de tamo	0.0	0.0	0.0	0.0	0.0	0.0	
Pero del aurlo arco	266.0	3604	347.0	335.1	298.0	2B8.5	
% de firm edad	17.26	19.78	17.35	21.52	17.42	23.42	

					Expanion						
Fecha	Hora	Tiempo		Expan ón	or or		Expande		Empasión.		
2 600.0	Hota	Hr.	Lind	mm	%	Direl	mtn	99	Dial	mm	90
02/12/22	14.30	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	D,
03/12/22	14 30	22	369	1.45	13	72.9	1/85	1.6	78.9	2.00	1.1
04/12/22	14,30	42	68.8	1.75	1.5	84.4	2.14	19	98.2	249	- 2
05r12/22	14.30	65	81.4	2.07	1,8	96.8	2.46	2.1	116,1	295	- 2
06/12/22	14 30	95	92.4	2.35	2.0	1121	2.85	2.5	126 8	322	2

					cement etc	10.11							
Penetranion	Cage	(- A	Ma) de Nº		22	- III	Molde N	1	19	-	Molde No	V	- 1
renevation	Stand	Ca	rga	Core	erido	Ca	rga	Corre	Corrección		rga	Correction	
pulg	kg/cm3	Dini (div)	kg/em2	Jcg/cmi2	%	Deal (day)	lig/em2	kg/cm2	98	Dial (div)	kg/cm2	kg/cm2	-0/3
0.000		0	0	1000		0	0			.0	0		
0.025		246	T	13.4		76.1	T	4.30		14.6	0		4
0.050		44.9	2	11 1	Pa Stilling	32,2	1	F4 90	- 13	26.5	(1)		-
0.002		70.5	4			54.5	1			38.5	4	2.00	
0.100	70.1	110.1	ě	1.2	13.6	85.6	4	6.0	9.7	58.9	.0	3.7	2.1
0.120		151,1	8	170	400	116,0	ñ	122		10.5	4		
0.130		196.9	10		2.0	1.181	. 3			100.2	3	1.2	-
0.300	1033	282,5	14	165	16.0	213.8	- (1	13.0	17.7	175.5	4	10.1	100
0.000		381./	19	1	1 II. III.	294,8	137	1000		238,5	32		1
0.400		492.1	25			366.1	18			281,1	15		-
0.000		from 111	1	1	90-	14	+	5-0-00	-	-		A-1	

<sup>Blinforme corresponde única y exclusivamente a la muestra recibida.
Las copias de este informe no son validas sur la autorización del laboratorio.
Bliefundo unica y exclusivamente al cliente.
Ste informe de ensayo es imparcial, confidencial; estando desfinado unica y exclusivamente al cliente.

(**) Datos proporcionados por di cliente.</sup>

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Província de Chiclayo - Lambayeque RUC: 20487357465
Servícios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250
E-mail: servícios_lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

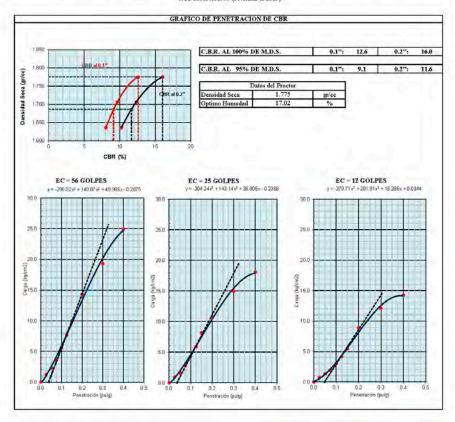
CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,7% fibras de plátano; Muestra: M-01

MATERIAL (**) CODIGO DE MUESTRA (**) COORDENADAS (**) ...

CÓDIGO ÚNICO : CI-450 TECNICO ENCARGADO

; Segundo A. Carranza Mejia


FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 02/12/2022

FECHA DE ENSAYO: 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

<sup>El informe corresponde única y exclusivamente a la muestra recibida.
Las copias de este informe no son validas sin la autorización del laboratorio.
Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.
(**) Datos proporcionados por el diente.</sup>

SERVICIOS DE LABORATORIOS DE SUELOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arvoz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgânica + 10% cenizas de cáscara de arroz + 0,7% fibras de plátano; Muestra: M-02

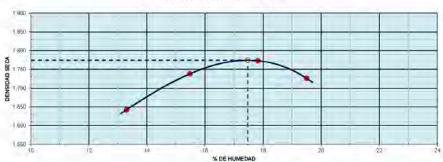
MATERIAL (**)

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : CI-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 02/12/2022


FECHA DE ENSAYO: 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

	DATOS	DE ENSAYO			
	Dendida	d volumétrica			3.C TT.
Volumen del molde (cm3) 2127	PESO DEL MOLD	E (g):	6454	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10410	10724	10898	10842	
Peso suelo húmedo compactado (g)	3956	4270	4444	4388	
Peso volumétrico húmedo	1.860	2.008	2.089	2.063	
	Contenio	lo de humedad			
Número de recipiente	4	2	3	4	
Peso suelo húmedo = tara (g)	319.5	411.1	394.1	476.2	
Peso suelo seco + tara (g)	282.0	356.0	334.5	398.5	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	37.5	55.1	59.6	77.7	
Peso de suelo seco (g)	282.0	356.0	334.5	398.5	
Contenido de agua	13.30	15.48	17.82	19.50	
Peso volumétrico seco	1.642	1.738	1.773	1.726	
Densidad máxima seca: 1.774	g/cm²		Húmedad optima:	17,47	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado.

1 de 3

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

^{*} Las copias de este informe no son válidas sin la autorización del laboratorio.

^{*} Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Daios proporcionados por el cliente,

DE LABORATORIOS DE SUELOS PAVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 988 928 250

Servicios de Laboratorios Chiclayo - EMP Asfaltos

958 852 622 - 954 131 476 - 988 928 250

INFORME DE ENSAYO

2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0.7% $^{\circ}$ fibras de plótano; Moestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**) 2-COORDENADAS (**) CÓDIGO ÚNICO + CI-450

: Segundo A. Carranza Mejin TECNICO ENCARGADO

FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -

FECHA DE RECEPCION ; 02/12/2022 FECHA DE ENSAYO : 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			
Dendidad volumetrica						
Nº de mol de				5	10)
p ₀ caba	3					
Golpes por tapa IV	5	9	3	5	12	E
Condición de la muestra	Bio saturado	Saturado	No sapurado	Saturado	No saturado	Saturado
Peso molde * melo hamedo	12340	12397	12415	12532	11756	11932
Peto de molde	7912	79.12	8151	8151	7657	7657
Pero de suelo húmedo	4425	4485	4264	4381	4099	4275
Volumen del mol de	2124	2124	2128	5138	2134	2134
Deng dad hûm oda	2.085	2,112	2.004	2.059	1.921	5 0 0 3
% de humedad	1750	19.65	17.53	2151	17.60	23.56
Denadad seca	1.774	1:765	1.705	1 695	1.634	1.621
lantenido de humedad						
In detare		77				
Tarro v sueja hůmedo	510.9	510.9	610.1	610 1	3441	3461
Tarro + suelo seco	434.8	427.0	519.1	502.1	292.6	278.4
Pesto de agua	761	83.9	91.0	0.801	513	65.7
Pero de tany	0.0	0.0	0.0	0.0	0.0	0.0
Pero del melo sevo	434.8	427.0	519.1	502.1	292.6	278.4
% de hum edad	17.50	19.65	17.53	21.51	17.60	23 58

					Expanior						
Fecha	Hora	Tiempo		Expan ón	to ough	Photos d	Expande		T-0-4	трапоп.	
1 ecu 2	Hota	Hr	Lital	mm	3/6	Divi	mitn	%	Dial	mm	95
02/12/22	14.30	O.	0.0	0.0	0.0	no	0.0	0,0	0.0	0.0	D.
03/12/22	14 30	22	45.5	1.16	1.0	54.8	1.39	1.2	73.9	1,68	1.1
04/12/22	14,30	42	57.9	1.47	1.3	65.5	1.66	14	98.4	2.50	- 2
05/12/22	14.30	65	66.8	1.70	0.5	39.5	2,27	2.0	112.1	2.85	- 2
06/12/22	14 30	95	342	214	1.9	102.1	2.59	22	104.5	316	3

					Penetraci	on							ALC: UNK
Penetration:	Cage	-	Ma) de Nº		- 6	G	Molde N	1	45	-	Molde No		10
renewation.	Stand	Ca	rgx	Corre	sción	Ca	rga	Corre	cción	Ch	ga	Carte	critis
pulg	kg/cm3	Dial (div)	kg/tm2	ltg/emi2	%	Deal (day)	lig/m2	kg/cm2	95	Dial (div)	kg/cm2	kg/cm2	-6/8
0.000		0	.0	1, 11		0	0	100	= 1	.0	0		13
0.025		25.1	T		100	37.A	T.	125		12.8	0		
0.056		46.2	2	0.00	5-1	36.5	1 1	\$4.00	-	24.5	1.1	7 6-	
0.002		72.5	4			56.8				39.5	4		
9.100	70.1	112.1	è	9.5	12.1	88.6	4	6.6	9.5	61.1	-0	3.6	2.0
0.120	1111111111111	153,6	8	T The	9.7	119.2	ñ	120	700	64.2	4		
0.130		1989	10			152.5	- 3			1211	. 6		
0.300	165.3	275.4	14	16.3	10.0	216.1	- (1	12.7	12.1	171.1	4	10.1	100
0.300		3/5,€	19		10.00	291.1	137	10000	-	241.1	32		1
0.400		461.1	25			366.4	18			282,5	16		-
0.300				1	90-	14	4 290	F		100	11		1

4 00 8

<sup>El informe corresponde única y exclusivamente a la muestra recibida.

Las copias de este informe no son validas sur la autorización del laboratorio.

Este informe de ensayo es imparcial, confidencial; estando desfinado unica y exclusivamente al cliente.

(**) Datos proporcionados por d'eliente.</sup>

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Província de Chiclayo - Lambayeque RUC: 20487357465
Servícios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250
E-mail: servícios_lab@hotmail.com.

INFORME DE ENSAYO

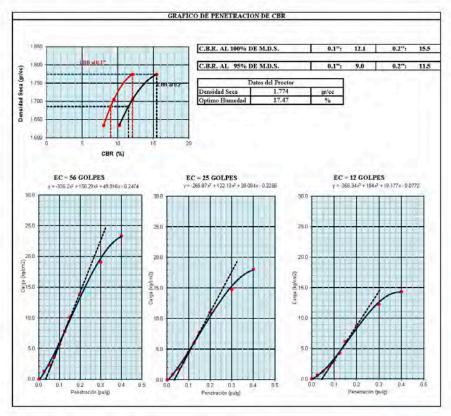
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,7% fibras $\dot{}$ de plátano; Muestra: M-02 MATERIAL (**)

CODIGO DE MUESTRA (**) . COORDENADAS (**) 1. CÓDIGO ÚNICO : CI-450


TECNICO ENCARGADO ; Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -FECHA DE RECEPCION: 02/12/2022 FECHA DE ENSAYO: 02/12/2022

FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición NTP 339.145:1999 (revisada el 2019)

3 de 3

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el diente.

SERVICIOS DE LABORATORIOS DE SUELOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465 Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250 E-mail: servicios lab@hotmail.com.

INFORME DE ENSAYO

PROYECTO (**) ; "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arvoz y fibras de plátano"

UBICACIÓN (**) : Chiclayo - Lambayeque

: Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva CLIENTE (**)

Arcilla inorgànica + 10% cenizas de cáscara de arroz + 0,7% fibras de plátano; Muestra: M-03

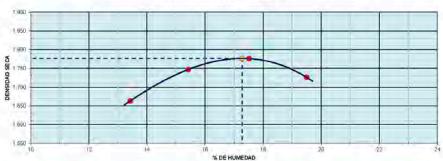
MATERIAL (**)

CODIGO DE MUESTRA (**) COORDENADAS (**) CÓDIGO ÚNICO : C1-450

TECNICO ENCARGADO : Segundo A. Carranza Mejia FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -

MUESTREADO POR (**): -


FECHA DE RECEPCION: 02/12/2022 FECHA DE ENSAYO: 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2 700 kN-m/m² (56 000 pie-lbt/pie^a)), lª Edición

NTP 339.141:1999 (revisada el 2019)

		DE ENSAYO			
	Dendida	d volumétrics			de militar
Volumen del molde (cm3) 2127	PESO DEL MOLD	E (g):	6454	METODO	"C"
Número de ensayos	1	2	3	4	
Peso molde + molde (g)	10465	10742	10894	10841	
Peso suelo húmedo compactado (g)	4011	4288	4440	4387	
Peso volumétrico húmedo	1.886	2.016	2.087	2.063	
	Contenie	lo de humedad		400	
Número de recipiente	1	2	3	4	
Peso suelo húmedo = tara (g)	364.1	287.4	401.9	476.2	
Peso suelo seco + tara (g)	321.0	249.0	342.0	398.5	
Peso de la tara (g)	0.0	0.0	0.0	0.0	
Peso de agua (g)	43.1	38.4	59.9	77.7	
Peso de suelo seco (g)	321.0	249.0	342.0	398.5	
Contenido de agua	13.43	15.42	17.51	19.50	
Peso volumétrico seco	1.663	1.747	1.776	1.726	14
Densidad máxima seca: 1.777	g/cm²		Húmedad optima:	17.28	96

GRAFICO DENSIDAD - HUMEDAD

Revisado y aprobado

* El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(***) Daios proporcionados por el cliente.

1 de 3

LABORATORIOS DE SUELOS AVIMENTOS S.A.C. SERVICIOS

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Provincia de Chiclayo - Lambayeque RUC: 20487357465

Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 988 928 250

Servicios de Laboratorios Chiclayo - EMP Asfaltos

958 852 622 - 954 131 476 - 988 928 250

INFORME DE ENSAYO

PROYECTO (**) 2 "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáseara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzman - Suzetty Nicole Orbina Silva

Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0.7% $^{\circ}$ fibras de plótano; Moestra: M-03 MATERIAL (**)

CODIGO DE MUESTRA (**) 2-COORDENADAS (**) 2-

CÓDIGO ÚNICO

: Segundo A. Carranza Mejin TECNICO ENCARGADO

+ CI-450

MUESTREADO POR (**): -FECHA DE RECEPCION; 02/12/2022 FECHA DE ENSAYO : 02/12/2022 FECHA DE EMISION: 06/12/2022

HORA DE MUESTREO (**): -

FECHA DE MUESTREO (**): 02/12/2022

SUELOS, Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio, 1ºEdición NTP 339.145:1999 (revisada el 2019)

		DATOS DE E	NSAYO			
endidad volumetrica					0	
Nº de mol de	19		July 2	2		
No capa						
Golpes por tapa Nº	5/	5	3	5	1	2
Condición de la muestra	No saturado	Saturado	Nosaurado	Saturado	No saturado	\$aturado
Peso molde + melo húmedo	12352	12192	12290	12398	12092	12271
Peto de molde	7704	7704	8053	9053	8031	E031
Pero de suelo húmedo	4448	4488	4237	4345	4061	4240
Volumen del med de	2130	2130	2188	2108	2110	2110
Denotad humoda	2.088	2107	2.010	2.051	1.925	2,009
% de hunwdad	17.51	19:38	17.65	2156	17.61	23.53
Denadad seca	1.777	1765	1.708	1 695	1,637	1.626
antenido de humedad						
Nº de tarre			The second			
Tarro v suejo hitmedo	367 B	367.B	380.0	100 0	313:9	313.9
Tarro + suelo seco	313.0	308.1	255.0	246.8	266,9	254.1
Pesto de agua	54'8	59.7	49.0	33.2	47.0	39.8
Pero de tany	0.0	0.0	0.0	0.0	0.0	0,0
Pero del aurio arco	313.0	308.1	255.0	246.8	266.9	254.L
% de hum edad	17.51	19.38	17.65	21.56	17.61	23 53

					Expanion						
Fecha	Hora	Tiempo	b	Expan ón	on or	Photos of	Enpande.		1000 0.0	ttpasión.	
2 600.0	Hota	Hr.	Load	mm	36	Dial	mitn	%	Dial	mm	98
02/12/22	14.30	0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	DJ
03/12/22	14 30	22	42.1	1.07	0.9	54,1	1,37	12	78,4	199	1.17
04/12/22	14,30	42	52.9	1.34	1.2	66.8	1.70	15	91.8	233	2
05/12/22	14.30	65	62.4	1,58	1.4	84.5	2.15	1,9	102.1	2.59	2
06/12/22	14 30	95	78.4	1.99	1.7	96.9	2.46	21.	121 T	3.08	27

					Penetraci	iun.				_			_
Penetramion	Cargo		Ma) de Nº		34	Gi-	Molde N	Same Same	.2	The same of	Molde No	V	- 3
renewation.	Stand	Ca	rgx	Corre	scide	Ca	rga	Сите	cción	Ch	ga	Corre	crists
pulg	kg/cm3	Dini (div)	kg/tm2	kg/emi2	%	Did (div)	kg/cm2	kg/cm2	95	Dial (div)	kg/cm2	kg/cm2	- 0/3
0.000		0	.0		1.00	0	0	100	= 1	.0.	0		1 7
0.025		248	T			16/8	T	12		13.1	0		
0.056		48.5	2	11 11	Pa Print	38.4	1 1	80.00		26.8	(1)	9 600	
0.002		73.8	4		- 100	56,6	1	1		42.4	4	0.00	
9.100	70.1	116.2	ě	9.0	119	90.2	2	7.0	10.0	64.5	.0	5.2	7.
0.120		151.1	8		7.5	121.1	.6	1.	-	78.4	4	7.7	1
0.130		2117	11		. 7	156.4				109.1	6		
0.300	1653	268.5	15	373	les	226.6	- (1	133	12.7	100.5	3	9.9	9
0.700		\$05,E	21		10.00	298.5	. 137			226,5	31		
0.400		483.9	24			345.4	18			275.1	10		
0.300		fra 11		1	30-	14. 4	4-31	P-9		100			

4 00 8

<sup>Blinforme corresponde unica y exclusivamente a la muestra recibida.
Las copias de este informe no son validas sur la autorización del laboratorio.
Biste informe de ensayo es imparcial, confidencial; estando desfinado unica y exclusivamente al eliente.
(**) Datos proporcionados por d'eliente.</sup>

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C.

Av. Vicente Ruso Lote 1 S/N - Distrito de Chiclayo - Província de Chiclayo - Lambayeque RUC: 20487357465
Servícios de Laboratorios Chiclayo - EMP Asfaltos
948 852 622 - 954 131 476 - 998 928 250
E-mail: servícios_lab@hotmail.com.

INFORME DE ENSAYO

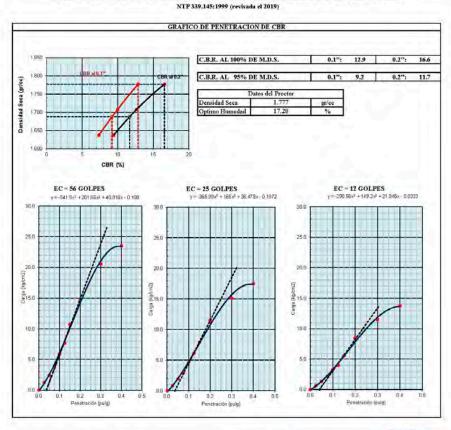
PROYECTO (**) : "Propiedades microestructurales y mecánicas de suelos adicionando cenizas de cáscara de arroz y fibras de plátano"

UBICACIÓN (**)

CLIENTE (**) : Jimmy Yampier Olivares Guzmán - Suzetty Nicole Urbina Silva Arcilla inorgánica + 10% cenizas de cáscara de arroz + 0,7% fibras $^{\circ}$ de plátano; Muestra: M-03

MATERIAL (**)

CODIGO DE MUESTRA (**) . COORDENADAS (**) 1. CÓDIGO ÚNICO : CI-450


: Segundo A. Carranza Mejia TECNICO ENCARGADO

FECHA DE MUESTREO (**): 02/12/2022

HORA DE MUESTREO (**): -MUESTREADO POR (**): -

FECHA DE RECEPCION: 02/12/2022 FECHA DE ENSAYO: 02/12/2022 FECHA DE EMISION: 06/12/2022

SUELOS. Método de ensayo de CBR (Relación de Soporte de California) de suelos compactados en el laboratorio. 1º Edición

Revisado y aprobado.

3 de 3

^{*} El informe corresponde única y exclusivamente a la muestra recibida.

* Las copias de este informe no son válidas sin la autorización del laboratorio.

* Este informe de ensayo es imparcial, confidencial; estando destinado unica y exclusivamente al cliente.

(**) Datos proporcionados por el diente.

CAM-FEB-009/2023

INFORME TÉCNICO

Número Total de Páginas: 6

SOLICITADO POR : JIMMY YAMPIER OLIVARES GUZMÁN.

MUESTRAS : 02 Muestras.

REALIZADO POR : Dr. Rolf Grieseler, MSc. Alvaro Tejada.

FECHA DE EMISIÓN: 22.03.2023.

I. INTRODUCCIÓN

A pedido del solicitante se realizó el análisis de las fases cristalinas mediante difracción de rayos X (DRX), así como el análisis morfológico y composicional mediante microscopía electrónica de barrido (SEM) en conjunción con Espectroscopía de rayos X dispersiva en energía (EDS). Se brindaron dos muestras, una para DRX y otra para SEM-EDS. Según indicación del solicitante, ambas muestras son de un suelo con 10% de ceniza de cáscara de arroz y 0.5% de fibra de plátano. La muestra para DRX fue brindada pulverizada.

II. PROCEDIMIENTO EXPERIMENTAL

DRX:

A partir de las muestras suministradas, el análisis de difracción de rayos X se realizó con el equipo DRX Bruker modelo D8 Discover con radiación de cobre ($Cu_{K\alpha}$ = 0.15418 nm), corriente de 40 mA y voltaje de aceleración de 40 kV, con un detector Lynxeye con selectividad de energías. El análisis fue realizado en un rango de ángulos (2 θ) desde 15° hasta 70° en pasos de 0.02°. El tiempo por paso fue 1 s.

Para calcular la composición de las fases cristalinas y la parte amorfa se aplicó el método de Reference Intensity Ratio (RIR). La concentración mínima para este método es 0.1 wt%.

SEM-EDS:

Las medidas fueron realizadas con un microscopio electrónico de barrido (SEM) de marca FEI modelo Quanta 200, para lo cual se utilizó un voltaje de aceleración de 30 kV y un tamaño de punto de 6, tanto para las imágenes como para la composición. Se midieron áreas con magnificaciones de 100x y 300x, dependiendo de los rasgos a visualizar. Las medidas de Espectroscopía de rayos X dispersiva en energía (EDS) fueron realizadas con un detector de marca EDAX, montado en

el microscopio electrónico. El procesamiento de los datos y la determinación de la composición elemental se realizaron con el software EDAX Genesis XM 4, utilizando una corrección de matriz ZAF.

Con respecto a la preparación de la muestra, se seleccionó un fragmento con rasgos de interés, el cual fue montado sobre un poste de aluminio para microscopía electrónica con cinta adhesiva de carbono y fijado con cinta adhesiva de cobre. Las medidas fueron hechas en un régimen de bajo vacio con inyección de vapor de agua, con la finalidad de evitar la acumulación de carga superficial en las muestras y permitir medidas sin necesidad de recubrir las muestras con oro. Esto fue hecho para prevenir sesgos en las medidas de EDS.

III. RESULTADOS

DRX:

En la Figura 1 se presentan los resultados de difracción de rayos X. En la Tabla 1 se resumen los resultados de la composición de fases cristalinas.

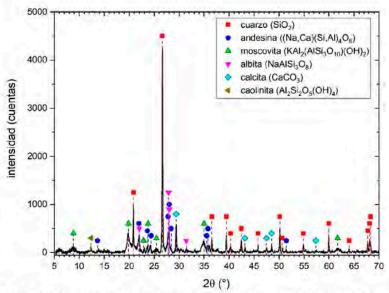
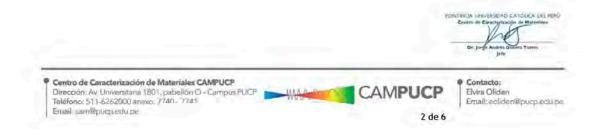



Figura 1. Difractograma de rayos X de la muestra junto con las fases cristalinas identificadas.

Tabla 1. Concentración de las fases cristalinas en la muestra de acuerdo con el método de RIR.

Fase cristalina	Fórmula	Según # de la base de datos	Concentración (wt%)
Cuarzo	SiO ₂	46-1045	17.2
Andesina	(Na,Ca)(Si,Al) ₄ O ₈	79-1149	12.4
Moscovita	KAI2(AISi ₃ O ₁₀)(OH) ₂	72-1503	10.7
Albita	NaAlSi ₃ O ₈	84-0752	7.7
Calcita	CaCO ₃	05-0586	4.7
Caolinita	Al ₂ Si ₂ O ₅ (OH) ₄	89-6538	3.4
Amorfo			43.9

SEM-EDS:

Para maximizar la información que se puede apreciar visualmente en las imágenes SEM, se ha optado por mostrar imágenes combinadas. Estas superponen las señales del detector de electrones retrodispersados con la del detector de electrones secundarios en una sola imagen. Con ello se aprecia tanto rasgos morfológicos (electrones secundarios) como composicionales (electrones retrodispersados).

En la **Figura 2** se muestra una imagen a una magnificación de 100x, cerca de la magnificación mínima del equipo, con la finalidad de brindar una vista amplia de la muestra. Ahí es posible observar una estructura de hojuelas en la superficie de la muestra, la cual puede deberse a la presencia de ceniza. A su vez, se puede observar una fibra de origen aparentemente vegetal, consistente con las fibras de plátano mencionadas por el solicitante.

En la **Figura 3** se muestra una imagen de mayor magnificación, de 300x, donde se amplía la región donde la fibra ingresa hacia la muestra. En esta imagen se han señalado algunas regiones de interés para el análisis elemental. En la **Tabla 2** se muestran los resultados de las medidas de EDS para estas regiones, así como el área total de la imagen. Las concentraciones de cada elemento se expresan en porcentaje por masa (wt%) y porcentaje atómico (at%). Cabe destacar que el margen de error en EDS es típicamente del orden de ±1 at% aproximadamente, por lo cual los resultados son mayormente cualitativos para los elementos con concentraciones muy bajas. En las **Figuras 4-7** se muestran los espectros de EDS para cada una de las regiones señaladas, a fin de verificar la calidad del ajuste.

En general, puede notarse una presencia notoria de carbono, oxígeno, silicio y diversos metales. La presencia de carbono es típica en ceniza, y el silicio y metales son comunes en muestras de origen mineral y en ceniza, posiblemente debido a especies como silicatos y aluminosilicatos, lo cual se corrobora con DRX. Dadas las distribuciones de elementos, la región P1 probablemente corresponde a una inclusión rica en carbono proveniente de ceniza. La región P2 es más representativa de las hojuelas, que podrían corresponder a los componentes inorgánicos de la ceniza, la cual suele contener compuestos de silicio, aluminio, calcio y potasio, entre otros. La región P3 corresponde a la fibra de origen vegetal, lo cual es consistente con su concentración elevada de carbono.

Centro de Caracterización de Materiales CAMPUCP Dirección: Av. Universitaria 1801, pabellón O - Campus PUCP Teléfono: 511-6262000 anexo: 7740 - 7741 Email: cam@pucp.edu.pe

CAMPUCP

Contacto:
Elvira Oliden
Email: eoliden@pucp.edu.pe

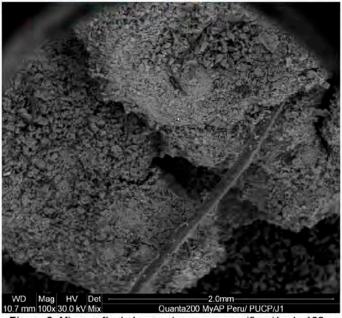


Figura 2. Micrografía de la muestra a una magnificación de 100x.

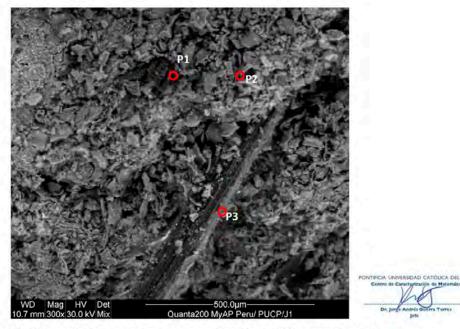


Figura 3. Micrografía de la muestra a una magnificación de 300x con regiones de interés señaladas.

Centro de Caracterización de Materiales CAMPUCP
Dirección: Av. Universitaria 1801, pabellón O - Campus PUCP
Teléfono: 511-6262000 anexo: 7740 - 7741
Email: cam@pucp.edu.pe

4 de 6

Tabla 2. Composición química medida por EDS en diferentes regiones (Figura 3).

Elemento	Área	total	P	1	P	2	P	3
químico	wt%	at%	wt%	at%	wt%	at%	wt%	at%
С	25.37	36.05	59.09	70.11	17.66	27,14	34.07	46.12
0	42.61	45.46	25.48	22.69	40.69	46.95	37.45	38.05
Na	0.33	0.25	0.31	0.19	0.28	0.22	0.47	0.33
Mg	0.47	0.33	0.19	0.11	0.17	0.13	0.27	0.18
Al	1.83	1.16	0.28	0.15	0.36	0.24	0.77	0.46
Si	24.13	14.67	10.59	5.37	33.37	21.94	22.77	13.18
P	0.18	0.10	-	11.50	0.16	0.10		
S	0.05	0.03	0.11	0.05		~	0.09	0.05
CI	0.27	0.13	0.18	0.07		-	0.69	0.32
K	1.42	0.62	0.81	0.29	4.71	2.22	1.36	0.56
Ca	1.50	0.64	1.94	0.69	1.46	0.67	1.21	0.49
Ti	0.17	0.06	0.13	0.04	-	-	0.12	0.04
Mn	0.18	0.06	0.34	0.09	0.72	0.24	0.23	0.07
Fe	1.49	0.46	0.54	0.14	0.43	0.14	0.50	0.15

PONTRICIA LIBERTESSDAD CATOLICA TILL FEE
Centro de Caractopicación de Majoriules

Dr. Junfo Antirol Giultra Tierra

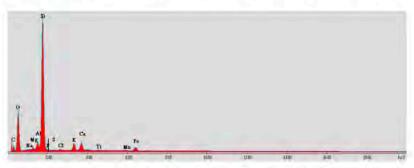


Figura 4. Espectro de EDS para el área total.

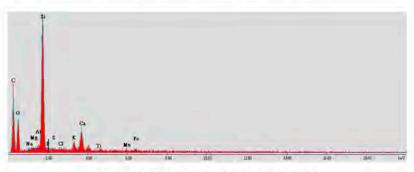


Figura 5. Espectro de EDS para región P1.

Centro de Caracterización de Materiales CAMPUCP
Dirección: Ay Universitana 1801, pabellón O - Campus PUCP
Teléfono: 511-6262000 anexo: 7740 - 7741
Email: cam@pucp.edu.pe

5 de 6

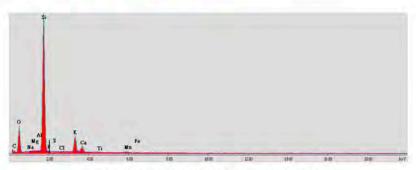


Figura 6. Espectro de EDS para región P2.

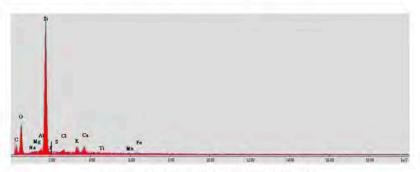


Figura 7. Espectro de EDS para región P3.

IV. CONCLUSIONES

Las muestras se analizaron mediante DRX y SEM. Se encontró mayormente cuarzo y diversos aluminosilicatos. Adicionalmente, hay un porcentaje apreciable de material amorfo que no se puede identificar con DRX, el cual puede deberse a la elevada presencia de materia orgánica de origen vegetal en la muestra. Las especies observadas son consistentes con la descripción brindada de la muestra.

Centro de Caracterización de Materiales CAMPUCP
Dirección: Av. Universitana 1801, pabellón O - Campus PUCP
Teléfono: 511-6262000 anexo: 7740 - 7741
Email: carn@pucp.edu.pe

CAMPUCP

Elvira Oliden
Email: eoliden@pucp.edu.pe

Registro N°LC - 020

CERTIFICADO DE CALIBRACIÓN

N° de Certificado: 0075-TPES-2022

N° de Orden de trabajo: 0624

Solicitante: SERVICIOS DE LABORATORIOS

DE SUELOS Y PAVIMENTOS S.A.C.

Dirección: Av. Vicente Ruso Lote 1, Fundo El

Cerrito

Instrumento de Medición: HORNO

Identificación: HOR-05

Marca: ALFA

Modelo: G-030/250

Serie: NO INDICA

Ubicación: ÁREA DE SUELOS

Fecha de calibración: 2022-11-08 al 2022-11-09

Tipo de ventilación: Ventilación forzada

Posición de ventilación: Cerrado

Superficies internas: 3

Carga utilizada (%): 50%

Tipo de Indicador: Digital

Intervalo de Indicación (del indicador): 0 °C a 200 °C

Resolución (del indicador): 1 °C

Tipo de Selector: Digita

Intervalo de Indicación (del selector): 0 °C a 200 °C

Resolución (para el selector): 1 °C

Temperatura de calibración: 60 °C ± 5 °C ; 110 °C ± 5 °C

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar combinada por el factor de cobertura k=2. Este valor ha sido calculado para un nivel de confianza aproximado del 95 % determinada según la "Guía para la

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento del instrumento

de medición o a reglamentaciones vigentes.

Expresión de la incertidumbre en la medición".

PESATEC PERU S.A.C. no se responsabiliza de lo perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Una copia de este documento será mantenida en archivo electrónico en el laboratorio por un período de por lo menos 4 años.

Revisión: 00

RT08-F28

Firmado digitalmente por JURUPE MELGAREJO SANDRA ESPERANZA Fecha: 2022-11-14 13:08:25

2022-11-14

Elaborado:JCFA

Autorizado por

Sandra Jurupe Melgarejo Gerente técnico

Aprobado:NGJC

Av. Condevilla 1269 Urb. EL OLIVAR - Callao | Telef: 4848092 - 4847633 - 7444303 - 7444306 | Celular994080329 - 97552515 Email: ventas@pesatec.com | Website: www.pesatec.com

PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PESATEC PERU SAC

Revisado: JMSE

Página 1 de 12

Registro N°LC - 020

CERTIFICADO DE CALIBRACIÓN

Nº de Certificado: 0084-TPES-C-2021

Nº de Orden de trabajo: 0472

SERVICIOS DE Solicitante:

LABORATORIOS DE SUELOS Y

PAVIMENTOS S.A.C.

Dirección: Cal. Juan Pablo II Nro. 682 Urb. Las

Brisas

Lambayeque - Chiclayo - Chiclayo

Instrumento de Medición: HORNO

Identificación: HOR-04

Marca: PERUTEST

Modelo: PT-H76

Serie: 0114

Ubicación: Laboratorio Fecha de calibración: 2021-11-04

Tipo de ventilación: Ventilación natural

Posición de ventilación: Cerrado

Superficies internas:

Carga utilizada (%): 60%

Tipo de Indicador:

Intervalo de Indicación (del indicador): 0 °C a 250 °C

Digital

Resolución (del indicador): 0.1 °C Tipo de Selector: Digital

Intervalo de Indicación (del selector): 0 °C a 250 °C

Resolución (del selector): 0,1°C

Temperatura de calibración: 110 °C ± 5 °C La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar combinada por el factor de cobertura k=2. Este valor ha sido calculado para un nivel de confianza aproximado de 95%, determinada según la "Guía para la Expresión de la incertidumbre en la

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes

PESATEC PERU S.A.C. no se responsabiliza de lo perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Una copia de este documento será mantenida en archivo electrónico en el laboratorio por un período de por lo menos 4 años.

Fecha de Emisión

Autorizado por

2021-11-09

Sandra Jurupe Melgarejo Gerente Técnico

RT08-F28 Revisión: 01 Elaborado: JCFA Revisión: JMSE Aprobado: NGJC Página 1 de 7

> Av. Condevilla 1269 Urb. EL OLIVAR - Callao | Telef: 4848092 - 4847633 - 7444303 - 7444306 | Celular994080329 - 975525151 Email: ventas@pesatec.com | Website: www.pesatec.com
> PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PESATEC PERU SAC

Registro N°LC - 020

CERTIFICADO DE CALIBRACIÓN

Página 1 de

N°de Certificado : 1587-MPES-C-2022

Nº de Orden de trabajo : 0624

1. SOLICITANTE : SERVICIOS DE LABORATORIOS DE

SUELOS Y PAVIMENTOS S.A.C.

Dirección : Av. Vicente Ruso Lote 1, Fundo el Cerrito

2. INSTRUMENTO DE : BALANZA MEDICIÓN

Marca : OHAUS

Modelo : R31P30

Número de Serie : 8335320494

Alcance de Indicación : 30000 g

Division de escala real : 10 g

(d)

Division de escala de : 10 g

verificación (e)

Procedencia : China

Identificación : BAL-41 (*)

Tipo de indicación : Electrónica
Ubicación : Laboratorio

Fecha de Calibración : 2022-11-08

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estàndar combinada por el factor de cobertura k=2. Este valor ha sido calculado para un nivel de confianza aproximado del 95 % determinada según la "Guía para la Expresión de la incertidumbre en la medición".

Los resultados sólo están relacionados con los items calibrados y son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PESATEC PERU S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados. Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

3. MÉTODO DE CALIBRACIÓN

Comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones, según:

Procedimiento para la Calibración de instrumento de pesaje de funcionamiento no automático clase III y IIII (PC - 001 del INACAL, Primera Edición - Mayo 2019.

4. LUGAR DE CALIBRACIÓN

Av. Vicente Ruso Lote 1, Fundo el Cerrito

Sello
Fecha de Emisión
Firmado
digitalmente por
JURUPE
MELGAREJO
SANDRA
ESPERANZA
Fecha: 2022-11-14
19:19:05
2022-11-14
Sandra Jurupe Melgarejo
Gerente Técnico
RT08-F09 Rev 06
Elaborado: JCFA
Revisado; JMSE
Aprobado: NGJC

Av. Condeville 1269 Urb. EL OLIVAR - Callac. | Telef: 4848092 - 4847633 - 7444303 - 7444306 | Celular994080329 - 975525151 Email: yentas@pesatec.com | Website: yww.pesatec.com PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PESATEC PERU SAC

Registro N°LC - 020

CERTIFICADO DE CALIBRACIÓN

Página 1 de 3

N°de Certificado : 1589-MPES-C-2022

Nº de Orden de trabajo : 0624

1. SOLICITANTE : SERVICIOS DE LABORATORIOS DE

SUELOS Y PAVIMENTOS S.A.C.

Dirección : Av. Vicente Ruso Lote 1, Fundo el Cerrito

2. INSTRUMENTO DE : BALANZA

MEDICIÓN

Marca : AND

Modelo : GF-8000

Número de Serie : T0323226

Alcance de Indicación : 8100 g

Division de escala real : 0,1 g

(d)

Division de escala de : 1 g

verificación (e)

Procedencia : Japón

Identificación : BAL-27

Tipo de indicación : Electrónica

Ubicación ; Laboratorio

Fecha de Calibración : 2022-11-09

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar combinada por el factor de cobertura k=2. Este valor ha sido calculado para un nivel de confianza aproximado del 95 % determinada según la "Guía para la Expresión de la incertidumbre en la medición".

Los resultados sólo están relacionados con los items calibrados y son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PESATEC PERU S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados. Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

Autorizado por

3. MÉTODO DE CALIBRACIÓN

Comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones, según:

Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II (PC - 011 del SNM-INDECOPI, 4ta edición abril 2010).

Fecha de Emisión

(+)

4. LUGAR DE CALIBRACIÓN

Sello

Av. Vicente Ruso Lote 1, Fundo el Cerrito

Firmado digitalmente por JURUPE MELGAREJO SANDRA ESPERANZA Fecha: 2022-11-14 19:47:23 2022-11-14 Sandra Jurupe Melgarejo Gerente Técnico

RT08-F09 Rev 06 Elaborado: JCFA Revisado; JMSE Aprobado: NGJC

Ay. Condeville 1269 Urb. EL OLIVAR - Callac. | Telef: 4848092 - 4847633 - 7444303 - 7444306 | Celular994080329 - 975525151 Email: yentas@pesatec.com | Website: yww.pesatec.com PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PESATEC PERU SAC

Registro N°LC - 020

CERTIFICADO DE CALIBRACIÓN

N°de Certificado : 1590-MPES-C-2022

Nº de Orden de trabajo : 0624

1. SOLICITANTE SERVICIOS DE LABORATORIOS DE

SUELOS Y PAVIMENTOS S.A.C.

Dirección : Av. Vicente Ruso Lote 1, Fundo el Cerrito

2. INSTRUMENTO DE : BALANZA MEDICIÓN

OHAUS Marca

: NV622ZH Modelo

Número de Serie : 834768510

Alcance de Indicación : 620 g

Division de escala real : 0,01 g

Division de escala de : 0,1 g

verificación (e)

Procedencia : No Indica

Identificación : BAL-70 (+)

Tipo de indicación Electrónica

Ubicación ; Laboratorio

Fecha de Calibración : 2022-11-09 La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar combinada por el factor de cobertura k=2. Este valor ha sido calculado para un nivel de confianza aproximado del 95 % determinada según la "Guía para la Expresión de la incertidumbre en la medición".

Los resultados sólo están relacionados con los items calibrados y son válidos en el momento y en las condiciones de la catibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación mantenimiento instrumento medición de reglamentaciones vigentes.

PESATEC PERU S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados. Los resultados de este certificado de calibración no debe ser como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

Autorizado por

3. MÉTODO DE CALIBRACIÓN

Comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones,

Procedimiento para la Calibración de instrumento de pesaje de funcionamiento no automático clase III y IIII (PC - 001 del INACAL, Primera Edición - Mayo 2019.

Fecha de Emisión

4. LUGAR DE CALIBRACIÓN

Sello

Av. Vicente Ruso Lote 1, Fundo el Cerrito

Firmado digitalmente por JURUPE MELGAREJO SANDRA ESPERANZA Fecha: 2022-11-13 20 49/39 ODEC PESATEC PERUS.A.C 2022-11-14 Sandra Jurupe Melgarejo Gerente Técnico RT08-F09 Rev 06

Av. Condeville 1269 Urb. EL OLIVAR - Callac | Telef: 4848092 - 4847633 - 7444303 - 7444306 | Email: ventas@pesatec.com | Websile: www.pesatec.com | PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PESATEC PERU SAC

Calibration Certificate - Dimensional Metrology Laboratory

L-25133-013 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-

nales, que reproducen las unidades de medida de acuerdo con el Sistema

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

instrumentos y/o de la suministrada por el solicitante.

Internacional de Unidades (SI).

Page / Pág 1 de 3

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

GRANOTEST

76120

Número de Serie

Identificación Interna

M-20-11

Malla

Mesh

No. 20

Solicitante

SERVICIOS DE LABORATORIOS DE SUELOS

Y PAVIMENTOS SOCIEDAD ANONIMA

CERRADA

Dirección

Cal. Juan Pablo II Nro. 682 Urb. Las Brisas

Lambayeque - Chiclayo - Chiclayo

Ciudad

Fecha de Calibración

2021 - 12 - 14

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

tiempo. The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any

damages that may arise from the improper use of the instruments and/or the information

provided by the customer.
This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International

System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

03

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Tecg. Jáiver Arnulfo López

Calibration Certificate - Dimensional Metrology Laboratory

L-25133-014 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que

puedan derivarse del uso inadecuado de los

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-

nales, que reproducen las unidades de medida de acuerdo con el Sistema

El usuario es responsable de la calibración de

los instrumentos en apropiados intervalos de

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and

resures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI)

instrumentos y/o de

suministrada por el solicitante.

Internacional de Unidades (SI).

tiempo.

Page / Pág 1 de 3

información

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

GRANOTEST

Número de Serie

79087

Identificación Interna

M-30-09

Malla

No. 30

Solicitante

SERVICIOS DE LABORATORIOS DE SUELOS

Y PAVIMENTOS SOCIEDAD ANONIMA

CERRADA

Dirección

Cal. Juan Pablo II Nro. 682 Urb. Las Brisas

Lambayeque - Chiclayo - Chiclayo

Ciudad

Chiclayo

Fecha de Calibración

2021 - 12 - 14

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

System of Units (SI). The user is responsable for recalibrating the measuring instruments at appropriate time intervals

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

LM-PC-12-F-01 R13.4

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

TAMIZ 8"

L-25133-015 RO

Calibration Certificate - Dimensional Metrology Laboratory

Page / Pág 1 de 3

Equipo

Fabricante

PINZUAR

Modelo

GRANOTEC

Número de Serie

80283

Identificación Interna

M-40-10

Malla

No. 40

Solicitante

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS SOCIEDAD ANONIMA

CERRADA

Dirección

Cal. Juan Pablo II Nro. 682 Urb. Las Brisas

Ciudad

Chiclayo

Lambayeque - Chiclayo - Chiclayo

Fecha de Calibración

2021 - 12 - 14

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al îtem que se relaciona en esta página. El laboratorio que lo emite no esta pagina. El aboration que lo enfilie ho se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

intervals.

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son yálidos.

Williout the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not faken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

da Metrología: C1.18.#1038-72. [P3X:57 (1) 745.4555 - 3174233640 [Jabane ralogalapinzuala

Calibration Certificate - Dimensional Metrology Laboratory

L-25133-016 RO

Page / Pág 1 de 3

Equipo

TAMIZ 8" PINZUAR

Fabricante

Modelo

GRANOTEC

Número de Serie

80671

Identificación Interna

M-50-08

Malla

No. 50

Solicitante

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS SOCIEDAD ANONIMA

CERRADA

Dirección

Cal. Juan Pablo II Nro. 682 Urb. Las Brisas

Lambayeque - Chiclayo - Chiclayo

Ciudad

Fecha de Calibración

2021 - 12 - 14

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-nales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

03

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

LM-PC-12-F-01 R13.4

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

201

Calibration Certificate - Dimensional Metrology Laboratory

L-25133-017 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacio-

nales, que reproducen las unidades de medida de acuerdo con el Sistema

El usuario es responsable de la calibración de

los instrumentos en apropiados intervalos de

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.
This calibration certificate documents and

rms canification continues and an ensures the traceability of the reported results to national and internationals standards, which realize the units of

measurement according to the International

The user is responsable for recalibrating the

instrumentos y/o de la suministrada por el solicitante.

Internacional de Unidades (SI).

tiempo.

Page / Pág 1 de 3

Equipo

TAMIZ 8"

Fabricante

FORNEY

Modelo

NO INDICA

Número de Serie

60BS8F6344001

Identificación Interna

M-60-03

Malla

No. 60

Mesh

Solicitante

SERVICIOS DE LABORATORIOS DE SUELOS

Y PAVIMENTOS SOCIEDAD ANONIMA

CERRADA

Dirección

Cal. Juan Pablo II Nro. 682 Urb. Las Brisas

Lambayeque - Chiclayo - Chiclayo

Ciudad

Fecha de Calibración

2021 - 12 - 14

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

measuring instruments at appropriate time 03

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son validos.

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

System of Units (SI).

Calibration Certificate - Dimensional Metrology Laboratory

L-25133-018 RO

Page / Pág 1 de 3

Equipo

TAMIZ 8" PINZUAR

Fabricante

Modelo

GRANOTEST

Número de Serie

75827

Identificación Interna

M-80-05

Malla

No. 80

Solicitante

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS SOCIEDAD ANONIMA

CERRADA

Dirección Address

Cal. Juan Pablo II Nro. 682 Urb. Las Brisas

Lambayeque - Chiclayo - Chiclayo

Ciudad

Chiclayo

Fecha de Calibración

2021 - 12 - 14

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

Sh la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son validos.

Without the approval of the Pinzuar Metology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no esta pagnia. El acordonio que lo entire ho se responsabiliza de los perjulcios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante. Este certificado de calibración documenta y

Los resultados emitidos en este certificado se

asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time intervals.

Tecg. Jaiver Arnulfo López

Calibration Certificate - Dimensional Metrology Laboratory

L-25133-019 RO

Page / Pág 1 de 3

Equipo

Fabricante

TAMIZ 8" **PINZUAR**

Modelo

GRANOTEST

Número de Serie

79413

Identificación Interna

M-100-10

Malla

No. 100

Solicitante

SERVICIOS DE LABORATORIOS DE SUELOS

Y PAVIMENTOS SOCIEDAD ANONIMA

CERRADA

Dirección

Cal. Juan Pablo II Nro. 682 Urb. Las Brisas

Lambayeque - Chiclayo - Chiclayo

Ciudad

Chiclayo

Fecha de Calibración

2021 - 12 - 14

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la suministrada por el solicitante. información

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information

provided by the customer.
This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time intervals

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos,

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

LM-PC-12-F-01 R13.4

L-25133-020 RO

Calibration Certificate - Dimensional Metrology Laboratory

Page / Pág 1 de 3

Equipo

Fabricante

Modelo

Número de Serie

Identificación Interna

Malla

Solicitante

Dirección

Ciudad

Fecha de Calibración

Fecha de Emisión

Número de páginas del certificado, incluyendo anexos

TAMIZ 8"

PINZUAR

GRANOTEST

83188

M-140-01

No. 140

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS SOCIEDAD ANONIMA

CERRADA

Cal. Juan Pablo II Nro. 682 Urb. Las Brisas

Lambayeque - Chiclayo - Chiclayo

2021 - 12 - 15

2021 - 12 - 20

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en soio corresponene ai item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time intervals

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

03

Firmas que Autorizan Certificado

LM-PC-12-E-01 R13 4

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López Metrólogo Laboratorio de Metrología

Calibration Certificate - Dimensional Metrology Laboratory

L-25133-021 RO

Page / Pág 1 de 3

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

GRANOTEST

80788

Número de Serie

Identificación Interna

M-200-15

Malla

Mesh

No. 200

Solicitante

SERVICIOS DE LABORATORIOS DE SUELOS

Y PAVIMENTOS SOCIEDAD ANONIMA

CERRADA

Dirección

Cal. Juan Pablo II Nro. 682 Urb. Las Brisas

Lambayeque - Chiclayo - Chiclayo

Ciudad

Fecha de Calibración

2021 - 12 - 15

Fecha de Emisión

2021 - 12 - 20

Número de páginas del certificado, incluyendo anexos

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información instrumentos y/o de la suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.
This calibration certificate documents and

ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

03

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

LM-PC-12-F-01 R13.4

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

174033640 Lebra

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS

SERVICIOS DE LABORATORIO DE ENSAYO DE SUELOS Y PAVIMENTOS, CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO

Área de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN SLSP - LF - 013-2022

pág. 1 de 3

1.- Expediente

: 013

2.- Cliente

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C.

Dirección

Av. Vicente Ruso Lote 1, Fundo El Cerrito (Al costado de la Quinta Arellano -

Prolongación Bolognesi).

3.- Equipo:

Marca Modelo Nº Serie Procedencia Identificación

Clase: Indicador (tipo): Marca Modelo N° Serie:

Capacidad máxima: Resolución

PRENSA CBR : NO INDICA

NO INDICA

NO INDICA NO INDICA P-CBR-02 NO INDICA DIGITAL WEBOWT

: ID226 ID22601688 5000 (kgf) ; 0.1 (kgf)

4.- Fecha y lugar de calibración

Fecha de calibración : 12/07/2022

Lugar de calibración Av. Vicente Ruso Lote 1, Fundo El

Cerrito (Al costado de la Quinta Arellano - Prolongación Bolognesi). Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

Servicios de Laboratorio de Suelos y Pavimentos S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez

5.- Método de calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al LEDI - PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Máquinas de Ensayos Uniaxiales Estáticos. Parte 1:Máquinas de ensayo de tracción/compresión. Verificación y calibración del Sistema de medida de Fuerza."-Julio 2006.

6.- Condiciones Ambientales

	Inicial	Final
Temperatura	19.2 °C	20 °C
Humedad	72 %HR	71 %HR

Fecha de Emisión: 12/07/2022

SERVICIOS DE DABORATORIOS DE SUELO Y PAVIMENTOS S.A.C.

Ing. Secundino Burga Fernandez

Jefe del Laboratorio de Metrología

Jan Carlos Chavesta Reyes

Técnico de Metrología

- Av. Vicente Ruso Lote 1, Fundo El Cerrito (Al Costado de la Quinta Arellano Prolongación Bolognesi)
- 10.0 Servicios de Laboratorios Chiclayo - EMP Asfaltos 948 852 622 - 954 131 476 - 998 928 250

emp_calibraciones@hotmail.com servicios_lab@hotmail.com.

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C

SERVICIOS DE LABORATORIO DE ENSAYO DE SUELOS Y PAVIMENTOS, CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO

Área de Metrología Laboratorio de Fuerza CERTIFICADO DE CALIBRACIÓN SLSP - LF - 013-2022 pág. 2 de 3

7.- Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado
LABORATORIO DE ESTRUCTURAS ANTISÍSMICAS (PUCP)	CELDA DE CARGA DE 4500 kgf	INF - LE 262 - 21 B

8.- Resultados de medición

Indicación del Equipo		Indicación de Fuerza (Ascenso) Patrón de referencia				
%	F, (kN)	Ft (kN)	F ₂ (kN)	F ₃ (kN)	F _{promedio} (kN	
9.0	4.4	4.4	4.4	4.4	4.4	
18.0	8.8	8.8	8.8	8.8	8.8	
27.0	13.2	13.2	13.2	13.2	13.2	
36.0	17.7	17.6	17.6	17.6	17.6	
45.0	22.1	22.0	22.0	22.0	22.0	
54.0	26.5	26.4	26.4	26.4	26.4	
63.0	30.9	30.8	30.8	30.8	30.8	
72.0	35.3	35.2	35.2	35.3	35.2	
81.0	39.7	39.7	39.7	39.7	39.7	
90.0	44.1	44.1	44.0	44.1	44.1	
Retorno a cero		0.0	0.0	0.0		

Indicación del Equipo F (kN)	Errores Encontrados en el Sistema de Medición				
	Error de medida	Repetibilidad b (%)	Resol.Relativa a (%)	Incertidumbre expandida (k = 2)	
	q (%)			(u)	(4 %)
4.4	-0.62	0.31	2	0.06	1.32
8.8	-0.33	0.31	1.13	0.06	0.68
13.2	-0.21	0.15	0.76	0.06	0.45
17.7	-0.26	0.04	0.57	0.06	0.33
22.1	-0.17	0.06	0.45	0.14	0.64
26.5	-0.18	0.07	0.38	0.06	0.23
30.9	-0.16	0.04	0.32	0.06	0.19
35.3	-0.16	0.02	0.28	0.06	0.17
39.7	-0.15	0.01	0.25	0.06	0.15
44 1	-0.16	0.08	0.23	0.06	0.15

Incertidumbre por error de cero u₀ 0,00

9,- Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura K=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.

La incertidumbre expandida de medición fue calculado a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

SERVICIOS DE DARGARDOR DE SUELO MARIAMENTO CON DE CONTROLLO CON DEL CONTROLLO CONTRO

LABORATURIO AREA DE SAUBRACIÓN

Ing. Secunding Burga Fernández JEFE DE MEJROLOGIA REGY CHR 169278

Ing. Secu Ino Burga Fernande

Av. Vicente Ruso Lote 1, Fundo El Cerrito (Al Costado de la Quinta Arellano - Prolongación Bolognesi)

Servicios de Laboratorios Chiclayo - EMP Asfaltos

emp_calibraciones@hotmail.com

Jan Carlos Chavesta Reyes

servicios_lab@hotmail.com.

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS S.A.C

SERVICIOS DE LABORATORIO DE ENSAYO DE SUELOS Y PAVIMENTOS, CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO

Área de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN SLSP - LF - 013-2022

pág. 3 de 3

- Errores Encontrados en el Sistema de Medición Error de medida
- Errores Encontrados en el Sistema de Afedición Repetibilidad
- O Errores Encontrados en el Sistema de Medición Resol.Relativa

10. Observaciones

- Se colocó una etiqueta con la indicación CALIBRADO.

 Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de \pm 2,0 °C.

Jan Carlos Chavesta Reyes

Secundino Burgo Fernández JEFE DEMETROLOGIA REG DE 189278 Ing. Secu Inø Burga Fernandez

Av. Vicente Ruso Lote 1, Fundo El Cerrito (Al Costado de la Quinta Arellano - Prolongación Bolognesi) f Servicios de Laboratorios Chiclayo - EMP Asfaltos

948 852 622 - 954 131 476 - 998 928 250

emp_calibraciones@hotmail.com servicios_lab@hotmail.com.